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ABSTRACT

CARBON COATED TELLURIUM FOR OPTICAL DATA STORAGE

Jonathan Abbott

Department of Physics and Astronomy

Master of Science

A highly durable optical disk has been developed for data archiving. This

optical disk uses tellurium as the write layer and carbon as a dielectric and

oxidation prevention layer. The sandwich style CTeC film was deposited on

polycarbonate and silicon substrates by plasma sputtering. These films were

then characterized with SEM, TEM, EELS, ellipsometry, ToF-SIMS, etc, and

were tested for writability and longevity. Results show the films were uniform

in physical structure, are stable, and able to form permanent pits. Data was

written to a disk and successfully read back in a commercial DVD drive.

Keywords: Archival, data storage, optical disk, tellurium
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Chapter 1

Introduction

In the last decade, significant progress has been made in data storage technology, both

in capacity and speed. High capacity hard drives, flash memory, and Blu-ray optical

disks are current examples of the continuing trend of higher capacities and faster

seek times. One area that seems to have been neglected in all of these developments

is the long term storage of digital data; by long term I mean storage for hundreds

of years. Magnetic hard drives, flash memory, and current optical disk technologies

are not appropriate for long term data storage because of their short data storage

lifetimes [1] [2] [3] Currently paper is the best archival media available, but it is not

suited for storing digital content (unless we go back to using punch cards).

In this thesis I present an archival optical disk using a novel carbon tellurium

carbon (CTeC) sandwich as the write layer, see Fig 1.1 for a diagram. The car-

bon thin films were employed to protect the tellurium layer from oxidation-induced

degradation. The CTeC sandwich write layer was prepared using plasma sputtering

deposition and characterized with time of flight secondary ion mass spectrometry

(ToF-SIMS) 3D analysis, AFM, TEM, and spectroscopic ellipsometry. SEM and op-

tical microscopy were used to image the written marks, and a Pulstec ODU 1000 was

1
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Figure 1.1 Schematic representing the structure of the disc we have made.

used for writing and analysis of digital errors. Writing and lifetime expectancy tests

show that permanent pits can be written to the CTeC based disks, and the disks are

more resistant to degradation and subsequent data loss.

1.1 Background

While the disk structure I investigated is unique, tellurium has been studied as a write

layer material before. At the time CD’s were being developed, Terao et. al. investi-

gated several materials as potential candidates for a write layer, including tellurium,

lead, bismuth, tantalum and tin in addition to tellurium alloys AsTe and GeTe. [4]

They found that in order to make clean holes in a material it was important that it

have a high molten viscosity, it have high surface tension, the differences in melting

points for alloy materials be small, the material have a uniform thickness, and that

it not form large grains. The chalcogenides (group 16 elements) appeared to fit these

requirements. Herd et. al. investigated holes in tellurium films with a top layer of

carbon. [5]

Lou et. al. reported on a CD type disk that used tellurium as a write layer.
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[6] They found that tellurium has adequate recording sensitivity and error rates.

However, they found the expected lifetime of the disk to be about 10 years, based on

a model presented by Milch and Tasaico. [7]

Kivits et. al. and later Suh et. al. investigated the hole formation process. [8] [9]

Both groups found that simply melting the material in the laser spot was not sufficient

to create a hole, that there was an energy barrier to overcome. These barriers are

due to the surface energy change and the energy needed to overcome the inertial

and viscous damping forces. If the hole to be formed is greater than a minimum

radius, determined mainly by surface energy interactions, and the surface tension of

the material is high enough a hole will be thermodynamically stable once formed.

1.2 Modeling

In order to investigate the energy barrier to hole formation in our material stack,

I developed a simple model to find the difference in the surface energy before and

after hole formation, illustrated in Fig 1.2. I assumed that the hole to be formed is

cylindrical, and that after the hole is made there is no tellurium left on the carbon

layers.

