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ABSTRACT 
 
 
 

DISCOVERING THE DERIVATIVE CAN BE “INVIGORATING” 
 

MARK’S JOURNEY TO UNDERSTANDING INSTANTANEOUS VELOCITY 
 
 

Charity Ann Hyer 
 

Department of Mathematics Education 
 

Masters of Arts 
 
 

This is a case study using qualitative methods to analyze how a first semester 

calculus student named Mark makes sense of the derivative and the role of the classroom 

practice in his understanding.  Mark is a bright yet fairly average student who 

successfully makes sense of the derivative and retains his knowledge and understanding.  

The study takes place within a collaborative, student-centered, task-based classroom 

where the students are given opportunity to explore mathematical ideas such as rate of 

change and accumulation.  Mark’s sense making of the derivative is analyzed in light of 

his use of physics, Mark as a visual learner, the representations he used to make sense of 

the derivative using Zandieh’s (2000) framework for representations of derivatives, and 

his conceptions of the limit over time.  Classroom practice allowed Mark to exercise his 

agency and explore tasks in ways that were personally meaningful.  The findings in this 

study contribute new details about how calculus students might solve tasks, develop 

strategies, and communicate with each other. 
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Chapter 1 – Introduction 

 
In a day of calculus reform, we need studies that help us learn how students think 

and develop understanding of basic ideas in calculus so that we can develop more 

efficient teaching methods and enrich our curriculum.  Scher (1996) describes the relative 

lack of articles addressing students’ conceptualizations of key calculus ideas: 

 
The output of the calculus reform movement, for example, has included many 
articles on curriculum for use in computer laboratories. By comparison, there are 
far fewer articles that examine how students conceptualize such key calculus 
topics as rate of change and accumulation.  Developing theories and models of 
how students come to these understandings is critical for the design of new 
curriculum. (p. 11)  

 
Case studies of individual students are of great importance in understanding how 

students in general think, act, and develop understanding (Thompson, 1994).  Many 

studies point to failures, struggles or misconceptions students may have, but there is a 

lack of case studies highlighting student success stories (Speiser, private conversation, 

February 24, 2007).  How would it be if calculus students saw the beauty and meaning 

behind the definition of the derivative?  How would it be if normal students succeeded in 

forming deep understanding about basic calculus concepts? 

Mark, a first-semester undergraduate calculus student who found 

discovering the derivative “invigorating,” is such a student. This research is a case 

study that examines how Mark conceptualizes the derivative as instantaneous 

velocity and how his understanding develops over time. 

Mark was in many respects a very average student.  Mathematics 

educators would be able to recognize students like him among their own students.  

Yet in the circumstances in which this research took place he was able to 
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demonstrate outstanding ability.  Mark stood out because of his determination and 

apparent enjoyment of the class as well as his tendency to express himself often 

and well verbally, making him an ideal candidate for study.  

Bandura (1989) describes some of the attributes Mark displayed when 

speaking of a person with a strong sense of self-efficacy.  The setting in which 

Mark was working fostered the enhancement of self-efficacy:   

Development of resilient self-efficacy requires some experience in 
mastering difficulties through perseverant effort. If people experience only 
easy successes, they come to expect quick results and their sense of 
efficacy is easily undermined by failure. Some setbacks and difficulties in 
human pursuits serve a useful purpose in teaching that success usually 
requires sustained effort. After people become convinced they have what 
it takes to succeed, they persevere in the face of adversity and quickly 
rebound from setbacks. By sticking it out through tough times, they 
emerge from adversity with a stronger sense of efficacy. (p. 5) 
 
Mark was enrolled in an experimental, student-centered calculus course 

designed to allow students freedom to develop their own ideas and understanding 

while working with others and collaborating as a class.  Students had time to 

explore ideas and were not readily handed formulas or methods for solving 

problems.  Mark took days, even weeks developing ideas of rates of change, 

limits, and instantaneous velocity and we shall see that his sustained effort paid 

off.  Given the freedom to explore the idea of instantaneous rate of change in a 

real-life context, Mark used creativity, group collaboration, and previous 

knowledge in physics, mathematics, and philosophy to make sense of the 

derivative.     
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Research questions 

 Research in mathematics education has repeatedly tried to answer questions such 

as: How do students learn?  What is the best approach to teaching calculus (or any branch 

of mathematics)?  How do students develop understanding that they not only retain, but 

also can apply in different situations?  What motivates students to high achievement?  

While I do not attempt to answer these questions in their entirety, the case study that I 

have done regarding Mark’s making sense of the derivative will add to a general body of 

research in mathematics education.  Specifically the research in the study will focus on 

the following research questions: 

 How does Mark make sense of the concept of derivative while working on the 

cat task1? 

 What are ways that the classroom structure influences Mark’s learning? 

The study provides an in-depth, thorough analysis of Mark’s journey to 

understand the derivative, the setting that allowed him to do so, and events and ideas that 

contributed and influenced his choices and decisions in the sense making process.  I will 

show how making sense of the concept of derivative is a complex process that involves 

sustained inquiry and that discovering the derivative in a task-based, student-centered 

setting yields positive results.  In the following chapters I will present the learning 

theories I use as a theoretical lens, literature regarding studies of undergraduate students’ 

understanding of calculus concepts, specific definitions of calculus concepts such as the 

                                                 
1 The cat task involves a series of photos of a cat running in front of a grid taken at 
intervals of 0.031 seconds (Muybridge, 1887/1957), and the object of the task is to find 
the cat’s instantaneous velocity at frames 10 and 20.  The task will be discussed further in 
the literature review.  

3 
 



derivative and limit that will be used in the study, a thorough analysis of Mark’s 

developing understanding of the derivative, and present implications for future research 

in classroom design, curriculum, and calculus reform. 
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Chapter 2 – Theoretical Perspective 

In this chapter I will outline the theoretical perspectives on student learning that 

frame this study.  My perspective revolves around the following major ideas:  (1) 

knowledge and understanding are not transferred directly from one person to another, but 

assimilated through the individual’s lens of experience and built by the individual, (2) 

social interactions help students build understanding as they communicate with each 

other, (3) learning is a complex process that takes time, and (4) agency plays an 

important role in student learning. 

 
Transfer and Building Knowledge 

Knowledge and understanding are not transferred directly from one person to 

another, but are created based on experience (Ashton, 1992; von Glasersfeld, 1995).  

Students must construct their own understanding.  While much research exploring the 

transfer of knowledge is related to teacher-student relationships (von Glasersfeld, 1995), 

it is important to remember that knowledge and understanding do not transfer directly 

from any one person to another, including peer-to-peer relationships (Zandieh, 2006).  

What is heard or seen is assimilated through an individual’s personal lens that is formed 

based on previous experience.  As a result of their experiences, students form concept 

images (Vinner & Dreyfus, 1989) of mathematical ideas.  A student’s concept image is 

an individual notion of a given concept in mathematics built by the student based on the 

student’s experience.  Concept images change over time as the student learns more and 

encounters different ideas. 

Because students learn through experience, it is important to afford students 

ample opportunity to have experiences that will best help them explore and form correct 
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ideas with deep understanding.  Classrooms that allow students to explore meaningful 

tasks, discuss, and present ideas to one another create atmospheres in which deep 

conceptual knowledge can flourish.   Such classrooms can allow for such exploration of 

mathematical ideas (Speiser, Walter, & Maher, 2003; NCTM, 2000). 

