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ABSTRACT

ON STABILITY AND EVOLUTION OF SOLUTIONS

IN GENERAL RELATIVITY

Stephen Taylor

Department of Mathematics

Master of Science

This thesis is concerned with several problems in general relativity and low en-

ergy string theory that are pertinent to the time evolution of the gravitational

field. We present a formulation of the Einstein field equations in terms of vari-

ational techniques borrowed from geometric analysis. These equations yield

the evolution equations for the Cauchy problems of both general relativity

and low energy string theory. We then proceed to investigate the evolutionary

linear stability of Schwarzschild-like solutions in higher dimensional relativity

called black strings. These objects are determined to be linearly unstable.

This motivates a further stability analysis of the charged p-brane solutions of

low energy string theory. We show that one can eliminate linear instabilities

in p-branes for sufficiently large values of charge.

We also consider the characteristic problem of general relativistic magne-

tohydrodynamics (GRMHD). We compute the eigenvalues and eigenvectors of



GRMHD and establish degeneracy conditions. Finally, we consider the initial

value problem for axisymmetric GRMHD. We formulate the general Einstein

and MHD equations under the assumption of a stationary axisymmetric space-

time without assuming the circularity condition.
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NOTATION

The following are common notations in the text:

∇a - the covariant derivative with respect to the Levi-Civita connection

Γacd - Christoffel symbols with respect to the Levi-Civita connection

G - Newton’s constant

Gab - the Einstein tensor

iff - if and only if (logical equivalence)

M - n-dimensional C∞ Lorentzian manifold

ηab - four dimensional Minkowski metric

Rn - Euclidean n space

vav
a - indicates implicit Einstein summation convention over a

R - the scalar curvature

Rab - the Ricci curvature tensor

Rabcd - the Riemann curvature tensor

Tab - stress-energy tensor

Sn - the unit n sphere
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Chapter 1

Introduction

Over the past several decades, it has been of interest to understand and model highly

compact astrophysical systems in general relativity. This process is significantly more

complicated than modeling the same systems in Newtonian gravity.

In full general relativity, one is required to solve ten nonlinear coupled partial

differential equations (Einstein’s equations) to determine a Lorentzian metric on a

topological manifold. The metric determines most of the interesting properties of the

manifold such as its geodesics and curvature. It is well known that general relativ-

ity predicts many gravitational phenomena that have been experimentally observed

which are absent in Newton’s theory. Canonical examples are the precession of the

perihelion of Mercury, gravitational waves, and black holes.

Black holes and other compact astrophysical objects have been a mainstream

research topic since Schwarzschild’s original derivation of the spacetime exterior to a

spherical point source in general relativity. Since his day, we have come to understand

that not only do variations of such highly symmetric strong gravity solutions exist in

large numbers in the universe. Kerr later found a generalization of the Schwarzschild

solution which includes potential rotation. Further work established that the Kerr

1
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spacetime is the unique stationary axisymmetric rotating solution in general relativity.

It is interpreted as the endstate of most gravitational collapse processes. While this

is a startling result and begs astronomers to find such objects, it seems unlikely black

holes will exist in a form as pure as the Kerr solution. One expects in the vicinity

of a black hole that there will be at a minimum a interstellar medium. Additional

matter such as winds, other stars, or accretion disks may also be present. In short,

one expects to find “dirty black holes” and not the mathematical result of Kerr. So

an interesting question becomes, what are the interactions of a black hole with more

complicated astrophysical systems? One can further speculate because of more recent

theories from particle physics that one must extend the Kerr solutio to include other

matter fields and higher dimensions. There are a host of questions that go beyond

the original Kerr solution into considerations of time dependent higher dimensional

black holes.

The overarching themes of this thesis are such considerations. Because general

relativity is so complex, it is difficult to construct exact solutions of the theory. This

naturally becomes even worse if one adds higher dimensions or complicated matter

fields. To have a reference point as we mentioned, the first solution to the vacuum

Einstein equations was due to Schwarzschild and is a Lorentzian manifold (M, g)

where the metric takes the form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (1.1)

By inspection of the metric, one can see that degeneracies arise when r = 0 and

r = 2M . Further analysis shows that r = 2M is a coordinate singularity and is thus

not physical. The r = 0 singularity is a curvature singularity where the spacetime

breaks down. This was the first theoretical evidence of the existence of black holes.

Moreover, Birkhoff showed that the Schwarzschild solution is the unique spherically
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symmetric solution of the Einstein equations. One might therefore expect that if

we perturb a Schwarzschild spacetime in a spherically symmetric manner, that the

resulting spacetime will return to the original. Said another way, one might assume

the original spacetime is stable. This was indeed shown to be true in [29]. One might

expect other solutions such as Kerr to be stable. In general answering such a question

is very difficult because it reacquires solving the full Einstein equations. We instead

can use linear perturbation theory to resolve such questions to linear order. Chapter

3 is concerned with such problems.

The Einstein equations admit more than just spherically symmetric of axisym-

metric vacuum solutions. If we source the Einstein tensor with the Maxwell stress

energy tensor, we can generate a spherically symmetric solution of the form

ds2 = −
(

1− 2M

r
+
q2

r2

)
dt2 +

(
1− 2M

r
+
q2

r2

)−1

dr2 + r2dΩ2 (1.2)

which reduces to the Schwarzschild solution when q = 0. This is called the Reissner-

Nordstrom metric and is the simplest metric that incorporates electromagnetism into

general relativity via a charge parameter q. One can also source the gravitational

field with more general stress tensors. One could consider a fluid sourcing the Ein-

stein equations. Indeed there are spherically symmetric solutions for certain types of

fluids representing both static stars and spherically symmetric gravitational collapse.

One could imagine extending these to include the Maxwell tensor and assuming the

matter content of magnetohydrodynamics. In this case we can no longer construct

exact solutions to the Einstein equations. Because of the resulting complexity of the

equations, we must then consider numerical techniques that arise when solving the

Einstein equations. One expects the universe to be populated by compact magnetized

fluid objects which need descriptions by general relativistic magnetohydrodynamics.

Such objects might include, neutron stars, magnetized white dwarfs, pulsars, magne-



4

tars, gamma-ray bursts, supernovas, and a variety of binary or multiple star systems.

Chapters 4 and 5 are concerned with developing models for these objects.

In Chapter 2 we give a brief survey of Einstein’s original formulation of general

relativity. Variations of our exposition can be found in all canonical relativity texts

listed in the chapter. We will see that Einstein’s original formulation is physically

motivated but not easily generalizable. We later wish to add an auxiliary dilaton

field to the field equations of relativity. To this end, we give a modern derivation of

the Einstein field equations in terms of extremizing the “simplest” functional of the

curvature of a metric defined on a Lorentzian manifold. We use standard techniques

in geometric analysis to perform this operation rather than analogous methods found

in standard physics texts. This method will allow us to easily extend to more general

theories of gravity in the subsequent chapter by adding appropriate fields to our

curvature functional.

In Chapter 3 we consider stability analyses of black strings and p-branes. Black

strings are solutions to the vacuum Einstein equations in D > 4 dimensional space-

times that reduce to the Schwarzschild solution when D = 4. The bulk of our work

consists of fixing a solution to a given theory of gravity, perturbing the solution, and

analyzing the growth or decay of the perturbation in time. If the perturbations are

not bounded in time, we conclude the original black object was unstable. We first

summarize a classical stability problem due to Jeans that motivates our discussion of

black string instability. Black strings are one possible extension of the Schwarzschild

solution to higher dimensions. It is a rather surprising fact that we find black strings

are linearly unstable whereas the Schwarzschild solution is linearly stable. We develop

the full analytical and numeric analysis necessary to show black strings are unstable.

This involves computing the Einstein equations to linear order for a perturbation

metric. We then combine these equations to a single equation for one component of
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the perturbation. Numerical integration of this equation shows that the perturbation

will grow exponentially large as time increases.

We then consider charged black p-brane solutions of low energy string theory.

These objects may be heuristically thought of as magnetically charged black strings.

We briefly recall the seminal Gregory-Laflamme analysis [11] of a class of charged

black p-branes that were concluded to be unstable up to the extremal limit of charge.

In the extremal limit, Gregory-Laflamme showed the instabilities in the finitely charged

black p-branes disappeared. Their work is similar in form to a more complicated ver-

sion of our black string considerations.

We finally discuss the stability of a more general class of p-branes that was orig-

inally considered in a paper by Reall [26]. We extend the numerical analysis of [19]

to reproduce all the results of Gregory/Laflamme [11, 12], and show there exists a

wide class of p-brane solutions where linear instabilities vanish that are determined

by a constant coupling the dilaton field to a generalized generalized Maxwell field.

We plot our results and present conclusions.

Chapter 4 is primarily concerned with posing and solving the eigenvalue prob-

lem of general relativistic magnetohydrodynamics (GRMHD). GRMHD represents

the coupling of Einstein’s equations to electrodynamics and fluid dynamics in the

ideal MHD approximation. It is extremely complicated and highly nonlinear. Our

motivation for studying this problem is due largely to potential numerical benefits

concerning the simulation of the GRMHD equations.

In [4] Brio and Wu construct a Roe solver for non-relativistic magnetohydrody-

namics. Roe solvers are characterized by their robustness and ability to resolve shocks

(discontinuities). The solver requires one to represent the MHD equations in conserva-

tive form, and to compute the eigenvalues and eigenvectors of the associated Jacobian

matrix for all spacial steps. Moreover, the eigenvectors must form a complete set for
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the solver to work properly.

We show that the MHD equations do not initially admit a complete set of eigen-

vectors. There are certain parameter values which cause eigenvalues and eigenvectors

of MHD to degenerate or become singular. We find all such singularities and scale the

Jacobian matrix by the appropriate factor to guarantee existence of a complete set of

eigenvectors. The resulting MHD equations are then ready for numerical integration

via a Roe solver.

We next extend the MHD methods to GRMHD. We give a formulation of the

GRMHD equations due to [20] and calculate the eigenvalues of their Jacobian matrix.

There are seven nontrivial eigenvalues that are significantly more complicated in form

than their MHD analogous. Four of the eigenvalues are given as solutions to a non-

factorizable quartic that have no simple algebraic representations. We compute the

associated right eigenvectors and give degeneracy and singularity conditions on both.

These results will be used to eliminate spurious waves originating from the boundary

of the numerical grid of current GRMHD numerical simulations.

Spherical symmetry is too restrictive for modeling problems in GRMHD. We con-

sider axisymmetric spacetimes instead. This assumption makes the resulting Einstein

equations slightly more complicated than those in the spherically symmetric case.

Solving the axisymmetric Einstein equations coupled to the GRMHD stress tensor

allows us to model magnetized neutron stars and charged black holes.

In Chapter 5, we develop equations for the initial value problem of a magnetized

neutron star in the context of general relativity. One motivation for this work is to

model gravitational radiation emanating from the star or its interaction with other

astrophysical objects. Direct detection of gravitational waves is one of the major open

problems in experimental physics. The numerical simulation of magnetized neutron

stars will potentially admit gravitational waveforms and hence allow experimentalists
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to know what type of waves to look for.

If one wishes to evolve an initial spacetime in time according to the Einstein

equations, one may not choose the initial spacetime arbitrarily, but must satisfy a set

of constraint equations. This is analogous to choosing initial data in electrodynamics

consistent with the equations of electrostatics. The initial value problem for general

relativity is itself highly nontrivial, often resulting in solving a system of coupled

second order partial differential equations.

We first define the notion of a circular axisymmetric spacetime. Matter may only

propagate in planes perpendicular to an axis of symmetry in such a spacetime. If one

assumes a circular spacetime, the metric and resulting Einstein equations simplify

dramatically. We then consider the work of Cook et. al. in [5] where a circular ax-

isymmetric initial value problem is considered for general relativistic hydrodynamics.

We derive the Einstein and matter equations associated with this model. Moreover,

we briefly comment on an iterated Green’s function technique that can be used to

numerically solve the Einstein equations. This method may also be used to solve the

similar Maxwell equation in our later GRMHD analysis.

We finally proceed to formulate the equations for non-circular axisymmetric GRMHD.

We do this by decomposing a general Lorentzian metric along spacelike and time-

like Killing vectors and by calculating the Einstein equations, matter equations, and

Maxwell equations. Our equations are relatively aesthetic as compared to [3] where

non-differentially rotating magnetized neutron stars were considered. We leave nu-

merical computations for later work.

We finish with a summary of our conclusions in Chapter 6.



Chapter 2

Einstein’s Field Equations

To begin our investigation of time dependent solutions in gravity, we provide a brief

review of the Einstein equations in order to set the stage for our efforts to solve them

(See [6,17,18,30,31] more information on the Einstein equations). We then provide a

variational formulation for the purpose of motivating extensions of general relativity

to more general gravitational theories. This method can also be used to establish the

equations of motion for low energy string theory.

The Einstein equations serve as the governing equations of general relativity and

are hence fundamental to all topics discussed in this thesis. We note that our varia-

tional formulation is based on standard techniques in geometric analysis rather than

canonical relativity texts. For an introduction to standard geometric analysis meth-

ods see [25,28].

2.1 Original Formulation

Einstein first formulated his field equations of general relativity by building an ex-

tended analogy between constructs in Newtonian gravity and Lorentzian geometry.

8



2.1 Original Formulation 9

In Newtonian gravity, the gravitational field is defined in terms of a scalar potential

φ. If we place two test particles initially separated by a vector x in a gravitational

field generated by a spherically symmetric mass, the particles will accelerate towards

the mass. Moreover, they experience tidal acceleration given by −(x · ∇)∇φ.

In general relativity, we model gravity as a Lorentzian manifold of topology M

and metric g. We then define a covariant differentiation operator, which computes

derivatives of tensors and projects the resulting expression into the tangent plane

of the manifold pointwise. There is a unique way to perform this operation such

that the metric is parallel transported along any curve in the manifold. We call the

connection that builds such a covariant derivative the Levi-Civita connection. With

this connection, we may consider the quasi-linear system of equations whose solutions

are the geodesics of (M, g).

Geodesics locally extremize the length functional between two points on a Lorentzian

manifold. Moreover, this property is global if the manifold topology is sufficiently well

behaved. In general relativity, gravity is no longer a force but a consequence of the

curvature of a spacetime defined by a metric tensor. Free particles should travel along

extremal paths in this spacetime. It is thus natural to hypothesize that test particles

travel along geodesics of spacetime.

The geodesic deviation equation states that two geodesics “test particle trajec-

tories” in close proximity have tidal acceleration −R a
cbd vcxbvd where va is the four

velocity of the geodesics (particles) and xa is the separation vector of the particles.

Heuristically, this suggests an identification with Newtonian gravity

R a
cbd vcvd ∼ ∂b∂

aφ (2.1)

where partial derivatives with free indices a and b have replaced the previous gradient

notation. In the presence of a matter distribution of mass density ρ, the defining



2.1 Original Formulation 10

Newtonian relation for the gravitational potential is

∇2φ = ∂a∂
aφ = 4πρ. (2.2)

In general relativity, matter will no longer be represented by a scalar quantity.

Instead, we encode all information about matter in terms of a quantity we call the

stress energy tensor Tab. The stress energy tensor contains all information about

energy density, linear momentum, and stresses of fields. Specifically, its time compo-

nents contain the energy of a given matter field. Since va = (1, 0, 0, 0) in the frame

of an observer, we may pick off the tt-component of Tab and identify this tensor with

ρ via

Tabv
avb ∼ ρ (2.3)

noting that the contractions are necessary to make the left hand side a scalar quantity.

By analogy with Poisson’s equation this yields

R a
cad vcvd ∼ Tcdv

cvd → R a
cad = κTcd (2.4)

where we have chosen a coupling constant, κ, which will be calculated from the weak

field Newtonian limit.

This was Einstein’s first attempt to formulate general relativity as the geometri-

cal analogue of Newtonian gravity. However, one can show that ∇aT
ab = 0 is the

relativistic analogue of the classical principle of conservation of energy, and in general

∇aR
a
cb
c 6= 0. Thus (2.4) violates conservation of energy.