Before the hole is formed there are two carbon-tellurium interfaces that contribute

to the surface energy difference. After the hole is formed those two carbon-tellurium

interfaces become carbon-air interfaces. In addition, we now have a tellurium-air

interface around the wall of the hole. The difference in the surface energy can now

be written as

∆E = 2π r2o (γC − γC−Te) + 2hπ ro γTe, (1.1)

where h is the thickness of the carbon layer and ro is the radius of the hole. γC is the

surface energy of a carbon-air interface, γTe is the surface energy of the tellurium-air
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h

Figure 1.2 Illustration of the simple model that was developed to compare
the surface energy before and after forming a hole in the tellurium layer.

interface, and γC-Te is the surface energy of the carbon-tellurium interface. Using

values from the literature [9] [10] I plotted equation (1.1), shown in Fig 1.3.

There are some interesting features to point out in Fig 1.3. First, there is a mini-

mum hole size that must be reached before the hole will be stable thermodynamically.

This is one of the barriers to hole formation that must be overcome. The minimum

hole size depends on the interfacial energy of the carbon and tellurium layers. Second,

as the radius of the hole gets larger the transition between stable and unstable holes

gets sharper. This means that the write sensitivity, or how much power is required

to begin making holes, can be tuned by varying the interfacial energy. This could be

accomplished by doping the layers or otherwise changing the chemistry.
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Figure 1.3 The difference in surface energy before and after making a hole
in the tellurium layer as a function of hole radius, ro, and carbon-tellurium
interface energy,γC−Te. The pink region is where ∆E ≤ 0, the white region
is where ∆E ≥ 5 × 10−14.
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1.3 Microscopy

In characterizing the CTeC stack I relied heavily on several different microscopy

techniques. I will give a brief introduction to each of the instruments and techniques I

used here to help those not already familiar with them. It is important to understand

the capabilities and, perhaps more importantly, the limitations of each instrument

and technique.

1.3.1 Atomic Force Microscopy

The AFM was invented in 1986 by Binnig, Quate, and Gerber as a result of collabo-

ration between IBM and Stanford University. It overcame a serious limitation of the

scanning tunneling microscope (STM), which was introduced several years earlier, in

that it could image non-conductive surfaces where the STM could only image con-

ducting or semi-conducting surfaces. Since then the AFM has been used to not only

collect topographical data about a surface, but also probe magnetic fields, electric

fields, hardness, friction, and more. It can be used in aqueous environments facilitat-

ing working with biological samples. It is a versatile instrument that has become a

staple in many fields.

There are several different modes available on the AFM. In each mode a probe

is scanned across a small area (some scanners allow up to 90 µm on a side, many

are limited to 10 µm or less) by piezoelectric elements. The probe, or AFM tip, is

typically made of silicon or silicon nitride. Fig ?? shows a typical AFM tip size and

shape. Note how small the cantilever and tip are compared with the substrate they

are attached to. The radius of the point at the end of the cantilever is usually around

10 nm. [11]

As the tip is scanned over a surface a laser is bounced off the back of the cantilever



1.3 Microscopy 7

x y

z

Piezoelectric
elements

Laser

A
B

C
D

Controller
Feedback loop

Cantilever 
and tip

Photodiode
detector

Sample
Surface

Figure 1.4 Schematic of AFM operation.

on to a split photodiode detector. The photodiode detector is used to monitor either

the deflection or oscillation frequency of the cantilever, depending on what mode the

AFM is operated in. A schematic representation of the AFM is shown in Fig 1.4.

Contact mode is one of the most common modes to operate the AFM in. In this

mode the tip is in contact with the surface to be imaged as it is scanned. A feedback

loop maintains a constant cantilever deflection by moving the Z axis piezoelectric

element up or down while the photodiode detector monitors the deflection. By main-

taining a constant cantilever deflection the tip exerts a constant force on the sample,

which can be adjusted by the user. An image is made by recording the position of

the Z axis element at each x,y coordinate.

Tapping mode is the other commonly used mode for AFM. The cantilever is oscil-
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lated at or slightly below its resonant frequency and the tip lightly ’taps’ the surface

being imaged. The feedback loop now maintains a constant oscillation amplitude by

moving the Z axis piezoelectric element up or down to maintain a constant RMS of

the oscillation signal measured by the photodiode detector. The image is made in the

same way as for contact mode.

