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ABSTRACT

EXTREME ULTRAVIOLET POLARIMETRY WITH LASER-GENERATED

HIGH-ORDER HARMONICS

Nicole Brimhall

Department of Physics and Astronomy

Master of Science

We developed an extreme ultraviolet (EUV) polarimeter, which employs laser-

generated high-order harmonics as the light source. This relatively high-flux

directional EUV source has available wavelengths between 8 nm and 62 nm

and easily rotatable linear polarization. The polarimeter will aid researchers

at BYU in characterizing EUV thin films and improving their understand-

ing of materials for use in EUV optics. This first-time workhorse application

of laser high harmonics enables polarization-sensitive reflection measurements

not previously available in the EUV. We have constructed a versatile posi-

tioning system that places harmonics on the microchannel plate detector with

an accuracy of 0.3 mm, which allows a spectral resolution of about 180. We

have demonstrated that reflectance as low as 0.2% can be measured at EUV

wavelengths and that this data is repeatable to within the error of our source

stability (∼7% fluctuation). We have compared reflectance data with that



taken from the same sample at Beamline 6.3.2 at the Advanced Light Source.

This data agrees well from 5 degrees to 30 degrees and the angular locations

of the interference fringes also agree.
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Chapter 1

Introduction

1.1 The Extreme Ultraviolet: Background and Ap-

plications

The extreme ultraviolet (EUV), the region in the electromagnetic spectrum from

1 nm to 100 nm, is becoming increasingly important in fields such as lithography

for producing integrated circuits, space-based astronomy, and microscopy. However,

there are many difficulties in working in this wavelength region. In particular, nearly

all materials are highly absorbing in the EUV. This virtually precludes the use of

transmissive optics and necessitates multilayer reflective optics. Materials used for

such optics need to be highly reflecting, and their indices of refraction should be well

known. However, in this region, there are not many materials that provide for high

reflectance, and the optical properties of the majority of materials are unknown or

incomplete. This incomplete information poses a problem for designing optics for

varied applications.

The EUV research group at Brigham Young University (BYU), directed by Pro-

fessor David Allred and Professor Steve Turley, produced mirror coatings that were

1



1.1 The Extreme Ultraviolet: Background and Applications 2

used on the IMAGE satellite, which was launched March 25, 2000 [1]. This instru-

ment took the first series of pictures of the Earth’s magnetosphere at 41 eV as part

of a comprehensive multi-spectral imaging of the near-space around Earth. The mir-

ror coatings used in the satellite needed high reflectance (greater than 20%) at 30.4

nm, 14 degrees from normal and low reflectance (less than 2%) at 58.4 nm. The

design work for this project was hampered by the fact that the index of refraction,

or optical constants, for several of the coating materials differed significantly from

published values, forcing remeasurement of the values themselves. Researchers in the

last decade, including those at BYU, have realized the need to expand and verify

optical constants of materials in the EUV.

The complex index of refraction of a material is obtained by measuring reflectance

and/or transmittance of the material as a function of sample angle, wavelength, and

polarization. Reflectance or transmittance measurements are defined as reflected or

transmitted light intensity divided by incident light intensity, giving a percentage

reflected or transmitted light for each sample angle.

Reflectance or transmittance data is fit to the Fresnel coefficients to obtain the

complex index of refraction, N , which includes the real part, n, and the imaginary

part, κ. n and κ are essentially interchangeable with the commonly used δ and β,

where n = 1− δ and κ = β. The set of n and κ (or δ and β) are referred to as optical

constants. Currently in the EUV research group at BYU, reflectance and transmit-

tance measurements are made either at BYU using a monochromator with a plasma

light source or at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley

National Labs in Berkeley, California. The process of making reflectance measure-

ments is commonly referred to as reflectometry. When reflectometry is performed

using a polarized light source, the process is called polarimetry.

Previous work in the EUV group includes measuring the optical constants of
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uranium, uranium oxides [2], uranium nitride [3], thorium [4], thorium dioxide [5],

and scandium oxide [6]. Figure 1.1 depicts the optical constants of thorium dioxide

measured by the EUV research group at BYU compared with those determined pre-

viously by other groups [5,7]. The discrepancies seen in this plot emphasize the need

for accurate remeasurement of many sets of published optical constants.

Figure 1.1 Graph of published optical constants of thorium dioxide [7]
versus values measured by the BYU EUV research group [5].

Along these same lines, the EUV research group at BYU has also furthered tech-

niques for determining optical constants to a greater degree of accuracy. These tech-

niques include measuring and fitting reflectance and transmittance data simultane-

ously [8], determining the effect of surface roughness and interfacial diffusion on re-

flectance data [9], and determining the accuracy of utilizing Kramers-Kronig relations

to find optical constants [10]. All of these important developments in the understand-

ing of materials in the EUV are hampered by the fact that BYU’s monochromator
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does not have the flux nor the wavelength range of the ALS. However, the ALS is

located in Berkeley, California, requiring significant time and travel expenses to make

measurements there. Because optical properties are intertwined with surface charac-

teristics and thin-film preparation procedures, it will be a big advantage to have a

polarimeter with sufficient source brightness and energy range co-located with sample

preparation and characterization instruments at BYU.

1.2 High Harmonic Generation

Laser-generated high harmonics provide an excellent source of polarized, directional

EUV light. This thesis outlines the development of EUV polarimetry using available

high harmonics at BYU. The harmonics form a comb of frequencies throughout the

EUV, in our case ranging from 8 nm to 62 nm. The wavelength of an individual

harmonic is λ/q, where λ is the wavelength of the generating laser and q is the

harmonic order, an odd integer. The odd harmonics of 800 nm laser light in principle

can be generated up to several hundred orders [11–13]. Harmonics are generated when

a short-pulsed laser is focused to create high intensities (approximately 1015 W/cm2)

in a gas such as argon, neon, or helium. The laser pulses cause strong nonlinear

responses in the individual atoms of the gas, generating harmonics that are coherent

with the incident beam. Many harmonic frequencies (with wavelengths distributed

throughout the EUV) simultaneously emerge from the focus in a collimated beam,

which is embedded in the residual laser beam as shown in Figure 1.2. The harmonics

include wavelengths in the neighborhood of 13.5 nm (the 59th harmonic), which is

the wavelength being developed by the computer chip industry for EUV lithography.

The harmonics take on the same linear polarization as the incident laser light [14].

