
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2010-03-10

Methods to Streamline Laminate Composite
Design, Analysis, and Optimization
Ammon Ikaika No Kapono Hepworth
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Hepworth, Ammon Ikaika No Kapono, "Methods to Streamline Laminate Composite Design, Analysis, and Optimization" (2010). All
Theses and Dissertations. 2405.
https://scholarsarchive.byu.edu/etd/2405

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2405?utm_source=scholarsarchive.byu.edu%2Fetd%2F2405&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Methods to Streamline Laminate Composite

Design, Analysis, and Optimization

Ammon Hepworth

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
Christopher Mattson
David T. Fullwood

Department of Mechanical Engineering

Brigham Young University

April 2010

Copyright © 2010 Ammon Hepworth

All Rights Reserved

ABSTRACT

Methods to Streamline Laminate Composite

Design, Analysis and Optimization

Ammon Hepworth

Department of Mechanical Engineering

Master of Science

Advanced composite materials have seen major market growth in recent years due to
their high strength and low weight properties. These materials are often made using a process
that creates a composite laminate by stacking several composite layers together. However, t

he
design, analysis and optimization of laminate composite materials are often a labor intensive
process when done manually. This thesis discusses CAD independent algorithms that are
integrated into commercial CAD tools to streamline these processes. Methods have been
developed to automatically create 3D ply geometry for a laminate composite lay-up, streamline
the creation of a laminate composite finite element model and optimize the composite lay-up for
a multi-layered laminate composite part.

Integrating a CAD independent geometry kernel into the NX laminate composite design
automation application significantly improves the run time of that application. In addition, the
automated composite finite element tool creates laminate composite finite element models that
are more detailed than those made with zone based methods. This tool will save engineers, who
are making laminate composite finite element models manually, dozens of hours of work per
model. The automated composite finite element tool can also be integrated into an optimization
framework, used in conjunction with a method to automatically apply boundary conditions, to
create an effective optimization of a laminate composite part.

Keywords: laminate composite design, analysis, optimization, automation

ACKNOWLEDGEMENTS

I would like to thank Dr. C. Greg Jensen from Brigham Young University as well as

Ryan Cox and James Roach from Pratt & Whitney. Each of them has been invaluable to the

success of this research and subsequent thesis. They have been a great mentors as well as

friends. Additional thanks to Dr. Mattson and Dr. Fullwood for their input and willingness to be

on my committee. A special thanks to Pratt & Whitney for funding this research. Also thanks to

my wife Monica for her support and love through all of this.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

1 Introduction ... 1

1.1 Problem Overview .. 1

1.2 Thesis Objective ... 3

1.3 Problem Delimitation .. 4

1.4 Thesis Organization .. 4

2 BACKGROUND ... 7

2.1 Laminate Composite Materials ... 7

2.2 Composite Automation Programs ... 8

2.3 CAD APIs and the CAD Independent Approach ... 10

2.4 Geometry Mathematics and NURBS .. 11

3 Method ... 15

3.1 Input Data from a User Familiar Source ... 16

3.2 CAD Independent Algorithms .. 17

3.2.1 Geometry Creation .. 17

3.2.2 Generation of Finite Element Model .. 18

3.3 Output Data into a Useable Source ... 21

3.4 Optimization ... 22

3.4.1 Parametric Boundary Conditions .. 22

3.4.2 Optimization Algorithm .. 23

3.4.3 Fitness Factor .. 24

4 Implementation ... 25

 vi

4.1 Input Data from a User Familiar Source ... 26

4.2 CAD Independent Algorithms .. 29

4.2.1 Automatic Geometry Creation .. 29

4.2.2 Automatic Generation of Finite Element Model .. 31

4.3 Output Data into a Useable Source ... 35

4.4 Optimization ... 41

4.4.1 Automatic Boundary Conditions for the Finite Element Model 41

4.4.2 Optimization using Isight .. 43

5 Results .. 45

5.1 Composite Design Automation ... 45

5.2 Composite Analysis Automation .. 49

5.3 Composite Analysis Optimization .. 52

6 Conclusions .. 55

6.1 Recommendations ... 57

References .. 59

 vii

LIST OF TABLES

Table 4-1: An example of a ply table ..28

Table 5-1: The ply property table from MS Excel ...47

Table 5-2: Test results from speed comparison of NX, GSNLIB and CAA RADE 48

Table 5-3: Test results of the speed of the automated composite finite element tool 52

 viii

 ix

LIST OF FIGURES

Figure 3-1: General approach to streamline design and analysis ...16

Figure 3-2: A 2D representation of the normal vectors taken along the mid-surface 20

Figure 3-3: Finding the thickness at each element center ...21

Figure 4-1: A representation of the approach of the automation program 26

Figure 4-2: Offset from outer surfaces and trim ...30

Figure 4-3: A side view of a generic NX ply geometry creation ..31

Figure 4-4: Laminate FEA model of a vertical stabilizer ...34

Figure 4-5: ..An ANSYS shell model of a cantilever beam 40

Figure 4-6: Isight process flow for the laminate composite optimization 44

Figure 5-1: A test case showing simple ply geometry created in NX44

Figure 5-2: .. Vertical stabilizer loaded in NX 45

Figure 5-3: ... Vertical stabilizer ply lay-up 45

Figure 5-4: NX Wing, FE shell mesh and FE shell mesh with lamina thicknesses shown ...50

Figure 5-5: Complex NX Surface, FE shell mesh, FE mesh with thicknesses shown 51

Figure 5-6: A graph of the genetic algorithm’s progression ..53

 x

 1

1 INTRODUCTION

Advanced composite materials have seen a major market growth in recent years and are

becoming more widespread in industry today [28]. This is largely due to the fact that these

materials have such a high strength to weight ratio and that their material properties can be

tailored to meet specific design criteria. Despite the benefits, it is often a “laborious and

painstaking process” to design, analyze and optimize these materials manually [19]. Because of

this, there has been an effort to develop automation methods to streamline the design, analysis

and optimize of composite materials. This thesis will discuss methods to streamline laminate

composite design, analysis and optimization using CAD-independent algorithms in a CAD

centric way.

1.1 Problem Overview

One method of manufacturing advanced composite materials is by stacking several fiber

dense layers and bonding them together. Each layer is made of high-modulus fibers that are

imbedded in a lower modulus resin. Composite materials created using this stacking process are

called laminate composites. Designing a composite laminate is time consuming for two major

reasons. First, since the material properties of a part are largely determined by the fiber

orientation of each layer in the laminate, there are many design combinations to explore.

Second, when designing geometrically complex parts, the geometry of each layer is difficult to

predict and time consuming to create [9, 25].

 2

Due to the large number of design parameters, the design of composite parts naturally

calls for optimization algorithms [4]. Utilizing computer integrated optimization algorithms

allow designers to more efficiently explore the design space and find the optimum design of a

laminate composite part. However, to make optimization possible, a fast and accurate analysis

method must be employed. Finite element analysis is the preferred analysis method for

geometrically complex laminate composite parts; but it is time consuming to manually build

composite models having several layers with unique fiber orientation angles [9]. The finite

element analysis process must be streamlined to make using optimization practical.

The time consumption in creating the composite layer geometry may be overcome

through the use of an automated method to create the geometry and allow users to visualize and

interact with it. The traditional method to automate and streamline the modeling phase of the

design process (called the CAD centric approach) is through the use of a commercial CAD

application programming interface (API). A CAD API allows users to programmatically create

custom methods in existing commercial CAD applications. Creating a custom application using

the CAD centric approach provides the following advantages:

• Provides for geometry visualization

• Easy for companies to adopt with a pre-existing CAD system in place

• Simplifies CAD data storage and transfer

Regardless of the advantages, there are two main weaknesses to the CAD centric

approach. The first weakness is that CAD APIs are often computationally slow when compared

to CAD independent algorithms because they often exist a level or two above the geometry

kernel. This makes them impractical to use for computationally intense problems such as the

creation of laminate composite layer geometry. The second weakness is that the CAD-centric

 3

approach keeps the application on a single CAD system thus severely limiting its use within

large companies that have and use multiple CAD platforms.

1.2 Thesis Objective

In 2003, a method was developed by Travis Astle that overcame the weaknesses of the

CAD-centric approach while still incorporating its benefits. He applied CAD independent

algorithms to the creation of flank milling data and integrated it into NX using NX’s API.

Simply stated, the method takes geometry from a CAD package, translates it into mathematical

geometry data, uses CAD independent algorithms to create new geometry and perform math

intensive geometric operations of the data, and then translates the new data back into the CAD

package [2]. This method allowed the application to be portable enough to be integrated into

several CAD applications and still provided simple visualization, company adaptation and data

storage/transfer.

The objective of this thesis is to present a method that applies CAD independent

algorithms to streamline the design, analysis and optimization of laminate composites. Doing

this incorporates the benefits, discovered by Astle, of being fast and portable while still keeping

the benefits of simplified visualization, company adaptation and data storage/transfer. The

method specifically does the following:

• Automatically create 3D geometry for individual plies in a laminate composite lay-up

for a composite part with complex geometry

• Streamline the creation of detailed laminate composite finite element models

• Optimize the composite lay-up for a composite part made of several layers

 4

This method has been proved through the implementation of the method into computer programs

that accomplish the above mentioned tasks.

1.3 Problem Delimitation

In writing software to accomplish the above mentioned automation tasks, it must be

understood that the author has not produced a commercially available application. The purpose

of writing the computer programs is only to show that the methods are implemented in a

practical way. In addition, it is not the intent of the computer programs to be able to create a

composite lay-up on any geometric object, but only those that can be represented by two

opposing NURBS surfaces in Siemens NX and Dassault Systemes CATIA. The program that

streamlines the creation of the composite finite element model is implemented into ANSYS,

MSC NASTRAN and LS-DYNA only. No other analysis packages or mesh types are examined

in this research effort. In regards to optimization, only a few test cases are examined and each is

integrated into SIMULIA’s Isight optimization framework. The purpose of this thesis is to

present a general method to optimize laminate composites and not to prove necessarily that one

algorithm is better than any other. This said, Isight’s genetic algorithm has worked well in this

study and so it will be the only optimization algorithm employed here.