This problem is overcome by adding a term to the previous equation to get

Gab ≡ Rab −
1

2
Rgab = 8πTab. (2.5)
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Equations (2.5) are the field equations of general relativity and are called Einstein’s

equations. They express a nonlinear relationship between the curvature of a spacetime

manifold (gravity) and the stress energy tensor (matter).

The preceding argument relies heavily on an analogy with Newtonian gravity.

The reason general relativity is a successful theory lies in the fact that equations

(2.5) have predicted observed phenomena such as the precession of the perihelion

of Mercury, the existence of black holes, and cosmological expansion, which are not

consequences of Newtonian gravity. Since it can be shown that general relativity

reproduces Newtonian gravity in the low energy limit (weak gravitational fields),

relativity is viewed as a more accurate theory of gravity.

2.2 Alternative Variational Formulation

In this section we demonstrate how Einstein’s equations may be derived in a math-

ematically rigorous way from a variational principle. This derivation is devoid of a

classical analogy and thus must be taken in tandem with the above to suggest a viable

theory of gravity.

Consider a Lorentzian manifold (M, g). Let h be another metric on M and ε ∈ R+.

Let S[g] be any functional of g. Then for gab and hab, the components of g and h

respectively, we define the first variation of g with respect to h by

δh(S) ≡ d

dε
S[gab + εhab]

∣∣∣∣
ε=0

(2.6)

We will also consider the first variation of metric dependent differential operators and

tensors. We require the following lemma to derive Einstein’s equations:

Lemma 1. Let (M, g) be a Lorentzian manifold, R(g) the scalar curvature of g, and

Ric(g) the Ricci curvature of g. Then
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δhR(g) = −trh(Ric(g))−∆(trgh) + div2h (2.7)

= −hijRij −∇i∇i(hjkgjk) +∇i∇jh
ij (2.8)

where in local coordinates tr is the trace operator on tensors with two covariant indices

with respect to a metric h. For example trgh = gijhij.

Proof: We first note that δh(gab) = hab is immediate from (2.6) taking S to be

the identity functional. Also from the formula gacg
cb = δba and noting the Leibnitz

property holds for δh, we compute δhg
ab = −hab. We fix a p ∈M and choose geodesic

coordinates at p. In these coordinates gab|p = ηab, ∂kgab|p = 0, and Γabc|p = 0, which

allows us to compute

δhΓ
a
bc = δh

(
1

2
gad (∂bgcd + ∂cgbd − ∂dgbc)

)
(2.9)

=
1

2
gadδh (∂bgcd + ∂cgbd − ∂dgbc)−

1

2
had (∂bgcd + ∂cgbd − ∂dgbc) (2.10)

=
1

2
gad (∂bhcd + ∂chbd − ∂dhbc) (2.11)

=
1

2
gad
(

[∂bhcd − hedΓ
e
bc − hceΓ

e
bd] + [∂chbd − hedΓ

e
bc − hbeΓ

e
cd] (2.12)

− [∂dhbc − hecΓ
e
bd − hbeΓ

e
cd]
)

(2.13)

=
1

2
gad (∇bhcd +∇chbd −∇dhcd) . (2.14)

Similarly one can show
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δhR
a
bcd =

1

2
gae (∇c∇dhbe −∇c∇ehbd −∇b∇ehcd +∇c∇bhde −∇b∇chde) (2.15)

δhRab = −1

2
∆Lhab −

1

2
∇a∇btrgh+∇b(divh)a +∇a(divh)b (2.16)

= −1

2
∆Lhab −

1

2
∆(trgh)− div∗divh (2.17)

δhR = −habRab −∆(trgh) + div2h (2.18)

where we define the Lichnerowicz Laplacian ∆L on covariant two tensors by1

∆LTab ≡ ∆Tab + 2gcdRe
cabTed − gcdRadhcb − gcdRbdhac. (2.19)

We also define div as contraction of its argument with a covariant derivative. For

example ∇a(divh)a = div(div(h)) = div2h. For a one form ω with components ωi we

define the adjoint divergence operator

div∗η ≡ −1

2
(∇aηb +∇bηa) (2.20)

where * indicates the adjoint operator. The last tool we require for the derivation of

the Einstein equations is the following

Lemma 2. Let (M, g) be a Lorentzian manifold and dµ its volume form. Then

δh(dµ) =
1

2
(trgh)dµ (2.21)

.

Proof: For two matrices aij, bij, we note [25]

d

dε
det(aij + εbij)

∣∣∣∣
ε=0

= aijbijdet(aij) (2.22)

1Recall the standard Laplacian is given by ∆Tab = gcd∇c∇dTab.
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and compute

δh(dµ) = δh

(√
|g|
)
dx =

δhdet(g)

2
√

det(g)
dx =

1

2
(trgh)

√
|g|dx =

1

2
(trgh)dµ. (2.23)

We now have the necessary machinery to define and derive the Einstein equations.

For a Lorentzian manifold (M, g), we define the vacuum Einstein equations to be the

system of equations given by demanding the first variation of

SE(g) =

∫
M

Rdµ (2.24)

is trivial. We explicitly compute the first variation of this action

δhSE =

∫
M

[R(δhdµ) + (dµ)δhR] =

∫
M

[
−habRab −∆trgh+ div2h+

R

2
trgh

]
dµ

(2.25)

= −
∫
M

hab
[
Rab −

1

2
Rgab

]
dµ (2.26)

Thus we see that δhSE = 0 iff Gab ≡ Rab − 1
2
Rgab = 0. Thus the vacuum Einstein

equations are Gab = 0.

2.3 Matter Einstein Equations

We often wish to source the gravitational field with a mass/energy distribution. To

include this in our variational formalism, we augment the general relativity action via

S = SE + SM where δh(SM) =

∫
M

8πhabTabdµ. (2.27)

This reproduces the matter Einstein equations
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Gab = 8πTab (2.28)

where the coefficient is chosen to agree with Newtonian gravity in the weak field limit.

We now turn to deriving and solving these equations for various stress energy tensors.



Chapter 3

Black String Stability

In this chapter we consider questions associated with the stability of black objects

in general relativity and its extension to higher dimensions. We begin with a simple

example taken from Newtonian gravity to motivate more difficult problems in general

relativity and low energy string theory.

Stability investigations of solutions to Einstein’s field equations and their ana-

logues in low energy string theory have been widely treated in the physics literature.

For a recent review, see [16]. The problem of linear stability of a spacetime can be

heuristically summarized by the following: Suppose one has a Lorentzian manifold

(M, g̃) where g̃ is a solution of prescribed field equations. Let h be another metric on

M and define a perturbed metric g = g̃ + εh for 0 < ε << 1. One may use the field

equations to linear order in ε for g to solve for the perturbation h. If it can be con-

cluded that h decays as time goes to infinity, one says the original spacetime (M, g̃) is

linearly stable; if not it is unstable. We will refer to g̃ as the fixed background metric

and to h as the perturbation metric. It is interesting to classify spacetimes according

to their stability for purposes of discussing their physicality. If a spacetime is linearly

unstable it is unlikely that it is a physical model; however, this does not preclude the

16
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remote possibility that nonlinear effects could potentially stabilize a linearly unstable

spacetime.

3.1 Introduction

Linear stability analysis in gravity originated with the work of Jeans [23] at the turn

of the twentieth century. He considers a gravitational perturbation of a static matter

distribution with constant mass density ρ = ρ0 and constant pressure p = p0. The

governing equations for the system are the equations of hydrodynamics1.

∂tρ+∇ · (ρv) = 0 (3.1)

∂tv + (v · ∇)v = −1

ρ
∇p+ g (3.2)

and the gravitational field equations

∇× g = 0 (3.3)

∇ · g = −4πGρ (3.4)

where v is the fluid velocity and g is the gravitational force field. If we now con-

sider p0 + p̃ with p̃ a small perturbation of the pressure and analogous perturbations

for the other variables, we find that the governing equations to linear order in the

perturbation variables are

∂tρ̃+ ρ0∇ · ṽ = 0, ∂tṽ = − 1

ρ0

∇p̃+ g̃ (3.5)

1 We typically choose units where G = 1; however, we leave G in standard units for this example.
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∇× g̃ = 0, ∇ · g̃ = −4πGρ̃. (3.6)

These may be combined to yield the equation

∂2
t ρ̃ = ∆p̃+ 4πGρ0ρ̃. (3.7)

Next we assume an equation of state of the form p̃ = v2
s ρ̃ where vs is the speed of

sound, make a Fourier ansatz ρ̃ = Aeiωt−ik·x, and substitute into (3.7) yielding

ω2 = v2
sk

2 − 4πGρ0. (3.8)

Note that if the imaginary part of ω is negative, then ρ̃ will increase exponentially in

time, which indeed happens for long wavelengths

λ > λ∗ ≡

√
πv2

s

Gρ0

. (3.9)

Thus an object is unstable to gravitational perturbation if its wavelength is larger

than λ∗.

One can perform similar but more complicated stability analyses in general

relativity. In [29] the Schwarzschild solution

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (3.10)

is shown to be linearly stable. We will first perform a similar analysis for Schwarzschild

type solutions of the Einstein equations in higher dimensions. These solutions are of-

ten referred to as black strings. Analyzing the linear stability of a spacetime allows

us to make statements about the possible physical realization of a spacetime. For in-

stance, if a spacetime is unstable, then it is unlikely to be physically realized. Stability
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analyses of solutions in higher dimensional relativity are motivated by string theory

and serve as examples of more complicated models that arise in higher dimensional

theories of gravity.

3.2 Black Strings

Black string instabilities were first discussed by Gregory and Laflamme (GL) in [10].

There have been several follow ups of the original analysis. Our work is similar in

content to that of [22] but differs in our choice of numerical method. We calculate

the parameters related to the occurrence of instabilities to higher accuracy and are

in agreement with both [10] and [22].

To begin, we define a black string in D = n + 4 dimensions to be a Lorentzian

manifold (M, g̃) with metric

ds2 = g̃ijdx
idxj = −fdt2 + f−1dr2 + dz2 + r2dΩ2

n+1, f = 1−
(r+
r

)n
(3.11)

where dΩ2
n+1 is the canonical metric on Sn+1, z is a single compactified extra dimen-

sion, and r+ is a constant determining the event horizon of the black string. We note

that the form of the black string metric is a generalization of the Schwarzschild metric

(3.10). Recall the event horizon of a Schwarzschild solution has a spherical horizon

topology. A black string with one extra compact dimension has horizon topology

Sn+1 × S1, and thus can be thought of as a circle (string) with Sn+1 cross sections.

Now let h be any symmetric bilinear form on M . For a fixed metric g̃ we define

its perturbation by h to be

gµν = g̃µν + εhµν (3.12)
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where 0 < ε << 1. We set h = gµνhµν , and recall from [30, p.185] that the linearized

Einstein equations for gµν to linear order in ε are given by

0 = ∇a∇ch+∇b∇bhac − 2∇b∇(cha)b (3.13)

= ∇a∇ch+∇b∇bhac −∇b∇chab −∇b∇ahcb (3.14)

where all covariant derivatives are defined with respect to the background metric, g̃.

We wish to simplify these equations by choosing appropriate coordinates. General

relativity is a tensorial theory in all dimensions and thus admits the diffeomorphism

group as a symmetry group. Thus we are free to choose local coordinates which is

commonly called gauge fixing. We will fix our gauge to simplify the form of the

perturbation as much as possible, which we know illustrate.

In [11] the authors consider a local coordinate transformation

xa → xa + ξ̂a(xa) (3.15)

where ξ̂a is infinitesimal. The corresponding perturbation transformation is

hab → hab +∇(aξ̂b) (3.16)

which is shown in [30, p.75]. We demand that the perturbation takes a spherically

symmetric form. This implies that ξ̂θ = ξ̂φ = 0, i.e. the angular components of

our perturbation vanish and nonzero components are independent of the angular

coordinates. We choose such a perturbation since it will simplify our the form of

our perturbation and because our background spacetime is spherically symmetric.

Specifically, our perturbation now takes the form

hab = eΩt+ikzaab(r) ≡ Ξaab, ξ̂a = ξa(r)Ξ (3.17)
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where we have decomposed hab into Fourier modes with Ω in the time direction and

k along the extra S1. We are only concerned with Ω being real since positive Ω

is sufficient to imply instability. We only need to find a single positive real Ω to

show instability. Demanding spherical symmetry requires aab(r) and aθiz = 0 where

θi is any angular coordinate. Using our assumption of spherically symmetry, the

perturbation metric transforms to

hab → hab +
1

2

[
∇aξ̂b +∇bξ̂a

]
(3.18)

= Ξaab +
1

2

[
∂aξ̂b + ∂bξ̂a − 2Γcabξ̂c

]
(3.19)

= Ξaab +
1

2

[
∂aξ̂b + ∂bξ̂a − ξ̂d(∂agbd + ∂bgad − ∂dgab)

]
. (3.20)

We thus compute the following transformed perturbation metric components

htt → Ξ

[
att + Ωξt −

1

2
rn+r

−n−1ξr
]

(3.21)

htr → Ξ

[
atr +

1

2
(Ωξr + ∂rξt + ξt(rn+nr

−n−1))

]
(3.22)

htz → Ξ

[
atz +

1

2
(Ωξz + ikξt)

]
(3.23)

htθ → 0 (3.24)

hrr → Ξ

[
arr + ∂rξr + ξr

nrn−1rn+
2(rn − rn+)2

]
(3.25)

hrz → Ξ

[
arz +

1

2
(∂rξz + ikξr)

]
(3.26)

hzz → Ξ [azz + ikξz] (3.27)

hθθ → Ξ

[
aθθ +

1

2
ξr∂rgθθ

]
(3.28)

We have freedom to choose ξa however we like. We choose to force the perturbation

to be in the simplest form possible. Specifically, we choose
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att = ht(r), arr = hr(r), azz = hz(r), atr = −Ω

ik
azr(r), atz = aθθ = 0. (3.29)

Note in the first three expressions we have merely renamed variables, while the last

three are bona-fide gauge fixing (coordinate choices). These choices result in

1. aθθ = 0 iff ξr = −2aθθ/(g
rr∂rgθθ)

2. atz = 0 iff Ωξz + ikξt = −2atz

3. atr = − Ω
ik
azr iff ∂rξt + ξtnrn+r

−n−1 + iΩ
k
∂rξz = 2atr − 2iΩ

k
arz.

Thus condition (1) fixes ξr, while conditions (2) and (3) determine a linear system

of first order ordinary differential equations that fix the remaining gauge components

ξt, ξz. In this way, we use all our available gauge freedom. The perturbation is of the

form

hµν = Ξ



ht Ωhν 0 0 · · ·

Ωhν hr
k
i
hν 0 · · ·

0 k
i
hν hz 0 · · ·

0 0 0 0 · · ·

· · · · · · · · · · · · · · ·


(3.30)

where the hi are only r dependent and hν = atr/Ω. We note that in the original

analysis of [10] transverse traceless (TT) gauge was chosen to simplify the perturba-

tion equations rather than the form of the perturbation. The gauge choice that we

have taken leaves the perturbation equations in a more complicated form; however, it

simplifies the form of the perturbation [22]. In comparison to TT gauge, this choice
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has the advantage of leaving no residual gauge freedom as well as simplifying the

construction of a differential equation for the hz perturbation component.

To determine the perturbation equations, we derive the linearized Einstein equa-

tions by computing the Ricci tensor for the perturbation metric, defining a first order

linearization operator in the perturbation parameter ε, and linearizing the Ricci ten-

sor. Combining components of the Ricci tensor yields a linear system for hi, h
′
i, h

′′
i

which is completely determined by a single equation in hz

h′′z + ph′z + qhz = Ω2whz (3.31)

where

p =
1

r

(
1 +

n

f(r)
− 4(n+ 2)k2r2

2k2r2 + n(n+ 1)(r+/r)n

)
(3.32)

q = − 1

r2

(
k2r2

f(r)

2k2r2 − n(n+ 3)(r+/r)
n

2k2r2 + n(n+ 1)(r+/r)n

)
, w =

1

f(r)2
(3.33)

This is a significant simplification when compared to the corresponding result in [11].

