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ABSTRACT

EXTREME ULTRAVIOLET POLARIMETRY WITH LASER-GENERATED

HIGH-ORDER HARMONICS: CHARACTERIZATION OF URANIUM

Nicole Brimhall

Department of Physics and Astronomy

Doctor of Philosophy

We developed an extreme ultraviolet (EUV) polarimeter, which employs laser-

generated high-order harmonics as the light source. This relatively high-flux,

directional EUV source has available wavelengths between 10 nm and 47 nm

with easily rotatable linear polarization. The polarimeter has allowed us to

characterize the optical constants of materials that may be useful for EUV

optics. The instrument has a versatile positioning system and a spectral reso-

lution of about 180, and we have demonstrated that reflectance as low as 0.1%

can be measured repeatably at EUV wavelengths.

We investigate the high harmonic source used for polarimetry measure-

ments by documenting the spatial evolution of the generating laser in a semi-

infinite helium-filled gas cell under conditions suitable for harmonic generation.

The laser is observed to focus, diverge, and refocus, accompanied by a flattop

beam profile and extended harmonic phase matching. We numerically simu-



late the propagation to investigate these experimental results. We find that

harmonic energy comes from the forward portion of the laser pulse, whereas

the latter portion gives rise to the incidental double laser focusing. Good phase

matching for the harmonics arises in large measure from a balance between the

linear phase delay of the neutral atoms and the Gouy shift, which is elongated

and nearly linearized when an aperture is partially closed on the beam.

We compare reflectance data taken with the polarimeter instrument with

expected results from well-characterized samples and find that they agree. To

improve repeatability and reduce the effects of systematic measurement errors

we have measured the ratio of p- to s-polarized reflectance and shown that

optical constants can be extracted from this data as efficiently as from absolute

reflectance measurements. These ratio measurements allow more accurate

recovery of optical constants than our absolute reflectance measurements for

our well-characterized samples.

We use the polarimeter instrument and the ratio reflectance technique to

determine the optical constants of copper, uranium, and their natural oxides

from 10-47 nm. For copper, this measurement resolves previously conflicting

data sets, where disagreement on optical-constant values arises from failure to

keep samples from oxidizing before measurement. Uranium has been proposed

as a high-reflectance material in the EUV for several years, however difficul-

ties with oxidation have prevented its careful characterization previous to this

work. We find that measured optical constants for uranium do not agree well

with previously accepted theoretical calculations.
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Chapter 1

Introduction

1.1 High Harmonic Generation

Harmonic generation is the process by which a laser interacts with atoms, producing

coherent light with frequencies which are integer multiples of the generating laser

frequency. This phenomenon was discovered soon after the invention of the laser

when Franken and coworkers observed second harmonic generation in quartz [1]. Light

passing through a medium such as quartz causes the electrons in the lattice to move

in response to the electric field of the light. When the light is sufficiently intense, the

motion of the electrons is no longer purely sinusoidal, causing radiation not only at

the driving laser frequency but also at higher harmonics of the driving laser field.

In 1987, McPherson et al. produced the first harmonics higher than the fifth,

generating orders up to the 17th in neon gas, establishing the field of high harmonic

generation (HHG) [2]. High harmonics form a comb of frequencies throughout the

extreme ultraviolet (EUV), the wavelength range between 1 and 100 nm. The wave-

length of an individual harmonic is λ/q, where λ is the wavelength of the generating

laser and q is the harmonic order, an odd integer. (Since a gas is centro-symmetric

1



2 Chapter 1 Introduction

any induced polarization of the gas must be an odd function of the electric field.

Thus only odd orders are produced.) When an intense generating laser is focused in a

gas, many harmonic frequencies (with wavelengths distributed throughout the EUV)

simultaneously emerge from the focus in a collimated beam embedded in the residual

laser beam, as shown in Figure 1.1.

Figure 1.1 Setup for producing high-order harmonics.

High harmonic spectra initially decrease in intensity at low orders but then form

a ‘plateau,’ where the intensity of the harmonics remain approximately constant over

many orders [2,3]. This wide plateau of harmonic orders are simultaneously generated

up to a maximum order associated with a cutoff frequency [4], which depends on the

laser intensity and the atoms used for the harmonic generation. At laser intensities

of 1013 to 1016 W/cm2, the laser field becomes strong enough to ionize a piece of

the electron wavepacket even from noble gases and accelerate it in the field. As

the oscillating laser field reverses direction, the electron wavepacket returns, collides,

and interferes with the remaining packet, releasing energetic harmonic photons (see

Figure 1.2).

To date, harmonics have been generated and detected up to several hundred or-

ders [4–6]. Because the generation process literally rips the generating medium apart,

high harmonic generation is implemented most frequently in gases. The ionization

potential of the atoms used effectively sets the intensity of the laser field that acceler-

ates the electron. This is because laser pulses inevitably have gradual rise times; an
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Figure 1.2 Very strong oscillating laser potentials suppress the Coulomb
potential enough to ionize even tightly bound electrons. When the field re-
verses, electrons return and collide with their parent ions, emitting energetic
photons in the form of high harmonics.

atom cannot be exposed to higher intensity than that which causes it to ionize. Noble

gases are commonly used for high harmonic generation because they have the highest

ionization thresholds, and thus can produce the highest harmonics. Helium, with an

ionization potential of 24.6 eV, can generate harmonics at the highest intensity of

any material. The ionization limit can be increased somewhat by making the laser

pulses shorter. Femtosecond lasers are commonly used as driving pulses for HHG

because the fast rise time allows the laser to reach higher intensities before ionization

occurs [7, 8]. This also allows the maximum number of atoms to participate in the

generation process (an ionized atom does not generate harmonics), producing the

highest possible orders.

Although light noble gases such as helium produce the highest harmonic orders,

these harmonics are not as bright as lower orders produced with heavier gases such

as argon. This is because the lighter gases have more tightly bound electron wave

packets, which then undergo a faster spreading during the excursion away from and

back to the parent ion. This reduces the cross-section of recombination, and thus the

brightness of the harmonics [9].
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In our laboratory at BYU, high harmonics are generated with 800 nm, 35 fs,

∼10 mJ laser pulses at 10 Hz focused in a gas cell of helium, neon, or argon gas. High

harmonics are detected using a grazing-incidence tungsten-coated grating, which dis-

perses and focuses the different harmonic orders in one dimension onto a microchannel

plate (MCP) coupled to a phosphor screen. This setup was used to produce the high

harmonics seen in Figure 1.3. Each harmonic order strikes the detector at a different

horizontal position while the angular size of each harmonic beam is preserved in the

vertical dimension.

Figure 1.3 Harmonics of order 37-79 (wavelengths 10.1-21.6 nm) produced
in neon gas.

Under the correct generation conditions, the EUV beams that emerge from the

process are spatially coherent [10, 11]. Also, because electron ionization and recom-

bination occurs near the peak of a laser cycle, the harmonics also have very short

pulse duration, even shorter than the driving laser pulse. Each time an ionized elec-

tron returns to its atom, it releases a burst of EUV light a fraction of a femtosecond

long [12]. Thus, the high harmonic light emerges as an attosecond pulse train which

typically lasts less than 10 fs. If the driving laser pulse has a pulse duration of less

than 5 fs, a single attosecond pulse may be generated [13].

Harmonics naturally maintain the same linear polarization as the driving laser [14].
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In fact, the generating laser must be nearly linearly polarized in order to produce

high harmonics. This can be understood by the classical model of high harmonic

generation. The model shows that ellipticity in the polarization of the generating

laser beam causes the returning electron to miss the parent ion (see Figure 1.4).

Quantum mechanically, the overlap of the returning electron wavepacket with the

parent ion is reduced when the laser is not linearly polarized. This has been observed

experimentally, where the intensity of harmonics decreases rapidly with increasing

ellipticity of the generating laser [15].

Figure 1.4 Harmonic generation is very sensitive to the polarization of the
incident laser. If the laser’s polarization is not nearly linear, returning elec-
trons tend to miss their parent ion rather than re-colliding, and no harmonics
are produced.

Depending on specific initial conditions, the electron that escapes from the atom

may or may not return to re-collide with the parent ion. The maximum kinetic energy

an electron can attain from the driving field (on a classical trajectory) and still return

to collide with the nucleus is given by Emax = 3.2Up, where Up is the average kinetic

energy of a free electron oscillating in the laser field, also called the ponderomotive
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potential [16, 17]. We can add the binding potential V0 to Emax to calculate the

cutoff frequency emitted from a particular atomic species using V0 +Emax = h̄ω. The

ponderomotive potential is given by

Up =
e2µ0

8π2mc
I0λ

2 (1.1)

where e is the electron charge, ε0 is the vacuum permittivity, I0 is the intensity, λ

is the laser wavelength, m is the electron mass, and c is the speed of light. The

average kinetic energy of an electron oscillating in response to light with intensity I0

is designated Up. Helium, with an ionization potential of 24.6 eV and a corresponding

ionization intensity of 1.5× 1015 W/cm2, has Emax + V0 = 311 eV. This corresponds

to a maximum harmonic order of 199 for 800 nm light. In contrast, argon has an

ionization potential of 15.8 eV and an ionization intensity of 2.5×1014 W/cm2. Thus

the maximum harmonic order that can be produced in argon is only 41. As mentioned,

the harmonics generated from argon will tend to be much brighter since the initially

larger electron wave packet spreads less during its excursion.

The brightness of harmonic emission depends on many parameters, but is ulti-

mately limited by reabsorption. The generating gas has a non-zero absorption co-

efficient for EUV wavelengths. Thus, there is a point at which atoms downstream

essentially will re-absorb all the harmonics generated by atoms sufficiently far up-

stream [18].

High harmonics have been generated in gas jets [4], gas cells [6, 19], and hollow

gas-filled fibers [20, 21]. L’Huillier et al. reported conversion efficiencies of 10−6 for

the 17th harmonic order in a xenon gas jet [4]. Rundquist et al. observed conversion

efficiencies of 10−6 for harmonic orders 23—31 generated in an argon-filled hollow

capillary tube [21]. Takahashi et al. demonstrated a conversion efficiency of 10−5

for the 27th harmonic generated in an argon-filled gas cell [6]. For higher orders,
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Tamaki et al. reported a conversion efficiency of 10−6 for the 49th order generated in

a neon-filled gas cell [19].

1.2 Phase Matching

In order to generate the largest possible output signal, the harmonic contributions

of individual atoms need to constructively interfere. Hence, the harmonics generated

upstream in the medium need to be in phase with harmonics generated downstream,

a principle known as phase matching. In short, the generating laser light and each

harmonic must have the same phase velocity as they propagate together through

the generating medium so the harmonics stay in phase with the generating pulse.

There are several sources of phase mismatch, including geometrical phase mismatch

due to wavelength-dependent diffraction, frequency-dependent index variations, and

intensity-dependent variations in the phases of the harmonics as they are emitted

from atoms.

Geometrical phase mismatch is due primarily to the Gouy shift, which is a wavelength-

dependent phase change that all light beams experience when it goes through a fo-

cus [22]. The phase of a laser going through a focus is given by

φ = tan−1

(
z

z0

)
(1.2)

where z is the axial distance from the laser focus and z0 is the laser Rayleigh range.

Harmonics are generated with a phase of q (harmonic order) times this phase of the

laser. Thus, the phase of generated harmonics will cycle through 2π many times

through the generation region. This phase mismatch is most pronounced for higher

harmonic orders.

We can estimate the coherence length for Gouy phase mismatches for laser param-

eters similar to our own. The coherence length is the distance over which a harmonic
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order q gets out of phase by π with harmonic orders emitted downstream. The phase

of a harmonic q at axial locations near the focus is given by

φq = q tan−1

(
z

z0

)
≈ qz

z0

(1.3)

The phase difference in harmonics emitted at axial positions z1 and z2 is given by

∆φq ≈ q
z2 − z1

z0

(1.4)

If we let this phase difference ∆φq be π with the Rayleigh range given by z0 = πw2
0/λ

where w0 is the beam waist and λ is the laser wavelength, then the coherence length

for the Gouy phase mismatch is given by

∆zGouy =
w2

0π
2

λq
(1.5)

For typical values of w0 = 30 µm and λ = 800 nm with q = 57, for example, the

coherence length due to geometric phase mismatches is ∆zGouy = 200 µm.

Another source of phase mismatch is dispersion, because the gas (like all materials)

has a frequency-dependent index of refraction. If the laser and a harmonic travel

through the gas with different phase velocities, harmonics generated by the laser at

one point in the medium join out of phase with harmonics generated at previous

points. This effect becomes especially significant as the laser partially ionizes the gas

and creates a plasma. In a plasma, the difference in index for the laser versus the

harmonics is much larger than in a neutral gas.

The index of refraction for a plasma is given by

n =

√
1−

ω2
p

ω2
≈ 1− 1

2

ω2
p

ω2
(1.6)

where ω is the laser frequency and ωp is the plasma frequency. The approximation in

equation 1.6 is typically good since the laser frequency is usually much higher than
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the plasma frequency. The plasma frequency for an ionized gas is

ωp =

√
Pe2

kTε0m
(1.7)

where P is the pressure (ionized), e is the electron charge, k is Boltzmann’s constant,

T is the temperature, ε0 is the permittivity of free space, and m is the electron mass.

The coherence length ∆zplasma can be written as

∆zplasma =
λω2

qω2
p

=
4π2c2kTε0m

λqPe2
(1.8)

Substituting in for physical constants with T = 300 K, λ = 800 nm, and q = 57

generated in 50 torr of neon with 5% of the generating medium ionized, the coherence

length due to plasma generation is about ∆zplasma = 300 µm.

Gouy phase shift and frequency-dependent index are two aspects of conventional

phase mismatches. Also important are intrinsic phase mismatches, or phase mis-

matches that arise from spatial variations in laser intensity both axially and radially

as the laser focuses. Because the phase of emitted harmonics depends on the laser

intensity, the phase of emitted harmonics will vary depending on their generating

atom’s radial and axial location in the focusing beam. Spatial intensity variations

can affect other aspects of HHG as well. As the laser begins to focus, the highest

intensities are on-axis, and thus the highest density of free electrons created in the

generating medium is on-axis. This creates a lensing effect that disrupts the natural

focusing of the laser, causing significant changes to the phase and intensity profiles.

The high-harmonic generation process and the phase of the generated harmonics are

strongly dependent on the intensity of the laser beam; thus defocusing of the laser

can alter phase matching conditions dramatically from what would be expected in

the absence of a plasma [23, 24]. This is especially important for the generation of

harmonics in longer gas targets such as gas cells. On the other hand, gas filled hollow
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fibers deal with this issue by preventing the laser from defocusing, although there

are limitations to the amount of ionization they can tolerate while maintaining good

phase matching.

Phase mismatches in high harmonic generation can be mitigated to some degree

through various techniques [20, 25–27]. The most straight-forward method of mini-

mizing geometrical phase mismatches is to use a gas jet or cell that is narrow relative

to the depth of the beam focus. This limits the interaction region to a single geomet-

rical coherence length to avoid destructive phase cancelations. The gas distribution

produced by a typical gas jet can be as small as 300 µm [28]. This technique has

the disadvantage of wasting much of the potential region where the laser intensity is

sufficient to produce high harmonics that lies outside of this small volume. However,

if the gas density is high enough, the reabsorption limit can be reached, even in a

short gas jet or cell.

Milchberg et al. [29] showed that producing harmonics in a plasma waveguide

could achieve phase-matched pulses for distances up to 2.2 cm at intensities sufficient

to generate high harmonics. Durfee investigated the phase matching of HHG in a gas-

filled hollow core fiber [20,21] and was able to achieve extended coherence lengths of

several centimeters in xenon, krypton, argon, and hydrogen gases. Tamaki et al. also

used a gas-filled hollow fiber for HHG [30]. They found that the harmonic spectrum

emitted from the fiber showed an intensity distribution significantly different from

that in free space. By comparing the two harmonic distributions, they observed more

than a hundred times enhancement around the 25th harmonic, which they attributed

to macroscopic phase matching effects.

Another phase-matching technique that was pioneered by Prof. Peatross’s group

at BYU is quasi phase matching with counter-propagating light [31]. This technique

uses weak interfering light to disrupt harmonic emission in specific regions of the
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focus. The timing and duration of these counter-propagating pulses can be chosen

appropriately to frustrate harmonic production in regions with undesirable phase,

allowing the emission from the remaining regions to interfere constructively.

Harmonic generation has been investigated in the BYU group for the past decade.

J. Sutherland, a former master’s student, probed the focal region in a gas cell with

counter-propagating pulses to determine where harmonics are produced [32]. Suther-

land’s work revealed that harmonics are phase matched over extended distances in

a long gas cell. She found that in most cases only a single phase zone near the exit

foil existed, and that the pressure was high enough and the coherence length long

enough to reach the re-absorption limit in the case of neon. This was unexpected,

since geometrical phase mismatches alone were expected to have produced several op-

posing phase zones within the HHG region. This extended phase matching suggests

that laser self guiding plays a role in enhancing harmonic production in gas cells, a

proposition supported by reports made by Tamaki [19] and Tosa [33] based on the

observation of strong harmonic emission from thick gas cells.

To investigate this observed extended phase matching and to achieve the harmonic

brightness needed for polarimetry measurements introduced in section 1.4, former

master’s student, John Painter, and myself characterized the spatial profile and spec-

trum of the laser in the region of harmonic generation, along with the brightness of

the associated harmonic emission. These measurements are discussed in chapter 2.

