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ABSTRACT

Toward the Design of a Statically Balanced Fully Compliant Joint
for use in Haptic Interfaces

Levi. C. Leishman
Department of Mechanical Engineering, BYU

Master of Science

Haptic interfaces are robotic force-feedback devices that give the user a sense of touch as
they interact with virtual or remote environments. These interfaces act as input devices, mapping
the 3-dimensional (3D) motions of the user’s hand into 3D motions in a slave system or simulated
virtual world. A major challenge in haptic interfaces is ensuring that the user’s experience is a real-
istic depiction of the simulated environment. This requires the interface’s design to be such that it
does not hinder the user’s ability to feel the forces present in the environment. This “transparency”
is achieved by minimizing the device’s physical properties (e.g., weight, inertia, friction). The pri-
mary objective of the work is to utilize compliant mechanisms as a means to improve transparency
of a haptic interface.

This thesis presents work toward the design of a fully compliant mechanism that can be
utilized in haptic interfaces as a means to reduce parasitic forces. The approach taken in this work
is to design a series of mechanisms that when combined act as a statically balanced compliant joint
(SBCJ). Simulated and experimental results show that the methods presented here result in a joint
that displays a significant decrease in return-to-home behavior typically observed in compliant
mechanisms. This reduction in the torque needed to displace the joint and the absence of fric-
tion suggest that the joint design is conducive to the methods previously proposed for increasing
transparency in haptic interfaces.

Keywords: compliant mechanisms, static balancing, haptics, prescribed spring deflections, pseudo-
rigid-body model
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Haptic interfaces are force-reflecting devices that provide a sense of touch to users as they

interact with virtual or remote environments. The interface acts as an input device, mapping the

3-dimensional (3D) motions of the user’s hand into 3D motions in a slave system or simulated

virtual world. These devices differ from other computer interfaces in that they have the ability to

empower the user with the sense of touch in the environment they are exploring.

The forces and torques that the interface transmits to the user are produced by actuators

placed on the mechanism with which the user interacts. Figure 1.1 shows a commercially available

haptic interface that has been used in varying applications from surgical robots to video gaming.

These interfaces have become wide spread and effective in improving the user’s experience in

many of the applications in which they are implemented.

Recent advances in computing and control sciences have allowed haptic interface technol-

ogy to be more effectively used in virtual and remote environments. However, many challenges

still limit the technology’s ability to be more widely implemented. One major challenge is to ensure

 

Figure 1.1: Commercial haptic interface used in wide varying fields of applications from gaming
to medical simulations
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that the forces and torques that the user experiences accurately represent interactions with the re-

mote or virtual environment. Forces and torques that deter from the realistic feel of an environment

are seen as parasitic forces and their presence is said to decrease the haptic interface’s transparency

[1, 2]. The transparency of a typical haptic device can be defined as the accuracy with which the

measured forces match the expected forces. It is useful to quantify the transparency GT as the ratio

of the transmitted force to the user, Fm, and the force that the environment experiences [3],

GT =
Fm

Fe
, (1.1)

Fe, where the ideal ratio is one.

How close this ratio is to unity greatly depends on the design and physical parameters of the

haptic interface. For instance, the five-bar haptic interface shown in Fig. 1.2 has a highly varying

force output dependent upon its link lengths, mass, inertia, friction, and actuator dynamics. This

output force,Fm, for the device can be expressed as

Fm = f (m1,m2,m3,m4, I1, I2, I3, I4,L1,L2,L3,L4,b1,b2,b3,Fe) (1.2)

where mi is the mass, Ii is the inertia, Li is the length of a link, and bi is the damping coefficient

in a pivot. This equation illustrates the important role of the interface’s physical design in how the

interface transmits forces. In order to achieve perfect transparency, the effects of all of the phys-

ical parameters in Eq. 1.2 need to be eliminated or compensated in some manner to allow for the

Fe = Fm. One method of doing this is in the control of the haptic interface. These control schemes

require that the parameters are measured or estimated. If perfect estimation of the parameters is

achieved and if the control law compensates for the parameters perfectly, Fe = Fm. However, all of

these parameters require some form of measurement or estimation, which introduces a level of er-

ror into the system. This results in a measured force that differs from the force of the environment,

leading to inaccurate force information being presented to the user.

Forces that greatly contribute to this deterioration of realistic force information being trans-

mitted to the user are friction, the interface’s physical dynamics (weight, inertial forces, compli-

ance), actuator dynamics, and the presence of nonlinear forces as a result of backlash and play

in the device’s bearings and gears. While control schemes have proven useful to counteract the

2



Motors

L1, m1, I1

L2, m2, I2

L4, m4, I4
L3, m3, I3

b3

b1 b2

User interaction point

Figure 1.2: Five-bar mechanism often used as a haptic interface. The user interacts with a sim-
ulated or remote environment through the user interaction point and forces are transmitted to the
user via the motors.

effects of these parasitic forces, it is difficult to accurately model and predict all of the parasitic

forces present in a haptic interface. Thus proper design of the device is critical in achieving an

interface that exhibits realistic representations of the simulated environments.

A recent approach to mitigate the effects of parasitic forces that are present as a result of

bearings in a device is to replace them with compliant mechanisms [3, 4]. This approach removes

friction and the play that is present in bearings. These mechanisms also introduce another parasitic

force as a result of the compliant joint’s restoring torque that is present at any deflected position.

While this force can be accurately modeled and compensated for through control methods, it re-

quires additional torque from the motors to do so and thus decreases the available bandwidth of

the force output of the device.

Another approach used to compensate for parasitic forces in haptic interfaces is to add

additional masses to the mechanism at calculated positions to balance the gravitational forces felt

as a result of the device’s weight [5, 6]. This approach has shown to be successful in creating a

gravity compensated device but displays larger inertial forces as a result of the additional masses.

Another form of static balancing exists that has been influential in reducing inertial forces through

the use of springs to balance the mechanisms. This approach is capable of achieving the same level

3



of gravity compensation as the mass balancing approach, and has proven to be easier to control,

displays less over-shoot, and faster settling time compared to the mass balancing systems [7].

A solution to the total reduction of parasitic forces in haptic interfaces lies in the com-

bination of compliant mechanisms and static balancing. Recently work in the field of Statically

Balanced Compliant Mechanisms (SBCMs) has shown that mechanisms that utilize additional

compliant members can be used to balance or counteract the restoring torques in an existing com-

pliant mechanism so that it displays a statically balanced behavior. Implementing these types of

mechanisms into haptic interfaces would then allow for the benefits of compliant mechanisms to

be inherent in the interface without the drawback of the “return to home behavior”. These SBCMs

promise to solve many of the problems that face improving the transparency of haptic interfaces as

it proves to be a marriage of the two aforementioned approaches already implemented to achieve

this goal. The compliant mechanism eliminates the friction and play due to tolerances and wear

of traditional joints. The balancing work of the springs will remove the drawback of the compli-

ant mechanism’s return to home behavior as well as the gravitational forces that may be present

without the significant increase in inertial forces that accompanies mass balancing.

A generic statically balanced mechanism, of useable size and that could maintain a high

level of off-axis stiffness, may allow for the level of transparency that can be achieved in haptic

interfaces to be greatly increased. The use of SBCMs as a joint could be expanded also into other

areas that could benefit from the static balancing and elimination of friction, including general

robotics, micro-electro-mechanical systems (MEMs), and surgical applications [8].

1.2 Related Work

1.2.1 Design for Transparency in Haptic Interfaces

The design of haptic interfaces is a subset of the field of robotics and thus maintains many

of the same design criteria. However, due to the “human in the loop” control schemes that are

implemented to allow for remote or virtual sensing, there are additional design aspects that must

be given careful consideration.

Remotely controlled (teleoperated) robotic master slave systems have given much insight

into haptic interface design as they often incorporate haptic feedback into these applications. Like

4



haptic interfaces, these systems require a high level of transparency and accuracy so the operator

can perform a task more intuitively. One of the main criteria for such systems is that the position

of the master (in our case the haptic interface) correctly represent the position of the slave (virtual

environment or some remotely operated robotic system) [1, 9]. This is a critical requirement

because improperly represented positions given to the user can be devastating in highly sensitive

environments in which teleoperated technology is implemented such as surgical procedures or

handling of highly sensitive materials/items.

Additional criteria include a minimum workspace, force and position bandwidth, maximum

velocities, accelerations, inertial effects, and gravitational balance of the haptic interface [1,9,10].

Inertial effects and gravitational balance of the device are particularly important because if these

forces are too dominant the user will experience unwanted levels of fatigue. Due to human’s

high sensitivity to small levels of change in force and vibrations (100 Hz -1KHz), the bandwidth,

velocity, and acceleration benchmarks are set so that the interface is capable of rendering such

forces [2].

Improvement of control methodologies and sensing technologies have greatly enhanced

haptic interface performance in responsiveness, stability, and realistic force rendering [2,9,11,12].

One commonly applied approach is to account for damping by integrating a negative damping term

into the control to cancel out any physical damping that is present [2]. However these approaches

rely on estimations of physical parameters that are difficult to estimate and characterize due to non-

linearities (stiction, friction) and changing values of the damping as a result of wear and variable

loading conditions.

Another approach to the design of more transparent haptic interfaces is the optimization

of the robotic mechanism to minimize parameters that have the largest impact on the “feel” of the

mechanism. Mechanisms have been optimized such that their kinematics and the reaction forces

at the joints display minimal friction and inertial effects [13]. Optimization techniques have been

used to optimize linkages so that a larger workspace with improved force response is obtained with

minimal link lengths and masses [14]. Static balancing of the mechanism through the addition of

masses has been used to meet the gravitational balance requirement [5, 6], but unfortunately , this

also increases the inertial effects of the interface.
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A more recent approach taken in improving haptic interface transparency and accuracy is

the implementation of what is termed compliant mechanisms. These mechanisms obtain all or most

of their motion through the compliance of the linkage. Mechanisms that are fully compliant (all

motion is the result of the part’s compliance) display no friction or backlash [15]. O’Modhrain [16]

developed a two-axis haptic mouse that employs flexible linkages; it was found that the flexures

had inherent high resonance structural frequencies that limited the bandwidth of the device’s force

feedback display capabilities. Lawrence [3] used a cable-driven flexible member to act as a fric-

tionless linkage and to generate forces by utilizing its energy storage capabilities. Gillespie [4]

created a 2-DOF pantograph-type haptic device that replaces typical bearings with open-cross rev-

olute (OCR) compliant joints. In both [4] and [3], additional control methods and actuation torques

are required to compensate for the forces generated by the flexed members to achieve transparency

throughout the device’s range of motion.

