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ABSTRACT 

 

Methods to Streamline Laminate Composite  

Design, Analysis and Optimization 

 
 

Ammon Hepworth 

Department of Mechanical Engineering 

Master of Science 
 

 

Advanced composite materials have seen major market growth in recent years due to 
their high strength and low weight properties.  These materials are often made using a process 
that creates a composite laminate by stacking several composite layers together.  However, t

 

he 
design, analysis and optimization of laminate composite materials are often a labor intensive 
process when done manually.  This thesis discusses CAD independent algorithms that are 
integrated into commercial CAD tools to streamline these processes.  Methods have been 
developed to automatically create 3D ply geometry for a laminate composite lay-up, streamline 
the creation of a laminate composite finite element model and optimize the composite lay-up for 
a multi-layered laminate composite part.  

Integrating a CAD independent geometry kernel into the NX laminate composite design 
automation application significantly improves the run time of that application.  In addition, the 
automated composite finite element tool creates laminate composite finite element models that 
are more detailed than those made with zone based methods.  This tool will save engineers, who 
are making laminate composite finite element models manually, dozens of hours of work per 
model.  The automated composite finite element tool can also be integrated into an optimization 
framework, used in conjunction with a method to automatically apply boundary conditions, to 
create an effective optimization of a laminate composite part.   
 
 
 
 
 
 
 
 
Keywords:  laminate composite design, analysis, optimization, automation
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1 INTRODUCTION 

Advanced composite materials have seen a major market growth in recent years and are 

becoming more widespread in industry today [28].  This is largely due to the fact that these 

materials have such a high strength to weight ratio and that their material properties can be 

tailored to meet specific design criteria.  Despite the benefits, it is often a “laborious and 

painstaking process” to design, analyze and optimize these materials manually [19].  Because of 

this, there has been an effort to develop automation methods to streamline the design, analysis 

and optimize of composite materials.  This thesis will discuss methods to streamline laminate 

composite design, analysis and optimization using CAD-independent algorithms in a CAD 

centric way. 

1.1 Problem Overview 

One method of manufacturing advanced composite materials is by stacking several fiber 

dense layers and bonding them together.  Each layer is made of high-modulus fibers that are 

imbedded in a lower modulus resin.  Composite materials created using this stacking process are 

called laminate composites.  Designing a composite laminate is time consuming for two major 

reasons.  First, since the material properties of a part are largely determined by the fiber 

orientation of each layer in the laminate, there are many design combinations to explore.  

Second, when designing geometrically complex parts, the geometry of each layer is difficult to 

predict and time consuming to create [9, 25]. 
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Due to the large number of design parameters, the design of composite parts naturally 

calls for optimization algorithms [4].  Utilizing computer integrated optimization algorithms 

allow designers to more efficiently explore the design space and find the optimum design of a 

laminate composite part.  However, to make optimization possible, a fast and accurate analysis 

method must be employed.  Finite element analysis is the preferred analysis method for 

geometrically complex laminate composite parts; but it is time consuming to manually build 

composite models having several layers with unique fiber orientation angles [9].  The finite 

element analysis process must be streamlined to make using optimization practical. 

The time consumption in creating the composite layer geometry may be overcome 

through the use of an automated method to create the geometry and allow users to visualize and 

interact with it.  The traditional method to automate and streamline the modeling phase of the 

design process (called the CAD centric approach) is through the use of a commercial CAD 

application programming interface (API).  A CAD API allows users to programmatically create 

custom methods in existing commercial CAD applications.  Creating a custom application using 

the CAD centric approach provides the following advantages: 

• Provides for geometry visualization 

• Easy for companies to adopt with a pre-existing CAD system in place 

• Simplifies CAD data storage and transfer 

Regardless of the advantages, there are two main weaknesses to the CAD centric 

approach. The first weakness is that CAD APIs are often computationally slow when compared 

to CAD independent algorithms because they often exist a level or two above the geometry 

kernel.  This makes them impractical to use for computationally intense problems such as the 

creation of laminate composite layer geometry.  The second weakness is that the CAD-centric 
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approach keeps the application on a single CAD system thus severely limiting its use within 

large companies that have and use multiple CAD platforms. 

1.2 Thesis Objective 

In 2003, a method was developed by Travis Astle that overcame the weaknesses of the 

CAD-centric approach while still incorporating its benefits.  He applied CAD independent 

algorithms to the creation of flank milling data and integrated it into NX using NX’s API.  

Simply stated, the method takes geometry from a CAD package, translates it into mathematical 

geometry data, uses CAD independent algorithms to create new geometry and perform math 

intensive geometric operations of the data, and then translates the new data back into the CAD 

package [2].  This method allowed the application to be portable enough to be integrated into 

several CAD applications and still provided simple visualization, company adaptation and data 

storage/transfer.   

The objective of this thesis is to present a method that applies CAD independent 

algorithms to streamline the design, analysis and optimization of laminate composites.  Doing 

this incorporates the benefits, discovered by Astle, of being fast and portable while still keeping 

the benefits of simplified visualization, company adaptation and data storage/transfer.  The 

method specifically does the following:  

• Automatically create 3D geometry for individual plies in a laminate composite lay-up 

for a composite part with complex geometry 

• Streamline the creation of detailed laminate composite finite element models 

• Optimize the composite lay-up for a composite part made of several layers 
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This method has been proved through the implementation of the method into computer programs 

that accomplish the above mentioned tasks. 

1.3 Problem Delimitation 

In writing software to accomplish the above mentioned automation tasks, it must be 

understood that the author has not produced a commercially available application.  The purpose 

of writing the computer programs is only to show that the methods are implemented in a 

practical way.  In addition, it is not the intent of the computer programs to be able to create a 

composite lay-up on any geometric object, but only those that can be represented by two 

opposing NURBS surfaces in Siemens NX and Dassault Systemes CATIA.  The program that 

streamlines the creation of the composite finite element model is implemented into ANSYS, 

MSC NASTRAN and LS-DYNA only.  No other analysis packages or mesh types are examined 

in this research effort.  In regards to optimization, only a few test cases are examined and each is 

integrated into SIMULIA’s Isight optimization framework.  The purpose of this thesis is to 

present a general method to optimize laminate composites and not to prove necessarily that one 

algorithm is better than any other.  This said, Isight’s genetic algorithm has worked well in this 

study and so it will be the only optimization algorithm employed here. 

1.4 Thesis Organization 

A large portion of the content of this thesis comes from two papers published by the 

author in the Computer-Aided Design & Applications Journal in 2009 and 2010 [12, 13].  The 

thesis is organized into six chapters.  Chapter 2 is a literature review that introduces the reader to 

the most relevant literature in relation to this thesis.  This will include a brief introduction on 
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composite materials, a discussion about existing composite automation methods, CAD 

application programming interfaces and NURBS mathematics.  The third chapter discusses the 

general methods used to streamline laminate composite design, analysis and automation.  The 

fourth chapter discusses the implementation of those methods into existing commercial CAD and 

FEA packages.  Chapter 5 shows the results of the composite design and analysis automation 

tools and the results from an optimization that utilizes the analysis automation tool.  The sixth 

and concluding chapter discusses the conclusions and future work of this research.   
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2 BACKGROUND 

The intent of this chapter is to give the reader the background necessary to understand the 

significance of this research.  First there will be a general discussion of laminate composite 

materials in section 2.1 to give the reader a basic understanding of the design process used to 

optimize a laminate composite material for a given application.  If the reader is completely 

unfamiliar with laminate composites the author recommends the following references [17, 8, and 

14].  Section 2.2 is a review of the most significant research in the area of composite automation 

tool development.  The purpose of this section is to show what has already been done in this area 

and to note what they are lacking.  Section 2.3 is a discussion of CAD API programming to 

allow the reader insight into what others have accomplished using CAD APIs.  Finally, in section 

2.4, there is an introduction on NURBS surface mathematics and a brief discussion on the 

advantages of using NURBS mathematics in this research.   

2.1 Laminate Composite Materials 

Generally speaking, a composite material is any heterogeneous material made-up of more 

than one material.  However, composite materials most commonly refer to a material having 

strong fibers imbedded into a weaker matrix material.  The fibers serve to carry the load, while 

the matrix distributes the load to the fibers [8].  Advanced composites refer to composite 

materials containing long fibers and resins with mechanically superior properties and have an 

extremely high strength to weight ratio [25].  Traditionally, advanced composite materials are 
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manufactured by stacking several fiber dense layers and bonding them together to form a 

laminate.  This process allows the properties of a composite laminate to be tailored to a specific 

loading environment by orienting the layers of unidirectional material to satisfy the loading 

requirements [17]. 

2.2 Composite Automation Programs 

A number of automated laminate composite design tools have been developed and will be 

discussed herein, but there are two points to note before discussing each tool in detail.  The first 

point to note is although each of these applications presents viable methods to automate design, 

analysis and optimization of laminate composites, all of them use a zone based approach.  This 

means that the part is divided into zones of constant thickness allowing for simplified analysis 

and laminate definition.  Although this simplification suffices for relatively smooth geometry 

with large regions of constant thickness, this does not provide sufficient accuracy in parts with 

rapidly changing thicknesses.  In addition, the zone based approach does not create 3-

dimensional ply geometry from the part geometry alone.  All ply geometry is either created 

based on the zone boundaries or from user input.  

