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ABSTRACT

Experimental Study of Liquid Squeeze-Flow as it Relates to
Human Voice Production

Daniel V. Lo Forte
Department of Mechanical Engineering, BYU
Master of Science

Approximately 7.5 million people suffer from voice disorders in the United States. Pre-
vious studies indicate that the quality of the fluid layer that coats the vocal folds appears to be
different for people with voice disorders than for people whose voice is considered normal. These
studies suggest that the composition and/or physical properties of the fluid layer may contribute to
voice disorders. Despite these findings, little research has been undertaken to investigate the role
of the fluid layer on voice, and in almost all cases, the fluid layer is considered to be insignificant.
The purpose of this reasearch was to investigate the role of the fluid layer and the potential it may
have to influence voice production; particularly, to identify some aspects of the fluid layer that have
the potential to contribute to voice disorders.

In order to investigate the potential significance of the effects of a fluid layer on vocal fold
operation, an existing lumped model was modified to incorporate the Newtonian squeeze-flow
equation as a fluid model during the colliding portion of the oscillatory cycle. Results indicated
that thicker films produced more significant deviations from the case with no fluid layer.

Experimental testing was performed to validate existing analytical equations for squeez-
ing flow of Newtonian and non-Newtonian fluids confined between parallel axisymmetric plates.
Based on available published data on the rheological properties of the fluid layer found on the
surface of the vocal folds, several fluids with a range of fluid properties were selected. Reasonable
agreement was found for much of data collected for the Newtonian fluid cases within measure-
ment tolerances. For the non-Newtonian cases, the constitutive equation was found to be in poor
agreement with the measured physical characteristics of the selected non-Newtonian fluids. A
summary of the collected experimental data is provided so that it can be used in for validation and
comparison in future research.

A preliminary computational model based on the classical two-mass vocal fold model was
implemented which incorporated squeezing effects of a thin Newtonian film of fluid on the surface
of the vocal folds. Results indicated that the fluid layer may not be insignificant, although further
tests and modeling are required.

Finally, different fluids were applied to a physical model of the vocal folds and measure-
ments were taken to determine the effects of the application of fluid. The results showed significant
changes in the vocal fold model response that indicated the fluid layer affects vocal fold operation
in important ways. Some of the changes in response could not be attributed solely to the fluid layer.
Suggestions regarding future work with physical model testing are given which may help clarify
the effects of a fluid layer on vocal fold flow-induced vibration.
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CHAPTER 1. INTRODUCTION

1.1 Overview

In almost all professions, verbal communication is essential. However, 7.5 million people
in the United States suffer from voice disorders that impede or eliminate their ability to speak [1].
In particular, there are a variety of voice disorders which occur as a result of vocal abuse or misuse.
During periods of prolonged or excessive use, the vocal folds can become injured.

While vibration and the repeated collision of the vocal folds occurs during normal oper-
ation, adverse conditions can lead to voice disorders (dysphonias). The source of many voice
disorders is presumed to be the result of severe contact stresses between the vocal folds as they
vibrate and several studies have attempted to quantify these stresses [2—10]. During vocal fold
motion, normal and tangential stresses are developed in the vocal fold tissues. These stresses may
be amplified or damped by the presence and properties of the fluid layer (mucus layer) that coats
the vocal folds. It is thought that the purpose of the fluid layer is to maintain hydration of the
vocal fold and airway tissues. However, disease, diet, environment and medications can affect
the liquid layer. For example, Hsiao et al. [11] observed individuals with and without laryngeal
tension-fatigue syndrome and suggested that high mucus viscosity, mucus aggregation, and rough-
looking mucus surface may exacerbate symptoms of the dysphonia. Presently there is insufficient
data regarding the mechanical influence of the fluid layer on the vocal fold tissues.

The purpose of the research described in this thesis was primarily to determine if the fluid
layer that coats the vocal folds has the potential to affect vocal fold operation. This was accom-
plished by: (1) experimentally measuring fluid forces for conditions similar to those found on real
vocal folds and comparing the experimental measurements with existing fluid force equations, (2)
applying a validated analytical model approximating a liquid layer to a numerical vocal fold model,
and (3) observing the effects of fluid applied directly to a synthetic vocal fold model to predict its

potential effect on real vocal fold operation. The experimental data obtained may also be used for



the validation of future numerical models of the fluid layer, and also help estimate fluid property

parameter ranges in which vocal fold contact stresses may be influenced.

1.2 Background

1.2.1 Vocal Fold Anatomy

The vocal folds are tissues in the larynx that play a central role in generating sound for
the human voice (see Fig. 1.1). This sound is produced when air from the lungs passes over the
vocal folds, causing them to vibrate; this is known as phonation. During phonation, the vocal folds
collide repeatedly against each other. During collision and the immediately succeeding separation,
the fluid layers on each fold interact.

The vocal folds are composed of five layers of tissue (see Fig. 1.2) [12]. The deepest
layer of the vocal folds is the thyroarytenoid muscle, next to which is the lamina propria. The
lamina propria consists of three layers (superficial, intermediate, and deep) that differ in elasticity
and thickness. The epithelium is a thin layer of cells that covers the superficial lamina propria.
The vocal fold is often represented as consisting of three groupings of these layers: the body, the
ligament, and the cover. The body is the muscle. The ligament consists of the intermediate and
deep layers of the lamina propria. The cover is comprised of the superficial lamina propria and
the epithelium. During phonation, the predominant feature of vocal fold vibration is a “mucosal
wave” that propagates vertically along the surface of the cover layer.

The respiratory airway epithelium is coated with a thin fluid — the airway surface liquid, or
ASL — which consists of two layers [15]. The “sol” layer consists of a thin (~6 ym) Newtonian fluid
directly in contact with the epithelium [16]. This layer is covered by a non-Newtonian “mucus”
layer reported to have a thickness of approximately 7 to 70 um [17].

While the mucus layer has been measured in vivo at up to 70 um [18, 19] in pigs and rats,
others have reported that it may have a greater localized depth during phonation. Normally, a
fluid layer of less than 70 um [17] would not be visible using videolaryngostroboscopy. However,
Hsiung [20] used videolaryngostroboscopy to view the vocal folds during phonation before and
after surgery of patients with vocal nodules and found that mucus was visible on the vocal folds.

This indicated much greater local depths of the fluid layer. Hsiao et al. [11] observed the vocal
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Figure 1.1: Coronal cross-section of the larynx. [13]

folds of a group of 301 individuals diagnosed with laryngeal tension-fatigue syndrome and another
group of 25 vocally-normal individuals. He used videostrobolaryngoscopy to view the glottis at
rest prior to phonation, during phonation, and at rest after phonation. He reported that 61% of the
patients had visible mucus during phonation and that sometimes the mucus was “sticky” enough so
that 1 or 2 “threads” of fluid bridged across the folds. He also reported that mucus was not always
visible when the vocal folds were at rest. He also found that the mucus surface was more uneven on
subjects with tension-fatigue syndrome than those without the disorder. In a recent study, Bonilha
et al. [21] found visible mucus aggregation on 97% of the vocally normal subjects observed with
videolaryngostroboscopy. Consequently, when studying the vocal fold region, it is necessary to
consider fluid layers with depths greater than 70 pum.

Although a fluid layer is present on the vocal folds, it is not certain that there are distinct sol
and mucus layers. The fluid for the sol layer is secreted by glands that open at and are located just
beneath the epithelium. The mucus layer fluid exists primarily due to the secretions of “goblet”
cells, also located just beneath the epithelium. Short hair-like structures called cilia (~6 um long)

cover the surface of the airway and are submerged in the sol layer. The depth of the sol layer
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Figure 1.2: Vocal fold cross-section showing different layers of tissue, after [14].

was reported to be same as the length of the cilia [15]. The cilia help propel the ASL upwards
through the airway. However, although these biological devices (cilia and fluid-secreting glands)
cover most of the airway, none are found on the vocal fold surface itself [22]. The source of the
fluid layer on the vocal folds is therefore unclear. There is a fluid exchange between the vocal fold
tissues and the superficial fluid layer known as transepithelial ion and water fluxes that may help
maintain the fluid layer properties [17,23]. Despite the lack of information regarding the specific
composition of the fluid on the vocal folds, a fluid layer is clearly found there and it is likely similar

in composition to the ASL [22].

1.2.2 Vocal Fold Function

Prior to phonation, laryngeal muscles contract and bring opposing vocal folds into close
proximity. The space between the vocal folds is called the glottis. The air pressure beneath the
vocal folds is called the subglottal pressure. Sufficient subglottal pressure from the lungs (onset
phonation threshold pressure) induces self-oscillation of the vocal folds. Self-oscillation occurs as
energy imparted to the vocal folds from the air flow accelerates the vocal folds laterally outward,
followed by lateral deceleration as the energy is absorbed and damped by the vocal fold tissue. The
folds ultimately reverse direction and accelerate medially (toward the center). The self-oscillating

process continues as long as the lung pressure remains above what is called the offset phonation
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threshold pressure. Thus, onset phonation threshold pressure is the minimum pressure required
to initiate self-oscillation, whereas offset phonation threshold pressure is the pressure at which
the self-oscillation ceases. These oscillations—along with the corresponding fluctuations in airflow
through the larynx—produce the sound for speech. The average frequency of oscillation is around
125 Hz for an adult male and 240 Hz for an adult female [24].

At low subglottal pressures, just above onset, the vocal folds begin to vibrate without touch-
ing. As the subglottal pressure is raised, the vocal folds begin to come into contact with each other
and the fluid layers from each vocal fold come into contact with each other, merge, and form a

liquid bridge that is sequentially squeezed, stretched, and that then ruptures.

1.2.3 Voice Disorders

Studies have been performed to discover the causes of voice disorders. One of the primary
suspects is severe contact stresses. Some common voice disorders that can be caused by severe
contact stresses are nodules, polyps, and contact ulcers. Nodules are small benign growths on the
vocal folds and are the most common voice disorder. They are like callouses, usually form in pairs
(one on each vocal fold), and form on the area of the vocal folds that are suspected to have the
highest contact pressure during phonation (e.g., the central region of the vocal fold). Polyps are
benign growths that are similar to nodules, but are softer and more like a blister than a callous.
They most often form on only one vocal fold. Contact ulcers are less common, but are also caused
by severe forces between the vocal folds during phonation or even gastroesophageal reflux. The
surface tissues of the vocal folds become worn away and ulcerated sores form.

While the mere presence of a fluid layer has been shown to affect vocal fold operation
[25], variation of the properties of the fluid layer likely affects the magnitude of those changes
[26,27]. Several studies have sought to quantify the magnitude of vocal fold contact stresses during
phonation ( [2-5,7-9,28-33]). However, few, if any, have carefully investigated the role the fluid
layer plays in the development of the contact stresses despite indications that a fluid layer appears
to (1) affect vocal fold operation in significant ways and (2) is altered for subjects experiencing
voice disorders [11,20,21]. Therefore, investigation of the effect of the fluid layer on vocal fold

operation is necessary to determine its significance in terms of contact stresses and voice disorders.