We observed several interesting features of the generating laser, including a flat-top

intensity profile and a double focusing of laser fluence in the region of harmonic gen-

eration. To help explain these experimental observations, we used a computational

model developed by undergraduate Matthew Turner, which was able to reproduce

our data remarkably well. We utilized these simulations to investigate the dynamic

phase-matching of harmonics as the laser propagates in helium gas.
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1.3 Applications of High Harmonic Generation

Several applications of high harmonic generation have emerged in the past decade.

The next section gives an overview of the high-harmonic application of EUV po-

larimetry, which is the subject of this dissertation. We first mention in this section

some other exciting applications of high-order harmonics. A recent development is

the generation of attosecond pulses. Attosecond pulses open a new field where atom

and electron dynamics can potentially be probed with temporal resolution sufficient

to capture the dynamics of quantum transitions. As mentioned earlier, harmonic

generation occurs within a fairly narrow time interval compared to the full half-cycle

of the laser. Thus harmonics naturally emerge as trains of attosecond pulses.

For many applications, single attosecond pulses (one burst per laser pulse) are

preferred. They emerge naturally from atoms driven by few-cycle pulses (less than

5 fs) [13]. With these ultrashort generating pulses, only the electron accelerated by the

central half-wave cycle possesses enough energy to contribute to the high-harmonic

emission. With longer generating pulses, a single attosecond pulse may be isolated

from the train of attosecond pulses that naturally emerge from harmonic generation.

This process, called pulse gating, has been implemented successfully using state-of-

the-art lasers and innovative techniques. A common method for isolating a single

attosecond pulse from the train in which they naturally occur is called polarization

gating, shown schematically in Figure 1.5. This technique, first proposed by Ivanov

et al. [34], splits the generating laser into two parts, making one part right-circularly

polarized and one left-circularly polarized. These two parts are then re-combined,

with one part delayed in time relative to the other. Because harmonic generation

is disrupted when the generating laser has any ellipticity, neither of the two parts

of the driving laser can generate harmonics on their own. However, when the dual
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pulse switches from right- to left-circularly polarized (i.e., where the pulses overlap

with equal amplitude), the generating laser has linear polarization and can generate

harmonics in a single half laser cycle. Still, to work well, polarization gating requires

a generating laser with pulse durations less than 10 fs. Currently, these few-cycle

generating pulses can be made with maximum energies of a few millijoules, which

limits the energy of the interaction [35].

Figure 1.5 Polarization gating isolates a single attosecond pulse using a
generating laser with a time-dependent ellipticity. Under this field, harmonics
are only generated in the small time window where the ellipticity is close to
zero.

Attosecond pulses have already been used for several novel applications. In 2004,

Goulielmakis et al. [36] used a 250 attosecond probe to directly trace out the elec-

tric field of a short, few-cycle visible laser light pulse, shown in Figure 1.6(a). The

measurement technique is shown schematically in Figure 1.6(b). A few-cycle pulse

of laser light to be measured, together with a synchronized attosecond EUV pulse, is

focused into a gas target where the EUV pulse ionizes the atoms. The laser light im-

parts a momentum change to the ionized electrons, which is measured by an electron

detector. Direct probing of light-field oscillations represents an exciting new metrol-

ogy tool. It has been postulated that attosecond pulses may eventually be used to



14 Chapter 1 Introduction

measure and manipulate molecules and atoms on unprecedented time scales.

Figure 1.6 (a) The electric field of a 5 fs, 750 nm laser field measured using
the kinetic energy spectra of electrons ionized from neon atoms by a 250-as
EUV pulse. (b) Schematic of the measurement principle. The attosecond
pulse ionizes electrons in a gas where the laser field then imparts them a
momentum kick. This kick is proportional to the electric field of the laser,
which can be measured using an electron detector (figure taken from [36]).

In another unique application, high harmonic generation has been used to recon-

struct the electron orbitals of the very molecules used to generate high harmonics, a

technique called tomographic imaging. Molecules are aligned with a pump laser pulse,

then harmonics are generated with a second laser pulse. The emitted harmonic signal

can be interpreted to extract spatial information about the ionized electron’s orbital.

By changing the relative angle between the alignment of the molecules and the polar-

ization of the harmonic-generating laser, one can build up a set of projections of the

molecular orbital. These can be inverted by using an algorithm based on computed

tomography [37], resulting in an image. This is shown for a nitrogen molecule in

Figure 1.7, along the corresponding calculated orbital [38].

Another application of high-order harmonics is in high resolution EUV microscopy.

Short-wavelength microscopy techniques are currently being pursued at synchrotron

sources, with the best image resolution demonstrated to date, 15 nm, being obtained
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Figure 1.7 (a) The orbital shape of the highest occupied molecular orbital
of N2 is tomographically imaged by recording the high harmonic spectra
from molecules aligned at different angles relative to the laser polarization
direction. (b) The calculated orbital is shown for comparison (figure taken
from [38]).
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at the Advanced Light Synchrotron source at Lawrence Berkeley National Labs [39].

EUV and soft x-ray imaging techniques have important applications in biological

imaging in the water window [40,41], research on magnetic nanostructures with both

elemental and spin-orbit sensitivity [42], and studies that require viewing through

thin windows, coatings, or substrates (such as buried electronic devices in a silicon

chip) [43]. High harmonic sources of EUV light show promise as a coherent, compact

source of EUV light for similar imaging applications that would provide greater access

for EUV microscopy applications. A high harmonic EUV source is being implemented

for compact imaging systems [44]. Researchers at the Coherent X-ray Research Center

(CXRC) have recently developed zone plate lenses to image nano patterns with a

resolution better than 100 nm [45]. Figure 1.8 shows an images of 200 nm and

150 nm nano pattern imaged with a high harmonic source.

Figure 1.8 Nano elbow pattern pictures obtained using a high-harmonics-
based soft x-ray microscope. (a) 200 nm width elbow pattern. (b)150 nm
width elbow pattern (figure taken from [45]).
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1.4 Extreme Ultraviolet Polarimetry Based on High

Harmonic Generation

A large part of this dissertation describes the development and use of a polarime-

ter instrument based on high harmonic generation useful for measuring the optical

constants of materials in the extreme ultraviolet wavelength range. This work repre-

sents one of the first applications where high harmonics are employed in a work-horse

setting to make measurements important to another field, rather than just demon-

strating proof of principle. The full instrument can determine the reflectance from

samples as a function of incident angle, light polarization orientation, and wavelength

(associated with a discrete comb of odd harmonics of 800 nm, up to order ∼81). We

are able to measure reflectance from a wide comb of wavelengths simultaneously (with

a much wider range of available wavelengths due to a rotatable grating). The polar-

ization of the high harmonics is easily rotated with a half-wave plate in the incident

beam. A schematic of the instrument is shown in Figure 1.9.

The polarimeter instrument allows characterization of materials at EUV wave-

lengths. Extreme ultraviolet light is becoming increasingly important in fields such

as lithography (for producing integrated circuits), space-based astronomy, and mi-

croscopy [46–48]. However, because EUV energies are comparable to electron bind-

ing energies, virtually all materials that might be used for optical elements are highly

absorptive in most of this wavelength range. Thus, transmissive optics are for the

most part precluded, and reflective optics typically require multilayer coatings to

reach feasible reflectivities. To design such multilayers, the indices of refraction of

coating materials need to be well characterized. Unfortunately, the optical properties

of many materials in this wavelength range are unknown or not completely charac-

terized [49–51].
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Figure 1.9 Polarimeter schematic (top view). 800 nm, 35 fs, and 10 mJ laser pulses are
focused into a cell of helium, neon, or argon gas to generate harmonics. A half-wave plate in
the generating laser rotates the linear polarization of the laser and harmonics. Harmonics
emerge from the focus in a narrow beam, which travels through the secondary gas cell to
the sample. Reflected harmonics are separated and focused with a grating and imaged onto
a MCP.

The EUV research group at Brigham Young University (BYU), directed by Pro-

fessor David Allred and Professor Steve Turley, produced mirror coatings that were

used on the IMAGE satellite, which was launched March 25, 2000 [52]. This instru-

ment took the first series of pictures of the Earth’s magnetosphere at 41 eV as part of

a comprehensive multi-spectral imaging of the near-space around Earth. The mirror

coatings used in the satellite were uranium/silicon multilayers, and needed high re-

flectance (greater than 20%) at 30.4 nm, 14 degrees from normal and low reflectance

(less than 2%) at 58.4 nm. The design work for this project was hampered by the fact

that the index of refraction, or optical constants, for the uranium differed significantly

from previously determined values. Researchers in the last decade, including those

at BYU, have realized the need to expand and verify optical constants of materials

in the EUV.

The complex index of refraction of a material is typically obtained by measur-
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ing reflectance and/or transmittance of the material as a function of sample angle,

wavelength, and polarization. Reflectance or transmittance measurements are de-

fined as reflected or transmitted light intensity divided by incident light intensity,

giving a percentage reflected or transmitted light for each sample angle. Reflectance

or transmittance data can be fit to the theoretic reflectance or transmittance to ob-

tain the complex index of refraction, N , which includes the real part, n, and the

imaginary part, κ. The parameters δ and β are essentially interchangeable with n

and κ, where n ≡ 1 − δ and κ ≡ β. The set of n and κ (or δ and β) are referred to

as optical constants. Previous to this work, the EUV research group at BYU made

reflectance and transmittance measurements for this purpose at the either at BYU

using a monochromator with a plasma light source or at the Advanced Light Source

(ALS) synchrotron at Lawrence Berkeley National Labs in Berkeley, California. The

process of making reflectance measurements is commonly referred to as reflectome-

try. When reflectometry is performed using a variable-polarization light source, the

process is called polarimetry.

Previous work in the EUV group includes measuring the optical constants of ura-

nium oxides [53], uranium nitride [54], thorium dioxide [55], and scandium oxide [56].

Along these same lines, the EUV research group at BYU has also furthered techniques

for determining optical constants to a greater degree of accuracy. These techniques

include measuring and fitting reflectance and transmittance data simultaneously [57],

determining the effect of surface roughness and interfacial diffusion on reflectance

data [58], and exploring the accuracy of utilizing Kramers-Kronig relations to find

optical constants [59]. All of these important developments in the understanding of

materials in the EUV are hampered by the fact that BYU’s monochromator does

not have the flux nor the wavelength range of the ALS. However, the ALS is lo-

cated in Berkeley, California, requiring significant time and travel expenses to make
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measurements there. Because optical properties are intertwined with surface charac-

teristics and thin-film preparation procedures, it is of significant advantage to have a

polarimeter with sufficient source brightness and energy range co-located with sample

preparation and characterization instruments at BYU.

Chapter 3 of this dissertation describes in detail the polarimeter instrument, which

I constructed. We have found that our high harmonic source has sufficient flux for

reflectance measurements with wavelength coverage from 10 nm to 47 nm. By using

laser energy discrimination and averaging many laser shots, are able to reduce fluctu-

ations in our incident light intensity to within 0.5% (although our system still suffers

from rather large systematic errors, which can be mitigated using the technique de-

scribed in chapter 5). Our positioning system is versatile. The instrument allows for

a spectral resolution (λ/∆λ) of about 180 if electronic adjustments to the position of

high-harmonic peaks within the images are made.

We have measured reflectance as a function of angle of a thermally oxidized silicon

sample and found that these measurements are repeatable and accurate. These mea-

surements are documented in chapter 4. The measurements agreed with reflectance

curves calculated using the optical constants of silicon and silicon dioxide, which are

well known [60].

In chapter 5, we describe a method for reducing systematic errors in our data

by extracting optical constants from the ratio of p- to s-polarized reflectance, rather

than absolute reflectance of either polarization. We have found that ratio reflectance

curves are much more repeatable than absolute reflectance curves because they are

less susceptible to noise and systematic alignment errors and we are able to extract

optical constants from these measurements as efficiently as from absolute reflectance

measurements. Thus, the ratio reflectance approach makes for more viable polarime-

try with laser produced high harmonics, with the advantages of relatively low cost,
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small footprint, and opportunity for in-situ measurements.

In chapter 6 we describe how we used the polarimeter along with the ratio re-

flectance technique to determine the optical constants of copper and uranium thin

films and their natural oxides in the wavelength range from 10 nm to 47 nm. We

were able to evaporate copper and uranium films inside our polarimeter, then make re-

flectance measurements without breaking vacuum (in-situ measurements), thus avoid-

ing oxidation and contamination problems. We found that the optical constants of

copper and uranium had not been well characterized previous to this work. Previ-

ously accepted values for copper in this range were actually the constants of oxidized

copper. Uranium has been postulated as a high-reflectance material in the EUV

since the mid 1990s [61]. In fact, uranium/silicon multilayer mirrors were used on

NASA’s IMAGE satellite launched in 2000 to image the earth’s magnetosphere in

the EUV [52]. However, difficulties with oxidation have prevented the careful mea-

surement of the optical constants of uranium metal for many years. Here, we have

characterized the optical constants of uranium and naturally oxidized uranium for

the first time in this wavelength range. We find that these values do not agree well

with previously accepted theoretical calculations.
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Chapter 2

High Harmonic Source

In this chapter we discuss the high harmonic source used for polarimetry measure-

ments described in later chapters. The development of the high harmonic generation

techniques described here made it possible to achieve the brightness needed to per-

form these polarimetry measurements. We describe in detail the laser system used

to generate harmonics. We also characterize the spatial evolution of the laser pulse

as it propagates within a gas cell while generating harmonics [62, 63]. Along with

this, we document the evolution of the brightness of the associated high-harmonic

emission. These measurements show evidence of a double focus in the laser fluence,

with the best harmonic emission occurring from the region between the double focus.

We also observe that the laser exhibits a flat-top intensity profile at this location.

This flat-top profile has previously been associated with laser self guiding and ex-

tended phase matching in neon [33,64]. However, the double focusing we observe was

unexpected in this description. We have undertaken computational modeling of laser

beam propagation to explain these phenomena as well as the effect of partially clos-

ing an the aperture on the laser beam [65]. We find that the observed double focus

in the fluence arises from a combination of the back of the pulse which is distorted

23
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due to plasma generation and the undistorted front of the pulse. This simulation

also includes the aperture effect, which linearizes the Gouy shift, allowing it, together

with the phase error arising from a limited amount of plasma, to effectively cancel

deleterious phase-mismatches due to dispersion in the neutral gas.

2.1 Laser System

The laser system we use to generate harmonics is a Ti:sapphire, 10 mJ laser that

delivers pulses at a repetition rate of 10 Hz. The laser pulses are centered on 800 nm

with an amplified bandwidth of 35 nm (FWHM). We recently reconfigured the laser

system for purposes of achieving higher pulse energy, and the following is a description

for the reconfigured system. A schematic of the entire laser system is shown in

Figure 2.1. The laser pulses originate in a passively mode-locked Ti:Sapphire oscillator

cavity made by KMLabs, which uses a continuous 532 nm Coherent Verdi laser as

the pump source. The Ti:sapphire cavity produces a train of ∼15 fs pulses separated

by 11 ns (the time for a round-trip through the cavity) with a wavelength centered

around 800 nm. This is equivalent to a repetition rate of 91 MHz and this pulse train

beam has a average output power of about 600 mW.

After emerging from the oscillator, isolated pulses (selected at 10 Hz) enter a

chirped pulse amplification (CPA) system, which consists of a stretcher, two am-

plification stages, and a compressor. The CPA approach was first introduced by

Strickland and Mourou [66] in 1985. Before that time, the peak power of laser pulses

was much more restricted because high intensities cause self-focusing in amplification

crystals due to the optical Kerr effect, leading to distortions in the spatial and tem-

poral profiles of a pulse. In chirped pulse amplification, the ultrashort laser pulses

coming from the oscillator are stretched in time using a pair of diffraction grat-
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Figure 2.1 Schematic of the laser system used to generate high harmonics.

ings that are arranged so that the long wavelength component of the pulse travels a

shorter distance than the short-wavelength component. Thus, after traveling through

the stretcher, the pulse is positively chirped and stretched in time, with the long

wavelengths in the front of the pulse and the short wavelengths in the back of the

pulse. This lengthening in time reduces the intensity of the pulse by a factor of about

103 [67], allowing amplification without damaging the crystal or distorting the pulse.

After amplification, the laser is sent through a set of compression gratings which re-

verse the process of the stretcher, re-compressing the pulse in time and allowing a

very energetic, short-pulsed beam.

We use an all reflective, single-grating stretcher design. The stretcher expands

the ∼15 fs pulses coming from the oscillator to about 70 ps [68]. After the stretcher,

the beam enters the pulse selector system. The pulse selector takes the pulse train

arriving from the oscillator at a rate of 91 MHz and selects pulses at 10 Hz, which is
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the repetition rate of our pump laser, using a Pockels cell. A Pockels cell is a KPD

crystal with an electrically-induced birefringence that rotates the polarization of the

incoming light when a high voltage is applied. When no voltage is applied, the Pockels

cell allows the pulses to pass through unchanged. Voltage is applied to the Pockels

cell for approximately 10 ns at a repetition rate of 10 Hz. This high voltage rotates

the polarization for a single pulse, from s- to p-polarization. A polarizer placed after

the Pockels cell rejects the s-polarized pulses but transmits the p-polarized pulses

that arrive at a repetition rate of 10 Hz.

The amplification in our system is performed in two Ti:sapphire-based stages.

Ti:Sapphire lases over a wide spectral range peaked and centered around 800 nm.