AUTOLAY is a design tool developed in 1999 to automate laminate composite design, 

analysis and manufacturing using a GUI-based approach.  This tool assists the user in ply 

modeling, substructure design and the generation of ply stacking sequences, engineering and 

manufacturing drawings.  The tool has the user identify two surfaces that represent the 

engineering and manufacturing geometry.  On the engineering surface, a user defines areas of 

constant thickness (zones) to be used by the tool to automatically determine the number of plies 

and the stacking sequence in those areas.  The stacking sequence of the zones is determined 
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using design rules and analytical solutions which find the delamination and buckling strengths.  

The ply shapes are determined either automatically from the zone definitions or interactively by 

the user.  Finally, engineering and manufacturing drawings are automatically produced using 

general design practices.  The resulting benefit of AUTOLAY is that composite designers and 

manufacturers end up with a substantial cost and time savings [19]. 

Another method to automate composite design was developed by Vasey-Glandon et al. 

They patented a computer program called the Parametric Composite Knowledge System 

(PACKS) that generates an optimized 3-D ply definition for a laminate composite part.  The 

program divides the plies into zones and uses FEA analysis software as well as predetermined 

design rules to optimize these zones to perform better in manufacturing [27].  PACKS reduced 

the cost of many aircraft composite development programs by over 60% and was licensed to 

Unigraphics Solutions, Inc (now Siemens) for commercial use in 2001 [11].   

Another composites optimization computer program, developed by Menayo et al., 

optimizes a ply lay-up for a composite part to form a preliminary ply model.  This is done by 

first running a stress analysis program (called ARPA) to obtain a stacking sequence for divided 

regions of the part and then automatically generating a ply stacking table that organizes the plies 

into zones.  The stacking table is then optimized using design stacking rules and manufacturing 

constraints.  Next, a ply drop-off distribution is performed to determine which plies end-up in a 

given zone and they are ordered according to design rules [15]. 

Siemen’s NX has an integrated, zone-based laminate composites application that allows 

for ply modeling, draping, and optimization.  In ply modeling, it allows one to associate ply lay-

ups with NX surfaces, but it does not provide for 3D visualization of actual ply geometry.  
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Draping predicts ply orientations along doubly-curved surfaces.  The optimization piece makes it 

possible to optimize laminate properties to meet specific design criteria [23]. 

These tools represent a good foundation of laminate composite automation, however all 

of them use the zone based approach.  The method presented in this thesis will divert from this 

approach by automatically creating design and analysis data without having to define zones.  The 

method automatically creates ply geometry and finite elements based on a ply table definition 

and the part geometry input by the user.  No zone definitions are necessary. 

2.3 CAD APIs and the CAD Independent Approach 

Application programming interfaces (API) are used to interface with commercial 

software applications programmatically (as opposed to interactively).  Most commercial CAD 

systems have APIs and they are often used in industry to automate design processes.  The 

method of automating a design process using only the CAD system’s API is called the CAD 

centric approach.  There have been several theses written explaining methods that streamline 

design processes using APIs.  A few recent theses that discussed using CAD APIs to generate 

custom CAD applications include the following: Delap used a CAD API to create a parametric 

model of a gas turbine flow path that can be optimized based on user rules and objectives [5].  

Elliott programmatically created a reusable parametric model of a complex surface including 

over 3000 parameters also using a CAD API [6].  Scott also utilized a CAD API to streamline 

the CAD assembly and component level design process [21]. 

Automating a design process using the CAD centric approach provides several 

advantages: it provides a simple way to visualize geometry, it is simple to adopt for companies 

with existing CAD system in place and it simplifies data storage and transfer.  However, there 



 11 

are two major weaknesses to the CAD centric approach.  The first weakness is that CAD APIs 

are often slow in performing geometrical computation when compared with CAD independent 

algorithms because they often exist at a level above the geometry kernel.  When an application 

requires large amounts of geometry computation, the CAD-centric approach becomes 

impractical.  The second major weakness is that the CAD-centric approach limits the use of the 

application to a single CAD package.  Since there are many CAD packages in circulation today, 

limiting an application to a single CAD package may prevent extensive use among designers. 

As stated in the introduction Travis Astle developed a method that overcame the 

weaknesses of the CAD-centric approach while still incorporating its benefits.  Recall that he 

applied CAD independent algorithms to the creation of flank milling data and integrated it into 

NX using NX’s API.  In summary, the method takes geometry from a CAD package, translates it 

into mathematical geometry data, uses CAD independent algorithms to create new geometry, and 

translates the new data back into the CAD package [2].  This method allowed the application to 

be portable enough to be integrated into multiple CAD applications and kept the benefits of 

simple visualization, company adaptation and data storage/transfer.   

2.4 Geometry Mathematics and NURBS 

Non uniform rational B-splines (NURBS) are the mathematical surface representation 

used to represent geometry in this research.  NURBS are a common parametric curve and 

surface representation used within many of the leading commercial CAD systems.  NURBS 

mathematically represent a surface using a given number of control points that form a 

bidirectional control net.  These control points each influence the topology of surface defined by 

the B-spline basis function.  Each control point is associated with a weight that adjusts the 
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amount of influence that each control point has on the surface.  NURBS employs a knot vector 

in each parametric direction u and v that also affect the influence of the control points.  A 

NURBS surface of degree p in the u direction and q in the v direction is represented by the 

following equation: 

, , , ,
0 0

, , ,
0 0

( ) ( )

( , )
( ) ( )

n m

i p j q i j i j
i j

n m

i p j q i j
i j

N u N v w P
S u v

N u N v w

= =

= =

=
∑∑

∑∑  0 , 1u v≤ ≤   (2-1) 

The { ,i jP } are the control points, the { ,i jw } are the weights, n and m represent the number of 

control points in the u and v directions respectively, and the { ( ), uj qN } and { ( ), vj qN } are the 

NURBS basis functions which are defined on the knot vectors: 

    (2-2) 

    (2-3) 

r  and s  are defined by 1++= pnr  and 1++= pns  [18].  To learn more about NURBS 

mathematics, see the following sources: [7, 18, 20, and 22].   

A major advantage of using NURBS surfaces to represent geometry is that complex 

surfaces can be represented with relatively small amounts of data.  Also, since NURBS are 

parametric in nature, they have the advantage of being able to quickly compute the coordinates 

of any point on a surface, making the parsing of a surface quick and easy [22].  In addition, many 

NURBS based, CAD independent algorithms have been published, including a C++ based 
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geometry library called GSNLIB.  This library has several functions that create, manipulate and 

store NURBS curves and surfaces [24]. 
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3 METHOD 

This chapter discusses methods to streamline laminate composite design and analysis 

following these steps (see Figure 3-1 for a graphical representation): 

1. Take surface geometry from a user familiar source (i.e. a commercial CAD system), 

translate it into the mathematical NURBS representation of that surface and store it 

in NURBS based, CAD independent data structures 

2. Apply CAD independent algorithms to create the ply lay-up geometry and the 

laminate composite finite element model  

3. Translate the NURBS surfaces back into a user familiar source for visualization and 

analysis 

Methods will also be discussed to streamline laminate composite optimization and include the 

following: 

• Applying parametric boundary conditions 

• The optimization algorithm 

• The fitness factor 
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Figure 3-1:  General approach to streamline design and analysis 

3.1 Input Data from a User Familiar Source 

A CAD API function prompts a user to select l number of surfaces within the CAD 

environment.  These surfaces are translated into CAD independent form by using an API call to 

extract the NURBS data from the surface and storing it in CAD independent NURBS based data 

structures.  This can be shown as follows: 

, , , , , , , ,
0 0 0 0 0 0

l n m l n m

h i j h i j h i j h i j
h i j h i jCADIndep CAD

w P w P
= = = = = =

=∑∑∑ ∑∑∑   (3-1)  

0 0

l l

h h
h hCADIndep CAD

U U
= =

=∑ ∑        (3-2) 

0 0

l l

h h
h hCADIndep CAD

V V
= =

=∑ ∑        (3-3) 
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In addition to CAD geometry data, the laminate specific parameters and attributes are read in 

from a spreadsheet and stored in CAD independent data structures. 

3.2 CAD Independent Algorithms 

Once the CAD data is brought into CAD independent data structures, CAD independent 

algorithms are applied to create the ply lay-up geometry based on the input parameters.  This is 

done by using methods to offset the original surface geometry and trim it to the appropriate 

shape.  At the same time the laminate composite finite element model is created using the 

method discussed herein.   

3.2.1 Geometry Creation 

In order to create the ply geometry, the original surfaces that came from the CAD system 

are offset to create new surfaces that represent the ply lay-up geometry.  Some of the parameters 

that came from the spreadsheet are used to control the distance of each offset.  The following 

explains a mathematical method to create an offset of a NURBS surface.  The NURBS surface 

{ ( , )S u v } is queried for a grid of points { ,i jG } which lie on that surface with some tolerance 

{ t } in u and v.   