1.3 Previous Work

It is presumed that contact stresses may be affected by the fluid layer [22]. During phona-
tion, the fluid layer may dissipate impact energy during collision of the vocal folds, reducing con-
tact stresses, and/or cause the adherence of the vocal folds during separation (e.g., liquid mediated
adhesion), locally amplifying contact stresses. The contact stresses induced by the fluid layer are
likely dependent on the specific fluid properties, such as viscosity. Previous studies indicate that
hydration and the fluid layer may affect vocal fold operation [25,34—40]. It has been suggested
that the aggregation of fluid and/or the increased viscosity of the fluid layer may locally amplify
contact stresses between the vocal folds during phonation, perhaps causing the development of
voice disorders, but also exacerbating the symptoms of existing voice disorders [21,22,41]. How-
ever, none of these studies have attempted to quantify the mechanical stress induced in the vocal
fold tissues by the fluid layer or suggest critical fluid properties for which induced stresses could

damage vocal fold tissues.

1.3.1 Previous Experimental Testing of Fluid Layer on Vocal Fold Operation

Studies indicate that hydration and the properties of the fluid layer alter vocal fold opera-
tion. Jiang et al. [36] observed that phonation threshold pressure (PTP) decreased with re-hydration
of excised canine larynges which were initially dehydrated with warm, dry air and then re-hydrated
with humidified air. Verdolini et al. [34,42] found that systemic dehydration resulted in an in-
creased PTP. Sivasankar and Fisher [38] reported that oral breathing for 15 minutes increased PTP
and concluded this to be a result of superficial drying of the vocal fold mucosa. They later posited
that superficial laryngeal dehydration caused increases in PTP in a separate study [43]. Aside from
oral breathing, secretory (surface) dehydration may result from pathological conditions (e.g., di-
abetes), pharmacological agents (e.g., antihistamines), and environmental factors (e.g., extended
phonation in low-humidity air-conditioned environments) [39,40]. Ayache et al. [25] applied an
artificial mucus (xanthan gum polymer mixture) of two different viscosities to freshly excised
porcine (pig) larynges and observed that the fundamental frequency decreased, while vocal fold

contact time increased.



While these studies provide evidence that the properties of the vocal fold liquid layer may
alter vocal fold vibration, they have not directly studied the fluid layer or the contact stresses that
exist between vocal folds or within the vocal fold tissues during phonation. It is thus expedient to
collect experimental data to elucidate the role of the fluid layer on vocal fold operation. Further
indications that the fluid layer is significant could then warrant the development of fluid layer
models for application in future finite element and/or reduced-order models that could be used for
the study of the fluid layer and its effects.

In order to perform the research described in this thesis, a fluid closely approximating the
fluid layer found on human vocal folds must be used. However, as was discussed previously, the
precise source and properties of the liquid layer covering the vocal folds is unclear. Some attempts
have been made to measure the rheological properties of mucus [44]. However, certain studies
indicate that the exact composition, and consequently, the fluid properties of the liquid layer may
be affected by the inhalation [26] and/or swallowing of substances [27]. Therefore, for the purposes
of this research, a range of fluid properties must be tested in order to determine the potential effects
of the liquid layer on vocal fold operation. Effort was made to obtain a mucus gel simulant with

properties similar to published data [44].

1.3.2 Vocal Fold Modeling

Due to inherent difficulties associated with in vivo and excised vocal fold study, computa-
tional and synthetic models are often used. Reduced-order and lumped parameter computational
models are attractive because of the minimal computational cost, but they lack the spatial resolution
of higher-order finite element models. Reduced-order models include the single-mass model [45]
(a self-oscillating model driven by the average of the inlet and outlet pressures of the glottis),
the two-mass model [46], a self-oscillating model which captures the fundamental converging-
diverging nature of the vocal fold tissues, a body-cover model [47] which incorporates primary
differences in tissue properties between the deep and superficial layers of the vocal fold, and multi-
mass models [48,49] which aim to resolve finer details of vocal fold vibration. Additionally, many
finite element models have been developed and studied [32,33,50,51]. Alipour, et al. [50] devel-
oped a two-dimensional, three-layered, continuum model with varying tissue properties. Thomson

et al. [51] used a two-dimensional, fluid-structure interaction, continuum model and compared the
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results with experimental results obtained from a synthetic, silicone, physical model of the same
dimensions and physical properties. Tao and Jiang [32,33] used a quasi-three-dimensional, self-
oscillating, continuum model to study impact pressures. In both reduced-order and finite element
simulations, simplifying assumptions are made to reduce complexity and computational time. To
the author’s knowledge, the effects of the fluid layer on phonation have typically been considered
to be negligible and thus have been excluded from prior computational models.

Alternatively, synthetic models have been developed and used in the study of voice produc-
tion (e.g., [51]). Synthetic models have certain advantages over computational models. Synthetic
models exhibit complex physical phenomena that can be difficult to model accurately, such as tur-
bulence, three-dimensional geometric effects, contact modeling, and nonlinear material properties.
Additionally, the application of a liquid layer to the vocal fold tissues in a self-oscillating finite-
element model with accurate contact force modeling is a non-trivial problem that could perhaps be

more easily studied using physical models.

1.4 Research Overview

The research described in this thesis consisted of three experimental tests utilizing New-
tonian and non-Newtonian fluids. First, oscillatory and colliding/separating squeeze-flow testing
of three Newtonian and three non-Newtonian fluids was performed in which simultaneous force
and film thickness measurements were recorded. The data obtained from this testing validated the
Newtonian squeeze flow equation and qualified its use as a liquid layer model to be incorporated
into a computational vocal fold model. Second, the Newtonian squeeze-flow equation was incorpo-
rated into a lumped parameter model during the closing phase of vocal fold vibration. The results
of this model warranted the further investigation of the effects of the liquid layer on a synthetic
model. Third, the effects of three Newtonian and two non-Newtonian fluids (simulating human
mucus) on the flow-induced vibratory response of a synthetic vocal fold model was tested. Simul-
taneous intraglottal force, subglottal pressure, radiated sound, and high speed image data of the
model during vibration were recorded. Dry and wet cases were compared to ascertain the effects

of the liquid layer on the synthetic model’s vibratory patterns.



1.5 Outline of Thesis

Chapter 2 explains fundamental rheological principles. These principles help describe im-
portant characteristics of the Newtonian and non-Newtonian fluids which were used as a substitute
for the liquid found on human vocal folds. An explanation of the definitions and measurement
methods used for viscoelastic fluid properties is given. A description of the Newtonian squeeze-
flow equation used in this work and its assumptions is given. Finally, the equations used for
squeeze-flow of a non-Newtonian, Maxwell fluid and its assumptions are given.

Chapter 3 describes the experimental methods used for oscillatory and colliding/separating
flow testing which was performed. Experimental results validating the Newtonian squeeze-flow
equation for use as a liquid layer model are given. An analysis of the non-Newtonian squeeze-flow
equation and its potential as an appropriate liquid layer model is discussed. A description of all of
the test setups and the experimental methods used to collect and analyze measured data is given.
The potential of the liquid layer to affect vocal fold operation is discussed.

Chapter 4 describes the modification of the classical two-mass vocal fold model to incor-
porate a Newtonian liquid layer model. Preliminary results which indicate the potential effects of
a liquid layer on voice are given. The limitations of the present model and the need for a more
refined model are discussed.

Chapter 5 describes the experimental testing that was performed using a synthetic vocal
fold model during vibration with the application of a liquid layer. A novel method for the mea-
surement of force during model vibration, both wet and dry, is described. Results indicating the
potential effects of a liquid layer on vocal fold operation are discussed. The meaning of the results
is applied theoretically to human vocal fold operation.

Chapter 6 briefly summarizes significant results, outlines the primary contributions, and
gives a brief discussion of potential areas for future work in the study of the liquid layer on human

vocal fold operation and other related areas of research.
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CHAPTER 2. THIN-FILM SQUEEZE-FLOW THEORY

2.1 Fluid Rheology

Rheology is the study of the deformation and flow of matter. A description of the rheo-
logical tests used to determine the relevant flow properties for this work are here discussed. The

following discussion stems from that provided in [52].

Figure 2.1: Cone and plate geometry

Shear stresses can be applied to a fluid using many different geometric configurations, one
of which is a cone and plate geometry (see Fig. 2.1). Fluid fills the gap between the cone and
plate, and as the cone is rotated, Couette flow is very nearly approximated between the cone and
plate. The shear stress applied to the fluid can be computed directly from the torque applied to the
cone. Strain is calculated from the angular displacement of the cone about its axis. Instruments
for measuring fluid properties in this manner are called rheometers. Fluid properties for this thesis
research were obtained using the TA Instruments AR 2000ex Rheometer.

Fluids can be divided into two major groups based on the relationship between shear stress
and shear strain rate. If the relationship is linear in a particular region, the fluid is considered
to be a Newtonian fluid in that region. Non-linear stress-strain rate behavior is classified as non-
Newtonian. In the case of a Newtonian fluid, the shear stress is simply related to the shearing strain

rate by a proportionality constant called dynamic viscosity, i, as shown:
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O = Uy, 2.1)

where o is shear stress, and 7 is shearing strain rate. The fluid property viscosity is generally
temperature-dependent and tends to decrease with increasing temperature for liquids. The relative
sensitivity of viscosity to temperature varies among fluids.

Non-Newtonian fluids are grouped into specific categories based on the relationship be-
tween shearing stress and shearing strain rate. If the slope of the shearing stress to strain rate curve
decreases with increasing strain rate, the fluid is classified as pseudo-plastic or shear-thinning. Flu-
ids for which the slope of the shearing stress to strain rate curve increases with increasing strain
rate are termed dilatant or shear-thickening.

Another property of non-Newtonian fluids is the relative change in shear stress with time
when a constant shearing strain rate is applied. If shear stress increases in time for a constant strain
rate, the fluid is called rheopectic. Fluids with decreasing stress in time are thixotropic. Fluids
with no change in shear stress are termed time-independent. Viscoelastic fluids have both viscous
and elastic components which cause them to both flow and elastically deform.

Creep is the strain history of a substance when subjected to an applied stress. A creep test
for a fluid is performed by applying a constant shear stress, ¢, and measuring the resulting strain
versus time, Y(¢). If strain continues to be measured after the sudden removal of the applied shear
stress, this is called a creep-relaxation test.