1.4 Thesis Organization

A large portion of the content of this thesis comes from two papers published by the

author in the Computer-Aided Design & Applications Journal in 2009 and 2010 [12, 13]. The

thesis is organized into six chapters. Chapter 2 is a literature review that introduces the reader to

the most relevant literature in relation to this thesis. This will include a brief introduction on

 5

composite materials, a discussion about existing composite automation methods, CAD

application programming interfaces and NURBS mathematics. The third chapter discusses the

general methods used to streamline laminate composite design, analysis and automation. The

fourth chapter discusses the implementation of those methods into existing commercial CAD and

FEA packages. Chapter 5 shows the results of the composite design and analysis automation

tools and the results from an optimization that utilizes the analysis automation tool. The sixth

and concluding chapter discusses the conclusions and future work of this research.

 6

 7

2 BACKGROUND

The intent of this chapter is to give the reader the background necessary to understand the

significance of this research. First there will be a general discussion of laminate composite

materials in section 2.1 to give the reader a basic understanding of the design process used to

optimize a laminate composite material for a given application. If the reader is completely

unfamiliar with laminate composites the author recommends the following references [17, 8, and

14]. Section 2.2 is a review of the most significant research in the area of composite automation

tool development. The purpose of this section is to show what has already been done in this area

and to note what they are lacking. Section 2.3 is a discussion of CAD API programming to

allow the reader insight into what others have accomplished using CAD APIs. Finally, in section

2.4, there is an introduction on NURBS surface mathematics and a brief discussion on the

advantages of using NURBS mathematics in this research.

2.1 Laminate Composite Materials

Generally speaking, a composite material is any heterogeneous material made-up of more

than one material. However, composite materials most commonly refer to a material having

strong fibers imbedded into a weaker matrix material. The fibers serve to carry the load, while

the matrix distributes the load to the fibers [8]. Advanced composites refer to composite

materials containing long fibers and resins with mechanically superior properties and have an

extremely high strength to weight ratio [25]. Traditionally, advanced composite materials are

 8

manufactured by stacking several fiber dense layers and bonding them together to form a

laminate. This process allows the properties of a composite laminate to be tailored to a specific

loading environment by orienting the layers of unidirectional material to satisfy the loading

requirements [17].

2.2 Composite Automation Programs

A number of automated laminate composite design tools have been developed and will be

discussed herein, but there are two points to note before discussing each tool in detail. The first

point to note is although each of these applications presents viable methods to automate design,

analysis and optimization of laminate composites, all of them use a zone based approach. This

means that the part is divided into zones of constant thickness allowing for simplified analysis

and laminate definition. Although this simplification suffices for relatively smooth geometry

with large regions of constant thickness, this does not provide sufficient accuracy in parts with

rapidly changing thicknesses. In addition, the zone based approach does not create 3-

dimensional ply geometry from the part geometry alone. All ply geometry is either created

based on the zone boundaries or from user input.

AUTOLAY is a design tool developed in 1999 to automate laminate composite design,

analysis and manufacturing using a GUI-based approach. This tool assists the user in ply

modeling, substructure design and the generation of ply stacking sequences, engineering and

manufacturing drawings. The tool has the user identify two surfaces that represent the

engineering and manufacturing geometry. On the engineering surface, a user defines areas of

constant thickness (zones) to be used by the tool to automatically determine the number of plies

and the stacking sequence in those areas. The stacking sequence of the zones is determined

 9

using design rules and analytical solutions which find the delamination and buckling strengths.

The ply shapes are determined either automatically from the zone definitions or interactively by

the user. Finally, engineering and manufacturing drawings are automatically produced using

general design practices. The resulting benefit of AUTOLAY is that composite designers and

manufacturers end up with a substantial cost and time savings [19].

Another method to automate composite design was developed by Vasey-Glandon et al.

They patented a computer program called the Parametric Composite Knowledge System

(PACKS) that generates an optimized 3-D ply definition for a laminate composite part. The

program divides the plies into zones and uses FEA analysis software as well as predetermined

design rules to optimize these zones to perform better in manufacturing [27]. PACKS reduced

the cost of many aircraft composite development programs by over 60% and was licensed to

Unigraphics Solutions, Inc (now Siemens) for commercial use in 2001 [11].

Another composites optimization computer program, developed by Menayo et al.,

optimizes a ply lay-up for a composite part to form a preliminary ply model. This is done by

first running a stress analysis program (called ARPA) to obtain a stacking sequence for divided

regions of the part and then automatically generating a ply stacking table that organizes the plies

into zones. The stacking table is then optimized using design stacking rules and manufacturing

constraints. Next, a ply drop-off distribution is performed to determine which plies end-up in a

given zone and they are ordered according to design rules [15].

Siemen’s NX has an integrated, zone-based laminate composites application that allows

for ply modeling, draping, and optimization. In ply modeling, it allows one to associate ply lay-

ups with NX surfaces, but it does not provide for 3D visualization of actual ply geometry.

 10

Draping predicts ply orientations along doubly-curved surfaces. The optimization piece makes it

possible to optimize laminate properties to meet specific design criteria [23].

These tools represent a good foundation of laminate composite automation, however all

of them use the zone based approach. The method presented in this thesis will divert from this

approach by automatically creating design and analysis data without having to define zones. The

method automatically creates ply geometry and finite elements based on a ply table definition

and the part geometry input by the user. No zone definitions are necessary.

2.3 CAD APIs and the CAD Independent Approach

Application programming interfaces (API) are used to interface with commercial

software applications programmatically (as opposed to interactively). Most commercial CAD

systems have APIs and they are often used in industry to automate design processes. The

method of automating a design process using only the CAD system’s API is called the CAD

centric approach. There have been several theses written explaining methods that streamline

design processes using APIs. A few recent theses that discussed using CAD APIs to generate

custom CAD applications include the following: Delap used a CAD API to create a parametric

model of a gas turbine flow path that can be optimized based on user rules and objectives [5].

Elliott programmatically created a reusable parametric model of a complex surface including

over 3000 parameters also using a CAD API [6]. Scott also utilized a CAD API to streamline

the CAD assembly and component level design process [21].

Automating a design process using the CAD centric approach provides several

advantages: it provides a simple way to visualize geometry, it is simple to adopt for companies

with existing CAD system in place and it simplifies data storage and transfer. However, there

 11

are two major weaknesses to the CAD centric approach. The first weakness is that CAD APIs

are often slow in performing geometrical computation when compared with CAD independent

algorithms because they often exist at a level above the geometry kernel. When an application

requires large amounts of geometry computation, the CAD-centric approach becomes

impractical. The second major weakness is that the CAD-centric approach limits the use of the

application to a single CAD package. Since there are many CAD packages in circulation today,

limiting an application to a single CAD package may prevent extensive use among designers.

As stated in the introduction Travis Astle developed a method that overcame the

weaknesses of the CAD-centric approach while still incorporating its benefits. Recall that he

applied CAD independent algorithms to the creation of flank milling data and integrated it into

NX using NX’s API. In summary, the method takes geometry from a CAD package, translates it

into mathematical geometry data, uses CAD independent algorithms to create new geometry, and

translates the new data back into the CAD package [2]. This method allowed the application to

be portable enough to be integrated into multiple CAD applications and kept the benefits of

simple visualization, company adaptation and data storage/transfer.

2.4 Geometry Mathematics and NURBS

Non uniform rational B-splines (NURBS) are the mathematical surface representation

used to represent geometry in this research. NURBS are a common parametric curve and

surface representation used within many of the leading commercial CAD systems. NURBS

mathematically represent a surface using a given number of control points that form a

bidirectional control net. These control points each influence the topology of surface defined by

the B-spline basis function. Each control point is associated with a weight that adjusts the

 12

amount of influence that each control point has on the surface. NURBS employs a knot vector

in each parametric direction u and v that also affect the influence of the control points. A

NURBS surface of degree p in the u direction and q in the v direction is represented by the

following equation:

, , , ,
0 0

, , ,
0 0

() ()

(,)
() ()

n m

i p j q i j i j
i j

n m

i p j q i j
i j

N u N v w P
S u v

N u N v w

= =

= =

=
∑∑

∑∑ 0 , 1u v≤ ≤ (2-1)

The { ,i jP } are the control points, the { ,i jw } are the weights, n and m represent the number of

control points in the u and v directions respectively, and the { (), uj qN } and { (), vj qN } are the

NURBS basis functions which are defined on the knot vectors:

 (2-2)

 (2-3)

r and s are defined by 1++= pnr and 1++= pns [18]. To learn more about NURBS

mathematics, see the following sources: [7, 18, 20, and 22].

A major advantage of using NURBS surfaces to represent geometry is that complex

surfaces can be represented with relatively small amounts of data. Also, since NURBS are

parametric in nature, they have the advantage of being able to quickly compute the coordinates

of any point on a surface, making the parsing of a surface quick and easy [22]. In addition, many

NURBS based, CAD independent algorithms have been published, including a C++ based

 13

geometry library called GSNLIB. This library has several functions that create, manipulate and

store NURBS curves and surfaces [24].

 14

 15

3 METHOD

This chapter discusses methods to streamline laminate composite design and analysis

following these steps (see Figure 3-1 for a graphical representation):

1. Take surface geometry from a user familiar source (i.e. a commercial CAD system),

translate it into the mathematical NURBS representation of that surface and store it

in NURBS based, CAD independent data structures

2. Apply CAD independent algorithms to create the ply lay-up geometry and the

laminate composite finite element model

3. Translate the NURBS surfaces back into a user familiar source for visualization and

analysis

Methods will also be discussed to streamline laminate composite optimization and include the

following:

• Applying parametric boundary conditions

• The optimization algorithm

• The fitness factor

 16

Figure 3-1: General approach to streamline design and analysis

3.1 Input Data from a User Familiar Source

A CAD API function prompts a user to select l number of surfaces within the CAD

environment. These surfaces are translated into CAD independent form by using an API call to

extract the NURBS data from the surface and storing it in CAD independent NURBS based data

structures. This can be shown as follows:

, , , , , , , ,
0 0 0 0 0 0

l n m l n m

h i j h i j h i j h i j
h i j h i jCADIndep CAD

w P w P
= = = = = =

=∑∑∑ ∑∑∑ (3-1)

0 0

l l

h h
h hCADIndep CAD

U U
= =

=∑ ∑ (3-2)

0 0

l l

h h
h hCADIndep CAD

V V
= =

=∑ ∑ (3-3)

 17

In addition to CAD geometry data, the laminate specific parameters and attributes are read in

from a spreadsheet and stored in CAD independent data structures.

