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ABSTRACT 

 

Integrating Engineering and Communication 

Tools for the Automation of 

Design Rationale Capture 

 
 

Kenneth J. Mix 

Department of Mechanical Engineering 

Master of Science 
 
 

Product development is continually becoming more challenging as global competition 
requires more efficient design methods. The reuse of company knowledge, specifically the 
design rationale that occurs during projects is essential to success.  
 

This thesis presents a method for integrating engineering and communication tools for 
purposes of automating the capture of communication-based design rationale. The method is 
based on four basic principles: to integrate, to make data retrievable, to minimize user 
interaction, and to store as much DR as possible. The core method consists of two primary 
operations, the first being to capture the design rationale, and the second being to provide for 
effective retrieval.  

 
An implementation of this method that uses NX as the engineering tool and Skype VoIP 

software as the communication tool was created for the purpose of testing integration as a means 
of DR capture. The implementation was evaluated using four separate tests, which focus on 
efficiency of capture and retrieval, cost analysis, and user satisfaction. These results show that 
the tool provides improvement in each of the tested categories. 

 
From this testing I conclude that integrating communication and engineering tools is an 

excellent way to capture communication-based design rationale. The tool presented is more 
efficient than traditional methods in the test cases and provides a user-friendly solution to DR 
capture. This tool also has various other important applications, such as global collaboration and 
expectation management. It also provides an excellent framework for upcoming multi-user CAx 
tools. 
 
 
Keywords: design rationale, knowledge capture, design, reuse, global engineering
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1 INTRODUCTION 

The product development (PD) world of today is more challenging than ever before. 

Companies across the globe are shrinking cycle times in an attempt to release new products 

faster and sustain their competitive advantage. Adding to the challenge, the increased 

globalization and distribution of tasks aims to reduce cost and cycle times, but often leads to 

increased difficulty when designing products.  

In order to produce products more effectively in this changing environment, most PD 

firms must rely heavily on their internal knowledge base and resources. Design has changed 

from companies producing one-off designs to the development and wide-scale adoption of 

product lines, where the knowledge from each project contributes heavily to future designs. One 

of the most important sources of knowledge that companies must recognize and use is their 

employees. The knowledge that employees gain from previous projects allows them to contribute 

greatly to future products. The thoughts, ideas, intents, and decisions that are made on a project 

by the employees can be termed design rationale (DR). 

Many innovations have emerged that assist in the capture and reuse of company 

knowledge. For example, the notion of parametric design, where a single CAD model can be 

parameterized in order to make it dynamic and reusable aims directly at this goal. Additionally, 

tools such as product lifecycle management (PLM) and product data management (PDM) 

packages allow for the capture and reuse of design data. These tools focus on the storage and 

reuse of product definition data. This data could include geometric computer-aided design 
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(CAD) data, analysis data, manufacturing drawings, bill of materials, and other related product 

data. 

While these tools are very effective for storing and managing data, much of the 

knowledge gained from the daily process is lost. This thesis presents a method for an integrated 

communication and engineering tool that allows for the storage and retrieval of communication-

based DR during the product development process. The additional capture of this data will allow 

for more rich and meaningful knowledge data. 

1.1 Problem Statement 

For many years, engineering software firms have aimed to capture PD knowledge. Much 

of this has been in the form of raw data capture and management, such as with PDM and PLM 

systems. These systems excel at the storage of raw data. They also allow the raw data to be 

related and referenced for easier retrieval. For instance, if an assembly file is stored in a PLM 

environment; its related sub-parts are referenced within the system so that the parts can be easily 

retrieved upon opening the assembly.  

While these tools excel at the capture of this raw data, they fall short when it comes to the 

capture of design rationale. While revisions of files can often show indirectly the reason why a 

part was designed the way it was, the discretized nature of revisions show only snapshots in time, 

rather than showing the entire process. Decisions that take place in short conversations or in 

design reviews may provide more information as to why certain designs were created how they 

were, but often much of this knowledge is lost due to poor documentation and the lack of tools 

for capturing this communication information. 
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Engineering software companies have not typically focused on capturing this 

communication-based DR. In fact very few engineering tools directly support integrated 

communication tools. Even when the support is indirectly included, there are no efforts made to 

capture this DR and integrate it with engineering data. Because of this, much of the 

communication data that could be used as an additional resource for the understanding of design 

data is lost. 

1.2 Research Objectives 

This research attempts to address this issue by developing a tool that can integrate 

communication functionality into engineering tools. By developing this tool, the capture of this 

essential communication information is possible. In addition, this information can be directly 

related to other useful data captured in the engineering tool, such as CAD features, analysis 

results and other types of engineering data. This effort will augment the excellent tools that 

already exist for capturing and managing engineering data and DR. 

The presentation of this research will take place as follows: Chapter 2 will discuss 

background information, including previous research efforts and trends. This chapter will also 

give an explanation of the foundational tools used to implement the capture tool. Chapter 3 will 

discuss the general methodology developed for capturing, storing, and retrieving this 

communication based design rationale from within an engineering tool and relating it to 

engineering data. Chapter 4 will discuss an implementation of this method developed for the 

purpose of evaluating this approach to communication-based DR capture. Chapter 5 will show 

the results of this evaluation, and will discuss how the tool augments current DR capture 
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methods. Chapter 6 will present the conclusions from this research and provide conclusions and 

suggestions for future work.  

1.3 Research Delimitations 

The method developed in this research is intended to be applicable to any set of 

communication and engineering tools. The functionality available by each implementation of the 

method is determined by the individual applications that are used to create it. 

The implementation presented in chapter 4 uses NX as its engineering tool base, and 

Skype as its communication tool. These tools were chosen due to their familiarity with the 

researcher and their excellent application programming interfaces. Using Altair HyperWorks 

with Microsoft Office Communicator would be entirely possible as denoted by the method. 

Another example of how the method could be implemented would be to integrate a PLM tool 

such as Teamcenter Engineering with the Gizmo VoIP software for communication, provided 

these two tools have application programming interfaces that allow their internal functionality to 

be accessed. 

The implementation presented in this thesis is a subset of the method adequate to evaluate 

the approach to capturing communication-based DR presented in chapter 3. Some of the 

functionality that would be desirable in an industry-ready version of the tool will not be 

contained in the implementation. 
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2 BACKGROUND 

This chapter discusses the background information necessary to understand the method 

and its implementation. A review of relevant literature will be presented in order to provide 

explanation of the research done previously and show how this research contributes to the work 

done by others. A section that discusses foundational tools is also included in an effort to explain 

concepts and tools used in the implementation that may be unfamiliar to the reader. 

2.1 Design Rationale 

Design rationale can be explained as the reason something is defined the way it is (Lee 

and Lai, What's in Design Rationale? 1996), (Gruber and Russell 1991). More specifically, it is 

the combination of specifications, motivations, and actions for the purpose of creating designs 

(Moran and Carroll 1996). A major part of DR is the employees’ knowledge and experience, 

which could be termed “Tacit Knowledge” (Komerath 2001). The capture, storage, and retrieval 

of DR are essential for a company to sustain competitive advantage (Hicks, et al. 2002).  

Extensive research has been focused on the capture of this knowledge (Regli, et al. 2000). 

Because of the many different types of design rationale, the methods developed to capture and 

use this DR have varied (Dutoit, et al. 2006). The primary motivation of this work is the inability 

of many data management packages to capture and store these intents and motivations (Klein 
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1997). Because of this, some researchers have attempted to integrate design rationale systems 

into PDM packages, as reported by Gao, et. al (Gao, et al. 2003).  

2.1.1 Capturing Design Rationale 

The primary focus of DR research lies with developing frameworks and tools for 

capturing and representing design rationale data (Zdrahal 2007). Some tools that have been 

developed to accomplish this, some examples of these are gIBIS (Conklin and Begeman 1987) 

and Compendium (Conklin, et al. 2001). These systems attempt to capture data from the user’s 

daily workflow, but often do not directly integrate with the engineering tools. 