3.3 Asymptotic Behavior of the main Perturba-

tion Equation

We need to know how (3.31) behaves near the horizon r+ and near spacial infinity

so we may determine appropriate boundary conditions for numerical simulation. We

will require hz to vanish at spacial infinity if it is to be a candidate for a physical

solution. This will be made manifest in our asymptotic boundary conditions.
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3.3.1 Behavior at the Horizon, r = r+

In order to analyze the near horizon behavior of (3.31), we define a parameter ε =

r − r+, and note that

f = 1−
r2
+

r2
=

2

r+
ε+O(ε2). (3.34)

We find that p and w in equation (3.31) to lowest order in ε are

p→ 1

ε
, w →

Ω2r2
+

4ε2
. (3.35)

Thus we find the near horizon equation in ε to be

h′′z +
1

ε
h′z =

Ω2r2
+

4ε2
hz (3.36)

with solution

hz = c1ε
r+Ω

2 + c2ε
−r+Ω

2 (3.37)

= c1(r − r+)
r+Ω

2 + c2(r − r+)−
r+Ω

2 (3.38)

which agrees with the result in [10]. The near horizon solution can also be written [22]

hz = AeΩr∗ +Be−Ωr∗ (3.39)

where r∗ is the tortoise coordinate defined by

dr∗
dr

=
1

f
→ r∗ = r+arctanh

(
r

r+

)
. (3.40)

We note this asymptotic behavior is in agreement with [11] since

hz = A1(r − r+)
Ωr+

2 (r + r+)−
Ωr+

2 + A2(r − r+)−
Ωr+

2 (r + r+)
Ωr+

2
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∼ Ã1(r − r+)
Ωr+

2 + Ã2(r − r+)−
Ωr+

2 (3.41)

because r + r+ is non-singular near the horizon.

3.3.2 Behavior as r →∞

To find the asymptotic behavior of (3.31) we let r → 1/s and investigate the limit

s→ 0. We compute transformed derivatives

∂rhz = −s2∂shz ∂2
rhz = s4∂2

shz + 2s2∂shz (3.42)

and note that f(r) = f(1/s) = 1 − r2
+s

2. We again compute the lowest order terms

of (3.31) in each of the coefficients, and find the asymptotic equation

h′′z +
7

s
h′z −

µ2

s4
hz = 0 (3.43)

where we have defined µ2 = Ω2 + k2. This is a modified Bessel equation. We only

keep the Kν part of the solution since the Iν become infinite in the asymptotic regime.

This will become a physical boundary condition. Solving and inverting the coordinate

transformation, we find [2]

hz = c3r
3K3(rµ) ∼ c3r

3

(
e−rµ

r1/2

)
= c3r

5/2e−rµ (3.44)

which is also found in [22]. Note that this decays exponentially for large r.

3.4 The Shooting Method

We will use the shooting method to numerically solve the eigenvalue problem (3.31).

For an eigenvalue problem with known boundary conditions, we set the eigenvalue

in the differential equation to some fixed value which may or may not be a true
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eigenvalue of the equation. We then integrate in r outward from the horizon. If the

asymptotic boundary condition is satisfied by our numerical solution, we have found

a true eigenvalue. If not, we vary our eigenvalue choice until the boundary conditions

are satisfied. We first give a simple example of this method.

3.4.1 Example

Our ultimate aim is to solve equation (3.31) numerically by the shooting method. For

that purpose we will summarize how to code the integration method in Matlab for a

harmonic oscillator eigenvalue problem.

To fix ideas, we consider a harmonic oscillator problem

ÿ2(t) + Ωy2(t) = 0 (3.45)

y2(0) = 1 ẏ2(0) = 0. (3.46)

We could solve this problem exactly considering Ω as an arbitrary parameter. This

becomes an eigenvalue problem if in addition to the initial conditions we impose a

boundary condition. This may be decomposed into the following system of first order

equations

ẏ1 = −Ωy2, y1(0) = 0 (3.47)

where are initial conditions are

ẏ2 = y1, y2(0) = 1 (3.48)

subject to the boundary condition y(10) = −0.2. In this form, there is no solution for

arbitrary Ω, because the additional boundary condition over specifies the problem.
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However, there is a discrete set of Ω for which a solution exists. The elements of this

set are called eigenvalues of the differential equation.

The following code is an m-file called rhs.m which stores the differential equations:

rhs=rhs(t,y,dummy,omega)

rhs=[-omega*y(2); y(1)];

We create another m-file that solves the equations and plots the result:

y0=[1 0]; %stores initial data

tspan=[0 10]; %defines time domain

omega=-4; %fixes omega

[t,y]=ode45(’rhs’,tspan,y0,[], omega) %integrates equations

figure(1), plot(t,y(:,1)) %plots results

Matlab has a wide variety of ODE solvers. We use the standard ode45 solver. Sup-

pose we are interested in finding the solution with a boundary condition y(10) = −0.2.

We may then vary Ω until our numerical solution matches the boundary condition.

When the desired boundary condition is found, then we have solved for an eigen-

value of the boundary value problem. For example, if we set Ω = 3.055, we find

y(10) = 0.2000, hence Ω is an eigenvalue of the harmonic oscillator equation. We

plot the solution in Figure (3.1) and turn attention to the more complicated equation

(3.31).
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Figure 3.1 We plot the numerical solution y2(x) of (3.45) for Ω = 3.055 and
x ∈ [0, 10]. We infer that Ω is approximately a true eigenvalue of (3.45) since
the numerical results satisfy our boundary condition.

3.4.2 Integration of the main Perturbation Equation

In analogy to our simple harmonic oscillator example, we decompose (3.31) into a

system of first order equations

h′1 =
1

r

(
1 +

n

f(r)
− 4(n+ 2)k2r2

2k2r2 + n(n+ 1)(r+/r)n

)
h1 (3.49)

− 1

r2

(
k2r2

f(r)

2k2r2 − n(n+ 3)(r+/r)
n

2k2r2 + n(n+ 1)(r+/r)n

)
h2 +

Ω2

f(r)2
h2 (3.50)

h′2 = h1 (3.51)

subject to our near horizon boundary condition at r+ + ε
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h1(r+ + ε) =
Ω

f
eΩr∗ h2(r+ + ε) = eΩr∗ (3.52)

for ε = 10−6. We set r+ = 1 using our rescaling freedom in our r coordinate. We

integrate out from r = 1 + ε to r = 200 with an error tolerance of 10−6 and initial

step of 10−6. Note it is not possible to start the integration directly on the horizon

due to the singular behavior of the perturbation equation. This is seen in the fact

that f(r) → 0 as r → r+. For fixed k, we find which values of Ω yield asymptotic sign

change of hz. Setting k fixes a mode in the z direction, and allows us to vary time

modes. There are two independent solutions to (3.31); one decays exponentially as

r →∞ and the other grows exponentially. This behavior is analogous to that exhib-

ited by Bessel functions near the origin. The exponential behavior of our numerical

method stems from the latter solution. We wish to preclude its contribution since hz

should be regular at spacial infinity.

By the intermediate value theorem, we know if there exist Ω1 < Ω2 where hz(r =

200; Ω1) < 0 < h2
z(r = 200; Ω2), then there must exist an Ω such that hz(r = 200; Ω) =

0. This corresponds to a regular solution of the eigenvalue problem for all domain

values. If Ω > 0, then this corresponds to an unstable mode in the perturbation since

the exponential factor of our perturbation metric will grow in time. For instance, note

that for large r, hz is decreasing in the green plot in Figure 3.2 where we numerically

integrated the perturbation equation for Ω = 0.14 and k = 0.9. When we perform the

same integration for Ω = 0.15 and k = 0.9, we find that hz(r) is increasing for large

r (blue plot). Thus we infer that there is some Ω ∈ [0.14, 0.15], where hz vanishes as

r becomes large.
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Figure 3.2 We plot the numerical solution hz(r) of the perturbation equation
3.31 for two parameter sets. We integrate from r = r+ = 1 to r = 200 where
n = 1 k = 0.9, Ω = 0.14 (green) and k = .9, Ω = 0.15 (blue). We plot our
solution for r ∈ [1, 4]. Note how asymptotically the solution changes sign.
This implies existence of a regular solution for some Ω ∈ [0.14, 0.15] since we
know hz is asymptomatically a modified Bessel function.

We preform this procedure for black strings in different dimensions and plot our

results in Figure 3.3. Points in Figure 3.3 correspond to the values of k and Ω where

asymptotic sign change of hz occurs; hence they correspond to the unstable modes

we are looking for.

Moreover, we find the largest k for which unstable modes exist for D ∈ 5, · · · , 9

given by kmax according to the table
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Figure 3.3 We plot pairs (k,Ω) that correspond to values of Ω where asymp-
totic sign change of numerical solutions of equation (3.31) occurs. These
correspond to regular solutions of equation (3.31) and since Ω > 0 imply
unstable modes are found in black strings in D = {5, 6, 7, 8, 9}.

D 5 6 7 8 9

kmax 0.876159 1.268911 1.580761 1.848609 2.087136

Note there is a large range of k for which unstable Ω modes exist. For instance,

if k is small (wavelengths are large) then we see unstable modes exists for all black

strings. This result is analogous to large wavelength Jeans instabilities that were

previously mentioned.

We are in exact agreement with [10] and [22]. We finally summarize our integration

code. We input our system with

function rhs=rhs(r,h,dummy,omega,k)

rhs=[-1/r*(1+2/(1-1/r^2)-8*k^2*r^4/(k^2*r^4+3))*h(1)+1/r^2
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*(k^2*r^2/(1-1/r^2)*(k^2*r^4-5)/(k^2*r^4+3))*h(2)+omega^2

/(1-1/r^2)^2*h(2); h(1)];

and provide the numerical numerical method with

del=10^(-6);

rst=1-del-atanh(1-del);

omega=.27;

k=.9;

h0=[omega/(1-1/(1+del)^2)*exp(omega*rst) exp(omega*rst) ];

rspan=[1+del 200];

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6,’InitialStep’,1e-6);

[r,h]=ode15s(’myersshooteqns’,rspan,h0, options,omega, k)

figure(1), plot(r,h(:,2))

We have confirmed that black strings in dimensions D = {5, 6, 7, 8, 9} are not

stable. It is natural to ask whether it may be possible to make such solutions stable

in the presence of additional matter fields. We thus turn our attention to the charged

analogue of black strings commonly called p-branes which are low energy solutions to

string theory.

3.5 Charged p-branes

Charged p-branes may be heuristically thought of as extensions of the Reissner-

Nordström solution to higher dimensions. There have been many works related

to stability analyses of charged black p-branes. The first was the seminal work of

Gregory-Laflamme [11] which concluded that all charged p-branes that are solutions

to their low energy string model are linearly unstable except in the extremal limit [12].

Then the work of Reall in [26] and Hirayama, Kang, and Lee in [19] considered a more
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general string theory. In this generalized context, it was shown that linearly stable

black p-branes can exist for sufficiently large non-extremal charge. We summarize the

work of [12] and reproduce the work of [19] more accurately. Finally, we extend the

work in [19] from p = 4 branes to the cases where p = 1, 2, 3, 5, 6.

3.5.1 Gregory Laflamme

Gregory and Laflamme were the first to consider the stability of charged black p-

branes in [11]. These black p-branes are solutions to a ten dimensional theory with

symmetry R10−D ×R×SD−2 where p = 10−D denotes the dimension of the brane2.

They are solutions of the low energy string theory given by the action

SGL =

∫
d10x

√
−ge−2φ

(
R + 4(∇φ)2 − 2

(D − 2)!
F 2

)
. (3.53)

where F is a (D − 2) form analogous to the Maxwell tensor and our D − 2 spherical

symmetry is paired with the dimension of F . The action yields the equations of

motion

2φ− 2(∇φ)2 + F 2 D − 3

(D − 2)!
= 0 (3.54)

∇a1(e
−2φF a1...aD−2) = 0 (3.55)

Rab + 2∇a∇bφ−
2

(D − 3)!
Faa2···aD−2

F
a2···aD−2

b = 0. (3.56)

The authors give the spherically symmetric solutions

ds2 = −eAdt2 + EeGdr2 + eBdxidx
i + C2dΩ2

D−2 (3.57)

where

2Our D is not the same in this section as the previous section.
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eA =
1− (r+/r)

D−3

1− (r−/r)D−3
, e−G =

[
1−

(r+
r

)D−3
] [

1−
(r−
r

)D−3
]
, B = 0

C = r, e−2φ = 1−
(r−
r

)D−3

(3.58)

and

F = Qε, Q2 =
D − 3

2
(r+r−)D−3 (3.59)

where r+ and r− are constants of integration corresponding to outer and inner event

horizons, 3 < D < 10, and ε is the volume form on SD−2. Gregory and Laflamme

show these charged black p-branes are linearly unstable by methods similar to those

that were used to investigate the linear instability of black strings. In [12], the authors

show that the instability vanishes in the case of extremal black p-branes. That is,

p-branes with the maximal amount of charge before a naked singularity occurs.

3.5.2 Reall and Hirayama et al.

In [26] and [19], the respective authors investigate the stability of solutions to a more

general low energy string theory than Gregory-Laflamme. In particular, it is shown

in [19] that GL instabilities cease to exist for a wide class of charged p-branes. We

use the notation of [19] and analyze the stability of black p-brane solutions to the

theory given by the action

SR =

∫
dDx

√
−ḡ
[
e−β̄φ̄

(
R̄− γ̄(∂φ̄)2

)
− 1

2n!
eᾱφ̄F 2

n

]
(3.60)

where F 2
n is given by

F 2
n = Fa1···anF

a1···an (3.61)
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and Fn is an n-form field, R̄ is the scalar curvature and φ̄ is a scalar dilaton field3.

Moreover, we demand that Fn is exact (homologous to zero) and thus defines an

n − 1 form A(n−1) given by Fn = dA(n−1). β̄, γ̄, and ᾱ are constants. Because all

string theories are invariant under arbitrary conformal transformations we may define

a conformal metric ḡMN = e2β̄φ̄/(D−2)ĝMN and rescale the dilaton φ̄ = φ/
√

2γ̂ which

generates the equivalent action

ScR =

∫
dDx

√
−ĝ
[
R̂− 1

2
(∂φ)2 − 1

2n!
eaφF 2

n

]
(3.62)

where the parameter

a =
ᾱ+ (D − 2n)β̄/(D − 2)√

2γ̂
(3.63)

controls the coupling of the dilaton to F 2
n . The parameter a will play a central role

in distinguishing under what conditions the GL instabilities vanish. We note that

the GL action SGL is given by the action (3.60) in the case where β̄ = 2, γ̄ = −4,

ᾱ = −2, and D = 10.

Solutions to the equations of motion which come from equation (3.62) have been

given in [7], [8], [14], and [21]. These solutions take the form

dŝ2 = −
(

1 +
k

rd̄
sinh2 µ

)− 4ed
4(D−2)

+

(
1 +

k

r ed
sinh2 µ

) 4d
4(D−2)

(
dr2

U
+ r2dΩ2

n

)
(3.64)

+

(
1 +

k

r ed
sinh2 µ

)− 4ed
4(D−2)

δijdz
idzj (3.65)

e−
4
2a
φ = 1 +

k

r ed
sinh2 µ, U = 1− k

r ed
, 4 = a2 +

2dd̃

D − 2
(3.66)

where d̃ = n − 1, d = p + 1, and D = d̃ + d + 2 = 2 + n + p with coordinates

{xM} = {xν , zi} = {t, r, xm, zi} where m = 1, · · · , n and i = 1, · · · , p. The zi

3Now D is the dimension of the full spacetime



3.5 Charged p-branes 36

coordinates denote extra spacial dimensions in the D dimensional spacetime and the

xm coordinates are the standard coordinates on the n-sphere.

