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ABSTRACT

Efficient, Accurate, and Non-Gaussian Statistical Error Propagation
Through Nonlinear, Closed-Form, Analytical System Models

Travis V. Anderson
Department of Mechanical Engineering, BYU

Master of Science

Uncertainty analysis is an important part of system design. The formula for error
propagation through a system model that is most-often cited in literature is based on a
first-order Taylor series. This formula makes several important assumptions and has several
important limitations that are often ignored. This thesis explores these assumptions and
addresses two of the major limitations. First, the results obtained from propagating error
through nonlinear systems can be wrong by one or more orders of magnitude, due to the
linearization inherent in a first-order Taylor series. This thesis presents a method for over-
coming that inaccuracy that is capable of achieving fourth-order accuracy without significant
additional computational cost. Second, system designers using a Taylor series to propagate
error typically only propagate a mean and variance and ignore all higher-order statistics.
Consequently, a Gaussian output distribution must be assumed, which often does not re-
flect reality. This thesis presents a proof that nonlinear systems do not produce Gaussian
output distributions, even when inputs are Gaussian. A second-order Taylor series is then
used to propagate both skewness and kurtosis through a system model. This allows the sys-
tem designer to obtain a fully-described non-Gaussian output distribution. The benefits of
having a fully-described output distribution are demonstrated using the examples of both a
flat rolling metalworking process and the propeller component of a solar-powered unmanned
aerial vehicle.

Keywords: uncertainty analysis, statistical error propagation, system modeling, Taylor series
expansion, variance propagation, skewness propagation, kurtosis propagation
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NOMENCLATURE

N Number of data points in a distribution
n Number of inputs to a system model
x An input distribution to a system model
xi The i-th system input distribution
xj The j-th element of a system input distribution
x̄ The mean value of input x
σx Standard deviation in the input distribution x
σ2
x Variance in the input distribution x
σ2
xixj

Covariance in between input distributions xi and Xj

γ1 Skewness in a distribution
γ2 Kurtosis in a distribution
β2 Excess kurtosis in a distribution
κi The i-th cumulant of a distribution
µk The k-th central moment of a distribution
µk,i The k-th central moment of the i-th input distribution
∂1 First partial derivative of the system model, evaluated at the mean
∂2 Second partial derivative of the system model, evaluated at the mean
y System output
ȳ Mean system output value
σy Standard deviation in output distribution y
σ2
y Variance in output distribution y
ε Relative error in a model’s prediction compared with actual output
e Correction factor
Ck The k-th component of a compositional system model
E[ ] indicates the expectation operator performed on [ ]

Example: Dual Propeller, Three Degree-of-Freedom Helicopter
θ Helicopter pitch angle (rad)

θ̈ Angular acceleration in pitch (rad/s2)
m1 Mass of helicopter motors, propellers, and circuitry (kg)
m2 Mass of helicopter counterbalance weight (kg)
Lk Length of helicopter segment k (m)
Jy Mass moment of inertia about the pitch axis of rotation (kg-m2)
uL Motor command given to left motor
uR Motor command given to right motor
km Motor calibration constant

Example: Kinematic Model of Flapping Flight Wing Motion
t Simulation time (s)
ω Flapping frequency (Hz)
φ Positional angle (deg)
θ Elevation angle (deg)
α Feathering or attack angle (deg)

x



Axx Fourier series coefficients for cos terms
Bxx Fourier series coefficients for sin terms

Example: Solar-Powered Unmanned Aerial Vehicle Propeller Thrust
T Thrust generated by the propeller (N)
Ct Unitless calibration coefficient of thrust
ρ Density of air (kg/m3)
ω Propeller angular velocity (rad/s)
D Propeller Diameter (m)

Example: Flat Rolling Metalworking Process
∆H The change in material thickness with each pass (m)
∆Hmax The maximum change in material thickness attainable in a single pass (m)
µf Coefficient of friction
R Roller radius (m)

xi



CHAPTER 1. INTRODUCTION

In the system design process, designers frequently experience significant uncertainty

in predicting whether a proposed design will meet the design objectives. Design decisions

often cannot be validated until a physical prototype is built and tested. If the proposed

design proves to be faulty, it can lead to a very costly design iterations. The inability of the

system designer to verify design decisions early in the design process and to determine if a

proposed design will accomplish design objectives is a limiting obstacle in system design [1].

Consequently, system behavioral modeling is an important part of system design. If

a system behavioral model could be obtained and its accuracy quantified, it would enable

the designer to verify design decisions early in the design process. This would greatly reduce

the risk of a creating a failed system design.

Determining system model accuracy is difficult, especially when the system is still

theoretical and actual system behavior is not known [2]. In many situations, a statistical

distribution of possible outputs is more meaningful than a simple max/min error bound [3].

If the system input distributions are known, such an output distribution can be obtained

for closed-form differentiable models using a Taylor series expansion to propagate input

distributions through a system model. This is typically accomplished with the first-order

Taylor series approximation, but there are two major limitations of using this method.

First, the first-order Taylor series takes a derivative-based weighted sum of indepen-

dent input variances to estimate the variance in the output distribution. Since all higher-

order terms in the series are neglected, this predicted output variance may be wrong by one

or more orders of magnitude for nonlinear functions [4]. While higher-order terms clearly

improve the accuracy of the approximation, they also require greater computational cost.

This thesis shows that the truncation error in lower-order approximations can be predicted
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and accounted for. Consequently, fourth-order accuracy in error propagation can be obtained

without significant additional computational cost.

Second, system designers typically use the Taylor series to only propagate a mean and

variance. All higher-order statistics are neglected. As all non-Gaussian distributions cannot

be fully described with a mean and variance alone, the output distribution is typically

assumed to be Gaussian. This often is an erroneous and costly assumption. This thesis

proves that nonlinear functions do not produce Gaussian output distributions, even when

inputs are Gaussian. A second-order Taylor series expansion can be used to propagate higher-

order statistical properties through a system model without incurring significant additional

computational cost.

This thesis explores error propagation through nonlinear system models using a Taylor

series expansion. Chapter 2 provides an overview of nine common methods of uncertainty

analysis. Chapter 3 shows how high accuracy in variance propagation can be obtained with

low-order computational cost. Chapter 4 presents a method for propagating the higher-order

statistical properties skewness and kurtosis through a closed-form system model. Chapter 5

concludes this thesis and suggests areas for future research.
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CHAPTER 2. LITERATURE SURVEY

Many methods are currently in use or being researched that quantify the accuracy

of a system model by propagating error through the system. These methods include the

following:

• Error propagation via Taylor series expansion

• Non-deterministic analysis via brute force (Monte Carlo, Latin hypercube, etc.)

• Deterministic model composition

• Error budgets

• Univariate dimension reduction

• Interval analysis

• Bayesian inference

• Response surface methodologies

• Anti-optimizations (sub-optimizations)

While this thesis focuses on error propagation via Taylor series expansion, the other

uncertainly analysis techniques listed above are also briefly described in the remainder of

this chapter.

2.1 Error Propagation via Taylor Series Expansion

A Taylor series can be used to propagate variation in system inputs through a system

model to produce an estimate of the variation in system outputs. This derivatives-based

method can be very simple and fast, and is the method most-often cited in literature [5, 6].
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Nevertheless, it may produce results that are inaccurate by one or more orders of magni-

tude [4], particularly for nonlinear systems. This inaccuracy is a result of linearizing the

system model, as the higher-order derivatives are truncated from the Taylor series. This

linearization also means accuracy decreases as input variances increase.

Typically, this method is used only to propagate variance. Data is typically assumed

to be independent and Gaussian, as variable interactions and higher-order statistics are

ignored.

2.2 Non-Deterministic Analysis via Brute Force

Uncertainty analysis methods are usually classified as either deterministic or non-

deterministic, and non-deterministic analysis methods are further grouped into two main

categories: 1) reliability-based design methods [7, 8, 9], and 2) robust-design-based meth-

ods [10, 11, 12, 13, 14, 15].

A deterministic model always produces the same output values from the same input

values, but a non-deterministic model does not. Consequently, a non-deterministic model,

executed repeatedly with the same input values, can produce a statistical output distribution

instead of a single nominal value.

However, due to the complexities of non-deterministic modeling, it is more common to

represent uncertainty with probabilistic methods and propagate these uncertainties through a

deterministic model [16]. This approach can also result in a statistical output distribution by

executing the model repeatedly. This brute-force approach to non-deterministic uncertainty

analysis commonly uses Monte Carlo, quasi Monte Carlo [17, 18], Monte Carlo hybrid [19],

Latin hypercube, Latin supercube [20], or some other sampling technique.