1.3.2 Scanning Electron Microscope

The first scanning electron microscope (SEM) was sold in 1965. SEM is used to take

high resolution images of surfaces and can be used to gather elemental information

about a sample with a back-scattered electron (BSE) or energy dispersive x-ray (EDX)

detector. Because it uses electrons to form images instead of light, the SEM can

achieve a resolution well beyond the diffraction limit of an optical microscope. The

SEM can be used to image features from about 1 mm down to a few nanometers.

When an energetic beam of electrons hits the sample surface secondary, backscat-

tered, and Auger electrons as well as characteristic x-rays are emitted from the sur-

face. See Fig 1.5-a Typically the secondary electrons are used for imaging, while the

backscattered electrons can give mass/thickness information, and the Auger electrons

and x-rays are used for elemental analysis.

Care must be taken when preparing a sample for viewing in the SEM. Because

it uses a beam of electrons for imaging, a non-conductive sample will charge up and

make imaging impossible. The solution is to either sputter a conductive coating onto

the surface (typically gold) or to use an environmental SEM (ESEM). The sample

must also be high vacuum compatible. Many polymers and some inorganic materials

have a vapor pressure that is too high. When you try to image these samples you

may see beam induced deposition of whatever evaporated from the surface, mainly

hydrocarbons, obscuring the surface you are trying to image and perhaps causing the
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Figure 1.5 a) Particles that are emitted from a sample when hit by an
energetic electron beam. b)Schematic of the detectors available in a typical
SEM
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sample to charge up.

1.3.3 Transmission Electron Microscope

When the first transmission electron microscope (TEM) was being developed in 1932,

it did not have any better resolution than a visible light microscope. Now it can be

used to image columns of atoms in a crystalline sample. We can use the TEM to view

images with several different contrast mechanisms, which each reveal different and

complimentary information, as well as looking at diffraction patterns which reveal

the crystal structure. In some instruments it is possible to do EDX (like in the

SEM) and electron energy loss spectroscopy (EELS) and get elemental and chemical

information about the sample. Doing this analysis in the TEM gives much higher

spatial resolution for your elemental information than in the SEM.

In order to look at a sample in the TEM it must be thin. For good imaging the

area of interest on the sample should be less than 100 nm thick, even thinner (>50

nm, the thinner the better) for good EELS spectra. There are several methods for

creating these thin samples. Tripod polishing is a mechanical thinning method often

used at BYU. Another method that is becoming more common at BYU is to use the

focused ion beam (FIB) instrument. The FIB is an SEM with an ion gun that can

be used for imaging, in situ deposition of some materials, and milling/cutting.

The TEM is capable of revealing a wealth of information about your sample,

but with all that capability comes complication in operating the instrument and

interpreting the results. There are many good books and textbooks devoted to all

aspects of using the TEM, one place to start is with Transmission Electron Microscopy

by Williams and Carter. [12]



Chapter 2

Experimental Work

In order make a successful technical product it is important to understand how the

materials used behave. If the properties are known and understood they can be

manipulated to improve the product. The characterization presented in the following

pages is not comprehensive, but it forms a basis for understanding what is happening

in the disks.

2.1 Methods and Materials

The thin films used in this study were deposited in a PVD-75 system (Kurt J. Lesker)

by reactive magnetron sputtering. The base pressure was 10−5 Torr before deposition,

the pressure rose to 10−3 mTorr during deposition. Carbon was reactively sputtered

from a 99.999% graphite target in an argon and carbon dioxide atmosphere at a power

of 400 W. Tellurium was also reactively sputtered from a 99.999% elemental target in

an argon and carbon dioxide atmosphere at a power of 20 W. The argon and carbon

dioxide gases were 99.999% pure. Silicon dioxide was reactively sputtered from a

99.9999% elemental silicon target using 99.999% pure oxygen in argon. The carbon

11
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layers were 13-20 nm thick, the tellurium layers 20-30 nm, and the silicon dioxide

layer was 20-70 nm thick.