A simplification comes by considering another conformal transformation given

by ĝMN = e2(n−1)φ/(D−2)agMN . In [26] it is shown that this transformation will ul-

timately simplify the perturbation equations in the upcoming analysis. The trans-

formed action becomes

S ′R =

∫
dDx

√
−g
[
e−βφ

(
R− γ(∂φ)2

)
− eαφ

2n!
F 2
n

]
(3.67)

with constants of the form

β =
1− n

a
, γ =

1

2
− (D − 1)(n− 1)2

(D − 2)a2
, α = a+

(D − 2n)(n− 1)

(D − 2)a
. (3.68)

The equations of motion are then given by

∇M

[
eαφFMN1···Nn−1

]
= 0 (3.69)

∇2φ− β(∂φ)2 =
a

2n!
e(α+β)φF 2 (3.70)

RMN = (γ + β2)∂M∂Nφ− β∇M∇Nφ

+
1

2(n− 1)!
e(α+β)φFMP1···Pn−1F

P1···Pn−1

N (3.71)

Applying the conformal transformation to our p-brane solutions, we find the trans-

formed solutions take the form

ds2 = −Udt2 + V −1dr2 +R2dΩ2
n + δijdz

idzj (3.72)

where
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V −1 =
(1 + k

r ed
sinh2 µ)

4
∆

1− k/r ed
, R2 =

(
1 +

k

r ed
sinh2 µ

) 4
∆

r2 (3.73)

and U is as previously defined. It is shown in [8] that the ADM mass M of the metric

and charge density Q are given by

M = k

(
d̃+ 1 +

4d̃

4
sinh2 µ

)
, Q =

d̃k√
4

sinh 2µ (3.74)

with k and µ constants of integration.

The solutions in [11] are given by a = (1 − n)/2. We note that the action (3.60)

is invariant under the transformation a → −a, φ → −φ so it will suffice to consider

|a| values in the upcoming numerical analysis.

We now proceed to analyze the stability of these solutions by perturbing the metric

via gMN = g̃MN + εhMN where we assume

hMN = eΩt+imiz
i

HMN(r, xm) (3.75)

δφ = eΩt+imiz
i

f(r, xm) (3.76)

δF = eΩt+imiz
i

δF (r, xm) (3.77)

and make an appropriate gauge transformation to set Hµi = Hij = 0 where i 6= j.

Moreover, we assume again that the perturbation is spherically symmetric which

requires

Htm = Hrm = 0 Hm
n = K(r)δmn . (3.78)

The equation of motion for the perturbed n-form field is given by
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∇N(eαφδFNP1···Pn−1) = 0. (3.79)

In [12], Gregory and Laflamme argue that we may set δF = 0 because there are no

nontrivial solutions for the perturbed Maxwell field. We are thus left with the dilaton

perturbation equation

∇2f − 2βgµν∇µφ∇νf −Hµν∇µ∇νφ+ βHµν∇νφ∇νφ−∇µφ∇ν

(
Hµν − 1

2
Hρ
ρg

µν

)

+
a

2(n− 1)!
e(α+β)φ

[
HµνFµρ1...ρn−1F

ρ1...ρn−1
ν − α+ β

n
F 2f

]
= m2f (3.80)

where Greek indices run over r and t, and the spacial Einstein equations are

∇2Hµν − 2∇(µ∇ρHν)ρ +∇µ∇νH
ρ
ρ − 2Rρ(µH

ρ
ν) + 2RµρνσH

ρσ

+β
(
2∇(µH

ρ
ν) −∇

ρHνµ

)
∇ρφ− 2β∇µ∇νf + 4(γ + β2)∇(µφ∇ν)f

− 1

(n− 1)!
e(α+β)φ

[
(n− 1)HρσFµρλ1...λn−2F

λ1...λn−2
νσ − (α+ β)fFµλ1...λn−1F

λ1...λn−1
ν

]
= m2Hµν (3.81)

∇νH
ν
µ − βHν

µ∇νφ− 2(γ + β2)f∇νφ = 0 (3.82)

Hµ
µ − 2βf = 0 (3.83)

where Latin indices run over extra spacial dimensions. We note that all covariant

derivatives are defined with respect to the Levi-Civita connection of the background

metric. We only need to consider equations for Htt, Htr, Hrr, and K, since they

determine the dilaton [26].
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We recall that in our previous stability analysis of black strings, we varied Ω to

find regular solutions of an equation for a perturbation component. We could perform

an analogous analysis here where we would need to vary additional parameters related

to our more general theory. In [26], Reall argues that the necessary and sufficient

condition for a Gregory Laflamme instability to exist is that there should exist a

static threshold unstable mode defined by Ω = 0. We will thus take Ω = 0 which has

the consequence Htr = 0. This simplifies the form of the perturbation to

HM
N = diag(ϕ(r), ψ(r), χ(r), · · · , χ(r)) (3.84)

and the perturbed metric for threshold modes may be written

ds2 = −U(1 +ϕe−miz
i

)dt2 + V −1(1 +ψeimiz
i

)dr2 +R2(1 + χeimiz
i

)dΩ2
n + dz2. (3.85)

The perturbation equations now become

ϕ′′ +

(
U ′

2U
+
V ′

2V
+ n

R′

R
− βφ′

)
ϕ′ +

[
U ′′

U
− U ′

U

(
U ′

2U
− V ′

2V
− n

R′

R
+ βφ′

)
− m2

V

]
ϕ

− U ′

U
ψ′ −

[
U ′′

U
− U ′

U

(
U ′

2U
− V ′

2V − nR
′

R
+ βφ′

)]
ψ = 0 (3.86)

ψ′′ +

(
U ′

2U
+
V ′

2V
+ n

R′

R
− 2γ + 3β2

β
φ′
)
ψ′ +

m2

V
ψ −

(
U ′

U
+ 2

γ + β2

β
φ′
)
ϕ′

− 2n

(
R′

R
+
γ + β2

β
φ′
)
χ′ = 0 (3.87)

ψ′+

(
U ′

2U
+ n

R′

R
− γ + 2β2

β
φ′
)
ψ−

(
U ′

2U
+
γ + β2

β
φ′
)
ϕ−n

(
R′

R
+
γ + β2

β
φ′
)
χ = 0.

(3.88)
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We can eliminate χ to find two second order coupled equations for ϕ and ψ given

by

r(r
ed−k)ϕ′′+

[
(d̃+ 1)r

ed − k
]
ϕ′−m2r

ed+1−4ed/4(r
ed+k sinh2 µ)4/4ϕ− d̃kψ′ = 0 (3.89)

r2(r
ed − k)2

(
r
ed + k sinh2 µ

)
ψ′′ + r(r

ed − k)2

[
2d̃

(
r
ed − 2

4
k sinh2 µ

)
−(d̃− 3)

(
r
ed + k sinh2 µ

)]
ψ′ −

{
m2r

ed+2−4ed/4(r
ed − 2

4
k sinh2 µ)1+4/4

+ d̃k

[
W +

2

4

(
2d̃2 + (d̃+ 3)(a2 − 2d̃2

D − 2
)

)
sinh2 µ(r

ed − k)2

]}
ψ + d̃kWϕ (3.90)

where we have set

W = d̃(r
ed−k)(r ed+k sinh2 µ)− 2

4

(
a2 − 2d̃2

D − 2

)
sinh2 µ(r

ed−k)2+d̃k cosh2 µr
ed (3.91)

and defined

m2 =
∑
i

m2
i . (3.92)

Now the black p-brane stability question is equivalent to finding an m for which

the above equations admit non singular solutions outside the event horizon. We need

to determine the asymptotic and near horizon behavior of (3.89) and (3.90) in order

to set up a numerical method. As pointed out in [19], we note at radial infinity ϕ

and ψ have asymptotic behavior

ϕ(r) ≈ e±mru±(r) ≈ e±mr

[
r−

ed+1
2 ∓ (d̃− 1)(d̃+ 1)

8m
r−

ed+3
2 + · · ·

]
(3.93)
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ψ(r) ≈ e±mrv±(r) ≈ e±mr

[
r−

ed+3
2 ∓ (d̃+ 1)(d̃+ 3)

8m
r−

ed+5
2 + · · ·

]
(3.94)

We define a near horizon parameter ρ = 1 + ε and a scaled mode m̄ = r+m. We

list the four possible near horizon behaviors of ϕ and ψ along with their asymptotic

values

ψI ≈ ε+O(ε2), A1e
−mρv−(ρ) +BIe

mρv+(ρ) (3.95)

ψII ≈ 1 +O(ε2), AIIe
−mρv−(ρ) +BIIe

mρv+(ρ) (3.96)

ψIII ≈ ε ln ε+O(ε2 ln ε), AIIIe
−mρv−(ρ) +BIIIe

mρv+(ρ) (3.97)

ψIV ≈ −ε−1 − m2

d̃
(coshµ)8/4 ln ε+O(ε2), AIV e

−mρv−(ρ) +BIV e
mρv+(ρ) (3.98)

ϕI ≈ ε+O(ε2), A1e
−mρu−(ρ) +BIe

mρu+(ρ) (3.99)

ϕII ≈ 1 +O(ε2), AIIe
−mρu−(ρ) +BIIe

mρu+(ρ) (3.100)

ϕIII ≈ ε ln ε+O(ε2 ln ε), AIIIe
−mρu−(ρ) +BIIIe

mρu+(ρ) (3.101)

ϕIV ≈ −ε−1 − m2

d̃
(coshµ)8/4 ln ε+O(ε2), AIV e

−mρu−(ρ) +BIV e
mρu+(ρ). (3.102)
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We require that ψ and ϕ to decrease exponentially as r →∞ since they are small

perturbations of our fixed metric. According to [26], we need ϕ and ψ to be regular

at the horizon, which precludes IV from being viable boundary conditions. We note

that III produce a logarithmic curvature singularity at the horizon whereas I and

II do not. Thus requiring regularity at the horizon is equivalent to demanding ϕ

and ψ have near horizon behavior of a linear combinations of I and II. We now

begin our search for regular solutions of (3.89) and (3.90) that satisfy these boundary

conditions. As in [19], we will start a numerical integration near the horizon where

ψ = CψI + EψII , ϕ = CϕI + EϕII (3.103)

which has asymptotic behavior

ψ ≈ (CAI + EAII)e
−m̄ρv−(ρ) + (CBI + EBII)e

m̄ρv+(ρ) (3.104)

ϕ ≈ (CĀI + EĀII)e
−m̄ρu−(ρ) + (CB̄I + EB̄II)e

m̄ρu+(ρ) (3.105)

We seek a combination of C, E, and m̄ such that the coefficients of the positive

exponential terms vanish, which requires

CBI + EBII = 0, CB̄I + EB̄II = 0. (3.106)

This could be done by varying C and E and searching for such a solution via numerical

integration, or equivalently checking that

P (m̄, µ, a, d̃, D) ≡ BIB̄II −BIIB̄I (3.107)

vanishes for some value of m̄ for fixed µ, a, d̃, and D. We use the latter procedure in

the subsequent section.
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3.6 p-brane Numerics

We perform our numerical analysis of the perturbation equations in Mathematica

6.0 but first consider a test problem. We consider a coupled system of second order

equations given by

ẍ(t) = −y(t), ÿ(t) = −2x(t)2 (3.108)

x(0.01) = y(0.01) = ẋ(0.01) = ẏ(0.01) = 1 (3.109)

and we use the Mathematica NDsolve command

In[1]:= s = NDSolve[{x’’[t] == -y[t], y’’[t] == -2 x[t]^2,

x[.01] == y[.01] == 1, x’[.01] == 1, y’[.01] == 1}, {x, y}, {t,1}];

Plot[Evaluate[{x[t], y[t]} /. s], {t, .01, 1}] to numerically integrated the

coupled system and plot the results in Figure (3.4).

t

y(t)

x(t)

Figure 3.4 We plot numerical solutions to the test problem (3.108) subject
to the boundary conditions (3.109) where x(t) is the blue plot and y(t) the
purple plot.

Extending this example to the numerical integration of (3.89) and (3.90) is only
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slightly more complicated. We summarize our code for the integration of (3.89) and

(3.90) in Appendix A. We perform stability analyses in D = 10 dimensions for six

p-branes, p = {1, 2, 3, 4, 5, 6}. We fix a value of the parameter a which couples the

dilaton φ to the n-form field F 2
n , and typically choose a = {0, 1/2, 1, 3/2, 2, 3} for a

given p. We are then left with two free parameters µ and m. We vary µ ∈ [0, 5]

in increments of 0.01 and for fixed µ, integrate (3.89) and (3.90) for varying m in

increments of 0.001 starting at m = 0, and check the sign of P in equation (3.107).

When we find the first value of m where P < 0, we set m = m∗ and store the

pair (m∗, µ), increment µ and repeat our method. We call m∗ the threshold mass or

threshold mode since it is the point where P changes sign and hence regular solutions

to (3.89) and (3.90) exist.

3.7 Conclusions

We plot our numerical results in Figures (3.5) – (3.10) for p = 1, · · · , 6 branes. Recall

that the existence of a threshold mode (mass) is equivalent to the existence of a

GL instability. The colored regions indicate areas where P > 0. The GL analysis

corresponds to the plots that decay exponentially as µ becomes large and are given by

aGL = (7− p)/2. We thus see that instabilities are always present in these instances

up to their extremal limit of charge where it appears they vanish as claimed in [11]

and [12].

We see that the coupling parameter a determines when a sufficient amount of

charge will stabilize a p-brane. We use aGL = (7− p)/2 to classify stability behavior.

For a < aGL, all p-branes have a µ for which P < 0 for all m and hence the p-branes

have no Gregory Laflamme instabilities. For a > aGL, p-branes exhibit Gregory

Laflamme instabilities for all µ.
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Thus we have shown there is a wide class of uncharged p-branes depending on

a coupling parameter a < aGL which exhibit linear instabilities. Moreover, these

instabilities disappear in the presence of sufficiently large values of charge.
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Chapter 4

The GRMHD Eigenvalue Problem

Up to now we have considered linear stability problems in higher dimensional rel-

ativity. We turn attention to the somewhat different problem of evolving compact

objects with magnetic fields in general relativity. While not necessarily done in higher

dimensions, the problem is similar to the linear stability analyses we previously pre-

sented. Specifically, one would like to know what happens to the matter fields around

a black hole as it approaches its endstate (believed to be a Kerr spacetime). What

one observes near a black hole is the time development of matter fields that either

leave or fall into the black hole. From a numerical standpoint, it is of interest to

model the radiation of these systems. Thus one wants to consider GRMHD. This

chapter addresses questions related to this goal. Specifically, we consider the charac-

teristic structure of the matter part of the GRMHD Einstein equations. We follow a

technique introduced by Brio and Wu [4] for the Newtonian version of this problem.

Brio and Wu analyze the eigenvalue problem for the equations of Newtonian non-

relativistic ideal magnetohydrodynamics (MHD). This consists of calculating eigenval-

ues and eigenvectors of the MHD equations and examining cases where two eigenval-

ues or eigenvectors degenerate to a single one. These quantities give local information

52
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about a nonlinear theory. It is in a sense the easiest nontrivial information one can

produce for the MHD equations.

The eigenvalues and eigenvectors of the Jacobian of a system are commonly used

in numerical methods that require a spectral decomposition. This information is

used to identify incoming and outgoing modes near the boundary of a numerical grid.

Specifically, the spectral information can be used to reduce spurious reflections from

the boundaries of a computational grid.

GRMHD represents general relativity (Einstein’s equations) coupled to MHD.