2.1.2 Barriers to the Capture of Design Rationale 

W. C. Regli et al state that “A design rationale system is not effective as a standalone 

system” (Regli, et al. 2000). The integration of the design rationale capture tool into the worker’s 

daily routine and toolset is essential to the effective capture of this data. Bracewell, et. al have 

stated that because of this lack of integration to the daily routine, the adoption of DR capture 

systems into the industry has largely failed (Bracewell, et al. 2008). 

Horner & Atwood have discussed the various barriers to the capture design rationale 

(Atwood and Horner 2007), (Horner and Atwood 2006). They conclude that there are four 

primary categories for these barriers. They are: 

1. Cognitive limitations 

2. Capture limitations 

3. Retrieval limitations 

4. Usage limitations 
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The method presented in this thesis focuses on addressing the last three limitations. 

Horner & Atwood further describe that engineers and designers must have incentive to capture 

and retrieve design rationale. One motivation is time. If capturing the rationale takes too much 

time, the employee will often fail to do it (Grudin 1996). If the tool can be integrated directly 

with the user’s daily workflow, and automated so that it minimizes user interaction, the user will 

be far more likely to participate. Some research has attempted to automate the process of 

capturing design rationale, such as that demonstrated by SRI international (Myers, Zumel and 

Garcia 1999). The method presented in this thesis builds on this principle, attempting to 

automate and minimize user interaction. 

2.1.3 Re-using Design Rationale 

The primary reason for capturing design rationale data is so that it can be effectively 

reused. Nearly all of the methods discussed previously provide tools for retrieving the data. Lee 

has discussed the importance of being able to access design rationale by using examples from 

existing tools (Lee, Design Rationale Systems: Understanding the Issues 1997).  

2.1.4 Communication-Based DR Capture 

Some tools have also included the ability to capture communication-based DR. Some 

notable examples are PHIDIAS (Shipman and McCall 1997), REMAP/MM (Ramesh and 

Sengupta 1995) and InterPOD (Takahashi and Yana 2000). These systems provide the ability to 

capture and store communication data. This research builds on these tools by integrating 

communication tools directly into the engineering package so that communication-based DR can 

be captured in the daily routine and directly inserted into other types of DR.  
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2.2 Foundational Tools 

This section discusses some of the concepts and tools that are used in the method and its 

implementation. It will assist the reader in understanding the means by which the proposed tool 

was created. 

2.2.1 CAx Tools 

This thesis makes reference to CAx tools. CAx refers to computer-aided engineering 

applications (Dankwort, et al. 2004). Computer-aided design (CAD) packages are one type of 

CAx tools. CAD refers to computer tools primarily used for the purpose of modeling geometric 

data (Shah and Mantyla 1995). Recently, innovations in the area of parametric modeling in CAD 

have enabled geometric data reuse, which has allowed increased engineering efficiency (Anderl 

and Mendgen 1995). Some of the leading CAD packages in the industry are Siemens’ NX, 

Dassault Systemes’ CATIA, and PTC’s Pro/ENGINEER. 

CAx applications also include computer aided manufacturing (CAM) tools, which can be 

used for automating the process of various manufacturing tasks and for controlling numerically 

controlled manufacturing systems (Elanchezhian, Selwyn and Sundar 2007).  

In addition, CAx encompasses various analysis packages for solving many design related 

problems that involve computer aided analysis (Alic 1993). This thesis will refer from here on to 

all CAx tools simply as “engineering tools.” 

2.2.2 Communication Software 

Communication software refers to any computer application that enables the 

communication of two or more individuals. Modern communication suites enable multiple types 
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of communication, such as instant messaging, SMS text messaging, voice calls using voice-over-

IP, and video conferencing (Stallings 2009). This variation of communication methods allows a 

user to choose how to communicate according to their preference. In addition, most of these 

packages include presence information, which is the ability to view whether a person is 

available, busy, away from their desk, etc. (Sachpazidis, et al. 2006). Some leaders in computer 

based communication are Skype, a free VoIP based communication service, and Microsoft 

Office Communicator, a software package that provides an internal secure server for 

communication within the organization (Sandvine Inc. 2009), (Elliot and Blood 2009). 

2.2.3 Relational Database Management Systems 

The implementation of this method utilizes a relational database management system 

(RDBMS) as a storage medium. These storage systems were originally developed by Dr. E.F. 

Codd (Powell 2006).   

Relational database systems store information in tables. The columns of the tables are the 

data items related to that table. For example for a “person” table there may be columns for name, 

age, date-of-birth, gender, etc. Rows of the table represent each distinct entry in the table. To 

continue the person table example, row one could be information related to “John Doe,” while 

row two would have all the information for “Bill Jones.”  

A database then relates data to other data by use of relationships. For example, consider a 

personnel database that is linking together different people in a hierarchal manner. You could 

create a relationship called “Boss” and a relationship called “Sub-ordinates.” Each person in the 

person table would then have a number in the “Boss” field that was the row number of the 

personnel table that referred to their boss. Subordinates would require a more complex 

relationship, since there is only one boss but many subordinates. In this case it would be 
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necessary to create an additional table called “Boss-Subordinates.” This table would store each 

boss ID with each subordinate ID so they could be linked. There are also relationships called 

“many-to-many” relationships, in which many rows in one table may relate to many rows of 

another table. In this case you also need to create an additional relationship table to store the 

information.  

Query languages have been developed to search the database. SQL is one such language, 

as it allows the user to directly interact with the system through set commands (Connolly and 

Begg 2009). 

All database interactions in the implementation were performed using the Microsoft 

.NET Language-Integrated Query (LINQ) framework. LINQ is a set of extensions for C# used to 

simplify the process of interacting with an SQL database (Marguerie, Eichert and Wooley 2008).  

2.2.4 API Programming 

Some computer applications supply an application programming interface (API) that 

allows developers to access internal application functionality (Orenstein 2000). The 

implementation of this method heavily uses both the Siemens NX and Skype APIs to achieve 

integration.  

As an example, one of the main functions of the implementation is the ability to call 

another individual. The Skype API provides a function which will place a call to the specified 

user (Kho, Baset and Schulzrinne 2008). Note that this function can be called from any other 

program. These API’s allow for the direct integration of communication tools into the 

engineering tools. 
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2.2.5 C# 

The implementation of this method is written entirely in Microsoft’s C# programming language. 

C# was chosen because of its simple, object-oriented approach to creating robust applications 

(Hejlsberg, Wiltamuth and Golde 2006). C# also utilizes the Microsoft .NET framework, which 

allows for tighter integration with the Windows operating system. C# was also chosen due to the 

fact that both Skype and NX provide C# APIs for their respective applications, which allowed 

for more rapid and robust development of the implementation. 
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3 METHOD 

This chapter introduces the general method for capturing and storing communication data 

and linking it with engineering data so that it can be easily retrieved and used. Hereafter this 

method will be termed the method for communication capture (MCC) for simplicity.  

The structure for presenting the method will be as follows: first, a series of principles will 

be presented that will serve to lay a foundation upon which the method is built. Second, the 

actual method will be presented. Note that the general method presented here is intended to be 

applicable to any set of engineering and communication tools. While examples will be used to 

illustrate the method and its foundational principles, the reader should refer to chapter 4 for a full 

explanation of the implementation created to test the ability to achieve integration between these 

tools and use this integration to drive DR capture. 

3.1 Overall MCC Method Summary 

The MCC method is built upon four basic principles. The strict adherence to these 

principles is essential to any successful implementation of the method. The principles are: 

1. Integrate 

2. Make Data Retrievable 

3. Minimize User Interaction 

4. Store as much DR as possible 
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The principles mentioned will assist the implementers of the MCC method understand the 

requirements and necessary structure that must be in place in order to successfully implement it. 

The principles discussion will contain many examples to illustrate the importance of the 

principles and how they should effectively be addressed.  