Our high harmonics are generated with 800 nm, 30 fs, ∼10 mJ laser pulses focused
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30 fs 
Laser 
Pulses

Gas (He, Ne, Ar)

EUV Grating

MCP 
Detector

EUV Generation
EUV Light

Figure 1.2 Setup for producing high-order harmonics.

in a cell of helium, neon, or argon gas. High harmonics are detected using a grazing-

incidence tungsten-coated grating, which disperses and focuses the different harmonic

orders onto a microchannel plate (MCP) coupled to a phosphor screen. This setup

was used to produce the high harmonics seen in Figure 1.3. Each harmonic order

strikes the detector at a different horizontal position while the angular size of each

harmonic beam is preserved in the vertical dimension.

6 mrad

Figure 1.3 Harmonics of order 45-91 (wavelengths 8.8-17.8 nm) produced
in neon gas.

High harmonics continue to be a topic of active research. A summary of the

characteristics of the harmonics available at BYU are presented in Table 1.1. For

comparison, the characteristics of Beamline 6.3.2 at the Advanced Light Source [15]

in Berkeley, California, a beamline commonly used for EUV optics testing, and char-
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acteristics for the hollow cathode plasma source at BYU are also shown.

As seen in Table 1.1, the wavelength range of high-harmonic EUV is wide, and

although it is not continuous like the ALS, it has good spacing of wavelengths through-

out the range. Also, many of the higher harmonics merge together, giving it continu-

ous wavelength coverage in some ranges. In contrast, ionic and atomic emission lines

from a plasma source are clustered around only a few wavelengths. The flux of high

harmonics is relatively high, a factor of 300,000 brighter than BYU’s plasma source.

On the other hand, the high harmonics are only a factor of 30 dimmer than the ALS,

not a huge number when considering the size and cost of operation. The synchrotron

is a hundred-million-dollar instrument with a footprint the size of a football field and

a permanent staff of hundreds of people [16]. The spectral resolution of high harmon-

ics produced at BYU is not as good as that of the synchrotron or the plasma source,

but it is good enough to resolve broad features in optical constant data. The spectral

resolution will be discussed further in section 3.4.

One of the great advantages of high harmonics is that the EUV light preserves

the same linear polarization as the generating laser beam. Polarized EUV light is

difficult to produce using other approaches because EUV light is easily absorbed,

and so transmissive polarizers cannot be used with practical efficiency. Multilayer

reflective polarizers have been developed, but these are not broadband. Synchrotron

light is naturally polarized, but this is not easily rotated. In contrast, the polarization

of high harmonic EUV light is easily rotated by placing a half-wave plate in the

incident laser beam before the EUV light is generated. In this way we can make

polarization-sensitive reflectance measurements at multiple polarizations, something

never before done on a regular basis in the EUV. This can further constrain data to

achieve accurate optical constants.

Previous work on high harmonics at BYU has made it possible to achieve the
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High Harmonic
Generation at
BYU

Beamline 6.3.2
at the Advanced
Light Source

Hollow Cathode
Plasma Source at
BYU

Energy 20-155 eV (8-62
nm), quantized as
1.55q eV where q
is a positive odd
integer (roughly
every 3 eV)

50-1300 eV (1-25
nm) continuous

Various atomic
and ionic emis-
sion lines from
10-177 eV (7-121.6
nm). Comprises
approximately 150
lines.

Flux 6 × 108 pho-
tons/sec at 100 eV
(measured, com-
prising 10 laser
shots)

1.6 × 1010 pho-
tons/sec at 100 eV
(calculated)

2 × 103 pho-
tons/sec at 41 eV
(measured)

Spectral
Resolution
(E/∆E)

∼180 1100 500

Polarization Rotatable linear
polarization (same
as laser)

Fixed 90% S-
polarized, 10%
P-polarized

Unpolarized

Detectors Microchannel plate
(MCP)

Photodiode, Chan-
neltron, CCD

Channeltron

Spot Size at
Sample

1000 × 1000 µm 10 × 300 µm 5000 × 5000 µm

Table 1.1 Characteristics of high harmonic generation as a source of EUV
light compared to two commonly used sources, Beamline 6.3.2 at the Ad-
vanced Light Source and a hollow cathode plasma source currently in oper-
ation at BYU.
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brightness needed to make reflectance measurements at EUV wavelengths. In the

past decade, the group of Prof. Justin Peatross at BYU has constructed a high inten-

sity laser system to produce high-order harmonics. Former doctoral student, Sergei

Voronov, and former master’s student, Julia Sutherland, used counter-propagating

light to probe the region where high harmonics are produced [17]. Sutherland found

that high harmonics produced in a long gas cell are phase matched over a much longer

distance than was expected, an effect which is responsible for unusually bright har-

monics [18]. Following up on their work, another master’s student, John Painter, and

myself observed that a double focusing and flat-top spatial profile in the laser-beam

was associated with this extended phase matching [19]. This work will be discussed

in Chapter 2.

In addition to their other work, Sutherland and Painter also investigated an effect

where harmonic orders are significantly brightened by partially obstructing the laser

beam with an aperture prior to harmonic generation. We are still investigating why

this happens, but the harmonics have been sufficiently optimized to make them a

very useful source for polarimetry.

1.3 Previous Work on an EUV Polarimeter

Voronov and former undergraduate student Greg Harris previously constructed a

simple prototype instrument at BYU to make polarization-sensitive reflectometry

measurements in the EUV [17]. The fixed-angle instrument utilized laser-generated

high harmonics as a source of polarized EUV light. Figure 1.4 shows a schematic of

their prototype instrument.

The high harmonics for this prototype experiment were produced in argon gas

inside the first chamber. A half wave plate in the generating laser beam controlled
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CCD

turbo pumpsrotatable half-
wave plate

argon gas jet 

turbo pump MCP

sample (45o)

EUV 
grating

EUV 
generation

800 nm, 30 fs, 
10 mJ laser 
pulses

Figure 1.4 Prototype polarimeter (top view). Taken from Voronov [17].

the orientation of the harmonic polarization. Three turbo pumps provided differential

pumping to maintain low pressure at the detector. After reflecting off of the sample,

the harmonic beams proceeded to a tungsten-coated grating (600 lines/mm, 2◦ blaze)

with a 1 m radius of curvature. They were diffracted and focused by the grating onto

an MCP coupled to a phosphor screen.

The prototype experiment included several important features of the full instru-

ment. The polarization of the incident harmonics could be easily rotated with the half

wave plate in the laser beam. Also, because the grating was placed after the sample,

reflectance of multiple wavelengths of EUV light could be measured simultaneously.