,
0 0

( / , / )
n n

i j
i j

G S i n j n
= =

= ∑∑        (3-4) 

In the above equation 1/ ( 1)n t= −  and t is defined such that 1/ ( 1)t −  must be an integer.   

In addition to the grid of points, the normal vectors { ,i jH } are found at the same 

parameter values along u and v on the surface as used in finding the grid of the points: 
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,
0 0

ˆ ( / , / )
n n

i j
i j

H n i n j n
= =

= ∑∑        (3-5) 

Note that the unitized surface normal vector { ˆ ( , )n u v } in the above equation is found using the 

traditional normal vector formula: 

ˆ ( , )

S S
u vn u v
S S
u v

∂ ∂
×

∂ ∂=
∂ ∂

×
∂ ∂

        (3-6) 

Where “× ” denotes the cross product [7].   

Next, an offset grid of points { ,i jK } that lie some distance { d } from the original 

surface are found using this equation [29]: 

, , ,
0 0

n n

i j i j i j
i j

K G H d
= =

= + ⋅∑∑       (3-7) 

This grid of points { ,i jK } is used to create the offset surface by utilizing an interpolating 

function to fit a NURBS surface to the point data. 

Once an offset surface is created, a proprietary trimming algorithm is utilized to trim the 

offset surface against an opposing offset surface trimming the ply the appropriate shape.   

3.2.2 Generation of Finite Element Model 

The creation of the laminate finite element model starts with the two NURBS surfaces 

read in from the CAD system that define the outer geometry of the laminate.  These are called 

{ 1( , )S u v } and { 2( , )S u v }. A mid-surface { ,i jM } of the two outer surfaces is found by first 
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discretizing each surface by incrementing through the { ,u v } parameters of each surface m n×  

times and then averaging the opposing points on each surface as shown here:  

1 2
,

0 0

( / , / ) ( / , / )
2

m n

i j
i j

S i m j n S i m j n
M

= =

+
= ∑∑     (3-8) 

The mid-surface is then created by fitting a NURBS surface through { ,i jM } by using an 

interpolating function that finds the NURBS surface control points and knot vector.  Once the 

mid-surface is found, a grid of points { ,i jG } parameterized by p q×  is found on that surface by 

incrementing through the { ,u v } parameters p q×  times as shown: 

,
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( / , / )
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i j
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= =

= ∑∑        (3-9) 

To form the quadrilateral shell elements { kE }, the grid of points { ,i jG } are associated to 

the elements in the following way:  
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Next, by querying the points on the mid-surface halfway between each element step, the 

center points of each element { ,i jC } are found: 
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In addition to the center point of the elements, the positive and negative unit normal 

vectors are also found at each of the element centers.  This is done by solving the traditional 
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normal vector formal (Equation 3-12) at each element center point on the mid-surface.  Figure 3-

2 is a representation of a composite part with the top and bottom curves representing the 

opposing surfaces and the middle curve representing the mid-surface.  The black arrows 

represent the positive and negative normal vectors taken at the element centers along the mid-

surface. 

 

Figure 3-2:  A 2D representation of the normal vectors taken along the mid-surface 

The next step is to find the intersection points {
,1i j

I } and {
,2i j

I } of each outer surface 

and the normal vectors that pass through them.    
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The thickness at each element is then approximated to be the distance between the 

intersection points on the opposing surfaces (see Figure 3-3). 
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Figure 3-3:  Finding the thickness at each element center 

Once the element thicknesses are found the laminate definition is determined for each 

element by adding up the thicknesses of the lamina in the ply table.  The laminas are added up 

starting with the one having the highest priority and going through until the element thickness is 

reached.  Each element is then associated with the laminas that belong in that region. 

3.3 Output Data into a Useable Source 

Once the laminate geometry is created, the NURBS surface data that represents each 

lamina is translated back into the CAD system for visualization.  This is done by using the CAD 

API to create CAD based NURBS surfaces from the control points, weights and knot vectors of 

the NURBS mathematical surfaces.  This is shown mathematically as follows: 
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The finite element data found using the CAD independent algorithms is also translated into a 

form that can be read by a finite element package.  

3.4 Optimization 

In order to establish a working optimization the first critical component is a method to 

automatically generate a finite element model.  This method was discussed in subsection 3.2.2. 

Another component needed for the optimization is a method to automatically assign boundary 

conditions (loads and constraints) to the finite element model.  In addition, a robust optimization 

algorithm and fitness function needs to be established to drive the optimization to an optimum 

solution.   

3.4.1 Parametric Boundary Conditions 

Parametric boundary conditions are used to assign boundary conditions to a model that 

will update according to rules regardless of how many nodes are in the model.  This is done by 

pre-determining an algorithm that assigns the boundary conditions to specific nodes based on 

where the conditions are with respect to the part.  For example, say the desired location of a 

boundary condition is along the bottom end of the part.  In this case the boundary conditions 

{ iB } are assigned to mid-surface nodes { ,i jG } of size m n×  in the following way: 

,0
0

m

i i
i

B G
=

= ∑          (3-19) 

However in another example, the desired location of the boundary conditions are along 

the left side of the part; the boundary conditions in this case are: 
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Although these two examples above do not cover every loading case, they are enough to 

demonstrate the feasibility of applying parametric boundary conditions when necessary.  It is left 

to the reader to explore other algorithms for more specific cases, if desired. 

3.4.2 Optimization Algorithm 

The purpose of the optimization algorithm in a laminate composite optimization is to 

drive the lamina properties (thickness or angle) to values that determine the best design for a 

specific load case.  The algorithm that was chosen to do this is a genetic algorithm which is an 

algorithm that is based on Darwin’s theory of evolution [16].  The main reason why a genetic 

algorithm was chosen over other gradient based methods is because gradient based methods 

frequently were not able to find an optimum due to the large number of design variables in a 

laminate composite optimization.  The gradient based methods slowly changed one or two values 

at a time trying unsuccessfully to find a pattern.  The genetic algorithm, on the other hand, was 

able to much better explore the design space because it moved randomly in all directions until it 

evolved into an optimum.  My observations were similar to what the literature says in that 

genetic algorithms are not guaranteed to find a global optimum, but they will generally find an 

“acceptably good” answer “acceptably quickly” [3].  This is why a genetic algorithm was chosen 

to be used in the optimization method of this research. 
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3.4.3 Fitness Factor 

When using a genetic algorithm, one critical component is a criterion that determines 

how well a specific design performs as compared to other designs.  This is called a fitness factor.  

“The fitness of an individual is a measure of how ‘good’ the solution represented by the 

individual is.  The better the solution, the higher the fitness…” [26].  A simple example would be 

the case of minimizing stress in a part.  In this case the fitness factor would likely be the resulting 

stress of the analysis.  In other more complicated cases, where several outputs drive the 

optimum, a fitness factor is determined in a different way.  Possibly the best solution is to take 

the average of all the outputs.  Or maybe it’s more effective to take the minimum or maximum of 

all the output.   

The purpose of this subsection is to explain that a fitness factor is used in the 

optimization but there are various ways of computing it depending on the specific analysis being 

run.  Since this thesis does not explore specific analyses, but presents a general approach to 

laminate composite optimization, a specific method to find a fitness factor will not be shown 

here.  Instead, the implementation of a specific fitness factor algorithm will be discussed in the 

implementation chapter (specifically subsection 4.4.2), where a specific optimization and 

analysis is shown. 
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4 IMPLEMENTATION 

The methodology discussed above was implemented into computer programs that 

automate laminate composite design and analysis.  One of these computer programs 

automatically creates the ply lay-up within a commercial CAD program given the outer surface 

geometry of a composite part and a spreadsheet that defines the parameters of the laminate.  

Another computer program automatically creates a laminate composite finite element model for 

commercial finite element packages given the same inputs.  Since the base code for the 

applications are independent of commercial CAD software, it can be implemented into several 

commercial CAD and FEA packages.   

The commercial CAD systems that are integrated with the automation program are: 

Siemens – NX and Dassault Systemes – CATIA.  The CAD independent software used is the 

General Surface NURBS Library (GSNLib) distributed by Solid Modeling Solutions Inc.  

GSNLib is a software toolkit that provides methods for creation, storage and manipulation of 

NURBS surfaces [24].  This toolkit lends itself to be a good option to integrate with NX and 

CATIA because GSNLib, CATIA’s API and NX’s APIs are all based in the C/C++ 

programming language.  This allowed the entire application to be to be written in a single 

programming language.  The NX API used is called NX Open C and is a C based programming 

library that has several functions that allow for the creation and manipulation of NX geometry.  

The CATIA API used is called CAA RADE, and is a C++ based programming library that 

allows programmatic control of all interactive functions in CATIA.   



 26 

The automation program was written within the framework of the CAD API and run 

from within the interactive CAD system.  Two separate pieces of code are written for NX and 

CATIA to perform the translation to and from the specified CAD system.  However, both NX 

and CATIA share the same base CAD independent code.  This code utilizes many of the 

GSNLib function calls to handle the NURBS mathematics, but many of the other methods are 

implemented using custom code.  