3.2 CAD Independent Algorithms

Once the CAD data is brought into CAD independent data structures, CAD independent

algorithms are applied to create the ply lay-up geometry based on the input parameters. This is

done by using methods to offset the original surface geometry and trim it to the appropriate

shape. At the same time the laminate composite finite element model is created using the

method discussed herein.

3.2.1 Geometry Creation

In order to create the ply geometry, the original surfaces that came from the CAD system

are offset to create new surfaces that represent the ply lay-up geometry. Some of the parameters

that came from the spreadsheet are used to control the distance of each offset. The following

explains a mathematical method to create an offset of a NURBS surface. The NURBS surface

{ (,)S u v } is queried for a grid of points { ,i jG } which lie on that surface with some tolerance

{ t } in u and v.

,
0 0

(/ , /)
n n

i j
i j

G S i n j n
= =

= ∑∑ (3-4)

In the above equation 1/ (1)n t= − and t is defined such that 1/ (1)t − must be an integer.

In addition to the grid of points, the normal vectors { ,i jH } are found at the same

parameter values along u and v on the surface as used in finding the grid of the points:

 18

,
0 0

ˆ (/ , /)
n n

i j
i j

H n i n j n
= =

= ∑∑ (3-5)

Note that the unitized surface normal vector { ˆ (,)n u v } in the above equation is found using the

traditional normal vector formula:

ˆ (,)

S S
u vn u v
S S
u v

∂ ∂
×

∂ ∂=
∂ ∂

×
∂ ∂

 (3-6)

Where “× ” denotes the cross product [7].

Next, an offset grid of points { ,i jK } that lie some distance { d } from the original

surface are found using this equation [29]:

, , ,
0 0

n n

i j i j i j
i j

K G H d
= =

= + ⋅∑∑ (3-7)

This grid of points { ,i jK } is used to create the offset surface by utilizing an interpolating

function to fit a NURBS surface to the point data.

Once an offset surface is created, a proprietary trimming algorithm is utilized to trim the

offset surface against an opposing offset surface trimming the ply the appropriate shape.

3.2.2 Generation of Finite Element Model

The creation of the laminate finite element model starts with the two NURBS surfaces

read in from the CAD system that define the outer geometry of the laminate. These are called

{ 1(,)S u v } and { 2(,)S u v }. A mid-surface { ,i jM } of the two outer surfaces is found by first

 19

discretizing each surface by incrementing through the { ,u v } parameters of each surface m n×

times and then averaging the opposing points on each surface as shown here:

1 2
,

0 0

(/ , /) (/ , /)
2

m n

i j
i j

S i m j n S i m j n
M

= =

+
= ∑∑ (3-8)

The mid-surface is then created by fitting a NURBS surface through { ,i jM } by using an

interpolating function that finds the NURBS surface control points and knot vector. Once the

mid-surface is found, a grid of points { ,i jG } parameterized by p q× is found on that surface by

incrementing through the { ,u v } parameters p q× times as shown:

,
0 0

(/ , /)
p q

i j
i j

G M i p j q
= =

= ∑∑ (3-9)

To form the quadrilateral shell elements { kE }, the grid of points { ,i jG } are associated to

the elements in the following way:

1 ,
(1)(1) 1 1

2 1,

3 1, 10 0 0

4 , 1

k i j
a b a b

k i j
k

k i jk i j

k i j

e G
e G

E e G
e G

− − − −
+

+ += = =

+

   
   
   = =   
   
      

∑ ∑∑ (3-10)

Next, by querying the points on the mid-surface halfway between each element step, the

center points of each element { ,i jC } are found:

,
0 0

(/ 2 , / 2)
m n

i j
i j

C M i m j n
= =

= ∑∑ (3-11)

In addition to the center point of the elements, the positive and negative unit normal

vectors are also found at each of the element centers. This is done by solving the traditional

 20

normal vector formal (Equation 3-12) at each element center point on the mid-surface. Figure 3-

2 is a representation of a composite part with the top and bottom curves representing the

opposing surfaces and the middle curve representing the mid-surface. The black arrows

represent the positive and negative normal vectors taken at the element centers along the mid-

surface.

Figure 3-2: A 2D representation of the normal vectors taken along the mid-surface

The next step is to find the intersection points {
,1i j

I } and {
,2i j

I } of each outer surface

and the normal vectors that pass through them.

,1 1
0 0

ˆ(/ 2 , / 2)
i j

m n

i j

I S n i m j n
= =

= ∑∑  (3-13)

,2 2
0 0

ˆ(/ 2 , / 2)
i j

m n

i j

I S n i m j n
= =

= ∑∑  (3-14)

The thickness at each element is then approximated to be the distance between the

intersection points on the opposing surfaces (see Figure 3-3).

 , , ,, 1 2 1
0 0

()
i j i j i j

m n

i j
i j

t I I I
= =

= + −∑∑ (3-15)

 21

Figure 3-3: Finding the thickness at each element center

Once the element thicknesses are found the laminate definition is determined for each

element by adding up the thicknesses of the lamina in the ply table. The laminas are added up

starting with the one having the highest priority and going through until the element thickness is

reached. Each element is then associated with the laminas that belong in that region.

3.3 Output Data into a Useable Source

Once the laminate geometry is created, the NURBS surface data that represents each

lamina is translated back into the CAD system for visualization. This is done by using the CAD

API to create CAD based NURBS surfaces from the control points, weights and knot vectors of

the NURBS mathematical surfaces. This is shown mathematically as follows:

, , , , , , , ,
0 0 0 0 0 0

l n m l n m

h i j h i j h i j h i j
h i j h i jCAD CADIndep

w P w P
= = = = = =

=∑∑∑ ∑∑∑ (3-16)

0 0

l l

h h
h hCAD CADIndep

U U
= =

=∑ ∑ (3-17)

0 0

l l

h h
h hCAD CADIndep

V V
= =

=∑ ∑ (3-18)

 22

The finite element data found using the CAD independent algorithms is also translated into a

form that can be read by a finite element package.

3.4 Optimization

In order to establish a working optimization the first critical component is a method to

automatically generate a finite element model. This method was discussed in subsection 3.2.2.

Another component needed for the optimization is a method to automatically assign boundary

conditions (loads and constraints) to the finite element model. In addition, a robust optimization

algorithm and fitness function needs to be established to drive the optimization to an optimum

solution.

3.4.1 Parametric Boundary Conditions

Parametric boundary conditions are used to assign boundary conditions to a model that

will update according to rules regardless of how many nodes are in the model. This is done by

pre-determining an algorithm that assigns the boundary conditions to specific nodes based on

where the conditions are with respect to the part. For example, say the desired location of a

boundary condition is along the bottom end of the part. In this case the boundary conditions

{ iB } are assigned to mid-surface nodes { ,i jG } of size m n× in the following way:

,0
0

m

i i
i

B G
=

= ∑ (3-19)

However in another example, the desired location of the boundary conditions are along

the left side of the part; the boundary conditions in this case are:

 23

0, *
0

m

i m i
i

B G
=

= ∑ (3-20)

Although these two examples above do not cover every loading case, they are enough to

demonstrate the feasibility of applying parametric boundary conditions when necessary. It is left

to the reader to explore other algorithms for more specific cases, if desired.

3.4.2 Optimization Algorithm

The purpose of the optimization algorithm in a laminate composite optimization is to

drive the lamina properties (thickness or angle) to values that determine the best design for a

specific load case. The algorithm that was chosen to do this is a genetic algorithm which is an

algorithm that is based on Darwin’s theory of evolution [16]. The main reason why a genetic

algorithm was chosen over other gradient based methods is because gradient based methods

frequently were not able to find an optimum due to the large number of design variables in a

laminate composite optimization. The gradient based methods slowly changed one or two values

at a time trying unsuccessfully to find a pattern. The genetic algorithm, on the other hand, was

able to much better explore the design space because it moved randomly in all directions until it

evolved into an optimum. My observations were similar to what the literature says in that

genetic algorithms are not guaranteed to find a global optimum, but they will generally find an

“acceptably good” answer “acceptably quickly” [3]. This is why a genetic algorithm was chosen

to be used in the optimization method of this research.

 24

3.4.3 Fitness Factor

When using a genetic algorithm, one critical component is a criterion that determines

how well a specific design performs as compared to other designs. This is called a fitness factor.

“The fitness of an individual is a measure of how ‘good’ the solution represented by the

individual is. The better the solution, the higher the fitness…” [26]. A simple example would be

the case of minimizing stress in a part. In this case the fitness factor would likely be the resulting

stress of the analysis. In other more complicated cases, where several outputs drive the

optimum, a fitness factor is determined in a different way. Possibly the best solution is to take

the average of all the outputs. Or maybe it’s more effective to take the minimum or maximum of

all the output.

The purpose of this subsection is to explain that a fitness factor is used in the

optimization but there are various ways of computing it depending on the specific analysis being

run. Since this thesis does not explore specific analyses, but presents a general approach to

laminate composite optimization, a specific method to find a fitness factor will not be shown

here. Instead, the implementation of a specific fitness factor algorithm will be discussed in the

implementation chapter (specifically subsection 4.4.2), where a specific optimization and

analysis is shown.