Film thicknesses were controlled by deposition time calibrated by AFM step height

measurements. In order to get accurate step height measurements a marking pen

lift-off technique was used to create the step edge in the deposited films. A line was

drawn with a fine-tipped permanent marker (Sharpie )on a clean piece of silicon before

depositing a film for a known time. After deposition the silicon substrate was rinsed

in acetone to remove the permanent marker, then rinsed in isopropyl alcohol and

deionized water. This process left a clean edge suitable for measuring film thickness.

Films were typically deposited onto grooved polycarbonate substrates 600 µm

thick, although some films were deposited onto silicon substrates. Prior to deposition,

silicon substrates were cleaned with soap and water, rinsed in DI water, then dried

with a jet of N2. They were subsequently placed in an air plasma for 5 minutes. The

polycarbonate was used as received from the manufacturer.

Writing was done with a Pulstec ODU 1000 system (Pulstec Industrial Co.,Ltd.).

This system was used to develop the write strategy (tuning the laser pulse durations

and powers), write data to the disks, and perform digital error analysis.

After deposition, the polycarbonate substrates were bonded to an un-grooved

polycarbonate superstrate with a UV cure epoxy before writing with the ODU system.

After writing, the top polycarbonate was removed. The exposed, written films were

then imaged with SEM and AFM. To prepare a film for viewing in the TEM, a small

piece was cut out of the substrate. The film on this small piece was lightly scratched

with a scalpel into squares approximately 5 mm on a side. The piece was then placed

in dichloroethane. When the film released from the substrate it was lifted out of the

solvent with a 200 mesh copper TEM grid and was ready for viewing. The silicon

substrates were used as deposited without further preparations.
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ToF-SIMS data was collected using an IONTOF ToF-SIMS 5-100 system from

ION-TOF GmbH. A 25 keV 0.25 pA Bi3 beam was used for the analysis and a 20

keV 0.25 nA C60 beam was used for etching. Both beams had an incident angle of

45 deg. The etching was done over an area 300 m X 300 m, with the center 50 m X

50 m area used for analysis. Films for ToF-SIMS studies were deposited onto silicon

substrates.

AFM data was collected on a Dimension V (Veeco) in tapping mode. SEM images

were acquired in a Phillips XL S-FEG (FEI). TEM data was taken in a Technai F20

ASTEM (FEI).

Cross sections for viewing in the TEM were created in a Helios NanoLab 600

DualBeam system (FEI). A small piece was cut from the substrate, with the write

layer that had been written to, and was mounted on a sample stub. The sample was

coated with a thin ( 5-10 nm) layer of gold to reduce charging of the polycarbonate

substrate. 50 nm of platinum was deposited in-situ with the electron beam to limit

damage to the sample surface, after which 1 µm of platinum was deposited with the

ion beam. A TEM sample was then cut, lifted out, attached to a half copper grid,

and thinned for TEM viewing in-situ in the DualBeam chamber. The sample was

then ready for TEM examination.

2.2 Results

The first characterization we present is of the physical structure of the layers. A

focused ion beam (FIB) system was used to prepare a cross section sample. Fig 2.1-

A shows the cross section viewed in the TEM in STEM mode. The top layer is a

platinum layer deposited in the FIB as a protective layer. The bright layer is the

tellurium, and the dark lines visible on either side of the tellurium are the carbon
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layers. Under the bottom carbon layer the silicon dioxide layer is visible, under which

is the polycarbonate substrate. EDX line scans of the cross section and ToF-SIMS 3D

(Fig 2.1-E) both show that there was limited inter-diffusion of the deposited materials

as indicated by relatively distinct boundaries between layers. The leading tail in the

tellurium signal in Fig 2.1-E doesn’t indicate interdiffusion at the carbon-tellurium

interface, rather it is indicative of the faster ion etch rate for tellurium. For further

discussion see Jiang et al. [13]

We also investigated the crystallinity of the deposited layers. Fig 2.1-B shows a

bright field image of written marks taken by TEM. The brighter, oval areas in the

image are the pits that were made during writing. A diffraction pattern was taken

from an area in between the written marks, as indicated by the black box, using

a 10 m selected area aperture. The diffraction pattern is shown in Fig 2.1-C, and

appears to come from a single crystal grain of tellurium. The aperture diameter in

the imaging plane was measured to be 190 nm. The tellurium layer is poly crystalline

with an approximate grain size of at least 200 nm.