Figure 4-1 Figure 3-1shows a graphical representation of the approach of this program.  

It shows that the program is built upon the foundation of CAD independent algorithms. The 

CAD API framework is an interface between the interactive CAD system and the CAD-

independent algorithms.  The commercial CAD system is used for user interaction, the API 

framework is used to translate data to and from the CAD independent algorithms and the CAD-

independent algorithms are used to create geometric and analytical data. 

  

Figure 4-1:  A representation of the approach of the automation program 

4.1 Input Data from a User Familiar Source 

After running the program from within the CAD system, an API function is called to 

prompt the user to select the surfaces that make up the outer shell of the composite part.  In NX 

this surface definition can be defined in the CAD system or in a text file as a set of surface points 

that make up the surface.  For CATIA the surface definition is only defined as a set of surface 
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points in a text file.  Using another CAD API function call, the selected surfaces are queried for 

their NURBS surface control points, weights and knot vectors.  These values are passed into a 

function that constructs an IwBSplineSurface object that is predefined in GSNLib.  This object 

contains all the data to store a NURBS surface in CAD independent form.  The translation code 

from NX to GSNLib is shown below. 

tag_t face; 
IwContext pContext; 

 UF_MODL_bsurface_t nx_surf; 
 UF_MODL_ask_bsurf(face,&nx_surf); 
     gw_CPOINT   **Pw; 
     ULONG    n, m, r, s; 
     short   p, q; 
 double *U, *V; 
 //Getting num poles from NX NURBS surface 
 n = nx_surf.num_poles_v -1; 
 m = nx_surf.num_poles_u - 1; 
 p = nx_surf.order_v - 1; 
 q = nx_surf.order_u - 1; 
 r = n+p+1; 
 s = m+q+1; 
 U = new double[r+1]; 
 V = new double[s+1]; 
 //Getting knot vector from NX NURBS surface 
 for(int i=0; i<r+1; i++) 
 { 
  U[i] = nx_surf.knots_v[i]; 
 } 
 for(int i=0; i<s+1; i++) 
 { 
  V[i] = nx_surf.knots_u[i]; 
 } 
 //Getting control points from NX NURBS surface 
 Pw = new gw_CPOINT*[(n+1)*(m+1)]; 
 for (int i=0;i<(n+1);i++) 
 { 
  Pw[i]=new gw_CPOINT[m+1]; 
 } 
 for (int i=0, k=0;i<n+1;i++) 
 { 
  for (int j = 0; j < m+1; j++,k++) 
  { 
   Pw[i][j].x = nx_surf.poles[k][0]; 
   Pw[i][j].y = nx_surf.poles[k][1]; 
   Pw[i][j].z = nx_surf.poles[k][2]; 
   Pw[i][j].w = nx_surf.poles[k][3]; 
  } 
 } 
 //Creating IwBSplineSurface 
 IwBSplineSurface *GSNLIB_surf = new (pContext)IwBSplineSurface(n, m, p, 
q, r, s, Pw, U, V); 
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//This frees the memory when you're done with the surface  
UF_MODL_free_bsurf_data(&nx_surf); 

 

Another call to a CAD API function prompts the user to select a Microsoft Excel 

spreadsheet containing the ply parameters for the composite part, called a ply table.  The ply 

table is a spreadsheet that describes each lamina in the composite lay-up.  Each line of the 

spreadsheet expresses that lamina’s fiber angle, thickness, material, and priority. The priority 

describes how prevalent that lamina is used throughout the laminate.  For example, a ply with a 

priority of 1 will likely be used more frequently than a ply with a priority of 7.  An example of a 

ply table is shown in table 4-1.  

 

Table 4-2:  An example of a ply table 

Ply Priority 
Material 

ID Thickness Angle Material 
      
1 1 1 0.1 0 graphite 
2 3 1 0.1 30 graphite 
3 5 2 0.1 60 glass 
4 7 2 0.1 90 glass 
5 6 2 0.1 -60 glass 
6 4 1 0.1 -30 graphite 
7 2 1 0.1 0 graphite 

 

Next, the user is prompted to select a spreadsheet that contains material properties for the 

materials used in the first spreadsheet. The material table is a spreadsheet that contains all the 

specific material properties for all of the composite materials that are used in the ply table.   

After selecting these documents, they are opened and parsed programmatically to get out 

the data and store it in data structures within the program.  The user also has the option instead to 

enter only the ply thickness into a GUI prompt to be stored.  However, if this option is chosen, 
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additional pre-processing will be required.  After being prompted for the ply and material 

properties, the user is also prompted to input the number of elements in the u and v directions to 

be used to create a mesh for finite element analysis of the composite part.   

4.2 CAD Independent Algorithms 

Once the geometry and parameter data is translated from the CAD system, the CAD 

independent algorithms programmed into C++ are used to automatically create the ply geometry 

and the laminate finite element model outside of the CAD system. 

4.2.1 Automatic Geometry Creation 

To create the 3-dimensional ply geometry, surfaces are offset from the two outer surfaces 

using the ply thickness parameters that were obtained from the Excel spreadsheet.  Each offset 

surface is created using an offset function (shown below) that offsets each surface by the ply 

thickness amount.  The function shown below follows the method outlined in equations 3-4 

through 3-7.  The function takes in an IwBSplineSurface object, a distance to offset and the grid 

density as the number of points in u and v. 

IwBSplineSurface *create_GSNLIB_offset_surface(IwBSplineSurface *Surf, double 
distance, IwContext &pContext, int &Upnts, int &Vpnts) 
{ 
 IwBSplineSurface* newSurf; 
 double coords[3], unit_norm[3]; 
 IwTArray<IwPoint3d> Curve_pnts; 
 IwPoint3d tmpPoint; 
 IwBSplineCurve *ChordCurve; 
 IwContext CurveContext; 
 IwTArray<IwBSplineCurve*> offset_splines; 
 IwExtent1d newInterval; 
 //intializing surface pnts for the new surface 
 double ***surf_pnts=new double**[Upnts]; 
 for (int i=0; i<Upnts;i++) 
 { 
  surf_pnts[i] = new double*[Vpnts];  
  for (int j=0;j<Vpnts;j++) 
  { 
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   surf_pnts[i][j] = new double[3]; 
  } 
 } 
 // CYCLE U SURFACE PARAMETER (STRINGER) 
 for (int i=0;i<Upnts;i++) 
 { 
  // CYCLE V SURFACE PARAMETER (CROSS-CURVE) 
  for (int j=0;j<Vpnts;j++) 
  { 

ask_face_props_GSNLIB(Surf, i/double(Upnts-1), 
j/double(Vpnts-1), coords); 
ask_face_norm_GSNLIB(Surf, i/double(Upnts-1), 
j/double(Vpnts-1), unit_norm); 
//Offsets the points in the normal direction 
add_mult_array( coords, unit_norm, distance, 
surf_pnts[i][j]); 

  } 
 } 
 //CYCLE IN SPANWISE DIRECTION, CREATING CHORDWISE CURVES 
 for (int i=0;i<Upnts;i++) 
 { 
  for (int j=0;j<Vpnts;j++) 
  { 
   tmpPoint.x = surf_pnts[i][j][0]; 
   tmpPoint.y = surf_pnts[i][j][1]; 
   tmpPoint.z = surf_pnts[i][j][2]; 
   Curve_pnts.Add(tmpPoint); 
  } 
  create_GSNLIB_spline(Curve_pnts, 3, ChordCurve, CurveContext); 
  Curve_pnts.RemoveAll(); 
  offset_splines.Add(ChordCurve); 
 } 
 create_GSNLIB_thru_curve(offset_splines, 0, 1, 3, newSurf, pContext); 
 return newSurf; 
} 

Once offset, these surfaces are trimmed to intersecting offset surfaces using the 

proprietary trimming method mentioned in chapter 3 (see Figure 4-2).   

 

Figure 4-2:  Offset from outer surfaces and trim 
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After the new surfaces are created and trimmed, they are stored in GSNLib IwBSpline-

Surface objects to await translation back into the CAD system.  The parameters and attributes 

that were read in from the Excel spreadsheet are stored in a data structure vector that contains all 

the IwBSplineSurface objects and the attributes that are associated with them.  Figure 4-3 shows 

a side view of the offset and trimmed ply geometry for a generic part after it is translated back 

into NX. 