This instrument demonstrated that the harmonic source would have sufficient bright-

ness to measure reflectances as low as 0.5% at low to moderate harmonic orders.

The major limitation of this prototype instrument was its lack of scanning mobil-

ity. The sample was at a fixed angle of 45◦, only one data point in a measurement

of reflectance as a function of angle. Also, the sample could not be moved out of the
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beam in order to measure incident light intensity. To remedy this, a ‘reference’ wafer

was placed on the sample stage at the same time as the ‘sample’ wafer, such that

the harmonic beams were cut in half as each half reflected from a different surface.

Presumably, reflected signal from the ‘reference’ or known sample could be used to

deduce the incident signal. This could then be employed to determine the reflectance

from the unknown sample.

In this case, both the ‘sample’ and ‘reference’ wafers were silicon substrates with

different oxide thicknesses. Figure 1.5 shows the harmonics at the MCP after having

reflected from both wafers simultaneously. Figure 1.6 shows a comparison between

the s- and p-polarized reflected high-harmonic light from the two surfaces. The two

surfaces show significant differences in reflectivity, presumably owing to their different

oxide layer thicknesses. This prototype data, although limited, gave us confidence

that the full scale instrument would have sufficient brightness to make reflectance

measurements at these wavelengths.

Figure 1.5 Harmonics reflected from two different samples. Taken from
Voronov [17].

1.4 Overview of New Instrument and Outcomes

For my thesis, I constructed a full scale polarimeter instrument with extensive scan-

ning capabilities, which allows us to characterize optical surfaces in the EUV on a
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Figure 1.6 S-polarized vs. p-polarized high harmonics reflected from two
silicon wafers with different oxide thicknesses. Taken from Voronov [17].

routine basis. To our knowledge, this is the first time that high harmonics have been

employed in a workhorse setting, as opposed to merely demonstrating proof of con-

cept. The full instrument can determine the reflectance from samples as a function

of incident angle, light polarization orientation, and wavelength (associated with a

discrete comb of odd harmonics of 800 nm, up to order ∼99). As with the prototype

instrument, we are able to measure reflectance from a wide comb of wavelengths si-

multaneously (with a much wider range of available wavelengths due to a rotatable

grating), and the polarization of the incident light is easily rotated with a half-wave

plate in the incident beam. A schematic of the full scale instrument is shown in

Figure 1.7.

We have found that our high harmonic source has enough flux to measure re-

flectances as low as 0.2% with an energy range from 8 nm to 62 nm. By averaging

multiple laser shots, we have shown that our incident light intensity is stable to

within 7%. Our positioning system is robust and versatile and is able to achieve a
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spectral resolution (λ/∆λ) of about 180. We have measured reflectance as a function

of angle of a thermally oxidized silicon sample and found that these measurements

were repeatable to within our source stability. We have also compared these mea-

surements with measurements taken at Beamline 6.3.2 of the Advanced Light Source

in Berkeley, California. The two measurements agreed very well from 5 degrees to

30 degrees. Above 30 degrees the polarimeter measurements read about a factor of

four too high, but were qualitatively consistent with ALS data. This may be caused

by an incorrectly calibrated microchannel plate, which can be corrected in the future.

CCD

100 cm

turbo pumps
rotatable 
half-wave 
plate

gas (He, Ne, Ar)

turbo pump

MCP

sample

EUV grating

dual rotation 
stages

EUV 
generation

turbo pump

800 nm, 30 
fs, 10 mJ 
laser pulses

Figure 1.7 The full scale polarimeter.



Chapter 2

High Harmonic Source

In this chapter we discuss the high harmonic source itself. We characterized the

spatial evolution of the laser pulse energy distribution as it propagated within a gas

cell [20, 21]. We also documented the evolution of the brightness of the associated

high-harmonic emission. These measurements show evidence of self guiding and even

refocusing of the laser energy, which would seem suggestive of Kerr-style filamenta-

tion. However, the laser power used in the experiment is well below the critical power

for filamentation [22–24]. An alternative explanation has since been developed by

Matthew Turner, another member of our research group.

2.1 High Harmonic Generation

The laser system we use to generate harmonics is a Ti:sapphire, 10 mJ laser that

delivers pulses at a repetition rate of 10 Hz. The laser pulses are centered on 800 nm

with a bandwidth of 35 nm (FWHM). The pulse duration measured by autocorrelation

was determined to be 30 fs. The laser beam is focused with a 100 cm focal length

lens or mirror into a cell filled with helium, neon, or argon gas (see Figure 2.1).

13



2.1 High Harmonic Generation 14

This focusing achieved an intensity of 1.9 × 1015 W/cm2 (with 25% uncertainty) in

vacuum and approximately half that in the gas-filled cell which modified the focus.

An 8-10 mm aperture (closed on a ∼2 cm beam) located before the focusing optic

was shown to strongly enhance harmonic emission [25]. A glass tube capped with

molybdenum foil separates the region of gas from vacuum. This setup, where the

gas filled region extends from the focusing optic to the molybdenum foil, is called a

semi-infinite gas cell configuration and was shown to produce brighter harmonics than

short cells of 6 mm or less [18]. The laser self drills a hole in the molybdenum foil,

eliminating the need for precise alignment. After harmonic generation, the harmonics

exit into vacuum and co-propagate with the residual laser beam. The harmonics and

laser proceed to the detection setup about 1.5 m away, passing through two pinholes

that provide for differential pumping. The harmonics are separated and focused in

one dimension by a tungsten-coated EUV grating and are detected by a microchannel

plate detector coupled to a phosphor screen. A visible light CCD camera captures

the image on the phosphor screen and relays it to the computer.

turbo pumps
partially 
closed 
aperture

gas (He, Ne, Ar)
800 nm, 30 
fs, 10 mJ 
laser pulses

molybdenum 
foil

semi-infinite 
gas cell 
configuration

pinholes

EUV grating

MCP

CCD camera

to computer

Figure 2.1 Harmonic generation and detection setup.

Figure 2.2 shows harmonics produced in 80 torr helium from the 45th to the 91st
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order, which have approximately uniform intensity. We measured the energy in an

individual harmonic order to be approximately 1 nJ [21]. Higher order harmonics are

diffracted with a 1200 line/mm grating with 2 m radius of curvature while lower order

harmonics are diffracted with a 600 line/mm grating with a 1 m radius of curvature.