This framework is needed to model highly compact magnetically charged astrophysical

objects such as magnetized neutron stars. We wish to extend the MHD analysis to

GRMHD for purposes of numerical simulation. The full spectral decomposition of

GRMHD equations

4.1 Introduction

The characteristic structure (eigenvalues and eigenvectors) of a system of partial

differential equations determines the hyperbolicity of the system. This information

also allows one to predict relevant wave speeds. This aides to improve the overall

accuracy of numerical simulations of the equations. One place where this can be

implemented is fixing problems near the boundaries of the grid. We seek to calculate

the eigenvectors of the GRMHD equations and apply the normalization procedure

in [4] to resolve this problem. We summarize information about hyperbolic evolution

equations and the numerical and analytic methods of [4]. We then extend this analysis

to a version of the GRMHD equations.
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4.2 Hyperbolicity of Evolution Equations

Consider a system of evolution equations in one spacial variable given by

∂tui + ∂xFi = qi, i = 1, · · · , n (4.1)

where Fi = Fi(u) and qi(u) are sufficiently differentiable functions and do not depend

on derivatives of u. Equation (4.1) is a “balance law” since we have completely

separated out first order time derivatives from spacial derivatives. In the event that

the sources qi vanish, then the equation is in conservative form; it takes the form of

a continuity equation. We can write (4.1) more conveniently as

∂tui +
∑
j

Aji∂xuj = qi, i = 1, · · · , n (4.2)

where Aji = ∂Fi/∂uj is the Jacobian matrix of the system. We will see that we can

write the ideal MHD equations in the form (4.2).

Important aspects of the overall system can be learned from the properties of the

matrix A. More specifically, let us study the characteristic structure of Aij. Let λi be

the eigenvalues of A. We characterize the system of evolution equations as hyperbolic

if λi are all real valued functions. We will further call the system strongly hyperbolic

if there exists a complete set of eigenvectors associated with the λi. If all eigenvalues

are real, but there does not exist a complete set of eigenvectors, we call the system

weakly hyperbolic.

The reason strong hyperbolicity is significant can be seen as follows. Suppose we

have a strongly hyperbolic system. We may then define functions wi by

u = Rw (4.3)
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where R is the matrix whose columns are the right eigenvectors of λi. Moreover, we

have the diagonalization

RAR−1 = diag(λi), (4.4)

provided R does not vanish. On diagonalization, the evolution equations for wi are

given by the simpler system of advection equations

∂twi + λi∂xwi = q′i (4.5)

where the q′i = q′i(w) are not functions of derivatives of w. We have thus reduced

solving any strongly hyperbolic system to solving a system of advection equations.

Strongly hyperbolic systems also have the nice property that they are well posed.

That is, their solution depends continuously on initial data (no bifurcation) and

solutions are locally unique.

The MHD equations form a weakly hyperbolic system. We will use a normaliza-

tion process on the eigenvectors of MHD to force it into a strongly hyperbolic system.

This procedure is necessary for the numerical method used to solve the equations.

4.3 Numerical Considerations

Our interest in the hyperbolicity in the MHD equations whether Newtonian or rela-

tivistic stems in part from a need to construct robust numerical algorithms that handle

discontinuities (shocks) that arise in fluid simulations. Considering for a moment the

Newtonain case as a simplification of the full relativistic equations, we summarize

the work of Brio and Wu [4]. There work is mainly concerned with developing a

numerical scheme called a Roe upwind differencing solver. We briefly summarize this

numerical method because its use of symmetric hyperbolic systems (strong hyper-
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bolic system with distinct eigenvalues) motivates our consideration of the GRMHD

eigenvalue problems.

To begin, we define discetized time and space variables xi = i∆x and tn = n∆t

and let vni denote the approximate numerical solution to the system of equations

Ut + [F (U)]x = 0 (4.6)

for some vector of quantities U (for example the conservative variables we use later).

We take a finite difference approximation to (4.6) given by

vn+1
i − vni

∆t
+
fni+1/2 − fni−1/2

∆x
= 0. (4.7)

In the construction of the Roe scheme, we approximate (4.6) in each cell (xi, xi+1)×

(tn, tn+1) by

Ut + [G(U)]x = 0 (4.8)

where we set

[G(U)]i = Fi + Ai+1/2(Ui − vni ), Fi = F (Ui). (4.9)

The matrix Ai+1/2 is called the Roe matrix and it the Jacobian of our system. It is

given by the following conditions:

Fi+1 − Fi = Ai+1/2(Ui+1 − Ui) for all Ui and Ui+1 (4.10)

where it is assumed Ai+1/2 has real eigenvalues and a complete set of right eigenvectors

and is given by

Ai+1/2(Ui+1, Ui) → A(U0) =
∂F

∂U

∣∣∣∣
U=U0

as Ui+1 and Ui → U0. (4.11)
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After determining Ai+1/2 by these conditions, we compute its eigenvalues λ
i+1/2
k and

right eigenvectors R
i+1/2
k . We then define decomposition coefficients C

i+1/2
k by

vi+1 − vi =
∑
k

C
i+1/2
k R

i+1/2
k (4.12)

and finally compute fi+1/2 according to

fi+1/2 =
1

2
(Fi + Fi+1)−

1

2

∑
k

|λi+1/2
k |Ci+/1/2

k R
i+1/2
k (4.13)

which gives vi in (4.7). We note again that A must have a complete set of eigenvectors

for this process to work. We thus proceed to calculate the eigenvalues and eigenvectors

of the Jacobian matrix A of the MHD equations to check this condition.

4.4 The Newtonian Ideal MHD Eigenvalue Prob-

lem

The MHD equations model the flow of a conducting fluid u which interacts with a

magnetic field B, and may be viewed as Maxwell’s equations coupled to the equations

of fluid dynamics in the limit on infinite conductivity (no electric field in the frame of

the fluid). Neglecting displacement current, electrostatic forces, viscosity, resistivity,

and heat conduction, the ideal magnetohydrodynamic equations are given by

ρt + ∂i(ρu
i) = 0 (4.14)

(ρui)t + ∂i(ρuiuj + δijP
∗ −BiBj) = 0 (4.15)

∂tBj + ∂i(uiBj − ujBi) = 0 (4.16)

∂tEi + ∂i((E + P ∗)ui −Bi(Bju
j)) = 0 (4.17)
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where we also have the no monopole constraint ∇·B = 0 from the Maxwell equations.

In the above ideal MHD equations ρ is the fluid density, P the static pressure, P ∗ =

P + 1
2
BiB

i the full static pressure plus magnetic, E = ρ
2
uiu

i + P/(γ − 1) + 1
2
BiB

i

the energy, and γ the ratio of specific heats. We will study one-dimensional MHD in

Cartesian coordinates. All quantities are only dependent on x and t. Note however we

must include all three components of the magnetic field. These assumptions reduce

the MHD equations to

ρt + (ρu)x = 0 (4.18)

(ρu)t + (ρu2 + P ∗)x = 0 (4.19)

(ρv)t + (ρuv −BxBy)x = 0 (4.20)

(ρw)t + (ρuw −BxBz)x = 0 (4.21)

(By)t + (Byu−Bxv)x = 0 (4.22)

(Bz)t + (Bzu−Bxw)x = 0 (4.23)

Et + ((E + P ∗)u−Bx(Bxu+Byv +Bzw))x = 0 (4.24)

where we use u = (u, v, w) as the components of ui. Note that because of our

assumption that there is only one spacial dimension, Bx is constant by virtue of the

no monopole constraint: ∂iB
i = 0.

The resulting Jacobian of (4.19)–(4.24), is given by
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A =



0 1 0 0 0 0 0

γ−3
2
u2 + γ−1

2
(v2 + w2) (3− γ)u (1− γ)v (1− γ)w (2− γ)By (2− γ)Bz γ − 1

−uv v u 0 −Bx 0 0

−uw w 0 u 0 −Bx 0

−Byu/ρ+Bxv/ρ By/ρ −Bx/ρ 0 u 0 0

−Bzu/ρ+Bxw/ρ Bz/ρ 0 −Bx/ρ 0 u 0

α1 α2 α3 α4 α5 α6 α7


(4.25)

where we make the definitions H = (E + P ∗)/ρ and

α1 = −u
(
H
γ − 1

2
u2 +

Bx

ρ
B · u

)
(4.26)

α2 = H − B2
x

ρ
− (γ − 1)u2 (4.27)

α3 = (1− γ)uv −BxBy/ρ (4.28)

α4 = (1− γ)uw −BxBz/ρ (4.29)

α5 = (2− γ)Byu−Bxv (4.30)

α6 = (2− γ)Bzu−Bxw (4.31)

α7 = γu. (4.32)

We now proceed to compute the eigenvalues and eigenvectors of A.

4.4.1 Jacobian Eigenvalues

We are interested in the eigenvalues λn given by Ax = λnx with eigenvectors x ∈ R7.

A straightforward cofactor expansion calculation leads to the result
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λ1 = u−cf , λ2 = u−ca, λ3 = u−cs, λ4 = u, λ5 = u+cs, λ6 = u+ca, λ7 = u+cf

(4.33)

where λi ≤ λi+1 and cf , ca, cs are known as the fast, Alfvén, and slow characteristic

speeds respectively. They are given by

c2a = b2x, c2f,s = [(a∗)2 ±
√

(a∗)4 − 4a2b2x]/2 (4.34)

where we have defined

bi = Bi/
√
ρ, b2 = b2x + b2y + b2z, (a∗)2 = (γρ+B2)/ρ (4.35)

and a is the speed of sound given by a2 = γP/ρ.

4.4.2 Eigenvalue Degeneracy

We seek to establish conditions for the eigenvalues to be distinct. By inspection of

the definitions of ca and cf,s we see there are two natural cases to consider:

Case 1: Bx = 0. If this condition is satisfied, we have cs = ca = 0.

Case 2: B2
y +B2

z = 0, c2f = max{a2, b2x}, and c2s = min{a2, b2x}.

In Case 1, we see that the Alfvén and slow eigenvalues are equal to the entropy

eigenvalue which are are all identically u. Hence, λ1, λ7, and λ4 are the distinct

eigenvalues, where λ4 has a multiplicity of 5.

Case 2 breaks into two subcases.

Subcase 2a: Because |a| = |bx| we find c2f = c2s. Since max{a2, b2x} = b2x = a2,

then c2f = c2s = c2a implies u± ca has multiplicity 3.
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Subcase 2b: a2 6= b2. In this case either c2f = b2x or c2s = b2x. Thus u ± ca has

multiplicity 2.

4.4.3 Eigenvector Degeneracy

We now consider the degeneracy problem for the eigenvectors of A. Recall that

we require the eigenvectors to be complete for our Roe solver to work properly. The

eigenvectors corresponding to λi are given in [24]. We require the following definitions

to simplify the form of the eigenvectors

c = {cf , cs}, g = ∓(Bzv ∓Byw)sgn(Bx) (4.36)

h =
c2

γ − 1
± cu∓ Bxc(Byv +Bzw)

ρ(c2 − b2x)
+
γ − 2

γ − 1
(c2 − a2). (4.37)

where sgn is the sign function. The right eigenvectors of A are given by

Ru±c =



1

u± c

v ∓ BxByc

ρ(c2−b2x)

w ∓ BxBzc
ρ(c2−b2x)

Byc2

ρ(c2−b2x)

Bzc2

ρ(c2−b2x)

u2+v2+w2

2
+ h



Ru±ca =



0

0

∓Bzsgn(Bx)

±Bysgn(Bx)

Bz/
√
ρ

−By/
√
ρ

g



Ru =



1

u

v

w

0

a

u2+v2+w2

2



.

(4.38)

For the degeneracy problem, we consider the same two cases as in the previous

section. For Case 1, we define the eigenvectors via limits and need to establish two

identities to simplify this task. First we compute
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c2sc
2
f =

1

4

(
(a∗)4 − (a∗)4 + 4a2b2x

)
(4.39)

= a2b2x (4.40)

(c2s − b2x)(c
2
f − b2x) =

(
1

2
(a∗)2 − b2x

)2

− 1

4

(
(a∗)2 − b2x

)
(4.41)

= −b2x(b2y + b2z). (4.42)

Together with

cs =
a|bx|
cf

, c2s − b2x = −
b2x(b

2
y + b2z)

c2f − b2x
. (4.43)

These induce the relations

bybxcs
c2s − b2x

= −
a(c2f − b2x)

cf (b2y + b2z)
sgn(Bx)by (4.44)

byc
2
s√

ρ(c2s − b2x)
= −

a2by(c
2
f − b2x)

cf
√
ρ(b2y + b2z)

. (4.45)

We seek to control the singular behavior of the eigenvectors with components that

have factors Bxcs/(c
2
s − b2x) and c2s/(c

2
s − b2x). Since we have singularity issues when

bx → cs, we take limBx→0 sgn(Bx) = 1 and consider

lim
Bx→0

bybxcs
(c2s − b2x)

= lim
Bx→0

BxBycs
c2s −B2

x/ρ
= 0 (4.46)

lim
Bx→0

byc
2
s

ρ1/2(c2s − b2x)
= − lim

Bx→0

a2

c2f

by√
ρ

c2f − b2x
b2y + b2z

= − a2by√
ρ(b2y + b2z)

. (4.47)

We thus see multiplication by the above mentioned factors regularizes the previously

infinite eigenvector components.

In Case 2, one of By

c2−b2x
, Bz

c2−b2x
will become singular, and neither is defined where

b2y + b2z = 0 for the fast eigenvectors if a2 < b2x or the slow eigenvectors if a2 > b2x.
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Moreover, the determinant of the eigenvector matrix is proportional to (c2f − c2s)2 and

(c2f − c2s) → 0 as b2y + b2z → 0 and a2 − b2x → 0. This is the singularity structure we

need to eliminate. Note how the singularities in this case are due to the vanishing

of the magnetic field tangential to the direction of fluid flow. This is in contrast to

Case 1 where the singularities arose due to the vanishing of the fluid flow in the x

direction.

We make the definitions

αf =

√
c2f − b2x√
c2f − c2s

αs =
1

cf

√
c2f − a2√
c2f − c2s

βy =
By

b2y + b2z
βz =

Bz√
b2y + b2z

(4.48)

and note the identity

b2y + b2z
α2
fα

2
s

= c2f − c2s (4.49)

which shows the relationship between vanishing quantities. Scaling the fast, slow and

Alfvén eigenvectors by αf , αs, and (b2y+b2z)
−1/2 respectively, removes the singularities

of the eigenvector matrix. Hence this procedure eliminates degeneracy problems

thereby producing a complete set of eigenvectors for a Roe solver.

4.5 The GRMHD Eigenvalue Problem

We now summarize a version of the GRMHD equations due to [20]. Define primitive

variables P = (ρ0, v
j, ε, Bj)T where ρ0 is the rest mass density, vj is the coordinate

velocity of the fluid, ε is the specific internal energy of the fluid, and Bj is the magnetic

field in the frame of fiducial observers moving with four velocity na = (1,−β)/α where
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α is the lapse and β is the shift1. We define the fluid enthalpy by he = ρ0(1 + ε) + P

where P is the pressure and will be given by an equation of state that we need not

specify. We also define various fluid related quantities

χ =
∂P

∂ρ0

, κ =
∂P

∂ε
γ,

∂he
∂ρ0

= 1 + ε+ χ, hec
2
s = ρ0χ+

P

ρ0

κ (4.50)

where cs is the speed of sound. The GRMHD equations may be written in balance

law form

∂F 0

∂t
+
∂F j

∂xj
= S (4.51)

where F 0 and the three vectors F j are dependent on quantities involving the primitive

variables. The definition of S is not important while F 0 and F k are given by

F 0 =
√
h



Wρ0

(heW
2 +B2)vi − (Bv)Bi

heW
2 +B2 − 1

2
[(Bv)2 +B2/W 2]−Wρ0 − P

Bi


(4.52)

F j

α
√
h

=



Wρ0v
j

([heW
2 +B2]vi − (Bv)Bi)v

j + hji (P + 1
2
[(Bv)2 +B2/W 2])− (Bi/W

2 + (Bv)vi)B
j

(heW
2 +B2 − 1

2
[(Bv)2 +B2/W 2]−Wρ0 − P )vj + (P + 1

2
[(Bv)2 +B2/W 2])vj − (Bv)Bj

Bivj −Bj(vi − βi/α)


(4.53)

where we have defined vj = vj − βj/α, a Lorentz factor W = 1/(1 − [viv
i]2), and

h = det(hij) where hij is the metric on the spacial slices. Because we ignore the source

1na gives the trajectory of the observers moving normal to the two-manifold ADM foliation, i.e.

the spacial slices
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for the following calculation, we set it to zero. We define Fa using the conservative

form of the above equation written in covariant form.