During amplification, a pulse can suffer modest narrowing of its spectrum, which adds

to the pulse duration upon recompression. The first amplification stage is shown in

Figure 2.2. The beam enters at the injection mirror M6. The mirrors M7 and M8

are concave dielectric mirrors of focal length 50 cm that reflect 800 nm light and

transmit 532 nm light. The mirrors are located 100 cm from each other, forming a

triangle arrangement together with a wide flat mirror M9. The Ti:Sapphire crystal

(produced by Saint Gobain Crystals) is a 0.25% doped, Brewster-cut, 7 mm thick

crystal. This crystal is centered between the mirrors M7 and M8. The seed pulses

make 9 passes clockwise around the triangle formed by the mirrors M7-M8-M9. On

each pass, the beam hits a slightly different place on each of the mirrors but passes

through the same point in the amplifier crystal. On the ninth pass, the amplified

pulse is extracted from the amplifier with a pick-off mirror (M10).

Both amplification stages are pumped with a 532 nm Spectra-Physics Quanta-Ray

laser, which produces s-polarized light pulses with 12 ns duration and energy up to

700 mJ at 10 Hz. About 12% of the Quanta-Ray laser is used to pump the first

amplification stage where it is split into two equal parts with BS1. These two beams
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Figure 2.2 Schematic of the first amplification stage. This stage amplifies
∼7 nJ pulses to about 5 mJ.

are focused with f=50 cm lenses to points 5 cm past the Ti:sapphire crystal in both

directions. The mirrors for the infrared beam triangle, M7 and M8, are reasonably

transparent to the 532 nm pump beam. After the first amplification stage, the infrared

beam typically reaches energies of 5 mJ at a repetition rate of 10 Hz. The overall

gain of this amplifier stage is therefore about 106.

The infrared beam exiting the first amplification stage next enters the beam iso-

lator setup, which uses two Pockels cells to eliminate any light due to spontaneous

emission or satellite pulses we wish to eliminate from our beam. This setup also

ensures that any stray light that may be traveling through the system backwards is

removed, since this light could potentially damage optics in the first amplifier. The

beam loses about 50% of its energy while traversing the isolator setup. However, most

of this lost energy can be attributed to undesirable light that we wish to eliminate

from our beam.

The second amplification stage is a four-pass system designed to amplify the beam

to energies of 10-50 mJ. A schematic of this stage can be seen in Figure 2.3. The

beam is inserted into the system with mirror M11, then proceeds in series to mirrors

M12-M18, passing through the crystal four times. After the second pass, the laser is
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sent through a f=-150 cm focal length lens (L1) designed to make the beam larger

as it becomes more energetic, preventing damage to the crystal or other optics. The

amplification in this stage is roughly a factor of 16, yielding a beam energy of about

40 mJ. After the beam exits the amplifier, it is up-collimated with a telescope to a

beam diameter of about 1 in.

Figure 2.3 Schematic of the second amplification stage. This is a four-pass
system that amplifies pulses to about 40 mJ.

The second amplifier stage is pumped with the 88% of the energy from the Spectra-

Physics laser not sent to the first amplifier. This beam is split into four beams that

enter the Ti:sapphire crystal from four angles, two from each side. This tends to wash

out any spatial structure in the green pump beam that may cause spatial structure

in the amplified infrared beam. A schematic of the beam path for this pump laser

is shown in Figure 2.4. Two of the beams have longer path lengths than the other

two. Thus, not all of the energy from the four pump beams arrive at the crystal at

the same time to avoid damage. Each pump beam is focused to a spot about 10 cm

beyond the crystal with lenses L2-L5.

The infrared beam coming from the second amplifier is compressed with a pair

of gratings that reverse the process performed by the stretcher. The pulse dura-

tion measured by frequency-resolved optical gating (Swamp Optics UPM-8-9) after

compression is about 35 fs.
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Figure 2.4 Schematic of pump laser for the second amplification stage. The
pump laser is split into four beams that enter the crystal from four angles,
two from each side.
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2.2 High Harmonic Generation Experimental Setup

The amplified and compressed laser beam is focused with a 100 cm focal length lens or

mirror into a cell filled with helium, neon, or argon gas (see Figure 2.5). This focusing

achieves an intensity of about 1.3 × 1015 W/cm2 in vacuum and approximately half

that in the gas-filled cell which modifies the focus. An 8-10 mm aperture (closed

on a ∼2 cm beam) located before the focusing optic was shown to strongly enhance

harmonic emission [69]. A glass tube capped with molybdenum foil separates the

region of gas from vacuum. This setup, where the gas-filled region extends from the

focusing optic to the exit foil, is called a semi-infinite gas cell configuration and was

shown to produce brighter harmonics than short cells of 6 mm or less [32]. The laser

self-drills a hole in the molybdenum foil, eliminating the need for precise alignment.

After harmonic generation, the harmonics exit into vacuum and co-propagate with the

residual laser beam. The harmonics and laser proceed to the detection setup about

1.5 m away, passing through two small holes that provide for differential pumping.

The harmonics are separated and focused in one dimension by a tungsten-coated EUV

grating and are detected by a microchannel plate detector coupled to a phosphor

screen. A visible-light CCD camera captures the image on the phosphor screen and

relays it to the computer.

Figure 2.6 shows harmonics produced in 80 torr helium from the 45th to the 91st

order, which have approximately uniform intensity. We measured the energy in an

individual harmonic order to be about 1 nJ [63]. Higher order harmonics are diffracted

with a 1200 line/mm grating with 2 m radius of curvature. Lower order harmonics,

such as those produced in argon are diffracted instead with a 600 line/mm grating

with a 1 m radius of curvature. We found that the best gas pressure for harmonic

production in helium is about 80 torr, the best gas pressure for harmonic production
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Figure 2.5 Harmonic generation and detection setup.

in neon is about 55 torr, and the best gas pressure for harmonic production in argon is

about 12 torr. The intensity of the harmonics is not affected by gas pressure variation

of ±5%.

Figure 2.6 Harmonics of order 37-79 (wavelengths 10.1-21.6 nm) produced
in neon gas.
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800 nm, 30 fs, 10 mJ 
laser pulses

1 m 
focusing 
mirror

flexible 
bellows exit foil

translation 
stage

removable uncoated 
glass substrate

MCP

CCD

75 cm 
focusing 
lens

CCD

diffraction 
grating

Figure 2.7 Setup to image laser beam spatial profile under conditions suit-
able for harmonic generation.

2.3 Effect of Focal Position on Harmonic Genera-

tion and Laser Profile

This section describes results highlighted in John Painter’s master’s thesis, but they

are summarized here also since we worked together on the project and also published

an article in this area. To image the spatial profile of the laser beam under conditions

suitable for producing harmonics, an uncoated glass substrate oriented at 45 degrees

was temporarily inserted in the beam before the harmonic-detection setup (see Fig-

ure 2.7). The glass substrate, which functioned both as a mirror and an attenuator,

could be moved into and out of the laser beam in a matter of seconds while maintain-

ing vacuum in the harmonic detection setup. The substrate reflected approximately

2% of the laser, which was imaged by an f = 75 cm focusing lens onto a CCD camera.

Neutral density filters were used for further attenuation. The camera was positioned

to image the laser at the plane of the exit foil of the gas cell. The position of the foil

was scanned parallel to the laser axis over a range of 9 cm. The axial position of the
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camera was also scanned to maintain an image of the laser beam at the exit foil. The

magnification of the image was approximately 3×, depending on the exact location

of the foil relative to the imaging lens.

Figure 2.8 shows plots of harmonics generated in 80 torr helium gas together with

the evolution of the laser beam spatial profile as the foil position is varied. The left

image shows the generated harmonics, the middle image shows the measured laser

beam spatial profile, and the graph on the right shows a lineout of the laser beam

spatial profile. The units on the laser image and beam lineout are scaled to the

dimensions of the laser focus in the gas cell rather than the image size on the CCD.

The z-position of the exit foil is measured relative to the focusing mirror (the beam

focuses at 100 cm in vacuum). Each image is the average of 10 laser shots.

Figure 2.9(a) plots the beam diameter (FWHM) in both 80 torr helium and vac-

uum as the foil position is varied. In helium, the width of the beam reaches a minimum

near z = −3 cm, widens to reach a maximum near z = 0 cm, and then narrows again

to a second minimum at z = 4 cm. In vacuum the beam goes through a single focus,

as would be expected. The z-position of the exit foil is measured relative to the

100 cm focal-length mirror. Figure 2.9(b), shows the intensity of several harmonic

orders at the foil positions where the beam diameter in helium was measured. The

best harmonic production is observed around z = 0.5 cm, where the laser in helium

is changing from diverging to converging.

Figure 2.10 compares fluence lineouts of the laser beam focused in helium and

in vacuum. The beam propagating in vacuum shows a Gaussian-like profile, which

reaches a single minimum width with maximum fluence at z = 0 cm. The beam

propagating in helium exhibits the double focus discussed above, and a distinct flat-

top radial profile from about z = −2 cm to z = 1.5 cm. Although not immediately

apparent from the lineouts, the two curves correspond to similar total energies. (The
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Figure 2.8 Harmonics (left), imaged laser beam (center), and beam lineout
(right) for harmonics generated in 80 torr helium at four z positions (in
vacuum the beam focuses at z = 100 cm).
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Figure 2.9 (a) Diameter of the laser as it exits from the gas cell, either
filled with 80 Torr helium or evacuated. The best focus in the absence of
gas occurs 100 cm after the focusing mirror. (b) The brightness of several
harmonic orders as the foil position is varied.

fluence at wider radii is incident on a larger area, so in two dimensions the extra fluence

in the wings of the profile in helium compensates for its lower on-axis fluence).

A flat-top fluence profile in the laser focus was previously associated with laser

self guiding and extended phase matching in neon [33,64]. Tosa et al. [33] calculated

the radial intensity profile of a self-guided beam and predicted that it would exhibit

a top-hat profile, owing to wavefront distortions from free electrons. Kim et al. [64]

subsequently observed a radial intensity flattening in a single image produced for a

laser that had traveled through a wide gas jet. The top-hat profile was attributed

to defocusing of the laser by free electrons at inner radii. As the on-axis energy is

defocused out to wider radii, it overlaps with the less intense outer portion of the

laser beam still in the act of focusing.

While this explanation is consistent with the radial fluence distribution observed

and laterally broadened wave fronts, it was not at first obvious how this could offer
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Figure 2.10 Lineouts of the laser focused in helium and in vacuum at the
z = 0 cm position, or where the laser focuses in vacuum.

good longitudinal phase matching for high-harmonic generation, or how this could

cause a re-convergence of our beam to a second focus, as seen in the data. The

brightest harmonics are attained when the exit foil of the gas cell is positioned near

the middle of the self-guiding region, where the beam diameter is large. This region

of extended phase matching occurs where the laser beam changes from diverging to

converging between the two foci. This is opposite in character to a conventional

laser focus, which changes from converging to diverging while accompanied by the

Gouy shift (known to be deleterious to phase matching). The interpretation of the

data is complicated by the fact that the CCD camera measures energy fluence rather

than intensity (technically a mislabeling of Figures 2.8 and 2.9). Our measurement

technique is therefore unable to distinguish whether the entire pulse in time develops

the flat-top profile as seen in the data, or whether different temporal portions of the

pulse look spatially different.

We at first supposed that the double focusing observed in our laser beam as it
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interacted with helium was suggestive of Kerr-style self-focusing, or filamentation.

Placing a partially closed aperture in the laser beam before the focusing mirror could

cause the observed laser focus to be smoother, possibly favoring the formation of a

single filament rather than competing filaments. Nevertheless, the nonlinear index

in 80 torr of helium is reported to be approximately 4×10−22 cm2/W [70, 71], which

predicts a critical power for filamentation in excess of 2 TW. In contrast, the power

used in our experiments was an order of magnitude less. Tosa and coworkers [33] also

indicate that the Kerr nonlinearity should be inconsequential.

Computational modeling of laser propagation in a gas was undertaken to try and

explain these unexpected experimental results. These calculations, described in detail

in section 2.5, show that all of our experimental results, including the observed double

focus, arise from an interplay between the diffraction caused by the partially closed

aperture and the dispersion caused by free electrons generated in the focus. The

results appear to be consistent with the mechanisms described previously by Tosa et

al. [33].

2.4 Effect of Focal Position on Laser Spectrum

A 50 µm fiber optic was swept through the laser image radially to test for variations

in the spectrum resulting from the interaction with the helium. Taking into account

the magnification in the imaging system, we determined that the effective spatial

resolution of the scan corresponded to less than 20 µm in the actual focus. Figure 2.11

shows a Gaussian fit to the spectrum of the laser as the fiber is swept radially through

the beam. A comparison is made between the cases of helium and vacuum when the

exit foil of the semi-infinite cell is positioned at z = 100 cm. In vacuum, the laser

spectrum is seen to be centered at 800 nm with a FWHM of 35 nm. As expected, the
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vacuum spectrum exhibits no change as the fiber is moved through the laser image.

For radii less than 70 µm, we observe a blue-shift of up to 4 nm of the laser focused

in helium versus the laser focused in vacuum. The spectral blue-shifting of the center

of the beam coincides with the onset of ionization (as suggested by a visible streak of

plasma seen from the side of the focus), but other effects may also play a role [72].

Figure 2.11 The spectrum of the radial center of the laser focused in vacuum
and in helium. The laser focused in helium shows a 4 nm blue-shift, due to
the onset of ionization.

2.5 Laser Profile Computational Analysis

Matthew Turner, an undergraduate student in our research group, wrote a program to

simulate propagation of high-intensity laser pulses in helium. We used this program

to investigate the role of nonlinear effects in our gas-cell high-harmonics experiments

and to help explain the experimental results discussed in previous sections and the

aperture effect described by Sutherland [32].

Our computational model is based on the method outlined by Chiron et al. [73],

which uses the slowly-varying envelope and paraxial approximations to the scalar



2.5 Laser Profile Computational Analysis 39

wave equation, assuming radial symmetry and neglecting group velocity dispersion.

In a moving frame, this equation is given by

2ik0c

ω0

∂E

∂η
+∇2

ρE + 2n0∆nE = 0 (2.1)

where E is the field envelope multiplying a plane wave oscillating at ω0. The wave

number k0 is evaluated in the neutral gas medium with index n0. The change in

index due to the Kerr effect and plasma generation is given by ∆n ≈ n2I − ω2
p/2ω

2
0.

In helium gas, n2 = 3.5 × 10−21 cm2/W [74]. The plasma frequency ωp, associated

with free electrons, is determined using the ADK ionization model [75]. The variables

η = z/(c/ω0) and τ = ω0[t − η/(k0c)] track the pulse in a moving frame, reducing

computational load. Here, t is time, z is the axial propagation distance, and ρ is

the radial position. Fresnel diffraction integrals are used to calculate the initial pulse

profile 5 cm before the nominal beam focus, taking into account the effects of the

aperture and the focusing optic on the incoming pulse. A Crank-Nicolson algorithm

is used to propagate the pulse in the vicinity of the focus where nonlinear effects

become important.

To check our computational model, we verified that the propagation of a Gaussian

pulse in vacuum recovers the analytic solution. We also verified that our model

recovers the Kerr effect as predicted by theory. The parameters for the simulation

are chosen to be similar to experimental parameters: pulse duration is 35 fs FWHM,

center wavelength is 800 nm, beam diameter (1/e2) is 11 mm, pulse energy is ∼7 mJ,

and the beam is focused with a 100 cm focal length optic. The simulation includes

a 9 mm aperture placed 145 cm before the focusing optic. With the aperture in the

beam the laser focuses in vacuum to an intensity of 1.3×1015 W/cm2. The generation

medium in the simulation was taken to be 80 torr of helium.

Figures 2.12(a) and (b) show the pulse intensity and the free-electron density,
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respectively, as the pulse propagates 10 cm through the focus (i.e., from 96 cm to

104 cm after the focusing mirror). Each frame shows a snapshot of the pulse at

locations 2 cm apart along the direction of travel. As seen in this figure, the early

generation of plasma causes the back of the pulse to refract outward to form a ring.

As described by Kim et al. [64], some beam energy at wider radii misses the plasma

and continues to converge toward the axis downstream. This effect is enhanced for

the apertured beam (which has an elongated focal region) and accounts for the dual

focus in fluence we see.

As discussed in the previous section, we measured fluence profiles of our pulse

in the region of the focus. Figure 2.12(c) shows a line-out of the time integrated

intensity, or fluence in units of energy per area from the simulation. These radial

fluence profiles exhibit several key features in agreement with experimental data,

including the occurrence of a flat-top profile seen experimentally (see Figure 2.10,

also reference [33]). The simulations reveal that the flat-top profile arises from the

combination of the undistorted front of the pulse and the ring structure at the back

of the pulse caused by plasma generation.

Figure 2.13(a) shows the peak pulse intensity and the on-axis fluence as a function

of axial position in the focus. Our previous experimental fluence measurements are

also shown for comparison. As is evident, the peak intensity continuously decreases

after an initial maximum. In contrast, the fluence undergoes a second local maximum.

This implies an increased pulse duration at that location. Figure 2.13(b) shows the

full-width-at-half-maximum of the fluence as the pulse propagates in the simulation.

Note that the simulation reproduces the experimentally observed double focus profile

(also plotted in Figure 2.9). Importantly, the dual focus arises without the need for

Kerr-style filamentation as we initially supposed. Including or not including the Kerr

effect has almost no impact on the simulation. This dismissal of a substantial Kerr
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Figure 2.12 (a) The pulse intensity (dark red indicates the peak intensity of
5.7×1014 W/cm2), (b) free-electron density (dark red indicates the peak free-
electron density of 5.3 × 1022 electrons/m3, equivalent to 2.1% ionization),
and (c) fluence as the pulse propagates 10 cm through the focus. Each frame
shows a snapshot of the pulse at locations 2 cm apart along the direction
of travel. The contour lines in frame (b) indicate pulse intensity, with lines
representing a 20% change in intensity.
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effect is consistent with the fact that the peak power is an order of magnitude below

the critical level for self-focusing. In contrast, if plasma generation is switched off in

the simulation, the pulse propagation is virtually identical to that in vacuum.