 25

4 IMPLEMENTATION

The methodology discussed above was implemented into computer programs that

automate laminate composite design and analysis. One of these computer programs

automatically creates the ply lay-up within a commercial CAD program given the outer surface

geometry of a composite part and a spreadsheet that defines the parameters of the laminate.

Another computer program automatically creates a laminate composite finite element model for

commercial finite element packages given the same inputs. Since the base code for the

applications are independent of commercial CAD software, it can be implemented into several

commercial CAD and FEA packages.

The commercial CAD systems that are integrated with the automation program are:

Siemens – NX and Dassault Systemes – CATIA. The CAD independent software used is the

General Surface NURBS Library (GSNLib) distributed by Solid Modeling Solutions Inc.

GSNLib is a software toolkit that provides methods for creation, storage and manipulation of

NURBS surfaces [24]. This toolkit lends itself to be a good option to integrate with NX and

CATIA because GSNLib, CATIA’s API and NX’s APIs are all based in the C/C++

programming language. This allowed the entire application to be to be written in a single

programming language. The NX API used is called NX Open C and is a C based programming

library that has several functions that allow for the creation and manipulation of NX geometry.

The CATIA API used is called CAA RADE, and is a C++ based programming library that

allows programmatic control of all interactive functions in CATIA.

 26

The automation program was written within the framework of the CAD API and run

from within the interactive CAD system. Two separate pieces of code are written for NX and

CATIA to perform the translation to and from the specified CAD system. However, both NX

and CATIA share the same base CAD independent code. This code utilizes many of the

GSNLib function calls to handle the NURBS mathematics, but many of the other methods are

implemented using custom code.

Figure 4-1 Figure 3-1shows a graphical representation of the approach of this program.

It shows that the program is built upon the foundation of CAD independent algorithms. The

CAD API framework is an interface between the interactive CAD system and the CAD-

independent algorithms. The commercial CAD system is used for user interaction, the API

framework is used to translate data to and from the CAD independent algorithms and the CAD-

independent algorithms are used to create geometric and analytical data.

Figure 4-1: A representation of the approach of the automation program

4.1 Input Data from a User Familiar Source

After running the program from within the CAD system, an API function is called to

prompt the user to select the surfaces that make up the outer shell of the composite part. In NX

this surface definition can be defined in the CAD system or in a text file as a set of surface points

that make up the surface. For CATIA the surface definition is only defined as a set of surface

 27

points in a text file. Using another CAD API function call, the selected surfaces are queried for

their NURBS surface control points, weights and knot vectors. These values are passed into a

function that constructs an IwBSplineSurface object that is predefined in GSNLib. This object

contains all the data to store a NURBS surface in CAD independent form. The translation code

from NX to GSNLib is shown below.

tag_t face;
IwContext pContext;

 UF_MODL_bsurface_t nx_surf;
 UF_MODL_ask_bsurf(face,&nx_surf);
 gw_CPOINT **Pw;
 ULONG n, m, r, s;
 short p, q;
 double *U, *V;
 //Getting num poles from NX NURBS surface
 n = nx_surf.num_poles_v -1;
 m = nx_surf.num_poles_u - 1;
 p = nx_surf.order_v - 1;
 q = nx_surf.order_u - 1;
 r = n+p+1;
 s = m+q+1;
 U = new double[r+1];
 V = new double[s+1];
 //Getting knot vector from NX NURBS surface
 for(int i=0; i<r+1; i++)
 {
 U[i] = nx_surf.knots_v[i];
 }
 for(int i=0; i<s+1; i++)
 {
 V[i] = nx_surf.knots_u[i];
 }
 //Getting control points from NX NURBS surface
 Pw = new gw_CPOINT*[(n+1)*(m+1)];
 for (int i=0;i<(n+1);i++)
 {
 Pw[i]=new gw_CPOINT[m+1];
 }
 for (int i=0, k=0;i<n+1;i++)
 {
 for (int j = 0; j < m+1; j++,k++)
 {
 Pw[i][j].x = nx_surf.poles[k][0];
 Pw[i][j].y = nx_surf.poles[k][1];
 Pw[i][j].z = nx_surf.poles[k][2];
 Pw[i][j].w = nx_surf.poles[k][3];
 }
 }
 //Creating IwBSplineSurface
 IwBSplineSurface *GSNLIB_surf = new (pContext)IwBSplineSurface(n, m, p,
q, r, s, Pw, U, V);

 28

//This frees the memory when you're done with the surface
UF_MODL_free_bsurf_data(&nx_surf);

Another call to a CAD API function prompts the user to select a Microsoft Excel

spreadsheet containing the ply parameters for the composite part, called a ply table. The ply

table is a spreadsheet that describes each lamina in the composite lay-up. Each line of the

spreadsheet expresses that lamina’s fiber angle, thickness, material, and priority. The priority

describes how prevalent that lamina is used throughout the laminate. For example, a ply with a

priority of 1 will likely be used more frequently than a ply with a priority of 7. An example of a

ply table is shown in table 4-1.

Table 4-2: An example of a ply table

Ply Priority
Material

ID Thickness Angle Material

1 1 1 0.1 0 graphite
2 3 1 0.1 30 graphite
3 5 2 0.1 60 glass
4 7 2 0.1 90 glass
5 6 2 0.1 -60 glass
6 4 1 0.1 -30 graphite
7 2 1 0.1 0 graphite

Next, the user is prompted to select a spreadsheet that contains material properties for the

materials used in the first spreadsheet. The material table is a spreadsheet that contains all the

specific material properties for all of the composite materials that are used in the ply table.

After selecting these documents, they are opened and parsed programmatically to get out

the data and store it in data structures within the program. The user also has the option instead to

enter only the ply thickness into a GUI prompt to be stored. However, if this option is chosen,

 29

additional pre-processing will be required. After being prompted for the ply and material

properties, the user is also prompted to input the number of elements in the u and v directions to

be used to create a mesh for finite element analysis of the composite part.

4.2 CAD Independent Algorithms

Once the geometry and parameter data is translated from the CAD system, the CAD

independent algorithms programmed into C++ are used to automatically create the ply geometry

and the laminate finite element model outside of the CAD system.

4.2.1 Automatic Geometry Creation

To create the 3-dimensional ply geometry, surfaces are offset from the two outer surfaces

using the ply thickness parameters that were obtained from the Excel spreadsheet. Each offset

surface is created using an offset function (shown below) that offsets each surface by the ply

thickness amount. The function shown below follows the method outlined in equations 3-4

through 3-7. The function takes in an IwBSplineSurface object, a distance to offset and the grid

density as the number of points in u and v.

IwBSplineSurface *create_GSNLIB_offset_surface(IwBSplineSurface *Surf, double
distance, IwContext &pContext, int &Upnts, int &Vpnts)
{
 IwBSplineSurface* newSurf;
 double coords[3], unit_norm[3];
 IwTArray<IwPoint3d> Curve_pnts;
 IwPoint3d tmpPoint;
 IwBSplineCurve *ChordCurve;
 IwContext CurveContext;
 IwTArray<IwBSplineCurve*> offset_splines;
 IwExtent1d newInterval;
 //intializing surface pnts for the new surface
 double ***surf_pnts=new double**[Upnts];
 for (int i=0; i<Upnts;i++)
 {
 surf_pnts[i] = new double*[Vpnts];
 for (int j=0;j<Vpnts;j++)
 {

 30

 surf_pnts[i][j] = new double[3];
 }
 }
 // CYCLE U SURFACE PARAMETER (STRINGER)
 for (int i=0;i<Upnts;i++)
 {
 // CYCLE V SURFACE PARAMETER (CROSS-CURVE)
 for (int j=0;j<Vpnts;j++)
 {

ask_face_props_GSNLIB(Surf, i/double(Upnts-1),
j/double(Vpnts-1), coords);
ask_face_norm_GSNLIB(Surf, i/double(Upnts-1),
j/double(Vpnts-1), unit_norm);
//Offsets the points in the normal direction
add_mult_array(coords, unit_norm, distance,
surf_pnts[i][j]);

 }
 }
 //CYCLE IN SPANWISE DIRECTION, CREATING CHORDWISE CURVES
 for (int i=0;i<Upnts;i++)
 {
 for (int j=0;j<Vpnts;j++)
 {
 tmpPoint.x = surf_pnts[i][j][0];
 tmpPoint.y = surf_pnts[i][j][1];
 tmpPoint.z = surf_pnts[i][j][2];
 Curve_pnts.Add(tmpPoint);
 }
 create_GSNLIB_spline(Curve_pnts, 3, ChordCurve, CurveContext);
 Curve_pnts.RemoveAll();
 offset_splines.Add(ChordCurve);
 }
 create_GSNLIB_thru_curve(offset_splines, 0, 1, 3, newSurf, pContext);
 return newSurf;
}

Once offset, these surfaces are trimmed to intersecting offset surfaces using the

proprietary trimming method mentioned in chapter 3 (see Figure 4-2).

Figure 4-2: Offset from outer surfaces and trim

 31

After the new surfaces are created and trimmed, they are stored in GSNLib IwBSpline-

Surface objects to await translation back into the CAD system. The parameters and attributes

that were read in from the Excel spreadsheet are stored in a data structure vector that contains all

the IwBSplineSurface objects and the attributes that are associated with them. Figure 4-3 shows

a side view of the offset and trimmed ply geometry for a generic part after it is translated back

into NX.