0 =
∂F a(P)

∂xa
=
∂F a(P)

∂P
∂P
∂xa

= Fa ∂P
∂xa

. (4.54)

We note the system will be hyperbolic if the determinant of the Jacobian con-

tracted with a unit timelike vector is nontrivial. Thus the eigenvalue problem will

yield real eigenvalues and a complete set of eigenvectors. We now fix a direction xk

and consider the eigenvalue problem

det[F0(−λk) + Fk] = 0 (4.55)

where λk is one eigenvalue in the xk direction. There is no loss of generality in

choosing this direction; it could represent any of the directions. Differentiation of F a

with respect to the primitive variables yields

F0 =
√
h



W W 3ρ0vj 0 0j

W 2γvi hijQ+ 2heW
4vivj −BiBj (ρ0 + κ)W 2vi 2viBj −Bivj − (Bv)hij

γW 2 −W − χ (2heW
4 +B2 −W 3ρ0)vj − (Bv)Bj (ρ0 + κ)W 2 − κ (2− 1/W 2)Bj − (Bv)v)j

0i 0ij 0i hij


(4.56)

Fk = α
√
h



Wvk Wρ0(W
2vjv

k + hkj ) 0k 0kj

W 2γviv
k + hki χ Ak

ij (ρ0 + κ)W 2viv
k + hki κ Bkij

(W 2γ −W − χ)vk + χvk Ckj (ρ0 + κ)W 2vk − κ(vk − vk) Dk
j

0ik Bihkj −Bkhij 0ik hijv
k − hkjv

i


(4.57)

where we define
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Ak
ij = (hijQ+ 2heW

4vivj −BiBj)v
k + (Qvi − (Bv)Bi)h

k
j + hki ((Bv)Bj −B2vj)

− (hij(Bv) + viBj − 2Bivj)B
k (4.58)

Bkij = (2viBj −Bivj − (Bv)hij)v
k − (hij/W

2 + vivj)B
k (4.59)

Ckj = (2hW 4vj−(Bv)Bj+B
2vj−ρ0W

3vj)v
k+(Q−Wρ0)h

k
j+((Bv)Bj−B2vj)v

k−BjB
k

(4.60)

Dk
j = (2Bj − (Bv)vj −Bj/W

2)vk + ((Bv)vj +Bj/W
2)vk − vjB

k − (Bv)hkj . (4.61)

where 0i = 0j = (0, 0, 0) where i indexes rows and j indexes of columns.

4.5.1 Eigenvalue Problem

Through an extensive yet straightforward cofactor expansion it can be shown

det(Fk − λkF0) = −α8h5ρ0heW
3λk(vk − λk)∆kk

{
heW

4(1− c2s)(v
k − λk)4

+
[
(vk−λk)2(heW

2c2s+B
2+W 2(Bv)2)−c2s(W (Bv)(vk−λk)+Bk/W )2][((vk−λk)−vk)2−hkk]

]}
(4.62)

where

∆kk =

[
(v̄k − λk)2Q− 2(v̄k − λk)(Bv)Bk − 1

W 2
BkBk

]
(4.63)

and Q = heW
2 + B2. The zeros of (4.62) give the desired eigenvalues. There is one

trivial eigenvalue λk = 0, one associated with the entropy wave vk − λk = 0, two

for the Alfvén waves given by the solution of ∆kk = 0 and four magnetosonic wave

eigenvalues given by the solutions to the quartic.
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4.5.2 Eigenvector Problem

We wish to compute the seven eigenvectors corresponding to the entropy wave, two

Alfvén waves, and the four magnetosonic waves. We will represent eigenvectors as

(e0, ei, e4, êi) where i ranges over i ∈ {1, 2, k} for some fixed direction xk. We define

ak = v̄k−λk and compute the eigenvectors for the GRMHD equations by solving the

system [20]

0 = e0ak + (ve)W 2ρ0a
k + ekρ0 (4.64)

0 = e0[(W 2γ − χ)ak + χvk] + e4[(ρ0 + κ)W 2ak + κ(vk − ak)] (4.65)

+ (ve)[2hW 4ak − Ck] + (Be)Dk + ek[hW 2 − Ek/ak] (4.66)

0 = (χe0 + κe4)(vk − ak +W 2ak)W−2 + (ve)[hW 2ak − CkW−2] (4.67)

+ (Be)DkW−2 − ekEk/(W 2ak) (4.68)

0 = (χe0 + κe4)(Bk − (Bv)(vk − ak)) + (ve)(Bv)Ck (4.69)

+ (Be)[hW 2ak −Dk(Bv)] + ek(Bv)Ek/ak (4.70)

where ak = v̄k − λk for λk an eigenvalue. (Bv) denotes the inner product of B and v.

We note that we may immediately combine these equations to find

e4 = e0P/ρ2
0 (4.71)

In the case of the entropy wave where ak = 0, a straightforward calculation shows

the system implies

e = c(1, 0i,−χ/κ, 0i)T (4.72)

In the case of the Alfvén eigenvectors where ak is a solution of ∆kk = 0 we can solve
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the system. Allowing ∆kk = 0 the eigenvector equations show the Alfvén eigenvector

components take the form

e0 = 0 (4.73)

e1 =
ve

v1B2 − v2B1

[
B2(W

2(Bv)
ak

Bk
+ 1)− v2W

2

(
B2 a

k

Bk
− (Bv)

)]
− (ve)W 2B1 a

k

Bk

(4.74)

e2 =
ve

v1B2 − v2B1

[
−B1(W

2(Bv)
ak

Bk
+ 1) + v1W

2

(
B2 a

k

Bk
− (Bv)

)]
− (ve)W 2B2 a

k

Bk

(4.75)

ek = −(ve)W 2ak (4.76)

e4 = 0 (4.77)

ê1 =
ve

v1B2 − v2B1

[
B2(W

2(Bv)
ak

Bk
+ 1)− v2W

2

(
B2 a

k

Bk
− (Bv)

)]
(4.78)

ê2 =
ve

v1B2 − v2B1

[
−B1(W

2(Bv)
ak

Bk
+ 1) + v1W

2

(
B2 a

k

Bk
− (Bv)

)]
(4.79)

êk = 0 (4.80)

We now turn our attention to the magnetosonic eigenvectors where ak is a solution

to the quartic in equation (4.62). In this case, ∆kk 6= 0 the system
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 hW 4ak − Ck +W 2Ek Dk

hW 4(Bv)ak hW 2ak


 (ve)

(Be)

 = −e0

 hc2s
ρ0

(vk − ak +W 2ak) + Ek

ρ0

hc2s
ρ0

((Bv)W 2ak +Bk)


(4.81)

can be inverted to find (ve) and (Be) given by

(ve) = −e
0

ρ0

h

∆kk

1

ak

{
(vk−ak)

[
hc2sW

2(ak)2 − c2s((Bv)Wak +
Bk

W
)2 + (ak)2(|B|2 +W 2(Bv)2)

]

+hc2sW
4(Ak)3−BkW (ak(Bv)W +Bk/W )akc2s+W 2(ak)2(ak|B|2− (Bv)Bk)

}
≡ e0ψk

(4.82)

(Be) = [∆kk+ak(Bv)Bk][c2sW
3(W (Bv)ak+Bk/W )−W 4(Bv)ak]−W 2(Bv)akBkBk ≡ ξk

(4.83)

which when combined with the initial system gives

ek = −ρ−1
0 (e0ak + (ve)W 2ρ0a

k) = −e0akρ−1
0 (1 + ψkW 2ρ0). (4.84)

Demanding i 6= k and recalling êk = 0 we have

0 = Biek −Bkei + akêi. (4.85)

We can combine the eigenvector equations to show

0 = [W 2γvia
k + χhki ]e

0 +

{
ei[Qa

k − (Bv)Bk] + (ve)[2hW 4via
k − hki |B|2 + 2BiB

k]

+(Be)[−Bia
k + hki (Bv)− viB

k] + ek[Qvi − (Bv)Bi]

}
e4 + [(ρ0 + κ)W 2via

k + hki κ]e
4
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+

{
êi

[
−(Bv)ak − Bk

W 2

]
+ (vê)

[
−Bia

k − viB
k + hki (Bv)

]
+ (Bê)

[
2via

k +
hki
W 2

]

− êk
[
(Bv)vi +

Bi

W 2

]}
(4.86)

which we write in the form

0 = αki e
0 + eiβ

k + γkêi + ξki . (4.87)

Solving for the eigenvector components, we compute

ei = −α
k
i a

ke0 −Biekγk + akξki
akβk +Bkγk

(4.88)

êi = −α
k
iB

ke0 + βkBiek +Bkξki
akβk +Bkγk

. (4.89)

which determines the GRMHD eigenvalues. Simplifying the denominator, we find

akβk +Bkγk = Q(ak)2 − 2ak(Bv)Bk −W−2BkBk = ∆kk (4.90)

which is the same factor as in the determinant of the GRMHD equations. Thus

we see we have singularity problems when either v1B2 − v2B1 = 0, Bk = 0, or

∆kk = 0. Generalizing the analysis of [4], we seek conditions when the eigenvalues of

the GRMHD equations are unique. We first note that when the discriminant of ∆kk

vanishes, we have degeneracy. This is equivalent either (Bv)2 +QW−2 = 0 or Bk = 0.

If the first condition is met, we have essentially trivialized the GRMHD equations.

The second condition has already been taken into account. Thus, we do not expect

to have singularity problems with the Alfvén eigenvectors. The magnetosonic case is

slightly more difficult. We consider a theorem from [27] which requires:
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Definition: Let F be a field of characteristic 0 and f(x) ∈ F [x] a polynomial of

degree n. Represent

f =
n∏
i=1

(x− αi) (4.91)

and define

∆ =
∏
i<j

(αi − αj). (4.92)

Then the discriminant of f(x) ∈ F [x] is D = ∆2.

Theorem: f(x) has repeated roots iff D = 0.

Thus we have rephrased our problem in terms of the vanishing of D. The following

corollary is useful for considering our specific quartic.

Corollary: Let λ4, λ5, λ6, λ7 be the roots of a 4-th order polynomial over the

reals. Then

∆2 = D =

(
c
∏
i<j

(λi − λj)

)2

= c2(λ4−λ7)
2(λ5−λ7)

2(λ6−λ7)
2(λ4−λ6)

2(λ5−λ6)
2(λ4−λ5)

2

(4.93)

An alternative expression for D in terms of roots of f =
∑4

i cix
i is given by

D =
[
(c21c

2
2c

2
3 − 4c31c

3
3 − 4c31c

3
2c4 + 18c31c2c3c4 − 27c41c

2
4 + 256c30c

3
4)

+c0(−4c32c
2
3 + 18c1c2c

3
3 + 16c42c4 − 80c1c

2
2c3c4 − 6c21c

2
3c4 + 144c21c2c

2
4)

c20(−27c43 + 144c2c
2
3c4 − 128c22c

2
4 − 192c1c3c

2
4)
]
. (4.94)

which in principal completely determines degeneracy of the quartic associated to the

eigenvalues of the magnetosonic waves.
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4.6 Conclusions

We have calculated all the eigenvalues and eigenvectors of a balance law form of

the GRMHD equations and established singularity and degeneracy conditions. Mul-

tiplication of the eigenvector matrix by (∆kk)4(v1B2 − v2B1)
2(Bk)2 will resolve the

singularity problems in the spirit of [4]. This will force the GRMHD equations to be

strongly hyperbolic.



Chapter 5

The Axisymmetric Initial Value

Problem for GRMHD

In the previous chapter we consider aspects of the characteristic problem for GRMHD.

An additional problem for attempting to simulate the set of equations it to construct

appropriate initial data for a simulation. In particular, one model we are interested

in is modeling a differentially rotating magnetized neutron star. This is impossible

without having an initial configuration for the system. We will describe a formal-

ism which allows us to make steps in solving this problem. Solving this problem is

necessary to consider solving the full time evolution problem of the system.

This requires evolving an initial metric coupled to a specified matter distribution

with the Einstein equations. One cannot choose the initial metric arbitrarily, but must

demand it satisfies the constraint equations of general relativity at a fixed time. This

is analogous to the requirement in electrodynamics that one must choose the initial

electric and magnetic fields in any dynamic configuration in a manner consistent with

the time independent electrodynamic equations.

We suppose a stationary axisymmetric spacetime. Equivalently, we assume the

73
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existence of two Killing vectors , one timelike, and another spacelike with closed orbits.

We will consider two types of these spacetimes. First, we reproduce current results

on spacetimes that obey the circularity condition. This restricts our fluid matter’s

propagation to planes parallel to the equatorial plane of a magnetized neutron star

and the magnetic field may be purely poloidal. This assumption of circularity is

frequently made in order to simplify the form of the spacetime metric. Such a metric is

convenient for calculation but is often an unphysical restriction of the matter content

of an axisymmetric spacetime. One example of its use is [5] to model nonmagnetized

differentially rotating stars.

In order to generalize the possible dynamics of our matter, we remove the condi-

tion of circularity and consider the initial value problem for non-circular spacetimes.

In [3], uniformly rotating magnetized neutron stars were considered. We extend this

work by deriving field equations and equations of motion for a differentially rotating

magnetized neutron star. We state the equations for the general initial value problem

(without assuming circularity) and leave numerical computations for future work.

5.1 Introduction

We are ultimately interested in a general stationary axisymmetic spacetimes. A

spacetime is stationary if it admits a timelike Killing vector τµ. A spacetime is

axisymmetric if it admits a compact spacelike Killing vector field ξµ. A spacetime is

stationary and axisymmetric if it is stationary, axisymmetric and the Killing vectors

satisfy the orthogonality relation: [τ, ξ] = 0. Killing vectors generate spacetime

isometries via the exponential map. Thus the components of the spacetime metric

will not depend on coordinates which are adapted to the Killing vectors. If one

assumes a stationary and axisymmetric spacetime, one may assume a metric of the
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form

ds2 = gµν(x
2, x3)dxµdxν (5.1)

with coordinate vector x = (t, x2, x3, φ) where τ = ∂t and ξ = ∂φ.

Now consider the following theorem [30, p.163]

Theorem 1. Let ξa and ψa be two commuting Killing vector fields that satisfy

(i) ξ[aψb∇cξd] and ξ[aψb∇cψd] each vanish at least at one point.

(ii) ξaR
[b
a ξcψd] = ψaR

[b
a ξcψd] = 0

We call (ii) the circularity condition. Then the 2-planes orthogonal to ξa and ψa are

integrable, i.e. they define 2-manifolds that foliate the full spacetime.

It can be shown that if this theorem holds and one chooses x2 and x3 wisely, a

static axisymmetric metric can be written in the form

ds2 = −V (dt− ωdφ)2 + V −1[ρ2dφ2 + e2γ(dρ2 + dz2)] (5.2)

where V , ω, and γ are only functions of ρ and z. There are only two nontrivial Einstein

equations for this metric. This is a dramatic simplification from a full axisymmetric

problem and is the starting point for the majority of standard axisymmetric analyses.

The hypotheses of the above theorem are satisfied for many spacetimes. Note that the

theorem as stated is a result from differential geometry. When the Einstein equations

are considered in conjunction with the theorem, the conditions of the theorem become

conditions on the stress energy tensor. The MHD stress tensor does not satisfy

these conditions in general and hence one my not apply the circularity condition for

GRMHD. For instance, if one wishes to model a differentially rotating magnetized

neutron star where the fluid velocity is not restricted to the equatorial plane, one
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must relax the conditions of the theorem and only assume the existence of the two

Killing vectors. The simple form of equation (5.2) thus does not hold.