Figure 2.13 (a) The on-axis fluence from the experiment (dots) and sim-
ulation (line), and the calculated peak pulse intensity as a function of axial
position in the focus. (b) FWHM values for the fluence along the propagation
axis given by simulation (line) and by experiment (dots). The propagation
axis location is given as a distance from the focusing optic (f=100 cm).

The spectral blueshift of the simulated pulse at the nominal focus is 6 nm, which

is in reasonable agreement with the experimentally observed blueshift of 4 nm (see

section 2.4). The overall agreement between the simulations and the experimental

measurements lends confidence that the simulation code captures the essential physics

of the pulse-medium interaction. The simulations can therefore be employed with

reasonable confidence to investigate dynamic phase matching of high harmonics in

our setup.
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2.6 Computational Analysis of Phase Matching

As discussed in section 1.2, phase mismatches in the high-harmonics generating pro-

cess come from two sources: (1) conventional phase mismatches, which arise from the

Gouy phase shift and the refractive index of the neutral atoms and generated plasma,

and (2) intrinsic phase mismatches, which arise from variations in the laser intensity.

For harmonics generated in helium in the plateau, the intrinsic intensity-dependent

phase is expected to follow φintrinsic = πI/2.5×1013 W/cm2 for our laser frequency [76]

(based on φintrinsic = 5.8Up, where Up = 1 in atomic units corresponds to a pondero-

motive potential of 27 eV). This can easily produce phase errors greater than π if

the intensity of a given point on the traveling laser pulse varies by more than a few

percent as the pulse propagates. Figures 2.14(a) and (b) show the forward-directed

coherence lengths for each point on the pulse, based separately on the conventional

and the intrinsic intensity-dependent phase mismatches, respectively. The coherence

lengths, which are for the 75th harmonic, are computed by comparing the phase at a

particular point in a frame with the phase of the corresponding points in past frames

to find the maximum distance wherein the harmonic phase varies by less than π. The

coherence lengths were capped in the calculations at an estimated reabsorption limit

of 2 cm [60].

The coherence length for the conventional phase shown in Figures 2.14(a) is many

millimeters long near the regions of high intensity. This good phase matching stems

primarily from a fortuitous cancelation between the phase due to the linear index and

the Gouy shift. (The index for the fundamental in 80 torr helium is 1 + 3.8 × 10−6,

whereas it is 1− 2.7× 10−7 for the 75th harmonic [60].) The aperture has the effect

of linearizing the Gouy shift with axial position in the focus. This linearized Gouy

shift, together with the phase error arising from a limited amount of plasma, tends to
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Figure 2.14 Coherence lengths of the 75th harmonic for each point on
the pulse for (a) conventional and (b) intrinsic intensity-dependent phase.
Coherence lengths have been capped at a reabsorption limit of 2 cm (dark
red). (c) The fifth power of the laser intensity multiplied by the square of the
coherence length (including both conventional and intrinsic phases) at each
point on the pulse. The white contour lines indicate laser intensity. The dark
red color in (c) indicates strong harmonic generation in arbitrary units.
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cancel with the linear dispersion of the neutral gas. In the case of decreasing intensity

with z, the intrinsic phase mismatch shown in Figure 2.14(b) introduces a phase slip

with the same sign as that arising from the neutral gas.

The energy of harmonic emission depends nonlinearly on the laser intensity, which

we approximate with a fifth-order power law [77] (although a third-order power law,

for example, gives qualitatively similar results). Efficient high-harmonic generation

requires both high-intensity and good phase matching. Figure 2.14(c) shows the fifth

power of the laser intensity multiplied by the square of the coherence length, com-

puted with the combined conventional and intrinsic phases (not shown). In each

frame, one can see the portions of the pulse that contribute to overall harmonic emis-

sion, assuming the harmonics exit into vacuum following the frame and continue on to

a detector (as was done in the experiment described in the previous section by scan-

ning the exit foil to different axial positions). The best overall phase matching occurs

near z =101 cm, where the separate phase mismatches indicated in Figures 2.14(a)

and (b) have similar magnitudes and opposite signs. Near the front of the pulse, the

coherence length exceeds the reabsorption limit of 2 cm, in agreement with earlier

direct experimental observations [32]. On the other hand, as plasma is generated on

the rear of the pulse, that portion of the pulse experiences poor phase matching. By

integrating each snapshot in Figure 2.14(c) radially and longitudinally, the total har-

monic energy emerging from each longitudinal step can be calculated. Figure 2.15(a)

shows the calculated overall emission for the 75th harmonic at each longitudinal step.

Our experimental results for the same harmonic are also shown for comparison (also

shown in Figure 2.9(a)). We find that the vast majority of the harmonic output comes

from the forward part of the pulse, before significant ionization. The result is hardly

affected if we exclude regions wherein ionization exceeds 10% of the peak amount.

We have observed experimentally that opening the aperture located before the
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focusing lens decreased the harmonic output by about an order of magnitude [65]. Our

simulation also shows this dramatic behavior, which is plotted in Figure 2.15(a). Since

the simulation uses a smooth input beam, the aperture effect does not arise merely

from spatially cleaning the laser beam. Rather, it is due primarily to linearizing the

rate of the Gouy phase slip in the apertured case, as seen in Figure 2.15(b). This is

consistent with the analysis by Kazamias et al. [69] on the aperture effect.

Figure 2.15 (a) The calculated (solid line) and measured (dots) overall
emission for the 75th harmonic with an aperture in the beam. Also plotted
is calculated overall emission for the same harmonic with an unapertured
pulse (dashed line). (b) Beam phase due to the Gouy shift for an apertured
(solid line) and an unapertured (dashed line) beam.

2.7 Conclusion

Simulations demonstrate that the interplay between the focusing geometry of the

apertured beam combined with refraction from plasma generation is responsible for
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the double focus observed in our experiments. Kerr-style self-focusing does not appear

to play a role. The agreement between the simulations and the various experimental

measurements lends credibility to using the simulations to assess phase-matching of

high-order harmonics. The simulations suggest that the high harmonics produced in

our helium-filled cell come almost entirely from the forward, undistorted portion of the

laser pulse. Harmonics are suppressed in the rear portion of the pulse that undergoes

significant ionization. Thus, the self-guiding of the pulse and the occurrence of the

second focus in fluence are only incidental in the sense that they arise from a part

of the pulse that does not contribute to the high-harmonic output. The good phase

matching we have observed experimentally arises in large part from the balancing of

the linear index against the Gouy shift, which varies almost linearly in z when an

aperture is partially closed on the pre-focused beam. The intrinsic phase mismatch

and that arising from a modest amount of plasma also participate in minimizing the

phase mismatch. These findings have allowed us to use the semi-infinite gas cell along

with the aperture effect to maximize harmonic output. This has enabled us to reach

the kind of high harmonic signals we need for polarimetry measurements described

in subsequent chapters.
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Chapter 3

Description of Extreme Ultraviolet

Polarimeter and Procedures

In this chapter we detail the development of a polarimeter instrument for EUV reflec-

tion measurements, including the positioning system, spectral resolution, and source

stability. Our instrument has a wavelength range from 10 nm to 42 nm. We have

found that we can make measurements of reflectances as low as 0.001 with a spectral

resolution (λ/∆λ) of about 180.

3.1 Positioning and Detection Systems

The major components of the polarimeter are the sample, the grating, and the

microchannel-plate (MCP) detector. The positioning system is made up of four ro-

tation stages and two linear translation stages controlled by a single computer, as

illustrated in Figures 3.1 and 3.2. The sample or test surface is mounted above two

concentric rotation stages (ThorLabs NanoRotator NR360S). One stage varies the

incident angle of the harmonic light on the sample. This provides measurements of

49
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sample reflectance as a function of incident angle. The other stage swings the entire

detection system (grating and MCP detector) through twice that angle, allowing de-

tection of reflected light. A second pair of rotation stages sits beneath the grating at

a distance of 15 cm from the sample. One of these rotation stages adjusts the grating

angle, and the other separately adjusts the angle of the MCP to allow detection of

diffracted light. A linear translation stage is used beneath the MCP detector to focus

the harmonic orders of interest onto the detector. A typical grating angle is 4◦, and

a typical distance from the grating to the MCP is 30 cm. The sample holder is also

connected to a linear translation stage. This allows the sample to be moved out of

the beam to obtain incident-intensity measurements of harmonics.

Sample Grating
Secondary Vacuum 
Chamber

CCD 
camera

Sample 
Rotation

MCP

Detector 
Rotation

Grating 
Rotation

MCP 
Rotation

Linear Translation 
for Focusing

Linear Translation

Turbo 
Pump

Figure 3.1 Polarimeter positioning system (side view). Incident harmonics are reflected
from a sample that can be rotated to measure reflectance as a function of angle. A second
rotation stage beneath the sample rotates the entire detection system through twice the
sample angle. The EUV grating can also be rotated to measure different wavelength ranges
of harmonics. A second rotation stage under the grating rotates the detector.

The diffraction grating is placed after the sample, which allows simultaneous re-

flectance measurements of a range of wavelengths. The different harmonic orders are

spatially separated on the MCP and recorded with a charge coupled device (CCD)
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Figure 3.2 Polarimeter positioning system (top view)
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camera. We can measure the reflectance for 10—20 consecutive odd harmonic orders

simultaneously. The polarimeter positioning system is housed in a vacuum chamber

with approximate dimensions 1.5× 1 m2, which is evacuated to about 10−4 torr. The

MCP detector must be operated at pressures lower than 10−5 torr so we placed a

small vacuum chamber (Lesker CU60450) inside the large vacuum chamber. This

secondary vacuum chamber has its own turbo pump and a 5 mm aperture for the

harmonics to enter. With differential pumping, this secondary chamber can reach

base pressures lower than 10−6 torr. The entire system can pump to the necessary

pressures in under 30 min from startup.

The detector consists of a stacked microchannel plate pair coupled to a phosphor

screen. The front plate is connected to ground and the back plate is held at 1100-

1600 V. The phosphor screen is powered with 5200 V. A visible light CCD camera

captures the image on the phosphor screen and is read by a computer.

To determine the wavelength of each harmonic, we placed a 0.2 µm thick aluminum

filter on a solenoid so that it could be moved into and out of the harmonic beam

before the sample while under vacuum. The aluminum L2,3 edge transmits harmonics

of order 47 and below, but not harmonic orders 49 and above. By moving the filter

into the beam while observing harmonics, we can quickly identify the 47th order.

From there we simply count orders to calibrate the rest of the harmonic spectrum.

A lineout of harmonics with and without the aluminum filter inserted are plotted in

Figure 3.3.

Photographs of the positioning setup are shown in Figures 3.4 and 3.5.
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Figure 3.3 Harmonics measured with and without inserted aluminum filter.
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Figure 3.4 Photograph of polarimeter positioning system (side view).

Figure 3.5 Photograph of polarimeter positioning system (top view).
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3.2 Alignment Diagnostic

The secondary vacuum chamber (15 kg) and the turbo pump (3 kg) are major con-

tributors to weight on the long (∼45 cm) rotating arm. We use ball-bearing wheels

under the secondary vacuum chamber to carry the weight of the assembly. However,

owing to the weight of the positioning stages and the secondary vacuum chamber,

the torque limit of 23 N·cm is seriously exceeded on two of the rotation stages. As

a result, the positioning error compounds to as poor as 1◦, which is clearly unac-

ceptable. For example, to repeatedly position a given harmonic order within 1 mm

on the detector, the first rotation stage must have positioning accuracy of 0.1◦, and

the second 0.2◦. (Recall that the sample-to- grating distance is approximately 15 cm

while grating-to-MCP distance is approximately 30 cm.)

To address this issue, we implemented an alignment diagnostic that employs a

tightly collimated HeNe 633 nm laser (refer to Figure 3.6). The laser enters the

large vacuum chamber through a lens in a side port. A solenoid toggles a temporary

mirror into position at any time during a measurement run, allowing the HeNe laser

to propagate along the same path as the harmonics into the spectrometer. The HeNe

laser has a ∼1 mm spot size on the diffraction grating. A CCD camera views the

HeNe laser spot on the diffraction grating surface. A second CCD positioned inside

the secondary vacuum chamber observes where the zero-order reflection from the

grating strikes the MCP surface.

After initial positioning of the rotation stages, fine adjustments can be made first

to center the HeNe laser on the diffraction grating and second to cause the zero-order

reflection of the HeNe beam to strike a predetermined location on the interior of the

MCP. This procedure allows the first stage to be set with a positioning accuracy better

than 0.1◦ and the second stage to better than 0.2◦. We found that the positioning
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Figure 3.6 In-situ HeNe laser alignment system. A solenoid toggles a mirror into position
while under vacuum, temporarily sending the HeNe laser along the same path as the harmonic-
generating laser. A CCD camera views the HeNe laser spot on the grating and another CCD views
the laser spot on the MCP surface, allowing alignment of rotation stages.

system was accurate enough for us to easily distinguish harmonic orders from each

other. Because of the sharpness of some of the harmonic peaks, we are able to

align the harmonic spectral images further using software, making the effective angle

positioning accurate to about 0.01◦. Using both of these techniques, we are able to

obtain a spectral resolution λ/∆λ of 180 (discussed in section 3.4).

The alignment procedure for the system is as follows (see Figure 3.7):

1. At low power, align the infrared laser with apertures 1 and 2.

2. Move the sample to 90 degrees and adjust the sample angle until it retro-reflects
the laser beam back through the apertures. A HeNe laser can also be used
temporarily in place of the infrared laser system.

3. Turn on the solenoid that inserts the HeNe mirror (mirror 2) into the laser path.
Align the HeNe laser along the same path as the infrared laser by aligning with
aperture 2 with mirror 1 and adjusting mirror 2 until the HeNe laser beam
retro-reflects from the sample.

4. Move the sample out of the laser path with the linear sample stage.
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Figure 3.7 Depiction of steps for aligning the polarimeter.
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5. To align the detector arm, adjust the detector angle until the HeNe laser is
centered on the grating.

6. Move the sample back into the beam with the linear sample stage. Because
the detector angle was adjusted in the previous step, the sample angle will now
be slightly off (the sample motor is on top of the detector motor, so moving
the detector motor also moves the sample). Adjust the sample angle again so
that it is retro-reflecting the HeNe laser. This angle is defined as the sample
90-degree position.

7. Move the sample angle to 0 degrees. Align the sample z-position by adjusting
the micrometer on the sample stage until the sample is cutting off half of the
HeNe beam.

8. The vacuum gauge on the secondary vacuum chamber causes a physical con-
straint such that the MCP arm cannot be moved to 0 degrees at the same time
that the detector arm is moved to 0 degrees. To align the MCP arm, move the
detector angle to any angle greater than 10 degrees. Move the MCP arm angle
to 0 degrees and adjust until the legs line up.

9. To align the grating angle, move the sample angle to half of what the detector
angle is. This reflects the HeNe laser onto the grating. Move the grating angle
to 0 degrees and adjust this angle until the grating is cutting off half of the
HeNe beam.

10. The grating and MCP arm angles are now both at 0 degrees. To see harmonics,
the grating should be moved to approximately 8 degrees and the MCP arm
should be moved to approximately 19 degrees. These angles can be adjusted
while viewing harmonics to view desired harmonic orders.

11. To prepare the positioning system for an incident intensity measurement, which
is usually the first step in a reflectance scan, move the detector angle to 0
degrees, the sample angle to 90 degrees, and move the sample out of the beam
with the linear sample stage.

3.3 Controlled harmonic attenuation

In the EUV, most materials are not highly reflecting except near grazing incidence.

For this reason, a measurement of reflectance as a function of grazing-incidence angle

made through a significant range of angles can span three or four orders of magni-

tude. Our MCP/camera system does not have sufficient dynamic range to span this
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variation. We successfully increased the dynamic range of our detection system with

a secondary gas cell that acts as a controlled harmonic attenuator.

Previous to using this attenuator, we increased the dynamic range of the detec-

tion system by increasing the voltage on the second plate of the microchannel plate

detector [78]. This process is naturally nonlinear. We attempted to characterize this

nonlinearity. However, the performance of the MCP is different for each wavelength of

light; it could change as the plates age; and it could be different for different physical

locations on the plates. When making reflectance measurements of silicon dioxide, a

known sample, we found that these measurements did not agree well with calculated

curves, especially far from grazing where the signal was low. We attributed this mis-

match with our inability to accurately describe the performance of the detector as

the voltage was increased. We thus implemented the secondary gas cell to eliminate

the need to change the plate voltage as the signal decreased.