In dynamic tests, an oscillating, sinusoidal angular displacement of angular frequency, ®,
is applied to the cone in a cone and plate configuration, and the torque is measured over time. The
shearing stress and strain are calculated from the torque and angular displacement. The applied

shearing strain is represented by

Y(t) = Ysin(wr), (2.2)

where y(7) is strain history and Y is the amplitude of the strain. The stress is also sinusoidal in

the steady-state for linear viscoelastic materials, but lags behind the applied strain by a factor, 0,
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known as the loss angle, or loss tangent, as described below:

o(w,t) =0psin(wt+9),
(2.3)
=0y [sin (®?)cos O +cos (t)sind],
where oy is the amplitude of the oscillatory stress and  is the angular frequency. Letting the
lof o]
storage or elastic modulus G’ = —00055 and the viscous, or loss, modulus G’/ = 20 sind, Eq. 2.3

Y Y
can be rewritten as

o(w,t) =[G sin(wt) +G" cos(wr)]. (2.4

Figure 2.2 shows an example of the stress and strain histories during an oscillatory test.

0 T 2n 3n 4

Figure 2.2: Example of an oscillatory test. ¢(¢) is the stress history, y(¢) is the strain history, 0 is
the loss tangent, oy is the peak stress, and 7 is the peak strain (after [52]).

G’ characterizes the elastic contributions of a material and is known as the elastic or storage
modulus. G” characterizes the viscous contributions and is known as the loss modulus. As an
example, an ideal linear viscous material (such as a Newtonian fluid) would have G” =nw, 6 = 7,
where 1) = constant viscosity. An ideal linear elastic material would have G’ = G, and 0 =0, where
G, is the shear modulus [52].

Lumped parameter models can be used to approximate the behavior of non-Newtonian

fluids, or more specifically, to relate the shear stress to the shearing strain rate of a fluid. Lumped
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parameter models use idealized spring and damper elements. For example, a purely viscous or
Newtonian fluid can be represented as an idealized damper. A purely elastic material, such as
an idealized cross-linked rubber, can be represented by a spring element. As described below,
combinations of these elements are used to model more complex fluids.

Many non-Newtonian fluids have both viscous and elastic properties and are hence called
viscoelastic. The simplest representation of a viscoelastic fluid is a Maxwell fluid and is repre-

sented as a spring and damper in series (see Fig. 2.3).

Figure 2.3: A Maxwell material model is represented as a spring and damper in series (after [52]).

A representative plot of the strain history of a Maxwell fluid during a creep-relaxation test
is illustrated in Figure 2.4. Upon application of a shear stress, the fluid is immediately strained
inversely proportional to the representative spring constant k; (see Fig. 2.3). During the period
of time while the shear stress is held constant, the fluid maintains a constant shearing strain rate,
Y. This is seen in Fig. 2.4 as the linearly increasing strain on the left-hand side of the plot. The
shear strain rate, 7, is inversely proportional to the corresponding linear damping constant b; (see
Fig. 2.3). After a period of time, 7y, the applied stress is removed and the fluid strain, ¥ rebounds
suddenly as the potential energy stored in the elastic component is released. This is seen in the
figure as the sudden drop in strain, 7y at time #y. The strain of the fluid, 7y, then remains constant
after the removal of applied stress.

Another simple material model is the Kelvin-Voigt model where a spring and damper are
placed in parallel (see Fig. 2.5). Figure 2.6 shows the resulting strain versus time plot of a Kelvin-
Voigt model subjected to a creep-relaxation test. There can be no sudden strain displacement in

this case since the damper will not allow sudden displacement. The strain will increase logarith-
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Figure 2.4: Maxwell model creep test (after [52]).

Figure 2.5: Kelvin-Voigt model.

mically till the stress in the spring element exactly equals the applied stress at which point the
strain displacement will remain constant. When the stress is suddenly removed, the spring element
dissipates its potential energy through the damper element in an exponential fashion. Kelvin-Voigt
materials are typical of cross-linked solids, like rubber, for which there is no net flow of the mate-
rial. The material’s shear strain returns to the original state after removal of the applied stress as
opposed to a fluid where there is a net positive strain, or net flow.

More generalized models of non-Newtonian fluids can be made by combining Maxwell and
Kelvin-Voigt and/or other spring and damper elements in series and parallel. One such example
is the Burgers model that incorporates the Maxwell and Kelvin-Voigt fluid models in series (see

Fig. 2.7).
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Figure 2.6: Kelvin-Voigt model creep test (after [52]).

Figure 2.7: Burgers model.

Figure 2.8 shows the resulting strain history of a Burgers fluid subjected to a creep-relaxation
test. One can observe the effects of both models immediately. There is a sudden strain upon ap-
plication of the shear stress followed by a decay of strain rate to a constant rate over some initial
period of time. Immediately following removal of the shear stress, there is a sudden retraction of

strain followed by a slower decay of strain to some positive value as the fluid releases the energy
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stored in the Kelvin-Voigt spring. Unlike the Kelvin-Voigt model alone, there is a net flow of a

Burgers fluid as seen by the difference between the initial and final strains.
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Figure 2.8: Burgers model creep test. (after [52])

The response of a dynamic system to an input depends on the frequency of the input. For
example, a damper acts as a low-pass filter. At very low frequencies, the damper flows freely,
barely resisting the input movement. At high frequencies the displacement is severely damped.
Likewise, the response of a non-Newtonian fluid depends on the frequency of the shear stress to
which it is subjected.

As a result of a fluid’s frequency-dependent nature, certain approximations can be made
based on the relative values of the components of a fluid model. For example, as either the Kelvin-
Voigt spring constant, k>, or damper constant, b, in a Burgers fluid are increased, the model
approaches a Maxwell model approximation at high frequencies. Likewise, as the Maxwell fluid
component values, k; and b; are increased, the fluid approaches a Kelvin-Voigt fluid model.

Rheological testing showed that the non-Newtonian fluids used for this research were fit
well by a Burgers model. However, there was a large difference between the relaxation times of the
damping components. The short relaxation time was on the order of a fraction of a second, whereas

the long relaxation time was on the order of hundreds of seconds. Since the lowest frequencies
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of testing were above 5 Hz, this disparity between damping modes permitted the fluids to be

approximated as Maxwell fluids and therefore a Maxwell fluid model for squeeze flow was used.

2.2 Newtonian Squeeze-Flow

Figure 2.9: Dimensions and coordinate system for thin film squeeze-flow equation. Film thickness,
h, is much less than the disk radius, Ry. Squeeze velocity is the rate of change of film thickness, 4,
where the overdot denotes the temporal derivative.

The derivation for the pressure distribution in a Newtonian, laminar, thin-film squeeze-
flow between parallel disks was given by Constantinescu [53]. The equation uses an approximate
velocity profile across the thickness of the film (discussed below) that is valid when the wall shear
stress is greater than zero (e.g., the flow is not separating at the walls), and friction stresses on the
two surfaces are not directly influenced by inertia forces. According to this derivation, the pressure
distribution P within a thin, cylindrical, Newtonian film between approaching/separating parallel

disks is

R T L+ o\ ph] o o
P(m)—Pa—zl 3 (1— o phh t o (RE-1%), (2.5)

where F, is ambient pressure (surrounding the film), /4 is film thickness (see Fig. 2.9; over-dots de-
note derivative with respect to time), i and p are fluid dynamic viscosity and density, respectively,
Ry is film radius, and o is a correction factor representing the velocity profile of the film. A value
of o = 1 corresponds to a constant velocity profile (e.g., slug flow), a value of 1.33 represents Cou-
ette flow, and a value of o = 1.54, represents Poiseuille flow. Since the plates were only moving

in the direction normal to the film, a value of o = 1.54 was used (this is the same value used by
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Constantinescu for parallel disk squeeze-flow). In the experiments described herein, the fluid en-
tirely filled the gap between the disks and beyond as shown schematically in Fig. 2.10, so that the
value used for Ry was a constant and equal to the radius of the smaller upper disk. Surface tension
effects only existed beyond the gap and were assumed negligible in comparison to the viscous and

inertial forces due to the small film thicknesses (< 1000 pum).

‘ Upper fixed plate i

Lower moving plate

Figure 2.10: Fluid entirely fills the gap between plates and beyond perimeter of smaller, upper
plate. There are no bubbles in the fluid.

Integrating Eq. 2.5 over the disk surface area and neglecting P, (so that P(r,1) is gauge

pressure in the fluid) gives

nR} 6uh 1+3¢ pfl
F==2 1-—2phi |+ 2.6
where F), is the reactive force that the film exerts on the disks. Applying Newton’s second law to a

disk of mass m yields

mh=F,—F, (2.7)

where F is the sum of all other forces acting on the disk in the negative y-direction (squeezing
direction). Solving Eq. 2.7 for acceleration, /4, and using Eq. 2.6 gives
. 16h3F +2hh>ARp +3Qhh>TR{p - 24hU TR

h= : : 2.8
202 (mREp +8hm) &9

Integrating Eq. 2.8 twice numerically gives the film thickness as a function of time. The initial
conditions for /2 and & were the measured film thickness and rate of change of film thickness at the
initial time.

In the case where the displacement is known a priori (e.g., prescribed displacement), the

film force can be estimated directly using Eq. 2.6. Equation 2.6 is used to estimate the peak
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force under oscillation, colliding, and separating conditions. The calculated peak force was then
compared with the measured peak force to evaluate the accuracy of the equation in predicting the

film force.

2.3 Non-Newtonian Squeeze-Flow (Maxwell Fluid)

A relation was derived by Hashimoto [54] that gives pressure as a function of radial coor-
dinate of the squeezing flow of a viscoelastic fluid between parallel, axisymmetric, circular plates.

The pressure function is

- (32)or- 1555

where % is the pressure gradient in the radial direction (described below), r is the radial coordi-
nate, C, is the pressure loss coefficient (=2.0), p is the fluid density, r, is the radius of the circular
plate, vy is squeeze velocity (vy = —%), and 4 is the film thickness. The last term on the right
hand side represents the entrance pressure drop due to inertia effects (j = 0 when the disks are
approaching and j = 1 when the disks are separating).

The pressure gradient equation is

ap B p|r &VS hd G| 8G1 khd 8G an
5 e (2o g (0000001 )
24 (G . fzaGs) (2.10)
02 \THS T )
where G through G5 are defined as:
G1:f+aaa—{, (2.11a)
h2
G, :b2+—f2, (2.11b)
G3 = gf f (2.11c)
r
2
G4=f—+2f f (2.11d)
- 4—8f4+b2h2f2+9b4, (2.11e)
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and f and b are the solutions of the following system of coupled differential equations:

db  1dh, 1 R,

= = 33 —a(b+k2;fb+kb), (2.12)

%; - _1(6i?“+f+é%mﬁf3+3kﬂ#), (2.13)
a

in which 4 is the film thickness, a is the relaxation time of the fluid, £ is a non-Newtonian factor
(described below), u is the initial viscosity of the fluid (described below), r is the radial coordinate,

and v, is squeeze velocity (vs = —%). According to Hashimoto, the initial conditions are as follows:
b(t=0)=0,f(t=0)=0. (2.14)

Hashimoto used the following constitutive equation to model the fluid:

av
L= =T+ kT +a

0z

a1,
ot ’

(2.15)

where U is the initial viscosity of the fluid, v, is the radial velocity of the fluid, 7,, is the shear
stress of the fluid, & is a nonlinear factor, and «a is the relaxation time of the fluid.