Electron energy loss spectroscopy (EELS) was used to investigate the crystallinity

of the carbon layers, the results are shown in Fig 2.1-D as the solid line. Three

reference spectra: graphitic, diamond-like, and amorphous carbon, are shown for

comparison as dashed lines. While the intensities or heights of the peaks may vary,

the general shape of the curve and/or peak ratios should not change significantly

between similar materials. The spectrum obtained from our film has a small sharp

peak at 285 eV, followed by a broad peak centered at about 296 eV. This matches well

with the shape of the amorphous carbon spectrum, while the graphitic and diamond-

like spectra both have features that are not seen in our spectrum. From this we

conclude that the carbon layer in our films is amorphous.

AFM was used to measure film thicknesses on silicon substrates and obtain rough-
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Figure 2.1 Characterization of the write layer materials. A) STEM cross
section of the write layer. The topmost layer is the platinum deposited to
protect the surface, the bright middle layer is the tellurium, and the dark
bands on either side of the tellurium are the carbon layers. The voids in the
tellurium layer are written pits. B)-C) Bright-field TEM plan view of the
write layer and a SAD pattern taken from the area highlighted by the box.
The pattern appears to come from a single crystal grain. D) EELS spectra
from the carbon layer.
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ness data for our deposited films. The film thicknesses obtained from AFM measure-

ments was used in determining the optical constants of our films using spectroscopic

ellipsometry. Results of the AFM measurements and ellipsometry are shown in Figs

2.2-A thru F. Fig 2.2-A shows a tapping mode AFM image of a bare silicon substrate

similar to the ones used in Figs 2.2-C and D. The roughness is 0.142 nm RMS. In Fig

2.2-B the optical constants for the individual carbon and tellurium films is plotted

versus wavelength. In the last four images shown in Figs 2.2 (C - F) we investigated

film roughness and used the step heights to determine deposition rates. Figs 2.2-C

and D show the z-sensor image of the step edge for the tellurium and carbon films,

respectively. Profiles were extracted and shown in Figs 2.2-D and F for the tellurium

and carbon films, respectively.

In addition to investigating the layers themselves, the written marks were exam-

ined. The optical contrast can be seen in the HF trace shown in Fig 2.3-A, which

shows the voltage on a photodiode while reading a disk in the ODU 1000 before re-

moving the top dummy substrate. The contrast can also be seen in Fig 2.3-B, which

is a reflected light optical micrograph taken after the dummy substrate was removed.

SEM and AFM were used to investigate the dimensions of the written marks. Fig

2.3-C shows an SEM image taken at normal incidence with a beam energy energy of

5 keV, using the TLD detector. The dark areas are the written pits, the bright flecks

inside the pits are particles of tellurium that remained after the writing process. The

bright rings around the pits are caused by a small accumulation of tellurium. Fig

2.3-D is a 10 X 10 µm AFM image, collected in tapping mode, of the written pits.

A profile was extracted from the line down the middle of the figure, along one of the

data tracks and is shown in Fig 2.3-E. The horizontal line in Fig 2.3-E was placed

by examining the unwritten areas in between marks, and indicates where the level of

the unwritten film is.
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A B

C D

E F

Figure 2.2 AFM and ellipsometer analysis of the write layer. A) tap-
ping mode AFM image of a piece of silicon wafer, similar to the ones used
in C) and E). The roughness of the surface was measured to be 1.4 ± 0.5
Å. B)Spectroscopic ellipsometer measurements of individual carbon and tel-
lurium films. C) Tapping mode AFM image of a tellurium film step edge.
The roughness of the film was 7.9 ± 0.3 Å. D) Step edge profile of the tel-
lurium film. E) Tapping mode AFM image of a carbon film step edge. The
roughness of the film was 5.2 ± 0.1 Å. F) Step edge profile of the carbon
film.
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A B