 
Social Aspect 

While each individual creates his or her own knowledge and understanding of 

concepts, the social plane influences individual construction.  Social interactions help 

students build understanding.  Students negotiate terminology and create meanings 

through social interaction (Schnepp & Nemirovsky, 2001).  Mathematics involves ideas 

built on concrete experience but also involves abstract notation.  Lacking in either is 

going to decrease a student’s ability to do mathematics (Davis & Maher, 1997).  It is in 

the social plane that notation is clarified and used as a means of communicating one with 

another.  Students learn conventional notation as well  as creating their own notation, but 

until the community of learners understands that notation, it cannot be used as a means of 

communication.  Notation is an important part of understanding and communicating 

about mathematics.  Individuals contribute to social norms and ideas and community 

discourse affects individual thinking.  Terms are defined, notation is refined, and ideas 

are clarified through social interaction. 

Related to the reflexive relationship between the social plane and the individual is 

the idea of public and private presentations (Raman, 2003; Speiser & Walter, 1997; 

Walter & Gerson, 2007).  Private presentations are those presented to oneself, convincing 

oneself, thinking through ideas, and forming mental arguments.   Public presentations are 

when students engage in public discourse with their peers, teachers or as a class.  One 
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facilitates the progress of the other—the private presentations are brought to the public 

domain, modified, returning to the private thoughts, and public presentations affecting 

private presentations.  What we know changes as we act and think and our understanding 

changes “as we reflect, communicate, and perhaps restructure what we know” (Speiser et 

al., 2003, p. 25).  Being able to communicate and express one’s ideas is important in the 

development of student understanding.   

 
Critical Events and Key Ideas 

Learning is a complex process that takes time.  I would like to compare the 

process of learning to a river and its tributaries.  Like all metaphors, this one is not 

completely isomorphic but it does convey important information about learning.  A river 

starts out small at its source and builds as water from tributaries are added to it.  These 

tributaries mix with the water already in the river and all the water becomes one moving 

mass.  Sometimes there is a fork in the river and one branch gets more water than the 

others, but further down the river the braches may meet up again, usually making the 

river larger than it was before the fork.  Along the way, water seeps into the ground or is 

evaporated into the air and at the same time more little streams of water find their way 

into the river.  The river is dynamic, changing and advancing as it flows along.  
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Figure 2.1: River analogy 

Learning is also a dynamic process, ever advancing through our experiences 

(Rasmussen, Zandieh, King, & Teppo, 2005).  Knowledge and understanding start out 

small, but as one continues to learn, tributaries of knowledge are added to the growing 

body as the learner encounters new ideas or has new experiences.  Gained knowledge and 

understanding mingle with that which is already there, becoming a complex body of 

concept images, some compartmentalized (Vinner & Dreyfus, 1989), some connected.  

Sometimes ideas are left behind or discarded like the water that evaporates or seeps 

away.  However, the body of knowledge and understanding grows larger and larger over 

time as the learner grows in experience.  Sometimes, just like the fork in the river, there is 

a branching of ideas and the learner devotes time to a particular idea.  Often, previous 

ideas that were not given as much attention have a place again and the river is even 
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stronger than it was before.  Once ideas solidify, they become strong currents in the river 

of understanding that determine the course of the river.   

As previously stated, learning is a complex process that takes time.  Over time 

students are able to develop mathematical understanding if they are afforded 

opportunities to explore and construct sound conceptual understanding. “To build, 

explain, and justify mathematical conclusions in challenging problem situations (like the 

cat task) requires time, freedom, and diverse personal experience.” (Speiser et al. 2003, p. 

25).   For a student to arrive at a deep conceptual understanding of a mathematical 

concept, the student needs time for the ideas to solidify.  Time is a necessary element in 

the development of understanding.  I believe that over time there are certain episodes or 

critical events that have a significant impact on the direction and development of student 

understanding.  These critical events could be compared to a bend in the river or the 

entering of a tributary.  There are also threads of ideas, which I will call key ideas, which 

weave their way through the process.  Key ideas stay in the stream of water directing the 

path of the river as much as objects on the outside may.  Both the critical events and key 

ideas play significant roles in student thinking.  I will describe each of these in more 

detail below. 

Critical events.  While students explore ideas in task-based learning situations, 

there are episodes that provide insight into the development of students’ ideas.  Maher 

and Martino (1996) have called these episodes “critical events.”  While Maher and 

Martino used critical events mainly as an analytic method, those events are events that 

help frame a student’s understanding and therefore part of a perspective on how students 

learn.  I believe that students have moments where ideas “click,” where they connect 
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ideas or have a “light bulb turn on.”  There are also certain discussions students have with 

each other or with instructors that play a significant role in the development of the 

students’ understanding.  All of these are examples of critical events and these critical 

events occur after a student has thought about a concept, explored it, and asked questions 

(whether to himself or otherwise).  

Key ideas.  Along with moments of discovery or insight into student learning 

there are recurring themes that appear while observing students in learning situations. 

Raman (2003) examined students’ development of proof and found that heuristic, 

procedural, and key ideas all played roles in proof.  She defined a key idea as “an 

heuristic idea which one can map to a formal proof with appropriate sense of rigor.  It 

links together the public and private domains, and in doing so gives a sense of 

understanding and conviction” (p. 323).  In other words students create ideas on their 

own based on heuristic experience and key ideas are those ideas that map what a student 

is thinking to the public domain or that of formal mathematics.  It is important that these 

ideas come from the student.   

I see key ideas not only as the link between the public and private domains, but 

the ideas that guide and direct a student and become the focus of his or her attention. 

There are significant ideas that a student has prior to creating and during the creation of a 

justification, which play important roles in the creation of a proof or in the understanding 

of a concept.  Without a key idea to guide, a student will never traverse down a certain 

path, but if that idea has come to the mind of the student, then, and only then, will the 

student pursue a novel path.  These ideas may or may not come from certain events or 

timed periods in which the student is observed but could come from far back in the 
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student’s background.  In referring to the river analogy, they will come in as different 

tributaries and combine with ideas already there. For this reason I believe both key ideas 

and critical events in the classroom are important to consider when studying students’ 

learning.  

 
The Role of Agency 

Students need freedom, the capacity to exercise their personal agency, to build 

understanding.  In this paper personal agency will be defined as the ability to choose and 

act for oneself.   

The exercise of agency is what makes mathematical thinking possible. We 
distinguish between a perspective in which learners’ development of agency is 
fostered by the teacher (Cobb & Yackel, 1998), and our view that personal agency 
in learning is omnipresent and its existence is not dependent on teacher 
intervention. However, the enactment of personal agency in productive 
mathematical inquiry can be constrained or encouraged by teacher intervention.  
(Water and Gerson, 2007, p. 209) 
 
While the teacher may influence a student one way or another by comments or 

encouragement, it is ultimately the student who decides how to develop his or her 

knowledge.  This is true in any classroom setting, but as Walter and Gerson indicated, the 

teacher can encourage or constrain a student’s exercise of agency in problem solving 

situations and so the classroom set up can influence the extent to which a student can and 

will exercise personal agency in problem solving.  Allowing students the opportunity to 

choose strategies for solving problems or tasks helps those problems and tasks become 

personally meaningful to the student (Castle and Aichele, 1994) and makes students 

better problem solvers (Siegler, 1996). 