1.2.2 Design of Statically Balanced Mechanisms

A statically balanced mechanism (SBM) is one that is able to maintain static equilibrium

without applied actuator torques or forces in any given position of the mechanism. The design of

general SBMs has focused primarily on counteracting link weights (gravity compensation) through

use of counterweights, cams, linkages, or springs (also called equilibrators) [8,17,18]. SBMs have

also been developed to maintain equilibrium in the presence of forces and torques arising from

springs or other flexural elements in the mechanism, with the objective of eliminating or lessening

the fraction of the actuator’s effort that is used to overcome the spring forces or torques. This has

also been accomplished using counterweights, cams, linkages, or additional springs [19–22].

In the field of robotics, static balancing via the addition of masses has long been applied to

achieve a level of gravity compensation in order to reduce the output of the actuator needed to drive

the robot. It has been shown that the use of springs can achieve the same balancing without having

as great an effect on the system’s inertia. Gopalswamy [23] explored the use of torsional springs for

gravity compensation, although the approach did not provide perfect balancing. Subsequent work

explored adjustable balancing to account for varying loads and configurations [24]. Carr showed

that spring-balanced systems required less control effort and overall better control performance

compared to mass-balanced systems in response to step inputs [7].
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Recently, work related to the field of statically balanced compliant mechanisms (SBCM)

has brought new mechanism designs that display static balancing and methodologies related to

their design [8,25–31]. The designs for statically balanced mechanisms consist of compliant grip-

pers [8, 31], and concepts for statically balanced MEMs (SB-MEMs) [28]. Approaches for the de-

sign of SBCMs include rigid-body-replacement, building blocks, and structural optimization [30].

A specific area of SBCMs is the design of a statically balanced compliant joint (SBCJ).

These compliant mechanisms approximate the motion of rotary joints and display some range of

static balancing. Jensen [29] created a SBCM that, while not fully compliant, acts as a rotary

joint and displays static balanced behavior over a range of ±60 degrees. The design is compact

and is easily manufacturable. Morsch [25] presented the design of a zero stiffness joint (ZSJ) that

displayed approximately 70% moment reduction and displayed a range of ±30 degrees of static

balancing. However, this design had a footprint of approximately 0.0256 m2 and a width of 0.4

m. While the design displayed acceptable range and balanced behavior, its size greatly prohibits

its use in functional mechanisms. An approach taken for the design of SBCJ’s is to use SBMs as

a starting point [25]. This approach requires the use of non-linear springs to replace the zero-free-

length springs traditionally used in the SBM and work related to that field is presented in Section

1.2.3.

1.2.3 Design of Springs for Prescribed Force/Moment Deflection Responses

The design of springs to achieve desired force-deflection curves is a problem that has been

well defined for specific force-deflections such as constant force or constant spring rate. Theory for

the design of the helical, washer, beam, and constant force springs have been developed into a well

defined science over the last 300 years [32]. The majority of these theories produce springs with

constant spring rates or constant force outputs. The spring’s deflection range is very dependent on

the type of spring that is designed and its undeflected length (free-length). While these designs

are extremely useful, they are unable to meet the needs of applications that require a specific

nonlinear force-deflection response or that have limited physical space available for the spring

with the desired deflection range to be implemented.

The physical space a spring requires is a challenge that can be overcome in many designs

through the use of pulleys and offset springs [18]. The addition of the pulleys and cables that
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attach the spring to the system add friction and compliance that is difficult to quantify. The effects

of a pulley system reduce the overall effectiveness of the spring and are undesirable in precision

applications. There are also many applications in which this method is unfeasible due to challenges

with manufacturing. For example, MEMS provide a special challenge due to their size and method

with which they are manufactured. Many traditional theories for spring design are not easily

transferred to the design of springs to be used in MEMS, and manufacturing MEMS springs based

on traditional theories may be impossible.

Compliant mechanisms have proven useful in spring designs that require small free-lengths

and large deflection ranges [33–37]. The spring designs have been produced using the two leading

design methodologies for compliant mechanisms: the Pseudo-Rigid-Body Model (PRBM) and

structural optimization methods. These approaches have led to the creation of new types of springs

with useful force-deflection relationships, as well as the capability to specify a prescribed force-

deflection response using the structural optimization techniques [36, 37]. While it has been shown

that the Pseudo-Rigid-Body Model can be utilized to design constant force springs [34], little has

been done to outline a methodology that can be used to generate compliant mechanism springs for

any prescribed force-deflection response based on the PRBM.

The capability to optimize a spring for a given force-deflection is apparent in structural opti-

mization methods, and can be completed through the construction of the proper objective function.

Other methods have been presented and have recently been revisited in which optimization routines

are used to design compliant mechanism springs with distributed compliance for prescribed force-

deflection responses. Parkinson [38] presented a parametric approach to the design of compliant

mechanisms using splines as the design elements being analyzed in a finite element analysis (FEA)

package. Compliant mechanism designs that yielded constant force and prescribed path following

were demonstrated. More recently Jutte expanded the idea of using splines as the design element

for a compliant mechanism spring into a methodology for the design of a spring for a prescribed

force-deflection response [36, 37]. The method again used a finite element modeling package to

compute the objective of the optimization but used a genetic algorithm as the optimization routine.

Springs were designed for various force-deflection functions and proved to match the predicted

models with a high level of accuracy.
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Other methods for the design of a prescribed force deflection response have been used and

have yielded designs with rigid segments [26,34,39]. In [34,39] the designs were optimized for a

constant force and were not shown to extend to the design of mechanisms for any prescribed force.

A building block approach was used in [26] to generate a statically balanced mechanism through

the optimization of each element of the design until the output force was zero over the mechanism’s

range of motion. Only in [34] has the PRBM been utilized for the design of a spring for a given

response and did not require the use of a finite element model in the optimization. Rather the

PRBM parameters were the design variables for the optimization and the resulting designs were

able to approximate the desired force-deflection.

1.3 Approach

In the design of general SBMs, including SBCJs, the level of static balancing and the range

of motion over which the mechanism is balanced are highly dependent on the type of springs

and how they are integrated into the mechanism [18]. However, in past research related to the

design of SBCJs, the type of springs and integration geometry were treated separately. In [25]

the spring attachment points and the spring parameters are investigated for a set spring type and

in [29] the optimized spring design resulted in a partially compliant statically balanced joint due

to the integration of two pivot joints into the design. The approach that is presented here relies

on the ability to generate specific designs that result in balancing springs optimized to contribute

the necessary moment about the joint for the specified geometry. Thus through the exploration of

many different compliant spring designs, two specific spring designs can be created that allow for

the balancing of a compliant joint.

To illustrate the approach taken in this work, consider the spring-butterfly mechanism

shown in Fig. 1.3. A statically balanced version of the spring-butterfly requires that the net torque

(MTot) about the pivot is zero as the mechanism moves through the angle θ . If an inherent mo-

ment exists about the pivot (due to pivot compliance or gravity), creating a statically balanced

mechanism requires careful consideration of the connection points of the springs and the springs’

stiffness. Whenever pivot compliance is present, the required stiffness of the springs will be of a

nonlinear nature so that the proper angle-varying moments are exerted about the pivot to maintain

a net moment of zero.
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Figure 1.3: A configuration of the spring butterfly mechanism.

For a fully compliant mechanism, the pivot in Fig. 1.3 is replaced by a compliant joint and

the coil springs are replaced by compliant mechanism springs, as shown in Fig. 1.4. Again, the

springs and spring locations are designed to maintain a total moment of zero about the pivot. For

a compliant spring-butterfly as shown in Fig. 1.4, the total moment about the pivot is

MTot = Tjoint +Msp1 +Msp2, (1.3)

where Tjoint is the moment due to the compliant joint itself, and Msp1 and Msp2 are the angle-

dependent moments about the pivot due to the compliant springs. The nature of Tjoint depends on

the type of compliant joint that is to be balanced. For the joint to be statically balanced, MTot = 0;

the compliant springs must therefore be designed so that Msp1 and Msp2 sum to cancel Tjoint , as

shown in Eq. 1.3. The methods for doing this are presented in Chapter 2.

The steps taken for the design of a SBCJ are as follows.

1. Spring 1 is initially specified to have a linear force-deflection curve given by k ∗ δsp where

k is the stiffness of the desired spring and δ is the spring’s deflection from its free-length.

The endpoints of spring 1 (points A and C) on the SBCJ are chosen so that the distance

between the points is the spring’s free-length when θ = θmax as shown in Fig. 1.5(a) and

Msp1 =−Tjoint when the θ = θmin shown in Fig. 3.2(b).
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Figure 1.4: Concept for a fully compliant spring butterfly mechanism.

2. With points A and C defined, the spring design is generated using an optimization method

that was developed for the generation of spring designs for prescribed loading conditions.

The actual moment modeled by the spring’s PRBM is then used to find the target moment

for the second spring:

Msp2 =−(Tjoint +Msp1). (1.4)

3. The desired moment for the second spring is used as the objective of the optimization and a

design for the second spring is obtained using placements of points B and D so that the joint

is symmetrical. Figure 1.6 demonstrates what the resulting moments are when the spring

designs produce the desired moments.

1.4 Overview of the Pseudo-Rigid-Body Model

The pseudo-rigid-body model (PRBM) was developed as a means in which the motion,

force transmission, and energy storage of compliant mechanisms could be modeled using basic

kinematic analysis principles. The model is based on simple assumptions of the nonlinear de-
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flections of beam type elements, and these assumptions allow for the members undergoing the

nonlinear deflections to be represented by rigid bodies and torsional springs.

A principal assumption upon which the PRBM is based is that some point on the member

undergoing the nonlinear deflections follows a path that is nearly circular. This point then dictates

the length of the rigid link representation of the member and the placement of the torsional spring.

Many PRBMs have been developed for varying elements undergoing large deflections and a list

of basic representations is found in [15], along with the development of the equations associated

with those PRBMs. The compliant mechanism springs designed and implemented in this work

all follow the PRBM for the small length flexural pivot and the development of its model and

calculations is presented here.