This technique does not need to assume a Gaussian output distribution. Conse-

quently, an estimate of the fully-described output distribution can be obtained. However,

this approach comes at great computational cost, which only grows exponentially with an

increase in the number of statistically distributed inputs. Furthermore, the entire simula-

tion must be executed again each time the model or any input value changes. This can be

prohibitive in an iterative design process.
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2.3 Deterministic Error by Model Composition

Current research is being done [21] to deterministically propagate error through a

compositional system model to obtain max/min error bounds. In order to do this, the

system model error must be included in the model itself. Augmenting the compositional

system model with component error models allows the component error interactions and

propagations to be evaluated together with the model. System model accuracy can be

determined by comparing the results of the regular system model with those from the error-

augmented system model [2]. Monte Carlo simulations or optimization routines can be

executed to find the max/min error bounds of the system model.

With this approach to error propagation, the accuracy of even complex systems and

interactions can be obtained. Errors do not need to be independent. Component models do

not have to be mathematical or closed-form functions, but rather can include dynamic mod-

els, nonlinear models, non-differentiable models, lookup-tables, software programs, digital

logic, CAD models, finite-element models, and any other model capable of mapping inputs

to outputs.

Deterministic error analysis requires known component error models and relation-

ships. In some situations, the max/min error bounds obtained from this method are so large

that they are not helpful. In many practical applications, a statistical error distribution is

more useful than a max/min error envelop [3].

2.4 Error Budgets

The method of error budgets involves propagating the error of each component

through the system separately, and resolving each component’s error to the contribution

it makes on the total system error [22, 23]. This is done by perturbing one error source at a

time and observing the effect this has on the total system error. Consequently, this method

requires either that component errors be independent or that a separate model showing

component error interactions be developed, which typically is not done [24]. If the error

sources are not actually independent, this method will not necessarily describe the full range

of possible model error.
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2.5 Univariate Dimension Reduction

Univariate dimension reduction methods transform data from a high-dimensional

space to a lower-dimensional space. In some situations, data analysis may even be more

accurate in the reduced space than in the original space [25].

2.6 Interval Analysis Methods

Interval analysis methods bound rounding and measurement errors in mathematical

computation. Arithmetic can then be performed using intervals instead of a single nominal

value [26]. These techniques can be used to propagate error envelopes, or intervals, through a

system model. These methods, however, are typically limited to basic arithmetic operations.

Currently there are many software languages, libraries, compilers, and data types

that implement interval arithmetic. These include XSC, Profil/BIAS, Boost, Gaol, Frink,

and a MATLAB extension named Intlab. There is also a working group currently developing

an IEEE Interval Standard (P1788).

2.7 Bayesian Inference

Bayesian inference is a method of statistical inference whereby the probability that a

hypothesis is true is inferred based on both observed evidence and the prior probability that

the hypothesis was true [27]. It combines common-sense knowledge with observational evi-

dence in an attempt to eliminate needless complexity in a model by declaring only meaningful

relationships [28] and disregarding the influences of all other variables on system outputs.

2.8 Response Surface Methodologies

Response surface methodology is commonly used in design of experiments. It is a

modeling technique whereby an n-dimensional response surface showing the relationship

between n-input variables is created, typically from using empirical data [29, 30]. A few

common experimental design setups include full factorial, partial factorial, central composite,

Plackett-Burman, Box-Behnken, and others.
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2.9 Anti-Optimization Techniques

Anti-optimization techniques allow the designer to find the worst-case scenario for a

given problem. This results in a two-level optimization problem, where the uncertainty is

anti-optimized on the lower level and the overall design is optimized on a higher level [31].
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CHAPTER 3. PROPAGATION OF VARIANCE

This chapter demonstrates how a Taylor series is used to propagate variance by es-

timating a distribution’s central moments. The mathematical expectation operator and

central moments are first discussed. The derivations of the first- and second-order Taylor

series error propagation formulas are then presented along with an in-depth discussion of

their accuracies. The assumptions and limitations of using a Taylor series to propagate error

through a system model are then summarized.

This chapter then demonstrates how fourth-order accuracy can be obtained in error

propagation with only first- or second-order computational cost. This is accomplished by

applying a correction factor to the lower-order estimate, which accounts for the higher-order

truncation error in the Taylor series. These correction factors were determined empirically

for several common nonlinear engineering functions.

Lastly, this chapter demonstrates the effectiveness of this method using the model of

a dual-propeller, three degree-of-freedom helicopter, and the kinematic system model of a

flapping wing.

3.1 Fundamental Concepts

Before continuing, it is essential to understand two statistical concepts that are funda-

mental to this research. These are the mathematical expectation operator and the statistical

central moment property, both of which are described in this section.

3.1.1 Mathematical Expectation

The mathematical expectation operator, E[ ] denotes the calculation of a weighted

average of all possible values, as shown in Eq. (3.1). The weights correspond to the proba-

bility of a particular value. When all possible values have an equal probability, the expected

9



value is equal to the arithmetic mean, which is also equal to the limit of the sample mean

as the sample size increases to infinity.

E[X] = x1p1 + x2p2 + ...+ xnpn (3.1)

where X is some population, xi are the possible values, pi are their respective probabilities,

and all pi add to 1. Some common expectation properties are presented below:

E[a] = a

E[X + a] = E[X] + a

E[X + Y ] = E[X] + E[Y ]

E[a ·X] = a · E[X]

E[aX + b] = a · E[X] + b

E[aX + bY ] = a · E[X] + b · E[Y ]

where X and Y are statistical distributions and a and b are constants.

3.1.2 Central Moments

A central moment is a statistical property commonly used in statistical analysis [32,

6, 33]. The k-th central moment of a distribution is defined in Eq. (3.2).

µk = E
[
(x− x̄)k

]
=

1

N

N∑
j=1

(xj − x̄)k (3.2)

where x represents some distribution of N values, x̄ represents the input mean, and E is

the mathematical expectation operator. The central moments of a population can easily be

estimated using any appropriate population-sampling technique.
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The zeroth central moment is always equal to one, the first central moment is always

equal to zero [34], and the second central moment is equivalent to the variance. The third

and fourth moments are used in the calculation of higher-order statistics, such as skewness

and kurtosis. Propagation of these higher-order statistics is the subject of Chapter 4.

3.2 Propagation of Variance Using First Order Taylor Series

Generally, a distribution of input values propagates through a given system to pro-

duce a distribution of output values. While many sources of error might be present, including

modeling error (unmodeled behavior, emergent behavior) and measurement error, this re-

search focuses on the output distribution caused by variation in system model inputs only.

The analytical formula most-often cited in literature that estimates this variance

propagation is based on a first-order Taylor series expansion. It makes several important as-

sumptions that are limiting in many practical situations. These assumptions and limitations

cannot be fully understood (much less overcome) without understanding the derivation of

this first-order variance propagation formula.

The author of this thesis has found the complete derivation of this formula to be

absent in textbooks and archival journal literature. Consequently, the derivation is presented

in this section in order to more fully explain the assumptions, limitations, and accuracy of

this error propagation technique. The assumptions and limitations mentioned are discussed

in Section 3.4.

3.2.1 First-Order Formula Derivation

Let y be some function of n inputs xi. The first-order Taylor series approximation

expanded about the input means x̄i is shown in Eq. (3.3) [35].

y ≈ f(x̄1, ..., x̄n) +
n∑
i=1

∂f

∂xi
(xi − x̄i) (3.3)

where the partial derivatives are evaluated at the mean xi = x̄i. An approximation of the

output mean ȳ is given in Eq. (3.4).
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ȳ = E[y]

≈ E

[
f(x̄1, ..., x̄n) +

n∑
i=1

∂f

∂xi
(xi − x̄i)

]

≈ f(x̄1, ..., x̄n) +
n∑
i=1

∂f

∂xi
µ1,i

≈ f(x̄1, ..., x̄n) (3.4)

where E is the expectation operator and µk,i is the k-th central moment for the i-th input,

as given previously in Eq. (3.2). (Recall that the first central moment is equal to zero.)

Subtracting Eq. (3.3) from Eq. (3.4) produces Eq. (3.5).

y − ȳ ≈
n∑
i=1

∂f

∂xi
(xi − x̄i) (3.5)

Squaring and taking the expectation of Eq. (3.5) produces Eq. (3.6).

E[(y − ȳ)2] ≈
n∑
i=1

[(
∂f

∂xi

)2

σ2
xi

+ 2
n∑

j=i+1

∂f

∂xi

∂f

∂xj
σ2
xixj

]
= σ2

y (3.6)

where σ2
y and σ2

x are the variances in y and x, respectively. Recall that variance σ2 is the

second central moment, which is defined in Eq. (3.7).

σ2
x = µ2

= E[(x− x̄)2]

=
1

N

N∑
j=1

(xj − x̄)2 (3.7)

The second term in Eq. (3.6) is the covariance term, where σ2
xixj

is the covariance between

inputs xi and xj. Covariance is defined in Eq. (3.8).
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σ2
xixj

= E [(xi − x̄i)(xj − x̄j)] (3.8)

When inputs are independent, the covariance term is equal to zero, and Eq. (3.6) reduces to

Eq. (3.9).