Equation 2.15 is a linear combination of the power-law and the non-linear Maxwell fluid
models. Letting both k and a equal zero results in the constitutive equation of a Newtonian fluid.
The second term on the right hand side accounts for the pseudo-plastic and dilatant non-Newtonian
effects (e.g., the power-law model, described below). A value of k > 0 corresponds to shear-thinning
or pseudo-plastic behavior and k < O corresponds to shear-thickening or dilatant behavior. The third
term on the right hand side accounts for the viscoelastic effects. The first and third terms together
make up the Maxwell fluid model; setting k = 0 is equivalent to assuming a linear Maxwell fluid
model such as that described earlier in this chapter.

A general form for a power-law model can be written as

T=C}" (2.16)

where C and n are material properties of the fluid found experimentally. Values of n greater than 1

indicate dilatant behavior, values less than 1 indicate pseudo-plastic behavior and n = 1 corresponds
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to Newtonian fluids. The inverse of the power-law fluid model can be written as

1

- (L) @

and substituting K = 1/C and p = 1/n it is rewritten as
7=K1P (2.18)

which has a similar form to the second term on the right hand side of Eq. 2.15. Specifying
p =constant using only the power-law model would necessarily designate the behavior of the fluid
(i.e., pseudo-plastic or dilatant). However, using a constant for the exponent of the non-linear term
in Eq. 2.15 does not constrain the fluid to be shear-thinning or shear-thickening because there are
other terms present. That is, pseudo-plastic, Newtonian, and dilatant behavior may still be rep-
resented by the complete constitutive equation 2.15 with a constant exponent on the second term
whereas the the power-law model alone depends on the exponent to prescribe the shear-thinning
or shear-thickening behavior. This completes the discussion of the constitutive equation.

Returning to the squeezing flow between parallel plates of a thin film, certain assumptions
can be made. The flow is assumed to be axisymmetric with significant components in the radial
direction only. It further assumes small variation of physical quantities in the film thickness di-
rection (a thin-film approximation), that the flow is incompressible, and that there is no slip at the
circular plate walls. Lastly, the inertia forces are assumed to be constant across the film thickness.

The solutions of the system of equations 2.12 and 2.13 with initial conditions from equation
2.14 were found numerically using the built-in MATLAB function ode45 which is a fourth-order,
Runge-Kutta, adaptive solver. Equation 2.9 was evaluated using the built-in MATLAB numerical
integration function trapz which uses the trapezoidal method to integrate numerically. The non-
Newtonian squeeze-flow model was compared with the measured data from the oscillatory squeeze
flow testing.

For both Newtonian and non-Newtonian fluids, the peak measured force was compared

with peak calculated force (which was calculated based on the experimental conditions for each
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test case) and the results are provided in Chapter 3. Fluid rheological properties were measured

for both Newtonian and non-Newtonian fluids and are reported in Appendix A.
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CHAPTER 3. SQUEEZE FLOW EXPERIMENTAL METHODS

Due to the inherent difficulty associated with the measurement of in vivo contact pressures
between human vocal folds under a variety of fluid layer conditions, a model was needed that
would permit the study of the potential effects of the liquid layer on voice operation. To develop
such a model, the vocal fold vibration needed to be coupled with the effects of the liquid layer.
Many existing vocal fold models, both computational and synthetic, presently exist; however, none
include liquid layer models.

During phonation, the vocal folds collide repeatedly and the liquid layers on the opposing
folds interact. The liquid layers collide and merge, the merged layer is squeezed and stretched
and finally ruptures as the vocal folds separate during the opening phase of the glottal cycle. The
behavior of the fluid film is considered to be similar to the squeezing flow of a liquid. Therefore,
existing equations describing the squeezing flow of a fluid between parallel, axisymmetric disks
were evaluated as a suitable liquid layer approximation.

The work described in this chapter details the experimental testing that was performed
to validate these equations that was performed. The simultaneous measurements of force and
film thickness were taken on a test setup created for this purpose and the results were compared
with corresponding calculated values from the existing squeeze-flow equations for both Newtonian
fluids and non-Newtonian, Maxwell fluids (see Sec. 2.2 and 2.3). Data collected consisted of
measured film force, measured film thickness, fluid temperature, and the acceleration of the fixed

and moving plates over time.

3.1 Equipment Description

The setup consisted of a test fixture clamped to the test stand platform of the test stand as
shown in Fig. 3.1. Five masonry blocks were stacked on the lower plate of the test stand to reduce

structural vibrations.
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Figure 3.1: Test stand setup for oscillatory squeeze-flow measurements.

A schematic of the test fixture is shown in Fig. 3.2. The fixture had two rigid, parallel
plates (one oscillating, one fixed) between which a test fluid could fill the gap for squeeze-flow
testing. The instrumentation attached to the fixture enabled the simultaneous measurement of film
thickness, total film force, and acceleration.

The fixture consisted of a 30.5x30.5x3.175 cm aluminum base plate, to which vertical
steel columns were mounted to support a solid 5x5 cm steel beam. An electrodynamic shaker
(Labworks, EET-126) was rigidly mounted to the base plate, centered between the vertical support
columns with screws. An aluminum disk was rigidly attached to the moving armature of the shaker.
A dynamic force gauge (PCB Electronics, 208CO01, uncertainty of < 1% full-scale) was centrally
mounted to the underside of the beam and a 2.5 cm diameter aluminum plate was rigidly attached
to the underside of the force gauge. Two accelerometers were mounted to the fixture: one to the
shaker disk and the other centrally located on top of the beam. A precision LVDT (Honeywell,
S5, 0.25% full-scale non-linearity, +0.5um repeatability) with a maximum uncertainty of £2.5um
was rigidly mounted to the side of the beam so that the armature would be in contact with the
moving disk mounted to the shaker. A thermocouple (Omega, K-type, accuracy +2.2°C), wrapped
in Teflon to electrically isolate the probe, was mounted inside of a hole drilled close to the lower

surface of the upper, fixed plate for approximation of the fluid temperature.
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Figure 3.2: Test fixture schematic for oscillatory squeeze-flow testing.

A variety of sensors are available for the measurement of position and force. The test
fixture required the measurement of film thickness on the order of 10 to 1000 um with a spatial
resolution of better than 10 yum. The force measurements needed to have an estimated peak max-
imum force capability of 45 N (tension/compression) and a resolution of better than 1 mN. Both
sensors needed to have a temporal resolution of at least 1250 Hz, but ideally above 5000 Hz. Addi-
tional requirements included mounting location, consideration of interference from other sensors
and fixture parts physically, electrically, and magnetically, sensitivity to vibration, linearity, range,
and the effect of liquid on the sensors performance and accuracy.

Several sensors were evaluated for their effectiveness for the given application. Position
sensors considered include: laser range finders, ultrasonic transducers, optical methods (such
as high-speed imaging), eddy-current sensors, capacitive sensors, and linear variable differential
transformers (LVDTs). Sensors considered for the measurement of force include: piezoelectric

pressure transducers, strain-gauge type sensors (such as load cells), and piezoelectric dynamic
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force gages. The only sensors that adequately met the specified requirements were the precision
LVDT for film thickness and the piezoelectric dynamic force gauge for force. Other related studies
with similar setups have used the same or very similar sensors [55-58].

A block diagram of the instrumentation setup is shown Fig. 3.3. All analog output and input
functions were performed by a LabVIEW application in conjunction with National Instruments
DAQ boards. Analog inputs were sampled simultaneously on the 8-channel PXI-4472 at 5 kHz.
Measurements were acquired from the LVDT, force gauge, accelerometers, thermocouple, and the
amplified voltage input from the power amplifier to the shaker. An analog output from the PXI-
6221 was DC-coupled to the voltage input of the power amplifier to enable use of a DC offset
to control the mean plate gap distance. A demodulator (Honeywell DLD-CH) was used for the
excitation input voltage to and the conditioning of the output signal from the LVDT (Honeywell

S5).

DC
Other ;) owir
Measurement UPPY
Sensors Y
LVDT
Demodulator
Aly A
NI Box Excitation Raw
- Signal
A0 > Power Amp. < g
LVDT [

> Shaker

Figure 3.3: Instrument setup schematic.

The LabVIEW application allowed the user to enter the parameters to control the output
signal and sensor calibration parameters. The generated output sine wave was calculated based on

the user’s specification of frequency, amplitude, and DC offset.
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3.2 Testing Procedure

Two kinds of testing were performed: oscillatory squeeze flow, and colliding/separating
flow. Under oscillatory conditions, the moving plate attached to the electrodynamic shaker was
displaced sinusoidally and normal to the plate’s surface. Under colliding/separating conditions, a
step input was used to displace the moving plate. The step input was setup to transition between
two different film thickness. The fluid was squeezed under colliding conditions and stretched under
separating conditions.

For both oscillatory and colliding/separating flow conditions, each testing period consisted
of calibration, application of fluid, mean gap initialization, and the repeated input of testing condi-
tion parameters and subsequent recording of measurements to a file.

The LVDT zero gap distance was calibrated prior to taking measurements on the test fixture.
This was done by setting the voltage of the DC offset and increasing the gain of the power-amplifier
just beyond where the plates were observed to have contact.

The DC offset was set so that the gap was large enough for fluid to be placed at the center
of the lower plate. After depositing the fluid, the gap was gradually decreased by modifying the
DC offset until the desired mean film thickness was achieved. Sufficient fluid was used so that
the fluid completely wetted the entire gap and beyond the perimeter of the smaller diameter upper

plate, and without bubbles, as shown schematically in Fig. 3.4.

‘ Upper fixed plate i

Lower moving plate

Figure 3.4: Fluid entirely fills the gap between plates and beyond perimeter of smaller, upper plate.
There are no bubbles in the fluid. Typical film thicknesses were 30-1000 pum (see Appendix B for
tables of test conditions including mean film thicknesses).

3.2.1 Oscillatory Squeeze Flow

The frequency and amplitude of the displacement waveform were specified in the Lab-

VIEW application to drive the shaker. Voltage amplitude and DC offset were adjusted until the
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desired mean film thickness and amplitude of oscillation reported by the LVDT measurement were
achieved. It typically took some time (10-30 sec) for the mean film thickness and amplitude of
oscillation to reach steady-state. After steady-state readings were achieved, one second (5000
samples) of data was recorded to a file. Successive trials were then performed by varying the
voltage amplitude and DC offset parameters.

After the completion of a set of trials, the upper fixed plate was removed from the force
gauge, the remaining fluid was removed, the surfaces were cleaned with isopropyl alcohol to re-
move any residue, the clean upper plate was reattached, and the zero gap was recalibrated prior to

the next set of trials.

3.2.2 Colliding/Separating Flow

Colliding and separating flow measurements were taken by setting two DC voltages corre-
sponding to two film thicknesses and switching between them while recording data (i.e., a square
wave input). One voltage corresponded to a small gap or thin film, and the other to a large gap or

thick film. All other testing procedures were identical to those described above.