The core method is divided into two primary operations, each having multiple sub-steps 

(Mix, Jensen and Ryskamp, Automated Design Rationale Capture within the CAx Environment 

2010). Each operation with its respective sub-steps is listed below: 

1. Capture Design Rationale 

a. Capture Raw DR 

b. Capture Automatic and User-Supplied Meta-Data 

c. Store Rationale in Storage Medium 

2. Retrieve and Use Rationale 

a. Retrieve the DR from the Storage Medium 

b. Display DR such that it can be readily reused 

Each operation and its sub-steps will be discussed in the body of this chapter. The core 

MCC method will be explained verbally, visually and with set notation. 

3.2 Foundational Principles for the MCC Method 

This section will discuss in greater detail the four principles upon which the method is based. 

Note that these principles were chosen based on the literature review presented in chapter 2. As a 

survey of the literature was performed, it was determined that certain principles seemed to be 

constant throughout the published works. Each principle’s section will include information from 

chapter 2 that is relevant to that principle. 
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3.2.1 Principle #1: Integrate 

The first principle is to integrate. As reported in section 2.1.2 above, integration of 

various types is key to the successful adoption of any DR capture system. Two examples of the 

principle of integration will be presented in order to illustrate this principle. The first is 

integration between the communication tool and engineering tool, and the second is integration 

with the target company.  

Communication/Engineering Tool Integration 

Perhaps one of the most important integration features is the integration between the 

communication tool and the engineering tool. The integration of these tools allows the user to 

seamlessly communicate with others on the project, without leaving the engineering tool. This 

keeps the design rationale system deeply rooted in the daily routine. As the person uses the 

communication tool to communicate, the conversation information can be captured. The tighter 

the integration between these two tool types, the more effective the tool will be. Ideally the 

communication tool should appear to be a feature of the engineering tool. An illustration of this 

can be found in figure 3-1. Notice in the figure that the Skype communication tool resides inside 

the Siemens’ NX engineering tool. You cannot separate the two tools from each other, and the 

communication tool appears to be a feature. Ideally an implementation would provide a way for 

the user to launch the communication tool directly from the engineering tool interface. 
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Figure 3-1: Integrated engineering and communication tools 

 

The implementer should note that while most any communication tool can be integrated 

in some way, tools that include a robust API will allow for simpler implementation. APIs give 

more freedom to the integrating developer, and allow the communication package to function 

from within other programs.  

Company Integration 

Carefully considering the communication trends of the company and selecting a tool that 

matches as much as possible those trends is essential to the success of an implementation. 

Examples of these trends could include, but are not limited to the use of phone calls, email, 

instant messaging, SMS text, video conferencing and application sharing.  

Another way the MCC method can integrate with the company is to integrate well with 

company policies on privacy and security. For instance, in some cases the conversations that pass 

through the system should not be captured, due to privacy reasons, security implications such as 
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IP and export regulations, or other reasons. It is thus essential that the implementation of the tool 

have a check to see whether data should or should not be captured. Some implementations may 

choose to automate this process, while others may want to leave the decision up to the user. 

There are many possible protection methods that could be effectively implemented, and so this 

feature is left up to the implementer to choose. 

The principle of integration aims to encourage use of the method by allowing the user to 

stay in their daily system. Additionally, effective integration with company principles and 

policies will increase adoption and promote long-term use. 

3.2.2 Principle #2: Make Data Retrievable 

The second principle is to make data retrievable. The literature has discussed the need for 

this principle, and this is reported in section 2.1.3 above. Note that the most important operation 

of the presented method is the ability to retrieve data. Because of this, the implementer should 

constantly be striving to make data easily retrievable.  

The method builds on this principle by specifying meta-data as a way to ensure data is 

retrievable. Meta-data is information that augments and helps explain data. In the MCC method, 

meta-data is information that helps to support and explain the context of conversations and other 

communication. It is essential to gather meta-data, since often raw conversation data cannot 

adequately explain itself. By nature, human conversation is quite unstructured (Ferrucci and 

Lally 2004), and meta-data serves to give context and structure to the data. 

In addition, this meta-data serves to relate the conversation data to other types of DR. For 

example, a CAD designer who is working on a specific part while having a work-related 

conversation may be discussing the CAD part that is open on his screen. Ideally the file paths or 
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server locations of these parts and even the geometrical features worked on during the 

conversation should be stored along with the data to assist in reuse. 

3.2.3 Principle #3: Minimize User Interaction 

The third principle is to minimize user interaction with the tool. Section 2.1.2 above 

describes that minimizing user interaction can help resolve some of the barriers to design 

rationale capture.  

It is important to reduce direct user input as much as possible, since constant input from 

the user can cause annoyance over time. This method utilizes the division of meta-data into two 

types in order to ensure that this principle is met. 

The two types of meta-data for the MCC method are automated meta-data and user-

supplied meta-data. This division was created in order to give more freedom to the implementer, 

allowing them to select the level to which the user will be involved in the data structure. For 

some implementations there may be no user-supplied meta-data in an effort to fully automate the 

system. This would be ideal in more simplistic implementations, such as those involving only 

textual conversation. However, in the case of more unstructured communication, such as voice 

communication, some user-supplied meta-data may serve to define the data more accurately.  

In some cases, direct input may be required. Because human beings have the ability to 

quickly analyze data sets and find patterns (Simon 1990), it enables them to input information 

more quickly than a computer could do the same. Asking for small amounts of user input can 

also significantly reduce development time for implementations, as it is often much less time-

intensive to write user-input functions that it is to write extensive logic for parsing data and 

finding relationships. The direct interaction with the user should be minimized where possible, 

however, to ensure that the system does not become cumbersome over time. 
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One example of a way to balance the two types of meta-data would be to semi-automate 

some of the generation of information. As an example, consider an engineer who has been using 

a PLM software package to open PowerPoint files in a version-controlled environment. She has 

opened a few files and edited them, then checked them back in to the system. During the process 

she has had multiple conversations about the files with co-workers. The software might suggest 

to her that these PowerPoints be associated with the conversations in the system, presenting a list 

for her to see what files are being referred to. This would require only a single click of the mouse 

to verify, which would serve to minimize interaction. 

3.2.4 Principle #4: Store as Much DR as Possible 

The fourth principle is to store as much DR as possible in the system. The storage of all 

raw data along with its meta-data is essential to be able to reuse the data. As an example, 

consider a short film. If only shown a few frames of the film, it would be difficult to reconstruct 

the events that took place in the scene. However, if you were able to view the entire film, with 

every frame being shown you, you could easily reconstruct the events and explain them. The 

storage of as much DR as possible enables the capture of more frames of the film. For the case of 

design rationale, the product development process could be considered the film. This concept has 

roots in the literature, which states that one of the issues with PDM systems that resulted in the 

development of design rationale systems was that the PDM systems were not able to capture the 

intents and motivations behind designs. Stated another way, the PDM systems were not able to 

capture the in-between frames of the video. 

The capture of this data can require a great deal of hard drive space, however. 

Fortunately, recent changes in trends have enabled computers to store a great deal of data 

inexpensively. A chart showing the cost of computing storage space over time is shown below in 
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figure 3-2 (Historical Notes about the Cost of Hard Drive Storage Space 2008). Notice that the 

cost has reduced exponentially over the past 30 years. This inexpensive storage enables vast 

amounts of data to be stored at little cost. 

 

 

Figure 3-2: Cost/gigabyte of hard drive storage over time 

 

Ideally speaking, any implementation of the MCC method should capture all of the 

communication pathways that are required for a company. For example, for a company that has 

selected Microsoft Office Communicator as its communication tool, the software should not only 

provide all functionality available in that tool, such as voice, video, instant messaging, screen 

sharing, and email, but should also enable the capturing of this information. 

Additionally, this principle is only possible if the selected storage medium includes a few 

key features. The ability to store large amounts of data is essential, as mentioned above. The 

ability to add meta-data and relate it to the raw data is also essential. Next, the storage medium 

should be expandable enough to fit the needs of the company. Some companies may only require 
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a simple storage system, while others may require more complexity. Lastly the database must 

have the ability to be automated. Since the MCC method takes advantage of the computer’s 

ability to automate the tasks of storing and relating objects, this method would not be a with a 

system that required manual input of this information. 