1.4.1 Small Length Flexural Pivots

A small length flexural pivot is a type of compliant joint that allows for a link to rotate

about a point via the deflection of a relatively small segment of the link compared to its overall

length. Figure 1.7 depicts a small length flexural pivot, its PRBM and their relative positions in a

deflected state. It has been shown that the link’s end will closely follow a circular path as it deflects

and the center of the circle is located in the middle of the small length flexural pivot [40]. This is

the location of the characteristic pivot in the PRBM and the location at which a torsional spring is

placed. The angle of the PRBM Θ is equal to the angle of the pivots rigid segment and the stiffness

of the torsional spring is expressed as

kT =
EI
l
, (1.5)

where E is the Young’s Modulus of the material used in the pivot, I is the area moment of inertia

of the flexible segment, and l is the length of the small flexible segment. This model for the small

length flexural pivot is most accurate when L >> l [40].

The location of the end of the link can then be found using the parameters of the PRBM.

Eqs. 1.6 and 1.7 describe the location of the horizontal (a) and vertical (b) placements of the links

end location which are defined as
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Figure 1.7: A small-length flexural pivot and its pseudo-rigid-body model.

a = (L+
l
2
)cos(Θ)+

l
2

(1.6)

b = (L+
l
2
)sin(Θ). (1.7)

The stress in the pivot due to the loads applied to the flexure can be expressed in terms of the force

loading.

σmax =
P(a+nb)c

I
− nP

A
(1.8)

where the stress can be expressed in terms of the moment load through

σmax =
6M
wh2 , (1.9)

where h is the height of the beam and w is the in page thickness of the element. M is equal to the

torque generated by the torsional spring at the pivot, which is calculated as

T = ktΘ. (1.10)
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Substituting 1.10 into 1.9 we obtain the following stress equation for the pivot in terms of the

pivot’s stiffness and angle of deflection:

σmax =
6ktΘ

wh2 . (1.11)

This model and the accompanying sets of equations are the basis of the models presented here for

compliant mechanism springs. A more detailed explanation and additional PRBMs can be found

in [15].

1.5 Thesis Overview

The work presented in this thesis describes the progress that has been completed towards

the design of compliant mechanisms, specifically statically balanced compliant joints, for use in

haptic interfaces. The approach taken calls for the design of special compliant mechanism springs

that follow prescribed loading deflection curves. A case study showing this point, the development

of the spring model, the optimization method, and results validating this work are shown in Chapter

2.

Work on the implementation of the spring’s model and optimization routine into a SBCJ

is presented in Chapter 3. A model of the compliant joint is given along with an explanation of

how the optimization is used to create two spring designs, that when combined with the compliant

joint, result in a SBCJ. Results from a prototype SBCJ are given and discussed.
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CHAPTER 2. DESIGN OF COMPLIANT MECHANISM SPRINGS FOR USE IN
STATIC BALANCING

As a preliminary step in developing SBCJs for use in haptic interfaces, a case study on

compliant mechanisms and haptic interfaces was performed. An overview of the case study is given

in Section 2.1, and demonstrates the need for the ability to design compliant mechanism springs for

prescribed loading conditions. The remainder of the chapter describes methods for modeling and

optimizing springs for use in SBCJs. A model of the springs and and the methods for calculating

their outputs in Section 2.2-2.4 is explained in detail, along with examples of their implementation.

The optimization routine that was specially developed for the design of the springs is outlined

in Section 2.5. Prototype spring designs are presented as well as experimental characterization

results, in section 2.6. The chapter concludes with a discussion on the effectiveness of the model

along with its limitations and shortcomings.

2.1 Case study on the Feasibility of Compliant Haptic Interfaces

A device that has the characteristics of perfect static balancing is the spring butterfly [18]

(Fig. 2.1). This device is in static equilibrium for all values of θ if the device includes zero-

free-length springs, meaning that the springs have a length of zero when they are unstretched.

Zero-free-length springs have a force F = kd, where k is the spring rate and d is the total length of

the spring. They differ from typical springs that have a non-zero free length and a force output that

is proportional to the total stretch of the spring.

It can be shown that the spring butterfly is statically balanced in any position by summing

moments about the point O shown in Fig. 2.1. The spring forces are described by the vectors F1

and F2 and can be expressed as

F1 = Kd1
rg1− r1∣∣rg1− r1

∣∣ (2.1)
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Figure 2.1: Spring butterfly shown in the horizontal plane. This mechanism is statically balanced
for any value of θ if the springs are zero-free-length springs.

F2 = Kd2
rg2− r2∣∣rg2− r2

∣∣ , (2.2)

where d1 is the deflection of spring 1, d2 is the deflection of spring 2, r1 and r2 are the locations

of the attachment points of spring 1 and 2 on the pivot link, rg1 and rg2 are the locations of the

attachment points of the springs on the base link. The total moment about O is found from

MO = ∑M = r1×F1 + r2×F2. (2.3)

By substituting Eq. 2.1 and Eq. 2.2 into Eq. 2.3 and completing the cross products results in the

following equation for the moment about O,

MO = 2Kbh[sinθ − sinθ ] = 0. (2.4)

A small haptic interface was designed using the spring butterfly model and compliant mech-

anism springs to test the design of a statically balanced mechanism using compliant parts. The

linear springs shown in Fig. 2.1 were replaced by zero-free-length compliant springs, as shown in

Fig. 2.2.
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Figure 2.2: Schematic diagram of the haptic device with compliant zero-free-length springs.

In the design,the compliant beams shown in Fig. 2.2 can be represented as linear springs

as those shown in Fig. 2.1. Since the compliant members are connected by pins at two endpoints

only, the force generated by flexing the members must act along the line connecting the two joints.

The compliant springs have zero-free length (the beams can close completely), and so, the springs

will always exert tensile forces to attempt to bring the inter-joint distances to zero. Since they are

zero-free-length springs, they may be used in the spring butterfly configuration to result in static

balancing.

Like a linear spring, the forces from these springs are functions of the displacements of

its members. The challenge is to determine the force-deflection relationship for the compliant

members shown in Fig. 2.2. The PRBM approach allows us to determine the force-deflection

relationship by replacing deflection of compliant members by an equivalent rigid body rotation.

The PRBM for the upper half of one of these springs is shown in Fig. 2.3. It consists of a rigid link

attached to ground through a pin joint and torsional spring. The length of the rigid link is 85% of

the length of the compliant member, and the pivot point is located on a cantilevered section whose

length is 15% of the length of the compliant member. As the beam bends, the endpoint closely

follows a circular arc about this pivot for pseudo-rigid-body rotations of Θ≤ 60 degrees, where

Θ = arcsin
d

2Lγ
, (2.5)

and d is the distance between the two ends of the spring, and γ is the characteristic radius factor

(in this case, γ = 0.851244). The equivalent torsional spring resists bending with a spring rate Kt
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Figure 2.3: Pseudo-rigid-body model for a cantilever beam.

calculated from

KT = γKθ

EI
L

(2.6)

where Kθ is the stiffness coefficient (Kθ = 2.6743) for the vertical loading condition shown in

Fig. 2.3 [15]), E is the modulus of elasticity, I is the area moment of inertia, and L is the total

length of the beam.

In the case of the prototype haptic device, each spring is represented as two separate links

that rotate about a common pivot point (see Fig. 2.4). Using the PRBM, the force generated by this

spring is

F =
KtΘ

γLcosΘ
(2.7)

where Θ is found as a function of the total inter-joint deflection of the spring in Eq. 2.5 and Kt is

defined in Eq. 2.6.

Since the haptic interface does not use linear springs, Eq. 2.1, 2.2, and 2.3 must be modified

to account for the more accurate spring forces predicted by the PRBM. To find the magnitude of

the force F required to deflect the springs a distance d, Eq. 2.5 is substituted into Eq. 2.7. After

some trigonometric and algebraic simplifications F is found to be

F =
2Kt arcsin d

2Lγ√
4γ2L2−d2

. (2.8)
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Figure 2.4: Pseudo-rigid-body model for the compliant zero-free-length springs.

Replacing the linear spring force magnitude Kd in Eq. 2.1 and Eq. 2.2 by the PRBM spring

force magnitude defined by Eq. 2.8 yields the spring force vectors

F1 =
2Kt arcsin d1

2Lγ√
4γ2L2−d2

1

rg1− r1∣∣rg1− r1
∣∣ (2.9)

and

F2 =
2Kt arcsin d2

2Lγ√
4γ2L2−d2

2

rg2− r2∣∣rg2− r2
∣∣ . (2.10)

The total moment exerted about O can be calculated by substituting Eq. 2.9 and Eq. 2.10 into

Eq. 2.3, resulting in

MO = 2Kt cosθ(ah+bc)

(
arcsin d2

2Lγ√
4γ2L2−d2

2

−
arcsin d1

2Lγ√
4γ2L2−d2

1

)
(2.11)
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 Figure 2.5: A view of the statically balanced haptic interface.

where a, b, c, and h are defined in Fig. 2.5. The lengths d1 and d2 are found from the magnitude of

the resulting vector of (rg− r) and are defined as

d1 =

√
a2 +b2 + c2 +h2 +2b(hcosθ + csinθ −α)−2a(hsinθ + ccos(θ −α)− hc

a
sinα)

(2.12)

and

d2 =

√
a2 +b2 + c2 +h2 +2b(hcosθ + csin(θ −α))+2a(hsinθ − ccosθ −α− hc

a
sinα).

(2.13)

We can see from Eq. 2.11, Eq. 2.12, and Eq. 2.13 that the mechanism will in fact have a

zero moment when the input link angle α = 0 and the handle angle θ = 0 because at that orientation

the spring lengths are equal (d1 = d2). However in Eq. 2.11 MO is not precisely equal to zero for

all handle angles for the springs used in this device. Fig. 2.6 shows the handle moment MO when

α is held at zero and the handle angle θ is varied. The completed prototype, however, did display

a range of static balancing and can be attributed to the small values of the remaining moments

about O and the presence of friction in the pin joints. This prototype led to the belief that a fully

compliant joint (all motion is obtained through the flexion of the mechanism) could be designed

and constructed.

One major requirement however, is that the compliant springs used as the balancing mem-

bers of the compliant joint need to be specifically designed for such a purpose. These springs
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Figure 2.6: The predicted moment of the compliant haptic interface.

need to be able to follow unique force deflection or torque deflection curves in order to achieve a

functional joint that maintains static balancing over a wide range of motion.

2.2 Spring Pseudo-Rigid-Body Model

Using the pseudo-rigid-body model to design compliant mechanism springs allows the

springs to be analyzed using traditional kinematic relationships and the force and moment out-

put of the mechanism is readily found using either newtonian methods or the principle of virtual

work [15]. The compliant mechanism springs that are utilized in this study employ the use of small

length flexural pivots at each compliant joint to enable the mechanism to obtain its motion. The

PRBM for these mechanisms requires that a torsional spring be placed at the midpoint of the small

length flexural pivots and the stiffness of the spring is given in Eq. 1.5.