σ2
y ≈

n∑
i=1

(
∂f

∂xi

)2

σ2
xi

(3.9)

This simplifying assumption of independence is typically made, both in literature and in

practice. Consequently, Eq. (3.9) is the formula typically given for statistical error propaga-

tion through an analytical system model [36, 37, 38, 4].

3.2.2 First-Order Accuracy

Clearly, Eq. (3.9) is an approximation only and can be wrong by one or more orders

of magnitude. This is especially evident when dealing with nonlinear functions [4].

For example, let y be modeled by the function y = 1000 sin(x). An estimation of the

output variance σ2
y obtained from Eq. (3.9) is given in Eq. (3.10).

σ2
y,1st ≈ 106 cos2(x̄)σ2

x (3.10)

Throughout this entire thesis, “actual” output variance was determined using a Monte

Carlo simulation. While convergence in statistical properties was obtained for every model

in this thesis after 1 million executions, each system’s “actual” output is the result of 10

million executions.

The relative error ε of Eq. (3.10) can be calculated using Eq. (3.11) and the result is

plotted as a function of input mean x̄ in Figure 3.1.

ε =
|σ2
y, predicted − σ2

y,Monte Carlo|
σ2
y,Monte Carlo

(3.11)

As illustrated in Figure 3.1, the first-order approximation of variance propagation is

fairly accurate for most values of x̄. However, for certain input values, the approximation

can be wrong by one or more orders of magnitude, as indicated by the 100% jump in relative
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Figure 3.1: Relative Error in Output Variance Using a First-Order Taylor Series Expansion
for the Function y = 1000 sin(x)

error at x̄ = π
2
. This spike in relative error occurs because the sin function is nonlinear and

the higher-order terms in the Taylor series used to derive Eq. (3.9) were neglected.

3.3 Propagation of Variance Using Higher-Order Taylor Series

As shown in the preceding section, Eq. (3.9) is based on a first-order Taylor series.

For nonlinear and higher-order polynomial functions, Taylor series truncation error becomes

significant and Eq. (3.9) can become extremely inaccurate (i.e., wrong by one or more orders

of magnitude [4]).

As expected, the accuracy of this estimate of variance propagation through a system

can be improved by including higher-order terms in the Taylor series. In situations where

increased accuracy is required, a second-order Taylor series is sometimes used to propagate

statistical error. Similar to the first-order approximation, some simplifying assumptions are

commonly made in the derivation of the second-order approximation, which are presented

in Section 3.4.

This section presents the derivation of the second-order error propagation formula

and then discusses the accuracy of this formula.
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3.3.1 Second-Order Formula Derivation

For the sake of brevity, the second-order derivation is presented in this section for

a monovariable function, y = f(x). Extending this derivation to multivariate functions is

trivial, as it follows the same derivation steps.

The second-order Taylor series taken about the input mean x̄ is given in Eq. (3.12),

where the partial derivatives are again evaluated at the mean, x = x̄.

y ≈ f(x̄) +
∂f

∂x
(x− x̄) +

1

2

∂2f

∂x2
(x− x̄)2 (3.12)

The second-order approximation of the output mean ȳ is given in Eq. (3.13).

ȳ = E[y]

≈ E

[
f(x̄) +

∂f

∂x
(x− x̄) +

1

2

∂2f

∂x2
(x− x̄)2

]
≈ f(x̄) +

1

2

∂2f

∂x2
µ2 (3.13)

Subtracting Eq. (3.13) from Eq. (3.12) gives Eq. (3.14).

y − ȳ ≈ ∂f

∂x
(x− x̄) +

1

2

∂2f

∂x2
(x− x̄)2 − 1

2

∂2f

∂x2
µ2 (3.14)

Squaring and taking the expectation of Eq. (3.14) produces Eq. (3.15).

E
[
(y − ȳ)2] ≈ µ2

(
∂f

∂x

)2

+ µ3
∂f

∂x

∂2f

∂x2
+

1

4

(
µ4 − µ2

2

)(∂2f

∂x2

)2

≈ σ2
y (3.15)

If x is Gaussian, all odd moments (µk where k is odd) are zero and Eq. (3.15) reduces to

Eq. (3.16).
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σ2
y ≈

(
∂f

∂x

)2

µ2 +
1

4

(
∂2f

∂x2

)2

(µ4 − µ2
2)

≈
(
∂f

∂x

)2

σ2
x +

1

4

(
∂2f

∂x2

)2

(µ4 − σ4
x) (3.16)

Furthermore, if x is Gaussian, the substitution µ4 ≈ 3σ4 can be made [39], which eliminates

the need to know the input’s higher-order moments. This substitution is made in Eq. (3.17).

σ2
y ≈

(
∂f

∂x

)2

σ2
x +

1

2

(
∂2f

∂x2

)2

σ4
x (3.17)

If y is a function of multiple independent inputs, the generalized form of Eq. (3.17) is given

in Eq. (3.18).

σ2
y ≈

n∑
i=1

(
∂y

∂xi

)2

σ2
xi

+
1

2

n∑
j=1

n∑
i=1

(
∂2y

∂xi∂xj

)2

σ2
xi
σ2
xj

(3.18)

Equation (3.18) is the second-order formula most often cited in literature [40, 36] for ana-

lytical statistical error propagation. Note that the covariance terms in Eq. (3.18) have been

neglected.

3.3.2 Second-Order Accuracy

Continuing with the same function y = 1000 sin(x), the relative errors obtained from

the second-order approximations in Eq. (3.15) (full approximation) and Eq. (3.16) (Gaussian)

are plotted as a function of input mean x̄ in Figure 3.2.

Figure 3.2 illustrates the noise introduced by assuming x is Gaussian when in reality

the distribution is never perfect. Nevertheless, in both cases the second-order approximation

successfully filters the large spikes in relative error present in the first-order approximation.

However, the second-order approximation still overestimates the actual variance propagation,

which could degrade system performance and lead to failure or infeasibility [41]. This bias

(about 4%, in this case) is a result of truncating the higher-order terms in the Taylor series.
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Figure 3.2: Relative Error in Estimate of Variance Propagation Using a Second-Order Taylor
Series Expansion for the Function y = 1000 sin(x)

3.4 Taylor Series Error Propagation Assumptions and Limitations

Though common in engineering literature and academia, Eqs. (3.9) and (3.18) have

many significant limitations. Often, designers use these equations without knowing or under-

standing these limitations. The following list summarizes these assumptions and limitations:

1. Only variance is propagated and higher-order statistics are neglected. Consequently,

the output distribution is generally assumed to be a Gaussian distribution, which is

not the case in many practical applications.

2. The system model y must be representable as a closed-form, differentiable, mathemat-

ical equation.

3. Taking the Taylor series expansion about a single point (x̄) causes the approximation

to be of local validity only [36, 19]. Consequently, the accuracy of the approximation

generally decreases with an increase in the input variance σ2
x.

4. The approximation is generally more accurate for linear models.

5. All inputs xi are assumed be Gaussian. Consequently, only means and variances are

used to fully describe the input distributions. When inputs are not Gaussian, the

non-Gaussian terms (i.e., odd moments) cannot be neglected.
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6. The input means and standard deviations must be known.

7. All inputs xi are assumed to be independent. When inputs are not independent, the

covariance terms cannot be neglected [37, 42, 4].

The first assumption listed above is addressed in detail in Chapter 4.

3.5 Higher-Order Accuracy With First- or Second-Order Cost

While an improvement over the first-order formula, the second-order equation given

by Eq. (3.18) is far from perfect. This section shows that accuracy can be improved by

adding higher- and higher-order terms. However, the resulting computational cost quickly

becomes prohibitive. This is a common problem in engineering analysis and design [43].

This section then presents a solution to that problem. This is accomplished by pre-

dicting the higher-order truncation error and applying a resultant correction factor to the

lower-order approximation. This can yield fourth-order accuracy in the estimation of error

propagation with first- or second-order computational cost. These correction factors were

empirically determined for trigonometric, logarithmic, and exponential functions.

3.5.1 Propagation of Variance Using Higher-Order Terms

As expected, adding higher-order terms reduces the second-order bias. This is shown

in Figure 3.3. With an infinite number of terms, the Taylor series approximation eventually

converges to zero error.

However, computational cost grows exponentially as higher-order terms are included.

This growth in computational cost is accelerated at an exponential rate with an increase in

the number of system inputs, as shown in Table 3.1. Furthermore, higher-order terms also

require the calculation of higher-order moments and covariance terms for the system inputs.

This exponential growth in cost causes higher-order terms to quickly become prohibitively

expensive for complex systems.