3.3 Analysis

3.3.1 Oscillatory Squeeze Flow

Data previously written to files by LabVIEW were imported into MATLAB for data analy-
sis. The first ten periods (first through tenth zero-crossing positive, defined in the next paragraph)
of the measured data was extracted for analysis. In the low frequency cases where there were
less than ten periods recorded, the entire data set was used. A corresponding analytical solution
for force in terms of film thickness (Eq. 2.6) was calculated from this subset of measured data.
Measurements were taken on both the measured and calculated data and compared for correlation.
Measurements included frequency of oscillation, mean film thickness, peak film thickness, peak
force, and phase lag between film thickness and force.

The frequency of the film thickness waveform was calculated by averaging the time differ-

ence between adjacent zero-crossing positives (defined below) and taking the inverse of the average
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period for the subset of recorded data. The time at which the instantaneous value of a waveform
transitions from a negative to a positive value is called a zero-crossing positive. Zero-crossing
positives could also be described as the roots of the waveform which have positive slopes. The
direction of the slope (e.g., positive or negative) is not so important as the fact that the same point
in the cycle is located. Hence, two adjacent zero-crossing positives mark the start of two adjacent
cycles. The zero-crossing positives were found by normalizing the waveform, setting thresholds
of £15% of the peak amplitude, extracting the portion of data between the thresholds, and with a
generally positive slope, fitting a line to the data and finding the root of the fitted line. An example
of this method is illustrated in Fig. 3.5.

A phase lag or time delay, here denoted as &, exists between the film thickness wave-
form and the force waveform. This phase lag was measured by taking the difference between the
zero-crossing positive of the film thickness and zero-crossing positive of the force immediately
following. An example of this is shown in Fig. 3.6.

The ratio of peak calculated force to peak measured force, F./F, was also used to compare
different data sets. Figure 3.7 shows a typical example of these results.

As described in Sec. 2.2, the squeeze-film force was to be calculated from film thickness
and its first and second temporal derivatives. The numerical differentiation of the raw noisy film
thickness waveform resulted in an extremely noisy force calculation. Therefore, the measured film
thickness was fit with a sine curve. The amplitude, mean value, frequency, and phase of the sine
curve fit were used to estimate the derivatives of the film thickness. In practice, the film thickness
waveforms were fit very well by a sine curve.

The viscosities of the Newtonian fluids used in this study were relatively sensitive to tem-
perature changes (see Sec. 2.1). To improve the accuracy of the force calculations, the viscosity
was estimated using the measured temperature and a curve-fit of measured viscosity vs. tempera-
ture data (see Appendix A).

The constant radius of the upper fixed plate (0.0127 m) and the velocity profile correction

factor oc=1.54 were used in the force calculation.
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Figure 3.5: Typical zero-crossing positive of noisy measured data. The top plot shows typical data
subset of four periods. The bottom plot shows a magnified section of the second zero-crossing
positive from the top plot.
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Figure 3.7: Typical peak calculated force, F., and peak measured force, F measurements. The
solid waveform represents the measured force data, the dashed waveform represents the calculated
force from the sine-wave curve-fit of film thickness, the dashed straight line is the peak measured
force, and the dotted straight line is the peak calculated force.
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3.3.2 Colliding/Separating Flow

Figure 3.8 shows an example of the typical measurements taken of colliding followed by
separating flow. The data in the plot shown are normalized by dividing by the maximum absolute
value of each trace so that the data vary from -1 to 1 and centered vertically at y = 0 to align the
signals in time. Measurements include voltage input to the electrodynamic shaker, film thickness,
h, velocity of the moving plate (/1, rate of change of film thickness), and measured force. The
voltage input to the electrodynamic shaker transitions as a square-wave from low to high at 7 =
967.2 sec. During the first portion of the cycle (prior to = 967.2 sec) the plates are approaching
and the flow is squeezing. After the transition at = 967.2 sec, the plates are separating. Peak force
magnitudes, Fy, are seen at the time of transition. Positive force magnitudes are compressive

forces, negative magnitudes are tensile forces. Film thickness transitions logarithmically between

states.
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Figure 3.8: Typical collision/separation cycle. All measurements are normalized by dividing by
the maximum absolute value of each trace (so that they vary from -1 to 1) and centered at y = 0.
Measurements shown are voltage input to the electrodynamic shaker, film thickness, &, velocity of
the moving plate (/1, rate of change of film thickness), and measured force vs. time.

Figures 3.9 and 3.10 show only the colliding and separating portions, respectively, of a

cycle. The initial velocity of the moving plate, vg, (which is equal to the rate of change of the
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film thickness /) is measured by taking the numerical derivative of measured film thickness and
fitting a line through the first several data points. Peak velocity, v, is found for each portion of a
cycle by taking the absolute magnitude of velocity during the colliding and separating portions of
each cycle. Thus, a peak velocity is found for collision and a separate peak velocity for separation.
The time is measured between transition and peak velocity and is reported as ¢, in the tables of

data given in Tables B.7 through B.12. Initial film thickness, Ay, is taken to be the film thickness

immediately preceding transition.

1 T T T T T T T T T T —

Film Thickness
Plate Velocity
Force

2 05 b

2

R

o0

s

o] 0 i

Q

N

=

£

3

Z -0.5 b

Il Il == Il Il Il

964.75 964.8 964.85 964.9 964.95 965 965.05 965.1 965.15 965.2 965.25
Time (s)

Figure 3.9: Typical normalized collision measurements vs. time. Measurements were normalized
by dividing by maximum, absolute value for each corresponding trace. Measurements include
plate velocity (A, rate of change of film thickness), film thickness, and force.

3.4 Results and Discussion

3.4.1 Newtonian Fluids - Oscillatory Squeeze Flow

Three Newtonian fluids were tested: (1) 90% wt glycerin-distilled water mixture, (2) olive
oil, and (3) distilled water. Figure 3.11 shows the ratios of the peak calculated force to the peak
measured force, F./F, for the oil data with error bars indicating uncertainty which is further dis-

cussed in Appendix G. Figure 3.11a shows F,/F for all of the acquired oil data. The horizontal
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Figure 3.10: Typical normalized separation measurements vs. time. Measurements were normal-
ized by dividing by maximum, absolute value for each corresponding trace. Measurements include
plate velocity (h, rate of change of film thickness), film thickness, and force.

dashed line denotes the expected value of the data points (i.e., where the calculated and measured
forces are equal). As can be seen in the figure, a departure from the expected results occurs for
films with thickness less than about 100 um and increases in magnitude as the film thickness
decreases.

Figure 3.11b shows only the oil data where the film thickness was less than 150 um. The
calculated force over-predicts the measured force by a factor of up to 20 for very thin films (around
40 um). When the film thickness is greater than about 80 um, the calculated force is still over-
predicted, but by less than a factor of 3. While this results in much better agreement between the
measured and calculated force, the error is still too large to draw strong conclusions regarding the
force that may be exerted by the liquid layer on a human vocal fold.

Figure 3.11c shows only the oil data points for mean film thicknesses greater than 80 pum.
The calculated force is up to 3 times larger than the measured force for thinner films, but the two
forces become closer as the film thickness increases. For film thickness of 500 pum, the peak
calculated force is +25% of the peak measured force.

Figure 3.12 shows F./F for all of the glycerin data. There were eleven cases where the

mean film thickness was less than 100 um. For these thin-film cases, the range of frequencies
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Figure 3.11: (a) All oil data, (b) All oil data up to 150 gm mean film thickness, (c) All oil data
above 80 um mean film thickness. Error bars indicate uncertainty (see Appendix G).
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Table 3.1: Two olive oil data sets compared in order to illustrate the repeatability of the
measurements.

Data Set Freq. hyg hpk Fy Temp u SSE
# (Hz) (um) (um) (N)  (°C) (Pas)
46 70.0 96.6 54 13.041 253 0.061 6.53E-11
47 70.0 96.0 5.5 13.380 25.1 0.061 1.80E-10

varied from 20 to 100 Hz, the amplitude fractions (displacement amplitude divided by mean film
thickness) varied between 1 and 2%. For the thicker films (> 100 um), the frequencies varied
from 20 to 120 Hz and the amplitude fractions varied between 0.7% and 8.4%. A much better
agreement is seen between the calculated and measured force data for glycerin than for oil. Even
for thinner films (mean film thickness near 80 ptm), the calculated force is less than 2.5 times that
of the measured force. As with the oil case, the over-prediction of force decreases with increasing
film thickness.

Figure 3.13 shows F,/F for all of the water data. Again, a similar trend of decreasing F,/F
is seen as film thickness increases. However, in this case, the calculated force is always larger than
the measured force. It should be noted that the range of mean film thickness over which the data
was collected varies somewhat between the different fluids. This is because the force required to
achieve the desired displacement amplitude is substantially higher for higher viscosity fluids. The
range of fluid viscosities of the test fluids varied by two orders of magnitude.

The variance in F,/F in Figs. 3.11-3.13 is primarily a result of changes in F.. However,
under different testing conditions (e.g., changes in film thickness, amplitude of displacement, fre-
quency, and fluid), the peak measured force, F, also changes. The repeatability of the testing was
observed to be good. As an example, the two cases shown in Table 3.1 can be compared (see
Appendix B). As shown, there is less than 2% change in the mean film thickness, A, displace-
ment amplitude, £, and oscillatory frequency. There is a correspondingly small change in peak
measured force of 2.6%. This example illustrates the typical results for all cases. Therefore, the
variance in F./F were not attributed to discrepancies in repeatability of the testing.

Figure 3.14 shows the phase delay in degrees between the measured and calculated force
data for oil. It can be seen that the majority of the data falls near a curve that initially decreases,

reaches a minimum near a frequency of 20-30 Hz, and then generally increases up to 130 Hz.
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Figure 3.12: Plot of ratio of peak shows calculated force to peak measured force, F,/F, for glycerin
data. All data obtained is shows, but is separated into two plots above based on mean film thickness.
Plot (a) shows data for film thicknesses between 40 and 140 um and (b) shows data for film
thicknesses between 244 and 254 um.
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Figure 3.13: Plot of ratio of peak calculated force to peak measured force, F,/F, for water data.

Many of the data points do tend to cluster near the upper border of the higher frequency data which
indicates a trend of increasing phase delay with increasing frequency above 40 Hz. However, the
variance in the data increases at the higher frequencies (above 60 Hz), making it difficult to find a
significant trend in the data.

The source of the large variance in the phase difference between the measured and calcu-
lated force waveforms is unclear. The variance increases as frequency increases, which suggests
an amplification of a temporal uncertainty. It was thought to be the result of a time delay or slow
response time of one or more sensors (e.g., LVDT and/or force gauge), the signal amplifiers, or
data acquisition devices. However, documentation from the manufacturers for each product ver-
ifies that the time delays from the devices are at least an order of magnitude smaller than what
would cause the observed variance.