The secondary gas cell is 14 cm long, and is placed in the path of the laser after

harmonics are generated, about 30 cm downstream from the laser focus so that the

laser cannot ionize the gas or generate additional harmonics (see Figure 1.9). Neon gas

can be added to the cell (usually between 0 and 3 torr measured with a manometer),

which attenuates harmonics up to three orders of magnitude. The principle of the

controlled harmonic attenuator is depicted schematically in Figure 3.8. At grazing

incidence where signal is high, gas is added to decrease the signal, while at near-

normal angles, no gas is added. Thus high and low signal can be measured with

similar exposure to the detector. The actual signal level is later obtained using the

absorption coefficient of neon, which is well characterized [60].
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Figure 3.8 Schematic of the principle of controlled harmonic attenuation.
Without the secondary gas cell, reflectance at low angles will saturate the
detector if the detector voltage is sufficiently high to detect reflectance at high
angles. With the secondary gas cell, neon gas is added to attenuate harmonics
at grazing incidence when signal is high, so that they can be detected on
the same detector settings as reflected harmonics at near-normal incidence.
Actual signal levels are later recovered using the absorption coefficient of
neon.
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3.4 Spectral Resolution

The harmonic source itself serves effectively as the entrance slit of the polarime-

ter/spectrometer. We developed a simple ray-tracing program to characterize the

defocusing of the harmonics at the detector due to the finite size of the source and

aberrations from the geometry of the spherical grating surface. We traced represen-

tative rays from a 100 µm extended light source to the grating situated 1.5 m away

oriented 4◦ from grazing, and then to the MCP surface an additional 30 cm afterward

(see Figure 3.9). The grating has 1200 lines/mm with a 2 m radius of curvature. The

location of the focusing (or image distance) is given by

sin2 θ1

do
+

sin2 θ2

di
=

sin θ1 + sin θ2

R
(3.1)

where θ1 is the incident angle of the light on the grating measured from grazing, θ2

is the diffracted angle of the light measured from grazing, do is the object distance,

di is the image distance, and R is the radius of curvature of the focusing diffraction

grating [79, 80]. The simulation agrees with Eq. 3.1, giving a focusing location of

about 33 cm for the 45th harmonic.

For typical harmonic beams with 3 mrad divergence arising from a 100 µm source,

the maximum spread at the detector is 150 µm (rather than an ideal line), whereas the

typical separation between harmonic lines is approximately 1 mm. The finite width

of harmonic lines is partly due to the fact that we observe multiple wavelengths on

a single plane, whereas different harmonics focus best with different grating-MCP

spacings. Since harmonic features can be lined up effectively to within 30 µm using

software, aberrations in the grating imaging system are the limiting factor in the

spectral resolution.

As can be seen in Figure 3.10, harmonic peaks appear to sit on top of a quasi-

continuous spectrum. The previous analysis suggests that the apparent continuous
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Figure 3.9 Schematic of setup for ray-tracing program to determine spectral
resolution. Representative rays are traced from a 100 µm extended light
source to the grating, situated 1.5 m away and oriented 4◦ from grazing and
then to the MCP surface an additional 30 cm afterward.

spectrum does not arise merely from aberrations in the imaging system. The sharp-

ness of the harmonic peaks within the image provide direct evidence of good spectral

resolution. There may be multiple regimes of harmonic-generation within the gener-

ating volume, some regions giving rise to sharp orders, and others contributing shifted

or broadened peaks of EUV wavelengths due to chirping of the generating pulse [81]

or selfsteepening of the leading edge of the pulse [82]. The harmonics from these

various regions can merge together to give broader spectral coverage.

As indicated in Figure 3.10, the 39th and 53rd harmonics are separated by 8.8 mm

on the detector. This represents a change of 5.4 nm in wavelength. The blurring of

the peaks by 150 µm (due to aberrations) corresponds to a change in wavelength of

0.092 nm, which corresponds to a spectral resolution (λ/∆λ) of about 180 for the

47th harmonic (λ=17.0 nm).
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Figure 3.10 Harmonic signal as a function of position on the MCP detector.
Harmonics orders from 35 to 61 were generated in neon gas. The sharpness
of the harmonic peaks confirms that non-zero signal between harmonics is
not due to defocusing.
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3.5 Source Stability

The stability of our high harmonic source is very important in performing accurate

polarimetry measurements. Reflectance measurements are defined as reflected signal

divided by incident signal. Accordingly, variation in incident signal will affect the

accuracy and repeatability of reflectance measurements. There are many factors to

consider when determining the stability of the high harmonic source. For example,

one of the main causes in variation of harmonic signal is that small variations in

pump laser energy translate to large variations in harmonic output because of strong

nonlinearity. Also, gas pressure variations, optic damage over time, and laser energy

drift may affect the harmonic output over the course of a run. Short term stability

in high harmonics, in other words stability from laser shot to laser shot, can vary by

as much as 37%, as seen in Figure 3.11.
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Figure 3.11 Lineout of harmonics from successive shots. This plot shows
the short term, or shot to shot, stability of high harmonic source. The
intensity of a single harmonic varies by as much as 37% and as little as 2%.
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To improve stability of our EUV source, we average 100 shots (10 seconds) for

each data file taken. The variation of harmonics averaged over 100 shots is, as seen

in Figure 3.12, on the order of 7%.
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Figure 3.12 Lineouts of two measurements of harmonics averaged over
100 shots (10 seconds). Variation is on the order of 7%.

To further improve repeatability, we implemented a laser-pulse energy discrimi-

nator. An optical fiber transmits a small sample of the incident laser beam to an

unused corner on the outside surface of the MCP detector. The light from the fiber is

thus captured in the same image that records the harmonic spectra, providing real-

time monitoring of the laser power. An example image of harmonics and the beam

transmitted by the fiber is shown in Figure 3.13 (the white box outlines the beam

transmitted by the fiber). In real time, our computer selects only shots where the

incident laser energy falls within a user-specified range and averages 100 ‘acceptable’

harmonic images. By decreasing the range of acceptable laser energy, the repeata-
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bility of the measurements improves markedly. For our system, a ±10% laser-energy

window selects about one image out of three and reduces the variability in harmonic

signal significantly. Figure 3.14 shows two lineouts of harmonic spectra taken using

a laser-energy window of ±10%. Variation is on the order of 0.4%.

Figure 3.13 Image of harmonics at the detector. The white box outlines
a small sample of the incident laser beam used for real-time laser energy
discrimination.

Implementing this laser-power discriminator allowed us to increase the effective

stability of our laser source to about 0.4%. However, laser-power variation is not the

only systematic error we have in our system. For example, changes in the spatial

profile of the gas in the region of harmonic generation (as happens when the laser

continues to drill through the exit foil during a scan) or slight misalignments can

cause error in our measurements. We demonstrate a technique to reduce the effects

of these systematic errors on our measurements in chapter 5.
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Figure 3.14 Lineout of two measurements of harmonics averaged over 100
‘acceptable’ images where the laser energy window is ±10%. Variation is on
the order of 0.4%.
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Chapter 4

Absolute Reflectance

Measurements

In this chapter we discuss reflectance measurements of a silica sample used to bench-

mark the performance of the polarimeter. We describe the sample parameters, as well

as the repeatability of the measurements. We outline the theoretical model, including

the determination of optical constants, used to calculate reflectance curves for these

measurements. We find good agreement between measured and expected results.

4.1 Sample

We used a silicon substrate with a thermally oxidized layer as a test sample to char-

acterize our instrument. Spectroscopic ellipsometry showed the sample thickness to

be 27.4 nm±0.2 nm. This sample is a good reference surface for characterizing the

accuracy of the polarimeter, especially at wavelengths from 10 nm to 20 nm. This is

because the thickness is such that interference in reflected light from the front and

back surfaces of the silicon dioxide layer create fluctuations in reflection as the sample

69
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angle is rotated. These fluctuations are commonly referred to as interference fringes,

and they allow detailed comparisons of measured data with data calculated using the

optical constants of silicon and silicon dioxide, which are well known [60]. Also, this

sample exhibits interference fringes near Brewster’s angle (∼45◦), which allows us

to see significant differences in reflection at s- and p-polarizations. This makes the

effect of polarization on reflectance more apparent. Silicon dioxide on silicon is also

a good reference sample because it is stable in air for long periods of time, and the

two surfaces of the oxide can be exceptionally smooth and uniform.

4.2 Reflectance Measurements and Repeatability

High harmonics for these measurements were produced in 12 torr of argon gas, 57 torr

of neon gas, or 80 torr of helium gas. An aperture was placed immediately before

the focusing lens at an optimal diameter of 1.1 cm. The exit foil of the gas cell was

positioned 100 cm from the focusing lens. Reflectance measurements were taken at

multiple wavelengths simultaneously. All measurements were averaged over 100 shots

where the laser power was within ±10%. Reflected signal was determined by making

a lineout of the harmonics at each angle by averaging in the y-direction over the

area shown in Figure 4.1. Harmonic orders were then determined using the method

discussed in section 3.1. The maximum value of each harmonic was used for the

reflected signal for that wavelength at each specific sample angle. Background noise

(or ‘dark current’) was determined by averaging over an area on the MCP away from

the harmonics (also shown in Figure 4.1). The advantage of measuring dark current

in this way is that it is taken simultaneously with reflected signal. It thus takes into

account angular dependence and any other unknown that may affect the dark current

at different points in the run. The incident harmonic signal (before the sample) was
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measured three different times during the run, at the beginning, middle, and end, to

guard against possible drift in harmonic flux during the experiment. The variations

between these measurements were on the order of the uncertainty in a given measure-

ment. S- and p-polarizations were found to reflect from the EUV grating somewhat

differently (see Figure 4.2), so each reflectance measurement was normalized using

the incident measurement of the same polarization. The normalization algorithm

followed the following format:

R =
Rs −Ds

Is −Ds

(4.1)

where R is the reflectance, Rs is the reflected signal, Ds is the dark signal, and Is is

the incident signal.
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Figure 4.1 Harmonics (left) and lineout (right) at a sample angle of 10◦.
The black box in the left figure shows where harmonics are averaged in the
y-direction to make the lineout. The white box in the left figure above the
harmonics shows the area that is averaged to determine dark current.

Reflectance measurements were taken on three separate days in order to show

repeatability. Figure 4.3 shows these three measurements of s-polarized reflectance

at for four representative wavelengths, 15.7 nm, 15.1 nm, 14.5 nm and 14.0 nm, with
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Figure 4.2 S- and p-polarized harmonics reflected slightly differently from
the EUV grating. Accordingly, each reflectance measurement was normalized
using the incident measurement of the same polarization.
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fair repeatability.

4.3 Theoretical Model

To show the effectiveness of EUV polarimetry with high harmonics, we compare

measured reflectance curves with calculated curves. In this section we describe the

theoretical model used to calculate curves to compare with measured curves.

In many circumstances, it is necessary to consider more than one layer (see sec-

tion 5.4), so we use a multilayer matrix theory. The layers consist of vacuum (region

0), multiple thin films (regions 1 through m), and a substrate (region m + 1). The

thickness of the jth layer is specified by dj, and the complex index of refraction in

each region is Nj = nj + iκj. Light with wavelength λ is incident from region 0 onto

region 1 with incidence angle θ0, measured from grazing, and propagates in region 1

with angle θ1 and in region j with angle θj, measured from grazing. The complex

angles are determined in each region from Snells law: N0 cos θ0 = Nj cos θj. The

reflectance from the multilayer stack is calculated using a standard matrix approach

[13,14], which will be reviewed here.

At each interface, there is an incident wave, a reflected wave, and a transmitted

wave. At the next interface, the transmitted wave from the previous layer becomes

the new incident wave. The subscript r indicates waves traveling to the right (towards

the substrate). These include incident and transmitted waves at each interface. The

subscript l indicates waves traveling to the left (away from the substrate), i.e. reflected

waves.

We review here the standard treatment for light reflected from a multilayer. At

the first interface, the boundary conditions for the parallel components of the E and

B fields for p-polarized light are
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(a) q=51, λ=15.7 nm (b) q=53, λ=15.1 nm

(c) q=55, λ=14.5 nm (d) q=57, λ=14.0 nm

Figure 4.3 Reflectance measurements made on three different days to show repeatability.
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Figure 4.4 Schematic showing light propagation through multiple layers.

sin θ0(E
(p)
0,r + E

(p)
0,l ) = sin θ1(E

(p)
1,r + E

(p)
1,l ) (4.2)

and

N0(E
(p)
0,r − E

(p)
0,l ) = N1(E

(p)
1,r − E

(p)
1,l ) (4.3)

Similarly, at an arbitrary interface j + 1 the boundary conditions for the parallel

components of the E and B fields for p-polarized light are

sin θj(E
(p)
j,r e

2πiNjdj sin θj/λ + E
(p)
j,l e

−2πiNjdj sin θj/λ) = sin θj+1(E
(p)
j+1,r + E

(p)
j+1,l) (4.4)

and

Nj(E
(p)
j,r e

2πiNjdj sin θj/λ − E(p)
j,l e

−2πiNjdj sin θj/λ) = Nj+1(E
(p)
j+1,r − E

(p)
j+1,l) (4.5)

Here we set the origin within each layer at the left surface. When making the

connection with the subsequent layer at the right surface, we must explicitly take
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into account the phase acquired by the field in propagating through the thickness dj,

as reflected in equations 4.4 and 4.5.

At the final interface, the boundary conditions can be written as

sin θm(E(p)
m,re

2πiNmdm sin θm/λ + E
(p)
m,le

−2πiNmdm sin θm/λ) = sin θm+1E
(p)
m+1,r (4.6)

and

Nm(E(p)
m,re

2πiNmd, sin θm/λ − E(p)
m,le

−2πiNmdm sin θm/λ) = Nm+1E
(p)
m+1,r (4.7)

The right side of the equation shows explicitly that there is no left-traveling wave in

the substrate.

We can write Eqs. 4.4 and 4.5 as a single matrix equation, as follows.

sin θje
iβj sin θje

−iβj

Nje
iβj −Nje

−iβj


E(p)

j,r

E
(p)
j,l

 =

sin θj+1 sin θj+1

Nj+1 −Nj+1


E(p)

j+1,r

E
(p)
j+1,l

 (4.8)

where βj = 2πNjdj sin θj/λ. Solving Eq. 4.8, we find

E(p)
j,r

E
(p)
j,l

 =

sin θje
iβj sin θje

−iβj

Nje
iβj −Nje

−iβj


−1 sin θj+1 sin θj+1

Nj+1 −Nj+1


E(p)

j+1,r

E
(p)
j+1,l

 (4.9)

We can now use Eq. 4.9 to connect the incident, reflected, and transmitted waves

from the entire stack, as follows. If we write Eq. 4.9 for the j = 0 case, we find

E(p)
0,r

E
(p)
0,l

 =

sin θ0 sin θ0

N0 −N0


−1 sin θ1 sin θ1

N1 −N1


E(p)

1,r

E
(p)
1,l

 (4.10)

Substituting in for

E(p)
1,r

E
(p)
1,l

 by using Eq. 4.9 now for the j = 1 case, we find
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E(p)
0,r

E
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sin θ0 sin θ0

N0 −N0


−1 sin θ1 sin θ1
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iβ1 sin θ1e
−iβ1

N1e
iβ1 −N1e
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E
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(4.11)

If we define a matrix M
(p)
j to be

M
(p)
j =

sin θj sin θj

Nj −Nj


sin θje

iβj sin θje
−iβj

Nje
iβj −Nje

−iβj


−1

(4.12)

we can connect the fields in the initial and final layers, as followsE(p)
0,r

E
(p)
0,l

 =

sin θ0 sin θ0

N0 −N0


−1(

m∏
j=1

Mp
j

)sin θm+1 sin θm+1

Nm+1 −Nm+1


E(p)

m+1,r

0

 (4.13)

Once these matrices are computed, we can find the reflectance and transmission

of the multilayer stack using the following equations

T (p) =

∣∣∣∣E(p)
m+1,r

E
(p)
0,r

∣∣∣∣2 (4.14)

R(p) =

∣∣∣∣E(p)
0,l

E
(p)
0,r

∣∣∣∣2 (4.15)

Similarly, for s-polarized light we have the equations

T (s) =

∣∣∣∣E(s)
m+1,r

E
(s)
0,r

∣∣∣∣2 (4.16)

R(s) =

∣∣∣∣E(s)
0,l

E
(s)
0,r

∣∣∣∣2 (4.17)

whereE(s)
0,r

E
(s)
0,l

 =

 1 1

N0 sin θ0 −N0 sin θ0
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M s
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) 1 1
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(4.18)

and

M
(s)
j =

 1 1

Nj sin θj −Nj sin θj


 eiβj e−iβj

Nj sin θje
iβj −Nj sin θje

−iβj


−1

(4.19)
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4.4 Comparison with Calculated Reflectance Curves

Figure 4.5 shows reflectance measurements for s- and p-polarizations for four repre-

sentative wavelengths: 29.6 nm, 20.5 nm, 15.7 nm, 14.0 nm compared with reflectance

curves calculated using the optical constants of silicon and silicon dioxide [60], which

are well known. Also plotted are reflectance measurements from the same sample

taken at the Advanced Light Source synchrotron (Beamline 6.3.2).

Figure 4.5 Comparison of reflectance measurements made with BYU po-
larimeter and those calculated using the optical constants of silicon and sili-
con dioxide. Also plotted are reflectance measurements from the same sample
taken at the Advanced Light Source synchrotron (Beamline 6.3.2).

The measured data agrees reasonably well with calculated values. Also, inter-

ference fringes in both data sets match well. Figure 4.6 shows the measured and
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computed reflectance as a function of wavelength at a sample angle of 17.5◦ from

grazing. The results show reasonably good agreement, although the data points show

noticeable fluctuation.

Figure 4.6 Measured s- and p-polarized reflectances (circles and triangles)
from a silica sample as a function of wavelength at an incident angle of 17.5◦

from grazing. Also plotted are s- and p-polarized reflectances computed using
the optical constants of SiO2 (solid and dashed lines) [60].
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4.5 Recovery of the Optical Constants of Silicon

Dioxide

We used s-polarized reflectance measurements at four representative wavelengths to

determine how well the optical constants of silicon dioxide could be recovered. The

recovered optical constants along with their known values are shown in Table 4.1.