Agency plays an important role in defining a student’s belief in his or herself.  

One’s belief of one’s ability to control one’s own situation has a lot to do with resulting 
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ability to control one’s situation (Bandura, 1989).  When a student has success their self-

confidence increases.  When that success stems from choices the student has made, the 

confidence that student has in his or her choices also increases.  Not only do students’ 

choices affect their resulting understanding, but recognizing their own power of choice 

will affect the degree to which the student will direct his or her own thinking. 
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Chapter 3 – Literature Review and Definition of Terms 

Research has shown time and time again that many high school and 

undergraduate students do not have a firm understanding of calculus concepts (Baker, 

Cooley, Trigueros, 2000; Dudley, 1993; Zachary, 2004).  Andrew M. Gleason said the 

following in his forward for Taylor’s calculus book (Taylor, 1992): 

It is widely agreed that calculus instruction has taken a wrong turn.  While 
more and more students take calculus courses, fewer and fewer emerge 
from that experience with a useable knowledge of the subject.  Far too 
often students learn only to carry out the technical manipulations of 
calculus with no regard for their meaning, and many never even finish the 
course. (p. vii)  
 
Not only do fewer students emerge with a usable knowledge of calculus, but also 

students professed neither to understand nor to like it (Dudley, 1993).  “For most students 

[calculus] was not a satisfying culmination of their secondary preparation, and it was not 

a gateway to future work.  It was an exit” (Dudley, 1993, p vii).  Research findings in 

mathematics education point to the difficulty students have solving problems "in context" 

(c.f., Caldwell & Goldin, 1987; White & Mitchelmore, 1996).  For many students there is 

a gap between their symbolic manipulation skills and their conceptual understandings of 

the material (Zachary, 2004).  Most students are left with formally proved statements 

without a clear intuitive sense of why such relationships exist (Schnepp & Nemirovsky, 

2001).  A complete understanding of why is lacking even if students can see some steps 

that seem to make sense.  

Both conceptual and procedural competence in mathematics are necessary for a 

student to develop proficiency in mathematics (National Research Council, 2001; 

Roddick, 1995; Zachary, 2004).  Being able to perform computations does not imply an 

understanding of mathematical meaning, the recognition of structures, or the ability to 
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interpret the results.  Rules can be followed without much conceptual development 

having taken place (Goldin & Shteingold, 2001).   Therefore, more emphasis needs to be 

placed on conceptual understanding and students need opportunities to develop strong 

conceptual understanding in calculus classes. 

 
Calculus Classrooms 

 Numerous classroom experiments have been conducted to improve student 

understanding of calculus concepts. I would like to address a few that share similar 

characteristics to this study.  Habre and Abboud (2006) studied a reformed calculus class 

at the Lebanese American University in Beirut, Lebanon.  Students thought about ideas 

conceptually, used multiple representations, visualization and graphing calculators but 

were not to use calculators on the required traditional departmental exam at the end of the 

semester.  Conceptually, “students showed an almost complete understanding of the 

derivative, particularly the idea or the instantaneous rate of change and/or the slope of a 

curve at a given point” (p. 57).  Problems presented to the students encouraged 

visualization of calculus.  Despite the strong emphasis the class placed on visual 

representations, the students for the most part, still maintained a very algebraic vision of 

functions as formulas.  Students found that this type of classroom set up required high 

levels of thinking and work, and felt like they arrived at a deeper understanding of the 

subject.  However, Habre and Abboud were not pleased with the ending results of this 

course.  They felt like too many students dropped the course early on, didn’t answer 

questions on the final exam well, or failed the course.  

Using physics to solve calculus problems has also been a topic of study among research 

in mathematics education. Marrongelle (2004) conducted research in an integrated 
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calculus and physics (ICP) course to examine how students used physics to help them 

solve problems involving average rate of change, derivative and integral concepts.  In this 

study, students created contexts for calculus problems using physics.  The curriculum 

development team for the course felt that students’ experience with motion detectors 

would better prepare them for formal definitions of limits, derivatives and antiderivatives, 

so the students explored derivatives and antiderivatives in the first week using motion 

detectors in a physics laboratory.  Students predicted graphical behavior of velocity and 

acceleration given a position graph and other similar situations, which were followed by 

class discussions about average velocity and average acceleration.  Class structure 

allowed the students to explore ideas on their own and formulate conjectures.  However, 

instructors still played a large role in the students’ development of ideas.  After 

discussing average velocity of the motion detectors, the physics instructor asked what 

would happen if the students considered smaller and smaller time intervals.  With 

concrete physical experience the students were then given abstract calculus questions 

such as finding the average and instantaneous rate of change given the graph of an 

arbitrary function, f(t).  They worked in groups and discussed their findings.  Marrongelle 

reports that students varied in their reliance on the physical experience but that the 

physical experience was important for each student’s understanding. 

While many students use understanding gained through physics to solve calculus 

problems, often times students who are concurrently enrolled in calculus and physics 

courses will build understanding of concepts concurrently as well, and thus use what they 

learn in their physics class in their calculus class and vise versa.  Sometimes students 

have not developed a strong grasp of a concept in either class, but will be developing it in 
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both arenas.  Such a situation occurred with a group of calculus students (Schnepp & 

Nemirovsky, 2001) who had been introduced to terms in their physics class a couple 

weeks prior to using technology to explore rates of change in their calculus class.  

Because they had heard terms like average rate, velocity, and derivative in their physics 

course they were using them often in their calculus class.  However, their interpretations 

of these terms were not carefully thought out and were often inconsistent.  The teacher 

intervened asking the students what they meant by certain phrases.  Discussion ensued 

and “through this classroom conversation, the students were not introduced to technical 

terms from without but refined their fluent use of everyday language” (Schnepp & 

Nemirovsky, 2001, p. 102) to gain precision and logical consistency. 

Cat task.  Lomen and Lovelock were the first to use the Murybridge time-lapse 

photographs of a cat running along a grid in a calculus classroom to explore motion.  

Their students had a basic understanding of derivatives before exploring the cat’s motion 

and the photographs were used as means to explore and discuss average and 

instantaneous velocities while using technology (Cushing et al., 1992).  Similar research 

conducted primarily by Speiser and Walter (1994, 1996) accompanied by Maher (Speiser 

et al., 2003) and Glaze (Speiser, Walter, Glaze, 2005) explored students’ collaborations 

on what they termed the cat task.  Using the same photographs, Speiser and Walter asked 

their students to find the cat’s velocity at frames 10 and 20.  Their studies differed from 

Lomen and Lovelock’s because the students in their classes were not solely exploring the 

photos using technology, but were free to use creativity and any other resources the 

students may have had to explore instantaneous velocity, relationships between distance, 

velocity, and acceleration over time, and other calculus concepts.  The cat task was 
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introduced after the students had already explored instantaneous velocity and derivative 

related concepts.  They found that students who do not typically consider themselves 

proficient in mathematics were able to make sense of these ideas and feel ownership of 

the mathematics they explored.  Students used their own physical motion to represent the 

cat’s motion in solving the task. These students, unlike the students in Habre’s study, 

were not required to pass a departmental exam.  Rather, the purpose of the research was 

to explore students’ representations and development of understanding of key calculus 

concepts, which proves valuable for future implementations of physical representations 

of motion and exploratory, task-based learning. 