 

Figure 4-3:  A side view of a generic NX ply geometry creation 

4.2.2 Automatic Generation of Finite Element Model 

The finite element model is created using equations 3-8 through 3-14 discussed in 

chapter 3.  First, a mid-surface of the part is automatically created by using equation 3-8 in 

chapter 3.   

 for (int i=0;i<Unum;i++) 
 { 
  for (int j=0;j<Vnum;j++) 
  { 

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(0).NURBSSurface.
GetAt(0), i/double(Unum-1), j/double(Vnum-1), pnt1); 
GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(1).NURBSSurface.
GetAt(0), i/double(Unum-1), j/double(Vnum-1), pnt2); 
if (pnt1[0]-pnt2[0]<.0001 && pnt1[1]-pnt2[1]<.0001 && 
pnt1[2]-pnt2[2]<.0001) 

   { 
    newPnt[0] = pnt1[0]; 
    newPnt[1] = pnt1[1]; 
    newPnt[2] = pnt1[2]; 
   } 
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   else 
   { 
    math_func::average(pnt1, pnt2, newPnt); 
   } 
   Curve_pnts.Add(newPnt); 
  } 
  //creating chordwise curves 
 GSNLIB_geom::create_GSNLIB_spline(Curve_pnts, 3, ChordCurve, 

CurveContext); 
  Curve_pnts.RemoveAll(); 
  midSurfSplines.Add(ChordCurve); 
 } 

GSNLIB_geom::create_GSNLIB_thru_curve(midSurfSplines, 0, 0, 3, midSurf, 
midSurfContext); 

 
The mid-surface is then automatically meshed to form quadrilateral laminated shell 

elements as shown in equations 3-9 and 3-10.  After that, following the procedure discussed in 

equations 3-11 through 3-14 of chapter 3, each element is associated with the corresponding 

plies that make up the 3-dimensional component of the shell element.   

 //Gets the nodes and normal lines 
 //Finds the thickness for every element 
 int k=0; 
 for(int i=0; i<Unum; i++) 
 { 
  for(int j=0; j<Vnum; j++) 
  { 
   //Getting the node locations 

GSNLIB_geom::ask_face_props_GSNLIB(midSurf, i/double(Unum-
1), j/double(Vnum-1), pnt_on_surf); 

   nodes.Add(pnt_on_surf); 
   //Getting the normal lines at the center of the elements 
   if(i>0 && j>0) 
   { 

Uparm = (double(i-1)/double(Unum-
1)+double(i)/double(Unum-1))/2; 
Vparm = (double(j-1)/double(Vnum-
1)+double(j)/double(Vnum-1))/2; 
GSNLIB_geom::ask_face_props_GSNLIB(midSurf, Uparm, 
Vparm, pnt_on_surf); 
GSNLIB_geom::ask_face_norm_GSNLIB(midSurf, Uparm, 
Vparm, unitNorm); 
math_func::add_mult_array(pnt_on_surf, unitNorm, 100, 
norm_pos_pnt); 
math_func::sub_mult_array(pnt_on_surf, unitNorm, 100, 
norm_neg_pnt); 
IwLine::CreateLineSegment(lineContext, 3, 
pnt_on_surf, norm_pos_pnt, normLine1); 

    crInterval = normLine1->GetNaturalInterval(); 
    intersectMe = (IwCurve*)normLine1; 
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Plys.at(0).NURBSSurface.GetAt(0)-
>GlobalCurveIntersect(Plys.at(1).NURBSSurface.GetAt(0
)->GetNaturalUVDomain(), *intersectMe, crInterval, 
.000001, rSolutions); 

    if (rSolutions.GetSize() > 0) 
    { 
     IwSolution *sol = rSolutions.GetDataArray(); 
     uParameter = sol->m_vStart.m_adParameters[1]; 
     vParameter = sol->m_vStart.m_adParameters[2]; 

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(1).N
URBSSurface.GetAt(0), uParameter, vParameter, 
pnt2); 
dist1 = 
math_func::distance_between_points(pnt_on_surf, 
pnt2); 

    } 
 

IwLine::CreateLineSegment(lineContext, 3, 
pnt_on_surf, norm_neg_pnt, normLine2); 

    crInterval = normLine2->GetNaturalInterval(); 
    intersectMe = (IwCurve*)normLine2; 

Plys.at(1).NURBSSurface.GetAt(0)-
>GlobalCurveIntersect(Plys.at(0).NURBSSurface.GetAt(0
)->GetNaturalUVDomain(), *intersectMe, crInterval, 
.000001, rSolutions); 

    if (rSolutions.GetSize() > 0) 
    { 
     IwSolution *sol = rSolutions.GetDataArray(); 
     uParameter = sol->m_vStart.m_adParameters[1]; 
     vParameter = sol->m_vStart.m_adParameters[2]; 

GSNLIB_geom::ask_face_props_GSNLIB(Plys.at(0).N
URBSSurface.GetAt(0), uParameter, vParameter, 
pnt2); 
dist2 = 
math_func::distance_between_points(pnt_on_surf, 
pnt2);     

    } 
    //Pre-loading the intersection vector 
    sheetIntersections.push_back(temp); 
    for (int a=0; a<Plys.size();a++) 
    { 
     sheetIntersections[k].push_back(0); 
    } 
    //Adding the plies based on priority 
    totDist = dist1 + dist2; 
    elemThk.push_back(totDist); 
    numPlies = 0; 
    currentDist = 0; 

//Finding the number of plies in each element 
    while(totDist > currentDist && numPlies<Plys.size()) 
    { 

currentDist = currentDist + 
priorityVector.at(numPlies).PlyProperties.Thick
ness; 
int me = 
priorityVector.at(numPlies).PlyProperties.PlyNu
m; 
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sheetIntersections[k].at(priorityVector.at(numP
lies).PlyProperties.PlyNum-1) = 1; 

    numPlies++; 
    } 
    k++; 
   } 
  } 

 } 

The image shown in Figure 4-4 is a laminate finite element model of a vertical stabilizer 

that is brought into Altair’s Hyper Mesh for visualization.  The various colors shown represent 

the unique ply definitions for each element. 

 

Figure 4-4:  Laminate FEA model of a vertical stabilizer 



 35 

4.3 Output Data into a Useable Source 

 The surfaces that were stored in the IwBSplineSurface objects are translated back into 

CAD surfaces for visualization.  In NX this is simply done using an NX Open C function that 

takes as input the NURBS control points, weights and knot vectors and outputs a surface directly 

into NX.  The code below is function that takes in an IwBSplineSurface object, extracts the data 

from it and puts it into a format to be read by the NX API function UF_MODL_create_bsurface. 

 
tag_t create_NX_bsurface_from_GSNLIB_surface(IwBSplineSurface *GSNLIB_Surf) 

{ 
 tag_t nx_bsurf; 

 int num_states; 
 UF_MODL_state_p_t states; 
 UF_MODL_bsurface_t nx_bsurf_info; 
 
 double *uKnots; 
 double *vKnots; 
 ULONG KnotCountU; 
 ULONG KnotCountV; 
 IwTArray<ULONG> uKnotMultiplicities; 
 IwTArray<ULONG> vKnotMultiplicities; 
 IwTArray<IwPoint3d> ControlPoints; 
 IwTArray<double> Weights; 
 ULONG UCount; 
 ULONG VCount; 
 
 GSNLIB_Surf->GetKnotsPointers(KnotCountU, KnotCountV, uKnots, vKnots); 

GSNLIB_Surf->GetControlPointNet(UCount, VCount, ControlPoints, 
Weights); 

 nx_bsurf_info.is_rational = GSNLIB_Surf->IsRational(); 
 nx_bsurf_info.order_u = GSNLIB_Surf->GetDegree(IW_SP_U)+1; 
 nx_bsurf_info.order_v = GSNLIB_Surf->GetDegree(IW_SP_V)+1; 
 nx_bsurf_info.num_poles_u = UCount; 
 nx_bsurf_info.num_poles_v = VCount; 
 nx_bsurf_info.knots_u = new double[KnotCountU]; 
 nx_bsurf_info.knots_v = new double[KnotCountV]; 
 nx_bsurf_info.poles = new double[UCount*VCount][4]; 
 for(int i=0; i<KnotCountU; i++) 
 { 
  nx_bsurf_info.knots_u[i] = uKnots[i]; 
 } 
 for(int i=0; i<KnotCountV; i++) 
 { 
  nx_bsurf_info.knots_v[i] = vKnots[i]; 
 } 
  
 for(int i=0; i< UCount*VCount; i++) 
 { 
  nx_bsurf_info.poles[i][0]= ControlPoints[i].x; 
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  nx_bsurf_info.poles[i][1]= ControlPoints[i].y; 
  nx_bsurf_info.poles[i][2]= ControlPoints[i].z; 
  if(nx_bsurf_info.is_rational == 0)nx_bsurf_info.poles[i][3]= 1; 
  else nx_bsurf_info.poles[i][3]= Weights[i]; 
 } 

//Creating the NX Bsurface 
 UF_MODL_fix_bsurface_data (.00001, &nx_bsurf_info, &num_states, 
&states); 
 UF_MODL_create_bsurface (&nx_bsurf_info, &nx_bsurf, &num_states, 
&states); 
 UF_MODL_update ( ); 
 return nx_bsurf; 
} 
 

The translation from GSNLib back to CATIA has a couple more steps to than the 

GSNLib to NX process.  In CAA RADE there is a function that takes the same inputs as the NX 

Open C function and outputs a geometrical NURBS object.  This object can only be viewed in 

CATIA after it is converted into a skin and then into a datum feature.  Therefore it must be added 

to the procedural view for actual visualization in CATIA.  The function below takes in an 

IwBSplineSurface object , extracts the NURBS data from it, creates a CATNurbsSurface and 

does all the necessary steps for CATIA visualization. 