The experimentally determined constants and the published constants vary some-

what, even though the error in these constants is relatively small compared to the

scatter seen in the data (see Figure 4.5). This suggests that there are systematic

errors in our measurements that are not negligible. These errors could include small

misalignments, laser energy drift, or gas pressure variations. In Figure 4.5 you can see

that frequently the s- and p-polarized data points are simultaneously higher or lower

than the calculated curves. These errors could be caused by slight misalignments if

different physical locations on the MCP detector have slightly different sensitivities.

It is also evident in repeatability measurements (see Figure 4.3) that our measurement

errors are not completely statistical. These difficulties are overcome using a technique

described in chapter 5. We also show in the next chapter that the optical constants,

especially κ, can be extracted with more accuracy from absolute reflectance measure-

ments using samples that are thinner than the 27 nm sample used here. In that sense,

these recovered constants are not the best that can be extracted from absolute re-

flectance measurements. We show in table 5.1 examples of constants extracted using

absolute reflectance measurements from a 1 nm SiO2 sample. These constants still

vary somewhat from known values, but are closer than those obtained here.
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wavelength n recovered n from litera-
ture [60]

κ recovered κ from litera-
ture [60]

29.6 nm
(q=27)

0.952±0.01 0.911 0.058±0.06 0.085

20.5 nm
(q=39)

0.935±0.008 0.946 0.024±0.009 0.033

15.7 nm
(q=51)

0.956±0.005 0.968 0.014±0.008 0.016

14.0 nm
(q=57)

0.984±0.002 0.975 0.014±0.003 0.012

Table 4.1 Optical constants for SiO2 recovered by fitting to absolute re-
flectance measurements along with their known values.
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Chapter 5

Ratio Reflectance Technique for

Measuring Optical Constants

As shown in the previous chapter, our absolute reflectance measurements agree rea-

sonably well with expected reflectance curves. However, these reflectance measure-

ments are susceptible to a number of systematic errors, such as drift in the generating

laser intensity over the course of a run, alignment errors, dynamic range limitations,

and possible changes in harmonic generation parameters such as gas pressure. As

shown in section 4.5, the optical constants of silicon dioxide derived using abso-

lute reflectance measurements vary somewhat from the known values (see table 4.1).

However, our instrument has the capability of easily and quickly rotating linear polar-

ization between s- and p-polarization, and we can take advantage of this to improve

the accuracy of derived optical constants.

In this chapter we demonstrate the technique of determining optical constants

from the ratio of p-polarized to s-polarized reflectance measurements (rather than

from the absolute reflectance measurement for a given polarization). This technique

was first suggested for visible and infrared wavelengths by Avery [83] (for bulk sam-

83
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ples) and Miller and Taylor [84] (for thin films) and has been used to determine

material optical constants at these longer wavelengths [85,86]. The technique has not

previously been used in the EUV region, because of the lack of a source with easily

rotatable polarization. Typical values for optical constants in the EUV (n near 1 and

κ in the range 0.01-0.5) are quite different from visible and IR values. The efficacy of

the ratio technique in the EUV wavelength range has not previously been explored.

We show in this chapter that the ratio technique greatly improves the performance

of our instrument. We find that the ratio curve is as sensitive to the material op-

tical constants as the absolute reflectance curves in the range from close to grazing

(where reflection is best) to near Brewster’s angle. Thus, there is no disadvantage

in extracting optical constants from ratio measurements, but there is a significant

advantage to this technique when using an EUV source prone to fluctuations or if

the detector is prone to misalignments (assuming that the EUV polarization can be

easily controlled).

In our technique, the signal ratio is measured for multiple incidence angles, then

fit to a theoretical model to obtain optical constants. The essential requirement for

implementing this technique is to have a linearly polarized EUV source that can be

conveniently rotated (in our case, in about 5 seconds). Plasma sources are unpolar-

ized, and while synchrotron light is naturally polarized, the polarization is not easily

rotated. In the case of laser high harmonics, however, the polarization can be ro-

tated with a half-wave plate in the generating laser beam. The harmonics preserve

the same linear polarization as the laser [14], so the EUV polarization state can be

changed by merely rotating a waveplate in the laser beam before the harmonics are

generated. The measurement can be repeated many times for increased statistical

accuracy against laser fluctuation. Since the ratio measurement does not rely on the

value for the incident intensity, and given that systematic noise tends to contaminate
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both s and p measurements in the same way, this technique removes errors owing to

long-term laser drifts and alignment variation.

Another advantage of the ratio reflectance technique is that p- and s-polarized

reflectances typically vary from each other by less than one order of magnitude over

incident angles from 0◦ to 45◦ from grazing. This requires the detection system to have

a linear response over only a modest range of intensities for an accurate measurement

of the reflectance ratio. In contrast, the reflected EUV signal for typical materials

is often 2-4 orders of magnitude smaller than the incident signal in this angle range,

requiring wide dynamic range for absolute reflectance measurements (see section 3.3).

In our ratio technique, a single layer of the material to be characterized is de-

posited onto well characterized substrate. To demonstrate the effectiveness of this

method, we first characterized a naturally occurring thin film of SiO2 on a Si sub-

strate, which is described in this chapter. Chapter 6 describes characterization of

evaporated copper and uranium films. We determine the thickness of the layer using

spectroscopic ellipsometry with near-visible wavelengths. Then a series of reflectance

ratio measurements is obtained at a range of angles. Finally, the measured ratios are

fit (using a least-squares fit) to the theoretical curve to find the optical constants of

the layer.

5.1 Ratio Measurements

The ratio measurement technique was implemented using our high-harmonics-based

polarimeter without need of hardware modification. We used two silicon dioxide

thin films with different thicknesses: a naturally oxidized silicon sample with a SiO2

layer of 1.0 nm±0.2 nm and a thermally oxidized silicon sample with a SiO2 layer of

27.4 nm±0.2 nm (thicknesses were determined by spectroscopic ellipsometry). The
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optical constants of SiO2 and Si are well known [60], giving a standard by which to

judge measurement errors. Figure 5.1 plots the measured ratio reflectance for the

27.4 nm thick sample at a wavelength of 29.6 nm taken on three different days to

show repeatability. Also plotted for comparison is the measured s-polarized absolute

reflectance for the same sample taken on three different days. This figure shows that

ratio reflectance measurements are much more repeatable than absolute reflectance

measurements (see section 4.2). This confirms our supposition that the ratio method

would divide away many systematic errors to which absolute reflectance measurements

are susceptible.
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Figure 5.1 Measured ratio reflectance and absolute s-polarized reflectance
of a 27.4 nm thick SiO2 sample at a wavelength of 29.6 nm taken on three
different days to show repeatability. Ratio data is much more repeatable
than absolute reflectance measurements.

Figure 5.2 plots the measured absolute reflectance for s-polarized and p-polarized
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light as well as the measured ratio reflectance at a wavelength of 29.6 nm for both the

27.4 nm and the 1.0 nm sample. Each point represents an average of 400 shots at an

effective frequency of about 3 Hz (because of laser energy discrimination described in

section 3.5). The lines show best-fit curves calculated from the model described in

section 4.3 with n and κ for the SiO2 layer taken as free parameters in a least-squares

fitting algorithm. Note that the scatter in measured values for the ratio reflectance

is much lower than that of the two absolute reflectances. As discussed above, this

is owing to the fact that the ratio measurement is insensitive to possible long-term

systematic errors. In principle, the remaining error can be reduced by averaging more

measurements to the extent that the error is statistical in nature.
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Figure 5.2 Measured and fit s- and p-polarized absolute reflectances and
the ratio of p-polarized to s-polarized reflectance from a silica sample at
λ=29.6 nm with a thickness of (a) 27 nm and (b) 1 nm.

Figure 5.3 shows the measured and fit ratio reflectance from the 1 nm thick sample

for five wavelengths. The fits model well features seen in measured data, such as the

shoulder seen in these plots.
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Figure 5.3 Measured and fit ratio of p-polarized to s-polarized reflectance
from a 1 nm thick silica sample at five wavelengths: q=39 (λ=20.5 nm),
q=35 (λ=22.9 nm), q=31 (λ=25.8 nm), q=27 (λ=29.6 nm), and q=23
(λ=34.8 nm).

5.2 Ratio Calculations

Given that we can make a measurement of Rp/Rs with more accuracy than we can

measure absolute reflectance of either polarization, an important question is whether

we can derive optical constants from reflectance ratio measurements with the same

efficiency as can be derived from ideal absolute reflectance measurements. To extract

optical constants accurately, the theoretical curve for Rp/Rs must be sensitive to

variations in the constants. Figure 5.4 shows calculated plots of s-polarized absolute

reflectance and the ratio of p-polarized to s-polarized reflectance at a wavelength of

29.6 nm as n and κ are varied. The heavier lines in Figure 5.4 show the reflectance and

reflectance ratio for a film with n and κ chosen to be the constants of silicon dioxide

at a wavelength of 29.6 nm (n=0.911, κ=0.085) and the film thickness chosen to be

1 nm. The dashed curves show the variation in the curves as n and κ are each changed

by ±0.05 from their actual values. We can see from these plots that variation in the
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constants results in similar changes in the ratio reflectance and s-polarized absolute

reflectance curves. (The Rp curve shows somewhat less variation than either of the

ones plotted.)
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Figure 5.4 Calculated plots of s-polarized absolute reflectance and the ratio
of p-polarized to s-polarized reflectance from a single layer of SiO2 on Si at
a wavelength of 29.6 nm. Solid curves show the accepted values of n=0.911
and κ=0.085 and a thickness of 1 nm. Dashed curves show the extent of
the change when (left) n is varied by ±0.05 with κ held fixed, and (right)
κ is varied by ±0.05 with n held fixed. These curves show that the ratio
reflectance curves show as much variation as absolute reflectance curves as
optical constants are changed.

To effectively extract κ from either a ratio reflectance measurement or an absolute

reflectance measurement, film thicknesses need to be relatively thin. κ primarily

influences absorption. Accordingly, to see the effects of absorption in a reflectance

measurement, an appreciable fraction of light entering the film needs to travel through

the film, reflect from the substrate, and return and join the reflected signal. Once

a film is thicker than a few absorption depths (considered from the perspective of

the incident angle), essentially all of the light that enters the material gets absorbed.
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Figure 5.5 shows calculated plots of s-polarized absolute reflectance and the ratio

reflectance as κ is varied by ±0.05 (n is held fixed at 0.911). The left plot shows

the curve variation with a film thickness of 1 nm with, and the right plot shows

the curve variation with a film thickness of 27 nm. These plots show that absolute

reflectance and ratio reflectance measurements are only sensitive to changes in κ if the

film thickness is relatively small. Recall that in chapter 4 we recovered the constants

for silicon dioxide using the absolute reflectance of a 27.4 nm thick sample. The

disagreement of these recovered constants with known values, shown in Table 4.1, is

partly due to the use of this thick sample. Using absolute reflectance from a thin

sample leads to somewhat better recovery of optical constants, as shown in Table 5.1.
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Figure 5.5 Calculated plots of s-polarized absolute reflectance and the ratio
of p-polarized to s-polarized reflectance from a single layer of SiO2 on Si at
a wavelength of 29.6 nm. Solid curves show the accepted values of n=0.911
and κ=0.085 with a thickness of 1 nm (left) and a thickness of 27 nm (right).
Dashed curves show the extent of the change when κ is varied by ±0.05.
These curves show that κ can only be extracted efficiently from absolute or
ratio reflectance curves if the film thickness is relatively thin.

We have also found in this analysis that changes in κ and changes in film thickness
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unfortunately result in similar changes to both the absolute reflectance and the ratio

reflectance curves. Figure 5.6 shows calculated plots of s-polarized absolute reflectance

and the ratio reflectance as (left) κ is varied by ±0.05 and (right) thickness is varied by

±0.5 nm. The changes in the curves looks similar for variations in κ and variations in

thickness. Thus, it is difficult for the fitting algorithm to accurately determine both

κ and film thickness independently. Because of this, it is useful to determine film

thicknesses using spectroscopic ellipsometry and fix that value in a fit to measured

data. As a side note, there is a known effect where the index of refraction of a

material depends on the thickness of the film, called the anomalous skin effect. When

making multilayer mirrors, researchers typically use very thin films, with thicknesses

similar to those used here. Thus, we presume to be measuring the optical constants

of materials as they will be used in multilayer coatings.

This computational analysis indicates that we can deduce accurate values for

optical constants by fitting to ratio reflectance curves as well or better than to (low-

noise) absolute reflectance data. In addition, we find that it is advantageous in fitting

using either ratio reflectance measurements or absolute reflectance measurements to

(1) keep film thicknesses relatively thin and (2) determine film thicknesses using

spectroscopic ellipsometry or some other means and keep that value fixed during a

fit.

As a side note, through this section we have plotted curves with incident angles

from 0 to 45 degrees from grazing, which is the angle range where materials have

sizable reflectances in the EUV. However, this also happens to be the angle range

where ratio reflectance curves show the most sensitivity to optical constant values.

Figure 5.7 plots the ratio reflectance for a 1 nm SiO2 sample as n is varied by ±0.05.

This plot shows that between Brewster’s angle (∼ 45◦) and near-normal incidence

there is very little curve variation as n is changed. It is fortuitous in that the angle
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Figure 5.6 Calculated plots of s-polarized absolute reflectance and the ratio
of p-polarized to s-polarized reflectance from a single layer of SiO2 on Si at
a wavelength of 29.6 nm. Solid curves show the accepted values of n=0.911
and κ=0.085 and a thickness of 1 nm. Dashed curves show the extent of the
change when (left) κ is varied by ±0.05 and (right) thickness is varied by
±0.5 nm. These curves show that changes in κ and changes in film thickness
result in similar curve variation for both absolute and ratio reflectance.



5.3 Validation 93

range where ratio curves are most sensitive to optical constants is also the range

where reflectance is highest.
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Figure 5.7 Calculated plot the ratio reflectance from a single layer of SiO2

on Si at a wavelength of 29.6 nm from 0 to 90 degrees from grazing as n is
varied. The solid curve shows the accepted values of n=0.911 and κ=0.085
and a thickness of 1 nm. Dashed curves show the extent of the change
when n is varied by ±0.05. These curves show that the ratio reflectance is
most sensitive to optical constant values in the angle range between 0◦ and
Brewster’s angle.

5.3 Validation

We used our measured data (shown in Figure 5.2) to evaluate how well the optical

constants for the 1 nm thick SiO2 film could be recovered from ratio reflectance data.

We used a least-squares fitting algorithm to find the complex index of the SiO2 film

with the thickness fixed at 1 nm (as measured with spectroscopic ellipsometry) and the

optical constants of the Si substrate fixed at their accepted values. We also included
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wavelength n recovered with
ratio reflectance

n recovered
with absolute
reflectance

n from literature
[60]

29.6 nm (q=27) 0.911±0.006 0.941±0.01 0.911
34.8 nm (q=23) 0.898±0.002 0.926±0.009 0.900

wavelength κ recovered with
ratio reflectance

κ recovered
with absolute
reflectance

κ from literature
[60]

29.6 nm (q=27) 0.086±0.003 0.043±0.04 0.085
34.8 nm (q=23) 0.120±0.003 0.148±0.008 0.122

Table 5.1 Optical constants for SiO2 recovered by fitting to ratio reflectance
measurements, recovered by fitting to absolute reflectance measurements, and
their known values.

the effect of a thin contamination layer that formed on the sample (see section 5.4).

The recovered optical constants along with their known values are shown in Table 5.1.

The ratio technique gave excellent agreement. For comparison, we also show the

optical constants recovered using absolute reflectance data, described in section 4.5.

As discussed above, the absolute measurements were subject to systematic errors

owing to possible detector alignment errors and long-term drifts in the high-harmonic

EUV source. When these data points are used to determine the optical constants,

they give less accurate results, which vary somewhat from the known values for SiO2.

We conclude that utilizing the ratio of p-polarized to s-polarized reflectance is a

much more robust approach for extracting optical constants. This technique can

significantly reduce the systematic errors to which our absolute measurements are

sensitive.

5.4 Hydrocarbon Contamination

In this measurement, we found that our samples typically became contaminated with

a thin layer of hydrocarbons over time. We found that cleaning with a xenon excimer
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lamp (Resonance LTD) for five minutes would effectively remove the contaminant.

However, even during transfer from the cleaning area to the measurement cham-

ber, our samples would often accumulate a layer of hydrocarbons (less than 1 nm).

Our algorithm also had to determine the constants for the contaminant layer (the

thickness of the contaminant having been characterized by a separate ellipsometry

measurement) in order to extract the constants for the SiO2 layer. We used the op-

tical constants of carbon for this first layer when determining the constants for SiO2.

Conversely, we obtained the optical constants of carbon when the constants for SiO2

were used for the layer beneath the contaminant. In subsequent experiments, we

alleviated this problem by doing in-situ deposition and measurement (an advantage

for our instrument) for which sample contamination became less of an issue.
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Chapter 6

Optical Constants for Thin Films

of Copper and Uranium

In this chapter we present measured optical constants of copper, uranium, and their

natural oxides in the range from 10 nm to 47 nm determined using the ratio-reflectance

technique described in Chapter 5. This is one of the first times that high harmonics

have been used in a work-horse setting to make measurements important to another

field, rather than just demonstrating proof of principle. We have attached an evapora-

tor to our polarimeter so that we are able to evaporate copper and uranium and then

make reflectance measurements without breaking vacuum (in-situ measurements).

We selected copper for this study for the sake of its evaporation characteristics (sim-

ilar to uranium) even though it is not a strategic EUV material. We expected to

verify previously accepted values for copper in this range, but we determined that

they were actually the constants of oxidized copper. On the other hand, uranium was

suggested as a high-reflectance material in the EUV several years ago [61] and has

even been used in a multilayer mirror on the IMAGE satellite [52]. However, diffi-

culties with oxidation have prevented the careful measurement of uranium’s optical

97
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constants. EUV polarimetry with high harmonics has afforded an opportunity for

in-situ measurements of uranium at a broad range of EUV wavelengths for the first

time.