 The above studies differ from each other in being student-centered or teacher-

centered, classes where the majority of students are math and science majors versus those 

that are not.  We see that there are success stories among non-mathematics and non-

science majors in task-based learning.  Is such success possible with mathematics and 

science major students?  Could the success obtained by utilizing physics concepts be 

obtained in a student-centered classroom instead of one that was teacher-centered?   

The study presented in this paper, while similar in various ways to the studies 

described above, is unique in that it is a study involving a student with a background in 

mathematics and science in a task-based, student-centered classroom. While Mark 

utilizes his knowledge of physics and other fields to help him solve calculus tasks, he 

does so by his own volition. The cat task was also used before students had been formally 

taught anything about instantaneous velocity. 
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Definition of Terms 

Representations.  In order to learn more about student understanding much 

research has been conducted concerning students’ representations (NCTM, 2001).  

Representations have been defined as presentations to either oneself or others (Speiser & 

Walter, 1997), “a tool to think of something which is constructed through the use of the 

tool” (Hähkiöniemi, 2006), and a mapping from one domain to another whose 

correspondence preserves structure (Cuoco, 2001), among others.  Studying how students 

both create and use representations provides insight into student’s concept images 

(Vinner & Dreyfus, 1989), and how students build understanding of mathematics (Cuoco, 

2001; Speiser, Walter, & Glaze, 2005). 

 
Visualization.  I would like to consider “visualization” as a certain genre of 

representations.   

One could argue that visualization and visual thinking should be one of the central 
elements in calculus reform.  Conceptually, the role of visual thinking is so 
fundamental to the understanding of calculus that it is difficult to imagine a 
successful calculus course which does not emphasize the visual elements of the 
subject.  This is especially true if the course is intended to stress conceptual 
understanding, which is widely recognized to be lacking in many calculus courses 
as now taught. (Zimmermann, 1991, p. 136) 
 

In the 1980’s (and even a little before) there was a big push towards using a visual 

approach, as technology seemed to open a whole new dimension to mathematics 

education (Zimmermann, 1991).  Researchers felt that technology opened “seeing 

mathematics in the mind’s eye” to all students (Zimmermann, 1991).  Thus most 

literature found using the word “visualization” speaks mainly of using technology to 

visualize graphs, motion, changes in functions, etc.   During this time focus was on what 
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the student produced—graphs, diagrams and the like.  However, historically 

mathematicians who “visualized” to help them understand and to develop ideas in 

mathematics did not just limit the idea of visualization to graphs. 

In this paper visualization will be defined as representations that elicit a visual 

image.  This includes images both mental and drawn, language that invokes a visual 

image (including body language such as gesture).  Thus the term visualization is almost 

as broad a term as representation, but is limited to those representations that invoke visual 

images.  Since it is impossible to entirely determine the mental images a student creates, 

a researcher must rely on the student’s discourse, hand gestures, and what the student 

writes or draws to determine how the student uses visualization in the learning process. 

 
Derivative.  When considering representations of the concept of the derivative in 

calculus, one must consider students’ representations of rate of change, limits, and 

general representations for the derivative.  Zandieh (2000) developed a framework for 

exploring and analyzing student understanding of the concept of derivative.  She found 

four major categories of representations of the derivative: (1) graphically as the slope of 

the tangent line to a curve or the slope of the graph under magnification, (2) verbally as 

instantaneous rate of change, (3) as physical speed or velocity, and (4) symbolically as 

the limit of the difference quotient.  Representations may be a combination of the above 

categories and within these categories there are variations.  Students may use such 

representations of the derivative without understanding the process underlying the object.  

In such cases the representation is called a “pseudo-object” (Zandieh, 2000).  As students 

learn more and more about the derivative they are able to represent the derivative in ways 

that they had not previously considered.   
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Zandieh reasons that for a student to fully understand these different 

representations of derivative, the student must first reify the processes of slope (or ratio), 

limit, and function.  Consider the symbolic representation of the derivative in terms of the 

process-object layers a student goes through to understand and use the limit of the 

difference quotient.  The process of finding rise over run needs to be reified and 

considered as an object for the limiting process to act on the rise over run ratio.  As the 

distance between the points through which the slope passes becomes increasingly 

smaller, the value of the limit, or instantaneous velocity is reached.  After the limit is 

found through the previous process, reifying the limit then enables the student to define 

each value of the derivative function.  The derivative function acts as a process using the 

limit of the difference quotient (as a reified object) to determine all derivative values in 

the domain of the function.  Finally the derivative function itself can be treated as an 

object when compared to other functions (Zandieh, 2000). 

I believe that a student needs to reify the slope ratio in order to take the limit of 

the ratio, but I believe that a student can find values of the derivative function without 

necessarily thinking of the limit as an object.  A student can think of the limit as a process 

by which the derivative values are obtained.  

 
Limits.  In order to understand the definition of the derivative a student must first 

have an understanding of limits (Hähkiöniemi, 2006).  Davis and Vinner (1986) 

addressed misconceptions that many beginning university mathematics students tend to 

exhibit.  Their study supports other research regarding students’ concept images (Vinner 

& Dreyfus, 1989) of limits: that the limit is a bound that is approached but cannot be 

reached (Hähkiöniemi, 2006; Tall, 1991; Williams, 1991).  While this conception of 
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limits may be sufficient for some cases, it is not true in all cases and is distinct from the 

formal epsilon definition of limits.  Tall (1991) found that the idea of the geometric limit 

was not an intuitive concept for students and that perhaps  

Students have difficulties because of the language, which suggests to them that a 
limit is ‘approached’ but cannot be reached.  They have difficulties with the 
unfinished nature of the concept, which gets close, but never seems to arrive.  
They have even more difficulties handling the quantifiers if the concept is defined 
formally (p. 110).  
 

Perhaps classroom discourse can be misleading for students.  The contexts in which 

students tend to discuss limits lead them to think that limits are bounds that are 

approached but cannot be reached.  Then when students encounter the delta-epsilon 

notation used to formally describe a limit, they have difficulty both conceptualizing and 

utilizing the definition. 

One reason students may form misconceptions of limits is that it takes time to 

build conceptions of limit and thus, limits cannot be taught or learned in a short period of 

time.  “One cannot put anything as complex as limit into a single idea that can appear 

instantaneously in complete and mature form” (Davis & Vinner, 1986, p. 300).  It is very 

possible that a student will have a partial concept (or even incorrect concept) of limits in 

given situations (Zandieh, 2006), but over time as the student continues the learning 

process, he or she will build other ideas and create a more accurate definition of limit.  

Students need to be given experiences that prepare them for concepts such as limits and 

the derivative quotient.  