We found that the best gas pressure for harmonic production in helium is about

80 torr and the best gas pressure for harmonic production in neon is about 50 torr.

The intensity of the harmonics is not affected by gas pressure variation of ±4 torr.

6 mrad

Figure 2.2 Harmonics of order 45-91 (wavelengths 8.8-17.8 nm) produced
in neon gas.

2.2 Previous Work

Previously, Sutherland, et al. [26] used counter-propagating pulses to probe the re-

gion near the focus where harmonics are generated. They observed that in neon

the harmonics are generated in the last few millimeters before the exit foil, and in

helium the harmonics are produced over many millimeters. Former undergraduate

Eric Christensen [27] found that the difference in the harmonic generation depths as

characterized by the counter-propagating light is consistent with the differences in

absorption rates of the two gases. Christensen measured gas absorption by placing a
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second gas cell after harmonic production and measuring harmonic signal attenuation

as gas pressure in the second cell was increased. Transmission of the 71st harmonic

through 2 mm of 55 torr neon was found to be 29%; in contrast, the 71st harmonic

was found to propagate through 10 mm in helium at 115 torr with the same level of

absorption.

The above measurements suggest that harmonics are phase matched over many

millimeters, limited primarily by absorption. This is unexpectedly long, since the

natural diffraction of a free laser beam should introduce phase mismatches that limit

the coherence lengths to a fraction of a millimeter. This extended phase matching

suggests that laser self guiding plays a role in enhancing harmonic production in

gas cells, a proposition supported by reports made by Tamaki, et al. [28] based on

the observation of strong harmonic emission from thick gas cells. Former master’s

student, John Painter, and myself investigated the possibility that laser filamentation

was causing this extended phase matching [19]. We did this by characterizing the

spatial profile of the generating laser beam in the region of harmonic production.

2.3 Effect of Focal Position on Harmonic Genera-

tion and Laser Profile

To image the spatial profile of the laser beam under conditions suitable for produc-

ing harmonics, an uncoated glass substrate oriented at 45 degrees was temporarily

inserted in the beam before the harmonic-detection setup (see Figure 2.3). The glass

substrate, which functioned both as a mirror and an attenuator, could be moved into

and out of the laser beam in a matter of seconds while maintaining vacuum in the har-

monic detection setup. The substrate reflected approximately 2% of the laser, which

was imaged by an f = 75 cm focusing lens onto a CCD camera. Neutral density filters
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Figure 2.3 Setup to image laser beam spatial profile under conditions suit-
able for harmonic generation.

were used for further attenuation. The camera was positioned to image the laser at

the plane of the exit foil of the gas cell. The position of the foil was scanned parallel

to the laser axis over a range of 9 cm. The axial position of the camera was also

scanned to maintain an image of the laser beam at the exit foil. The magnification of

the image was approximately 3×, depending on the exact location of the foil relative

to the imaging lens.

Figure 2.4 shows harmonics generated in 80 torr helium gas together with the

laser beam spatial profile at the z = 0 cm position, or where the beam focuses in

vacuum. The left image shows the generated harmonics, the middle image shows the

measured laser beam spatial profile, and the graph on the right shows a lineout of the

laser beam spatial profile. The units on the laser image and beam lineout are scaled

to the dimensions of the laser focus in the gas cell rather than the image size on the

CCD. Each image is the average of 10 laser shots.

Figure 2.5a plots the beam diameter in both 80 torr helium and vacuum as the

foil position is varied. In helium, the width of the beam reaches a minimum near
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Figure 2.4 Harmonics (left), imaged laser beam (center), and beam lineout
(right) for harmonics generated in 80 torr helium at the z=0 position, or
where the beam focuses in vacuum.
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Figure 2.5 (a) Diameter of the laser as it exits from the gas cell, either
filled with 80 Torr helium or evacuated. The best focus in the absence of
gas occurs 100 cm after the focusing mirror. (b) The brightness of several
harmonic orders as the foil position is varied.
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z = -3 cm, widens to reach a maximum near z = 0 cm, and then narrows again

to a second minimum at z = 4 cm. In vacuum the beam goes through a single

focus, as would be expected. The z-position of the exit foil is measured relative

to a location 100 cm from the focusing mirror, which is where the beam focuses

in vacuum. Figure 2.5b, shows the intensity of several harmonic orders at the foil

positions where the beam diameter in helium was measured. The best harmonic

production is observed around z = 0.5 cm, where the laser in helium is changing

from diverging to converging. Figure 2.6 compares intensity lineouts of the laser

beam focused in helium and in vacuum. The beam propagating in vacuum shows a

Gaussian-like profile, which reaches a single minimum width with maximum intensity

at z = 0 cm. The beam propagating in helium exhibits the double focus discussed

above, and a distinct flat-top radial profile from about z = -2 cm to z = 1.5 cm.

Although not immediately apparent from the lineouts, the two curves correspond to

similar total energies. (The intensity at wider radii is incident on a larger area, so in

two dimensions the extra intensity in the wings of the profile in helium compensates

for its lower on-axis intensity).

A flat-top profile was previously associated with laser self guiding and extended

phase matching in neon [29,30]. Tosa et al. [29] calculated the radial intensity profile

of a self-guided beam and predicted that it would exhibit a top-hat profile, owing

to wavefront distortions from free electrons. Kim et al. [30] subsequently observed

a radial intensity flattening in a single image produced for a laser that had traveled

through a wide gas jet. The top-hat profile was attributed to defocusing of the laser

by free electrons at inner radii. As the on-axis energy is defocused out to wider radii,

it overlaps with the less intense outer portion of the laser beam still in the act of

focusing. While this explanation is consistent with the radial intensity distribution

observed and laterally broadened wave fronts, it was not at first obvious how this
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Figure 2.6 Lineouts of the laser focused in helium and in vacuum at the
z = 0 cm position, or where the laser focuses in vacuum.

could offer good longitudinal phase matching for high-harmonic generation. It was

also not obvious how this could cause a re-convergence of our beam to a second focus,

as seen in the data. However, recent calculations indeed show that these behaviors

arise from an interplay between the diffraction caused by the partially closed aperture

and the dispersion caused by free electrons generated in the focus. The results appear

to be consistent with the mechanisms described previously by Tosa, et al. [29].