For the purposes of this research, the computational costs of propagating error were

determined using the MATLAB execution time. Figure 3.4 shows the relative computational
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Figure 3.3: Relative Error in Variance Propagation Using Taylor Series Approximations

Table 3.1: Partial Derivatives Required for Taylor Series
Variance Propagation

Inputs O1 O2 O3 O4 O5 O6 O7
2 2 3 6 10 15 21 28
4 4 10 20 35 56 84 120
6 6 21 56 126 252 462 792
8 8 36 120 330 792 1716 3138
10 10 55 220 715 2002 5005 11146

cost associated with including higher-order terms in the calculation of variance propagation.

(The second-order approximation with a correction factor seen at the end of Figure 3.4 is

presented and discussed in Section 3.5.2.)

Furthermore, computational cost grows exponentially with an increase in the number

of system inputs and with an increase in model complexity. As this high cost can be pro-

hibitive, higher-order terms are usually not considered. The author of this thesis has shown

that higher-order truncation error can be predicted. Consequently, a correction factor can

be applied to the lower-order formula, yielding higher-order accuracy without significantly

increasing computational cost.
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Figure 3.4: Relative Computational Cost of Taylor Series Approximations, as Determined
by MATLAB Execution Time

3.5.2 Reducing Truncation Error

As Figure 3.2 illustrates, the truncation error in the second-order approximation for

a sin function is essentially a constant bias for all x̄. Furthermore, this bias has a linear

relationship to the input variance, σ2
x, as shown in Figure 3.5.

Consequently, the second-order truncation error can be easily be estimated empirically. A

correction factor e corresponding to this truncation error can be calculated using Eq. (3.19).

e =
1

1 + 1.022σ2
x

(3.19)

This correction factor can then be applied to the second-order approximation of vari-

ance propagation, as shown in Eq. (3.20), which reduces the higher-order Taylor series trun-

cation error.

σ2
y,CF ≈ σ2

ye (3.20)

By way of example, consider the same function y = 1000 sin(x). The corrected

second-order approximation produces an estimate of error propagation with fourth-order

accuracy, but with only second-order computational cost. Figure 3.4 (already displayed in
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Section 3.5.1) compares the computational costs of the uncorrected Taylor series approxi-

mations with the corrected second-order approximation.

Figure 3.6 compares the relative errors in variance estimations. Note that the fourth-

order and second-order corrected approximations are almost identical in Figure 3.6.

Figure 3.7 compares the mean relative error averaged over the range 0 ≤ x̄ ≤ π,

showing that fourth-order accuracy can be obtained by adding a correction factor to the

second-order formula for error propagation.

21



0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Input Mean

R
el

at
iv

e 
E

rr
or

 (
%

)

Relative Error in Variance Estimation

 

 

O2

O4

CF
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3.5.3 Correction Factors for Other Nonlinear Functions

Table 3.2 gives the correction factors for some common nonlinear functions. Note

that the cyclical nature of trigonometric functions and derivatives require a second-order

approximation before the higher-order truncation error can easily be determined, but the

exponential and logarithmic functions only require a first-order calculation. The correction

factors for y = ln(x), y = exp(x), and y = bx are given in Eqs. (3.21), (3.22), and (3.23),

respectively.

Correction factor for y = ln(x), where r = ln
(
x̄
σx

)
:
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Table 3.2: Truncation Error Correction Factors for
Common Nonlinear Functions

Func. Ord. Correction Factor (e)
y = sin(x) 2nd Eq. (3.19)
y = cos(x) 2nd Eq. (3.19)
y = ln(x) 1st Eq. (3.21)
y = exp(x) 1st Eq. (3.22)
y = bx 1st Eq. (3.23)

e =

exp (−1.9772r + 0.9128) + 1 if r >= 0

−3.88r3 − 4.9835r2 − 1.5704r + 1.3302 if r < 0

(3.21)

Correction factor for y = ex, where e is constrained to a maximum value of 2 and a minimum

value of 1:

e = max
(
1, min

[
2, 0.3375σ2

x + 0.4937σx + 0.959
])

(3.22)

Correction factor for y = bx, where e is constrained to a maximum value of 2 and a minimum

value of 1:

e =

max
(

1, min
[
2, X · (Z1 ·B)T

])
+ 1 if b < 1

max
(

1, min
[
2, X · (Z2 ·B)T

])
+ 1 if b > 1

(3.23)

where

X =
[

1 σx σ2
x σ3

x σ4
x

]
B =

[
1 b b2 b3

]T
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Z1 =


0.224 0.012 −2.570e3 0 0

−0.992 0.076 1.544e4 0 0

−0.037 7.803 −2.061e4 7.135 −38.093

0 0 0 23.556 61.532



Z2 =
1

1000


−8.612 0.018 −897.1 0.006 0.005

1.182 0.084 986.2 −0.002 −0.008

0.101 −6.891 54.93 −240.9 26.52

−0.002 0.089 −0.276 −1.743 11.06



3.5.4 Model Composition

It should be noted that the correction factors given in Table 3.2 are only pertinent to

a particular function. If a system model contains this function along with other operators,

the system should be decomposed into components (with sin(x) being a single component,

for example). The error should then be propagated through each component individually.

The variances in each component’s output can then be propagated through the rest of the

system model. This process of model decomposition is demonstrated in Section 3.6 with the

example of a dual-propeller, three degree-of-freedom helicopter.

3.6 Example: Compositional System Model of a Dual Propeller, Three Degree-
of-Freedom Helicopter

Consider the dual-propeller, three degree-of-freedom helicopter shown in Figure 3.8.

This helicopter is a useful tool for the design of unmanned aerial vehicles (UAVs). Among

other benefits, it allows the system designer to 1) test pitch, roll, and yaw control systems

without endangering actual aircraft, 2) observe the effects of changing the payload and

component weights and positions, and 3) calibrate the conversion factor (given as km below)

that converts a motor’s throttle command into units of thrust. A UAV’s position and

orientation are the inputs to its control system. An efficient prediction of the error in

the UAV’s position allows the designer to easily create a robust control system capable of

accomplishing mission objectives.
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Figure 3.8: Dual-Propeller, Three Degree-of-Freedom Helicopter Used in the Design of Un-
manned Aerial Vehicles

The system model for the longitudinal (pitch) acceleration as a function of the sys-

tem’s design parameters and inputs is given in Eq. (3.24).

θ̈ =
(m2L2 −m1L1)g

m1L2
1 +m2L2

2 + Jy
cos θ +

L1km(uL + uR)

m1L2
1 +m2L2

2 + Jy
(3.24)

where the masses mi and lengths Li are indicated in Figure 3.8, Jy is the mass moment of

inertia about the pitch axis of rotation, g is the acceleration of gravity, uL and uR are the

throttle commands (0-100) given to the left and right motors, respectively, and km is a motor

calibration constant that converts throttle commands to units of thrust.

For this demonstration, the assumed mean and standard deviation of the dependent

and independent system design parameters are given in Tab. 3.3. Three system inputs are

also required: uL and uR, which were each fixed at 45, and the pitch angle θ. The mean

value of θ was varied from −45◦ to 45◦, with a standard deviation of 1◦.

The first-order approximation in Eq. (3.9) can be used to propagate error through this

system (see Figures 3.9-3.10). However, the nonlinearity of the cos function causes significant

error in the results. Consequently, the model should be decomposed into its components,

as shown in Eq. (3.25). Error can then be propagated through each component. Once the

variance in each component is obtained, each component can then be treated as a variable
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Table 3.3: Design Parameters for Dual-Propeller, 3-DOF Helicopter

Design Parameter Mean Std. Dev.
m1 0.891 (kg) 10−4 (kg)
m2 1.000 (kg) 10−4 (kg)
L1 0.850 (m) 10−4 (m)
L2 0.3048 (m) 10−4 (m)
Jy 0.0014 (kg ·m2) 10−5 (kg ·m2)
km 0.0546 10−5

and its variance propagated through the system-level compositional model. A full step-by-

step solution is presented in Appendix A.

θ̈ = C1C2 + C3

C1 =
(m2L2 −m1L1)g

m1L2
1 +m2L2

2 + Jy
C2 = cos θ

C3 =
L1km(uL + uR)

m1L2
1 +m2L2

2 + Jy
(3.25)

The first-order Taylor series approximation given in Eq. (3.9) is used to propagate

error from the input parameters through components C1 and C3. The second-order approx-

imation with a correction factor is used to propagate error through the nonlinear trigono-

metric component C2. Figure 3.9 compares the results of this compositional model with

a correction factor applied with the results of the first-order approximation from Eq. (3.9)

applied to the full system model in Eq. (3.24). These results are shown for −45◦ ≤ θ̄ ≤ 45◦.