As a result of the above argument the Einstein equations for of a stationary

axisymmetric spacetime coupled to MHD are much more involved because the metric

is significantly more complicated. Nevertheless, we wish to solve the corresponding

initial value problem for GRMHD. One aspect of this problem can best be explained

in terms of an analogy with electrodynamics [30, ch.10]. Recall that the vacuum

Maxwell equations are given by

ε0∂tE =
1

µ0

∇×B− J, ∂tB = −∇× E (5.3)

∇ ·B = 0, ∇ · E = ρ/ε0. (5.4)

The Maxwell equations govern the time evolution of the electric field E and the

magnetic field B given a charge distribution ρ and a current density J. Equations (5.3)

govern the time evolution of the electric and magnetic fields, and equations (5.4) are

constraint equations that both fields must satisfy for all time. Thus one must specify

initial data for the fields that is consistent with the constraint equations. This requires

solving the time independent electrodynamics equations to generate valid initial data.

We can formulate a similar nonlinear initial value problem in general relativity.

To do this we to assume our spacetime admits a timelike vector field that foliates

the full four dimensional spacetime into spacelike three-manifolds. We can prescribe

initial data on one of the three manifolds whose time evolution is governed by the

dynamic Einstein equations. Again we cannot specify this initial data arbitrarily,

but much choose an initial metric and matter fields to satisfy the elliptic (constraint)

Einstein equations. This is the initial value problem for general relativity. We will

further restrict to axisymmetric spacetimes.



5.2 Axisymmetry with Circularity 77

5.2 Axisymmetry with Circularity

The key assumption that simplifies the form of the metric in axisymmetric spacetimes

is the previously mentioned theorem. We state an similar theorem that has does not

involve the circularity condition:

Theorem 2. (Frobenius Theorem) Let Xa and Na be two vectors on a Lorentzian

manifold. If

∇aX[bXcNd] = 0, and, ∇aN[bNcXd] = 0

then Xa and Na define integrable 2-manifolds that foliate for the full Lorentzian man-

ifold.

We note that this theorem has the same result as our previously mentioned the-

orem. We make the assumption of the Frobenius Theorem and the circularity and

consider the resulting Einstein’s equations.

5.2.1 Fluid Calculations

Unmagnetized differentially rotating stars are studied in the context of stationary

axisymmetric general relativity [5]. The solutions that we are considering are equi-

librium configurations and are in a sense generalizations of gravitating Newtonian

spheroids. The authors suppose a metric of the form

ds2 = −eγ+ρdt2 + e2α(dr2 + r2dθ2) + eγ−ρr2 sin2 θ(dφ− ωdt)2 (5.5)

where ρ, γ, α and ω are only dependent on r and θ. Setting G = c = 1, the perfect

fluid stress tensor is given by
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T ab = (ρ0 + ρi + P )uaub + Pgab (5.6)

where ρ0 is the rest energy density, ρi is the internal energy density, P is the pressure,

and ua is the matter four velocity. This is the same metric we previously mentioned

in a different representation. We wish to compute the Einstein and matter equations.

To this end, we find the velocity components of the fluid by first defining the proper

matter velocity by

v = (Ω− ω)r sin θe−ρ (5.7)

where Ω ≡ dφ/dt = (dφ/dτ)(dτ/dt) = uφ/ut. We assume the fluid four-velocity

vector is normed to −1, there exist Killing vectors ∂t, ∂φ, and meridonal circulation

(ur = uθ = 0) which is a result of the circularity condition. With this information,

we find all the components of the four velocity in terms of the proper velocity

−1 = uaua = gtt(u
t)2 + 2gtφu

tuφ + gφφ(u
φ)2

= eγ−ρr2 sin2 θ[uφ − ωut]2 (5.8)

from which we substitute out uφ and immediately solve for ut to find

ua = [e(γ+ρ)/2
√

1− v2]−1(1, 0, 0,Ω) (5.9)

5.2.2 Matter Equations

Now now consider the matter equations given by the vanishing of the divergence of

the stress-energy tensor.
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0 = ∇aT
ab = [ρ0 + ρi + P ](ua∇au

b + ub∇au
a) +∇bP (5.10)

where we have used the above form of the fluid, the useful identity

∇au
a =

1√
−g

∂a(
√
−gua) = 0. (5.11)

and the Killing vector assumptions ∂t = ∂φ = 0. After simplification, the above

becomes

0 = [ρ0 + ρi + P ]ua∇aub +∇bP. (5.12)

Repeatedly applying our assumptions, we compute

ua∇aub = −uaΓcabuc = −1

2
uaud∂bgad = ua∂bu

a

= (ut + uφΩ)∂bu
t + utuφ∂bΩ = −∂b(lnut) + utuφ∂bΩ. (5.13)

Thus the matter equations can be expressed in differential form as

0 = dP − [ρ0 + ρi + P ][d lnut − utuφdΩ] = 0 (5.14)

which is called the equation of hydrostatic equilibrium. In the case of circularity,

given an equation of state, this can be integrated directly.

5.2.3 The Field Equations

The Einstein equations for the circular axisymmetric metric may be written

∇2[ρeγ/2] = Sρ(r, µ) (5.15)



5.2 Axisymmetry with Circularity 80

(
∇2 +

1

r
∂r −

µ

r2
∂µ

)
[γeγ/2] = Sγ(r, µ) (5.16)

(
∇2 +

2

r
∂r −

2µ

r2
∂µ

)
[ωe(γ−2ρ)/2] = Sω(r, µ) (5.17)

where µ = cos θ and the Si terms depend on stress tensor and metric terms and

there first derivative only (See [5] for the explicit values). Solving these equations

together with the equation of hydrostatic equilibrium amount to finding equilibrium

configurations of rotating fluid bodies.

In order to solve these equations, we adopt Green’s function techniques similar

to [5]. We are interested in finding the Green’s function for the operators in (5.15)-

(5.17). This will allow us to use an iterated Green’s function numerical solver to find

the metric components in a manner similar to that taken in calculating amplitudes

of scattering experiments in quantum mechanics. We seek the general solution to the

free space Green’s function problem for

[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
φ = S (5.18)

subject to

lim
r→∞

φ(r, µ) = 0 |φ(0, µ)| <∞ (5.19)

φ(r, 1) = φ(r,−1) φµ(r, 1) = φµ(r,−1) (5.20)

where we have set µ = cos θ. We first note that the partial differential operator is

currently not in self-adjoint form. Hence, we need to multiply by an appropriate

scalar ρ(r, µ) to make the problem accessible to Green’s function techniques.

Recall a linear operator L is self-adjoint on a Hilbert space H if L = L† where

(Lu,w) ≡ (u, L†w), where (·, ·) is the inner product on H. We take H to be the space



5.2 Axisymmetry with Circularity 81

of square Lebesgue integrable functions and define

L = ∇2 +
n

r
∂r −

nµ

r2
∂µ, L̃ = ρL (5.21)

and compute

(L̃u, w) =

∫
ρ(∇2u)w + n

∫
ρ

r
urw − n

∫
µρ

r2
uµw

=

∫
u

[
∇2(ρw)− n

∂

∂r

(ρw
r

)
+
n

r2

∂

∂µ
(µρw)

]
= (u, L̃†w). (5.22)

Hence the self-adjoint condition on ρ becomes

ρ
[
∇2u+

n

r
ur −

nµ

r2
uµ

]
=

[
∇2(ρu)− n

∂

∂r

(ρu
r

)
+
n

r2

∂

∂µ
(µρu)

]
. (5.23)

Recall the Laplacian takes the form

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2
cot θ

∂

∂θ
(5.24)

where φ dependent terms have been ignored. Setting µ = cos θ we find

∂

∂θ
=
∂µ

∂θ

∂f

∂µ
= − sin θ

∂f

∂µ
(5.25)

∂2

∂θ2
= (1− µ2)fµµ − µfµ (5.26)

from which we note the transformed Laplacian takes the form

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1− µ2

r2

∂2

∂µ2
− 2µ

r

∂

∂µ
. (5.27)

Expanding the right hand side of the self-adjoint condition, we find

∇2(ρu)− n
∂

∂r

(ρu
r

)
+
n

r2

∂

∂µ
(µρu)
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= ρ∆u+
(
2ρr −

n

r
ρ
)
ur +

[
1− µ2

r2
2ρµ +

nµ

r2
ρ

]
uµ + uρrr +

2

r
uρr

+
1− µ2

r2
uρµµ −

2µ

r2
ρµu−

n

r
ρµu+ 2

nρu

r2
+
nµ

r2
ρµu (5.28)

We thus require the following are simultaneously satisfied

(
2ρr −

n

r
ρ
)

= ρ
n

r
(5.29)

[
2
1− µ2

r2
ρµ +

nµ

r2
ρ

]
= −ρnµ

r2
(5.30)

Thus we find ρr = nρ/r and ρµ = nµρ/(µ2−1). Dividing the equations and solving

gives ρ = c1(µ)rn. Substituting this result back into the previous equation leaves

an ordinary differential equation for c1, which we solve and normalize to determine

ρ = (1 − µ2)n/2rn. Thus L̃ = (1 − µ2)n/2rnL is a self-adjoint operator, and we can

state the free space Green’s function problem as

ρ
[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
G(r, µ) = −4πε

r2
δ(r − r′)δ(µ− µ′) (5.31)

or equivalently,

∂

∂r

(
rn+2∂G

∂r

)
+

rn

(1− µ2)n/2
∂

∂µ

[
(1− µ2)1+n/2∂G

∂µ

]
= − 4πε

(1− µ2)n/2
δ(r− r′)δ(µ− µ′)

(5.32)

for ε an arbitrary constant.

We seek to solve the homogenous equation by a separation of variables ansatz. Let

G = R(r)Θ(µ). Then the equation separates into two ordinary differential equations

R′′ +
n+ 2

r
R′ − λ2

r2
R = 0 (5.33)
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(1− µ2)Θ′′ − 2µ(1 + n/2)Θ′ + λ2Θ = 0. (5.34)

The Θ equation is a Lengendre type equation. To solve it we use the method of

Frobenius. Assume that

Θ =
∞∑
i=0

ciµ
i (5.35)

and substitute into the differential equation to find

0 =
∞∑

i=−2

(i+ 2)(i+ 1)ci+2µ
i +

∞∑
i=0

[λ2 − i(i− 1)− i(n+ 2)]ciµ
i

=
∞∑
i=0

[(i+ 2)(i+ 1)ci+2 + [λ2 − i(i− 1)− (n+ 2)i]ci]µ
i. (5.36)

Thus we find the recursion relation

ci+2 =
i(i− 1) + i(n+ 2)− λ2

(i+ 2)(i+ 1)
ci. (5.37)

We note the series converges iff

lim
i→∞

∣∣∣∣ci+2µ
i+2

ciµi

∣∣∣∣ < 1. (5.38)

In analogy to a similar argument for Legendre polynomials, we must truncate the

solution for some i because the series does not converge at µ = ±1. This gives the

condition

i(i− 1) + i(n+ 2)− λ2 = 0 → λ2 = i(i+ n+ 1). (5.39)

Thus we name the solutions P
(n)
i , where i denotes the truncation term. We solve the

R Euler equation and note the Green’s function is given by
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G = 4πε

(
r

r>

)n∑
l

rl<
N2
ln(2l + n+ 1)rl+1

>

P
(n)
l (µ)P

(n)
l (µ′)(1− µ2)n/2 (5.40)

where Nln =
∫

[P
(n)
l ]2.

5.3 Axisymmetry without the Circularity Condi-

tion

We now turn to extending the results of the circular analysis to one for which circular-

ity does not hold. In [3], uniformly rotating magnetized neutron stars are considered.

We extend the formalism in the following by calculating the Einstein and matter

equations without the assumption of circularity. In this case we no longer have a

simple metric. In fact, the metric has no zero components. We will preform a double

Kaluza Klein type reduction in two directions of a four dimensional spacetime without

assuming hypersurface orthogonality.

Following our assumption of a stationary axisymmetric metric. We consider a

Lorentzian four-manifold (M,γ) and decompose γ according to

γµν = σµν −Q2MµMν + s2YµYν (5.41)

where we have made definitions

Xµ = (0, 0, 0, 1) XµXµ = s2 Y µ = Xµ/s2 (5.42)

N ν = (1, 0, 0, 0) NµNµ = −q2 (5.43)

and define an intermediate projection operator
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gµν = γµν − s2YνYµ. (5.44)

We note that s and q are functions of local coordinates. Thus we have not completely

fixed coordinates associated with the two Killing vectors.

We can think of gµν as a projection operator defined on the full spacetime which

projects onto a three manifold orthogonal to the timelike Killing vector. It can be

shown that gµν is the induced metric on the three manifold and thus can be used

to raise and lower indices on purely three manifold tensors. Similarly σµν projects

tensors in the full spacetime onto a two manifold. Next, we define

3Nµ = gλµNλ = γλµNλ − s2YµY
λNλ

= Nµ −NφYµ = (1, 0, 0,−Nφ/s
2) (5.45)

with normalization

3Nµ
3Nµ = −

(
q2 +

N2
φ

s2

)
≡ −Q2 (5.46)

where Nφ is the last component of Na. Thus Ma and Y a are orthogonal vectors by

construction. We define Mµ = 3Nµ/Q
2 and find that

MµY
µ = Mµσµν = Y µσµν = 0. (5.47)

We make the “pseudo-maxwell form” definitions in terms of “pseudo-gauge poten-

tials” to be

Zµν = ∂µYν − ∂νYµ, Wµν = ∂µMν − ∂νMµ. (5.48)

Note that Y µZµα = Y µWµα = 0. This means Zµν lives on the three manifold with

metric gµν and Wµν lies in the two manifold with metric σµν . Next, we compute 4Γ

in terms of the two manifold Christoffel symbols and projection elements to be
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4Γλµν = 2Γλµν −
1

2
Mλ

[
∂µ(Q

2Mν) + ∂ν(Q
2Mµ) + s2Yµ∂ν(Nφ/s

2) + s2Yν∂µ(Nφ/s
2)
]

+
1

2
Y λ
[
∂µ(s

2Yν) + ∂ν(s
2Yµ)

]
+

1

2
σλα

[
s2(YµZνα − YνZµα)−Q2(MµWνα +MνWµα)− YµYν∂(s2) +MµMν∂α(Q

2)
]
.

(5.49)

We note the additional important calculations and definitions

Zµν = σαµσ
β
νZαβ +Mµσ

α
ν ∂α(Nφ/s

2)−Mµσ
α
µ∂α(Nφ/s

2) ≡ 2Zµν +Mµ[· · · ] (5.50)

Wµν = γαµγ
β
νWαβ = σαµσ

β
νWαβ +WαβM

β[· · · ] = σαµσ
β
νWαβ ≡ 2Wµν (5.51)

which shows that W lives purely on the two manifold and Z lives on a three manifold

defined by modding the full spacetime out by the axisymmetric Killing vector. We

define Dµ to be the covariant derivative with respect to the 2-metric σ and calculate

the projected components of the Ricci tensor to be

XµXν4Rµν = − s

Q
Dα(QDαs) +

s4

4
2Zαβ

2Zαβ − s4

2Q2
Dα(Nφ/s

2)Dα(Nφ/s
2)

(5.52)

Xµ(−Q2M ν)4Rµν =
Q

2s
Dα

(
s3

Q
Dα(Nφ/s

2)

)
− s2Q2

4
2Zαβ

2Wαβ (5.53)

(−Q2Mµ)(−Q2M ν)Rµν =
Q

s
Dα(sDαQ)− s2

2
Dα(Nφ/s

2)Dα(Nφ/s
2) +

Q4

4
2Wαβ

2Wαβ

(5.54)

σµβX
νRµν =

1

2

s3

Q
Dα(Q/sZ

α
β ) (5.55)

σµβ(−Q
2M ν)Rµν = − 1

2sQ
Dα(sQ

32Wα
β ) (5.56)
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σµβσ
ν
δRµν = 2Rβδ −DβDδ ln(sQ)− s2

2
2ZδαZ

α
β +

Q2

2
2Wδα

2W α
β

− 1

s2
DβsDδs−

1

Q2
DβQDδQ−

s2

2Q2
Dβ(Nφ/s

2)Dδ(Nφ/s
2). (5.57)

The scalar curvature is given via contraction of the previous by

4R = 2R−Dα(Dα(sQ)/sQ)− 1

sQ
Dα(Dα(sQ))− s2

4
2Zαβ

2Zαβ − Q2

4
2Wαβ

2W αβ

− 1

s2
DαsDαs− 1

Q2
DαQDαQ+

s2

2Q2
Dα(Nφ/s

2)Dα(Nφ/s
2).