Figure 4-3: A side view of a generic NX ply geometry creation

4.2.2 Automatic Generation of Finite Element Model

The finite element model is created using equations 3-8 through 3-14 discussed in

chapter 3. First, a mid-surface of the part is automatically created by using equation 3-8 in

chapter 3.

 for (int i=0;i<Unum;i++)
 {
 for (int j=0;j<Vnum;j++)
 {

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(0).NURBSSurface.
GetAt(0), i/double(Unum-1), j/double(Vnum-1), pnt1);
GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(1).NURBSSurface.
GetAt(0), i/double(Unum-1), j/double(Vnum-1), pnt2);
if (pnt1[0]-pnt2[0]<.0001 && pnt1[1]-pnt2[1]<.0001 &&
pnt1[2]-pnt2[2]<.0001)

 {
 newPnt[0] = pnt1[0];
 newPnt[1] = pnt1[1];
 newPnt[2] = pnt1[2];
 }

 32

 else
 {
 math_func::average(pnt1, pnt2, newPnt);
 }
 Curve_pnts.Add(newPnt);
 }
 //creating chordwise curves
 GSNLIB_geom::create_GSNLIB_spline(Curve_pnts, 3, ChordCurve,

CurveContext);
 Curve_pnts.RemoveAll();
 midSurfSplines.Add(ChordCurve);
 }

GSNLIB_geom::create_GSNLIB_thru_curve(midSurfSplines, 0, 0, 3, midSurf,
midSurfContext);

The mid-surface is then automatically meshed to form quadrilateral laminated shell

elements as shown in equations 3-9 and 3-10. After that, following the procedure discussed in

equations 3-11 through 3-14 of chapter 3, each element is associated with the corresponding

plies that make up the 3-dimensional component of the shell element.

 //Gets the nodes and normal lines
 //Finds the thickness for every element
 int k=0;
 for(int i=0; i<Unum; i++)
 {
 for(int j=0; j<Vnum; j++)
 {
 //Getting the node locations

GSNLIB_geom::ask_face_props_GSNLIB(midSurf, i/double(Unum-
1), j/double(Vnum-1), pnt_on_surf);

 nodes.Add(pnt_on_surf);
 //Getting the normal lines at the center of the elements
 if(i>0 && j>0)
 {

Uparm = (double(i-1)/double(Unum-
1)+double(i)/double(Unum-1))/2;
Vparm = (double(j-1)/double(Vnum-
1)+double(j)/double(Vnum-1))/2;
GSNLIB_geom::ask_face_props_GSNLIB(midSurf, Uparm,
Vparm, pnt_on_surf);
GSNLIB_geom::ask_face_norm_GSNLIB(midSurf, Uparm,
Vparm, unitNorm);
math_func::add_mult_array(pnt_on_surf, unitNorm, 100,
norm_pos_pnt);
math_func::sub_mult_array(pnt_on_surf, unitNorm, 100,
norm_neg_pnt);
IwLine::CreateLineSegment(lineContext, 3,
pnt_on_surf, norm_pos_pnt, normLine1);

 crInterval = normLine1->GetNaturalInterval();
 intersectMe = (IwCurve*)normLine1;

 33

Plys.at(0).NURBSSurface.GetAt(0)-
>GlobalCurveIntersect(Plys.at(1).NURBSSurface.GetAt(0
)->GetNaturalUVDomain(), *intersectMe, crInterval,
.000001, rSolutions);

 if (rSolutions.GetSize() > 0)
 {
 IwSolution *sol = rSolutions.GetDataArray();
 uParameter = sol->m_vStart.m_adParameters[1];
 vParameter = sol->m_vStart.m_adParameters[2];

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(1).N
URBSSurface.GetAt(0), uParameter, vParameter,
pnt2);
dist1 =
math_func::distance_between_points(pnt_on_surf,
pnt2);

 }

IwLine::CreateLineSegment(lineContext, 3,
pnt_on_surf, norm_neg_pnt, normLine2);

 crInterval = normLine2->GetNaturalInterval();
 intersectMe = (IwCurve*)normLine2;

Plys.at(1).NURBSSurface.GetAt(0)-
>GlobalCurveIntersect(Plys.at(0).NURBSSurface.GetAt(0
)->GetNaturalUVDomain(), *intersectMe, crInterval,
.000001, rSolutions);

 if (rSolutions.GetSize() > 0)
 {
 IwSolution *sol = rSolutions.GetDataArray();
 uParameter = sol->m_vStart.m_adParameters[1];
 vParameter = sol->m_vStart.m_adParameters[2];

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(0).N
URBSSurface.GetAt(0), uParameter, vParameter,
pnt2);
dist2 =
math_func::distance_between_points(pnt_on_surf,
pnt2);

 }
 //Pre-loading the intersection vector
 sheetIntersections.push_back(temp);
 for (int a=0; a<Plys.size();a++)
 {
 sheetIntersections[k].push_back(0);
 }
 //Adding the plies based on priority
 totDist = dist1 + dist2;
 elemThk.push_back(totDist);
 numPlies = 0;
 currentDist = 0;

//Finding the number of plies in each element
 while(totDist > currentDist && numPlies<Plys.size())
 {

currentDist = currentDist +
priorityVector.at(numPlies).PlyProperties.Thick
ness;
int me =
priorityVector.at(numPlies).PlyProperties.PlyNu
m;

 34

sheetIntersections[k].at(priorityVector.at(numP
lies).PlyProperties.PlyNum-1) = 1;

 numPlies++;
 }
 k++;
 }
 }

 }

The image shown in Figure 4-4 is a laminate finite element model of a vertical stabilizer

that is brought into Altair’s Hyper Mesh for visualization. The various colors shown represent

the unique ply definitions for each element.

Figure 4-4: Laminate FEA model of a vertical stabilizer

 35

4.3 Output Data into a Useable Source

 The surfaces that were stored in the IwBSplineSurface objects are translated back into

CAD surfaces for visualization. In NX this is simply done using an NX Open C function that

takes as input the NURBS control points, weights and knot vectors and outputs a surface directly

into NX. The code below is function that takes in an IwBSplineSurface object, extracts the data

from it and puts it into a format to be read by the NX API function UF_MODL_create_bsurface.

tag_t create_NX_bsurface_from_GSNLIB_surface(IwBSplineSurface *GSNLIB_Surf)

{
 tag_t nx_bsurf;

 int num_states;
 UF_MODL_state_p_t states;
 UF_MODL_bsurface_t nx_bsurf_info;

 double *uKnots;
 double *vKnots;
 ULONG KnotCountU;
 ULONG KnotCountV;
 IwTArray<ULONG> uKnotMultiplicities;
 IwTArray<ULONG> vKnotMultiplicities;
 IwTArray<IwPoint3d> ControlPoints;
 IwTArray<double> Weights;
 ULONG UCount;
 ULONG VCount;

 GSNLIB_Surf->GetKnotsPointers(KnotCountU, KnotCountV, uKnots, vKnots);

GSNLIB_Surf->GetControlPointNet(UCount, VCount, ControlPoints,
Weights);

 nx_bsurf_info.is_rational = GSNLIB_Surf->IsRational();
 nx_bsurf_info.order_u = GSNLIB_Surf->GetDegree(IW_SP_U)+1;
 nx_bsurf_info.order_v = GSNLIB_Surf->GetDegree(IW_SP_V)+1;
 nx_bsurf_info.num_poles_u = UCount;
 nx_bsurf_info.num_poles_v = VCount;
 nx_bsurf_info.knots_u = new double[KnotCountU];
 nx_bsurf_info.knots_v = new double[KnotCountV];
 nx_bsurf_info.poles = new double[UCount*VCount][4];
 for(int i=0; i<KnotCountU; i++)
 {
 nx_bsurf_info.knots_u[i] = uKnots[i];
 }
 for(int i=0; i<KnotCountV; i++)
 {
 nx_bsurf_info.knots_v[i] = vKnots[i];
 }

 for(int i=0; i< UCount*VCount; i++)
 {
 nx_bsurf_info.poles[i][0]= ControlPoints[i].x;

 36

 nx_bsurf_info.poles[i][1]= ControlPoints[i].y;
 nx_bsurf_info.poles[i][2]= ControlPoints[i].z;
 if(nx_bsurf_info.is_rational == 0)nx_bsurf_info.poles[i][3]= 1;
 else nx_bsurf_info.poles[i][3]= Weights[i];
 }

//Creating the NX Bsurface
 UF_MODL_fix_bsurface_data (.00001, &nx_bsurf_info, &num_states,
&states);
 UF_MODL_create_bsurface (&nx_bsurf_info, &nx_bsurf, &num_states,
&states);
 UF_MODL_update ();
 return nx_bsurf;
}

The translation from GSNLib back to CATIA has a couple more steps to than the

GSNLib to NX process. In CAA RADE there is a function that takes the same inputs as the NX

Open C function and outputs a geometrical NURBS object. This object can only be viewed in

CATIA after it is converted into a skin and then into a datum feature. Therefore it must be added

to the procedural view for actual visualization in CATIA. The function below takes in an

IwBSplineSurface object , extracts the NURBS data from it, creates a CATNurbsSurface and

does all the necessary steps for CATIA visualization.

void create_CATSurface_from_GSNLIB_surface(IwBSplineSurface *GSNLIB_Surf)
{
 double *uKnots;
 double *vKnots;
 ULONG KnotCountU;
 ULONG KnotCountV;
 IwTArray<ULONG> uKnotMultiplicities;
 IwTArray<ULONG> vKnotMultiplicities;
 IwTArray<IwPoint3d> ControlPoints;
 IwTArray<double> Weights;
 ULONG UCount;
 ULONG VCount;
 //Creation of the grid points to be passed as the knot vector argument
 GSNLIB_Surf->GetKnotsPointers(KnotCountU, KnotCountV, uKnots, vKnots);
 GSNLIB_Surf->GetControlPointNet(UCount,VCount,ControlPoints,Weights);
 int nbPoleU = UCount;
 int nbPoleV = VCount;
 CATMathGridOfPoints gridOfPoints(nbPoleU,nbPoleV);
 CATMathPoint controlPoint;
 int k=0;
 for (int i=0; i< nbPoleU;i++)
 {
 for (int j=0; j< nbPoleV;j++)

 37

 {
 controlPoint.SetX(ControlPoints[k].x);
 controlPoint.SetY(ControlPoints[k].y);
 controlPoint.SetZ(ControlPoints[k].z);
 gridOfPoints.SetPoint(controlPoint,i,j);
 k++;
 }
 }
 //Creation of the knot vectors
 CATLONG32 IsPeriodic= 0;

CATLONG32 UDegree= GSNLIB_Surf->GetDegree(IW_SP_U), VDegree=
GSNLIB_Surf->GetDegree(IW_SP_V);