Figure 3.10 shows the relative error for each of these methods, averaged across the

entire input domain −45◦ ≤ θ̄ ≤ 45◦.

The computational cost required to determine the output variance using the compo-

sitional system model was approximately three times less than the cost using the first-order

approximation. Thus, twice the accuracy was obtained with one-third of the computational
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Figure 3.9: Relative Error in Estimations of Variance Propagation
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Figure 3.10: Mean Relative Errors that Indicate the Compositional Model with a Correction
Factor Predicts Output Variance with About Half the Error as the First-Order Approxima-
tion

cost. This efficiency in error propagation allows the system designer to more easily create a

robust system capable of accomplishing mission objectives.
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3.7 Example: Kinematic Model of a Mechanism that Simulates Flapping Flight
Wing Motion

Consider the flapping flight wing mechanism shown in Figure 3.11. The kinematic

model used in the design and optimization of this mechanism is the Fourier series in Eq. (3.26) [44,

45].

Figure 3.11: Mechanism Used by the BYU Flapping Flight Research Team to Simulate
Three-Degree-of-Freedom Motion of a Flapping Wing


φ(t)

θ(t)

α(t)

 =
2∑

n=0


Aφn

Aθn

Aαn

 cos(nωt) +


Bφn

Bθn

Bαn

 sin(nωt) (3.26)

where φ is the positional angle (deg), θ is the elevation angle (deg), α is the feathering or

attack angle (deg), the As and Bs are Fourier series coefficients (deg), ω is the flapping

frequency (Hz), and t is time (s). This three-output system model has 16 Gaussian inputs

(time does not vary), which are statistically described in Table 3.4 [45].

Various orders of a Taylor series were used to estimate the variance in the three

output wing angles based on the variance in these system inputs. The system model was

then decomposed (as demonstrated in the previous example) and the trigonometric correction
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Table 3.4: Mean Values and Standard Deviations of
the 16 Model Input Parameters

Mean StdDev Mean StdDev
Aφ0 -20 0.1 - - -
Aφ1 -4 1.5 Bφ1 44 1.5
Aφ2 8 3.0 Bφ2 33 8.0
Aθ0 0 0.1 - - -
Aθ1 43 0.75 Bθ1 0 0.1
Aθ2 17 0.5 Bθ2 0 0.1
Aα0 12 4.0 - - -
Aα1 0 0.1 Bα1 50 0.1
Aα2 -2 0.75 Bα2 0 0.1
ω 0.298 0.1

factors given in Table 3.2 were then applied. Figure 3.12 shows the computational cost of

error propagation (in minutes) using these different methods. These costs are summed over

the time interval 0s≤t≤5s at time steps of 0.001s for all three output angles. The cost of

calculating input moments and input covariances from 10k input samples is also included.

Computational cost was determined using MATLAB execution time.
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Figure 3.12: Computational Time to Predict Output Distributions Using Various Error
Propagation Methods
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The fourth-order prediction took approximately 70 minutes to execute, where the

corrected second-order approximation executed in approximately 4 minutes—a significant

reduction in computational cost.

The relative error in only one of these output angles, φ, is shown in Figure 3.13,

as the other two output angles have similar results. The root-mean-square of the relative

error over the time interval shown (0s≤t≤5s) for the second-order approximation is 40.97%,

third-order is 11.18%, fourth-order is 1.32%, and a second-order with a correction factor is

1.96%.

0 1 2 3 4 5
0

50

100

150

Time (s)

R
el

at
iv

e 
E

rr
or

 (
%

)

Relative Error in φ

 

 
O2
O3
O4
CF

Figure 3.13: Relative Error in Predictions of Output Variance Obtained from Various Orders
of a Taylor Series

Figures 3.12 and 3.13 illustrate that the correction factors presented in this paper

can achieve near fourth-order accuracy in error propagation through this model with near

second-order computational cost.

3.8 Comments on Variance Propagation

Using a first-order Taylor series to estimate error propagation through a closed-form

model is common practice. Frequently, this approximation is used without a full appreciation

of its limitations and the assumptions upon which it is based. This results in estimations that

may be substantially inaccurate. Furthermore, the author has been unable to locate the full
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derivation of this formula either in textbook or archival journal literature. Consequently,

a useful contribution of the research presented in this chapter is the derivation and the

discussion of the limitations and assumptions of the first- and second-order Taylor series

approximations for variance propagation.

Additionally, the novel contribution of this chapter is the introduction of generic

correction factors that account for some of the Taylor series truncation error for common

nonlinear functions encountered in engineering. These correction factors are predictable,

easy to calculate, and don’t require significant computational cost. A system designer can

use these correction factors to predict error propagation through trigonometric, logarithmic,

and exponential functions with greater accuracy without greater computational cost. This

enables the designer to better verify design decisions, which reduces the risk of developing a

design that does not meet design objectives.

Future research may focus on the development of predictable correction factors for

other nonlinear models, such as differential equations and state-space models. The author

believes this can be accomplished using the same methods used in this chapter.
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CHAPTER 4. HIGHER-ORDER STATISTICS

For closed-form, analytical models, a statistical error distribution is usually obtained

by propagating variance from system inputs to system outputs using a Taylor series. This has

already been demonstrated in Chapter 3. As noted in Section 3.4, the variance propagation

formulas given in Eqs. (3.9) and (3.18) assume all inputs are Gaussian. Since all higher-order

statistics (e.g., skewness, kurtosis, etc.) are ignored, outputs are also typically assumed to

be Gaussian. This assumption is often erroneous and does not accurately reflect reality, as

proved later in Section 4.2.4.

In order to truly perform an accurate statistical error analysis, outputs cannot be

assumed to be Gaussian. However, since all non-Gaussian distributions cannot be fully

described by a mean and standard deviation alone, higher-order statistics (e.g., skewness

and kurtosis) must also be used. Fortunately, this is relatively simple using the method and

formulas presented in this chapter.

This chapter first demonstrates the need for propagating higher-order statistics. A

second-order Taylor series is then used to show how skewness and kurtosis can both be

propagated through a system model. Having a mean, variance, skewness, and kurtosis, the

system designer can then fully describe the output distribution. The benefits of obtaining

a fully-described output distribution are demonstrated using two examples: the propeller

component of a solar-powered unmanned aerial vehicle, and a flat rolling metalworking

process.

4.1 Motivation for Propagating Higher-Order Statistics

Consider the simple quadratic function, y = x2. Assume the input x is a Gaussian

distribution with a mean x̄ and a standard deviation σx both equal to 1. Equation (3.9)

can be used to propagate this input distribution through the system model and predict the
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Gaussian output distribution shown in Figure 4.1a. This predicted output is very different

from the actual system output distribution, shown in Figure 4.1b.
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Figure 4.1: Predicted Gaussian Output Distribution Obtained from Propagating Mean and
Variance Only (a) Compared with Actual System Output (b)

However, if skewness and kurtosis are also propagated through the system model, the

predicted output distribution resembles actual system output much more closely [46]. This

is illustrated in Figure 4.2.
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Figure 4.2: Predicted Non-Gaussian Output Distribution Obtained from Propagating Mean,
Variance, Skewness, and Kurtosis (a) Compared with Actual System Output (b)

A proof that nonlinear systems produce non-Gaussian outputs even when inputs are

Gaussian is presented later in Section 4.2.4.
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4.2 Propagation of Skewness

As previously noted, non-Gaussian distributions cannot be fully described with a only

mean and standard deviation. Consequently, higher-order statistics, such as skewness and

kurtosis, must also be used to describe non-Gaussian distributions. This section considers the

definition of skewness and derives a formula for propagating skewness through an analytical

system model.

4.2.1 Definition of Skewness

The first-order statistic of a distribution is its mean, the second-order statistic is its

standard deviation, and the third-order statistic is its skewness. Skewness is a measure of a

distribution’s asymmetry. Skewness (denoted γ1) is defined in Eq. (4.1).

γ1 = E

[(
x− x̄
σ

)3
]

=
µ3

σ3
(4.1)

where E is the expectation operator, µ3 is the third central moment, σ is the standard

deviation.

Table 4.1 and Figure 4.3 illustrate some characteristics and terminology of positively-

and negatively-skewed distributions. A skewness of zero indicates a symmetric distribution.

Table 4.1: Comparison of Positive and Negative Skew

Sign Left/Right Mean vs. Median [47]
Negative Left-skewed Mean is typically (though not always) less than the median
Positive Right-skewed Mean is typically (though not always) greater than the median

Skewness is an important defining characteristic of statistical distributions. A mea-

sure of skewness is required to fully describe any asymmetric distribution. Traditional un-

certainty propagation, however, only propagates a mean and variance. With no skewness
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Figure 4.3: Examples of Negative (Left) and Positive (Right) Skewness

information available, skewness is neglected (assumed equal to zero) and a Gaussian distri-

bution is assumed.