 

void create_CATSurface_from_GSNLIB_surface(IwBSplineSurface *GSNLIB_Surf) 
{ 
 double *uKnots; 
 double *vKnots; 
 ULONG KnotCountU; 
 ULONG KnotCountV; 
 IwTArray<ULONG> uKnotMultiplicities; 
 IwTArray<ULONG> vKnotMultiplicities; 
 IwTArray<IwPoint3d> ControlPoints; 
 IwTArray<double> Weights; 
 ULONG UCount; 
 ULONG VCount; 
     //Creation of the grid points to be passed as the knot vector argument 
 GSNLIB_Surf->GetKnotsPointers(KnotCountU, KnotCountV, uKnots, vKnots); 
 GSNLIB_Surf->GetControlPointNet(UCount,VCount,ControlPoints,Weights); 
 int nbPoleU = UCount; 
 int nbPoleV = VCount; 
    CATMathGridOfPoints gridOfPoints(nbPoleU,nbPoleV); 
 CATMathPoint controlPoint; 
 int k=0; 
 for (int i=0; i< nbPoleU;i++) 
 { 
  for (int j=0; j< nbPoleV;j++) 
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  { 
   controlPoint.SetX( ControlPoints[k].x); 
   controlPoint.SetY( ControlPoints[k].y); 
   controlPoint.SetZ( ControlPoints[k].z); 
   gridOfPoints.SetPoint(controlPoint,i,j); 
   k++; 
  } 
 }   
     //Creation of the knot vectors 
     CATLONG32 IsPeriodic= 0; 

CATLONG32 UDegree= GSNLIB_Surf->GetDegree(IW_SP_U), VDegree= 
GSNLIB_Surf->GetDegree(IW_SP_V); 

 CATLONG32 UKnotsCount = KnotCountU - 2*UDegree; 
 CATLONG32 VKnotsCount = KnotCountV - 2*VDegree; 
 //Knot vector 
     double *UKnots; 
 UKnots = new double[UKnotsCount]; 
 double *VKnots; 
 VKnots = new double[VKnotsCount]; 
 for(int i=0; i<UKnotsCount ;i++) 
 { 
  UKnots[i] = uKnots[i+UDegree]; 
 } 
 for(int i=0; i<VKnotsCount ;i++) 
 { 
  VKnots[i] = vKnots[i+VDegree]; 
 } 
 //Multiplities 
 CATLONG32 *UMultiplicities; 
 UMultiplicities = new CATLONG32[UKnotsCount]; 
 CATLONG32 *VMultiplicities; 
 VMultiplicities = new CATLONG32[VKnotsCount]; 
 //U 
 UMultiplicities[0] = UDegree+1; 
 for(int i=1; i<UKnotsCount-1 ;i++) 
 { 
  UMultiplicities[i] = 1; 
 } 
 UMultiplicities[UKnotsCount-1] = UDegree+1; 
 //V 
 VMultiplicities[0] = VDegree+1; 
 for(int i=1; i<VKnotsCount-1 ;i++) 
 { 
  VMultiplicities[i] = 1; 
 } 
 VMultiplicities[VKnotsCount-1] = VDegree+1; 
 CATLONG32 IndexOffset= 0; 
     CATKnotVector NonUniformU(UDegree,IsPeriodic,UKnotsCount,UKnots, 
        UMultiplicities,IndexOffset); 
     CATKnotVector NonUniformV(VDegree,IsPeriodic,VKnotsCount,VKnots, 
        VMultiplicities,IndexOffset); 

//Creation of a rational NURBS surface     
CATLONG32 isRational=1; 
double * aWeights=new double[nbPoleU*nbPoleV]; 
for (int i = 0; i < nbPoleU*nbPoleV; i++) 
{ 
    aWeights[i] = 1.; 
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} 
// NURBS Surface creation 
CATNurbsSurface * piSurf1 = piGeomFactory->       
CATCreateNurbsSurface(NonUniformU, 
NonUniformV,isRational,gridOfPoints,aWeights); 
if (NULL==piSurf1) 
{ 
    printf( "NURBS surface could not be created"); 
    return; 
}  
delete [] aWeights; 
aWeights = NULL; 
//Creation of the skin 
CATSurLimits surMaxLimits ; 
piSurf1->GetMaxLimits(surMaxLimits) ; 
CATSoftwareConfiguration * pConfig = new CATSoftwareConfiguration(); 
CATTopData topdata(pConfig); 
CATTopSkin * pSkinOpe =::CATCreateTopSkin(piGeomFactory, 
        &topdata, 
        piSurf1, 
        &surMaxLimits); 
if (NULL==pSkinOpe) 
{ 
    return; 
} 
pSkinOpe->Run();    
// Gets the resulting body 
CATBody * piSkinBody = pSkinOpe->GetResult();   
if (NULL==piSkinBody) 
{ 
    return; 
} 
// Deletes the operator 
delete pSkinOpe; 
pSkinOpe=NULL; 

 
 CATIDatumFactory_var spDatumFactory; 
 spDatumFactory = pSpecContainer; 
 CATISpecObject* oDatumFeature; 
 spDatumFactory->InstanciateDatum(piSkinBody, oDatumFeature); 
 oDatumFeature->Update(); 
 spCurObj = oDatumFeature; 
 spCurObj->InsertInProceduralView(); 

 pConfig->Release(); 

} 

The attributes that are associated with each IwBSplineSurface are translated into NX 

using a function that takes as input a string of text and numerical values and outputs an NX 

attribute that is associated with the NX surface.  Since CATIA has no such “attribute” feature 

available to associate general attributes with surfaces, this step was not implemented in CATIA. 
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The finite element analysis input file is created programmatically from the nodes and 

elements as well as the ply materials and properties.  Based on what the user selects as the 

analysis package to be output to, the data is organized in a way that conforms to that software’s 

input file format.  The result is an analysis data file formatted for use by a wide variety of 

commercial Finite Element processing packages including ANSYS, LS-DYNA and NATRAN.  

The following code creates an ANSYS input file from the data created in subsection 4.2.2.  Note 

that the code follows equation 3-10 for the organization of the elements.  Inputs include the 

model nodes, sheet intersections and an output file. 

 

void printANSYS(IwTArray<IwPoint3d> nodes, vector <vector<int>> 
&sheetIntersections, ofstream &outfile) 
{ 
 double angle; 
 double thickness; 
 double pnt_on_surf[3]; 
 
 int numElements = (Unum-1)*(Vnum-1); 
  
 outfile<<fixed; 
 outfile<<"/PREP7"<<"!"<<endl; 
  
 //Printing Nodes 
 outfile<<"! Nodes"<<endl; 
 outfile<<"CSYS,0"<<endl; 
 for(int i=0; i<nodes.GetSize(); i++) 
 { 
  outfile<<setprecision(4); 

outfile<<"N, "<<i+1<<", "<<nodes.GetAt(i).x<<", 
"<<nodes.GetAt(i).y<<", "<<nodes.GetAt(i).z<<endl; 

 } 
 
 //Printing Elements 
 outfile<<"!"<<endl<<"! Specify Element type and options"<<endl; 
 outfile<<"ET,1,"<<"SHELL181"<<endl; 
 outfile<<"KEYOPT,1,3,2"<<endl; 
 outfile<<"KEYOPT,1,8,2"<<endl; 
 outfile<<"!"<<endl<<"! Elements"<<endl; 
 for(int i=0,int j=0,int k=0; i<numElements+Unum-2; i++,j++,k++) 
 { 
  if(j > Vnum-2) 
  { 
   i++; 
   j=0; 
  } 
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  outfile<<"SECNUM, "<<k+1<<endl; 
outfile<<"E, "<<i+1<<", "<<i+2<<", "<<i+Vnum+2<<", 
"<<i+Vnum+1<<endl; 

  //Printing properties for that ply 
  outfile<<"!"<<endl<<"! Properties"<<endl; 
  outfile<<"SECTYPE,"<<k+1<<",SHELL"<<endl; 
  outfile<<"! thickness, material and angle"<<endl; 
  for(int j=0; j<Plys.size(); j++) 
  { 
   //only print ply if is a one 
   if(sheetIntersections[k][j]==1) 
   { 
 outfile<<"SECDATA, 

"<<Plys.at(j).PlyProperties.Thickness<<", 
"<<Plys.at(j).PlyProperties.MaterialID<<", " 
<<Plys.at(j).PlyProperties.ply_angle<<endl; 

   } 
  } 
  outfile<<"!"<<endl; 
 } 
 
 //Printing material properties 
 outfile<<"!"<<endl<<"! Materials"<<endl<<"!"<<endl; 
 for(int i=0; i<VecMatProps.size(); i++) 
 { 
  outfile<<"! "<<VecMatProps.at(i).MaterialName.c_str()<<endl; 
 outfile<<"MP,EX,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProps

.at(i).E1<<endl; 
 outfile<<"MP,EY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProps

.at(i).E2<<endl; 
 outfile<<"MP,PRXY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatPro

ps.at(i).v12<<endl; 
 outfile<<"MP,GXY,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl; 
 outfile<<"MP,GYZ,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl; 
 outfile<<"MP,GXZ,"<<VecMatProps.at(i).MaterialID<<","<<VecMatProp

s.at(i).G12<<endl; 
 outfile<<"MP,DENS,"<<VecMatProps.at(i).MaterialID<<","<<VecMatPro

ps.at(i).Density<<endl; 
 } 

return; 
} 

Similar code was written for the implementation of LS-DYNA and NASTRAN but is left to the 

reader to determine.  
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4.4 Optimization 

To establishing a working optimization, programs are needed to automatically generate a 

finite element model and assign boundary conditions to the finite element model.  The program 

to generate the finite element model has already been discussed.  Subsection 4.4.1 will discuss 

the automatic assignment of boundary conditions.  To link the programs together and drive the 

optimization to an optimum, an optimization framework is used and discussed in subsection 

4.4.2.  In addition, a modal analysis optimization of a composite wing is discussed with the 

implemented fitness function.   