3.3 Operation 1: Capturing the Design Rationale 

Now that the reader has a fundamental understanding of the principles that drive the 

MCC method, it is appropriate to discuss the core method. The core method helps to define 

exactly what is meant by DR capture and retrieval, and helps define the general steps needed to 

capture communication-based DR in the proposed integrated environment.  

As mentioned the first operation of the core method is to capture the design rationale. 

Each of the steps of this operation is an essential component of the overall method, and each will 

be explained in the paragraphs below. 

3.3.1 Capture Raw Design Rationale 

The first step of the capture operation is to capture the raw communication-based design 

rationale. Consider C to be the set of all conversations participated in by a user U. Then C can be 

expressed as: 

C}   U|Cn  , … C3, C2, C1, :{C ∈         (3-1) 

The raw data is of little use without the additional capturing of information that explains 

this data and a primary principle upon which the method is based is to make data retrievable. The 

following steps ensure that this principle is satisfied. 
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3.3.2 Capturing Automatic and User-Supplied Meta-Data 

If M is the set of all meta-data captured along with a conversation, then: 

Mn} , ... M3, M2, M1, :{M         (3-2) 

Communication-based design rationale can now be defined using M and C. DR can be 

considered as the set of combinations of raw conversations with their respective meta-data, and 

can be written as: 

C} M :Rationale{Design ∪         (3-3) 

 A brief note on the division of automatic and user-supplied meta-data will be beneficial 

to the understanding of the reader. Automatic meta-data is captured without user interaction and 

typically will take place in the background. The limits of what is captured automatically will 

vary widely depending on the implementation. User-supplied meta-data is captured explicitly 

from the user, and requires at least some human input. 

The selection of whether to use automatic or user-supplied meta-data and how they are 

balanced is intentionally left up to the individual implementers and their needs. It is likely that 

most implementations will contain some elements of both. 

3.3.3 Store Data in a Storage Medium 

The last step of the capturing operation is permanently storing the information in some 

type of storage medium. The storage medium S is the set of all DR sets in the system, then: 

DRn} ,… DR3, DR2, DR1, :{S         (3-4) 

The selection of which type of storage medium to use is entirely up to the implementer, 

as there are many equally useful tools for storing data in a computer. Please refer to principle 

number 4 above to ensure proper compliance with the method principles. 
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Note that the storage medium could also be an external DR management system. Many 

systems have proposed advanced methodologies for handling DR data, and a powerful tool could 

be created by coupling the strengths of these systems with the proposed integrated solution for 

capture. 

3.4 Retrieving and Using Rationale 

The retrieval of design rationale is a very important aspect of the method. The storage of 

information is only useful if it is stored with the intent of being reused. Each step of the retrieval 

operation is discussed below. 

3.4.1 Retrieving the DR from the Storage Medium 

The first step of the retrieval operation is to retrieve the data from the storage medium. If 

M is the set of all meta-data, C is the set of raw conversation data, S is the set of all design 

rationale sets, T is the subset of data that is returned from the set, and R is the search parameters, 

and in the storage system, then: 

                    C} M :{DR ∪         (3-5) 

DRn} ,… DR3, DR2, DR1, :{S         (3-6) 

R} = C R, = M | DR  {T ⊂         (3-7) 

If the search term R matches data from either the meta-data or is contained in the raw 

conversation data, then it is returned. This is further illustrated by the diagram below: 
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Figure 3-3: Only data matching the search are returned 

 

Notice that the subsets that match the search term are extracted from the storage medium 

and returned to the user. The method by which data is retrieved from the storage medium is to be 

decided by the implementer. There are many equally effective methods for retrieving data, and 

they will vary greatly depending on the storage medium and the needs of the implementation. 

The search retrieval methods in other data and DR management solutions could also be 

leveraged effectively alongside this method. This method is intended to function either 

independently or when coupled with other systems.  
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3.4.2 Display DR Such That It Can Be Readily Reused 

The last step of this operation is to display the data in such a way that it can be readily 

reused. The choice of how to display results, or the options for displaying results will be left 

entirely up to the implementer. 

Some examples to illustrate this step of the method may be useful. One example would 

be returning the conversation DR with other related data and meta-data, such as CAD or analysis 

files, office documents and other items. Another example would be to sort retrieved data by 

various criteria. One criterion could be chronologically. Another criterion could be by project, 

which would present DR related to a specific project.  
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4 IMPLEMENTATION 

This chapter discusses how the described methodology was used to create an integrated 

engineering and communication tool that is capable of capturing conversation based DR and 

linking it with engineering data (Mix, Jensen and Ryskamp, Using Global Communication 

Trends for Automated Design Rationale Capture 2010). This implementation was created with 

the intent of validating whether an integrated communication capture system can be functional as 

a DR capture solution. The implementation would likely require significant changes to be 

readied for the industry; however it does represent an adequate representation of the method, and 

so can be readily used to test the integration principle of the method. Hereafter this 

implementation will be referred to simply as the MCC tool (MCCT). 

4.1 Architecture Overview 

The MCCT tool uses Siemens’ NX 6.0 software as the engineering tool, and Skype VoIP 

software as the communication tool. Additionally, Microsoft SQL Server was used as the storage 

medium. The architecture is shown below: 
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Figure 4-1: MCCT tool architecture 

 

Notice that NX6 and Microsoft SQL server serve as a base, as the modules of the MCCT 

tool rely on both. The communication system of has three modules as shown.  

The MCCT tool was created by following the steps of the method. Because of this, the 

presentation of this method will proceed as follows. First a discussion of how Skype is integrated 

with NX and how communication is performed will be presented. Following this, the operations 

of the core method will be discussed in order. The individual modules from the architecture and 

their purpose will be discussed in line with the method steps.  

4.2 Communicating 

After evaluating multiple VoIP tools, it was determined that the Skype communication 

tool possessed all the necessary elements denoted by the method. Specifically it provides a very 

robust API that allows most of the functionality of the Skype software to be used in a third-party 
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package. This enabled the ability to integrate Skype directly into the NX interface. Integrating 

Skype adds communication functionality to NX, which enables the engineer working in NX to 

readily communicate with others without leaving the interface. A screenshot showing the 

communication interface running in the NX interface is shown in the figure below: 

 

 

Figure 4-2: MCCT tool running inside the NX interface 

 

Notice that the communication tool is encapsulated in the NX interface and each window 

is transparent. This was done with the intention that the user would be able to continue their 

work as they used the communication tool. Each of the elements of this communication interface 

will be discussed in the sections below. 
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4.2.1 Launching the Communication Interface 

The Skype interface can be directly launched from the NX interface by use of the NX 

toolbar. A screenshot showing this toolbar with the Skype button highlighted is shown below: 

 

 

Figure 4-3: Skype button integrated into the NX toolbar 

 

The button was added to NX through use of the NX configuration files. A menu 

configuration file is used to describe the target and icon for the menu item, and various other 

configuration files are used to place it in the toolbar. 

When the button is clicked, a window is launched in the lower right corner of the NX 

window that shows a list of people who can be contacted. This list is termed the “Buddy List” for 

the MCCT tool. A screenshot showing the buddy list is shown below in figure 4-4. 

Notice that the buddy list shows individuals who can be contacted. Next to their name is 

a colored circle representing their presence status. Green means they are online, red that they are 

busy, gray when they are offline, etc. The user can also set their own Skype status using the 

“Change Status” menu. 
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Figure 4-4: “Buddy List” showing users that can be contacted 

 

 

The buddy list is dynamically populated from the Skype software each time the software 

runs. This is done using the Skype API and various Visual Studio tools for populating and 

updating forms. The Skype API is used to access to the names, usernames and statuses of friends 

in the Skype account that is currently active on the computer. The data is then used to populate 

the Visual Studio form.  