Another suspected source of the variance that was considered was error associated with the
method used to locate zero-crossing positives described previously. However, based on simulated
data tests with normally distributed noise of up to 20% signal amplitude (are least 4 times that of
the measured data), the uncertainty in phase was less than 0.2% of the period.

One possible source of the error is the angular deflection of the moving plate attached to
the armature of the electrodynamic shaker. The peak measured forces were greater than 8 Newtons

in the majority of cases which exhibit the large variance and the frequency of oscillation was
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Figure 3.14: Phase difference between peak measured force and peak calculated force for oil data.

above 60 Hz. Larger peak forces on the moving plate would cause larger angular deflection of the
moving plate. If the armature is rocking during oscillation, there could be a change in the phase
difference between the measure film thickness and the measured force. Since the calculated force
is determined from the measured film thickness data, the phase difference between the calculated
force (based on measured film thickness) and measured film thickness would be different than the
phase difference between the measured force and the measured film thickness. This could give rise
to erratic phase differences between the measured and calculated force.

Figure 3.15 shows the phase difference, in degrees, for the glycerin data. With the exception
of a few data points, the phase difference is always positive and appears to increase at an increasing
rate as oscillatory frequency increases. In general, the magnitude of the phase difference is larger
for glycerin over all frequencies than for oil. The largest phase difference is close to 150 degrees
whereas the maximum for oil is less than 60 degrees (except in one case at 110 Hz).

Figure 3.16 shows the phase difference in degrees for the water data. Again the phase
difference increases with increasing frequency. At 20 Hz, the phase difference clusters around
20 degrees so that a slight curvature in the trend is noticeable similar to the oil case. The phase

difference appears to increase (perhaps linearly) beyond 40 Hz.
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Figure 3.15: Phase difference between measured force and calculated force for 90%-wt glycerin
data. Negative values indicate a phase lead as opposed to a lag between measured and calculated
force.
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Figure 3.16: Phase difference between measured force and calculated force for water data.
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One might consider fitting a curve to the phase data shown in Figs. 3.14-3.16, however, the
variance in the data make the correlation poor at higher frequencies so that the meaningfulness of

an empirical relation is diminished.

3.4.2 Newtonian Fluids - Colliding/Separating Flow

Figure 3.17 shows F;/F, the ratio of peak calculated force to peak measured force, for the
Newtonian fluids (water, glycerin, and oil) in colliding and separating conditions. The calculated
peak force for oil and glycerin is within +20% of the measured value for the vast majority of the
data. However, the measured peak force for water spreads from half to double the measured value.

For all fluids, the calculated peak force is within £50%, even for very thin films (< 100um).
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Figure 3.17: F_/F ratio for Newtonian collision/separation peak force measurements.

In order to further summarize the peak measured force data and identify meaningful trends,

the data were non-dimensionalized. The non-dimensional groups were based on the parameters in
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the Newtonian squeeze-flow equation (see Eq. 2.6) and are as follows:

R =R /hg (3.1)

Re = (3.2)

(3.3)

Pk (3.4)

where Ry is the radius of the smaller upper plate, A is the initial film thickness, Re is the Reynolds
number, p is fluid density, vy is the initial velocity of the plates (i.e., just after transition), u is fluid
viscosity, d is the non-dimensional acceleration, ag is the initial acceleration of the plates (i.e., just
after transition), F is the non-dimensional peak force, and Fy is the peak measured force.

Figure 3.18 is a plot of the natural logarithm of the non-dimensional force vs. the natural
logarithm of the Reynolds number. The geometry, namely R, was the same for all tests and the
magnitude of acceleration was so small that its effects were expected to be negligible. Therefore,
only non-dimensional force and Reynolds number trends are shown here.

The data for each fluid is shown with a linear fit on the log-log plot. The coefficients of
the fit-lines are given in Table 3.2. As can be seen, there is good agreement between the linear
fit and the dimensionless data for each fluid. It is interesting to note that each fluid is grouped on
a different fit line. There is a small difference between the data taken for oil and glycerin and a
larger difference for water. This may indicate that a family of non-dimensional curves exists which

describes the colliding/separating flow regime.

Table 3.2: Non-dimensional Newtonian fluid line fit coefficients (f(x) = Ax+ B where x is
log(Re)).

A B

Water | 2.425 | 8.369
Oil | -2.128 | 4.741

Glyc | -2.069 | 4.548
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Figure 3.18: Plot of natural logarithm of non-dimensionalized peak force vs. natural logarithm of
Reynolds number for colliding/separating flow. A linear fit line identifies the set of cases for each
fluid. The fit lines for the oil and glycerin data are almost identical while the water data is much
different.

3.4.3 Non-Newtonian - Oscillatory Squeeze Flow

Two non-Newtonian fluids were tested in oscillating conditions. Each was a different mix-
ture, by weight, of xanthan gum and distilled water. The mixtures by weight percent were 0.5%,
1.0%, and 1.5% xanthan gum for XG1, XG2, and XG3 respectively. The elastic modulus and
the loss modulus were measured before and after testing. Results of the rheological testing are
summarized in AppendixA.

A comparison was made between the experimental data and the calculated results of the
squeeze flow equation (Eq. 2.9) for Maxwell fluids described in Ch. 2. Since the parameters k and
a in the constitutive Eq. 2.15 do not relate directly to standard rheological properties such as G’
and G”, it is necessary to either: (1) optimize the analytical solution to match the measured data
by varying the rheological parameters in the constitutive equation and compare the parameters, or
(2) attempt a best fit between the constitutive equation and a variety of rheological measurements.
Both methods were used and the results are described below.

An optimization was performed between the results of Eq. 2.9 and the measured squeeze

flow data. The relaxation time, a, (see Eq. 2.15) was found by minimizing the error between the
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calculated and measured film thickness waveforms. Since a is a fluid property, it is expected to be
constant for all test cases for a given Maxwell fluid. Figures 3.19, 3.20, and 3.21 show the results of
the optimization. Four plots are shown in each figure comparing a with the frequency of oscillation,
the amplitude of oscillation, the mean film thickness, and the amplitude fraction. No correlation
between a and any of the latter three parameters is seen. There is a slight “inverted parabolic”

correlation between frequency and a for XG2 and XG3. No other significant correlations could be

found.
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Figure 3.19: Comparison of a with other parameters for XG1 fluid.

While the slight correlation between frequency and a may seem interesting initially, the
excitement of this finding is moderated by the fact that a in Eq. 2.15 is a constant according to
the derivation and should be independent of frequency. This correlation may be incidental, or it
may indicate the heritage of the discrepancy in the present mathematical model. Regardless of

the source of the discrepancy, it must be concluded that this Maxwell model, as it is, does not
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Figure 3.20: Comparison of a with other parameters for XG2 fluid.
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Figure 3.21: Comparison of a with other parameters for XG3 fluid.
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accurately predict the film force of the xanthan gum mixtures under the oscillatory conditions to

which it was subjected during this testing.

3.5 Conclusions

3.5.1 Newtonian

In summary, there are a few noteworthy aspects of the Newtonian data. First, the calculated
force almost always overestimates the measured force, but the ratio of calculated to measured force,
F./F, decreases generally as film thickness increases. Second, the phase difference between the
measured force and the calculated force waveforms decreases to a minimum around 20-30 Hz and
then increases above around 40 Hz. Third, the phase difference tends to increase with increasing
viscosity (e.g., water, oil, glycerin).

Although intriguing, the phase difference does not have a direct effect on the forces that
may be developed on the vocal folds during phonation. As such, the results are reported, but not
discussed any further.

The discrepancy between the measured and calculated force is quite significant. The dif-
ference could potentially be attributed to the following sources: (1) the derivation of the equation
is invalid, (2) the implementation of the analytical solution has an error, (3) there was error in
the experimental measurements, and/or (4) one or more of the assumptions made in the derivation
were violated in the experimental conditions. It was assumed that Eq. 2.5 was valid and correct
according to its assumptions. The derivation was published in a reputable, peer-reviewed journal
many years ago and no later papers were found that overturned the original derivation. Therefore,
no indication could be found that suggests the derivation is in error for the applicable assumptions.
Furthermore, at the time of its publication, Eq. 2.5 was found to be in good agreement with then-
existing experimental data published separately by others [59]. Those experimental measurements
consisted of the central pressure of a fluid film in oscillatory squeezing conditions over a range of
frequencies, amplitudes, and film thicknesses that were comparable to the research described in
this thesis. The experimental data also confirmed the accuracy of using o = 1.54 for oscillatory

squeezing flow conditions.
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To verify that the equation was implemented correctly, a short MATLAB code is included
in Appendix E detailing the implementation and the output from the code are given below. Fig-

ure 3.22 shows the calculated film force which was created from the code using Eq. 2.6. As shown

Fpk=115.287 (N)
200 :

100

Force (N)
o

-100

-200 ' ' ' '
0 0.02 004 006 008 0.

Time (s)

Figure 3.22: Plot produced by film force code showing calculated force.

in Fig. 3.22, the peak calculated force is over 115 N which is greater than ten times the peak force
measured for this case (see Table B.2, data set #63). Several cases calculated and measured cases
were compared with similar results. Therefore, it was concluded that the implementation of the
equation matches the derivation described in Ch. 2.2.

Several tests were performed to verify that the sensors were calibrated, functioning prop-
erly, and that minimal interference was occurring. All testing indicated that the sensors were indeed
calibrated and functioning properly during experimental testing. A summary of the tests performed
is given in Appendix D.

A discussion of the validity of the assumptions inherent within Eq. 2.6 for the experimental
testing follows. The equation is valid for laminar flow of an incompressible, Newtonian fluid
confined between flat, parallel, circular plates of a fixed wetted diameter with motions normal to
the plate surface. The three fluids tested (e.g., 90% wt glycerin-distilled water mixture, olive oil,
and distilled water) are all incompressible, Newtonian fluids. As described earlier in this chapter,

the geometry of the setup consisted of parallel circular plates in which the fluid completely filled
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the gap between the circular disks. The upper was slightly smaller than the lower plate so that
some fluid filled a small region beyond edge of the upper plate and maintained full wetting of the
upper plate diameter. The edge effects were assumed to be negligible in comparison to the forces
developed in the fluid within the gap. The upper and lower plates were measured to have a flatness
of less than 13um (< 0.0005 in) which is between 33% and 16% of the mean film thickness as it
varies from 40um to 80um respectively. Some of the error may be attributed to the flatness of the
plates.