2.4 Discussion

The double focusing observed in our laser beam as it interacts with helium is sug-

gestive of Kerr-style self-focusing, or filamentation. Placing a partially closed aper-

ture in the laser beam before the focusing mirror causes the observed laser focus to

be smoother while at the same time dramatically increasing the high harmonic sig-

nal. This effect may support the idea of Kerr-style self-focusing in the sense that a
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smoother beam will tend to favor the formation of a single filament rather than com-

peting filaments. Nevertheless, the nonlinear index in 80 torr of helium is reported

to be approximately 4×10−22 cm2/W [22, 23], which predicts a critical power for fil-

amentation [24] in excess of 2 TW. In contrast, the power used in our experiments

was an order of magnitude less. Tosa and coworkers [29] also indicate that the Kerr

nonlinearity should be inconsequential.

The development of a flat-top intensity profile in the laser focus is consistent with

the predictions and observations of Tosa and Kim [29, 30]. However, our observa-

tion of double foci at first appeared to be unexpected within their description. The

brightest harmonics are attained when the exit foil of the gas cell is positioned near

the middle of the self-guiding region, where the beam diameter is largest. This region

of extended phase matching occurs where the laser beam changes from diverging to

converging between the two foci. This is opposite in character to a conventional laser

focus, which changes from converging to diverging while accompanied by the Gouy

shift (known to be deleterious to phase matching). The interpretation of the data is

complicated by the fact that the CCD camera measures energy fluence rather than

intensity (technically a mislabeling of Figures 2.4 and 2.5). Our measurement tech-

nique is therefore unable to distinguish whether the entire pulse in time develops the

flattop profile as seen in the data, or whether different temporal portions of the pulse

look spatially different. Recent calculations by Matt Turner in our research group

have shown the unexpected result that both the flat-top intensity profile and the

double foci in the laser beam can be explained as a combination of laser diffraction

from a partially closed aperture and dispersion caused by free electrons in the laser

focus. These findings confirm the explanation made by Tosa [29] that the Kerr effect

is inconsequential.



Chapter 3

Description of Polarimeter and

Procedures

3.1 Positioning System and Alignment

The major components of the polarimeter are the sample, the grating, and the

microchannel-plate detector. The positioning system is made up of six motors, all

controlled by a single computer, as seen in Figures 3.1 and 3.2. The sample sits above

two concentric rotation stages. One varies the incident angle of the harmonic light

on the sample. This provides measurements of sample reflectance as a function of

angle. The other swings the entire detection system (grating and microchannel plate

detector) through twice that angle, allowing detection of reflected light. A second

pair of rotation stages sits beneath the grating: one to adjust the grating angle to

measure different wavelengths of light and the other to separately adjust the angle

of the microchannel plate to allow detection of diffracted light. A linear translation

stage is used beneath the microchannel plate detector to focus the harmonic orders of

interest onto the detector. The sample is also connected to a linear translation stage.

22
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This allows the sample to be moved out of the beam to obtain incident intensity

measurements of harmonics.

The microchannel plate detector needs to be kept at pressures lower than 10−5 torr

while in operation to prevent arcing. The polarimeter positioning system is housed in

a vacuum chamber of approximate dimensions 1.5 m×1 m×30 cm, however, which is

difficult to pump down to the necessary pressures. To deal with this, we placed a small

vacuum chamber (11.4 cm×11.4 cm×11.4 cm) inside the large vacuum chamber. This

secondary vacuum chamber has its own turbo pump and a pinhole for the harmonics

to enter. With differential pumping, this secondary chamber can reach base pressures

lower than 10−6 torr while the large chamber is at 10−4 torr. The entire system can

pump to the necessary pressures in less than 30 minutes without special cleaning

procedures.

Sample Grating
Secondary Vacuum 
Chamber

CCD 
camera

Sample 
Rotation

MCP

Detector 
Rotation

Grating 
Rotation

MCP 
Rotation

Linear Translation 
for Focusing

Linear Translation

Turbo 
Pump

Figure 3.1 Polarimeter positioning system, side view

The positioning accuracy of the rotation stages (ThorLabs NanoRotator NR360S)

is 3×10−4 degrees. However, on two of our rotation stages (detector rotation and
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Figure 3.2 Polarimeter positioning system, top view
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MCP rotation) we significantly exceed the torque limit of 23.1 N·cm. The major

contributors to weight are the secondary vacuum chamber weighing 30 lbs and the

turbo pump weighing 7 lbs. This weight is located at approximately 45 cm from the

detector rotation stage and 30 cm from the MCP rotation stage. We placed wheels

under the secondary vacuum chamber to help with the load, but the torque is still

far above 23.1 N·cm. Because of this sizeable torque, these two motors only have a

positioning accuracy of 1 degree. This is unacceptable. We must be able to position

the reflected/diffracted harmonic beams to the same position on the MCP to within

1 mm using both motors in order to distinguish harmonic orders from each other.

When considering the fairly large distances that the harmonic beams have to travel,

the first motor must have positioning accuracy of 0.13 degrees, and the second motor

must have positioning accuracy of 0.2 degrees. If we can position this well, we can

use software to line up the harmonics to within 30 µm.

Our solution to this problem is to implement an in-situ alignment system using a

HeNe 632.8 nm laser (refer to Figure 3.3). The laser enters the large vacuum chamber

through a lens in a side port. A mirror on a solenoid can be moved into position while

under vacuum, allowing the HeNe laser to propagate temporarily along the same path

as the infrared laser. The HeNe laser focuses to a spot size of 1 mm on the diffraction

grating. A small CCD camera views the HeNe laser spot on the diffraction grating

surface.

Once the detector motor has been moved to a rough position, fine adjustments

can be made to position the HeNe laser to the correct position on the diffraction

grating. This procedure allows positioning accuracy of better than 0.11 degrees for

the detector rotation stage. A similar procedure is employed to increase the accuracy

of the MCP rotation stage. A CCD camera inside the small vacuum chamber images

the microchannel plate. The same HeNe laser reflects zero order light off of the
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Figure 3.3 In-situ HeNe laser alignment system.

diffraction grating and enters the small vacuum chamber. By rotating the grating 3

degrees, we can image the HeNe laser on the MCP. The laser here is about 4 mm in

diameter. Once the MCP motor has been moved to a rough position, fine adjustments

can be made to position the laser to the correct position on the MCP. This allows

positioning accuracy of better than 0.2 degrees for the MCP rotation stage.

The alignment procedure for the system is as follows (see Figure 3.4):

1. At low power, align the infrared laser with apertures 1 and 2.

2. Move the sample to 90 degrees and adjust the sample angle until it retroreflects
the laser beam back through the apertures . A HeNe laser can also be used
temporarily in place of the infrared laser system.