4.2.2 Skewness Propagation Formula Derivation

Using a first-order Taylor series to propagate skewness through a system model results

in an output skewness equal to the input skewness. It has already been demonstrated that

this often does not reflect reality, even for simple nonlinear functions, and a proof is presented

later in Section 4.2.4.

Consequently, a second-order Taylor series will be used to derive a formula for skew-

ness propagation. The second central moment of output y has already been given in

Eq. (3.15). The third central moment is given by the dot-product in Eq. (4.2).

E
[
(y − ȳ)3] ≈


µ3

3
2

(µ4 − µ2
2)(

3
4
µ5 − 3

2
µ2µ3

)(
1
4
µ3

2 − 3
8
µ2µ4 + 1

8
µ6

)

 ·

∂3

1

∂2
1∂2

∂1∂
2
2

∂3
2

 (4.2)

where µk is the k-th central moment of input x, and ∂1 and ∂2 respectively represent the

partial derivatives ∂f
∂x

and ∂2f
∂x2

, evaluated at the mean x = x̄. The third moment is a cubic

function, and consequently it has four terms. Equation (4.2) has both first and second partial

derivatives, because it is based on a second-order Taylor series. If a higher-order Taylor series

were used, Eq. (4.2) would contain higher-order partial derivatives.
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The second moment from Eq. (3.15) and the third moment from Eq. (4.2) can be

used with the definition of skewness given by Eq. (4.1) to estimate the skewness in output

y. This output skewness estimation is given in Eq. (4.3).

γ1 =
E
[
(y − ȳ)3]{

E
[
(y − ȳ)2]}1.5

≈


µ3

3
2

(µ4 − µ2
2)(

3
4
µ5 − 3

2
µ2µ3

)(
1
4
µ3

2 − 3
8
µ2µ4 + 1

8
µ6

)

 ·

∂3

1

∂2
1∂2

∂1∂
2
2

∂3
2


[
µ2∂2

1 + µ3∂1∂2 + 1
4

(µ4 − µ2
2) ∂2

2

]1.5 (4.3)

Equation (4.3) estimates output skewness using the input central moments, µk. If

input skewness, kurtosis, and higher-order statistics are known instead of input moments,

these statistics can easily be substituted into Eq. (4.3) in place of these moments.

For the sake of brevity, the skewness propagation formula has only been derived for

mono-variate functions. However, this derivation can easily been extended to multivariate

functions as desired.

It should be noted that the most computationally expensive part to propagating skew-

ness is calculating first and second derivatives. However, these have already been calculated

in order to propagate variance if a second-order Taylor series was used, and consequently

the additional cost to also propagate skewness is minimal.

4.2.3 Skewness Propagation Assumptions and Limitations

The following five assumptions and limitations apply to the method just presented to

propagate skewness:

1. Equation (4.3) is based on a second-order Taylor series. Consequently, it will predict

output skewness perfectly for second-order (or lower) functions. Accuracy decreases

with increasing non-linearity.
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2. While not a problem for most analytical engineering models, it should be noted that

this method of skewness propagation requires the system model to be represented as a

closed-form, twice-differentiable, mathematical equation. This is due to the dependence

of this method on a Taylor series.

3. The system model y must be representable as a closed-form, differentiable, mathemat-

ical equation.

4. Taking the Taylor series expansion about a single point (x̄) causes the approximation

to be of local validity only [36, 19]. Consequently, the accuracy of the approximation

generally decreases with an increase in the input moments µk.

5. The statistical input distribution must be known (at least up to the 6th central mo-

ment).

4.2.4 Proof: Nonlinear Functions Produce Non-Gaussian Output Distributions

Consider the propagation of Gaussian error. With a Gaussian distribution, the fol-

lowing expressions are true:

• All odd moments (µk, where k is odd) are equal to zero

• The fourth moment is equal to three times the second moment squared[39] (µ4 = 3µ2
2)

• The sixth moment is equal to fifteen times the second moment cubed (µ6 = 15µ3
2)

Consequently, Eq. (4.3) reduces to Eq. (4.4) when inputs are Gaussian.

γ1 ≈
3σx∂

2
1∂2 + σ3

x∂
3
2(

∂2
1 + 1

2
∂2

2σ
2
x

)1.5 (4.4)

where σx is the standard deviation of the input distribution. Equation (4.4) proves that

nonlinear functions (i.e., the second partial derivative is non-zero) produces a skewed non-

Gaussian output, even with Gaussian inputs. Consequently, the commonly-made assumption

that outputs are Gaussian is generally erroneous for nonlinear functions.
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4.3 Propagation of Kurtosis

Any statistical property that is propagated through a system model improves the

accuracy of the predicted output distribution. For example, propagating both a mean and a

variance is more accurate (and useful) than propagating a mean alone. In a similar manner,

propagating skewness (as shown in Section4.2) in addition to a mean and variance also

improves the accuracy of the predicted output distribution.

Further improvements in accuracy can be obtained by also propagating kurtosis, the

fourth-order statistic. This section defines kurtosis and excess kurtosis, and derives a formula

for propagating kurtosis through an analytical system model.

4.3.1 Definition of Kurtosis

The fourth-order statistic is kurtosis. Kurtosis is a measure of a distribution’s “peaked-

ness,” or the thickness of the distribution’s tails. Kurtosis (denoted β2) is the fourth stan-

dardized moment, and is defined in Eq. (4.5).

β2 = E

[(
x− x̄
σ

)4
]

=
µ4

σ4
(4.5)

The kurtosis of a Gaussian distribution is equal to 3.

4.3.2 Definition of Excess Kurtosis

In statistical analysis, “excess kurtosis” (denoted γ2) is often used more than kurtosis.

In practice, the term “kurtosis” more often refers to excess kurtosis instead of the fourth

standardized moment. To avoid confusion, this thesis uses the definition of kurtosis presented

above and defines excess kurtosis as the fourth cumulant divided by the square of the second

cumulant, as indicated in Eq. (4.6). Cumulants (denoted κi) are statistical properties similar

to moments, where κ2 = µ2, κ3 = µ3, and κ4 = µ4−3µ2
2. While it can be more convenient to
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use cumulants instead of moments in some statistical analyses, the propagation of uncertainty

using a Taylor series is much simpler and easier using central moments.

Since a Gaussian distribution has a kurtosis of three, the “minus 3” in Eq. (4.6) causes

a Gaussian distribution to have zero excess kurtosis.

γ2 =
κ4

κ2
2

=
µ4

σ4
− 3 (4.6)

Figure 4.4 shows the excess kurtosis of several common types of distributions.

Figure 4.4: Excess Kurtosis of Various Common Statistical Distributions

4.3.3 Kurtosis Propagation Formula Derivation

A second-order Taylor series will also be used to propagate kurtosis through a system

model. The third central moment of output y has already been given in Eq. (4.2), and the

fourth moment is given in Eq. (4.7).
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The excess kurtosis γ2 in the output distribution y is given by Eq. (4.8).

γ2 = β2 − 3 (4.8)

where kurtosis β2 is given by Eq. (4.9).
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An estimate of the kurtosis of an output distribution can be obtained using Eq. (4.9)

and a known input distribution. The input central moments µk can be estimated using any

appropriate population sampling technique.

4.4 Example: Solar-Powered Unmanned Aerial Vehicle Propeller Thrust

Consider the power and propulsion system of the solar-powered unmanned aerial

vehicle (UAV) shown in Figure 4.5.
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Figure 4.5: Power and Propulsion System of a Solar-Powered Unmanned Aerial Vehicle
(UAV)

Larson (see Reference [21]) and the author of this thesis have previously created

a compositional system model for this system (as shown in Figure 4.6), deterministically

propagated a max/min error envelop through the model, and validated the results using real

data. As this thesis focuses on statistical, non-deterministic error analysis, a full description

of this model and the deterministic approach used to propagate error will not be replicated

in this thesis. However, the propeller component of this system and its corresponding data

will be used to demonstrate the increased accuracy obtained from propagating higher-order

statistics through a system model.

4.4.1 The Analytical Model of Thrust

The thrust T that the propeller produces is given by Eq. (4.10)[48].

T = Ctρω
2D4 (4.10)
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Figure 4.6: Compositional System Model of a Solar-Powered Unmanned Aerial Vehicle
(UAV)

where Ct is a unitless coefficient of thrust calibrated to be 3.458e-3, ρ is the density of air

assumed to be constant at 1kg/m3, and D is the propeller diameter measured to be 0.1778m.

The angular velocity of the propeller, ω, is provided in rad/s, and is determined by the motor

speed, which in turn is determined by a motor throttle command. Since a given throttle

command does not consistently produce an exact motor speed, there is some variation in

the angular velocity of the propeller. This distribution in angular velocities is described in

Table 4.2 and shown in Figure 4.7.