The buddy list and all other user interface elements were created with Microsoft Visual 

Studio 2008’s form designer. The form designer was used to add elements to the various 

windows, such as menus, buttons, lists, etc.  
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In the event that the buddy changes status, a pop-up window in the lower right informs 

the user of this change. This pop-up window contains the friend’s username as well as the status 

they have changed to. 

4.2.2 Using the Communication System 

Once the buddy list is launched from the window, it can now be used to communicate. To 

initiate communication with someone in the buddy list, the user clicks on their name in the list. 

Each individual has different communication options depending on what type of contact they are 

and what type of information is in their account on Skype. For example, if they are a Skype 

contact, they can be instant messaged, by clicking on “Chat.” They can also be called, and in the 

case where they are offline, the user can leave a voicemail. If they are a SkypeOut contact, 

meaning they only have a phone number associated with them, they can be called directly. If any 

user has a cell phone on file, they can be SMS text messaged. The buttons at the bottom of the 

interface activate and deactivate depending on which type of user is selected. 

There are three communication options. One option is “Chat.” Upon clicking a name and 

then clicking the chat button, the user is presented with the window shown in figure 4-5. 

Notice that the window is transparent, so that the CAD data behind it can be seen and 

interacted with. This is an important feature of the tool, as it allows the user to continue work on 

CAD while communicating. The windows can be moved to any location on the screen. The user 

can type messages as with any instant messaging program and send them to the selected buddy. 

The buddy’s messages appear on the screen as they are received. 
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Figure 4-5: MCCT tool chat window 

 

 

The chat tool was also made possible with the Skype API. One excellent feature of the 

Skype API is event handling. Event handling allows a developer to trigger certain actions when 

an event occurs. For instance, when a message is received, the API recognizes this and a set of 

actions are performed, such as retrieving the message text and displaying it to the screen. Also, 

various function calls can be used to send messages, namely Skype.SendMessage(). In addition, 

the MCCT tool retrieves the history of a conversation. This allows a user to close the window 

and open it at a later time in the day and see the same conversation. When the user terminates the 

window, they are given the option of whether or not they would like to save the conversation in 

the database. 
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Another option the user has is to call a buddy. This can be a free phone call, in the case 

that both participants are Skype users, or a paid phone call, if calling an external number or cell 

phone. Rates for external calls are determined by the Skype software according to the locations 

of both call participants. After a user clicks the call button, they are presented with the following 

small window: 

 

 

Figure 4-6: MCCT tool call window 

  

Notice that the window informs them of who they are calling, how long the call has been 

happening, and the cost of the call. The cost increments constantly, showing a second by second 

update. This component is rather simple from a programming standpoint. A single Skype API 

call initiates the call, and the status is updated with an event handler. The duration display uses a 

simple timer from the Visual Studio Forms Toolbox, and the cost is based on the call rate 

retrieved from Skype and the duration timer. If the “End Call” button is clicked, the call 

terminates, and the user is asked if they would like to save the conversation. 

 The last option simply allows the user to send SMS text messages. This option is only 

available if a buddy has a cell phone listed in their account on the Skype network, since SMS 

messages cannot be received otherwise. This option looks and functions nearly identically to the 
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chat window above. The major difference is a character counter that shows how many messages 

are being sent (the maximum characters for an SMS text message is 160). This is useful since 

each message that is sent is individually charged to the user’s account. The Skype API enables 

the sending of SMS text messages through the Skype.SendSms() function. 

4.2.3 User Interface Module Elements  

The buddy list, the chat and SMS windows, and the call window make up the user 

interface module. In addition, there is an additional user tool available in the tools menu of the 

buddy list which allows a user to manage their buddy list by adding and deleting buddies directly 

from the MCCT tool, rather than having to use the separate Skype interface. 

4.3 Capturing Design Rationale 

The first step of the capture operation of the MCC method is to capture the design 

rationale from the user’s conversations. As mentioned earlier, the call and chat functions each 

prompt the user to save conversation data when they close the window. If the user chooses not to 

save the conversation, the software simply returns them to the buddy list. If they choose to save 

the conversation, the MCCT tool then begins the process of capturing the rationale. 

4.3.1 Capture Module Architecture 

In order to fully understand the capture module, a brief explanation of this structure is 

necessary. The structure of the Microsoft SQL Server database for the MCCT tool is shown in 

the diagram below: 
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Figure 4-7: MCCT tool database structure 

 

The conversation table serves as the central table of the database. This table stores some 

meta-data, such as date, time, duration, etc. In addition it stores all the raw data from the 

conversation. It is also linked to nearly all other tables of the database. Some of the other tables 

contain automatic meta-data that is gathered from the design session, while other tables, such as 

tags, are explicitly defined by the user. The process by which each table is populated will be 

discussed in greater detail below. 

4.3.2 Capturing Raw Conversation Data 

There are two types of raw conversation data that can be stored in the system: audio and 

text. When a user completes a phone call, audio data from participating parties is captured. 

Currently the MCCT tool only supports conversations between two people, although the ability 
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to capture data from a conference call is also possible with identical function calls. Skype has 

built-in functions for recording audio data called Call.set_CaptureMicDevice() and 

Call.set_OutputDevice(). CaptureMicDevice() captures the audio that gets spoken into the 

computer’s microphone. Set_OutputDeviceAudio() records the audio information that passes 

through the output device of the computer (i.e. speakers or headphones). This means that the data 

is captured separately, and must be mixed together for final storage. There are multiple methods 

available for doing this, including the one used for the MCCT tool (Sujoy 2007). Audio raw data 

is stored in the Microsoft SQL Server database in the conversation table. A table row that 

supports binary data is used to store the audio.  

If a user completes an instant message conversation and chooses to save, the raw text data 

from the conversation is stored in the conversation table in a row that is formatted to accept 

textual data.  

4.3.3 Capture Automatic Meta-Data 

The next step of the capture operation is capturing automatic meta-data. The automatic 

meta-data that is captured is nearly identical between all conversation types. However, the 

method of linking each type of meta-data does differ, so each type will be discussed individually. 

A few of the items captured automatically help make up the conversation table. As can be 

seen in figure 4-7 above, the conversation table has columns for date/time, duration and 

conversation type. Each of these columns is populated automatically when the user chooses to 

save the conversation. They are added to a row of the conversation table along with the raw data. 

The next type of automatic meta-data item is the usernames of each person involved in 

the conversation. In this case, it was required to create a separate table called “User” which holds 

both the full names and usernames of each person that has participated in the conversation. The 
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list of users in this table steadily grows, and each person in the list has a unique ID associated 

with them. Another table was created to store the relationship between users and conversations. 

The tables with example rows are shown in figure 4-8 below: 

 

 

Figure 4-8: User, users-conversations, and conversation tables 

 

In this case, there is a need to set up a “many-to-many” relationship between the data, 

since users will likely participate in more than one conversation, and the conversations will have 

multiple users. The relationship table in the figure, called “Users-Conversations” simply holds a 

User ID and Conversation ID in each row.  

The last type of automatic meta-data that is captured is the file paths of currently open 

NX parts. These are stored similarly to usernames, since it is possible to have many NX parts 

associated with a conversation, and many conversations associated with a single NX part. A table 

named NXPart was created that had a one description column, namely “NXPartFilePath” that 

contained a text representation of the path on the system. A table named “NXPart-

Conversations” was created with columns “NX Part ID” and “Conversation ID.” When the user 

chooses to save a conversation, all open NX parts are linked to that conversation. 

Next a conversation type is stored for each conversation. ConversationType is a static 

table that has just one description column, “Type.” The first row type is “PhoneCall,” the second 
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row type is “InstantMessage” and the third row type is “SMS.” This table is referenced from the 

conversation table to determine what type of conversation is stored in each row.  

Note that for this implementation, all of this meta-data is gathered very quickly. There is 

no noticeable time-delay as these actions are performed. This builds on the principles of the 

method, to minimize user interaction and to automate as much as possible. 