3. Turn on the solenoid that inserts the HeNe mirror (mirror 2) into the laser path.
Align the HeNe laser along the same path as the infrared laser by aligning with
aperture 2 with mirror 1 and adjusting mirror 2 until the HeNe laser beam
retroreflects from the sample.

4. Move the sample out of the laser path with the linear sample stage.

5. To align the detector arm, adjust the detector angle until the HeNe laser is
centered on the grating.
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6. Move the sample back into the beam with the linear sample stage. Because
the detector angle was adjusted in the previous step, the sample angle will now
be slightly off (the sample motor is on top of the detector motor, so moving
the detector motor also moves the sample). Adjust the sample angle again so
that it is retroreflecting the HeNe laser. This angle is defined as the sample
90-degree position.

7. Move the sample angle to 0 degrees. Align the sample z-position by adjusting
the micrometer on the sample stage until the sample is cutting off half of the
HeNe beam.

8. The vacuum gauge on the secondary vacuum chamber causes a physical con-
straint such that the MCP arm cannot be moved to 0 degrees at the same time
that the detector arm is moved to 0 degrees. To align the MCP arm, move the
detector angle to any angle greater than 10 degrees. Move the MCP arm angle
to 0 degrees and adjust until the legs line up.

9. To align the grating angle, move the sample angle to half of what the detector
angle is. This reflects the HeNe laser onto the grating. Move the grating angle
to 0 degrees and adjust this angle until the grating is cutting off half of the
HeNe beam.

10. The grating and MCP arm angles are now both at 0 degrees. To see harmonics,
the grating should be moved to approximately 8 degrees and the MCP arm
should be moved to approximately 19 degrees. These angles can be adjusted
while viewing harmonics to view desired harmonic orders.

11. To prepare the positioning system for an incident intensity measurement, which
is usually the first step in a reflectance scan, move the detector angle to 0
degrees, the sample angle to 90 degrees, and move the sample out of the beam
with the linear sample stage.

We found that the positioning system was accurate enough for us to distinguish

harmonic orders from each other. A typical position difference between two harmonic

measurements was about 0.3 mm (see Figure 8). However, because of the sharpness

of the peaks, we are able to use software to shift the data to align the harmonics on

top of each other to within 30 µm. Using both of these techniques, we are able to

obtain a spectral resolution (λ/∆λ) of 180 (discussed in section 3.4).
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Figure 3.4 Schematic of steps for aligning the polarimeter.
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Figure 3.5 Two measurements of the 41st and 43rd harmonics to show
positioning repeatability. Because of the sharpness of the peaks, positioning
accuracy can be combined with electronic means to align harmonics on top
of each other to within 30 µm.
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3.2 Detector Setup

The detector consists of a stacked microchannel plate pair coupled to a phosphor

screen. The front plate is connected to ground and the back plate is held at 1100-

1600 V. The phosphor screen is powered with 5200 V. A visible light CCD camera

captures the image on the phosphor screen and is read by a computer.
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Figure 3.6 Characterization of the microchannel plate response as the plate
voltage is increased. Also plotted is a polynomial fit of the response.

In order to increase the dynamic range of our detector for the sake of low re-

flectance measurements, we found it necessary to increase the voltage on the second

plate of the microchannel plate detector as the signal decreased. This process is

characteristically nonlinear. To describe this nonlinearity, we dimmed incident har-

monics by lowering the gas pressure until they were barely visible with the MCP held
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at 1100 V. We then increased the voltage while keeping gas pressure constant and

averaging over 100 laser shots. This characterization along with a polynomial fit is

depicted in Figure 3.6.

This method of increasing our dynamic range is characteristically flawed. The

response of the microchannel plate is possibly slightly different for each wavelength

of light incident on it. Also, as the plates age, they may change their response. A

possible solution to this problem will be discussed in section 4.5.

3.3 Determination of Orders

To determine the wavelength of each harmonic, we placed a 0.2 µm aluminum filter

on a solenoid in the vacuum chamber so that it could be moved into and out of the

beam before the sample. The calculated transmission of the 0.2 µm aluminum filter

is shown in Figure 3.7 [7].
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Figure 3.7 Transmission of a 0.2 µm aluminum filter calculated from optical
constants.
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The aluminum edge transmits harmonics of orders 45 and below, but not harmonic

orders 47 and above. By moving the filter into the beam while observing harmonics,

we can quickly see which is the 45th order. From there we simply count to find the

rest of the harmonic orders (see Figure 3.8).
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Figure 3.8 Harmonics measured with and without inserted aluminum filter.

3.4 Spectral Resolution

Our polarimeter’s spectrometer is made up of a focusing diffraction grating. We do

not employ a slit because the microchannel plate detector has spatial resolution, so

each pixel is an effective slit. I developed a simple ray-tracing program to characterize

the defocusing of the harmonics at the detector due to abberations in the imaging
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system. The program traces rays from a 100 µm extended light source to a 2 m

radius, 1200 lines/mm, 2 cm grating at an incident angle of 4 degrees, 1.5 m away

from the source (see Figure 3.9), the same setup that exists in our polarimeter. The

harmonics are diffracted and focused in one dimension by the grating. They are then

allowed to propagate for 1 m. The location of the focusing (or image distance) is

given by

sin2 θ1

do

+
sin2 θ2

di

=
sin θ1 + sin θ2

R
(3.1)

where θ1 is the incident angle of the light on the grating measured from grazing, θ2

is the diffracted angle of the light measured from grazing, do is the object distance,

di is the image distance, and R is the radius of curvature of the focusing diffraction

grating [31]. Both this equation and our program gave a focusing location of about

33 cm for the 45th harmonic. This confirmed the accuracy of our program.

100 µm

Grating 150 µm

~33 cm

1.5 m

Figure 3.9 Schematic of setup for ray-tracing program to determine spectral
resolution.

Figure 3.10 shows the rays of seven harmonic orders about 33 cm after the grat-

ing as calculated by our program. Each harmonic order focuses to a spot size of
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about 150 µm. However, each harmonic order focuses to a different location after

the grating. This means that at our detector, at most one harmonic order will be in

focus. However, Figure 3.10 also shows that in a certain region, none of the harmonic

beams overlap. This means that at best focus the signal should go to zero in between

each harmonic order. Yet, we do not see this in our measurements, as can be seen

in Figure 3.11. Figure 3.12 shows a fit of the harmonics where each harmonic was

fit to a gaussian. Overlap of the harmonic beams accounts for some of the signal in

between harmonics, but not all of it.
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Figure 3.10 Widths of seven harmonics determined with ray tracing, as-
suming a source size of 100 µm and a beam size at the grating of 2 cm.