These equations are relatively simple. The Einstein equations become a second order

equation for s, an equation for Nφ, and an equation for q. They also produce two

Maxwell like equations for Wµν and Zµν . The final Einstein equations give a two

dimensional relativity on the 2-manifold defined with metricσ where 2Rµν is the Ricci

curvature defined with respect to σµν . This is similar to the results of Kaluza-Klein.

Also one can show that circularity is recovered in the case that Zµν = Wµν = 0. It is

most natural to choose conformal gauge on the two-manifold. (i.e. σij = eψδij). In

this gauge the two manifold scalar curvature and Ricci tensor take the form

R = −e−ψ∆ψ (5.58)

Rij =
1

2
Rgij = −1

2
∆ψ (5.59)

where the Laplacian is with respect to the Euclidean metric (see for instance [15]).

This makes the Einstein equations on the two manifold particularly simple.



5.4 GRMHD Stress Tensor 88

5.4 GRMHD Stress Tensor

We have reduced the left hand side of the Einstein equations to equations given by

two manifold and projection quantities. We need to preform a similar analysis for the

matter part of Einstein equations.

Our stated interest is in magnetized neutron stars. Thus we consider the GRMHD

stress tensor

T̃µν = Tµν +
bαb

α

4π
uµuν +

bαb
α

8π
γµν −

bµbν
4π

=

[
ρ0(1 + ε) + P +

bαb
α

4π

]
uµuν +

[
P +

bαb
α

8π

]
γµν −

bµbν
4π

. (5.60)

To begin let up make two convenient conditions. Let ξµ be any vector. Define

ξ̂ ≡Mµξµ = ξtM
t + ξφM

φ =
1

Q2
[ξt − ξφ(Nφ/s

2)] (5.61)

and

ξ̃ = Y µξµ =
1

s2
ξφ. (5.62)

We have the projections

T̃µνY
µY ν =

[
ρ0(1 + ε) + P +

b2

4π

]
(ũ)2 +

[
P +

b2

8π

]
1

s2
− 1

4π
(̃b)2 (5.63)

T̃µνM
µM ν =

[
ρ0(1 + ε) + P +

b2

4π

]
(û)2 +

[
P +

b2

8π

]
1

Q2
− 1

4π
(b̂)2 (5.64)

T̃µνM
µY ν =

[
ρ0(1 + ε) + P +

b2

4π

]
ũû− 1

4π
b̃b̂ (5.65)
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and similar projections for two-manifold quantities. These calculations give part of

the righthand side of Einstein equations Gµν = 8πTµν . We now turn attention to the

matter equations

0 = ∇aT̃
ab = ∇aT

ab +
1

4π
[b2∇a(u

aub) + uaub∂ab
2] +

1

8π
gab∂ab

2 − 1

4π
∇a(b

abb)

=

[
∇aT

ab +
b2

4π
(ua∇au

b) +
gab

8π
∂ab

2

]
− 1

4π
∇a(b

abb). (5.66)

Lowering the free index we have

0 =

[
∇aT

a
b +

b2

4π
(ua∇aub) +

1

8π
∂bb

2

]
− 1

4π
∇a(b

abb) (5.67)

which we may write in differential form as

0 =

[
ρ0 + ρi + P +

b2

4π

] [
d lnut − utuφdΩ

]
+ d

[
P +

b2

8π

]
− 1

4π
∇a(b

ab). (5.68)

Finally, we explicitly calculate the final term

∇a(b
abb) = ba∂abb + bb∂ab

a − b2α,b −
1

r
δθb bθb

θ

+ bb

(
br[γ,r +

2

r
+ 2α,r] + bθ[γ,θ + cot θ + 2α,θ]

)
. (5.69)

Additional work needs to be done to write the last term in differential form. We now

turn attention to our set of equations which govern the evolution of the magnetic

field.

5.5 Maxwell Equations

The Maxwell equations will govern the magnetic field ba. We take F ab as the Maxwell

stress tensor and project the Maxwell equations J b = ∇aF
ab in a manner similar to
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our previous projections of the Einstein equations. We compute

J b = ∇aF
ab = ∂aF

ab + ΓaacF
cb =

1√
−γ

∂a(
√
−γF ab) (5.70)

We now compute the projection

√
−γJ b = γca∂c(

√
−γγadγbcF de)

= γca∂c

(√
−γ 2F ab +

[
Y bs2Ye

{
σad −Q2MaMd

}
−M bQ2Me

{
σad − s2Y aYd

}
+σbe

{
s2Y aYd −Q2MaMd

} ]√
−γF de

)

= ∂a(
√
−γ2F ab) + s2Y b∂a

[√
−γF deYeσ

a
d

]
−Q2M b∂a

[√
−γF deMeσ

a
d

]
(5.71)

where we have used the useful identity

∂a ln
√
−γ = ∂a ln(sQ

√
σ). (5.72)

We recall that Fab = ∂aAb − ∂bAa and note F ab = γacγbd[∂cAd − ∂dAc]. We project

the Maxwell equations to find

√
−γYbJ b = ∂[

√
−γF deYeσ

a
d ] + Yb∂a(

√
−γ 2F ab) (5.73)

=

√
−γ
s2

σah∂a∂hAφ + ∂h(Aφ)∂a

[√
−γ
s2

σah
]

+ Yb∂a
(√
−γ 2F ab

)
(5.74)

where we have defined 2F ab = σacσ
b
dF

cd. If we choose σ to be a conformally Euclidean

metric in polar coordinates, it takes the form

σab = eψ

 1 0

0 r2

 (5.75)
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and the previous equation becomes

∂2
rAφ +

1

r2
∂2
θAφ = e2ψJφ − σab(∂aAφ)∂b ln

[√
−γ
s2

e−2ψ

]
+ Yb∂a

(√
−γ 2F ab

)
(5.76)

which determines Aφ. A parallel calculation shows that projecting along the axisym-

metric Killing vector gives

√
−γMbJ

b = ∂a[
√
−γF deYeσ

a
d ] +Mb∂a[

√
−γ 2F ab]

=

√
−γ
Q2

σah
[
∂a∂hAt − ∂a

(
Nφ

s2
∂hAφ

)]

+

[
∂hAt −

Nφ

s2
∂hAφ

]
∂a

[√
−γ
Q2

σah
]

+Mb∂a
[√
−γ 2F ab

]
(5.77)

This is an equation involving both At and Aφ. If we use the previous equation to

eliminate Aφ as well as our previous coordinates, we find

∂2
rAt +

1

r2
∂2
θAt =

Nφ

s2
e2ψJφ −

Nφ

s2
∂rAφ∂r ln

[√
−γ
s2

e−2ψ

]
− Nφ

s2

∂θAφ
r2

∂θ ln

[√
−γ
s2

e−2ψ

]
(5.78)

+
Nφ

s2
Yb∂a(

√
−γ 2F ab) + e2ψ∂hAφ∂a(Nφ/s

2)σah + e2ψQ2MbJ
b (5.79)

− e2ψQ2

√
−γ

[
∂hAt −

Nφ

s2
∂hAφ

]
∂a
[√
−γQ2σab

]
− e2ψQ2Mb√

−γ
∂a
[√
−γ 2F ab

]
. (5.80)

Finally, we project the Maxwell equations into the two manifold to find

√
−γσbcJ b = σbc∂a(

√
−γ 2F ab)
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=
√
−γσbcσaeσbf∂a [∂eAf − ∂fAe] + σbc(∂eAf − ∂fAe)∂a(

√
−γσaeσbf ) (5.81)

≡
√
−γσae∂a [∂eAc − ∂cAe] +Oc. (5.82)

where there are no second derivatives of Ai in Oc. Again choosing σ to be a con-

formally Euclidean metric in polar coordinates and letting c range over r and θ, we

find

∂2
θAr − ∂r∂θAθ = r2σbrJ

b − Or√
−γ

(5.83)

∂2
θAθ − ∂r∂θAr = r2σbθJ

b − Oθ√
−γ

. (5.84)

We can use the Maxwell gauge constraint

0 = ∇µA
µ = DµA

µ + Aµ∂µ ln(sQ) (5.85)

to write the Ar and Aθ equations as linear equations. This now completes the analysis

of deriving the equations for full axisymmetric GRMHD.

5.6 Conclusions

We first considered the analysis of [5] in which differentially rotating unmagnetized

neutron stars were considered. In this case the Einstein equations admitted a form

that could be solved by an iterated Green’s function method. We proceeded to

extend this analysis and that of [3] to the case of differentially rotating non-circular

magnetized neutron stars. This was significantly more complicated since we have
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a general four metric. However, decomposing the metric along our spacelike and

timelike Killing vectors led to a relatively aesthetic form of the Einstein equations with

respect to the two metric. We are now in a position to apply numerical integration

of these equations for later work.



Chapter 6

Conclusions

This thesis has predominately been concerned with investigations related to evolution-

ary problems in black hole physics. After a brief summary of the Einstein equations,

we proceeded to consider the linear stability of black strings and p-branes (a charged

analogue of black strings). It was concluded that black strings always admit linearly

unstable modes; however, certain classes of p-branes dependent on a coupling con-

stant between a scalar dilaton and an n-form field can be stabilized for a sufficiently

large amount of charge.

We then considered the eigenvalue problem for the GRMHD equations and com-

puted all spectral information. Moreover, we established degeneracy conditions on

the eigenvectors and provided scaling factors that should eliminate such problems. Fi-

nally, we derived the Einstein and matter equations for a general stationary axisym-

metric spacetime with the GRMHD stress tensor without assuming the circularity

condition.

Further work needs to be done on each of these projects. First, it would be inter-

esting to understand why the threshold masses for unstable black p-branes increase

for large values of µ for some fixed a. This seems to imply that for some a, applying

94
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a large amount of charge to a certain p-brane makes it more unstable than lesser

amounts of charge. Can this be explained? Also, can p-brane solutions to more gen-

eral low energy string theories be considered? Secondly, our GRMHD spectral data

needs to be incorporated into current numerical schemes to fix spurious boundary

waves. Finally, our equations for the general axisymmetric initial value problem need

to be numerically solved.
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Appendix A

Numerical Code

This code is written for Mathematica 6.0, and is used to solve the perturbation

equations mentioned in chapter two.

(* The following is a numerical method for integrating perturbation

equations of a class of place p-branes as referenced in Chapter 2. It

searches for a value m such that P<0 by integrating the perturbation

equations with a fixed value of mu. When m has been found, mu is

incremented and the process repeats. The output is given in sols. *)

j = 1; (* Initialize secondary loop index j *)

stor = ConstantArray[0, {2000, 3}]; (* An array for main loop data *)

sols = ConstantArray[0, {600, 3}]; (* An array for secondary loop data *)

While[j < 500, (* Begin Secondary loop *)

i = 1; (* Initialize main loop index i *)

P = 1; (* Initialize the value of P *)

\[Mu] = j/100 - .01; (* Increment mu by hundreths *)

While[P > 0, (* Begin main loop *)

m = i/1000 - .001; (* Increment m by thousandths *)

a = 1;

d = 3;

dt = 5; (* Define d tilde *)

k = 2^5/(dt + 1 + 4 dt/tri Sinh[\[Mu]]^2); (* Define k for ADM mass 2^5 *)

rh = k^(1/dt); (*Define event horizon value *)

tri = a^2 + 2 d dt/8;

\[Epsilon] = 10^(-6); (* Define horizon offstep *)

rm = 500; (* Define endpoint of numerical integration *)

(* Input perturbation equations *)

99
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eqn1 = r (r^dt - k) \[Phi]’’[r] + ((dt + 1) r^dt - k) \[Phi]’[r] -

m^2 r^(dt + 1 - 4 dt/tri) (r^dt + k Sinh[\[Mu]]^2)^(4/

tri) \[Phi][r] - dt k \[Psi]’[r] == 0;

W = dt (r^dt - k) (r^dt + k Sinh[\[Mu]]^2) -

2/tri (a^2 - 2 dt^2/8) Sinh[\[Mu]]^2 (r^dt - k)^2 +

dt k Cosh[\[Mu]]^2 r^dt;

eqn2 =

r^2 (r^dt - k)^2 (r^dt + k Sinh[\[Mu]]^2) \[Psi]’’[r] +

r (r^dt - k)^2 (2 dt (r^dt - 2/tri k Sinh[\[Mu]]^2) - (dt - 3) (r^dt +

k Sinh[\[Mu]]^2)) \[Psi]’[r] - (m^2 r^(dt + 2 - 4 dt/tri) (r^dt -k)

(r^dt + k Sinh[\[Mu]]^2)^(1 + 4/tri) + dt k (W +

2/tri (2 dt^2 + (dt + 3) (a^2 - 2 dt^2/8)) Sinh[\[Mu]]^2 (r^dt - k)^2))

\[Psi][r] +dt k W \[Phi][r] == 0;

(* Input boundary conditions II *)

phibnd = 1 + m^2 rh^2/dt Cosh[\[Mu]]^(8/tri) \[Epsilon]/rh;

phiderbnd = m^2 Cosh[\[Mu]]^(8/tri) rh/dt;

(* Solve equations for boundary conditions I *)

q = NDSolve[{eqn1,eqn2, \[Phi][rh + \[Epsilon]] == \[Epsilon]/2,

\[Phi]’[rh + \[Epsilon]] == 1/2, \[Psi][rh + \[Epsilon]] == \[Epsilon]/2,

\[Psi]’[rh + \[Epsilon]] == 1/2}, {\[Phi], \[Psi]},

{r,rh + \[Epsilon], 500}, StartingStepSize -> 10^(-6)];

(* Solve equations for boundary conditions II *)

s = NDSolve[{eqn1, eqn2, \[Phi][rh + \[Epsilon]] ==

phibnd, \[Phi]’[rh + \[Epsilon]] == phiderbnd, \[Psi][rh + \[Epsilon]] ==

1, \[Psi]’[rh + \[Epsilon]] == 0}, {\[Phi], \[Psi]},

{r,rh + \[Epsilon], 500}, StartingStepSize -> 10^(-6)];

(* Evaluate numerical results near infinity *)

ph1 = Evaluate[{\[Phi][rm], \[Psi][rm]} /. q][[1, 1]];

ps1 = Evaluate[{\[Phi][rm], \[Psi][rm]} /. q][[1, 2]];

ph2 = Evaluate[{\[Phi][rm], \[Psi][rm]} /. s][[1, 1]];

ps2 = Evaluate[{\[Phi][rm], \[Psi][rm]} /. s][[1, 2]];

P = ph1 ps2 - ph2 ps1; (* Compute P *)

(* Store Data *)

stor[[i, 1]] = m;

stor[[i, 2]] = P;

stor[[i, 3]] = \[Mu];

i++; (* End loop if P<0 increment mu and proceed again *)

]
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sols[[j, 1]] = N[stor[[i - 1, 1]]];

sols[[j, 2]] = N[stor[[i - 1, 2]]];

sols[[j, 3]] = N[stor[[i - 1, 3]]];

(* Print numerical progress *)

Print[‘‘--------------------------’’];

Print[ ‘‘m ---- mu’’];

Print[‘‘--------------------------’’];

Print[Row[{N[sols[[j, 1]]], N[sols[[j, 3]]]}, ‘‘ ---- ’’]];

j++; ]