4.3.4 Capture User-Supplied Meta-Data 

The next step of the capture operation is to capture user-supplied meta-data. This 

implementation attempts to follow the principle of minimizing user interaction as much as 

possible. However, some information supplied by the user was deemed beneficial to the ability to 

retrieve the data, another important principle. There are only two tables of the database that are 

populated with user-supplied meta-data. Each will be discussed in detail below. 

In order to capture user-supplied meta-data, a custom form was created in Visual Studio. 

This form is shown below in figure 4-9. At the top of the form there is a field to input the topic 

of the conversation. In addition, there is a list of tags shown that have been added to the global 

database. The list of tags shown in the window updates each time the form is shown to include 

the latest changes in the database. 

The purpose of these tags is to ensure that the principle of making data retrievable is met. 

In this implementation, much of the actual rationale is contained in the conversations, but often 

is embedded and not easily retrievable from viewing only the raw data. Tagging indexes the raw 

information much more effectively, and allows a user to find the data they need even if the raw 

data of the conversation does not contain certain keywords. 
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Figure 4-9: MCCT tool user-supplied meta-data form 

  

Tagging also can provide additional rationale, in the case that it is tagged with notes such 

as “decision” or “intention.” These might be special keywords that denote certain things that 

took place in the conversation. Note that for industry ready implementations, the indexing of the 

raw data would need to be more robust.  

In the event that the user wants to add additional custom tag names that don’t already 

appear in the list, an interface at the bottom of the form provides this capability. If they choose, 

they can also add their tags to the global tag database, by clicking a checkbox and clicking the 

“Add” button. This is useful for building a library of tags and providing a consistently updating 

tag database. They then click the “Add meta-data to conversation” button to complete the 

process of supplying meta-data. 
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 A “Tags” table was created that has two description columns, “TagName” and 

“TagType.” The TagName column contains the text description of the tags. TagType refers to a 

TagType table that is static and holds various tag types. This was intended for expandability, so 

that tags could be differentiated further. 

There is a table called “ConversationsTags” that relates conversations with their tags. 

Again this is a many-to-many relationship very similar to the “UsersConversations” table above. 

The tags table is constantly updated with global tags input from users. This allows the system to 

be dynamic and constantly updated. It requires no IT management to add new tags to the 

database. 

Again, this implementation attempts to minimize user interaction. Chapter 5 will discuss 

some illustrative examples of how quickly data can be captured. It will be shown that the time is 

very brief when compared to traditional methods of communication capture. 

4.3.5 Store Rationale in Storage Medium 

The last step of the capture operation is to store the rationale in the database. In the case 

of this implementation, this step occurred throughout the entire capture process, and so there is 

no discrete module for this part of the method. 

The data and meta-data are stored in a central database. This allows for the capture of 

vast amounts of data, and always keeps tag lists and data up to date. Additionally, it allows for 

anyone in the corporation to access the data as they need it (provided they have access to the 

database). The implementation of the final operation of the method, retrieving rationale, is 

described in the next section. 
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4.4 Retrieving and Using Rationale 

The final operation of the method is to retrieve and use the rationale that was gathered. 

This implementation provides a search system that allows a user to quickly search the database 

and retrieve conversations. The search system is simplistic, but provides an adequate 

representation of the method, and so is sufficient for evaluating how the tool might be used in 

industry. 

4.4.1 Retrieving the DR from the Storage Medium 

The first step of the retrieval operation is to retrieve the data from the storage medium. 

This is achieved through SQL query commands. In this implementation, the search system can 

be launched from the buddy list window by clicking the “Tools” menu and selecting “Search 

Conversation Data.” The following window shows the search interface: 

 

 

Figure 4-10: MCCT tool search window 
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 There is a single field where a user can enter keywords and search for DR. The single 

field approach was chosen due to increased familiarity with and affinity to web-based search 

engines, which typically use a single field for search queries. 

4.4.2 Display DR Such That It Can Be Readily Reused 

The last step of the retrieval operation is to display DR data such that it can be readily 

reused to benefit future designs. The intention of the search tool was to  ensure that users could 

quickly locate conversations stored in the tool. Because of this the data that is displayed to the 

user is relatively simple. 

When the user enters a search term and clicks the search button, the database is queried. 

Currently the MCCT tool parses the following tables: 

• Users 

• Conversations 

• Tags 

If data is found in these tables that contain the keywords typed into the search bar, that 

data is returned. The data is organized by category, so the data is separated for the user before it 

is displayed to the screen. 

The user can then view the data in the list below the search box. For textual data, they can 

click on a conversation and see it displayed on the screen. Because this implementation was 

focused primarily on testing the speed at which individuals could retrieve the data, audio 

playback support was not added. 
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4.5 Implementation Summary 

The MCCT tool adequately mimics the method. It provides an excellent integrated 

solution for communication that allows the users to launch the system and communicate with 

others in their contact list while staying in the engineering tool. Additionally it follows the steps 

of the core method, as it allows them to store raw data in the database, including audio and 

textual data. It automates the process of adding meta-data quickly, and provides a rapid method 

for adding user-supplied meta-data to the system to assist with retrieval. Lastly it supplies a 

method to retrieve data. 

The MCCT tool serves as an excellent example of an integrated solution for capturing 

communication-based design rationale. Chapter 5 will discuss  this integration in more detail and 

will provide some additional tests that were performed that show how this tool could be used to 

benefit industry. 
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5 RESULTS 

The MCCT tool was created in order to evaluate the MCC method and provide proof that 

the integration of engineering and communication tools for means of DR capture is achievable. 

This section outlines numerous tests designed to show that the integration is possible and to 

show how the tool might be used to benefit the industry. The goals of the testing were to answer 

the following questions: 

1. Can the MCC method be effectively implemented in an engineering environment? 

2. Is the MCCT tool more efficient than traditional methods for capture and retrieval? 

3. Is the MCC method cost-effective as a DR capture solution? 

4. Is the MCCT more user friendly than traditional methods? 

For each question listed above, a test was designed that could either qualitatively or 

quantitatively answer the question. The tests were based on the principles upon which the MCC 

method is built. Test one aims to answer question one, and aims to show that engineering tools 

can be integrated with communication tools by using their application programming interfaces. 

Test two answers question two and focuses on ensuring that the tool satisfies principles two 

through four of the methods chapter, by ensuring that data can be retrieved effectively and 

efficiently, and that the capture of the data indeed does minimize user interaction while storing as 

much communication-based DR as possible. The third test is designed to address question three, 

and to address specifically the integration into the company, ensuring that the tool can fit well 
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within a company from a cost-effectiveness standpoint. The fourth test answers question four, 

and ensures the basis behind principle three is satisfied, that tools that are not natural and easy to 

use will be neglected. Each test will be discussed in the paragraphs below. 

5.1 Test #1: Can the MCC Method Be Effectively Implemented? 

The implementation itself serves as its own test in this case. The test was simply to see 

whether it was possible to successfully integrate communication tools with engineering tools, 

capture communication-based design rationale, and provide for retrieval.  

As discussed in chapter four, the NX – Skype implementation was successful through the 

use of their respective APIs. The MCCT tool is capable of providing communication 

functionality to a user directly from the NX interface, which follows the integration principle of 

the method. It also allows for the capture and storage of communication raw data along with 

associated meta-data. Lastly it provides a solution for retrieving this information from a storage 

medium.  

5.2 Test #2: Is the MCCT Tool More Efficient Than Traditional Methods? 

This test was designed to show an example of how this tool can improve on current 

industry methods for communication capture. While some tools exist for capturing 

communication information, such as the basic functionality of recording phone calls, there are 

few industry-ready tools available that capture this information and correlate it with engineering-

specific meta-data. Additionally, for many engineering firms, including the sponsors of this 

research, the tools available to the individual engineers do not allow capture of even raw 

communication data. Communication data is often captured informally by taking notes from a 
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meeting or conversation and emailing them to colleagues or in some cases storing them on a 

central server. Often however, communication-based DR is often not captured at all, but resides 

in the minds of the engineers who made the decisions or created the designs. 