The fact that signal does not go to zero in between harmonic orders tells us

that there is spectrum present in between harmonic orders. The infrared laser that
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Figure 3.11 Lineout of incident harmonics. The sharpness of the har-
monic peaks confirms that non-zero signal between harmonics is not due to
defocusing.
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Figure 3.12 Lineout of incident harmonics along with a gaussian fit of each
harmonic. This shows that harmonic beam overlap does not account for all
non-zero signal in between harmonics.
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generates harmonics has a frequency spread of 35 nm (FWHM) that will result in

harmonics with frequency spread, but this only accounts for spread on the order of

1 nm. This indicates we actually have a broadband source with an intensity modula-

tion on top of it. This is not due merely to blurring in the imaging system since the

harmonic peaks are relatively sharp. This suggests that there are multiple regimes

in the harmonic-generation process, one that creates sharp orders, and another that

creates a broadband of EUV wavelengths at a lower intensity. The existence of wave-

lengths of light in between harmonic orders is good in that we can get all wavelengths

of light.

The width of a typical harmonic peak is about 150 µm, which matches very

well with that predicted by ray tracing. Since harmonics can be lined up with a

combination of positioning system and software to 30 µm, blurring due to abberations

in the grating image will be the limiting factor in the spectral resolution. As in

Figure 3.11, there is 8.8 mm between the 39th harmonic and the 53rd harmonic. This

represents a change of 5.4 nm in wavelength. Thus we see a change in wavelength of

about 0.62 nm for every millimeter on our detector. If we can resolve blurring of our

peaks up to 150 µm, we can resolve a change in wavelength of 0.092 nm. This gives

a spectral resolution of about 184.

3.5 Source Stability

The stability of our high harmonic source is very important in performing accurate

polarimetry measurements. Reflectance measurements are defined as reflected signal

divided by incident signal. Accordingly, variation in incident signal will affect the

accuracy and repeatability of reflectance measurements. There are many factors to

consider when determining the stability of the high harmonic source. For example,
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one of the main causes in variation of harmonic signal is that small variations in pump

laser energy translate to large variations in harmonic output because of the significant

nonlinearity. Also, gas pressure variations, optic damage over time, and laser energy

drift may affect the harmonic output over the course of a run. Short term stability,

in other words stability from laser shot to laser shot, in high harmonics is not good.

Figure 3.13 shows that harmonics can vary from shot to shot by as much as 37%.
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Figure 3.13 Short term, or shot to shot, stability of high harmonic source.
Intensity of a single harmonic varies by as much as 37% and as little as 2%.

Because harmonics are unstable shot to shot, we average 100 shots (10 seconds)

for each data file taken. The repeatability between harmonics averaged over 100 shots

is much better, as seen in Figure 3.14. Variation is on the order of 7%.

Another type of stability is long term, or variation over the course of a run.

Figure 3.15 shows three incident intensity measurements taken over the course of a

run. I0(t=0) was taken at the beginning of the run, I0(t=10 min) was taken halfway
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Figure 3.14 Stability of harmonics averaged over 100 shots, or 10 seconds.
Variation is on the order of 7%.

through the run, and I0(t=20 min) was taken at the end of the run. The run lasted

approximately 20 minutes. The variation was on the order of 12%. There is a general

trend of decreasing intensity over the course of the run, though it seems that some

harmonics are varying independently of others.

Stability over 100 shots is on the order of 7% and long term stability is on the

order of 12%. Long term drift can be corrected for with frequent re-measurements of

the incident EUV radiation during a scan. Thus error in reflectance measurements

will be between 7% and 17% (adding in quadrature) depending on how often incident

intensity measurements are taken.
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Figure 3.15 Stability over the course of a run. I01 was taken at the begin-
ning of the run, I02 was taken halfway through the run, and I03 was taken
at the end of a run (a total of about 20 minutes). Variation is on the order
of 12%.



Chapter 4

Reflectance Measurements

4.1 Sample

We used a silicon substrate with a thermally oxidized layer as a test sample to char-

acterize our instrument. Prof. Allred performed spectroscopic ellipsometry on the

sample and found the thickness to be 27.4 nm±0.2 nm [32]. This sample is a good

reference surface for characterizing the accuracy of the polarimeter at wavelengths

from 8 nm to 20 nm. This is because the thickness is such that interference in

reflected light from the front and back surfaces of the silicon dioxide layer create fluc-

tuations in reflection as the sample angle is rotated. These fluctuations are commonly

referred to as interference fringes, and they make it easy to compare data taken with

our EUV polarimeter with data taken with another source, such as the Advanced

Light Source. Also, this sample has interference fringes near Brewster’s angle (∼45◦),

which allows us to see significant differences in reflection at s- and p-polarizations.

This makes it easy to see the effect of polarization on reflectance. Silicon dioxide on

silicon is also a good reference sample because it is stable in air for long periods of

time, the two surfaces of the oxide can be exceptionally smooth, and the oxide can

41
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be quite uniform.

4.2 Reflectance Measurements and Repeatability

High harmonics for these measurements were produced in 57 torr of neon gas. An

aperture was placed immediately before the focusing lens at an optimal diameter of

1.1 cm. The gas cell was placed so that the exit foil was positioned 100 cm from

the focusing lens. Reflectance measurements were taken at multiple wavelengths

simultaneously. All measurements were averaged over 100 shots. Reflected signal was

determined by making a lineout of the harmonics at each angle by averaging in the

y-direction over the area shown in Figure 4.1. Harmonic orders were then determined

using the method discussed in section 3.3. The maximum value of each harmonic was

used for the reflected signal for that wavelength at each specific sample angle. Dark

current is determined by averaging over an area away from the harmonics (also shown

in Figure 4.1). The advantage of measuring dark current in this way is that it is taken

simultaneously with reflected signal. It thus takes into account angular dependence

and any other unknown that may affect the dark current at different points in the

run. Incident intensity measurements were taken at three different times during the

run, at the beginning, middle, and end. For this first iteration, we merely averaged

the three incident measurements to get the incident signal for each harmonic order.