Further assumptions include an approximate velocity profile of the fluid in the fluid gap
which is approximated by the mean velocity profile, and the limitation that Vy > -V, /2, where V;
is the mean velocity of the fluid in the radial direction and V), is the relative velocity of one of the
plates in the radial direction. For the research described in this thesis, V), = 0 always, since the plate
motion was only in the direction normal to the plate surface which implies the reduced assumption
V¢ >0. This means that the equation is valid during the portion of the cycle in which the plates
are approaching (i.e., squeezing flows), but is not generally valid for cases where the plates are
moving away from each other and the film thickness is increasing. This assumption is of course
violated during about half of each oscillating cycle. This indicates that the peak calculated force

during separating flow may not be accurate.
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Figure 3.23: Propagated uncertainty in calculated force from uncertainty in temperature and film
thickness (see Appendix G for further explanation).
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The majority of the error in the calculation of force from Eq. 2.6 can be attributed to the
uncertainty inherent in the measurement of fluid temperature and film thickness. As described in
Appendix A, the viscosity of the fluid is estimated from the measured temperature. The thermo-
couple used to measure temperature had an uncertainty of +2.2°C. Furthermore, the film thickness
sensor (a precision LVDT), had an maximum non-linearity of +0.25% full-scale which corresponds
to an uncertainty of +2.5um. The combined uncertainty from temperature and film thickness in-
creases as film thickness decreases. A plot of the propagated uncertainty is shown in Figure 3.23.
Derivation of the uncertainty can be found in Appendix G.

Another observation regarding error in peak calculated force is that the values are always
larger than the measured force. This would suggest a bias of some sort in addition to random
uncertainty error. As discussed previously in this chapter, angular displacement or rocking of the
moving plate could explain this bias. The fact that the calculated force is always larger than the
measured force suggests that the measured amplitude of displacement is larger than the true dis-
placement amplitude (neglecting other sources of error). Furthermore, the physical location of the
LVDT is about twice the radius of the smaller plate away from the center of the fluid film, thus,
angular displacements of the moving plate could cause larger error in the measured film thickness
than if the LVDT was located closer to the film’s center. If the moving plate was rocking during
oscillation, the displacement amplitude would always be larger than the true value. An angular
displacement of just £0.0023 degrees would cause an increase of 1 um in the displacement ampli-
tude. The nature of this error always results in an increased displacement amplitude. Therefore, it
is concluded that this is a likely cause of the bias. Furthermore, within measurement uncertainty,
Eq. 2.6 was found to agree with the measured data.

In order to evaluate the potential that the fluid layer has to influence voice operation, the
Newtonian squeeze-flow equation (Eq. 2.6) was used to estimate the timescale on which a thin
film of fluid can deform while being squeezed. It is reasonable to conclude that if the time it takes
to squeeze a thin-film of fluid by an appreciable amount (63%) is on the same order as the time
period that the vocal folds are in contact (e.g., colliding or separating), then the fluid may have the
potential to influence voice operation. If on the other hand, the timescale is much longer or shorter
than the duration of time the vocal folds are in contact (e.g., colliding or separating), then it is less

likely the fluid will have the potential to influence voice operation.
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During vocal fold vibration, if one-quarter of a vibratory cycle is the portion in which the
fluid film is being squeezed, then the timescales for average male and female human voice (130-
240 Hz) correspond to 1.0 to 2.0 ms. Figure 3.24 shows the timescales of squeezing flow for a
range of fluid viscosities and initial film thicknesses. The timescales were measured by solving
Eq. 2.8 with an initial squeezing velocity of 0.5 m/s, and measuring the time to reduce by 63.2%
of the original film thickness. This is analogous to the definition of a time-constant for a function

that follows a logarithmically decaying curve.
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Figure 3.24: Contour plot showing timescales of squeezing flow in ms for ranges of viscosity and
initial film thickness.

The calculated timescales for the range of viscosities and initial film thicknesses are within
an order of magnitude of the timescales for average human voice. This suggests that the fluid film
covering the human vocal folds may deform on a timescale similar to that of the contact times
of normal human phonation. If this is the case, the fluid may have the potential to affect vocal
fold operation by cushioning the impact of opposing vocal folds during collision by squeezing

and viscously dissipating the impact or deforming during separation and locally amplifying tissue
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stresses during separation. This suggests that further investigation of the fluid layer is worthwhile
in that it may contribute to voice operation or the development of disorders.

The experimental measurements presented in this chapter regarding Newtonian squeeze-
flow were used to validate the Newtonian squeeze-flow equation for its use as a liquid layer model
to be incorporated into a numerical model of vocal fold vibration. The next chapter describes the

implementation of the liquid layer model on a lumped parameter model.

3.5.2 Non-Newtonian

Figure 3.25 shows a comparison between the shear stress vs. shear rate curve obtained
through measurement and that obtained from a best-fit of the constitutive equation (Eq. 2.15) dur-
ing a series of peak hold tests. A peak hold test is performed by holding the shear stress constant
and recording the shear rate during a period of time. Peak hold testing can be used to measure
the time-dependence of viscosity of a fluid. As can be seen in the figure, the correlation between
the constitutive equation and the measured data is poor. The general trend across shear stress is

approximated, but change in shear rate over time is not captured.
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Figure 3.25: Comparison of best-fit constitutive equation with measured rheology data during peak
hold testing at different shear stresses.
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Figure 3.26 shows a comparison between the measured data and a best-fit of Eq. 2.15 for
a test in which shear stress was increased linearly from 0.1 Pa to 12.0 Pa over 60 seconds. The
error in the calculated shear rate is over 100% for shear stresses above 8 Pa and up to 12 times
the measured value at shear stresses below 8 Pa. These two examples clearly demonstrate that the
constitutive equation used for non-Newtonian squeeze-flow does not accurately model the xanthan
gum mixture used in testing. The xanthan gum mixture was specifically chosen after comparing
the measured rheological data of a variety of non-Newtonian fluid mixtures (e.g., tragacanth gum,
guar gum, locust bean gum, xanthan gum, and others) with published data regarding the rheological
properties of human mucus. Xanthan gum was the only fluid that correlated with the published data
provided in [44]. Therefore, the notion of using another non-Newtonian fluid whose rheological

data correlates better with the equation would not meet the original purpose of this research project.
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Figure 3.26: Comparison of best-fit constitutive equation with measured rheology data during
linear ramp of shear stress.

Another approach might be to adjust the constitutive equation so that it matches the fluid
properties of the specified fluid. This is not an simple task as the math is far from trivial and devel-
oping such an equation would likely be a sizable project in and of itself. A search was made in the
literature to find a suitable model. There are very few analytical equations describing squeeze flow

of non-Newtonian fluids between parallel plates altogether. Of those found none could be expected
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to provide better results than those presented herein. Therefore, the accurate analytical modeling
of parallel plate squeeze flow of the xanthan gum mixtures used for the research described in this
thesis is dependent upon a suitable constitutive equation.

Another method of analysis could be to develop a finite element model using the measured
rheological data for the fluid model in the computational simulation. Fluid models used in finite
element simulations also depend on constitutive models. However, the constitutive models used
for finite element simulations can be more elaborate since their solutions are found numerically.

To this end, the measurements taken during this research were summarized in Appendix B.
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CHAPTER 4. LUMPED PARAMETER MODEL

4.1 Introduction

The Newtonian squeeze-flow Eq. 2.8, which was experimentally validated in the previous
chapter, was incorporated into an existing lumped parameter model, often referred to as the two-
mass model, in order to explore the influence of a liquid layer on vocal fold vibration. The two-
mass model of vocal fold vibration was created in 1972 by Ishizaka and Flanagan [46] and has
since been used extensively in the voice community. Many papers have been published which
report results of small modifications or additions to the original two-mass model [60-63]. It is
understood, however, that the two-mass model does not have the high-order precision afforded by
far more complex models such as continuum models. Nevertheless, it does serve to approximate
the fundamental self-oscillatory dynamics of voice and as such is used herein as a preliminary
indication of the potential effects of a fluid layer on vocal dynamics.

Figure 4.1 shows a diagram of the two-mass model. The model is assumed to be symmetric
about the mid-plane. Having two masses provides a mechanism whereby the superior and inferior
tissues of the vocal folds can displace out of phase one with another. This has been acknowledged
in voice research as an essential element in vocal fold dynamics. It is primarily this feature which
enables the vocal folds to self-oscillate.

The two masses are attached to the lateral wall of the larynx via a spring and damper.
Shearing stresses within the vocal fold tissues are modeled by a spring connecting the two masses.
Collision is modeled by a spring which becomes active when one of the masses passes through the
mid-plane. This spring represents the effect of the elastic deformation of vocal fold tissues during

collision. The air pressure from lungs to mouth is modeled by an equivalent electric circuit.
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Figure 4.1: Two-mass model with the addition of fluid films of thicknesses 0; and 6.

4.2 Implementation

Equation 2.8 was incorporated into the original two-mass model by adding fluid films of
thicknesses 0; and &, on the medial end of springs & and h;. Stretching and rupture effects of the
films were neglected.

The original equations of motion for the masses are:

d? dx|

F1 =m dlzl +ri— i +S1)C1+kc (X1 —)CQ) (41)
d? dx»

FQZI’I’lsz);Z-f- d +S2)C2+k (XQ xl) (42)

where F; (i = 1, 2, denoting masses 1 and 2, respectively) are the aerodynamic forces (air pressure
through glottis calculated from Bernoulli) due to glottal airflow, m; are masses representing vocal
fold tissue, r; are damping coefficients, s; are functions representing tissue deformation-related
stiffness (the sum of A; and k;, discussed below), and k. is the spring constant accounting for
shearing stresses of the vocal fold tissue between the masses.

The tissue deformation terms s; are:

3
Ao Ao Agoi
si(xi) = k,'(xl' + lel'x?) + h,’ {(x, + _2l ) + Npi (x, + —21 l) } for X; < ——ngl s (43)
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where k; and 1y; are the linear and non-linear spring constants accounting for the restoring force due
to vocal fold tension, 4; and 1, are the linear and non-linear spring constants accounting for tissue
deformation, Agg; denote initial (resting) glottal areas, [, is the glottis length, and (x,- +Ag0i/ (21g))
represents the displacement from equilibrium used to calculate the value of the tissue deformation.

This displacement term was modified to include the fluid layer by adding its thickness:

Agoi
(x,-+ 22) +6,~)7 (4.4)

where 6; is the current film thickness for the ith mass, obtained as follows.

During the closed phase of the glottal cycle and while the tissue deformation spring was in
compression, the deformation of the fluid layer was estimated using Eq. 2.8. It was approximated
as a quasi-one-dimensional fluid film, bounded by a plane of symmetry on the medial side and on
the lateral side to the medial end of the tissue deformation spring, s;. Thus, the medial plane of
the film in the two-mass model is a plane of symmetry corresponding to the mid-plane (y = h/2)
of the film in Fig. ??. The surfaces of the two-mass model are rectangular whereas the squeeze
flow equation was derived for axisymmetric geometry. The assumption is that the contact area of
the vocal fold tissues are likely to be somewhat elliptical which is reasonably approximated by an
axisymmetric geometry. The film area was equal to the exposed surface area of the masses. The
medial end of the spring was assumed to exert a uniform force on the moving (lateral) boundary of
the fluid film, equal to the force in the spring.