Table 4.2: Statistical Properties of the
Angular Velocity Distribution

of a Propeller

Statistical Property Value
Mean (ω̄): 526.7
Variance (σ2

ω): 9.383
Skewness (γ1): -1.289
Excess Kurtosis (γ2): 4.896
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Figure 4.7: Distribution of the Angular Velocities of a Propeller in a Solar-Powered UAV

4.4.2 Statistical Component Model Output Prediction

Based on this distribution of ω, the first eight central moments were calculated using

Eq. (3.2). These moments, given in Table 4.3, are used to propagate statistical properties

from the angular velocity distribution to predict a distribution for thrust output by the

propeller at a given motor throttle command.

Table 4.3: Central Moments of the Distribution
of Angular Velocity, ω

Central Moment Value
1st Moment (µ1): 0
2nd Moment (µ2): 9.355
3rd Moment (µ3): -36.34
4th Moment (µ4): 6.617e2
5th Moment (µ5): -1.063e4
6th Moment (µ6): 2.726e5
7th Moment (µ7): -8.678e6
8th Moment (µ8): 3.308e8
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The second-order prediction of the mean thrust output T̄ was calculated to be 0.9587N

using Eq. (3.13). Equation (3.15) predicts a variance of 1.232e-4N2. Typically, higher-

order statistics are not propagated and a Gaussian output distribution is assumed, which

is compared with actual thrust measurements in Figure 4.8. This prediction only accounts

for 65% of the actual system output distribution (i.e., 65% overlap in the area under the

predicted and actual probability density functions).
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Figure 4.8: Predicted Gaussian Output Distribution of Thrust Obtained by Propagating a
Mean and Variance Only (a) Compared with Actual Thrust Measurements (b)

The methods presented in this chapter to propagate skewness and kurtosis, using

Eqs. (4.3) and (4.9), respectively, results in a more accurate prediction of the system output.

This predicted output, shown in Figure 4.9a, accounts for 79% of actual system outputs—a

22% improvement in accuracy compared with propagating a mean and variance alone.

4.5 Example: Flat Rolling Metalworking Process

Consider the manufacture of steel plates or sheets via flat rolling, where material is

fed between two rollers (called working rolls). The gap between the working rolls is less than

the thickness of the incoming material. As the working rolls rotate in opposite directions,

the incoming material elongates as its thickness is reduced. This process, illustrated in
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Figure 4.9: Predicted Non-Gaussian Output Distribtuion of Thrust Obtained by Propagating
a Mean, Variance, Skewness, and Kurtosis (a) Compared with Actual Thrust Measurements
(b)

Figure 4.10, can be done either below the recrystallization temperature of the material (cold

rolling) or above it (hot rolling).

α

R

h 0
fh

v
0

v
f

Figure 4.10: Flat Rolling Manufacturing Process Whereby Plates or Sheets of Metal are
Made—Material is Drawn Between Two Rollers, which Reduces the Material’s Thickness
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4.5.1 The Analytical Model

The manufacturer desires to use its flat rolling equipment more efficiently by reducing

overall rolling time for each plate. Consequently, the manufacturer desires to minimize

the number of passes required to achieve final plate thickness. The maximum amount of

deformation that can be achieved in a single pass is a function of the friction at the interface

between the rolls and the material. If the intended change in thickness is too great, the

rolls will merely slip along the material without drawing it in [49]. The maximum change in

thickness attainable in a single pass (∆Hmax) is given in Eq. (4.11) [50].

∆Hmax = µ2
fR (4.11)

where µf is the coefficient of friction between the rolls and the plate, and R is the radius

of the rolls. In this example, the radius of the rolls is measured to be 1m. Determining the

coefficient of friction in a metalworking process is more difficult, however. The conditions

surrounding friction in a metalworking process are very different from those in a mechanical

device [49], as shown in Table 4.4.

Table 4.4: Friction Conditions in Mechanical Devices and Metalworking Processes

Typical Mechanical Devices Metalworking Processes
-Two surfaces of similar material and -One very hard tool and one softer
strength material
-Elastic loads and no change in shape -Plastic deformation occurs in material
-Wear-in cycles produce surface -Each set of rollers makes a single
compatibility pass on material

-Contact area constantly changes
under deformation

-Low-to-moderate temperatures -Often elevated temperatures
-Friction force depends on contact -Friction force depends on material
pressure strength

Furthermore, lubrication is often used both to reduce friction and consequent tool

wear, and to act as a thermal barrier to help regulate tool temperature [51]. All these
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factors and others (e.g., rolling speed, material properties, surface finishes, etc.) combine

to create variation in the friction experienced in the flat rolling metalworking process. This

variation can inhibit the manufacturer’s ability to specify a gap width (and the resulting

change in material thickness, ∆H) for each pass.

While many empirical and mathematical formulas have been presented as methods

to predict the coefficient of friction in flat rolling processes, these will not be addressed in

this thesis. For the purposes of this example, it is sufficient to assume that some appropriate

technique has been employed to determine the distribution of friction coefficients. This

distribution is described in Table 4.5 and shown in Figure 4.11.

Table 4.5: Statistical Properties of the
Coefficient of Friction Distribution

Statistical Property Value
Mean (µ̄): 0.35
Variance (σ2): 9e-4
Skewness (γ1): 0.7
Excess Kurtosis (γ2): 0.2
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Figure 4.11: Distribution of the Coefficient of Friction in a Flat Rolling Metalworking Process
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4.5.2 Statistical System Model Output Prediction

Based on this distribution of µf , the first eight central moments were calculated using

Eq. (3.2). These moments, given in Table 4.6, are used to propagate statistical properties

from the friction coefficient distribution to predict a distribution for the maximum change

in thickness attainable with a single pass.

Table 4.6: Central Moments of the Distribution
of the Coefficient of Friction, µf .

Central Moment Value
1st Moment (µ1): 0
2nd Moment (µ2): 8.99e-4
3rd Moment (µ3): 1.88e-5
4th Moment (µ4): 2.58e-6
5th Moment (µ5): 1.45e-7
6th Moment (µ6): 1.45e-8
7th Moment (µ7): 1.21e-9
8th Moment (µ8): 1.2e-10

The second-order prediction of the mean maximum reduction in thickness ¯∆Hmax was

calculated to be 12.5cm using Eq. (3.13). Equation (3.15) predicts a variance of 0.136cm2.

Typically, higher-order statistics are not propagated and a Gaussian output distribution is

assumed. This Gaussian prediction is compared with actual system output in Figure 4.12.

This prediction only accounts for 53% of the actual system output distribution (i.e., 53%

overlap in the area under the predicted and actual probability density functions).

The methods presented in this chapter to propagate skewness and kurtosis, using

Eqs. (4.3) and (4.9), respectively, results in a more accurate prediction of the system output.

This predicted output, shown in Figure 4.13a, accounts for 93% of actual system outputs—a

large improvement over propagating a mean and variance alone.
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Figure 4.12: Predicted Gaussian Output Distribution Obtained from Propagating a Mean
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Figure 4.13: Predicted Non-Gaussian Output Distribution Obtained from Propagating a
Mean, Variance, Skewness, and Kurtosis (a) Compared with Actual System Output (b)

4.5.3 Ramifications of Neglecting Higher-Order Statistics

Using the traditional approach where only a mean and variance are propagated and

a Gaussian distribution is assumed, the manufacturer would have only been able to reduce

the material thickness by a maximum of 3cm per pass, in order to achieve a 99.5% success

rate. However, using the methods presented in this chapter to also propagate higher-order

statistics, the manufacturer can confidently reduce the material thickness by 7.9cm per pass.
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This reduces the number of passes required to achieve the desired plate thickness by over

two and a half times.

As this example clearly indicates, the benefits of propagating higher-order statistics

through a system model can be substantial.

4.6 Comments on Propagation of Higher-Order Statistics

The variance in a system’s output can easily be predicted using a first-order Taylor

series and knowledge of the input variance. However, having only a mean and variance and

lacking any additional information about the output distribution, system designers often

make the erroneous assumption that the output is Gaussian. This chapter has shown how

inaccurate that assumption can be, even for very simple functions. By following the methods

shown in this chapter, system designers can more fully describe an output distribution by

also propagating higher-order statistics, such as skewness and kurtosis, though a system

model.

While sufficient for many physical systems, the approach to higher-order statistical

error propagation presented in this chapter may not work for all types of system models,

such as state-space models, Laplace transforms, and differential equations. Additional work

is required to adapt the method presented for use with these types of models.
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CHAPTER 5. CONCLUSION

Error propagation and uncertainty analysis is a complex but important part of the

system design process. Accurately predicting a statistical probability density function for

system outputs can mean the difference between a successful system design and one that fails

to meet design objectives. The methods provided in this thesis allow the system designer to

accurately propagate fully-described statistical distributions through a system model without

incurring significantly greater computational costs.