C D

E

Figure 2.3 Analysis of the written pits. A) HF trace showing the contrast
between reflective lands and non-reflective pits for all the different sizes of pits
superimposed. B) Optical micrograph of the written pits. C) SEM image of
written pits. The bright rings around the pits are caused by an accumulation
of material around them when the pits are written. D) Tapping mode AFM
image of written pits. E) Profile taken along the line shown in D). The
writing process forms pits in the write layer.
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Figure 2.4 Optical transmission of 5 different write layers were measured
over 120 days at room temperature, shown in the solid lines. Optical trans-
mission of bare tellurium films from Lee and Geiss is shown in the dashed
lines for comparison.

To test the stability of the CTeC films, optical transmission was measured and

compared to tellurium films without carbon. The solid lines in Fig 2.4 are CTeC

films, the dashed lines are published tellurium films from Lee for comparison. [14]

Data to clock jitter is a measure of how well defined the pits and lands of a disk

are [reference]. If the transition from pit to land or vice versa is not clean (sloped

pit edge, jagged border, incorrectly formed pit, etc) it will result in a higher jitter

value. The DVD specification states that the jitter can not be greater than 9% of a

clock cycle; with a clock cycle of 38.32 ns data to clock jitter should not exceed 3.44

ns. [15] Table 2.1 lists average values for the data to clock jitter as well as average

write power and reflectivity before write.
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Parameter Value

Write Power 15.4 ± 0.5 mW

Data to Clock Jitter 4.99 ± 0.30 ns

Reflectivity Before Write 25.4 ± 0.59%

Table 2.1 Average values from 4 disks that were read in an off-the-shelf
commercial drive. Reflectivity was measured with a wavelength of 650 nm.

2.3 Discussion

All of the disks included in table 2.1 were read back in commercial off-the-shelf drives.

As seen in the optical micrograph in 2.2-B, the pits appear to be well defined in

general. In the SEM and TEM images we saw that there were tellurium nano-particles

that did not move during the write process, but those nano-particles did not appear

to affect the optical contrast and our ability to read the data from the disks. As

was mentioned previously, the bright rings around the pits are caused by a small

accumulation of tellurium at the edges of the pits. The rings are visible in the AFM

images in Figs 2.2-D and F. From Fig 2.2-F we can see that the rings are less than 5

nm tall and a few 10s of nanometers wide. These accumulation rings have been seen

before in the literature (see references already given). It is possible that the rings of

material contribute negatively to the jitter value; however, we were still able to read

the data off the disks in an off the shelf commercial drive. The carbon layers do not

negatively impact our ability to make pits in the tellurium.

The CTeC stack shows promise as a long term data storage layer. The optical

transmission of the CTeC layer did not change appreciably after the 15 day point,

while plain tellurium films showed 12% to 30% changes in transmission that continued

after 120 days. Lee and Geiss saw a dependence of oxidation rate on the rate of film
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deposition, with slower oxidation rates occurring with faster film depositions. [14] The

CTeC films used in this study were deposited relatively slowly, 2 to 8 nm/min, so their

oxidation rate cannot be attributed to fast deposition rates. Also, in previous work it

was observed that the tellurium layer would oxidize locally at defects (rougher areas,

scratches, etc) in the substrate. [16] The carbon film that the tellurium layer was

deposited onto was seen to be very smooth, thus reducing the likelihood of oxidation

of the tellurium layer.



Chapter 3

Conclusions

We have made a recordable DVD with a novel write layer consisting of layers of carbon

and tellurium. The data on the recorded disks was readable on off the shelf drives.

We have characterized the composition and structure of the layers and found that

they represent a system with potential for long term stability, therefore this system

shows promise as an archival data storage material.

3.1 Future Work

As was mentioned at the beginning of Chapter 2, the characterization presented here

is not exhaustive and there is still more that could be learned about this stack. The

better this stack is understood the the better we know how to improve it.