Each film’s thickness was calculated at each time step by (1) calculating the force in the
spring, (2) applying the spring force as a quasi-steady, uniform force to the film surface, and (3)
updating the film thickness and its derivatives. The spring force was calculated (as usual) based
on the relative displacement of the spring endpoints from the previous time step. The force in the
spring was applied uniformly to the lateral (moving) film surface and was assumed to be constant
during the entire time step. The resulting change in film thickness and film surface velocity (h
and its temporal derivative) were calculated by integrating Eq. 2.8 numerically. The changes in
film thickness and surface velocity were added to the existing values to obtain new thickness and
velocity. The presence of the film allowed the medial end of the tissue deformation spring to

expand as the fluid was squeezed, reducing the compressive force in the spring. Physically, this
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represents a relaxation of the compressive stress in the vocal fold tissue which is interpreted as a
dissipation of potential energy stored in the tissue during collision.

The resulting glottal area, flow rate, and mouth pressure vs. time data were compared for
three different cases: 1) no fluid layer, 2) thin fluid layer (10 um), 3) thick fluid layer (100 um).
The fluid layer was assumed to have the same properties as distilled water. The spectra of the

mouth pressure waveform data were also compared.

4.3 Results

The results of applying the Newtonian fluid model during collision of the two-mass model
are shown in Fig. 4.2. These suggest that the effect of the fluid layer on the dynamics of the vocal
folds may not be insignificant. The fundamental frequency, fy, decreased with increasing film
thickness. The calculated fy were 167.5 Hz, 166.1 Hz, and 158.3 Hz for the original, 10 um, and
100 um cases, respectively, representing decreases in fy of 0.8% for the 10 um case and 5.5%
for the 100 um case. In addition, the glottal flow rate waveform was increasingly different for
increasing film thickness. The peak glottal flow rate was reduced from 0.655 m?3 /s for the original
model to 0.642 m3 /s and 0.582 m3 /s with the application of the fluid model for the 10 gm and 100
um films, respectively. This corresponds to a reduction in flow rate of 2.1% and 11.2% for the 10
um and 100 um cases, respectively.

Another noteworthy feature of Fig. 4.2 is that the maximum glottal area is proportionally
smaller for the thin and thick film cases than the original model.

The Fourier transform of the mouth pressure waveform was taken for the different film
thicknesses; the envelopes of the resulting amplitude spectra are shown in Fig. 4.3. There are
increasingly noticeable differences between the spectra for increasing film thickness. The formants
are similar but the relative magnitudes differ which suggests that the fluid layer may also influence

sound quality of speech.

4.4 Conclusions

The results show that the frequency spectrum of the voice may be affected by the fluid layer

thickness. Further investigation using a higher-order computational physical model is necessary
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Figure 4.2: Effect of Newtonian fluid layer model (p =999 kg/m?3, u = 0.0001 Pa-s) on two-mass
model response: (—) no film, (- -) 10 um film, (---) 100 um film.

to clarify how the liquid layer affects the frequency spectrum. Nevertheless, on this preliminary
model, which incorporates a liquid layer, fundamental frequency was observed to decrease by
0.8% and 5.5% for the 10 um and 100 um film cases, respectively, as compared to the no-film
case. Peak glottal flow rate was observed to decrease by 2.1% and 11.2% for the 10 um and 100
um film cases, respectively. Thus, these preliminary findings indicate that changing the fluid layer
thickness may influence voice quality. Additional investigation is required to further substantiate
this effect.

The model described in this chapter deals only with the effects of squeezing a Newtonian
fluid. The results show that if the film thickness is very small (e.g., the 10 um case) the changes
in the model dynamics are correspondingly small and thus may be neglected. Therefore, it is

likely that the thin Newtonian “sol” layer, which has a thickness reported around 6 pm, has little
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Figure 4.3: Envelopes of amplitude spectra of the mouth pressure predicted using two-mass model.
(—) no film, fo =167.5 Hz, (- -) 10 um film, fo = 166.1 Hz, (---) 100 um film, fo = 157.9 Hz.

effect on the mechanics of vocal fold vibration and may be neglected during collision of the vocal
folds in general. However, the much thicker non-Newtonian mucus layer (around 100 gm) may
significantly affect vocal fold oscillations.

Further investigation is required in order to determine and apply the effects of the fluid
layer during the opening phase of the glottal cycle to a reduced-order model. Attention must be
given to incorporate the mucosal wave motion of the vocal folds during separation as well as the
more complex geometry of the fluid layer during vibration (e.g., through finite element modeling).

Due to the inherent limitations of the lumped parameter approximation described in this
chapter, a more realistic model was needed to further investigate the potential effects of a liquid
layer on vocal fold operation. While more complex computational models are well suited to pa-
rameterized studies, they lack the natural realistic effects that experimental models can provide.
Furthermore, since a non-Newtonian model does not presently exist which can be used to model
the mucus found on human vocal folds, a synthetic model with the application of a liquid layer

was best suited for further investigation.
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CHAPTERS. PHYSICAL MODEL TESTING

5.1 Experimental Setup

As indicated in the introduction of this thesis, synthetic models of vocal fold vibration
have been used extensively to study voice production. Synthetic models naturally exhibit certain
realistic vocal fold behaviors that are hard to reproduce numerically or computationally, such as
three-dimensional effects, non-linear material properties, and turbulence. While elaborate com-
putational models may closely approximating certain aspects of true vocal fold function, physical
models offer a more comprehensive testing ground for voice research. For the study of the effects
of the liquid layer on voice production, a synthetic, silicone vocal fold model was selected over a
more advanced numerical model due to its low cost and potential to yield results more quickly that
numerical models. Furthermore, the results from the synthetic model were expected to be more
accurate than what could be obtained from a computational model.

A hemilarynx (half larynx) model test setup was constructed that enabled the contact force
of a single vibrating synthetic vocal fold to be measured. The test setup was constructed so that
the model could be tested with and without the application of fluid to the surface of the model
during vibration. An illustration of the setup is shown in Fig. 5.1. The setup consisted of an air
supply which directed air through a set of valves to a plenum and then to a mounting plate where
the synthetic hemilarynx vocal fold model was mounted. The setup enabled the simultaneous
recording of dynamic force, subglottal pressure, radiated sound, and high-speed images of model
motion.

The synthetic vocal fold model mounting assembly consisted of two acrylic blocks (see
Fig 5.2): a vocal fold mounting block and a force gauge mounting block. The setup was very sim-
ilar to that described in [51] in which synthetic vocal fold models were mounted in a rectangular
cutout of a similar vocal fold mounting block. A force gauge spacer was mounted in a rectangular

cutout of the force gauge mounting block. There was a 0.005 inch gap between the force gauge
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Figure 5.1: Illustration of synthetic vocal fold model test setup.

spacer and the opposing surfaces of the mounting block (see Fig.5.3). The vocal fold mounting
block and the force gauge mounting block were bolted together along with intervening gasket ma-
terial to seal the interface beyond the force gauge spacer, so as not to be between the silicone vocal
fold model and the force gauge spacer which could interfere with accurate force measurements. A
0.005 inch gap also existed between the bottom of the force gauge spacer and the mounting plate
beneath so that it would not be in contact with any other surface (0.005 inch gap; see Fig 5.3).
The force gauge was made of two pieces: a body and a faceplate (see Fig. 5.4). The face-
plate was designed to allow liquid to diffuse evenly through its outer surface where the synthetic
vocal fold model would come into contact during testing. The body was a rectangular piece of
aluminum with a pocket for a fluid, holes for faceplate attachment screws, and a barbed fitting to
attach a small, flexible fluid supply hose. A threaded hole on the back side of the body was used
to attach the force gauge. The faceplate was made of aluminum with threaded holes to receive the
attachment screws and a stepped cutout where a porous foam material could be mounted, through
which the liquid diffused evenly. The porous foam insert was glued into the aluminum faceplate to

seal the edges.

64



Gasket Material

Force Gauge Vocal Fold
Mounting Block Mounting Block

Force Gauge el
S Fold
pacer
Model

Figure 5.2: Synthetic vocal fold mounting assembly. The flow is normal to the page.

The porous foam insert (GenPore, www.genpore.com, Reading, PA) was cut from a sheet of
1/4” thick open cell polyethylene foam with a pore size of 50 yum. It was coated with a hydrophilic
coating by the manufacturer to reduce surface tension effects and permit water-based fluids to flow
more easily through it. Preliminary testing showed that all of the test fluids diffused evenly through
the foam in the force gauge spacer assembly. Relatively low pressures were needed to cause fluid
flow. It was observed that less than 1 inH,0 (about 250 Pa) was needed for water to flow through
the faceplate. Pressures for relatively high flow rates (greater than 10 cc/hr) of all test fluids were
developed with no leakage of the fluid between the faceplate and the body.

A plastic plate with a 2.54 cm hole was placed between the acrylic mounting blocks and
the aluminum mounting plate, with a thin rubber gasket between the aluminum and plastic plate,
sealing the gap (see Fig. 5.3). The surfaces of the mounting blocks and the plastic plate were flat
and smooth so that the contact was airtight. The vocal fold mounting blocks were then bolted
to the aluminum plate over the plastic plate and rubber gasket. An airtight seal was achieved
everywhere in the vocal fold mounting except beneath the synthetic vocal fold, as desired, and
negligible leakage through the 0.005 inch gaps near the force gauge spacer. The gaps between the
force gauge spacer and its surroundings permitted the block to be suspended from the force gauge

so that vocal fold contact forces would be transmitted completely, and solely, to the force gauge.
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Figure 5.3: View of force gauge spacer showing exaggerated gaps between spacer block and sur-
rounding mounting block.

Simultaneous recording of contact force, subglottal pressure, radiated sound, and high
speed images were taken during testing (see Appendix H for sensor specifications and uncer-
tainty). Contact force was measured using the same dynamic force gauge as used previously in
this study (see Ch. 3). Subglottal pressure was measured using an Omega PX138 pressure trans-
ducer. Radiated sound pressure was recorded using Larson Davis 2520 1/4” free-field high-fidelity

microphones with a Larson Davis 2221 pre-amplifier. All data (except for the high speed images)
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Figure 5.4: Force gauge spacer assembly. The porous foam insert where the vocal fold model
comes into contact with the spacer block can be seen in this view. In the background the force
gauge and tubing are also visible.

were recorded for five seconds at 40 kHz. Images measuring 256x880 pixels were acquired at 6000
frames per second, yielding approximately 48 frames per oscillatory cycle of the vocal fold model
and a resolution of 47.6 pixels per millimeter (21.0 um per pixel). All images were acquired with
the same lighting and camera settings so that the image quality (e.g., brightness and contrast) were

consistent between data sets.

5.2 Testing

Appendix I gives a summary of the 126 test runs that were made in this study, listed in
the order in which they were taken. Each of five different fluids (3 Newtonian: oil, water, and
glycerin; 2 non-Newtonian: XG1 and XG2 which were two different mixtures of xanthan