S- and p-polarizations were found to reflect from the EUV grating slightly differently

(see Figure 4.2), so each reflectance measurement was normalized using the incident

measurement of the same polarization. The normalization algorithm followed the

following format:

R =
Rs −Ds

Is −Ds

(4.1)
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where R is the reflectance, Rs is the reflected signal, Ds is the dark signal, and Is is

the incident signal.
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Figure 4.1 Harmonics (left) and lineout (right) at a sample angle of 10◦.
The black box in the left figure shows where harmonics are averaged in the
y-direction to make the lineout. The white box in the left figure above the
harmonics shows the area that is averaged to determine dark current.

Reflectance measurements were taken on three separate days in order to show

repeatability. Figures 4.3-4.5 show these three measurements of reflectance at s- and

p-polarizations for three representative wavelengths: 16.3 nm, 18.6 nm, and 22.9 nm.

Repeatability was shown to be within the error of our source stability. We also found

that we were able to measure reflectances as low as 0.2%.

4.3 Data Comparison with the Advanced Light Source

Reflectance was measured from the same sample by the Allred-Turley group at the

Advanced Light Source at Lawrence Berkeley National Labs. This data is useful to

compare with data taken with BYU’s EUV polarimeter because the ALS is a standard
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Figure 4.2 S- and p-polarized harmonics reflected slightly differently from
the EUV grating. Accordingly, each reflectance measurement was normalized
using the incident measurement of the same polarization.
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Figure 4.3 Comparison of three reflectance measurements made with BYU polarimeter at
q=49 (λ=16.3 nm) with s-polarized light (left) and p-polarized light (right).
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Figure 4.4 Comparison of three reflectance measurements made with BYU polarimeter at
q=43 (λ=18.6 nm) with s-polarized light (left) and p-polarized light (right).
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Figure 4.5 Comparison of three reflectance measurements made with BYU polarimeter at
q=35 (λ=22.9 nm) with s-polarized light (left) and p-polarized light (right).
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facility for measuring reflectance in the EUV. EUV light from the ALS is naturally

polarized at 90% s- and 10% p-polarization by intensity. In order to prepare our data

for comparison, we multiplied data measured with s-polarized light by 0.9 and added

it to data measured with p-polarized light by 0.1 for each wavelength. Comparisons

of these two measurements are shown in Figure 4.6. Because our three sets of data

were shown to be similar in the previous section, we have only plotted here data set 1.

Data between 5 and 27.5 degrees agrees very well with data taken at the ALS.

Also, interference fringes in both data sets match very well. After 27.5 degrees, the

BYU polarimeter data is consistently higher. This consistent discrepancy could be

explained if our compensation for the microchannel plate nonlinearity is incorrect at

high plate voltages, which are necessary when signal is low.

4.4 Summary and Conclusions

We have developed a high-order harmonic source that represents a high-flux source

of EUV light that has a wide wavelength range in the EUV, and has easily rotatable

linear polarization. We have used the harmonics to construct an EUV polarimeter

which employs laser-generated high-order harmonics as an EUV source. This po-

larimeter represents a useful research tool for the EUV thin-film research group and

will facilitate our understanding of materials for use in EUV optics employed in var-

ied applications. Polarization-sensitive measurements will enable better procedures

for determining optical constants in the EUV. Our spectrometer has good spectral

resolution, and the harmonics provide an excellent broadband EUV source. We have

shown that by averaging data over 10 seconds we can maintain source stability of

7%. We have constructed a versatile positioning system that places harmonics on the

microchannel plate detector with an accuracy of 0.3 mm. We have demonstrated that



4.4 Summary and Conclusions 47

data from BYU 
polarimeter

data from Advanced 
Light Source

Angle (degrees from grazing)
0 10 20 30 40 50 60

100

10-1

10-2

10-3

10-4

R
ef

le
ct

an
ce

(a) q=49, λ=16.3 nm

data from BYU 
polarimeter

data from Advanced 
Light Source

Angle (degrees from grazing)
0 10 20 30 40 50 60

100

10-1

10-2

10-3

10-4

R
ef

le
ct

an
ce

(b) q=43, λ=18.6 nm
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(d) q=37, λ=21.6 nm
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(f) q=33, λ=24.2 nm

Figure 4.6 Reflectance measurements made with BYU polarimeter compared with mea-
surements made at Beamline 6.3.2 of the Advanced Light Source.
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reflectance data as low as 0.2% can be taken at EUV wavelengths and that this data

is repeatable to within the error of our source stability. We have compared this re-

flectance data to data taken from the same sample at Beamline 6.3.2 at the Advanced

Light Source. This data agrees well from 0 to ∼30 degrees, and the locations of the

interference fringes also agree. Data at angles higher than 30 degrees are consistently

higher than ALS data. This discrepancy may stem from nonlinearity in the MCP,

which we will investigate in the future.

4.5 Future Work

After taking the first data set with the new polarimeter, we have identified several

areas for improving instrument performance. Compensation for the nonlinearity of

the microchannel plate will be one of the first things we will address. One solution

to this problem is to create a controlled harmonic attenuator out of a second gas cell,

similar to work by Christensen discussed in section 2.2. Absorption of each harmonic

order through a gas could be characterized, then gas pressure could be increased or

decreased to control photon flux on the MCP in a known way to avoid changing plate

voltage.

A second problem we encountered was instability of our laser source. A method

to improve this stability was implemented by Sutherland [18] and could be easily

implemented in our work. Sutherland picked off a piece of the infrared laser before

harmonic production and reflected it onto the exterior of the MCP phosphor screen

in an unused region. This made it possible to record the laser energy inside the

image that captured the high harmonic signal. As data was taken, it was binned so

that only frames where the incident laser beam was within a specified energy range

would be included. In this way, incident harmonic signal was controlled to be within
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a certain range. Our setup is slightly more complicated than Sutherland’s, in that

our MCP detector is not in a fixed location, but we can implement the same control

technique by sending a piece of the infrared laser down a fiber that would guide it to

the detector.

Two more areas for future work are not solutions to problems, but conveniences

that will make our polarimeter user friendly. First, we will complete automation of

the positioning system using LabView programming. This programming is already

underway and will not only make the polarimeter easy to use, but will decrease the

time it takes to perform a run. This will decrease the possibility that long-term drift

in harmonic output will affect reflectance measurements. Also, we have been working

on replacing the HeNe laser alignment system with magnetic position encoders. This

will also decrease the time needed to perform a run and will decrease the amount of

human error incurred.
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