 
Metonymy. Zandieh’s (2006) research on metonymy will play a significant role in 

this study; therefore, I will give a more lengthy explanation of her work.  Metonymy is 

defined as “the substitution of the name of an object closely associated with a word for 
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the word itself” (Harmon & Holman, 2006).  A part of the object can be substituted for 

the object itself and this is called part-whole metonymy.  A few examples are “the 

crown” representing the king of a country, “wheels” representing a car, and “heads” 

representing people.  Both students and members of the mathematics community often 

use metonymy when speaking about derivatives.  Zandieh gives many examples of ways 

in which students use metonymy while talking about the derivative and discusses the 

strengths and weaknesses of such usages.  Often students will use one of the 

representations of the derivative, such as instantaneous velocity, to represent the whole 

framework of the derivative—a part-whole metonymy.  Depending on the student’s 

underlying knowledge, this may be an appropriate way of communicating, or it may be a 

result of the student’s lack of understanding.  Zandieh found that many students referred 

to the derivative as one of the representations (see Zandieh, 2000) but were not able to tie 

their chosen representation of the derivative back to any other representation.  They 

tended to compartmentalize representations of the derivative depending on the context of 

a given problem or situation.  Thus students had difficulty communicating if their 

individual concepts of derivative differed and they did not have a strong enough 

understanding to see that their representations were isomorphic.  On the positive side, 

when a student could make the connection, he or she would often use one representation, 

such as the geometric slope of the tangent line, to understand another representation, such 

as the symbolic limit of the difference quotient.  Being able to use different metonymic 

representations depending on the context can be useful to students because some contexts 

lend themselves to certain representations more than others. 
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 Two common metonymic short cuts are using the phrase “the derivative” to 

represent both the derivative function and the derivative value (Zandieh, 2006).  

Although commonly used and accepted the shorter phrase “the derivative” can cause 

students confusion because they may be thinking of the derivative value when they 

should be thinking of the derivative function or vice versa. 

There are some uses of metonymy that are acceptable by the mathematical 

community and others that are not.  For example, referring to the derivative as “the 

slope” is appropriate and acceptable in the mathematical community while “the 

derivative is the tangent line” is not (Zandieh, 2006).  Another example is condensing the 

idea that the derivative is the instantaneous rate to simply “the derivative is the rate,” is 

acceptable, while “the derivative is a change” is not (Zandieh, 2006). Zandieh’s students 

showed a high tendency to use the misstatements.  However, they would often use the 

correct, more complete statements intertwined with their use of the misstatements, 

indicating that their understanding was at least partially correct.  Another problem that 

could ensue is that students may use a correct metonymic representation, such as 

“derivative is the rate,” but fail to understand the underlying process.   It is important to 

be aware of students’ use of metonymy and their underlying connections in order to 

analyze student understanding. 

 
Productive disposition and self-efficacy.  Productive disposition (National Research 

Council, 2001) and self-efficacy (Bandura, 1989) are terms used to characterize students’ 

attitudes and beliefs about mathematics and their capacity to learn and do mathematics.  

One’s attitude and belief in oneself strongly affects one’s motivation. A person with a 

productive disposition in mathematics would have the following characteristics: 

23 
 



 Seeing math as both useful and worthwhile, 

 Seeing sense in mathematics, 

 Believing that steady effort in learning mathematics pays off, 

 Seeing oneself as an effective learner and doer of mathematics, 

 Believing math is understandable not arbitrary, 

 Believing that with diligent effort mathematics can be learned and that the student 

is capable of learning, and 

 Believing that being good at math doesn’t mean you have a special math gene. 

When students’ understanding is limited to memorized procedures their confidence in 

their own ability to do mathematics decreases.  Therefore, a productive disposition is 

acquired as students are able to make sense of the mathematics.  It is also interesting to 

note that those who believe that a certain “math gene” determines a student’s 

mathematical ability tend to be more performance oriented while those who believe that 

their effort contributes more to mathematical ability tend to be more learning oriented.   

 Self-efficacy is one’s perception of one’s own capability (Bandura, 1989).  A 

person’s level of self-efficacy will determine how well the person deals with failure, how 

much persistence a person will have to continue working, even in the face of adversity.  

Someone who has a strong sense of efficacy will believe that he or she can control his or 

her own situation (Bandura, 1989).  As the sense of self-efficacy increases, motivation 

increases. 
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Chapter 4 – Data Sources and Methodology 

Class Setting and Participants 

 Data was gathered from the first semester of a task-based, student-centered, 

experimental honors calculus course during the winter of 2006 at a private university in 

the western United States.  Although it was labeled as an honors course, any student 

could register for the course. The class was team taught by two members of the 

mathematics education faculty who believed that students needed to be provided with a 

different approach to learning calculus than the standard lecture format.  Various tasks 

were chosen by the instructors that were meant to elicit conceptually important calculus 

ideas such as rates of change, velocity, acceleration, and their relation to position.  The 22 

students enrolled in the class worked in groups of four or five at tables around the room 

with minimal intervention from the instructors.  Students had freedom to approach the 

tasks in any way they felt helpful and to justify their reasoning with one another. 

Presentations of student’s ideas were shared with the rest of the class.  The class met 

three times a week for 2-hour blocks.  

My research focuses on Mark, one of the students in the class and his work with 

his group which consisted of five students: Kam (a good friend whom Mark had known 

in high school), Josh, Chris, and Sarah.  Kam was a bright engineering major taking 

calculus for the fist time and concurrently enrolled in physics.  Josh was an economics 

major who had taken calculus quite a few years previously.  Chris had previously taken 

calculus and considered himself good at mathematics.  He remembered many calculus 

procedures, but did not know why they worked.  Sarah was also a first time calculus 

student and had recently changed her major to math education.  Mark had taken a 
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calculus course in high school but after taking a two year break and returning to college, 

he had forgotten a lot of mathematics and had enrolled in an intermediate algebra course 

and had subsequently taken college algebra and trigonometry.  As an engineering major 

he was concurrently enrolled in physics and chemistry courses.  Mark is of particular 

interest because he is a typical undergraduate calculus student: he is an engineering major 

with a background in mathematics and science, but is still a fairly average student.  

 
Data Collection 

 Data was collected through transcripts of video data, collected student work, field 

notes, and interviews.  Video from seven hours of class time, spanning from Wednesday 

to Wednesday, as well as an hour long interview, and interactions Mark had with the 

professors before and after class, were transcribed and all student work was collected, 

copied and saved for records.  Students were asked to show all their work and include 

scrap paper, transparencies used for group presentations, and anything else that might 

help the instructors know what they were thinking and doing while solving a task.  Due to 

lack of clear camera shots or hard copies of student work in progress, many of the figures 

in this paper have been redrawn in order for the reader to have a better view.  The 

replica’s I have included are as much like the original drawings as possible and labels 

have been added where students verbally provided labels.   

After the semester was over I interviewed Mark.  Before the interview, I gave him 

a task that he had not seen before (see appendix 1) to see how well he performed in order 

to assess his knowledge retention of the concept of derivative.  When we met I asked him 

to explain to me how he had worked through the task and also asked him many questions 
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relating to the work he had previously done in the class relative to the data analyzed for 

this paper.  All background information on Mark was obtained during the interview.  

 The analysis for this paper will focus on the second task, the cat task (see Speiser 

& Walter 1997).  The students had worked on the Desert Motion task (diSessa, Hammer, 

Sherin, & Kolpakowski, 1991; Sherin, 2000), previous to the cat task and had developed 

some ideas about displacement, velocity, and acceleration, but were still negotiating how 

these concepts affected graphical representations, their definitions, and the mathematical 

relationship between them.  The word derivative had been used but not defined and not 

always used correctly.  Students were still forming ideas about motion, terminology, and 

notation. 