For the approach proposed here for the static balancing of a compliant joint, the moment

produced by the balancing springs needs to be modeled so that it can be optimized to generate

the proper spring designs so that the total moment of the joint is zero. PRBM’s for translational

and rotational springs were developed to test the concept of using the PRBM for the springs. The

PRBM for each type of spring is presented here along with a description of the displacement vector

that describes the spring’s deflections.
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Figure 2.7: The PRBM representation of a compliant mechanism spring with 3 rigid links.

2.2.1 Translational Spring

Figure 2.7 shows the PRBM for a spring with 3 rigid links that undergoes a deflection

defined by the displacement z. In the case shown, the displacement vector (z) is defined so that the

end of the spring displaces vertically from its original position. It should be noted that the model

is representative of many different types of compliant mechanism configurations as the PRBM

allows for various elements to replace the rigid links and torsional springs. In this work however,

the springs that are implemented solely utilize small-length flexural pivots.

For every displacement r1 that the spring can be subjected to there is one position that

will have the lowest energy state for the configurations of springs that were investigated. This is

where the links in the spring will reside with only a displacement load applied. For the case of

the three-link spring shown in Fig. 2.7, the spring resembles a four bar mechanism for any given

displacement and will behave as such at each displacement, if the ground link is rigid. The ground

link is defined as r1 and its length is equal to the free length of the spring plus the amount the

spring is displaced. The position of each link in the spring can then be found for any given angle

of r2 in reference to the horizontal plane using Eq. 2.14 - 2.19, where δ ,β ,φ ,λ ,θ1,θ2,θ3, and θ4

are defined in Fig. 2.8 and

δ = (r2
1 + r2

2−2r1r2 cos(θ2−θ1))
1
2 (2.14)
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Figure 2.8: Rigid four link mechanism

β = arccos
r2

1 +δ 2− r2
2

2δ r1
(2.15)

φ = arccos(
r2

3 +δ 2− r2
4

2δ r3
) (2.16)

λ = arccos(
r2

4 +δ 2− r2
3

2δ r4
) (2.17)

θ3 = φ − (β −θ1) (2.18)

θ4 = π−λ − (β −θ1). (2.19)

A more general PRBM for the compliant mechanism spring is shown in Fig. 2.9, where

the number of rigid links in the mechanisms can vary based on the needs of the designer. For this

model, vector loop equations are used to solve for the spring’s configuration for a given deflection.

For the PRBM shown in Fig. 2.9 the vector loop equation can be written as

r1 + r2 + ...+ rN−1 + rN = 0 (2.20)

where each vector is defined as shown in Fig. 2.9. Equation 2.20 constitutes a system of equations

that can be solved to find the spring’s undeflected position and serves as constraints in finding the

spring’s position in deflected positions; the method of doing so will be discussed in Section 2.3.
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Figure 2.9: A generic representation of the PRBM for a force displacement spring.

2.2.2 Torsion Spring

The PRBM for the torsional springs resembles that of the translational springs and is shown

in Fig. 2.10. The two types of springs mainly differ in the displacement that they undergo. For the

torsional springs, the displacement that they experience is constrained to follow some path defined

by the angle φ . As the end of the spring attached to point E is deflected through some angle φ ,

the spring deflects to a new position and exerts a moment (MSp) about the pivot (H) as depicted in

Fig. 2.11.

The position of spring’s links can be found using the PRBM. The joint angles θn, n=1...N,

are found using vector loop equations for the kinematic chain,

r1 + r2 + r3 + ...+ rN−1 + rN = 0 (2.21)

where each vector is defined as shown in Fig. 2.10. Equation 2.21 constitutes a system of equations

that can be solved to find the spring’s undeflected position.

In this study the link angles and lengths were constrained such that the links of the spring

would not initially be co-linear and the rotation of the links would stay within the bounds of the

PRBM. The spring’s undeflected position is defined by specifying N−2 link angles and then using

Eq. 2.21 to solve for the remaining angles. The spring’s link angles at its initial position that are
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Figure 2.10: The PRBM for a generic compliant mechanism spring.
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Figure 2.11: The generic compliant mechanism spring in a deflected position.
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specified are chosen so that if the number of links, N, is four, the angle of the second link (θ2) is

specified, for N = 5, θ2, and θ5 specified, and for N = 6, θ2, θ3,and θ6 are defined. As N increases,

the additional angles that are specified for the un-deflected position are chosen as the next angle

in the kinematic chain from its beginning if an even number of links exist and from the end of the

chain if an odd number of links are in the chain. These angles are represented as a vector ANG

which contains these specified angles for the spring’s un-deflected position. Additionally, the link

length values are represented by a vector R and the torsional spring constants by KT.

2.3 Obtaining Spring’s Positions in Deflected States

In order to find the position of the spring’s links for a given displacement we must search for

the minimum potential energy of the spring at each position. The spring will reside at this minimum

energy position as it serves as the equilibrium point. The approach taken in accomplishing this task

is much like the numerical method presented in [41].

To best describe the method, an example is given for the three-link spring presented in Fig.

2.7. The potential energy of this spring is expressed as

V =
1
2
(KT1(ψ1)

2 +KT2(ψ2)
2 +KT3(ψ3)

2), (2.22)

where

ψ1 = θ1−θ1o

ψ2 = θ2−θ2o− (θ3−θ3o) (2.23)

ψ3 = θ4−θ4o− (θ3−θ3o)

and KT n is the torsional spring constant for the flexible member, θn is the deflected angle and θno is

the undeflected angle of the nth link. The equilibrium configuration is found by solving Eqn. 2.22

for the angle of r2 that results in the lowest potential energy with the given displacement. This is

done numerically by minimizing the potential energy subject to the vector loop equations as the
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constraints. This can be expressed as

F = min
ANG

(V )

sub ject to :
N

∑
n=1

rn = 0.

(2.24)

This minimization occurs at every increment of the displacement to find the spring’s position at

that particular deflection.

For the more general case of the spring’s PRBM, the potential energy may be expressed

as a summation of each torsional spring’s potential energy within the spring. For both the force

displacement and the moment displacement springs the potential energy is defined as

V =
1
2

N

∑
n=1

KTnψn (2.25)

where KTn is the spring constant of the nth spring and ψn is the difference between the original

angle between two links and the current angle of the links at some deflection for the nth torsion

spring.

2.4 Modeling of the Spring’s Force and Moment Output

The output force or moment for the springs for a given displacement is found using the

principle of virtual work. This method utilizes energy methods to solve for conservative forces

acting on a system through the calculation of the virtual work done by a virtual displacement. A

brief review of the principles of virtual work as applied to this the spring’s presented above is given

here.

The virtual work done by an input force Fin over a virtual displacement δz, is equal to the

force applied over that displacement multiplied with the distance and is expressed as

δWF = Fin ·δz. (2.26)
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The virtual work performed by an input moment Min over a virtual rotational displacement δφ is

equal to the moment multiplied by the angle over which it acts and is written as

δWM = Min ·δφ . (2.27)

The virtual work performed by a spring due to the virtual displacement is defined as

δWsp =
∂V
∂q
·δq (2.28)

where V is the potential energy of the spring and q is the generalized coordinate for the system.

The total work in the system is found by then summing all of the work completed in the system.

δWtot = δWM +δWF −δWsp (2.29)

By inserting in the variables for the virtual work from Eqs. 2.27, 2.28,and 2.26 into Eq. 2.29 the

total virtual work performed is found to be

δWtot = Min ·δφ +Fin ·δz− ∂V
∂q

δq. (2.30)

The force output for the system is found from the total work of the system. This is done by setting

Eq. 2.30 equal to zero and solving for the force.

To demonstrate the calculation of the force output of the spring again consider the spring

in Fig. 2.7. First the displacement vector is defined in terms of the generalized coordinate r1. For

this spring, z is equal in magnitude to r1 and can be defined in terms of the spring’s links and link

angles as

z = [0,r2 sinθ2 + r3 sinθ3− r4 sinθ4,0] (2.31)

and the virtual displacement defined by z is then found by differentiating z with respect to the

generalized coordinate (r1).

δz =
[

0,r2 cosθ2
∂θ2

∂ r1
+ r3 cosθ3

∂θ3

∂ r1
− r4 cosθ4

∂θ4

∂ r1
,0
]

δ r1 (2.32)
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To define the work completed by the spring through the virtual displacement z, Eq. (2.22)

is substituted into Eq. 2.28 and the following expression is obtained to define the virtual work of

the spring,

δWsp = (KT1(ψ1)
∂ψ1

∂ r1
+KT2(ψ2)

∂ψ2

∂ r1
+KT3(ψ3)

∂ψ3

∂ r1
) ·δ r1. (2.33)

With the work performed the spring and the virtual displacement defined the remain-

ing unknown is the force required to maintain the displacement. This is found by substituting

Eq. 2.26, 2.32, and 2.33 into Eq. 2.29 and recognizing that δWM =0. The total work is set to zero

and the force is found to be

Fin =
(KT1(ψ1)

∂ψ1
∂ r1

+KT2(ψ2)
∂ψ2
∂ r1

+KT3(ψ3)
∂ψ3
∂ r1

)

(−r2 sinθ2
∂θ2
∂ r1
− r3 sinθ3

∂θ3
∂ r1

+ r4 sinθ4
∂θ4
∂ r1

)
. (2.34)

This expression describes the force required to deflect the three-link spring any given displacement

as it is defined in Eq. 2.31 as long as it does not plastically deform any flexible member of the

spring. The angles used to find the forces are those found using the minimization of potential

energy to find the position of the spring.

The approach for a torsional spring is similar and simplifies to the expression that the

moment required to deflect the spring is

Msp =−
∂V
∂φ

. (2.35)

where φ is the angle through which the spring is deflected about the pivot point H as shown

in Figs. 2.10 and 2.11. The derivatives in all of the equations can be found numerically, using

Taylor series approximations of the derivatives. For the work completed here the derivatives were

calculated using a central difference approximation utilizing the first two terms of the Taylor series

[42] and can be expressed as

f ′i =
− fi+2 +8 fi+1− fi−1 + fi−2

12(h)
, (2.36)

where h is the step size of the the data set being differentiated.
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2.5 Optimization of the Springs for Prescribed Force or Moment

In the previous section the method of finding the required force or moment to displace a

compliant mechanism spring was outlined. With these models in place they can be manipulated

so that the designs result in a loading displacement that follows a desired or prescribed curve. The

manipulation occurs in the form of an optimization routine that searches the design space of the

spring and finds a design that best produces the desired characteristics. The capability to generate

these “optimal” designs will aide in the end goal of this work in designing springs that can be used

as equilibrators on a compliant joint to obtain a statically balanced compliant joint.