Even with conversation recording systems there are many problems. For instance, the 

data is in some cases not centrally stored by default unless configured programmatically. 

Secondly, engineering meta-data is not stored alongside the data. 

The method of note taking has many problems with both capturing and retrieving 

communication-related DR. One problem is that it takes considerable time to take notes and 

transcribe them in a form that can be centrally stored and searched. Additionally in the case of a 

non-centralized storage system, such as notes in a notebook or email, retrieval is slow or often 

impossible. One way that this method improves upon note-taking is that in many cases notes 

only allow for a single person’s view of a meeting’s events to be captured, and often do not 

portray an accurate depiction of the actual process. The MCCT tool allows for the entire 

conversation to be archived and indexed, allowing the full set of events to be recorded. 

Two sub-tests were created to see if the MCCT tool solved these problems. The first 

refers to the efficiency with which the MCCT tool can store conversation-based DR with 

associated meta-data. The test was designed to compare the MCCT tool to the traditional note-

taking method, due to the fact that this is a method with which most engineers are very familiar, 

which made the testing process very simple for participants. The second test was designed to 

analyze the efficiency of the MCCT tool’s retrieval from a centralized server, as compared with 

traditional methods that utilize decentralized storage. 

 These tests are not intended to compare the purposes of note-taking directly to the 

purposes of the MCCT tool. Note-taking has many different purposes besides data archival, such 
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as showing a concise summary of events, or highlighting especially important moments in the 

conversation. This research does not seek to replace the taking of notes; it only seeks to provide a 

better solution for archiving the sequence of events and design rationale that can be gleaned from 

a meeting.  

5.2.1 Capture Efficiency Comparison 

This test was performed with nine young engineers who are familiar with computing 

environments in general. While a test with engineers unfamiliar with computing could show 

some interesting data, it was determined that typing speed and general computer familiarity  

would provide a fair comparison for the two methods. 

Each participant was asked to assume that they had just completed an hour-long meeting, 

and had generated a single page of notes from that meeting. The notes were written neatly on a 

sheet of paper and given to each participant. They were then asked to transcribe the notes into a 

digital format and email this digitized file to five people. This part of the test mimics the current 

practice of many engineering firms, to share notes after a meeting as an informal way of storing 

DR. Each participant was timed as they performed these activities. 

Following this, the participants were then asked to use the MCCT tool to capture the data 

from the meeting. A mock phone call was set up when they arrived and they were told that the 

meeting had just completed. They were then instructed to end the phone call and follow the 

prompts on the screen to document the conversation. They were shown the user-supplied meta-

data screen described in chapter 4, asked to supply a title for their conversation and check a few 

tags that related to the mock meeting to complete the archival process. All of these instructions 

were given them before beginning the test, and only supplemental assistance was given where 

needed. They were timed as they performed these actions. 
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The result from these two activities is shown in table 5-1. The taking of notes and 

emailing them is simply referred to as “Note-Taking.” 

 

Table 5-1: Comparison of time (in minutes) required for capture 

Participant Time required for 
note-taking 

Time required for 
MCCT 

Participant 1 0:10:32 0:01:29 

Participant 2 0:08:15 0:01:27 

Participant 3 0:10:54 0:01:00 

Participant 4 0:07:06 0:01:02 

Participant 5 0:09:02 0:01:19 

Participant 6 0:06:00 0:02:18 

Participant 7 0:09:38 0:00:45 

Participant 8 0:11:50 0:00:26 

Participant 9 0:08:18 0:00:45 

Average 0:09:02 0:01:10 
 

On average the MCCT tool was roughly 8 times faster than the note-taking method. The 

time required to perform the capture of DR is significantly less with the MCCT tool than with 

the traditional note taking method. 

This data takes into account that the time each participant saw the MCCT tool was when 

they tested it. Their times using the tool would likely greatly decrease as they became more 

familiar with it. 

Also of note, the amount of time required for the note-taking is proportional to the 

amount of notes recorded. The test performed was for a single page of notes, but for two or three 

pages of notes, the time would increase close to two or three times. This is primarily due to the 

time-consuming nature of transcribing. The time required for the MCCT tool does not increase 

for longer conversations or meetings significantly, which allows it to perform more efficiently in 
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any scenario. This is because the speed at which the computer records the data increases only a 

negligent amount when handling more data. 

5.2.2 Retrieval Efficiency Comparison 

The next test of efficiency is directed at retrieval. This test is intended to provide an 

example for how the MCCT could provide an improvement in retrieval time over current 

methods. There are two basic categories for storage systems. The first is a de-centralized system, 

meaning that the data is spread across multiple locations. This method makes retrieval more 

difficult, since a person seeking data must find the right person before they can find the right 

data. The second type is a centralized storage system, where most people in an organization have 

access to a single source of data. This type makes retrieving information much easier, since a 

person only has to visit a single place to get the information they need. 

 The note-taking method by nature does not automate the process of capturing the data. In 

some cases policies within a company can dictate the storage of this information, and often it is 

stored on a central file server. File servers excel at storing data centrally, but often are poorly 

managed and are difficult to parse by hand and search effectively.  

In many cases, however, the note taking method does not store data in a central system. 

Often email is used to distribute documents from one place to another. Sometimes notes are 

stored on local machines and not distributed. Worst of all, conversation-based DR often resides 

in notebooks of employees or remains undocumented. 

This decentralized nature of the note-taking method hinders the retrieval of data. Often it 

can take days to weeks to retrieve needed information, since it requires knowing the right people 

to ask, which can often be difficult and time-consuming. Because of the time required for this 
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process, most people will end up re-inventing the wheel for their project, rather than spending 

the time to find the data that could be used to recreate work.  

The decentralized method is difficult to test, since it is difficult to recreate the 

complicated industry environment that causes these challenges. Instead, the researcher evaluated 

the sponsor company to find how long this type of data typically took to retrieve. In one 

example, involving locating a person within the company who was responsible for a specific 

software area, it took nearly two months to locate the correct person. It is easy to see that with 

the MCCT tool, it would be a simple search about that particular software area that would return 

a high volume of conversations from a small group of people. This would assist in finding the 

right person quickly. 

To test the MCCT tool against note-taking methods, the participants were asked to locate 

a conversation in the database using the MCCT tool. They were asked to give the conversation 

title that they supplied in the previous test to see if they could retrieve it from the database. In 

every case, the MCCT tool successfully found the data they were searching for and showed the 

data to the user. A table showing the amount of time for each user to retrieve this data is shown 

in table 5-2. 

On average, it took under 30 seconds to retrieve the conversation from the MCCT tool. 

The fastest user was able to find the data in 10 seconds, and the slowest took 52 seconds. The 

retrieval time represented a significant improvement over traditional note-taking methods. This is 

primarily due to the centralized nature of this data, as well as the efforts made in the creation of 

the MCCT tool to include meta-data such as a conversation title and tags.  
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Table 5-2: Retrieval times for MCCT search 

Participant Retrieval Time 

Participant 1 0:00:15 

Participant 2 0:00:52 

Participant 3 0:00:51 

Participant 4 0:00:16 

Participant 5 0:00:16 

Participant 6 0:00:10 

Participant 7 0:00:24 

Participant 8 0:00:13 

Participant 9 0:00:18 

Average 0:00:23 
 

 

The researcher recognizes that the time required for users to find data might increase if a 

different set of participants were used for the retrieval test. The test was designed to emphasize 

the advantages of centralized storage for data retrieval. The centralized nature of the data storage 

system, as well as the tagging system that helps with the indexing and retrieval of the data would 

likely still represent a significant improvement over de-centralized systems if the test were 

repeated with different participants. 

5.3 Is the MCC Method Cost-Effective as a DR Capture Solution? 

The purpose of the next evaluation was to illustrate some of the potential cost savings 

that could result from implementing a centralized DR capture and storage system. This 

evaluation was performed since a primary factor of adoption into industry is cost. It is thus 

important to attempt to quantify these costs. 
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The software costs for the MCC method will differ depending on the implementation. 