The correction factors presented in this thesis for the efficient and accurate propaga-

tion of variance have only been determined for trigonometric, exponential, and logarithmic

functions. Additional work is required to determine correction factors for other nonlinear,

closed-form functions.

The author has based this research on the assumption that a closed-form, analytical

equation is necessary to use the methods presented in this thesis. However, it is the author’s

belief that this same approach can be applied to any model (closed-form or not) where out-

puts can be obtained from given inputs and derivatives can be numerically evaluated. While

non-closed-form models are outside the scope of this research, the author still believes the

correction factors presented in Chapter 3 can be determined for non-closed-form equations

if the truncation error is predictable, outputs are attainable, and derivatives can be deter-

mined. Additional work is required to determine what characteristics the model must have

in order to have a predictable truncation error.

If these methods could be used with models that are not closed-form, it would greatly

increase the quantity and variety of models this research applies to. This would allow the

designer to use these methods for more real-world engineering problems, including finite-

element models, dynamic models, transfer functions, state-space models, differential equa-

tions, software packages, “black-box” models, and others.
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The formulas for propagating skewness and kurtosis that have been developed in this

thesis have produced very accurate estimates of actual output skewness and kurtosis in the

examples used in this thesis. However, it is possible that these estimates may not be perfectly

accurate for other nonlinear system models. If this is true, then additional work is required

to determine if correction factors can be determined that achieve higher-order accuracy in

skewness and kurtosis propagation without increased computational cost.

Lastly, future work could make the correction factors and skewness and kurtosis

propagation formulas more accessible to design engineers. This could involve creating a

table to be published online and/or included in textbook appendices.
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APPENDIX A. STEP-BY-STEP SOLUTION TO DUAL-PROPELLER, THREE
DEGREE-OF-FREEDOM HELICOPTER PROBLEM

Consider the compositional system model for a dual-propeller, three degree-of-freedom

helicopter discussed in Section 3.6. This model, given initally in Eq. (3.25), is repeated below

in Eq. (A.1).

θ̈ = C1C2 + C3

C1 =
(m2L2 −m1L1)g

m1L2
1 +m2L2

2 + Jy
C2 = cos θ

C3 =
L1km(uL + uR)

m1L2
1 +m2L2

2 + Jy
(A.1)

Recall that variation exists in variables m1, m2, L1, L2, Jy, and km, and θ. The means

and standard deviations for these variables are repeated in Table A.1.

Table A.1: Design Parameters for Dual-Propeller, 3-DOF Helicopter

Design Parameter Mean Std. Dev.
m1 0.891 (kg) 10−4 (kg)
m2 1.000 (kg) 10−4 (kg)
L1 0.850 (m) 10−4 (m)
L2 0.3048 (m) 10−4 (m)
Jy 0.0014 (kg· m2) 10−5 (kg· m2)
km 0.0546 10−5

θ 0 1◦
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A.1 Variance Propagation Through Component 1

All first-order partial derivatives of component C1, evaluated at the input means, are

given in Eq. (A.2).

∂C1

∂m1

=
−gL1(m1L

2
1 +m2L

2
2 + Jy)− gL2

1(m2L2 −m1L1)

(m1L2
1 +m2L2

2 + Jy)2
= −5.4096

∂C1

∂m2

=
gL2(m1L

2
1 +m2L

2
2 + Jy)− gL2

2(m2L2 −m1L1)

(m1L2
1 +m2L2

2 + Jy)2
= 4.8085

∂C1

∂L1

=
−gm1(m1L

2
1 +m2L

2
2 + Jy)− 2gm1L1(m2L2 −m1L1)

(m1L2
1 +m2L2

2 + Jy)2
= 0.5020

∂C1

∂L2

=
gm2(m1L

2
1 +m2L

2
2 + Jy)− 2gm2L2(m2L2 −m1L1)

(m1L2
1 +m2L2

2 + Jy)2
= 18.2601

∂C1

∂Jy
=

−g(m2L2 −m1L1)

(m1L2
1 +m2L2

2 + Jy)2
= 8.1501 (A.2)

The first-order Taylor series approximation from Eq. (3.9) is used to propagate vari-

ance through this component, as given in Eq. (A.3).

σ2
C1 ≈

n∑
i=1

(
∂C1

∂xi

)2

σ2
xi

≈
(
∂C1

∂m1

)2

σ2
m1 +

(
∂C1

∂m2

)2

σ2
m2 +

(
∂C1

∂L1

)2

σ2
L1 +

(
∂C1

∂L2

)2

σ2
L2 +

(
∂C1

∂Jy

)2

σ2
Jy

≈ 3.8673e-6 (A.3)

The mean value for component C1 is -6.0152, which was determined by evaluated C1

at the input means.

A.2 Variance Propagation Through Component 2

All first- and second-order partial derivatives of component C2, evaluated at the input

means, are given in Eq. (A.4).
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∂C2

∂θ
= − sin(θ) = 0

∂2C2

∂θ2
= − cos(θ) = −1 (A.4)

The second-order Taylor series approximation from Eq. (3.17) is used to propagate

variance through this component, as given in Eq. (A.5). Note that the variance must be

expressed in radians.

σ2
C2 ≈

(
∂C2

∂θ

)2

σ2
θ +

1

2

(
∂2C2

∂θ2

)2

σ4
θ

≈ 4.6396e-8 (A.5)

A correction factor e is then calculated using Eq. (3.19, as shown in Eq. (A.6).

e =
1

1 + 1.022σ2
C2

= 0.9997 (A.6)

The resulting variance in component C2 is given by Eq. (A.7).

σ2
C2,CF ≈ σ2

C2e

≈ 4.6381e-8 (A.7)

The mean value for component C2 is 1, which was determined by evaluated C2 at the

input means.
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A.3 Variance Propagation Through Component 3

All first-order partial derivatives of component C3, evaluated at the input means, are

given in Eq. (A.8).

∂C3

∂m1

=
−L3

1km(uL + uR)

(m1L2
1 +m2L2

2 + Jy)2
= −5.5401

∂C3

∂m2

=
−L1L

2
2km(uL + uR)

(m1L2
1 +m2L2

2 + Jy)2
= −0.7124

∂C3

∂L1

=
km(uL + uR)(m1L

2
1 +m2L

2
2 + Jy)− 2m1L

2
1km(UL + uR)

(m1L2
1 +m2L2

2 + Jy)2
= −4.9566

∂C3

∂L2

=
−2m2L1L2km(uL + uR)

(m1L2
1 +m2L2

2 + Jy)2
= −4.6744

∂C3

∂Jy
=

−L1km(uL + uR)

(m1L2
1 +m2L2

2 + Jy)2
= −7.6680

∂C3

∂km
=

L1(uL + uR)(m1L
2
1 +m2L

2
2 + Jy)

(m1L2
1 +m2L2

2 + Jy)2
= 103.6514 (A.8)

The first-order Taylor series approximation from Eq. (3.9) is used to propagate vari-

ance through this component, as given in Eq. (A.9).

σ2
C3 ≈

n∑
i=1

(
∂C3

∂xi

)2

σ2
xi

≈
(
∂C3

∂m1

)2

σ2
m1 +

(
∂C3

∂m2

)2

σ2
m2 +

(
∂C3

∂L1

)2

σ2
L1 +

(
∂C3

∂L2

)2

σ2
L2

+

(
∂C3

∂Jy

)2

σ2
Jy +

(
∂C3

∂km

)2

σ2
km

≈ 1.8564e-6 (A.9)

The mean value for component C3 is 5.6594, which was determined by evaluated C3

at the input means.
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A.4 Variance Propagation Through System-Level Compositional Model

All first-order partial derivatives of the system model, evaluated at the input means,

are given in Eq. (A.10).

∂θ̈

∂C1

= C2 = 1

∂θ̈

∂C2

= C1 = −6.0152

∂θ̈

∂C3

= 1 (A.10)

Now that the variance and mean of each component has been determined, the first-

order Taylor series approximation from Eq. (3.9) is used to propagate variance through the

system-level compositional model, as given in Eq. (A.11).

σ2
θ̈
≈

(
∂θ̈

∂C1

)2

σ2
C1 +

(
∂θ̈

∂C2

)2

σ2
C2 +

(
∂θ̈

∂C3

)2

σ2
C3

≈ 7.4019e-6 (A.11)

Actual variance in θ̈, as determined from a Monte Carlo simulation with 10 million

data points, is 6.5979e-6, meaning this compositional system model with a correction factor

has 12% relatvie error. By comparison, the estimate of variance propagation using strictly a

first-order Taylor series (without the compositional model or a correction factor) is 4.4853e-6

(32% relative error).

As explained in Chapter 3, this increase in accuracy comes with very little additional

computational cost.
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