6.1 Interest in Copper

The optical properties of copper in the ultraviolet and extreme ultraviolet have been

studied previous to this work [87–90]. We initially undertook a study of copper as

a known sample by which we could validate our deposition and in-situ measurement

techniques. However, we concluded that our measured optical constants for copper

metal did not agree with values cited by the Center for X-ray Optics (CXRO) website

[91]. After investigating other references, we found that discrepancies were most likely

due to previous researcher’s failure to keep samples from partially oxidizing before

measurement. Copper is now being used an interconnect material in microelectronics,

having replaced aluminum for many applications because of its higher conductivity.

With the advent of EUV lithography it was important to resolve these differences in

the reported optical properties of copper.

The index of refraction for copper cited by CXRO is determined using photoab-

sorption measurements made by Hagemann et al. in reference [87]. In this publica-

tion, measurements were not made in-situ. However, they deposited a 5 nm capping

layer of carbon onto the copper samples before exposure to air to prevent oxidation.

We suspect that something went wrong in this attempt to prevent oxidation. Opti-

cal properties of naturally oxidized copper films (not in-situ) have been made from

5-34 nm by Haensel [88] and from 8-30 nm by Tomboulian [89]. In-situ measure-

ments have been made from 35-70 nm by Beaglehole [90]. Our optical constants

for copper metal agree with these in-situ measurements by Beaglehole and with the
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measurements made by Tomboulian. Measurements made by Haensel and Hagemann

agree with our measurements of oxidized copper. This suggests that constants deter-

mined by Hagemann, which are commonly used as the constants of copper metal, are

actually the constants of oxidized copper.

6.2 Interest in Uranium

As discussed throughout this work, the optical constants of many materials have

not yet been measured in the extreme ultraviolet (10-100 nm). This is true for

most materials of the actinide group because the reactivity, toxicity, and (sometimes)

radioactivity of these materials adds challenges to performing optical measurements in

the EUV range. The literature contains little information on the optical properties of

uranium in the EUV. Faldt and Nisson [92] evaporated uranium and measured optical

constants in-situ using ellipsometry and normal-incidence reflectometry in the range

from 50 to 2000 nm. Cukier and co-workers [93] measured the photoabsorption of

uranium films from 2.7 nm to 9.5 nm, where oxidation was prevented with aluminum

capping layers. S. Lunt [53], a master’s student at BYU, studied the optical properties

of oxidized uranium films in the range of 5-17 nm, and at 30.4 nm, 53.7 nm, and

58.4 nm. However, for a wide wavelength range in the EUV, no data are available,

especially for unoxidized uranium.

The interest in characterizing pure uranium films arises from a theoretical as well

as an experimental point of view. Calculations based on atomic scattering factors

predict that uranium may have high reflectance properties in the EUV. These calcu-

lations indicate that uranium might be an excellent material for single-surface (broad-

band), low-angle mirrors for x-ray astronomy, with perhaps much more reflectance

than nickel, gold, or iridium films commonly used [61]. Multilayer uranium/silicon
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mirrors were produced by the BYU group of Allred and Turley for use on the IM-

AGE satellite launched in 2000 [52], which required high reflectance at 30.4 nm but

low reflectance at 58.4 nm. While making these multilayer mirrors, the BYU group

concluded that the optical constants cited by Henke did not describe the reflectance

well. In fact, these mirrors reflected better than expected, and better than many

other commonly-used materials in this region [94]. This experience calls for a careful

characterization of the optical constants of uranium.

6.3 Deposition Experimental Setup

We fitted the polarimeter instrument described in Chapter 3 with evaporation equip-

ment for in-situ deposition of thin films. The deposition system consists of two con-

nected vacuum chambers, one for thin-film deposition and the other for reflectance

measurements, as shown in Figure 6.1. The reflectance chamber and deposition cham-

ber are initially open to each other while the system is pumped with a roughing

pump (Varian 600DS) and a turbo pump (Varian TV 551 Navigator) to a pressure of

1 × 10−4 torr. The sample is then moved out of the beam path and rotated so that

it presses up against an o-ring attached to a bellows, creating a seal that isolates the

deposition chamber from the reflectance chamber. The deposition chamber is evac-

uated further with a sorption pump (Varian 941-6501) cooled with liquid nitrogen

to a pressure of 10−5 torr. After deposition, the deposition chamber and reflectance

chamber are again open to each other, and reflectance measurements are made at a

pressure of 1× 10−4 torr. A photograph and schematic of the deposition chamber are

shown in Figure 6.2.
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Figure 6.1 Schematic of deposition apparatus (top view). (a) The sample
is moved out of the beam path using a linear translation stage. (b) The
sample is rotated until it presses against an o-ring on a compressible bellows,
forming a seal.
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Figure 6.2 Photograph and schematic of deposition chamber.

6.4 Deposition of Copper and Measurements

Copper of 99.99% purity was evaporated horizontally using a tungsten basket (R.D.

Mathis, B12B-3X.025W16) onto polished silicon 100 substrates (with a natural SiO2

layer) at a distance of 35 cm. The silicon substrates were cleaned with a xenon

excimer lamp (Resonance LTD) for five minutes immediately before pumping down

the system to avoid hydrocarbon contamination. The copper deposition was designed

to achieve a film thickness between 7 and 12 nm by evaporating completely everything

in the basket.

Ratio reflectance measurements were performed in-situ on samples at room tem-

perature using the technique described in Chapter 5. After reflectance measure-

ments were made, the copper samples were exposed to atmosphere and immediately

(∼5 minutes) measured with spectroscopic ellipsometry to determine the thickness

of the metal and the oxide that had formed since air exposure. This oxide layer was

found to be about 0.7 nm of CuO after five minutes of air exposure and grew initially

at a rate of about 0.1 nm/minute. Oxidation later slowed to about 0.02 nm/minute.
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For measurements of the optical properties of CuOx, copper samples were heated to

about 300◦F for 5 minutes, after which they were found to be fully oxidized using

the spectroscopic ellipsometer. We are unsure of the exact state of oxidized copper

that formed naturally after this process, and so we will refer to the naturally oxidized

copper as CuOx. Here, x denotes the ratio of oxygen to copper in the sample, which

is unknown. Copper and CuOx films thicker than 5 nm were measured with atomic

force microscopy to have a roughness less than 1 nm (rms) on a 1 µm×1 µm scale.

With thinner films, we found that the copper would agglomerate on the surface, form-

ing islands and not providing full coverage. This is presumably a surface effect, which

we were careful to avoid.

6.5 Ratio Reflectance Data and Optical Constants

for Copper

Figures 6.3 and 6.4 show the ratio reflectance and fit of Cu and CuOx respectively at

representative wavelengths of 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm. Each point

represents an average of 400 shots at an effective frequency of about 3 Hz (because of

laser energy discrimination of ±10% described in section 3.5). The lines show best-fit

curves calculated from the model described in section 4.3 with n and κ for the test

layer taken as free parameters in a least-squares fitting algorithm. The thickness of

the SiO2 layer was measured using spectroscopic ellipsometry and held fixed during

the fit. The optical constants for the silicon dioxide layer and silicon substrate were

also held fixed. For CuOx, the thickness of the layer was measured using spectroscopic

ellipsometry and held fixed during the fit. The variation of the thickness across 2 cm of

the sample (measured with ellipsometry) was about 0.2 nm, and the uncertainty in the

ellipsometry fit was about 0.2 nm. Combining these uncertainties in quadrature gives
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an uncertainty in this thickness of about ±0.3 nm. For copper, the thickness of the

layer was determined from the ellipsometric measurement of the oxide layer thickness

using the ratio of the densities of the metal and the oxide (densities for copper and

CuO were used, 8.96 g/cm3 and 6.31 g/cm3 respectively). This thickness was accurate

to approximately ±0.7 nm, due to uncertainties in the density and/or composition of

the oxide, variation across the sample, and uncertainties in the ellipsometry fit. The

data show features such as in the λ = 34.8 nm fit of copper that the model reproduces

well. These features have to do with the thickness of the layer, as well as n and κ.
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Figure 6.3 The measured ratio reflectance and fit of copper at four repre-
sentative wavelengths: 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm.
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Figure 6.4 The measured ratio reflectance and fit of CuOx at four repre-
sentative wavelengths: 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm.
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The optical constants for Cu and CuOx are shown in Figure 6.5. Error bars shown

in this plot are those produced by the fitting algorithm and are associated with the fit

error and also the uniqueness of the ratio curve (see section 5.2). Optical constants

are also listed in numeric form in Table 6.1.

An important question is how much the uncertainties in film thickness will affect

values for optical constants. We re-fit each data set for the maximum and minimum

thicknesses set by our uncertainties (with the thickness fixed) to see how much our

fit values for optical constants changed. At an example wavelength, λ = 15.1 nm,

q=53, changing the thickness from 7.4 nm to 8.1 nm (for our uncertainty of 0.7 nm)

changes n by 0.0026 and κ by 0.0052. Similarly, changing the thickness from 7.4 nm

to 6.7 nm (for our uncertainty of 0.7 nm) changes n by -0.0026 and κ by -0.0045. At

each wavelength we added in quadrature the statistical error due to the fit and this

error due to uncertainty in the film thickness. Figure 6.6 shows a plot of measured

optical constants for copper and the extent of the curve change due to these errors.

Figure 6.7 shows a similar plot for CuOx. Our total error for values of n is about

0.009, and our total error for values of κ is about 0.01.

Figure 6.8 shows a plot of measured κ for copper and CuOx along with those

measured by Hagemann [87], Haensel [88], Tomboulian [89], and Beaglehole [90].

The measurements by Hagemann are those cited on the CXRO website [91]. Because

Hagemann, Haensel, and Tomboulian measured photoabsorption only, we only plot

κ here. Our measured κ for copper matches data measured in-situ by Beaglehole.

Values for n measured by Beaglehole match our measured n for copper as well (not

shown). This agreement demonstrates that Beaglehole’s and our measurements were

taken on copper metal, rather than oxidized copper. In-situ measurements are very

reliable at preventing oxidation because there is virtually no chance for oxygen to

be in contact with the sample when the sample remains under vacuum through the
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Figure 6.5 The optical constants of Cu and CuOx determined using the
ratio reflectance technique. Statistical error bars are also shown.
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wavelength
(nm)

n for Cu κ for Cu n for CuOx κ for CuOx

10.1 0.991 0.017 0.978 0.045
10.4 0.985 0.025 0.978 0.050
10.7 0.992 0.017 0.974 0.055
11.0 0.987 0.008 0.974 0.060
11.3 0.982 0.016 0.974 0.057
11.6 0.983 0.017 0.972 0.064
11.9 0.985 0.010 0.976 0.054
12.3 0.982 0.011 0.971 0.061
12.7 0.978 0.022 0.960 0.070
13.1 0.972 0.031 0.957 0.073
13.6 0.971 0.039 0.948 0.072
14.0 0.978 0.038 0.939 0.082
14.6 0.976 0.044 0.934 0.086
15.0 0.974 0.051 0.938 0.084
15.7 0.973 0.055 0.934 0.088
16.3 0.976 0.047 0.930 0.085
17.0 0.975 0.041 0.928 0.091
17.8 0.968 0.044 0.916 0.091
18.6 0.967 0.044 0.915 0.097
19.5 0.967 0.050 0.912 0.101
20.5 0.970 0.050 0.908 0.104
21.6 0.969 0.053 0.908 0.105
22.9 0.961 0.063 0.907 0.112
24.2 0.958 0.066 0.906 0.119
25.8 0.949 0.068 0.903 0.128
27.6 0.940 0.084 0.907 0.142
29.6 0.927 0.093 0.888 0.153
32.0 0.912 0.107 0.877 0.169
34.8 0.891 0.140 0.864 0.204

Table 6.1 Optical constants of Cu and CuOx.
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Figure 6.6 Solid curves show the optical constants of copper. Dashed
curves show the extent of the change when statistical errors and errors due
to uncertainty in thickness are included.
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Figure 6.8 Measured κ of copper and oxidized copper compared with κ
measured by Hagemann [87], Haensel [88], Tomboulian [89], and Beaglehole
[90]. Our κ for copper matches that of Beaglehole (measured in-situ) and
Tomboulian (not measured in-situ). Our κ for oxidized copper matches that
of Haensel (not measured in-situ) and Hagemann (measured with a carbon
capping layer).

Unexpectedly, our data for copper metal also matches values measured by Tombou-

lian, although these measurements were not made in-situ. However, Tomboulian

stated that they minimized as much as possible the time that their samples were

exposed to air (only a minute or two). In our experience, we found that copper

samples oxidized less than 1 nm in 5 minutes of air exposure. This suggests that

Tomboulian’s samples may have sustained minimal oxidation (less than 0.5 nm) in

transfer to the measurement chamber. This small amount of oxidation may not have
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affected measured optical constants very much, especially because Tomboulian mea-

sured absorption of samples thicker than 50 nm. This suggests less than 1% error in

transmission measurements.

Our values of κ for naturally oxidized copper agree with values measured by

Haensel (not in-situ), as expected. Haensel did not report taking any measures to

prevent or minimize sample oxidation, and samples he used were as thin as 5 nm. We

thus presume that his samples were fully oxidized at the time of measurement.

Our measured values for CuOx also match values measured by Hagemann. Hage-

mann’s samples were also relatively thin; some thicknesses were less than 10 nm. As

mentioned previously, Hagemann and coworkers aimed to prevent sample oxidation

by coating their copper samples with 5 nm carbon capping layers on both sides of

the film. However, by comparing with our measured data it seems that their samples

were oxidized nonetheless. We do not have enough information about Hagemann’s

sample preparation and measurement techniques to postulate how this could have

occurred.

Although the comparisons to many of the previous data sets show disagreement,

we still have confidence that our data is correct. Firstly, the other data sets do

not all agree with each other. Second, we are the only investigators to report the

optical constants of both copper metal and oxidized copper and show that those

measurements are different. Third, our data for copper agree with the only other

data set also measured in-situ. Capping layers can be effective, but the easiest way to

be certain that no oxidation has occurred is to measure samples in-situ. Discrepancies

between ours and other works are most likely due to previous researchers failure to

keep samples from partially oxidizing before measurement.
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6.6 Deposition of Uranium and Measurements

Depleted uranium of purity >99.7% was evaporated using the same equipment and

baskets as used for copper onto polished silicon 100 substrates (with a natural SiO2

layer) at a distance of 35 cm. A shutter was closed initially during the evaporation.

After about 30 s of evaporation, pressure in the deposition area began to drop rapidly

because the uranium began to bind to molecules in the deposition area, effectively

becoming a pump. After the pressure dropped below 1×10−6 the shutter was opened

for 10 seconds. This time frame allowed a deposition of about 2 nm of uranium metal

(approximately 0.2 nm/s).

Ratio reflectance measurements were performed on uranium films in-situ at room

temperature using the same technique as used for copper (described in Chapter 5).

After exposure to atmosphere, we found that thin films oxidized completely in less

than the time required to vent the chamber and make an ellipsometry measurement

(∼5 minutes). This result was unexpected because oxidation rates previously reported

suggested the rate should be slower. For bulk samples, rates have been measured

between 0.035 nm/hour [95] and 4.6 nm/hour [96]. In either of these scenarios,

though they vary greatly, we should have been able to measure the oxide growing.

Atomic force microscope measurements showed uranium films to have less than 1 nm

rms roughness on a 1 µm×1 µm scale. We thus hypothesize that (1) very thin films

of uranium may oxidize initially more quickly than bulk or thicker films, or (2) our

samples may have microchasms or voids not visible with the AFM that allow it to

oxidize more quickly than a solid film. Although further investigation is beyond the

scope of this work, we find that the optical constants of uranium measured in-situ

differ significantly from the constants of oxidized uranium. This gives us confidence

that we did measure the constants of uranium metal.
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6.7 Ratio Reflectance Data and Optical Constants

for Uranium

Figures 6.9 and 6.10 show the ratio reflectance and fit of U and UOx, respectively, at

representative wavelengths of 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm. Each point

represents an average of 400 shots at an effective repetition rate of about 3 Hz (because

of laser energy discrimination of ±10% described in section 3.5). The lines show best-

fit curves calculated from the model described in section 4.3 with n and κ for the test

layer taken as free parameters in a least-squares fitting algorithm. The thickness of

the SiO2 layer was measured using spectroscopic ellipsometry and set to that value in

the fitting algorithms. The optical constants for the silicon dioxide layer and silicon

substrate were also held fixed. For UOx, the thickness of the layer was measured using

spectroscopic ellipsometry and also held fixed in the fitting algorithm. This thickness

was estimated to be accurate to within about ±0.3 nm, which was the variation

of the thickness across about a 2 cm-wide patch of the sample. For uranium, the

thickness of the layer was determined from the ellipsometric measurement of the oxide

layer thickness using the ratio of the densities of the metal and the oxide (densities

for uranium and UO2 were used, 19.1 g/cm3 and 10.96 g/cm3 respectively). This

thickness was estimated to be accurate to approximately ±0.7 nm, due to uncertainty

in the density and/or composition of the oxide along with variation across the sample.

These data also show features that are reproduced well by the fit, such as the fringe

in the fit of UOx at 34.8 nm.