 
Analytic Methods 

 From the onset of the study grounded theory seemed the most reasonable method 

of analysis.  Grounded theory allows the data to guide the analyzing process.  The 

researcher collects data and allows the theory to emerge from the data.  As data is 

analyzed codes are chosen, data is reviewed again and the codes become progressively 

concise—this method is called open coding (Strauss & Corbin, 1998).  Coding becomes a 

reflexive process between the data and the codes themselves.  In this project I used a 

combination of open coding and Zandieh’s framework for analyzing students’ 

understandings of derivatives.  

I examined the video and transcript and coded for all of the instances where Mark 

communicated about the derivative (or relating ideas such as slope or instantaneous 

velocity) either to his peers, instructors, or to himself.  Discourse includes verbal and 

bodily communications as well as written communication, so I naturally considered 
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gestures, pauses, word choice, and voice intonation.  Further questions from the end of 

semester interview helped solidify assertions I made regarding Mark’s discourse.  I chose 

critical events (Maher and Martino, 1996) that showed insight into Mark’s decisions or 

showed Mark’s way of thinking.  Within the events I noticed that some of the ideas that 

influenced Mark were not events but recurring themes.  These themes also became codes 

and I paid careful attention to the way these ideas wove themselves into Mark’s 

discourse.  I have focused on Mark, his comments, actions, and ideas, and only included 

the comments, actions, or ideas of his classmates as they directly relate to Mark. 

Once I had collected all data where Mark communicated about the derivative or 

ideas relating to the derivative I categorized these instances in the following categories or 

codes: 

 Connections to other classes or fields of study 

 Of or relating to limits 

 Of or relating to slope 

o Finding two points close together 

 Derivative as slope of the tangent line 

o Derivative as the tangent line (only) 

 Representations used by Mark 

o Graphs, 

o Diagrams 

o Use of visualization 
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o Zandieh’s derivative framework—categorizing each of Mark’s 

representations of the derivative as one, multiple or none of 

Zandieh’s representations 

o References or uses of notation 

 Displays of productive disposition and self-efficacy 

Time codes are included to help the reader obtain a feel for the time elapsing and 

the amount of time it takes for Mark to move from one stage of understanding to another.  

The time begins at time 00:00:00 (hours: minutes: seconds) on Wednesday the 18th of 

January when the students are first given the cat task and continues until Wednesday the 

25th of January.  Time codes are given at the beginning and end of each section of 

transcript quoted in the text and referred to as the narrative is built.  
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Chapter 5 – Data Analysis 

Before we begin with the analysis of the data, it is important to know relevant 

details about both Mark and the calculus class.  Knowledge and understanding are built 

on previous experience, so when studying student understanding, background 

information is important.  Mark’s previous experiences in high school and other 

university courses, as well as work he and his group have done in class prior to the cat 

task, contribute to the building of his understanding. 

Mark’s Background Before the Calculus Class   

Mark is a good student and had taken calculus in high school about five years 

previously.  However, he had been very busy that year in high school and as he described 

it, he was “a very mediocre student that was more concerned with sleeping, swimming 

and girls than school” and slept through most of his calculus class.  He learned 

procedures—“enough to get by”—but never really understood “what was going on.”  

Mark had also taken physics classes in both high school and university and really enjoyed 

them.  He was interested in knowing how and why things worked, and especially in 

“blowing stuff up.”   

In both his physics classes previous to taking this calculus course, the physics had 

not required the students to do anything beyond basic algebra and books had specifically 

stated that the equations they used were derived from calculus, but showing where they 

came from was “beyond the scope of the text.”  Mark wondered where the equations 

came from and how to derive them.  In previous math and physics courses Mark had been 

learning about average velocities and average accelerations and had wondered how or if 

you could find instantaneous velocity or instantaneous acceleration.  He had attempted to 
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read his high school calculus text but had not understood the mathematics underlying 

limits.  Below is Mark’s own description of his history with average and instantaneous 

rates of change.  The reader will note Mark’s unanswered questions and the foundation 

being laid for making sense of the definition of the derivative as the average velocity 

taken over increasingly smaller intervals. 

 Mark: Um, just basically experience with physics.  Like I've taken conceptual 
physics before . . . Like at first the limit was a foreign concept to me . . . 
So, what we did deal with is we dealt a lot with average acceleration, so I 
had the concept in my mind of average acceleration and I also had in my 
mind that the closer the points got.  I actually had a discussion with one of 
my buddies who was actually a chemistry major . . . He never actually 
answered my question.  I don't think he actually knew the definition of the 
derivative . . . So I just asked him, "Well, how do you get instantaneous 
velocity?”  Because, I mean, like, the closer and closer you get, you need 
an infinitesimally close point to get for the instantaneous velocity or 
acceleration. 

 
 Mark said he had thought about average accelerations and instantaneous velocity 

during previous classes. Average velocity was found by finding the slope between two 

points, so Mark had figured that to find instantaneous velocity one would need to find 

points that were infinitely close together.  Since the book had been confusing, Mark 

asked a friend who was good at math and the friend had said it was virtually impossible 

to find two points infinitely close together.  He had previously had such questions that 

had gone unanswered and was now facing them again in this class. 

Immediately Prior Mathematical Activities  

At the start of the analysis the class had been in session for about two weeks.  In 

the first two weeks the class had worked on the desert motion task (diSessa, et al., 1991; 

Sherin, 2000).  During presentations of the desert motion task, ideas emerged in students’ 

discussions that the slope of the position graph was velocity and the slope of the velocity 

31 
 



graph was acceleration.  Mark found this so important he wrote it down and later referred 

to it in the data I will be discussing.  The word derivative had been used by students with 

previous experience in calculus or physics, but the class as a whole had not defined the 

term.  At the beginning of the analysis, Mark was still unsure what a derivative actually 

was. 

During the cat task Mark worked with four other group members whose names 

will come up during the analysis: Chris, Kam, Sarah, and Josh.  (Sarah is absent during 

approximately half of the time and her influence in group discourse is minimal.)  The 

focus of the analysis will be on Mark, but his interaction with his group members is an 

important part of his development of understanding.  Mark interacted the most with Kam, 

who he had known for years.  Although Mark tended to need validation from others, and 

looked to others for encouragement and direction, he sought to make sense of ideas for 

himself before accepting them and also worked alone making sense of tasks himself 

before collaborating with others. 

In the following analysis I will present a narrative over the eight and a half hours 

of collected video data.  The reason I am presenting the data in a narrative is to show the 

complexity of the learning process.  Outlining the events as they happen chronologically 

provides the most straightforward means for the reader to follow the complexity of how a 

student makes sense of the derivative, a difficult and fundamental calculus concept.  

Secondly, I want the reader to get a feel for the time it takes Mark to make sense of the 

derivative and the stages he goes through to achieve understanding.  The data presented is 

how a fairly typical student understands the derivative in a manner different than that of 
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traditional textbooks.  Pay careful attention to how the classroom set-up affects Mark’s 

decisions and directions and the time Mark was allowed to think through ideas. 