4.4.1 Automatic Boundary Conditions for the Finite Element Model 

ANSYS was one of the FEA packages that were used to demonstrate the program’s 

effectiveness.  Applying automatic boundary conditions to the ANSYS finite element model was 

implemented using the ANSYS Parametric Design Language (APDL).  APDL is a scripting 

language that allows users to automate ANSYS with the use of do-loops, if/else statements, and 

other automated ANSYS commands [1].  Scripts can be easily written to automatically load, 

constrain and solve analyses.  An ADPL script was written to automatically set up a modal 

analysis on a cantilevered wing.  This script tells ANSYS what analysis to be performed (in this 

case a modal analysis), automatically constrain one end of the wing in all 6 degrees of freedom 

and specifies which modes to output to a file.  The following example is a script that 

automatically solves a modal analysis of a cantilevered model with a 20x20 mesh density as 

shown in Figure 4-5: 
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/solu 
ANTYPE,2 
MODOPT,SUBSP,10  
EQSLV,FRONT  
MXPAND,10, , ,0  
LUMPM,0  
PSTRES,0 
MODOPT,SUBSP,10,0,0, ,OFF    
RIGID,   
SUBOPT,8,4,14,0,0,ALL    
*SET,NodeNum,1 
*SET, numInc,1 
*SET,NumNodesU,20 
*SET,NumNodesV,20 
*DO, inc, 1, NumNodesV * NumNodesU, numInc 
 d,NodeNum,ux,,,,,uy,uz,rotx,roty,rotz 
 NodeNum = NodeNum + numInc 
*ENDDO 
SOLVE    
FINISH   
 
/POST1   
*DO, i, 1, 10, 1 

Figure 4-5: An ANSYS shell model of 
a cantilever beam 
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 *GET, mode, MODE, i,FREQ 
 /OUTPUT,Modes,txt,,APPEND 
 *VWRITE,i, mode 
 Mode %I: %14.7G 
 /OUTPUT 
 /show,close 
*ENDDO 

4.4.2 Optimization using Isight 

A laminate composite optimization was set up using commercial optimization and 

process flow software called Isight (by SIMULIA).  The objective of the optimization is to drive 

the natural frequencies of the wing away from known keep out frequencies in order to avoid 

resonant conditions.  The design variables of the optimization are the fiber angles of each of the 

plies in the lay-up.  These design variables are put into the Isight software along with the 

objective.  A genetic algorithm is configured to drive the optimum away from the keep out 

frequencies by adjusting the fiber angles of each ply.  The genetic algorithm first assigns random 

values from -90 to 90 degrees to the fiber angles.  Over time the genetic algorithm evolutionarily 

drives these angles to values that make the wing’s natural frequencies as far from the keep out 

frequencies as possible. 

The fitness factor of this optimization is somewhat more complex than just the output 

from the analysis.  Each modal frequency needs to stay as far away from the keep out 

frequencies as possible.  Often when a modal frequency moves away from one frequency range, 

it starts to get closer to another keep-out frequency.  The compromise in this case is to center the 

natural frequency between the two keep-out frequencies.  To do this, the algorithm to determine 

the fitness first finds the distance between each natural frequency and the keep-out frequency.  

The algorithm then finds the difference between each natural frequency and its closest keep-out 

frequency.  The fitness factor becomes the minimum of all these.  The objective of the 
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optimization is to maximize the minimum of all the minimum distances.  The result is the 

optimum design’s modal frequencies will be as far away to any of the keep out frequencies as 

possible.  

 

Figure 4-6: Isight process flow for the laminate composite optimization 

Figure 4-6 shows the process flow for the modal analysis optimization of the laminate 

composite wing described above.  The modal optimization loop is run as many times as is 

needed to get the optimization to converge (possibly hundreds or even thousands of times).  The 

first task in the optimization runs the code to set up the mesh and laminate properties of the 

finite element model.  The next task runs ANSYS with the APDL script to automatically set up 

the constraints, solve the model and output results to a text file.  The third step, Isight takes the 

results from the text file and puts them into Excel.  Excel is pre-programmed to determine the 

goodness of fit of the solution from the results of the optimization.  The fitness result is then 

automatically taken from Excel and put back into the Isight optimization.  
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5 RESULTS 

As stated in chapter 1, the objective of this thesis is to propose and demonstrate methods 

that apply CAD independent algorithms to streamline laminate composite design, analysis and 

optimization in a CAD centric way by accomplishing the following: 

• Automatically create 3D geometry for individual plies in a laminate composite lay-

up for a composite part with complex geometry 

• Streamline the creation of detailed laminate composite finite element models 

• Optimize the composite lay-up for a composite part made of several layers 

Section 5.1 shows the results of the composite design automation tool that automatically creates 

3D geometry for individual plies in a laminate part with complex geometry.  Section 5.2 

discusses the results of the composite analysis automation tool that automatically creates 

laminate finite element models.  Section 5.3 discusses the results of the modal optimization of 

the composite wing. 

5.1 Composite Design Automation 

Laminate visualizations have been successfully created in NX and CATIA using the 

composite automation program described above.  Figure 5-1 shows the results of a simple test of 

the ply geometry creation tool.  These results show the ply geometry that was created 

automatically given this simple outer geometry definition.  This can be seen as the offset surfaces 

shown in Figure 5-1 between the upper and lower surfaces.  This model’s outer surface definition 
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only varies in two dimensions showing that the program can handle offsetting and trimming 

capability in 2D space. 

 

Figure 5-1: A test case showing simple ply geometry created in NX 

The program was also used to successfully create ply lay-up geometry for a part varying 

in 3 dimensions.  This is shown by making the lay-up geometry for a model airplane composite 

vertical stabilizer given an outer surface definition in NX.  Figure 5-2 shows the surface 

definition of the vertical stabilizer loaded in NX and Figure 5-3 shows the NX ply lay-up created 

by the program shown in wireframe view.  This definition is much more difficult to create than 

the first example due to the fact that the outer surface definition varies in all three dimensions.  

Table 5-1 shows the ply table created in Excel that defines the ply properties used create the 

geometry for the ply lay-up.   
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Table 5-1: The ply property table from MS Excel 

Ply Properties      
   (mm) (degrees)   

Ply 
Material 
ID 

Pre-
form Thickness Angle Material Weave 

       
1 1 B 0.5 0 graphite Plain 
2 1 B 0.5 45 graphite Plain 
3 1 B 0.5 -45 graphite Plain 
4 1 B 0.5 90 graphite Plain 
5 1 B 0.5 0 graphite Plain 
6 1 B 0.5 45 graphite Plain 
7 1 B 0.5 -45 graphite Plain 
8 1 B 0.5 90 graphite Plain 
9 1 B 0.5 0 graphite Plain 
10 1 B 0.5 45 graphite Plain 
11 1 B 0.5 -45 graphite Plain 
12 1 B 0.5 90 graphite Plain 
13 1 B 0.5 0 graphite Plain 
14 1 B 0.5 45 graphite Plain 
15 1 B 0.5 -45 graphite Plain 
16 1 B 0.5 90 graphite Plain 

Figure 5-3: Vertical stabilizer ply lay-up  

 

Figure 5-2: Vertical stabilizer loaded in NX  
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To compare the speed of one composite design automation program using CAD 

independent algorithms vs. one using only a CAD API, a significant function is tested for speed 

in NX Open C, CAA RADE and GSNLIB.  The function tested is one of the primary functions 

used in the automated laminate composite design program and is used hundreds of thousands of 

times throughout.  Although this function may not represent the actual computational speed of 

the entire program, it does represent a large portion of the program, and therefore it is a good 

measure of the speed of the entire program.  This function takes in u and v surface parameters as 

input and outputs the Cartesian point on the surface associated with it.  The speed test performed 

calls the function a total of 1,000,000 times on each surface tested.  The test calls the function to 

parse the surface making 1/1000 unit steps in the u direction and 1/1000 steps in the v direction.  

Mathematically this can be shown as parsing through the surface { ( , )S u v } to get a grid of points 

{ ,i jG }: 

10001000

,
1 1

( / 1000, / 1000)i j
i j

G S i j
= =

= ∑∑       (5-1) 

The speed is clocked for each surface test for NX Open C, GSNLib and CAA RADE.  