The optical constants for U and UOx are shown in Figure 6.11. Error bars shown

in this plot are those produced by the fitting algorithm associated with fit error and

also the uniqueness of the ratio curve (see section 5.2). Optical constants are also

listed in numeric form in Table 6.2.
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Figure 6.9 The measured ratio reflectance and fit of uranium at four rep-
resentative wavelengths: 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm.
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Figure 6.10 The measured ratio reflectance and fit of UOx at four repre-
sentative wavelengths: 10.1 nm, 18.6 nm, 25.8 nm, and 34.8 nm.
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Figure 6.11 The optical constants of U and UOx determined using the ratio
reflectance technique. Statistical error bars are also shown.
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wavelength
(nm)

n for U κ for U n for UOx κ for UOx

10.1 0.961 0.058 0.954 0.041
10.4 1.025 0.098 1.004 0.043
10.7 1.107 0.152 1.065 0.052
11.0 1.196 0.217 1.134 0.068
11.3 1.236 0.232 1.191 0.042
11.6 1.242 0.217 1.167 0.119
11.9 1.216 0.198 1.129 0.097
12.3 1.064 0.051 1.014 0.010
12.7 1.130 0.091 1.122 0.033
13.1 1.171 0.146 1.144 0.082
13.6 1.166 0.168 1.139 0.094
14.0 1.104 0.067 1.107 0.055
14.5 1.008 0.050 1.023 0.019
15.1 0.935 0.053 0.972 0.007
15.7 0.950 0.029 0.968 0.006
16.3 0.941 0.045 0.960 0.009
17.0 0.934 0.045 0.957 0.001
17.8 0.931 0.027 0.947 0.001
18.6 0.919 0.031 0.945 0.005
19.5 0.912 0.031 0.939 0.002
20.5 0.911 0.036 0.931 0.002
21.6 0.900 0.040 0.925 0.014
22.9 0.880 0.032 0.917 0.025
24.2 0.868 0.054 0.910 0.044
25.8 0.861 0.053 0.901 0.063
27.6 0.849 0.045 0.891 0.085
29.6 0.828 0.068 0.879 0.107
32.0 0.800 0.092 0.872 0.150
34.8 0.789 0.118 0.861 0.202
38.1 0.788 0.143 0.852 0.235
42.1 0.780 0.187 0.852 0.321
47.1 0.780 0.215 0.851 0.384

Table 6.2 Optical constants of U and UOx.
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Fig 6.12 shows measured optical constants for uranium and the extent of the

curve change when statistical errors and errors due to uncertainty in film thickness

are considered. Fig 6.13 shows a similar curve for naturally oxidized uranium. The

overall error for values of both n and κ was about 0.02.

The optical constants of uranium were re-measured completely on a second day

to show repeatability. The samples on the two days were different depositions and

had different thicknesses. These two sets of data are shown in Figure 6.14. The data

sets agree within our error bars.

To our knowledge, the optical constants of uranium (as opposed to uranium oxide)

have never been measured in this wavelength range. As mentioned earlier in this

chapter, Faldt and Nisson [92] measured the optical constants of evaporated uranium

in-situ from 50 to 2000 nm. At shorter wavelengths, Cukier et al. [93] measured

the photoabsorption cross section of uranium from 2.7-9.5 nm, preventing absorption

using an aluminum capping layer. Lunt [53] studied the optical properties of UO2

in the range 5-17 nm, and at 30.4 nm, 53.7 nm, and 58.4 nm. Figure 6.15 plots κ

for uranium and UOx along with κ for U measured by Faldt and Cukier and κ for

UO2 measured by Lunt. Error bars on our data include statistical errors as well as

errors due to uncertainty in film thickness. This plot shows that our data for uranium

matches data taken in-situ by Faldt and data using a capping layer taken by Cukier.

Also, our data for UOx matches data taken by Lunt of UO2.

6.8 Comparison with Atomic Scattering Factor Cal-

culations

The Center for X-ray Optics (CXRO) has a website [91] where optical constants can

be looked up for many materials in the wavelength range from 0.01 nm to 40 nm.
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Figure 6.12 Solid curves show the optical constants of uranium. Dashed
curves show the extent of the change when statistical errors and errors due
to uncertainty in thickness are included.
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Figure 6.13 Solid curves show the optical constants of UOx. Dashed curves
show the extent of the change when statistical errors and errors due to un-
certainty in thickness are included.



122 Chapter 6 Optical Constants for Thin Films of Copper and Uranium

0.8

0.9

1

1.1

1.2

1.3

n

 

 

10 20 30 40 50

0

0.1

0.2

0.3

wavelength (nm)

κ

 

 

n for uranium, day 1
n for uranium, day 2
κ for uranium, day 1
κ for uranium, day 2

Figure 6.14 The optical constants of uranium measured on two separate
days to show repeatability. The data sets agree within error bars.
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Figure 6.15 Measured κ of uranium and oxidized uranium compared with κ
for uranium measured by Faldt [92] and Cukier [93] and κ for UO2 measured
by Lunt [53]. Our κ for uranium matches that of Faldt (measured in-situ)
and Cukier (measured with an aluminum capping layer). Our κ for oxidized
uranium matches κ for UO2 measured by Lunt.
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These optical constants are calculated using atomic scattering factors from the ta-

bles compiled in 1993 by Henke et al. in reference [60]. In the extreme ultraviolet

wavelength range, the primary interactions of light with matter are photoabsorption

and coherent scattering. At the atomic level, atomic scattering factors describe these

processes. The atomic scattering factor, f = f1 + if2, is defined as the ratio of the

amplitudes of electromagnetic radiation scattered by a particular atom to that of a

single free electron. Henke and coworkers compiled photoabsorption cross sections

for 92 elements from available experimental data and theoretical calculations. These

data were used along with modified Kramers-Kronig dispersion relations to calculate

the atomic scattering factors for the elements.

For condensed matter, atomic scattering factors may be used to describe interac-

tion with EUV photons if we assume that the individual atoms scatter independently,

that is, unaffected by the chemical state of the system. It is shown in reference [60]

that this is a good assumption for wavelengths shorter than about 24 nm and suf-

ficiently far from absorption edges. At longer wavelengths, however, the specific

chemical state is important, and experimental measurements must be made. In the

atomic description, the total coherently scattered amplitude is simply the vector sum

of the amplitudes scattered by the individual atoms.

The index of refraction, N = n + iκ, of a material can be determined from the

atomic scattering factors by assuming that individual atoms scatter as dipoles. This

assumption is good when the wavelength of light is long compared with atomic di-

mensions. The index of refraction can be written as

N = n+ iκ = 1− r0
2π
λ2Nv(f1 + if2) (6.1)

where r0 is the classical electron radius, λ is the wavelength, and Nv is the number

of atoms per unit volume.
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Previous to this work, these calculations based on atomic scattering factors were

the only optical constants for uranium available in this region. Figure 6.16 plots our

measured n and κ for uranium along with n and κ for uranium tabulated on the CXRO

website. As mentioned previously, atomic scattering factors are only applicable far

from absorption thresholds and at wavelengths shorter than 24 nm. Much of our data

is taken at wavelengths longer than 24 nm, and wavelengths shorter than 24 nm are

near an absorption edge (∼11 nm). Therefore, we do not expect these calculations to

match our data very well, which they do not. However, they do confirm the general

trend of our data. Something interesting to note is that the absorption peaks in

our measured data are shifted about 0.5 nm to longer wavelengths (lower energy)

compared to those based on atomic scattering factor calculations. Professor Allred

and Turley’s group previously observed this same trend in the measured constants of

thorium and thorium dioxide [55, 97]. These shifts may be due to chemical bonding

effects disregarded by atomic scattering factor calculations.

6.9 Conclusions

We have shown that high harmonics provide a good source of extreme ultraviolet

radiation sufficient to do polarimetry measurements and extract material optical con-

stants in the wavelength range from 10 nm to 42 nm. We have used laser-generated

high harmonics here for the first time in a workhorse setting to make measurements

valuable to the field of EUV optics. We have found that the relative noisiness of our

harmonic source can be checked by using the unique polarization properties of the

harmonics to reduce systematic errors significantly. We have found that optical con-

stants can be extracted from these polarization ratio reflectance measurements, and

we have done so to find the optical constants of copper, uranium, and their natural
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Figure 6.16 Measured optical constants of uranium compared with con-
stants calculated using the atomic scattering factors [60]. Calculated data
does not match our data very well, most likely because calculated data is not
accurate near absorption edges (here ∼11 nm) or at wavelengths longer than
24 nm. Interestingly, measured absorption peaks are shifted about 0.5 nm to
longer wavelengths compared to calculated data.
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oxides through this wavelength range.
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Appendix A

Standard Operating Procedures

A.1 Aligning the Polarimeter Positioning System

1. Align the infrared laser through the polarimeter using the apertures.

2. Block the infrared laser, and align the HeNe laser through the harmonic-generation

chamber and into the polarimeter with the same apertures used to align the in-

frared laser.

3. Open the program on the computer called ‘APT User.’ It can be found on the

desktop. Load the correct settings by going to File, then Load, then clicking on

‘standard’.

4. Move the sample into the beam, and move the sample angle to 90◦.

5. Adjust the sample rotation stage until the HeNe beam is retro-reflecting onto

the aperture inside the polarimeter chamber. Use the knobs on the back of the

sample holder to make fine adjustments.

6. Block the HeNe beam going into the polarimeter through the harmonic-generation

chamber.
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7. Align the HeNe beam going into the polarimeter through the window in the side

port by flipping the switch labeled ‘HeNe mirror’ to insert the removable mirror

into the beam path. Adjust an upstream mirror until the beam is aligned to

the aperture inside the polarimeter, then adjust the removable mirror until the

beam is retro-reflecting from the sample onto the same mirror.

8. Using the sample translation stage, move the sample out of the beam.

9. Use the detector rotation stage to center the HeNe spot on the grating. Adjust

the CCD camera looking at the grating surface until the HeNe spot is clearly

visible on the TV screen. Mark the location of the HeNe spot on the TV screen

with a marker.

10. Move the grating rotation until the HeNe spot is visible on the TV screen for

the camera looking at the microchannel plate. Mark the location of the HeNe

spot on the TV screen with a marker.

11. Move the sample into the beam and adjust the sample rotation until the HeNe

is again retro-reflecting onto the aperture inside the polarimeter.

12. Move the sample angle to 0◦ and adjust the micrometer on the sample holder

until the sample is cutting off half of the HeNe beam.

13. Move the sample angle to 90◦ and move the sample out of the beam.

A.2 Making a Reflectance Measurement

1. After aligning the positioning system, place a gas cell in the harmonic-generation

chamber and pump the system down. The secondary vacuum chamber needs

to be at pressures below 10−6.
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2. Close the knob pumping out the semi-infinite gas cell region, and fill the region

with the desired amount of gas. Typical pressures are 80 torr of helium, 55 torr

of neon, and 12 torr of argon.

3. Close the gate valve, and unblock the infrared laser to allow it to drill the foil.

4. When the foil has been drilled, open the gate valve and check to make sure the

pressure in the secondary vacuum chamber is still low.

5. Turn on the microchannel plate detector by flipping two switches marked ‘1/2A-

SB,’ waiting 30 seconds, then flipping two switches marked ‘3/4A-SB.’

6. Open the program on the computer ‘ImageCaptureBrimhall.vi.’ A shortcut can

be found on the desktop.

7. Click the LabView ‘run’ button on the top left corner of the screen.

8. Block the beam and click the black ‘Ultracal’ button to do a background sub-

traction.

9. Click the green ‘Run’ button to start running the camera.

10. Move the grating rotation and adjust the gas pressure, aperture, and MCP plate

voltage until you see harmonics on the screen. Optimize the harmonics with

these same parameters.

11. Make sure that the waveplate is in the beam.

12. Set the acceptable laser-energy range with the controls called ‘Laser Min’ and

‘Laser Max.’ The readouts of ‘Actual Max,’ ‘Avg Max,’ and ‘Standard Devi-

ation’ are there to help you set a good range. The green light entitled ‘Laser
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Energy in Range?’ will give you a visible estimate of how many shots are making

it in the range.

13. When you are satisfied with your laser-energy range, take a measurement of

harmonics by setting the number in the control entitled ‘# of shots to average’

and clicking the blue button called ‘Average.’ When the number in the box

‘Repetitions’ equals the number of shots to average, your harmonic image will

appear on the screen. Click the green ‘Run’ button to stop the camera, then

click ‘Save’ to save your data.

14. Move your sample, detector, polarization, and other motors around and collect

your desired data.

A.3 Computer Programs

Two computer programs run the necessary equipment to operate the polarimeter. The

first is called ‘APTUser’ and can be found on the desktop of the polarimeter computer.

This program operates the seven motors used in the polarimeter positioning system.

The second is called ‘ImageCaptureBrimhall.vi’ and a shortcut can also be found on

the desktop of the polarimeter computer. This program operates the image capture

system used to record harmonic data. These programs, which run the polarimeter,

are described in the following two sections.

A.3.1 APTUser

When opening APTUser, four sub-screens should appear. These four screens are

connected to the four drivers used to operate the seven motors of the polarimeter

positioning system. If the four screens do not come up, the drivers are probably not



A.3 Computer Programs 133

on or not connected to the computer. On each of the four screens you will see a serial

number that corresponds to the serial number of the motor drivers. This tells you

which screen operates which driver. Each driver operates two motors. Thus each

of the four screens operates two motors. The top left screen operates the waveplate

rotation and the second port is blank. The top right screen operates the linear focusing

of the MCP (left) and the linear translation of the sample (right). The bottom left

screen operates the detector rotation (left) and the sample rotation (right). The

bottom right screen operates the MCP rotation (left) and the grating rotation. You

can move a motor by clicking on the red numbers and typing in the place you want

it to go.

You can adjust the settings for a particular motor by flipping the ‘Channel’ toggle

switch to the motor you want to adjust, then clicking the ‘Settings’ button on the

bottom right of the screen. You can also save your settings under a profile name.

A profile that works for polarimetry measurements (set up by me) is called ‘stan-

dard.’ This profile should come up automatically when opening the program, but if

it doesn’t, you can load it by going to File, then Load, and clicking on the profile

called ‘standard.’

A.3.2 ImageCaptureBrimhall.vi

ImageCaptureBrimhall.vi is a program I wrote in LabView that allows you to save

images harmonic images. The image capture is triggered by the avalanche photodiode

in the oscillator, so if the oscillator isn’t modelocked or the trigger isn’t connected,

the program will not run.

The front panel can be seen in Figure A.1. The screen titled ‘Intensity Graph’

is the main screen that images the microchannel plate. The two graphs immediately

below and to the left of this screen show lineouts of the screen at the locations
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specified by the yellow crosshairs. The indicators immediately below this screen give

information about the image on the screen, such as the maximum and minimum

intensity values.

Figure A.1 ImageCaptureBrimhall.vi front panel

The smaller screen to the left of the main screen, entitled ‘Fiber’ is a subset of the

main screen that shows only the fiber location. The program uses the pixels within

this screen to determine whether the laser is within the range specified by the controls

‘Laser Min’ and ‘Laser Max.’ The indicators below these two controls are meant to

help the user specify this laser energy range. The ‘avg max’ indicator resets every

time the run button is pressed. Thus, letting the program run for a minute or so gives

a more accurate average than letting it run for only a few seconds. The ‘standard
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deviation’ indicator tells you how jumpy the laser is. If this is very large, it might be

wise to make some adjustments to the laser to make it more stable. The green light

called ‘Laser Energy in Range?’ gives a visual estimate of how good your specified

range is. Typically you want to capture at least one out of every three or four shots,

so you aren’t waiting a long time to complete a measurement. On a good laser run,

you might capture almost every shot.

The buttons to the left of the main screen control the image capture. The black

‘Ultracal’ button does a background subtraction, and the ‘Run’ button is ineffective

until this button is pressed. The ‘Run’ button starts the camera, which continues

running until the ‘Run’ button is pressed again. The average button averages together

the number of shots specified by the control called ‘# of shots to average’ where the

laser energy is within the range specified by the controls called ‘Laser Min’ and ‘Laser

Max.’ The indicator titled ‘Repetitions’ tells you how many shots the computer has

captured where the laser energy is within the specified range. When the number

indicated in ‘Repetitions’ matches the number of shots to average, the main screen

shows the averaged image.

The ‘Sum’ button does not work, and I haven’t wanted to use it enough to fix it.

In principle, the sum button just needs the same programming as the average button

(which works), without dividing by the number of frames at the end.

The ‘Save’ button is only effective when the ‘Run’ button is not pressed. The save

command saves the image on the main screen in matrix form. This makes it easy to

read into MatLab for later analysis. Please note: the image on the main screen is the

only thing that will be saved. Individual shots that comprise the averaged image, the

number of shots averaged, and the user-specified laser energy range are examples of

data that are not saved. The ‘Load’ button will plot on the main screen an image that

was previously saved with this same program. Again, the load button cannot recover
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data that is not previously saved, such as the user-specified laser energy range.

The block diagram is shown in Figure A.2. Most of the programming tells the

card when to capture images. All of the IMAQ sub-VIs are sub-VIs that came with

the capture card, and most of the programming came from their examples. For

example, ‘IMAQ Init.vi’ loads a configuration file and configures the camera. The

actual image comes from ‘IMAQ Extract Buffer.vi.’ I convert the image into an

array using ‘IMAQImageToArray.’ I then plot this array in the main screen (after

subtracting the ultracal image).

Figure A.2 ImageCaptureBrimhall.vi block diagram

I also cut a piece of this array out to plot in the ‘Fiber’ screen. The control to

specify this piece is on the very top of the block diagram, outside of all of the loops.
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This control is made up of four pixel numbers: left, top, right, and bottom. If one

can see the fiber spot on the main screen, but not on the fiber screen, one needs to

change these numbers until you can see it again.
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