The model that was presented in the introduction was not very sophisticated, and

I used values from the literature. The next step would be to improve the model by

adding in a geometrical factor to make a more realistic approximation of the hole

shape. Some effort would also be well spent in determining actual values for the

surface energies of the materials in the disk. Because they are thin films and have

22
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been sputtered with CO2, it is reasonable to expect that the surface energies will be

different from the bulk tellurium or carbon. This would give a better representation

of what is happening energetically in the disk during the write process. Coupling this

with a calculation of the kinetics involved in hole formation would give a much fuller

picture of hole formation in these disks and would help us understand what the effect

of the carbon layers is. It would also lay the foundation of an experimental study of

hole size as a function of surface energy.

Some other interesting questions that remain too are: does the tellurium stays in

between the carbon layers during writing or does it get transported across the carbon

layer, how well do the carbon layers retard the oxidation of the tellurium, and does

the write process change the crystal structure or grain size of the tellurium. The

answers to these questions would further our understanding of this stack of materials

and provide insight into how to improve its performance.



Bibliography

[1] S. Dobrusina, S. Ganicheva, I. G. Tikhonova, T. D. Velikova, and P. E. Zavalish-

inb, “Influence of External Factors on the Longevity of Information Recorded on

DVD ± R Discs,” Scientific and Technical Information Processing 34, 258–263

(2007).

[2] O. Slattery, R. Lu, J. Zheng, F. Byers, and X. Tang, “Stability Comparison of

Recordable Optical Discs-A Study of Error Rates in Harsh . . . ,” JOURNAL OF

RESEARCH-NATIONAL INSTITUTE . . . (2004).

[3] J. S. Judge, R. G. Schmidt, R. D. Weiss, and G. Miller, “Media Stability and

Life Expectancies of Magnetic Tape for Use with IBM 3590 and Digital Linear

Tape Systems,” 20th IEEE / 11th NASA Goddard Conference on Mass Storage

Systems and Technologies (2003).

[4] M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, and S.

Yonezawa, “Chalcogenide thin films for laser-beam recordings by thermal cre-

ation of holes,” JOURNAL OF APPLIED PHYSICS 50, 6881–6886 (1979).

[5] S. Herd and K. Ahn, “Transmission electron microscopy for optical storage ma-

terial analysis,” Thin Solid Films 108, 341–351 (1983).

24



BIBLIOGRAPHY 25

[6] D. Lou, G. Blom, and G. Kenney, “Bit oriented optical storage with thin tel-

lurium films,” Journal of Vacuum Science and Technology 18, 78–86 (1981).

[7] A. Milch and P. Tasaico, “STABILITY OF TELLURIUM FILMS IN MOIST

AIR: A MODEL FOR ATMOSPHERIC CORROSION,” Journal of the Electro-

chemical Society 127, 884–891 (1980).

[8] P. Kivits, R. Bont, B. Jacobs, and P. Zalm, “The hole formation process in

tellurium layers for optical data storage,” Thin Solid Films 87, 215–231 (1982).

[9] S. Suh, D. Snyder, and D. Anderson, “Writing process in ablative optical record-

ing,” Applied Optics 24, 868–874 (1985).

[10] A. Zebda, H. Sabbah, S. Ababou-Girard, F. Solal, and C. Godet, “Surface en-

ergy and hybridization studies of amorphous carbon surfaces,” Applied Surface

Science 254, 4980–4991 (2008).

[11] V. Instruments, SPM Training Notebook, rev. e ed., Veeco Instruments, 2003.

[12] D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer

Science Business Media, LLC, 2009).

[13] G. J. et al. (unpublished).

[14] W.-Y. Lee and R. Geiss, “Degradation of thin tellurium films,” JOURNAL OF

APPLIED PHYSICS 54, 1351–1357 (1983).

[15] ECMA, “ECMA-267,” ECMA (2001).

[16] W.-Y. Lee, “The stability of thin tellurium and tellurium alloy films for optical

data storage: II,” Thin Solid Films 108, 353–363 (1983).



Index

Background, 2

Conclusions, 22

Discussion, 20

Experimental Work, 11

Future Work, 22

Methods and Materials, 11
Microscopy, 6

Atomic Force Microscopy, 6
Scanning Electron Microscope, 8
Transmission Electron Microscope, 10

Modeling, 3

Results, 13

26