The spring’s design space is a complex high degree of freedom system. The order of the

system is directly related to the number of parameters that are used as design variables. The number

of design parameters is directly related to the number of links that are in the spring design and are

represented by the variables ANG, R, and KT. For instance the spring with three-links will have 8

design variables (1 link angle, 3 link lengths, 4 torsional spring constants) following the definition

of the spring parameters given previously, making it an 8 degree of freedom system. The number

of design variables can be quantified as

#DesignVariables = 3(#RigidLinks−1)+2 (2.37)

Additional complexity is added to the system due to the kinematic relationships that the

design is required to follow and that small perturbations (i.e. in link lengths) may turn an excellent

design into an infeasible one (can not be assembled if vector loop constraint is not exactly equal

to zero). This complex nature of the design space does not allow for easy location of the optimal

designs of a spring for a given objective using gradient based optimizations. Also, the complexity

makes it difficult to specify feasible starting points for the gradient based methods. Methods that

are used to aide in the exploration of such complex design spaces include the usage of a genetic

algorithm.

Genetic algorithms (GA) are designed so that they allow for multiple designs to evolve

and compete for selection as the optimal design. The algorithm is patterned after the evolutionary

theories used in the life sciences and is dependent upon random processes. Each GA is unique
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Figure 2.12: Structure of the chromosome for the genetic algorithm. A-K denote the genes of the
chromosome and the genes marked by ANG, R, or KT denote the gene comes from that parameter
set.

and is designed around the objective of the optimization. Penalty functions are often employed as

means to constrain or penalize the designs for undesirable attributes.

In the creation of a GA, one must first specify the parameters of the optimization. These

parameters become the genes of the design. All of the genes of a design are ordered and placed

in an array-like structure known as a chromosome. Figure 2.12 depicts the structure of the chro-

mosomes used in the optimization of the spring designs for a prescribed loading response. ANG,

R, and KT are arrays that carry the parameters of the spring’s design as defined previously and

the chromosomes grow in length as those parameters increase in size to define springs with higher

number of link lengths.

To start the process, a specified number of designs are randomly generated and their objec-

tive value is calculated. These designs constitute the population of the first generation of the GA

(see Fig. 2.13). These designs can be for any number of link spring. Next the designs go through

some level of competition to see which designs will become the parents of the next generation. In

the work presented here each member of the population is ranked, with the lowest objective value

being ranked a one. The top 25% of the designs in the population are selected to be the parents of

the next generation.

The next generation, or the children of the first generation, can be created using various

methods. For the work presented here, the methods used are crossover or mutation of the parent’s

genes. One parent produces three children through these functions. Both of these functions rely

on a threshold value (termed crossover or mutation rate) that triggers if the two functions will take

place. If none of the thresholds are met through random number selection an exact copy of the

parent is produced. A randomly generated number is presented and compared to the crossover of
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Figure 2.13: A flow chart for the genetic algorithm implemented in the search for spring designs
that followed a target loading deflection path.

mutation rates, if the random number is greater than the threshold for a function, the function does

not occur. If it is lower, the algorithm begins to calculate which genes to crossover or mutate and

the extent of the mutation. Mutation is a random perturbation of the current value of the gene and

cross over consists of switching the location of various genes that are of the same type (genes from

R only crossover with R genes)

Table 2.1 shows the differing crossover and mutation rates used for the parameters. It was

observed that the algorithm did not perform well with high crossover rates. It was seen that the

crossover function typically resulted in designs that were worse in performance, or more com-

monly, unable to be assembled.

For each parent in a generation, three children were produced. The parents for the next

generation are then chosen from the children and the parents. By including the parents from the

previous generation a form of elitism is utilized. The process of selecting the next set of parents is

that the parent and its children compete against each other and the best of the four designs (1 parent
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Table 2.1: Mutation and Crossover Rates for the Genetic Algorithm

Rate ANG R KT
Crossover 0.05 0.05 0.05
Mutation 0.4 0.4 0.6

and 3 children) is chosen as one of the parents in the following generation. This competition occurs

for each set of parents and children. The entire process is then iterated for as many generations as

is specified.

With each generation of the GA the chromosomes are compared against the bounds of the

optimization that are set to limit the size and types of spring configurations that where considered.

This is to exclude designs that have links that are initially co-linear or that result in links that cross

over other links to the extent the mechanism could no longer result in a planar prototype. The

parameters that are outside of the bounds are set to be the value of the closest bound. After the

completion of the GA the best design is sent to a gradient based optimization to further explore

the design space around the GA design. In this sense the GA acts as a filter to the gradient based

search, excluding infeasible or poor designs from being a starting point to the optimization.

2.5.1 Optimization Objective Function

The primary objective of the optimization is to minimize the error in the loading-deflection

curve of the proposed spring design when compared to the target values. Additional cost functions

are added to ensure that the generated spring designs are feasible for manufacturing, functionality,

and that the design stays within the limitations of the model that is being optimized. Thus the

objective function for the optimization consists of a loading-deflection error function, an assembly

cost function, a PRBM limitation cost function, and a stress cost function. It can be defined as

Fob j = min
ANG,R,KT

(EPO +EACF +ELCF +ESL) (2.38)

where ANG, R, and KT represent the bounds on the input angles, link lengths, and torsional spring

rates for a given spring design. Each individual cost function is outlined in the following sections.
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Prescribed Output Error Function

After a spring design’s motion is characterized for the deflection it will undergo, its force

or moment output is calculated for each given displacement using Eq. 2.30. The error function is

then calculated by taking the absolute value of the difference between the desired and actual output

of the spring at a given displacement and summing it for each point on the target force-deflection

or moment-rotation;

EPO =
m

∑
i=1
|Pdesi−Pini|, (2.39)

where m is the number of target points specified in the supplied target force-deflection and P is the

output of the spring. It should be pointed out that the number of control targets will greatly affect

how well the algorithm is able to match the desired output. If the user supplies too few points for

a simple function there is a possibility that the algorithm will generate spring designs that exactly

pass through the target points but do not behave favorably between those points. Thus the designer

must supply a sufficient number of points to adequately define the shape of the force-deflection

curve so that the algorithm is constrained to find designs that better approximate the target curve

between points with more accuracy.

Assembly Cost Function

Due to the randomly generated designs within the genetic algorithm, there is a possibility

that certain designs will not be possible to assemble. Also, certain combinations of link lengths

will result in a spring design that will not be able to undergo the desired displacements. In these

instances the equations used to define the spring’s kinematics begin to be unsolvable, and the

minimization in Eq. 2.24 does not converge. In order to avoid such designs the Assembly Cost

Function (ACF) is implemented to penalize designs that are impossible to assemble or unable

to undergo the required displacements (spring’s link lengths are long enough to reach maximum

deflection). This function checks if the design does not meet the necessary criteria and assigns a

large penalty for the spring design. If either condition is met, the penalty is assessed; otherwise,

EACF is set to zero.
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Pseudo-Rigid-Body Model Limitation Cost Function

The PRBM cost function was implemented to ensure that the proposed designs stayed

within the limits of the PRBM. According to [15] every Pseudo-Rigid-Body Model is only ac-

curate for deflections less than a certain angle. To account for this a cost function was created

that penalized designs that required the PRBM for the spring to have its flexible elements undergo

deflections that are outside of the models accuracy limits. For this function the maximum deflec-

tion for each joint is found and compared to the limits of the PRBM. If the maximum deflection

exceeds the maximum allowable angle of deflection (θmax) the design is penalized proportional to

the amount in which each joint angle is greater than θmax. If the joint experiences deflections less

than θmax, its cost value is set to zero. The PRBM Limitation Cost Function (LCF) is thus defined

as

ELCF = Λ

n

∑
i=1

(max(ψi)−θmax) (2.40)

where n is the number of joints in the spring design, ψi is the difference between the original angle

between two links and the current angle of the links at some deflection for the ith torsion spring,

and Λ is used to weight the function to the level desirable to the designer. The larger the value

assigned to Λ results in a greater cost for the spring’s design that exceeds these limits.

Stress Limiting Cost Function

A penalty function was created to penalize designs that required the flexible segments of

the spring to experience stress levels that are higher than some percentage of the materials yield

strength (Y S). To describe this function we look at the bending stress in a beam which can be

expressed as

σmax =
6M
wh2 . (2.41)

This stress equation can be expanded in terms of the PRBM parameters and written as

σmax =
6ktΘ

wh2 , (2.42)

where kt = EI/l for a small-length flexural pivot, which is the flexure type used in the spring. If

we expand Eq. 2.42 using the defined values for the small-length flexural pivots and simplify, we
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obtain the following expression for the maximum stress in the flexure

σmax =
EhΘ

2l
(2.43)

Examining Eq. 2.43 it becomes apparent that all values of the equation are known except

h (thickness of the flexure) and L (length of the flexure). The stress could be easily found if these

values were arbitrarily assigned and compared to the stress limit. However this leaves the designer

little flexibility in the design of the flexure. The method implemented here is to calculate the stress

of the flexure for multiple thicknesses with the length of the flexure set to 0.1L (L being the length

of the rigid link). All of the smallest stress values for each flexure are then compared to the stress

limit

Si = σ −ζY S, (2.44)

where σmin denotes the lowest stress calculated for the ith flexure using the different thicknesses

and ζ is a variable used to scale the yield stress to the desired stress limit. If any S is less than one

the value for S is set to zero. Then the stress limiting cost function ESL is calculated by summing

the values in S:

ESL =
n

∑
i=1

Si. (2.45)

2.6 Testing and Validation

The spring’s PRBM proved to be accurate for the modeling of these force and torque out-

puts of the springs. To test the accuracy of the PRBM various prototype springs were manufactured

out of polypropylene. Figure 2.14 shows the predicted moment response of a spring that was mod-

eled using the PRBM method presented here and was constrained to follow a circular path but was

not optimized for a specific moment-deflection response. The experimental data taken was taken

from the spring shown in Fig. 2.15. Additionally, finite element modeling (FEM) results for the

spring are shown. Overall the model is able to predict the shape and magnitude of the spring’s

moment response well and more accurate modeling is to be expected when using materials with a

more linear elasticity. These results allow for confidence that the spring’s PRBM would allow for

accurate modeling of balancing springs for a statically balanced compliant joint.
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Figure 2.14: The moment response of a compliant mechanism spring designed to follow a circular
path.