 CATLONG32 UKnotsCount = KnotCountU - 2*UDegree;
 CATLONG32 VKnotsCount = KnotCountV - 2*VDegree;
 //Knot vector
 double *UKnots;
 UKnots = new double[UKnotsCount];
 double *VKnots;
 VKnots = new double[VKnotsCount];
 for(int i=0; i<UKnotsCount ;i++)
 {
 UKnots[i] = uKnots[i+UDegree];
 }
 for(int i=0; i<VKnotsCount ;i++)
 {
 VKnots[i] = vKnots[i+VDegree];
 }
 //Multiplities
 CATLONG32 *UMultiplicities;
 UMultiplicities = new CATLONG32[UKnotsCount];
 CATLONG32 *VMultiplicities;
 VMultiplicities = new CATLONG32[VKnotsCount];
 //U
 UMultiplicities[0] = UDegree+1;
 for(int i=1; i<UKnotsCount-1 ;i++)
 {
 UMultiplicities[i] = 1;
 }
 UMultiplicities[UKnotsCount-1] = UDegree+1;
 //V
 VMultiplicities[0] = VDegree+1;
 for(int i=1; i<VKnotsCount-1 ;i++)
 {
 VMultiplicities[i] = 1;
 }
 VMultiplicities[VKnotsCount-1] = VDegree+1;
 CATLONG32 IndexOffset= 0;
 CATKnotVector NonUniformU(UDegree,IsPeriodic,UKnotsCount,UKnots,
 UMultiplicities,IndexOffset);
 CATKnotVector NonUniformV(VDegree,IsPeriodic,VKnotsCount,VKnots,
 VMultiplicities,IndexOffset);

//Creation of a rational NURBS surface
CATLONG32 isRational=1;
double * aWeights=new double[nbPoleU*nbPoleV];
for (int i = 0; i < nbPoleU*nbPoleV; i++)
{
 aWeights[i] = 1.;

 38

}
// NURBS Surface creation
CATNurbsSurface * piSurf1 = piGeomFactory->
CATCreateNurbsSurface(NonUniformU,
NonUniformV,isRational,gridOfPoints,aWeights);
if (NULL==piSurf1)
{
 printf("NURBS surface could not be created");
 return;
}
delete [] aWeights;
aWeights = NULL;
//Creation of the skin
CATSurLimits surMaxLimits ;
piSurf1->GetMaxLimits(surMaxLimits) ;
CATSoftwareConfiguration * pConfig = new CATSoftwareConfiguration();
CATTopData topdata(pConfig);
CATTopSkin * pSkinOpe =::CATCreateTopSkin(piGeomFactory,
 &topdata,
 piSurf1,
 &surMaxLimits);
if (NULL==pSkinOpe)
{
 return;
}
pSkinOpe->Run();
// Gets the resulting body
CATBody * piSkinBody = pSkinOpe->GetResult();
if (NULL==piSkinBody)
{
 return;
}
// Deletes the operator
delete pSkinOpe;
pSkinOpe=NULL;

 CATIDatumFactory_var spDatumFactory;
 spDatumFactory = pSpecContainer;
 CATISpecObject* oDatumFeature;
 spDatumFactory->InstanciateDatum(piSkinBody, oDatumFeature);
 oDatumFeature->Update();
 spCurObj = oDatumFeature;
 spCurObj->InsertInProceduralView();

 pConfig->Release();

}

The attributes that are associated with each IwBSplineSurface are translated into NX

using a function that takes as input a string of text and numerical values and outputs an NX

attribute that is associated with the NX surface. Since CATIA has no such “attribute” feature

available to associate general attributes with surfaces, this step was not implemented in CATIA.

 39

The finite element analysis input file is created programmatically from the nodes and

elements as well as the ply materials and properties. Based on what the user selects as the

analysis package to be output to, the data is organized in a way that conforms to that software’s

input file format. The result is an analysis data file formatted for use by a wide variety of

commercial Finite Element processing packages including ANSYS, LS-DYNA and NATRAN.

The following code creates an ANSYS input file from the data created in subsection 4.2.2. Note

that the code follows equation 3-10 for the organization of the elements. Inputs include the

model nodes, sheet intersections and an output file.

void printANSYS(IwTArray<IwPoint3d> nodes, vector <vector<int>>
&sheetIntersections, ofstream &outfile)
{
 double angle;
 double thickness;
 double pnt_on_surf[3];

 int numElements = (Unum-1)*(Vnum-1);

 outfile<<fixed;
 outfile<<"/PREP7"<<"!"<<endl;

 //Printing Nodes
 outfile<<"! Nodes"<<endl;
 outfile<<"CSYS,0"<<endl;
 for(int i=0; i<nodes.GetSize(); i++)
 {
 outfile<<setprecision(4);

outfile<<"N, "<<i+1<<", "<<nodes.GetAt(i).x<<",
"<<nodes.GetAt(i).y<<", "<<nodes.GetAt(i).z<<endl;

 }

 //Printing Elements
 outfile<<"!"<<endl<<"! Specify Element type and options"<<endl;
 outfile<<"ET,1,"<<"SHELL181"<<endl;
 outfile<<"KEYOPT,1,3,2"<<endl;
 outfile<<"KEYOPT,1,8,2"<<endl;
 outfile<<"!"<<endl<<"! Elements"<<endl;
 for(int i=0,int j=0,int k=0; i<numElements+Unum-2; i++,j++,k++)
 {
 if(j > Vnum-2)
 {
 i++;
 j=0;
 }

 40

 outfile<<"SECNUM, "<<k+1<<endl;
outfile<<"E, "<<i+1<<", "<<i+2<<", "<<i+Vnum+2<<",
"<<i+Vnum+1<<endl;

 //Printing properties for that ply
 outfile<<"!"<<endl<<"! Properties"<<endl;
 outfile<<"SECTYPE,"<<k+1<<",SHELL"<<endl;
 outfile<<"! thickness, material and angle"<<endl;
 for(int j=0; j<Plys.size(); j++)
 {
 //only print ply if is a one
 if(sheetIntersections[k][j]==1)
 {
 outfile<<"SECDATA,

"<<Plys.at(j).PlyProperties.Thickness<<",
"<<Plys.at(j).PlyProperties.MaterialID<<", "
<<Plys.at(j).PlyProperties.ply_angle<<endl;

 }
 }
 outfile<<"!"<<endl;
 }

 //Printing material properties
 outfile<<"!"<<endl<<"! Materials"<<endl<<"!"<<endl;
 for(int i=0; i<VecMatProps.size(); i++)
 {
 outfile<<"! "<<VecMatProps.at(i).MaterialName.c_str()<<endl;
 outfile<<"MP,EX,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProps

.at(i).E1<<endl;
 outfile<<"MP,EY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProps

.at(i).E2<<endl;
 outfile<<"MP,PRXY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatPro

ps.at(i).v12<<endl;
 outfile<<"MP,GXY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl;
 outfile<<"MP,GYZ,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl;
 outfile<<"MP,GXZ,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl;
 outfile<<"MP,DENS,"<<VecMatProps.at(i).MaterialID<<","<<VecMatPro

ps.at(i).Density<<endl;
 }

return;
}

Similar code was written for the implementation of LS-DYNA and NASTRAN but is left to the

reader to determine.

 41

4.4 Optimization

To establishing a working optimization, programs are needed to automatically generate a

finite element model and assign boundary conditions to the finite element model. The program

to generate the finite element model has already been discussed. Subsection 4.4.1 will discuss

the automatic assignment of boundary conditions. To link the programs together and drive the

optimization to an optimum, an optimization framework is used and discussed in subsection

4.4.2. In addition, a modal analysis optimization of a composite wing is discussed with the

implemented fitness function.

4.4.1 Automatic Boundary Conditions for the Finite Element Model

ANSYS was one of the FEA packages that were used to demonstrate the program’s

effectiveness. Applying automatic boundary conditions to the ANSYS finite element model was

implemented using the ANSYS Parametric Design Language (APDL). APDL is a scripting

language that allows users to automate ANSYS with the use of do-loops, if/else statements, and

other automated ANSYS commands [1]. Scripts can be easily written to automatically load,

constrain and solve analyses. An ADPL script was written to automatically set up a modal

analysis on a cantilevered wing. This script tells ANSYS what analysis to be performed (in this

case a modal analysis), automatically constrain one end of the wing in all 6 degrees of freedom

and specifies which modes to output to a file. The following example is a script that

automatically solves a modal analysis of a cantilevered model with a 20x20 mesh density as

shown in Figure 4-5:

 42

/solu
ANTYPE,2
MODOPT,SUBSP,10
EQSLV,FRONT
MXPAND,10, , ,0
LUMPM,0
PSTRES,0
MODOPT,SUBSP,10,0,0, ,OFF
RIGID,
SUBOPT,8,4,14,0,0,ALL
*SET,NodeNum,1
*SET, numInc,1
*SET,NumNodesU,20
*SET,NumNodesV,20
*DO, inc, 1, NumNodesV * NumNodesU, numInc
 d,NodeNum,ux,,,,,uy,uz,rotx,roty,rotz
 NodeNum = NodeNum + numInc
*ENDDO
SOLVE
FINISH

/POST1
*DO, i, 1, 10, 1

Figure 4-5: An ANSYS shell model of
a cantilever beam

 43

 *GET, mode, MODE, i,FREQ
 /OUTPUT,Modes,txt,,APPEND
 *VWRITE,i, mode
 Mode %I: %14.7G
 /OUTPUT
 /show,close
*ENDDO

4.4.2 Optimization using Isight

A laminate composite optimization was set up using commercial optimization and

process flow software called Isight (by SIMULIA). The objective of the optimization is to drive

the natural frequencies of the wing away from known keep out frequencies in order to avoid

resonant conditions. The design variables of the optimization are the fiber angles of each of the

plies in the lay-up. These design variables are put into the Isight software along with the

objective. A genetic algorithm is configured to drive the optimum away from the keep out

frequencies by adjusting the fiber angles of each ply. The genetic algorithm first assigns random

values from -90 to 90 degrees to the fiber angles. Over time the genetic algorithm evolutionarily

drives these angles to values that make the wing’s natural frequencies as far from the keep out

frequencies as possible.