However, we assume in the principles of the method that we want to match as much as possible 

the current software set of the company. From a licensing standpoint, this means that the 

company will not have to spend additional dollars to acquire the tool. However, some money 

will need to be spent in development in order to integrate the communication and engineering 

tools and create a system that follows the steps of the method. 

While detailed information about time savings for an industry standard tool has not yet 

been determined, this section will attempt to quantify some of the potential cost savings for a 

company from the results of the previous capture comparison tests. These numbers are simply 

illustrative, and are shown here to further emphasize the potential benefits of using the MCCT 

tool. 

In order to calculate the potential cost savings there are certain assumptions that should 

be stated. The first is that average engineer will spend at least one hour in their day in meetings, 

from which an average of one page of notes will be generated. The second is that an engineer’s 

wage per hour, including the cost of overhead, is assumed to be $90/hour (Occupational 

Employment and Wages: Aerospace Engineers 2008). 

Consider that the average for capturing information from the note-taking method was 

roughly 9 minutes. The average for the MCCT tool was roughly 1 minute. The difference 

between these times is about 8 minutes. If we use the simple equation: 

TWC *=                                   (5-1) 

Where C is the cost for the company, W is the hourly wage, and T is the time. Using the 

assumption of a page of notes per day, then the average daily savings for each engineer is 

roughly $12. This is a significant amount, considering that this translates into a yearly savings of 
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roughly $3000 per employee. When considering a large engineering firm with many engineers 

on staff, this savings would be very significant.  

Obviously this is not the only time savings that could be considered. Retrieval, while not 

as easy to quantify, is drastically improved with the MCCT tool. The time required is 

significantly less than with a decentralized system. Other factors, such as the reduction in cost 

for using newer and cheaper communication systems, such as VoIP, are also difficult to quantify, 

but would ultimately lead to greater savings.  

5.4 Is the MCCT Tool Easier to Use Than Traditional Methods? 

This test was aimed at illustrating that the MCCT tool could improve on current methods 

in the area of user satisfaction. The test was performed using a simple survey. Each participant 

was asked to rank each method at the conclusion of the above tests in the area of ease of use. 

They specified a score between one and five for each method, one being very difficult to use, and 

5 being very easy to use. The results are shown in the table below: 

 

Table 5-3: Ease of use scores comparison 

Participant Note-Taking MCCT 
Participant 1 3 5 
Participant 2 4 4 
Participant 3 3 5 
Participant 4 4 5 
Participant 5 2 5 
Participant 6 3 5 
Participant 7 3 5 
Participant 8 1 5 
Participant 9 2 5 

Average 2.78 4.89 
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Notice that the MCCT tool consistently scored better in the test. The average score for the 

MCCT tool was nearly twice as high. This is likely due to the time-consuming and mundane 

nature of transcribing notes, and the hassle of locating these notes. The score for the MCCT tool 

would likely increase with the users familiarity with the system.  

5.5 Results Summary 

Each of the initial questions that were asked was answered through the series of tests. 

Chapter 6 will discuss the conclusions drawn from each of these tests, and provide some 

suggestions for future work in this area. 
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6 CONCLUSIONS 

This chapter will focus on conclusions drawn from the testing of the MCCT tool. First, 

there will be a few sections that address each conclusion drawn from the testing and discuss the 

benefits that can be gained from implementing the MCC method. Second, some suggestions for 

future work will be provided.  

6.1 Test Conclusions 

This section focuses specifically on tests from chapter 5. Each conclusion is a response to 

the questions asked in chapter 5. 

6.1.1  MCC Method Can Be Effectively Implemented into a Tool 

It has been shown that the MCCT tool is a successful implementation of the MCC 

method. As discussed, the implementation used Siemens NX 6.0 software as the engineering 

tool, and Skype VoIP software as the communication tool. The two were successfully integrated 

such that Skype resided in the NX environment. Additionally, the tool acts very well as a 

communication capture tool.  

The implementation of this specific set of tools also provides additional insight into the 

future integrations of this method. Specifically this test shows that any set of engineering and 
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communication tools could be integrated, provided they have APIs that allow their internal 

functionality to be accessed. 

6.1.2 The MCCT Tool Can Be More Efficient Than Traditional Methods 

On average, the speed at which data was captured was about 8 times faster with the 

MCCT tool than with the traditional method. Additionally retrieval time was reduced by orders 

of magnitude, as the traditional methods often took weeks to months to retrieve data, while the 

MCCT tool took on average less than 30 seconds. 

From these tests I conclude that MCCT tool can provide an  efficient way to capture and 

store conversation-based DR as compared to current methods. Additionally it provides 

functionality not available in current methods. 

6.1.3 The MCCT Tool is a Cost-Effective Solution for DR Capture and Storage 

It has been illustrated that the additional time savings provided by the MCCT tool can 

translate into greater cost savings overall. The time saved from both capture and retrieval is 

significant and can also provide significant savings. Additionally, chapter 5 included a discussion 

of the savings from other sources, such as the savings realized by changing to VoIP software and 

other factors.  

From this I conclude that the MCCT tool has the potential to provide a significant 

reduction in day-to-day engineering costs if implemented correctly. Retrieval time will be 

reduced which will also help to shrink cycle times and lead to better products overall. 
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6.1.4 The MCCT Tool is Easier to Use than Other Methods 

A survey taken from participants who had used both methods showed that the ease of use 

of the MCCT tool outranks traditional methods two to one. It was shown that this is primarily 

due to the fact that the MCCT tool saves the engineer time and does not cause significant 

irritation. From this I conclude that the MCCT tool represents a more user friendly from the 

standpoint of the engineer.  

6.2 Suggestions for Future Work 

While the focus of this research has been to capture communication-based DR, the 

method and tool presented in this paper have other possible areas of application. I leave it to the 

effort of other researchers to extend the work that I have presented. A few suggestions for future 

work are mentioned in this section in order to provide a starting point for interested researchers. 

The communication capabilities that are a part of the MCCT tool provide for some 

additional research opportunities. Implementing video and screen sharing into the MCCT tool 

would be an excellent way to capture more detailed communication. These additional 

communication pathways could also be used to gather more detailed information about the 

product development process, especially the capture and categorization of application sharing 

information. Ultimately the addition of these functionalities would provide a better tool for DR 

capture. 

Another research activity would be to augment the functionality of the MCCT tool to 

include more detailed CAD data in the capture. For example, one could tie conversations directly 

to the features of an NX part, so a person could review the exact features that were being created 

during the conversation, which would likely provide additional insight as to why certain design 
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decisions were made. Another augmentation would be the automatic categorization of 

conversations based on content. This could be readily implemented for textual communication, 

and possibly for verbal communication provided that audio transcription technology becomes 

more sophisticated. Currently this is not possible, since these systems generally are inaccurate 

(Holstein and Gubrium 2003).  

Another area where this work could be readily applied is in the improvement of global 

engineering. Globally dispersed product development teams face challenges in communication, 

both in language and in cultural differences that could be assisted by the capture of 

communication data. The ability to record and replay conversations from meetings and other 

encounters would allow these teams to review and verify the communication of expectations. 

This could help alleviate some of the miscommunication that often hinders global product 

development. 

This work could also be readily applied to a new and exciting field, multi-user 

engineering design. Today engineering software only allows a single user to edit a single file at a 

time. However recent research has focused on allowing these tools to accommodate more than 

one user at a time. This would allow parts to be edited and created by a larger group of people, 

ultimately leading to faster design times. Communication would be an essential component of 

this new tool. The MCCT tool could function extremely well as a way to provide an integrated 

communication tool for multi-user tools. It could also provide a way to capture the actions and 

conversations that take place in the multi-user design session. This would provide a history for 

how parts were created and would assist a user in reviewing the events that took place. 

The culture of the workplace and its effect on communication tools has been briefly 

discussed in this thesis; however a deeper study into the adoption and use of these tools in 
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industry would benefit this work. A full test of this tool in the industry would provide additional 

insight into the most effective way to have the MCCT tool adopted into industry. 
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