 

Figure 2.15: A prototype spring designed to follow a circular input path.

Using the the optimization method outlined, spring designs for force displacement and

moment displacement springs were generated. The force displacement springs were prototyped

and tested for their force response due to a translational displacement on the input point. One

spring design is for a three-link spring with a target force-deflection curve that resembles that of

a second order spring function defined as F = Kx2. A four-link design was tested with a target

function of a spring with a constant spring rate so that F = Kx. The final spring design was

generated with a target force-deflection for a zero-free length (ZFL) spring. A ZFL spring is a

classification of a linear spring that has a force output proportional to its entire length, meaning that

it has no physical length when undeflected. Every spring was manufactured out of a polypropylene
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Figure 2.16: The experimental setup for the testing for the spring’s force deflection response.

sheet with thickness of 0.00627 m. The designs were tested using a 5 lb load cell mounted on a

linear actuator with a position transducer situated on a level counter top as shown in Fig. 2.16. The

springs were pulled at a rate of 0.0005 m/s to approximate static displacements. Position and force

data were recorded using LabVIEW.

Figure 2.17 shows the response of the three-link spring modeled to be a parabolic spring,

and the prototype is shown in Fig. 2.18. Figure 2.19 shows the response for the linear spring in

Fig. 2.20. Figure 2.21 displays the results of a compliant mechanism approximating a ZFL spring

which is shown in Fig. 2.22. In all of the plots for the force deflection springs it is seen that the

magnitude of the springs’ responses is less upon their return to their free-length. This is due to the

hysteretic behavior of polypropylene. In the case of the three-link spring with a parabolic force-

deflection curve in Fig. 2.17 it is seen that the hysteresis is not as prominent. This is due to the low

stresses that occurred in this particular spring through its displacement. While each spring displays

a high error in their approximations, the shape of the target force-deflection curves are apparent.

Table 2.2 displays the specified input angle(s) (ANG), pseudo-rigid link lengths (r), and the spring

constants (KT) for the springs.

The penalty on spring stresses implemented into the optimization routine proved to be use-

ful in resulting in spring designs that displayed stresses below the specified stress limit. However,

at times the resulting designs required that the width of the flexure be extremely large, or small

to meet the stress requirement. These designs can often still be implemented as they are, or by

the changing of the length and height of the flexure. This is a limitation in the method in which
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Table 2.2: Parameters for Prototype Translational Springs

SpringType ANG(rad) R KT
Link Lengths(m) Sp. Const.(Nm

rad )

F = Kx2 pi 0.045,0.045, 0.2257,0.0285,
0.0545 0.08225

F = K∆x 3.393, 0.0414,0.0529, 0.0845,0.0225,
2.753 0.0532, 0.0451 0.134,0.2274,0.009

F = Kx pi 0.05,0.01, 0.01366,0.45,
0.0935 0.394
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Figure 2.17: Predicted and measured response of a three-link spring designed to display a parabolic
force deflection.

 

Figure 2.18: Prototype spring designed to approximate a parabolic spring function.
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Figure 2.19: Predicted and measured response of a three-link spring designed to display a constant
spring rate.

 

Figure 2.20: Prototype spring designed to approximate a spring with a constant spring rate.

the springs stresses are estimated in the optimization and is potentially a limiting factor to the

usefulness of the optimization.

Some of the error in the spring’s responses can be attributed to the assumptions made while

using the PRBM. The model used in this work assumed that the compressive and tensile loads

were such that they do not alter the path that the flexible members follow as they are deformed.

The effect of the reaction forces at the pseudo joints may alter the position of the link lengths

and the energy stored in the spring. If these forces cause additional deflection of the elements the

spring’s equilibrium position would change from that which is predicted by the model presented

here and affect the accuracy of the force or moment output prediction.
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Figure 2.21: Predicted and measured response of a three-link spring designed to approximate a
zero-free-length spring.

 

Figure 2.22: Prototype spring designed to approximate a zero-free-length spring.

This method of compliant spring design is accompanied with many limitations, but if used

properly it can be a powerful tool in the design of compliant mechanisms. First, the concentrated

areas of compliance constituting the torsional springs greatly limit the springs design for an ex-

tended range of motion. This is due not only to the PRBM’s limitation on the angle of deflection

for a flexible member, but also the amount of stress the area experiences. The high stresses that

are seen for the springs contribute to the method’s limitation in producing higher force or mo-

ment springs with a large range of deflection. There are many elements within the PRBM that

can be used to reduce this effect (long flexible beams instead of small-length-flexural pivots), but

these elements do not guarantee a sufficient reduction in stress throughout the spring design to see
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significant increase in the magnitude of the spring’s output. Additionally, they may add to the inac-

curacy of the model due to the nature of their differing behavior under different loading conditions

as described in [15] . While more springs can be implemented to overcome these limitations, the

complexity of the model increases for each additional joint.

By using a genetic algorithm to initially explore the design space for the spring many local

minima are avoided in the optimization search. However with a design space that has as many

variables as these springs contain, it is difficult to ensure a better solution is not achievable. The

method as presented performs consistently in generating spring designs that closely approximate

a target force-deflection or moment-deflection responses, with the limitations as stated previously,

but still has the ability to fall into a local minimum and be unable to climb out to find a more

feasible solution. This is in great part due to the complexity of the design space and the objective

function that is presented in this work.

The results presented here support that the PRBM for the springs developed above is a suit-

able method for modeling compliant mechanism springs and their output behavior. Additionally

the capability of the optimization routine to search the design space for springs with designs that

produce the desired output response is displayed. This data supports the idea that springs can be

designed for target outputs and that the outputs can then be crafted so that the resulting designs can

be combined with one another and a compliant joint, resulting in a statically balanced mechanism

that can be accurately modeled.
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CHAPTER 3. DESIGN OF STATICALLY BALANCED COMPLIANT JOINTS (SBCJ)

The spring models and optimization routine are the tools that allow for the design of a

SBCJ. The work discussed in the previous chapter is what allows for the joint design to incorporate

balancing springs with non-linear loading conditions. It does this by providing approximations of

the spring’s motion and force/moment output that can be used to achieve the criteria necessary to

balance a compliant joint. In this chapter the process by which the SBCJ is designed and how it

utilizes the spring optimization methods is presented.

The core of the science of static balancing of mechanisms is the energy levels seen in the

system. To maintain a statically balanced state, the energy level in the system needs to be con-

stant, meaning that no energy needs to be added into the system to maintain a particular position.

This state of static balancing can be seen as a neutrally stable equilibrium point that extends over

the range of motion of the mechanism. Approaches to achieve this constant energy state include

working directly with energy in the system, or looking at a newtonian approach where forces and

moments acting within the system must be equal to zero over the range of desired static balancing.

These two approaches can be applied at a system level or on a component level where individual

components are made to compliment each other.

In this work a building block, or piece by piece, approach is taken to design a SBCJ. Here

the joint itself is considered and modeled and based on that model two balancing springs are de-

signed so that the entire joint is predicted to display a level of static balancing. The following

sections outline the models and methods used in this design procedure that results in a fully com-

pliant statically balanced mechanism that approximates the motion of a rotary joint.

3.1 Model of Compliant Joint and Balancing Equilibrators

The approach taken to achieve a statically balanced compliant joint is based on selecting

multiple parameters of the joint design. These include the location of attachment points of the
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Figure 3.1: Concept for a fully compliant spring butterfly mechanism

spring to the compliant joint that is being balanced. These attachment points define how the spring

deflects and the magnitude of the deflection. Also the type of springs implemented in the design

of a SBCJ plays a large role. Depending on the type of springs used the designer can be limited to

a very small range of attachment points that will result in a SBCJ. By being able to design springs

that display moment displacements that will add the necessary energy to the joint to cancel the

energy stored in a compliant joint, the criteria of the spring attachment points is less constricted.

This capability allows for the spring design to conform to the joint design. The energy that the

springs must add can be calculated by investigating the moments present in the compliant joint, as

they relate directly to the energy stored in torsional springs. To maintain a state of static balancing

the moments exerted on and output from the compliant joint must sum to zero at every point over

the desired range. For a compliant spring-butterfly as shown in Fig. 3.1, the moment equation is

given by

MTot = Tjoint +Msp1 +Msp2 = 0, (3.1)

where Tjoint is defined by the type of compliant joint that is implemented, and Msp1 and Msp2 are

the moments produced by the balancing springs, which are found using the method presented in

Chapter 2.
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The steps taken for the design of a SBCJ are as follows.

1. The stiffness of the uncompensated joint is modeled and its motion is quantified. In this case

a four-bar model of the cross-axis flexural pivot (CAFP) is implemented to predict the joint’s

motion and its stiffness.

2. Spring 1 is initially specified to have a linear force-deflection curve given by k ∗ δsp. The

endpoints of spring 1 (points A and C) on the SBCJ are chosen so that the distance between

the points is the spring’s free-length when θ = θmax as shown in Fig. 1.5(a) and Msp1 =

−Tjoint when the θ = θmin shown in Fig. 3.2(b).

3. With points A and C defined, the spring design is generated using an optimization method

that was developed for the generation of spring designs for prescribed loading conditions.

The actual moment modeled by the spring’s PRBM is then used to find the target moment

for the second spring

Msp2 =−(Tjoint +Msp1). (3.2)

4. The desired moment for the second spring is used as the objective of the optimization and a

design for the second spring is obtained using placements of points B and D so that the joint

is symmetrical. Figure 1.6 demonstrates what the resulting moments are when the spring

designs produce the desired moments.

For this approach accurate models of the compliant joint and the compliant springs are

necessary. The compliant joint chosen for the design is the (CAFP) due to its reportedly good

off-axis stiffness, and the existence of a detailed model [43].