Wednesday, 18 January 2006 

When the group first receives the cat task, Mark takes approximately 14 minutes 

to make sense of the problem on his own, ignoring the conversation around him.  Once he 

has figured out what the question is asking he declares, “Oh so between each frame is 

.031 seconds past.  I now understand the question!  Great! [pause, then rhetorically] She 

wants the instantaneous speed, right?”  A couple of things are important to note here.  

First, Mark takes time by himself to make sense of the task.  Also, knowing what he was 

looking for seems to give him enthusiasm about solving the problem.  Once he knows 

what the object is, he is ready to form strategies and gather tools to help him solve the 

task.  

Mark’s first approach towards the task is a graph of the cat’s displacement over 

time.  He works steadily and meticulously on his graph, only occasionally looking up to 

see what others are talking about.  The graph helps Mark organize the data and see 

general trends in the cat’s motion.  He is able to determine that the cat was increasing 

speed each frame and could tell when the cat’s speed was increasing relative to other time 

frames.   

The time it took for students to introduce the terminology “derivative” indicates 

that neither Mark nor any member of his group recognized immediately that the 

derivative is tied to instantaneous speed.  After almost an hour [50:30] of working mostly 

independently, Mark takes an interest in the discussion around him and engages in a 

conversation stemming from the data points that Josh has plotted on his calculator.  The 
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transcript below shows the students’ first uses of the word derivative while working on 

this task.  Remember that students who had previous experience with calculus or physics 

had introduced the word derivative, but that the class as a whole had not defined the term.  

Interestingly, the group only mentions derivative and moves on:   

50:32 Mark:   Position over time.  Now if I remember, the slope of the position line is 
velocity. 

50:35 Josh:  So if you take the derivative, which means the slope of that line.   
50:38 Mark:  There you go derivative at each point.  

Josh:  If you take the derivative of that line, you're going to get the velocity 
graph.  

 
The conversation moves away from the derivative then about 30 seconds later 

Mark pipes up, “So now, how do you find the derivative of a point? Because what we're 

trying to find is.” Then he trails off and continues to work on his graph.   

I anticipated that the group would discuss possible approaches to finding the slope 

of the position graph at frame ten in order to find the instantaneous velocity, but instead 

the group’s conversation moves away from the derivative and Mark turns back to his 

graph.  The fact that Mark does not pursue this idea leads me to believe that he has not 

comprehended the significance of the slope of the position graph at a point and its 

relation to instantaneous velocity.    

The above dialog between Mark and Josh is an example of when one student’s 

perspective does not transfer directly to another.  Josh shows many indications of 

thinking of the derivative as a separate graph derived from the first graph, while Mark 

thinks of the derivative point by point along the curve.  Josh is thinking of the derivative 

as a “the derivative function” while Mark thinks of derivative as “the derivative value” 

(Zandieh 2006).  While each student’s view is correct, their individual understanding 

does not directly transfer to the other.  In line 50:35 Josh uses the phrase “slope of that 
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line.”  Looking at further dialog throughout the data, Josh is not using “line” to refer to a 

linear curve, but rather any curve, a “line graph.”  Mark thinks of the derivative as the 

slope of the tangent line, so the strong association that Mark has with “line” and 

“derivative” is the tangent line, which is linear.  

In light of Zandieh’s (2000, 2006) derivative framework and research in 

metonymy, Mark is looking at “parts” of the whole idea of derivative, namely, the 

derivative as instantaneous velocity and geometrically as the slope of the position graph 

at each point.  Throughout the task Mark continues to demonstrate this “point-by-point” 

view of the derivative, which is a more process-oriented approach.  It is important to note 

here that this point-by-point view of the derivative is applicable and meaningful in many 

calculus problems.  In the current task the students are trying to find the speed of the cat 

at frame 10 and thus a point-by-point concept of the derivative is a logical approach.  

 Mark had taken notes during the previous task and had made a note that “the 

slope of a position graph is the velocity.”  He had felt it was very important at the time 

and continued to rely on this information [50:32].  Despite Mark’s use of the word slope 

and derivative in nearly the same breath, Mark is not yet able to attempt a symbolic 

approach to the derivative because he has not yet reified the idea of slope in connection 

with the derivative.  Nor has he shown any evidence of looking at average velocities over 

shorter and shorter intervals.  In fact, he has not mentioned average velocity at all.  It was 

not until much later that Mark reified the idea of rise over run yielding the slope and was 

able to work with the slope as a mathematical object connecting the instantaneous speed 

with average speeds by taking limits.  Mark reaffirms his disconnect with slope and 
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derivative in the interview when I was asking about his understanding of the definition of 

the derivative: 

Mark:  At the time I don't think I even realized it was the slope.  Like they gave 
you an equation, they gave you the slope.  I don't think I even realized that 
… So I knew what slope was and I knew that I was looking for the slope 
of a line that passes through there was.  But I had no idea that the slope of 
the line was, at that point, was the derivative.  Yeah, I just didn't, like, 
know what a derivative is.  They'd always say, find the derivative and I'm 
like "Okay, what's the derivative?  I don't know what I'm finding."  

 
More than once Mark clearly stated that the derivative was the slope of a point, 

but he did not think to work with the rise over run quotient as an object as the two points 

become closer and closer to one another.  He seemed to have the pieces of the puzzle 

before him, but was not putting them together.  It would be easy for a teacher or an 

observer to think that Mark had made connections regarding various aspects of the 

derivative that, in reality he had not.  Even though Mark says derivative and slope of the 

tangent line in almost the same breath, he is not yet connecting them in the way that an 

expert would be connecting them.  

At this point Mark’s understanding of the derivative is vague.  He knows that the 

slope of the position graph is the velocity and the slope of the velocity graph is 

acceleration, but does not fully comprehend what that means.  He also seems to think of 

the derivative as the slope of a point but does not know how to find the slope of a point.   

All of these questions drive him to explore and think deeply about motion and the 

relationship between position, velocity, and acceleration over time.  The time and energy 

he spends working on the task now contribute to the rich understanding at which he 

arrives later.  
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After class on Wednesday, a few comments made by his instructors help prepare 

Mark for the notation used in the definition of the derivative as the limit of the difference 

quotient.  Kam asks the instructors if a previous homework problem involving f(b) and 

f(a) was trying to find the tangent or instantaneous change.2  The professors reply that the 

notation is preparing them for the notation they will use for the definition of the 

derivative.  Mark says he is relieved because he did not make the connection to tangent 

lines at all.  The following conversation is very important because it is where Mark 

connects the notation from the homework problem to the definition of derivative.  We 

also see how important limits are for Mark. 

58:22 Ins 2:  That's kinda getting you ready for notation.  Um, when we start working 
with derivatives.  It will help you with notation.   

 Mark:  ‘Cause if we were supposed to find the tangent line, I totally missed that.  
 Kam:  No, I was just curious ‘cause I don't 

Ins 1:   But you are right.  The notion of f of b minus f of a over b minus a has 
some real significance when you get into  

Mark:  Derivatives? 
Kam:  That's like instantaneous velocity and instantaneous  
Ins 1:  When you find the limit, yeah.   
Mark:   When you learn how to do—that's the thing like   
Ins 1:  Definition of derivative it's going to be critical to know that notation.  