Table 5-2 shows the resulting times recorded for the each of the tests. 

 

Table 5-2: Test results from speed comparison of NX, GSNLIB and CAA RADE 

Surface Time in NX 
Open C 

Time in GSNLIB Time in CAA 
RADE 

Surface 1 46.766 sec. 1.516 sec. .375 sec. 
Surface 2 47.953 sec. 1.516 sec. .375 sec. 
Surface 3 47.187 sec. 1.578 sec. .390 sec. 
Surface 4 47.719 sec. 1.516 sec. .375 sec. 
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When comparing NX Open C to GSNLib, the test in GSNLib ran about 30 times faster 

than NX Open C.  This is dramatic increase in computational time using GSNLib over NX Open 

C.  The performance of GSNLib and CAA RADE, however, are on the same order of magnitude.  

This is because CAA RADE allows for direct access to CATIA’s geometry kernel, where NX 

Open C operates at a level or two above the geometry kernel. 

The ply definition and analysis files created automatically using the automation program 

written takes a designer less than one minute to run.  In contrast, it takes the designer an 

estimated 40 hours to create the same ply definition if done interactively in a CAD system.  

Therefore, when using this automation program, companies that design laminate composite parts 

will save a significant amount of time and money.  In addition, this program allows designers to 

evaluate several design configurations in the same time it would take to create a single design.  

This allows for superior designs to be created in less time. 

Although this automation process could be programmed using NX Open C, without 

utilizing the CAD independent functions in GSNLib, there are several reasons why using these 

functions in an automation program makes the program superior.  First, the advantages of the 

CAD centric approach including simplified viewing and data storage/transfer are held intact.  

Second, the application is portable enough to “plug” into any commercial CAD system with an 

existing API.  Third, the use of GSNLib functions allows for a 30 times speed increase over the 

NX Open C API.  

5.2 Composite Analysis Automation 

The automated composite finite element tool has been successful in automatically 

creating laminate composite finite element models for ANSYS, NASTRAN and LS-DYNA. 
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Figure 5-4 shows three models of a wing.  The first model is a wing created in NX.  The second 

is a mid-surface shell element model of the wing created by the automated composite finite 

element tool and loaded into ANSYS.  The model has a mesh density of 15x30 and contains 

thirteen, 0.1” lamina at the thickest area.  The third model is the same ANSYS finite element 

model as the second, but it has the lamina thicknesses of the shell elements shown in 3-

dimensions for better visualization.  

 

Figure 5-2: NX Wing, FE shell mesh and FE shell mesh with lamina thicknesses shown 

The major advantage of using the automated composite finite element tool over other 

zone based, automated methods is that the finite element models that it creates more accurately 

represent the laminate lay-up for models with complex topology.  As shown in the far right 

image of Figure 5-4, each element contains its own lay-up.  Each ply in this lay-up is defined 

with some thickness (shown in figure 5-4), fiber angle (not shown) and material properties (also 

not shown).  Because each element has its own ply lay-up, the finite element models can 

represent areas with large variation with more detail than those that are divided into a just a few 

zones, as done in previous methods.  Except for the highly unlikely case where the number of 

zones matches the number of elements in a finite element model, geometrically complex models 

(possibly as simple as the one shown in Figure 5-4 or as complex as Figure 5-5) will be more 
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accurately represented than the models created using a zone based method.  The increased detail 

produced from this tool will yield more accurate analysis results in models with rapidly varying 

geometry (i.e. the model in Figure 5-5) compared to other zone based methods.   

Figure 5-5 shows an example of a more complex topology that was modeled using the 

automated composite finite element tool.  The mesh density is 40x40 nodes and the model 

contains 36 plies that are .01” thick.  Although this example is not an actual part, it is useful to 

show here to demonstrate the complexity of models that can be made using this tool.  Other zone 

based methods would not come close to being able to model this part with as much detail. 

 

 

Figure 5-3: Complex NX Surface, FE shell mesh, FE mesh with thicknesses shown 

There is also an obvious time savings advantage of using this automated approach instead 

of creating a laminate composite model directly in the FEA package.  If a finite element model 

such as the one shown in Figure 5-4 were done manually, it would take a proficient user an 

estimated 40 hours of work.  This is because each of the 450 elements in that model needs to 
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have a unique ply lay-up assigned to it.  Using the automated composite finite element tool, the 

same model takes only a few seconds to create.  

Table 5-3 shows run times of the automated composite finite element tool to create the 

wing model shown in figure 4.  The run time increases approximately linearly with the number 

of total nodes in the model.  As the number of plies in the model increases, the time increases by 

around 50%.  This study shows that even finely meshed models with large numbers of plies can 

be created extremely quickly (under 30 seconds) as compared to manual methods. 

 

Table 5-3: Test results of the speed of the automated composite finite element tool 

Num plies 10x20 nodes 15x30 nodes 30x60 nodes 50x100 nodes 
13 plies 0.281 sec. 0.687 sec. 2.766 sec. 7.609 sec. 
26 plies 0.328 sec. 0.781 sec. 3.172 sec. 8.562 sec. 
52 plies 0.422 sec. 0.969 sec. 4.047 sec. 10.844 sec. 
104 plies 0.609 sec. 1.375 sec. 5.563 sec. 15.281 sec. 
208 plies 0.906 sec. 2.171 sec. 8.67 sec. 24.172 sec. 

 

5.3 Composite Analysis Optimization 

The modal analysis optimization of a laminate composite wing as discussed in subsection 

4.4.2 was successful in driving the modal frequencies away from certain given keep out 

frequencies.  In this optimization the fiber angles of each of the 13 plies were used as the design 

variables and were free to move between -90 and 90 degrees.  The genetic algorithm 

evolutionarily drove these angles to values that resulted in a maximum distance of the closest 

modal frequency to a keep out frequency.  The result was that the first ten modal frequencies of 

the wing were at least 100 Hz away from any of the ten keep out frequencies.  Figure 5-6 shows 

the progression of this optimization as it drove to an optimum design.   
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Figure 5-4: A graph of the genetic algorithm’s progression  
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6 CONCLUSIONS 

Custom applications that directly access a geometry kernel to perform mathematical 

computations will run faster than custom applications that call API functions that operate a level 

or two above the geometry kernel.  This is shown by the fact that applying CAD independent 

algorithms in the creation of custom NX applications allows for the application to be faster 

(roughly 30X) than similar programs written solely in the NX Open C API.  The reason for this 

is the fact that the NX Open C API functions operate at a level or two above the geometry kernel 

and are therefore slower in performing geometrical computation when compared with GSNLib 

and CAA RADE which interface directly with the geometry.  Therefore, integrating a CAD 

independent geometry kernel such as GSNLib with a custom NX application to perform 

geometry calculations can significantly improve run time.  In the same light, making direct calls 

to the NX Parasolid kernel should also significantly improve run time.  In addition, it was shown 

that integrating a CAD independent geometry kernel with a custom CATIA application will not 

generally improve run time because CAA RADE allows direct access to the geometry kernel.  

Therefore, custom applications that directly access a geometry kernel to perform mathematical 

computations will run faster than custom applications that call API functions that operate a level 

above the geometry kernel. 

Utilizing a generic geometry kernel to create custom geometry applications allow those 

applications to be portable between several dissimilar software packages.  Doing this allows the 

custom applications to be run within multiple software packages allowing the application to be 
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written only once, and not rewritten for every individual software package.  It also allows custom 

applications to stay within user familiar software packages, thus keeping the benefits of the 

original software package.  The portability of this method is proven by the fact that the same 

CAD independent code was used in both NX and CATIA for geometry creation, utilizing their 

individual CAD APIs merely for translational purposes.   

The method presented in this thesis to automate laminate composite finite element 

models creates models that are more detailed than those made with zone based methods.  

Because of the greater detail in the model, this method will likely yield more accurate analytical 

results in models with rapidly changing geometry (such as the model shown in Figure 5-5) than 

other similar models created with zones based methods.  This method also allows for the creation 

of a tool that creates laminate composite finite element models within seconds and will save 

engineers, who are doing this manually, dozens of hours of work per model.  In addition, the 

automated composite finite element tool can be integrated into an optimization framework, used 

in conjunction with a method to automatically apply boundary conditions, to create an effective 

optimization of a laminate composite part.   
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6.1 Recommendations 

One current limitation to the automated laminate composite design and analysis methods 

is that the input part geometry is limited to two opposing NURBS surfaces.  A major 

improvement would be to automate the creation of ply lay-ups for parts that are defined with 

more than two NURBS surfaces or with even with a solid model.  This improvement would 

allow for the design and analysis automation to be applied to a larger variety of composite parts.   

Another limitation specifically in the automated laminate composite analysis method is 

that the current method does not account for the drape of layers in the laminate.  For surfaces 

with geometry whose curvature changes in u and v directions, local lamina fiber angles change 

when the lamina is laid down.  This, in turn, changes the directional strength properties of the 

material.  Therefore accounting for the drape of each lamina in the stack improves the analytical 

results.  An improvement to the current method would be the addition of a method that calculates 

the new local fiber angles for each lamina and applies these calculations to the finite element 

model.   
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