3.1.1 Cross-Axis Flexural Pivot

The cross-axis flexural pivot is a compliant joint that obtains its motion through the deflec-

tion of thin cross members as shown in Fig. 3.3. Previous work has shown that the motion and

stiffness of the CAFP can be accurately approximated through the PRBM and FEM approaches

[43, 44]. Jensen [43] presented two models of the CAFP that approximated the joint’s characteris-

tics. A pin joint model is presented that proves to be able to predict the joint’s stiffness well over
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Figure 3.2: Spring 1 attachment on the compliant joint. (a) Attachment position of the undeflected
spring 1. (b) Position of the maximum deflection for spring 1

Figure 3.3: A view of a typical configuration of the cross-axis flexural pivot.

a range of ± 60 degrees. The four-bar model presented by Jensen predicted the stiffness of the

CAFP and also its motion very well compared to FEM and experimental results. This four-bar

model is the model used to define the joint’s stiffness and the path that the attachment points (A,

B, C, and D in Fig. 1.5) of the balancing springs will follow in the SBCJ.
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Figure 3.4: The four-bar model for the cross-axis flexural pivot for one direction of rotation.

The four-bar PRBM for the CAFP in Fig. 3.4(b) is a representation for the joint’s deflection

due to a positive rotation of the coupler link (r3). The model is to be mirrored for the other half

of the joints motion. However, due to symmetry of the joint, the stiffness and motion of the joint

for one direction will be representative of its motion for the other. The path that the coupler link

follows is found by solving the kinematic equations for the four-bar with the coupler link being the

input link. The path of the center of the coupler link is presented in Fig. 3.5. It can be seen that

the coupler’s path approximates a circle for a good range of the joint’s motion. However for this

implementation of a SBCJ the attachment points of the springs are not guaranteed to be attached

in the midpoint of the coupler link. Rather for the prototype presented in the following sections an

attachment point that is 0.02 m off the Y axis and 0.0395 m off the X axis of the undeflected joint

as shown defined in Fig. 3.4is implemented. The path that point A follows is shown in Fig. 3.6

along with the path that shows what a circular path of a pin joint would be. It is clearly shown that

the path that the springs will follow is not a circular path and that this deviation from a circular path

is sufficient enough that the path must be accurately modeled and accounted for when designing

the balancing springs for the SBCJ.
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Figure 3.5: The path of point P on the coupler link of the CAFP compared to a pin joint.

−0.04 −0.02 0 0.02 0.04
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Position of point A in X of SBCJ(m)

P
os

iti
on

 p
oi

nt
 A

 in
 Y

 o
f S

B
C

J 
(m

)

 

 

CAFP
Pin Joint

Figure 3.6: The path of point A on the SBCJ based on the motion of the CAFP compared to a pin
joint.

The stiffness of the joint is found through the principle of virtual work and the moment

required to deflect the joint to a given angle is given by

M = T2 +T3− (T1 +T2)
r3 sin(θ3−θ4)

r2 sin(θ4−θ2)
− (T3 +T4)

r3 sin(θ3−θ2)

r2 sin(θ4−θ2)
, (3.3)
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Table 3.1: Parameters for the Cross-Axis Flexural Pivot

CAFP Parameter
n 1
l 2.5 cm
w 1.77 cm

flexure 0.00762 cm
thickness

where

T1 = K(θ1−θ1o)

T2 = K(θ2−θ2o−θ3 +θ3o) (3.4)

T3 = K(θ4−θ4o−θ3 +θ3o)

T4 = K(θ4−θ4o)

and the “o” subscript denotes that they are the undeflected values of the angles of the four-bar. K

is calculated using the equation

K = γKθ , f b
EI
l
, (3.5)

where Kθ , f b is found using a curve fit data set. For this study the flexures are set at perpendicular

angles to one another, and the value of Kθ , f b was found to be 2.2838. Using these equations, a

pivot was designed using 1095 tempered spring steel for the flexures. The parameters for the pivot

are given in Table 3.1.

Presented here is an overview of the motion and stiffness of the CAFP and how it affects the

design of a SBCJ. This section shows the detail that must be given to the compliant joint modeling

in order to be able to design balancing springs to the proper level of accuracy so that the entire

assembly of a compliant joint and the balancing springs results in a statically balanced compliant

mechanism.
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Table 3.2: Spring Attachment Points on the Cross-Axis Flexural Pivot

Attachment Point X Y
A -0.02 0.0395
B 0.02 0.0395
C -0.02 -0.0395
D 0.02 -0.0395

3.1.2 Balancing Springs

The moment that the balancing springs need to collectively apply to the joint must exactly

equal the negative value of the moment required to hold the compliant pivot in place. There are

countless combinations of the two spring moments that can result in the cancelation of the restoring

torque of the pivot, and choosing a good starting point for the spring optimization proves to be a

challenge. Rather than beginning with a wide open field of possible moment displacement curves,

the approach taken here is to initially specify the desired moment for the first spring. This is done

according to the steps outlined in the beginning of this chapter relating to the specification of the

desired moment response and the location of the spring attachments.

The locations of the spring’s attachment points on the CAFP that result in the desired

target moment for the first balancing spring are found in Table 3.2. Using these values to model

the spring’s path and displacements, the spring optimization process is completed. Figure 3.7

shows the steps taken in the optimization of the two springs to achieve static balancing. As shown

in Fig. 3.7 the desired moment for the first spring is used as the objective of the optimization

routine explained in Chapter 2. Upon its completion, the desired moment for the second spring is

calculated using

Msp2 =−(Tjoint +Msp1). (3.6)

Msp2 is then used as the objective of the optimization for the second spring. At this point a joint

design is obtained that, based on the performance of the two optimizations, displays a level of

static balancing. Realizing that the use of the genetic algorithm in the optimization process does

not guarantee the best design to be found, this process is iterated. However, in the subsequent

iterations of the optimization, the desired moment curves for each spring are calculated using the
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Figure 3.7: A flow chart for the process in which the design for a SBCJ is obtained.

latest design iteration of the opposing balancing spring and the compliant joint. Figure 3.7 shows

the process of the optimization of the entire joint. In the uppermost block of Fig. 3.7 the desired

moment is calculated for the first spring as described in the opening of this chapter. In the following

iterations the desired moment is calculated for the first spring using Eq. 3.7

Msp1 =−(Tjoint +Msp2). (3.7)

In Eq. 3.6 and 3.7 the values of Msp1 and Msp2 are those which are calculated for the most recently

found spring design for the balancers.

Additionally, the genetic algorithm is supplied with the previous design for that spring from

the previous iteration as one of the members of the population in the first generation of the genetic

algorithm. By supplying the previous design it allows the genetic algorithm to further evolve

that design into a more optimal solution in the following iterations. This process was repeated 5

times. This number of iterations was chosen because it was observed that the designs tended to

converge after the fifth iteration. By using the CAFP, the springs that are generated will not follow
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a perfectly circular path. To account for this, the path of the spring shown in Fig. 3.8 is modeled

for every angle of θ and is passed to the optimization as the end points of r1. With these values

supplied to the spring optimization algorithm, the non-circular path is properly represented in the

minimization of potential energy (Eq. 2.24) that is used to characterize the spring’s position.

3.2 Prototype Design

The joint optimization was performed multiple times in an effort to explore more of the

joint’s design space. From the results that were obtained, the design that resulted in the best com-

bination of the joint’s balancing and the levels of stress in the springs was chosen and prototyped.

The configurations for the two balancing springs chosen for the design are shown in Fig. 3.9, where

points A, B, C, and D correspond to the locations shown in Figs. 3.1 and 3.4. A list of parameters

for the spring designs is found in Table 3.3. The candidates not chosen for the final design typically

had similar configurations to the springs shown here but with differing link lengths or had one less

link. These designs were not chosen for a variety of reasons. These included the range over which
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Figure 3.9: Two configurations of the balancing springs. (a) Undeflected spring 1 and (b) represents
undeflected spring 2.

Table 3.3: Parameters for the Balancing Springs in the SBCJ

Spring ANG R KT
(rad) (cm) Sp. Const.(Nm

rad )

1 -2.057, 0, 4.5, 4.25, 0.0375,0.055,
pi/2, -0.1963, 4.25, 4.22, 0.0276,0.055,
1.309, 3.677 3.56, 4.25, 0.02, 0.055,

4.25, 4.5 0.03521, 0.055,
0.0375

2 5.236, 2.916, 4.5, 4.25, 0.0375, 0.02,
pi/2, 3.1416, 4.25, 4.616, 0.055, 0.055,

1.409, -0.5897 4.7, 4.25, 0.02, 0.0322,
4.33, 4.5 0.0212,0.055,

0.0375

static balancing was predicted and if the link lengths configurations in deflected states allowed for

the physical space required for the links to not contact one another.

3.3 Fabrication and Testing

A prototype was constructed using spring steel as the flexible segments of the springs and

polypropylene as the rigid sections of the springs. Figure 3.10 shows the assembled prototype. The

assembled prototype has an approximate footprint of 0.018 m2. The method of construction and
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Figure 3.10: The assembled statically balanced compliant joint

materials used was based on modularity and manufacturing limits. By making the springs flexures

removable, future work on scaling of the design could be investigated easily with the removal and

installation of the flexures. While a spring constructed out of a single piece would have better

insured the level of precision in the spring construction, it would have required the entire spring

to be constructed out of steel. The weight of the springs was a concern, and thus drove the use

of polypropylene and the absence of material from the middle of the rigid links. Additionally, in

researching the tolerance limits for the wire EDM process for the available machines, concerns

arose over the capability of cutting out sections as thin as was needed in the prototype without

losing the whole section or changing the material properties through the excessive heat.

The PRBM predicted moment response and the response as computed by ANSYS finite

element modeling (FEM) are shown in Figs. 3.11 and 3.12 for each balancing spring of the SBCJ.

It can be seen that the PRBM predictions for the springs that follow a non circular path result in

values that align well with the FEM approximations. Additionally the potential energy of each
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Figure 3.11: Predicted moment response of the first balancing spring
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Figure 3.12: Predicted moment response of the second balancing spring

component and the total energy of the assembled SBCJ is presented in Fig. 3.13. This plot shows

how the addition of the two balancing springs aides in adding the needed amounts of energy to

maintain a constant energy level throughout the range of statically balanced behavior.
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Figure 3.13: Calculated energy storage in the SBCJ

Figure 3.14 displays the total moment for the assembled SBCJ along with the values for

the PRBM and FEM approximations. It is seen that the joint is predicted to achieve static balancing

over a range of 100 degrees by the method presented and that the FEM results predict a range that

is similar to the PRBM predictions. The experimental results show that the prototyped SBCJ in a

range of -15 to 10 degrees of rotation of the pivot agrees well with the model presented here. For

rotations of the joint for rotations larger than 10 degrees it is seen that the shape of the response

trends along a path that is similar to the predicted moment but offset a certain amount. In joint

rotation ranges less than -10 degrees the experimental results do not agree well with the FEM or

the PRBM approximations, but still displays a reduced moment that is fairly constant through that

range.