The fitness factor of this optimization is somewhat more complex than just the output

from the analysis. Each modal frequency needs to stay as far away from the keep out

frequencies as possible. Often when a modal frequency moves away from one frequency range,

it starts to get closer to another keep-out frequency. The compromise in this case is to center the

natural frequency between the two keep-out frequencies. To do this, the algorithm to determine

the fitness first finds the distance between each natural frequency and the keep-out frequency.

The algorithm then finds the difference between each natural frequency and its closest keep-out

frequency. The fitness factor becomes the minimum of all these. The objective of the

 44

optimization is to maximize the minimum of all the minimum distances. The result is the

optimum design’s modal frequencies will be as far away to any of the keep out frequencies as

possible.

Figure 4-6: Isight process flow for the laminate composite optimization

Figure 4-6 shows the process flow for the modal analysis optimization of the laminate

composite wing described above. The modal optimization loop is run as many times as is

needed to get the optimization to converge (possibly hundreds or even thousands of times). The

first task in the optimization runs the code to set up the mesh and laminate properties of the

finite element model. The next task runs ANSYS with the APDL script to automatically set up

the constraints, solve the model and output results to a text file. The third step, Isight takes the

results from the text file and puts them into Excel. Excel is pre-programmed to determine the

goodness of fit of the solution from the results of the optimization. The fitness result is then

automatically taken from Excel and put back into the Isight optimization.

 45

5 RESULTS

As stated in chapter 1, the objective of this thesis is to propose and demonstrate methods

that apply CAD independent algorithms to streamline laminate composite design, analysis and

optimization in a CAD centric way by accomplishing the following:

• Automatically create 3D geometry for individual plies in a laminate composite lay-

up for a composite part with complex geometry

• Streamline the creation of detailed laminate composite finite element models

• Optimize the composite lay-up for a composite part made of several layers

Section 5.1 shows the results of the composite design automation tool that automatically creates

3D geometry for individual plies in a laminate part with complex geometry. Section 5.2

discusses the results of the composite analysis automation tool that automatically creates

laminate finite element models. Section 5.3 discusses the results of the modal optimization of

the composite wing.

5.1 Composite Design Automation

Laminate visualizations have been successfully created in NX and CATIA using the

composite automation program described above. Figure 5-1 shows the results of a simple test of

the ply geometry creation tool. These results show the ply geometry that was created

automatically given this simple outer geometry definition. This can be seen as the offset surfaces

shown in Figure 5-1 between the upper and lower surfaces. This model’s outer surface definition

 46

only varies in two dimensions showing that the program can handle offsetting and trimming

capability in 2D space.

Figure 5-1: A test case showing simple ply geometry created in NX

The program was also used to successfully create ply lay-up geometry for a part varying

in 3 dimensions. This is shown by making the lay-up geometry for a model airplane composite

vertical stabilizer given an outer surface definition in NX. Figure 5-2 shows the surface

definition of the vertical stabilizer loaded in NX and Figure 5-3 shows the NX ply lay-up created

by the program shown in wireframe view. This definition is much more difficult to create than

the first example due to the fact that the outer surface definition varies in all three dimensions.

Table 5-1 shows the ply table created in Excel that defines the ply properties used create the

geometry for the ply lay-up.

 47

Table 5-1: The ply property table from MS Excel

Ply Properties
 (mm) (degrees)

Ply
Material
ID

Pre-
form Thickness Angle Material Weave

1 1 B 0.5 0 graphite Plain
2 1 B 0.5 45 graphite Plain
3 1 B 0.5 -45 graphite Plain
4 1 B 0.5 90 graphite Plain
5 1 B 0.5 0 graphite Plain
6 1 B 0.5 45 graphite Plain
7 1 B 0.5 -45 graphite Plain
8 1 B 0.5 90 graphite Plain
9 1 B 0.5 0 graphite Plain
10 1 B 0.5 45 graphite Plain
11 1 B 0.5 -45 graphite Plain
12 1 B 0.5 90 graphite Plain
13 1 B 0.5 0 graphite Plain
14 1 B 0.5 45 graphite Plain
15 1 B 0.5 -45 graphite Plain
16 1 B 0.5 90 graphite Plain

Figure 5-3: Vertical stabilizer ply lay-up

Figure 5-2: Vertical stabilizer loaded in NX

 48

To compare the speed of one composite design automation program using CAD

independent algorithms vs. one using only a CAD API, a significant function is tested for speed

in NX Open C, CAA RADE and GSNLIB. The function tested is one of the primary functions

used in the automated laminate composite design program and is used hundreds of thousands of

times throughout. Although this function may not represent the actual computational speed of

the entire program, it does represent a large portion of the program, and therefore it is a good

measure of the speed of the entire program. This function takes in u and v surface parameters as

input and outputs the Cartesian point on the surface associated with it. The speed test performed

calls the function a total of 1,000,000 times on each surface tested. The test calls the function to

parse the surface making 1/1000 unit steps in the u direction and 1/1000 steps in the v direction.

Mathematically this can be shown as parsing through the surface { (,)S u v } to get a grid of points

{ ,i jG }:

10001000

,
1 1

(/ 1000, / 1000)i j
i j

G S i j
= =

= ∑∑ (5-1)

The speed is clocked for each surface test for NX Open C, GSNLib and CAA RADE.

Table 5-2 shows the resulting times recorded for the each of the tests.

Table 5-2: Test results from speed comparison of NX, GSNLIB and CAA RADE

Surface Time in NX
Open C

Time in GSNLIB Time in CAA
RADE

Surface 1 46.766 sec. 1.516 sec. .375 sec.
Surface 2 47.953 sec. 1.516 sec. .375 sec.
Surface 3 47.187 sec. 1.578 sec. .390 sec.
Surface 4 47.719 sec. 1.516 sec. .375 sec.

 49

When comparing NX Open C to GSNLib, the test in GSNLib ran about 30 times faster

than NX Open C. This is dramatic increase in computational time using GSNLib over NX Open

C. The performance of GSNLib and CAA RADE, however, are on the same order of magnitude.

This is because CAA RADE allows for direct access to CATIA’s geometry kernel, where NX

Open C operates at a level or two above the geometry kernel.

The ply definition and analysis files created automatically using the automation program

written takes a designer less than one minute to run. In contrast, it takes the designer an

estimated 40 hours to create the same ply definition if done interactively in a CAD system.

Therefore, when using this automation program, companies that design laminate composite parts

will save a significant amount of time and money. In addition, this program allows designers to

evaluate several design configurations in the same time it would take to create a single design.

This allows for superior designs to be created in less time.

Although this automation process could be programmed using NX Open C, without

utilizing the CAD independent functions in GSNLib, there are several reasons why using these

functions in an automation program makes the program superior. First, the advantages of the

CAD centric approach including simplified viewing and data storage/transfer are held intact.

Second, the application is portable enough to “plug” into any commercial CAD system with an

existing API. Third, the use of GSNLib functions allows for a 30 times speed increase over the

NX Open C API.

5.2 Composite Analysis Automation

The automated composite finite element tool has been successful in automatically

creating laminate composite finite element models for ANSYS, NASTRAN and LS-DYNA.

 50

Figure 5-4 shows three models of a wing. The first model is a wing created in NX. The second

is a mid-surface shell element model of the wing created by the automated composite finite

element tool and loaded into ANSYS. The model has a mesh density of 15x30 and contains

thirteen, 0.1” lamina at the thickest area. The third model is the same ANSYS finite element

model as the second, but it has the lamina thicknesses of the shell elements shown in 3-

dimensions for better visualization.

Figure 5-2: NX Wing, FE shell mesh and FE shell mesh with lamina thicknesses shown

The major advantage of using the automated composite finite element tool over other

zone based, automated methods is that the finite element models that it creates more accurately

represent the laminate lay-up for models with complex topology. As shown in the far right

image of Figure 5-4, each element contains its own lay-up. Each ply in this lay-up is defined

with some thickness (shown in figure 5-4), fiber angle (not shown) and material properties (also

not shown). Because each element has its own ply lay-up, the finite element models can

represent areas with large variation with more detail than those that are divided into a just a few

zones, as done in previous methods. Except for the highly unlikely case where the number of

zones matches the number of elements in a finite element model, geometrically complex models

(possibly as simple as the one shown in Figure 5-4 or as complex as Figure 5-5) will be more

 51

accurately represented than the models created using a zone based method. The increased detail

produced from this tool will yield more accurate analysis results in models with rapidly varying

geometry (i.e. the model in Figure 5-5) compared to other zone based methods.

Figure 5-5 shows an example of a more complex topology that was modeled using the

automated composite finite element tool. The mesh density is 40x40 nodes and the model

contains 36 plies that are .01” thick. Although this example is not an actual part, it is useful to

show here to demonstrate the complexity of models that can be made using this tool. Other zone

based methods would not come close to being able to model this part with as much detail.

Figure 5-3: Complex NX Surface, FE shell mesh, FE mesh with thicknesses shown

There is also an obvious time savings advantage of using this automated approach instead

of creating a laminate composite model directly in the FEA package. If a finite element model

such as the one shown in Figure 5-4 were done manually, it would take a proficient user an

estimated 40 hours of work. This is because each of the 450 elements in that model needs to

 52

have a unique ply lay-up assigned to it. Using the automated composite finite element tool, the

same model takes only a few seconds to create.

Table 5-3 shows run times of the automated composite finite element tool to create the

wing model shown in figure 4. The run time increases approximately linearly with the number

of total nodes in the model. As the number of plies in the model increases, the time increases by

around 50%. This study shows that even finely meshed models with large numbers of plies can

be created extremely quickly (under 30 seconds) as compared to manual methods.