As seen in Fig. 3.14, the assembled joint’s total moment rises and then levels off as it de-

flects away from the center of the joint. These results seem to suggest some error in the construction

of the assembly that causes these offsets of the moments from the predicted values. One possible

source of this error is in the tolerances on the lengths of the springs and the boundary conditions

at the flexures of the springs. Also the variability in each flexures height and width may not have

had a significant effect individually, but as the assembly contains over 22 flexures, the sum of these

small tolerances may have become significant. Lastly, in fixing the flexures into place additional
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Figure 3.14: The predicted and experimental moment responses of the SBCJ

stresses or loads may be induced. This was especially apparent in the CAFP. In the assembling the

CAFP, great care had to be taken in how each flexure was fastened and the level in which the each

fastening screw was tightened. If the screws were tightened unevenly, the flexures in the CAFP

would display lateral deflections with high compressive loading and pop or snap through a change

point into a new deflection configuration.

Though the assembled joint did not display this behavior, the loading may have still been

present. The sudden rises in the moment shown in Fig. 3.14 may possibly be attributed to these

loading conditions. If this additional loading is present, when the beam changes to a new con-

figuration it may alter the stiffness of the joint, thus the sudden increase of the overall stiffness

followed by the more gradual rise in the moment magnitude. Another possible source of this error

is that the weight of the springs on the joint have have induced such a behavior by loading the

flexures in the CAFP in a way that accentuated this behavior.

The joint was not tested outside of the range of ±60 degrees due to the pivot beginning to

deflect out of the horizontal plane. As the joint rotated out to those larger deflections the weight of

the springs began to cause the flexures in the pivot to twist, causing the pivot to sag. This is one

adverse consequence to the use of compliant mechanism springs that utilize rigid links.
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As the SBCJ was handled and prepared for testing, it was seen that the springs themselves

displayed dynamic responses to the motion of the joint. These oscillations occurred while the

joint was rotated through its range of motion and as the entire joint was transported and moved

through motions it would experience if implemented into a mechanism. The oscillations would die

out after 10-15 seconds. From this observation it is clear that the mass of the rigid links is large

enough in comparison with the stiffness of the spring that the natural frequency of the spring was

not sufficiently high to make the springs unresponsive to the frequencies induced by moving the

joint.

The mass of the rigid links was large enough to make the effect of gravity on them as a

whole very apparent. As discussed above, the mass of the springs caused the joint to deflect out of

the horizontal plane when it would undergo large rotations. With both of these effects present the

application of the joint as it is currently designed is very limited. However, it’s construction and

performance gives great insights on the underlying problems that need to be addressed in order to

formulate SBCJs that will be useful in the design of haptic interfaces for increased transparency.

Due to the compliance being concentrated at narrow points within the springs there is great

potential for stresses to exceed the yield strength. For this reason the method is limited in its ability

to generate designs to compensate for much larger joint moments and still allow for a reasonably

sized joint. Additionally, as discussed in Chapter 2, the stress limiting does not bound the width that

the flexures can be. In the final design of the SBCJ the flexures implemented resulted in flexures

that are longer than the suggested length for a small-length flexural pivot. This was done because

the widths chosen by the algorithm were highly variable and at times unrealistic for implementation

in the SBCJ. This makes the assumptions made by the PRBM not as accurate and thus is one source

of error that can be attributed to the inaccuracy of the model for the final prototype.

Additional error can be attributed to the manufacturing and assembly of the SBCJ. Though

great care was taken in the manufacturing and assembly process, tolerances and inaccuracies in

the alignment of the flexures most likely occurred. For future implementations of the springs other

manufacturing processes will be explored to decrease the complexity of the assembly.

The joint presented here represents advances in several areas in comparison to previous

work on SBCJs. One of the major reductions is the foot print of the fully compliant joint design.

While it is still large, the method allows for the springs to wrap around the joint which lessens the
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width of the joint. This improvement is beneficial in robotic applications especially, as the joints

often need to be compact. Scaling of the current design would make it easier for compact joint

designs that meet this criteria. Also, this work has provided a method on which specific spring

designs can be modeled to meet the designs of the joint. The spring attachment points do not need

to be specified to generate the initial target moment response if the moment response that is desired

is known or another response is the preferred starting point. This process was solely done to give a

starting point for the optimization that would allow for the first optimization to attempt to follow a

linear path defined by the relationship kδsp. Not being constrained to a certain spring design allows

for joints to be designed with attachment points that are convenient or conducive to the design, and

then the springs can be optimized around that design. In past work the specific spring designs are

chosen and optimized. The added flexibility gained from not being constrained to a specific design

will allow for future designs of SBCJs to be more freely explored.
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The field of static balancing of compliant mechanisms is a growing field that has shown

great potential. One area that may benefit by their further development is that of haptic interfaces.

The absence of friction, backlash, and no need to compensate for the return-to-zero behavior of the

joint will greatly assist in improving the realistic nature of the interface.

In this work, a method for the design of compliant mechanism springs that can be used in

the balancing of compliant joints is presented. This method includes a PRBM for the compliant

mechanism springs, an approach to modeling their output forces or moments, and an optimization

routine that allows for the springs to be designed to follow prescribed force or moment deflection

paths. This method was validated through the use of finite element modeling (FEM) software and

prototype springs made of polypropylene.

The method for the spring design is then implemented in the design of a statically balanced

compliant joint (SBCJ). A process for the design is presented in which the spring attachment points

are specified to give a starting objective moment for the spring design and then the spring designs

are optimized using the optimization techniques presented here. The design process resulted in a

design of a SBCJ that is predicted by the PRBM to have a range of 100 degrees of static balancing.

A prototype of the SBCJ was manufactured and experimental data was taken to validate the results

of the model. While the actual moment required to deflect the spring does not exactly match over

the entire range of motion, overall the prototype displayed a level of moment reduction on the

compliant joint that gives confidence in the model and its ability to produce SBCJs. Additionally,

it was observed that the spring’s mass plays a significant role in the range of deflection the joint

can undergo. The mass is also significant in that it reduces the spring’s natural frequency into the

range of the target input frequencies, resulting in unwanted oscillations.
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In summary, the contributions of this research in the areas of the design of statically bal-

anced compliant joints and haptic interfaces are as follows:

• A prototype compliant haptic interface was developed as a case study for the feasibility of

the use of compliant parts in haptic interfaces. The prototype displays good static balancing

and is capable of providing a small level of force feedback to the user.

• A PRBM was developed for the modeling of compliant mechanism springs that undergo

translational deflections and a separate model of springs that follow a prescribed path. The

model is general in that it can be expanded to contain as many links as is needed to obtain

the functionality that is desired.

• An optimization algorithm that meshes a genetic algorithm with a gradient based search

optimization to find spring designs that follow prescribed loading conditions was developed.

The algorithm includes functions that penalize designs that exhibit geometry, stresses, or

deflections that do not allow for the spring to perform as desired. The designs produced by

the algorithm were manufactured and showed predicted levels of force or moments.

• A process to design a statically balanced joint was formulated that utilizes the aforemen-

tioned spring models and optimization routine. The process is shown to be successful in

that designs for statically balanced joints are produced that match results from finite element

modeling software.

• A physical prototype of the compliant joint and both balancing springs was manufactured.

The entire assembly constitutes the design of a statically balanced joint. The joint is shown

to exhibit output moments of given rotations that supports the model’s predicted values with

some deviations.

• Two papers covering portions of this work were accepted for publication. One was accepted

in the 2010 ASME Dynamics Systems and Controls Conference and the other in the 2011

ASME International Design Engineering Technical Conference.

• A journal article covering portions of this work has been submitted for publication to the

ASME Journal of Mechanical Design.
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4.2 Recommendations

The work presented here has laid a foundation of work for the application of statically

balanced joints in haptic interfaces. Through this work a great deal was learned regarding the

limitations and potential applications of SBCJs.

Presented here was a model for compliant mechanism springs using the PRBM. Future

work in this area should include investigations on how the number of links contained in the springs

and their initial orientation affect the types of displacement curves that the springs can obtain. This

would include studies on how differing mechanical advantage in the spring changes the overall

stiffness and what limits exist on the stiffness that can be obtained by optimizing this parameter in

the spring design.

In conjunction with these studies of the compliant mechanism springs, work needs to be

done to investigate ways to lower the weight of the springs. As displayed in the prototype, the

weight of the springs not only was a factor in the off-axis stiffness of the joint, but also the added

mass on the springs introduced new dynamics into the system. Work in this area may include

the study of miniaturization of the total joint design and design principles that can be followed to

ensure minimal weight of the springs.

Other modeling techniques for the design of SBCJs for use in robotic applications should

be explored and applied to the process for the design of SBCJs presented here. This would include

the use of topology optimization methods that will result in spline-like springs with the necessary

stiffness and displacement properties. These spline like springs may allow for greater deflections

as the stresses present in them will be distributed throughout the entire structure. Also there is

potential for the designs to be more compact than those that require rigid segments.

Work related to the direct implementation of SBCJs into haptic interfaces should include

studies and tests of other compliant pivots that may be used. In haptics the off axis stiffness is

critical to the accuracy of the positions that the interface believes it is displaying. Formulating

some metric of off-axis stiffness of the joint’s entire range is needed. This metric will allow

haptic interface designers to understand the level of compliance that they are encountering by

implementing the compliant joint and for the future design of compliant joints with increased off

axis stiffness.
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With the currently constructed joint, studies can be performed to quantify its dynamic be-

havior. The study presented here is a static study and the dynamics of joint are not considered.

From these studies the researches can look to quantify the natural frequency of the springs. This

frequency for the springs can be studied in respect to the spring design to see how the designs can

be altered to generate springs that are not responsive to low frequency vibrations (higher natural

frequency). In addition to this an additional cost function may be implemented into the opti-

mization to allow this parameter to affect the design. This work would aid the field of SBCM in

robotics as it can allow the designers to design spring compensating configurations with compliant

mechanisms that do not introduce unwanted dynamics into the system.

Lastly, future work will include the implementation of the current SBCJ design or some

future iteration into a haptic interface. This interface can then be used to explore and quantify the

effects that the SBCJ has on the haptic interfaces transparency and force feedback characteristics.

Included in this work will be specifically designed control schemes that capitalize on the joint’s

dynamics.
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