Table 5-3: Test results of the speed of the automated composite finite element tool

Num plies 10x20 nodes 15x30 nodes 30x60 nodes 50x100 nodes
13 plies 0.281 sec. 0.687 sec. 2.766 sec. 7.609 sec.
26 plies 0.328 sec. 0.781 sec. 3.172 sec. 8.562 sec.
52 plies 0.422 sec. 0.969 sec. 4.047 sec. 10.844 sec.
104 plies 0.609 sec. 1.375 sec. 5.563 sec. 15.281 sec.
208 plies 0.906 sec. 2.171 sec. 8.67 sec. 24.172 sec.

5.3 Composite Analysis Optimization

The modal analysis optimization of a laminate composite wing as discussed in subsection

4.4.2 was successful in driving the modal frequencies away from certain given keep out

frequencies. In this optimization the fiber angles of each of the 13 plies were used as the design

variables and were free to move between -90 and 90 degrees. The genetic algorithm

evolutionarily drove these angles to values that resulted in a maximum distance of the closest

modal frequency to a keep out frequency. The result was that the first ten modal frequencies of

the wing were at least 100 Hz away from any of the ten keep out frequencies. Figure 5-6 shows

the progression of this optimization as it drove to an optimum design.

 53

Figure 5-4: A graph of the genetic algorithm’s progression

 54

 55

6 CONCLUSIONS

Custom applications that directly access a geometry kernel to perform mathematical

computations will run faster than custom applications that call API functions that operate a level

or two above the geometry kernel. This is shown by the fact that applying CAD independent

algorithms in the creation of custom NX applications allows for the application to be faster

(roughly 30X) than similar programs written solely in the NX Open C API. The reason for this

is the fact that the NX Open C API functions operate at a level or two above the geometry kernel

and are therefore slower in performing geometrical computation when compared with GSNLib

and CAA RADE which interface directly with the geometry. Therefore, integrating a CAD

independent geometry kernel such as GSNLib with a custom NX application to perform

geometry calculations can significantly improve run time. In the same light, making direct calls

to the NX Parasolid kernel should also significantly improve run time. In addition, it was shown

that integrating a CAD independent geometry kernel with a custom CATIA application will not

generally improve run time because CAA RADE allows direct access to the geometry kernel.

Therefore, custom applications that directly access a geometry kernel to perform mathematical

computations will run faster than custom applications that call API functions that operate a level

above the geometry kernel.

Utilizing a generic geometry kernel to create custom geometry applications allow those

applications to be portable between several dissimilar software packages. Doing this allows the

custom applications to be run within multiple software packages allowing the application to be

 56

written only once, and not rewritten for every individual software package. It also allows custom

applications to stay within user familiar software packages, thus keeping the benefits of the

original software package. The portability of this method is proven by the fact that the same

CAD independent code was used in both NX and CATIA for geometry creation, utilizing their

individual CAD APIs merely for translational purposes.

The method presented in this thesis to automate laminate composite finite element

models creates models that are more detailed than those made with zone based methods.

Because of the greater detail in the model, this method will likely yield more accurate analytical

results in models with rapidly changing geometry (such as the model shown in Figure 5-5) than

other similar models created with zones based methods. This method also allows for the creation

of a tool that creates laminate composite finite element models within seconds and will save

engineers, who are doing this manually, dozens of hours of work per model. In addition, the

automated composite finite element tool can be integrated into an optimization framework, used

in conjunction with a method to automatically apply boundary conditions, to create an effective

optimization of a laminate composite part.

 57

6.1 Recommendations

One current limitation to the automated laminate composite design and analysis methods

is that the input part geometry is limited to two opposing NURBS surfaces. A major

improvement would be to automate the creation of ply lay-ups for parts that are defined with

more than two NURBS surfaces or with even with a solid model. This improvement would

allow for the design and analysis automation to be applied to a larger variety of composite parts.

Another limitation specifically in the automated laminate composite analysis method is

that the current method does not account for the drape of layers in the laminate. For surfaces

with geometry whose curvature changes in u and v directions, local lamina fiber angles change

when the lamina is laid down. This, in turn, changes the directional strength properties of the

material. Therefore accounting for the drape of each lamina in the stack improves the analytical

results. An improvement to the current method would be the addition of a method that calculates

the new local fiber angles for each lamina and applies these calculations to the finite element

model.

 58

 59

REFERENCES

[1] ANSYS APDL Programmer’s Guide.
http://uic.edu/depts/accc/software/ansys/html/prog_55/g-apdl/AS1.htm

[2] Astle, T. L.: System Architecture and Development of CAD Independent Algorithms for
Integration with Commercial CAD Software, M.S. Thesis, Brigham Young University,
Provo, UT, 2003.

[3] Beasly, D.; Bull, D.; Martin, R.: An Overview of Genetic Algorithms: Part 1,
Fundamentals, University Computing, volume 15(2), pages 58-69, 1993.

[4] Bruyneel, M.: A General and Effective Approach for the Optimal Design of Fiber
Reinforced Composite Structures, Composites Science and Technology, Volume 66,
Issue 10, pp 1303-1314, 2005.

[5] Delap, D.: CAD-based Creation and Optimization of a Gas Turbine Flowpath Module
with Multiple Parameterizations, M.S. Thesis, Brigham Young University, Provo, UT,
2003.

[6] Elliott, J.: An Automated Approach to Feature-Based Design for Reusable Parameter-
Rich Surface Models, Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2009,
pp 497-507

[7] Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, Academic Press,
Inc., San Diego, CA, 1988.

[8] Gay D.; Hoa, S.: Composite Materials Design and Applications, Taylor and Francis
Group, Boca Raton, FL, 2007.

[9] Gibson, R. F.: Principles of Composite Material Mechanics, CRC Press, Boca Rotan, FL,
2007.

[10]

[11] Hale, R; Schueler K.: Knowledge-Based Software Systems for Composite Design,
Analysis and Manufacturing, Society of Automotive Engineers, 2001.

Gurdal, Z.; Haftka, H.; Hajela, P.: Design and optimization of laminated composite
materials, John Wiley & Sons, Canada, 1999.

http://uic.edu/depts/accc/software/ansys/html/prog_55/g-apdl/AS1.htm�

 60

[12] Hepworth, A. I.; Jensen, C. G.; Roach, J. T.: A CAD Independent Approach to Automate
Laminate Composite Design and Analysis, Computer-Aided Design & Applications,
6(2), 147-156, 2009.

[13] Hepworth, A. I.; Jensen, C. G.; Roach, J. T.: Methods to Streamline Laminate Composite
Analysis and Optimization, Accepted for publication in Computer-Aided Design &
Applications, 2010.

[14] Hull, D.; Clyne, T.: An Introduction to Composite Materials, Cambridge University
Press, Australia, 1996.

[15] Menayo, G.; Quero, A.: Computer-Aided Method of Obtaining a Ply Model of a
Composite Component. U.S. Patent App. 731,794, 2007.

[16] Mitchell, Melanie:

[17] Peters, S.: Handbook of Composites, Chapman & Hall, Great Britain, 1998.

An Introduction to Genetic Algorithms, MIT Press, 1998.

[18] Piegl, L.; Tiller, W.: The NURBS Book, Springer-Verlag, Berlin, Heidelberg, New York,
1997.

[19] Prakash, B.: AUTOLAY – A GUI Based Design and Development Software for
Laminated Composite Components, Computers & Graphics 23 95-110, 1999.

[20] Rogers, David F.; An Introduction to NURBS: with Historical Perspective, Academic
Press, San Francisco, 2001.

[21] Scott, N.: High-Level, Product Type-Specific Programmatic Operations for Streamlining
Associative Computer-Aided Design, M.S. Thesis, Brigham Young University, Provo,
UT, 2008.

[22] Sederberg, T.: BYU NURBS, http://cagd.cs.byu.edu/~557/text/ch1.pdf, 2007.

[23] Siemens Corp., http://www.plm.automation.siemens.com/en_us/Images/10651_tcm1023-
4449.pdf, 2008.

[24] Solid Modeling Solutions, http://www.smlib.com/gsnlib.html, 2009.

[25] Strong, A. B.: Fundamentals of Composites Manufacturing Materials, Methods, and
Applications, Society of Manufacturing Engineers, USA, 2008.

[26] Thede, S.: An Introduction to Genetic Algorithms, Consortium for Computing Sciences
in Colleges, pages 115-123, 2004.

[27] Vasey-Glandon, VM, & Kunkee, D.: Knowledge driven composite design optimization
process and system therefore. U.S. Patent No. 7,010,472. 2006.

[28] Weiss, Pete: Long Island eyes growth in composite materials market, Long Island
Business News, January 25, 2008.

http://www.plm.automation.siemens.com/en_us/Images/10651_tcm1023-4449.pdf�
http://www.plm.automation.siemens.com/en_us/Images/10651_tcm1023-4449.pdf�
http://www.smlib.com/gsnlib.html�

 61

[29] Zeid, I.: Mastering CAD/CAM, McGraw-Hill, New York, NY, 2005.

	Brigham Young University
	BYU ScholarsArchive
	2010-03-10

	Methods to Streamline Laminate Composite Design, Analysis, and Optimization
	Ammon Ikaika No Kapono Hepworth
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements

	Table of Contents

	List of Tables

	List of Figures

	Introduction
	Problem Overview
	Thesis Objective
	Problem Delimitation
	Thesis Organization

	Background

	Laminate Composite Materials
	Composite Automation Programs
	CAD APIs and the CAD Independent Approach
	Geometry Mathematics and NURBS

	Method
	Input Data from a User Familiar Source
	CAD Independent Algorithms
	Geometry Creation
	Generation of Finite Element Model

	Output Data into a Useable Source
	Optimization
	Parametric Boundary Conditions
	Optimization Algorithm
	Fitness Factor

	Implementation

	Input Data from a User Familiar Source
	CAD Independent Algorithms
	Automatic Geometry Creation
	Automatic Generation of Finite Element Model

	Output Data into a Useable Source
	Optimization
	Automatic Boundary Conditions for the Finite Element Model
	Optimization using Isight

	Results
	Composite Design Automation
	Composite Analysis Automation
	Composite Analysis Optimization

	Conclusions
	Recommendations

	References