59:09 Mark:  Yeah, f of b minus f of a over b minus a.  I remember slightly that thought 
. . . like I could always understand the concept of it, but I could never 
understand limits correctly.  I never understood limits, like I would read it 
in textbooks and stuff and I'm like, ok, I understand it, but I don't 
understand how the math behind it works. 

 
Mark repeats this notation to himself and later uses the notation f(b) and f(a) when 

explaining the derivative even though the part that he reads in the book uses f(x0) and f(x). 

Mark had not previously made any connection to the notation f (b) − f (a)
b − a

; however, 

                                                 
2 The homework problem shows a couple of graphs whose curves pass through the points 
(a, f(a)) and (b, f(b)) and asks the student to identify horizontal and vertical distance 

between the points to obtain f (b) − f (a)
b − a

.  
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when Instructor 1 says that it will be critical to know that notation for the definition of the 

derivative, Mark’s memory is jogged.  He had seen similar notation before, but it was not 

significant because as he said in the interview, he never truly understood what it meant.  

Now he knows that this particular notation is significant and stores this bit of knowledge 

away until he can make further sense of it.   

Instructor 1 also mentioned limits [59:00], which become an important idea for 

Mark.  As we see later on the following week, Mark goes home and reads about 

derivatives and limits, trying to figure out what the significance is of this notation and 

what a limit is and does.   

As the conversation continues Mark explains his existing understanding of limits.  

In order to understand the conversation here the reader must know that while working on 

the Desert Motion task Mark had said something about needing to use limits and had 

gotten very positive feedback from the instructors.  In the desert motion task Mark did 

not know how or why to use limits and the topic had not been pursued.  Here they are 

referring to that time in class where Mark mentioned limits: 

59:31 Ins 1:  See I was really, really impressed when you last time it's like, "limits, 
yeah!" 

Mark:   I was like Oh my gosh!  I get it.  Part of that was because I had to write 
this research paper on Zeno's Paradox. Which is perfect until you take into 
account limits, like he has good premises.    

 
Mark knew limits were important before, but now he is even more confident that 

he eventually needs to be able to be working with limits.  His conception of limits is tied 

to his understanding of Zeno’s paradox, which involves the idea of getting close but 

never quite there.  Taking the limit is acting as if “there” is reached.  This view of limits 

is how Mark later makes sense of what is happening to the secant lines as the distance 
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between a and b approaches zero.  To further show how Mark understood Zeno’s 

paradox here is a clip from the explanation he gave during the interview: 

[Mark first describes the race between Achilles and the tortoise.]  The 
other one was the racehorse and how you can't ever cross between point a 
and point b because you have to go through midpoint c, midpoint d and 
you always have to cut it half and half and half. And so how I think about 
limits is that point at the end is the point that you can never reach.  That's 
your limit.  Like the point exists, but you can't ever reach it.  But we can 
know about it.  We can know what it is and that's how I think about limits. 
 
Mark considers the limit to be a point that the function will get close to but 

never reach.  His concept of limits is very common for beginning undergraduate 

students (Davis & Vinner, 1986; Tall, 1991; Williams, 1991).  Williams (1991) 

found that a large majority of undergraduate students believed statements defining 

the limit as unreachable to be true, and many of them believed that defining the 

limit as “a number or point the function gets close to but never reaches” to be the 

best way to describe limits.  Again we see metonymy at play because Mark is 

referring to one possible aspect of a limit.  However, this is not a complete part-

whole representation because not all limits are approached boundaries that are 

never reached.  

While Mark knows that limits play an important role in finding 

derivatives, he does not know the nature of that role yet.  Nor does he understand 

what a limit is and does with mathematics.  He is curious to find out. 

 
Friday, 20 January 2006 

Mark spends the first part of class working on plotting the 26 data points on his 

graph only occasionally commenting in response to conversations going on around him.  

One such comment shows Mark’s focus on the tangent line as the means to finding the 
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instantaneous speed of the cat.  While Josh and Chris are discussing how to create a line 

of best fit on the calculator, Mark comments, “This guy is dying to get a line y=mx+b.”  

Then more to himself, “Slope? Derivative? The derivative of a point.”  Mark is not 

talking about the same line that Josh and Chris are.  While Josh and Chris are trying to 

find a curve to fit the points on the calculator, Mark is thinking of the tangent line he 

hopes to find.  To Mark “line” is the linear curve, or tangent line, showing velocity while 

a regression line that Josh and Chris are looking for is not necessarily linear.   

It is interesting that when Mark later figures out how to find the derivative he 

seems to find it important to find the equation for the tangent line (even though this is not 

necessary to find the velocity of the cat at frame 10).  He seems to tie y=mx+b to the 

slope and the derivative and thus the instantaneous velocity of the cat.  Mark’s behavior 

is consistent with Walter and Gerson’s (2007) findings where students are looking for 

representations of slope and mistakenly say slope is y=mx+b.  It is also consistent with 

Zandieh’s (2006) findings.  Two-thirds of her calculus students sometimes mistakenly 

referred to the derivative as the tangent line (even though they also referred to the 

derivative as the slope of the tangent line) and a third of those students consistently made 

the error.  Zandieh (2006) suggests that one of the reasons this may be is that the tangent 

line itself is “the most obvious image or endpoint of this graphical process” (p. 11)  

The slope is implicit in both graphical images, but the tangent line is explicit, 
visible, and thus more easily remembered. Even without the idea of a limiting 
process a student may remember a single image, a curve with a line tangent to it, 
when asked what a derivative is. (p. 11) 
 

In such instances, the “loudest,” or most explicit, visual image is not necessarily the 

correct one, and for this reason relying on visualization alone could be misleading. 
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Chris asks to see Mark’s graph.  Mark shows him the general trend—the cat 

speeding up.  Then the following dialog takes place in which Mark clearly explains the 

purpose of his graph and the direction he wants to take with it [1:43:35]: 

1:43:35 Chris:  So what we're trying to find is that point right there [Chris points to 
frame 10]?  ( see Figure 5.1)  

 Mark:  Yeah, we're going to be trying to find the derivative or the slope of this 
point [sketching a tangent line] like the point that passes straight through 
there.  Like if we were to draw a line passing through that dot.  

 Kam:  That would be the velocity.  
1:43:55 Mark:  We want to find the slope of that line and that would be the 

instantaneous velocity.  So folks any ideas on how to do that? 
  

 
 

Figure 5.1: Mark’s graph with sketched tangent line 

 
This is the second time Mark has asked the group for help.  On Wednesday Mark 

had asked, “So now, how do you find the derivative of a point?” [51:29].  When Mark 

asked this first question he didn’t really expect an answer and almost asked it as much to 

himself as anyone.  His second question shows that he is more confident and specific in 

how he’s going to find the derivative at the point of interest.  He has made progress in his 

understanding in the time between the questions.  He wants to find a tangent line to the 
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curve at frame 10 knowing that would yield the instantaneous velocity.  His question now 

is how to draw such a line accurately.  

Here we also see that Mark is looking at the slope of the tangent line and not just 

the tangent line itself.  This is one of many instances where Mark’s correct discourse is 

tied to his explaining the why behind his choice of action. 

Mark uses visual arguments and graphs to communicate ideas.  Much of Mark’s 

sense making relies on visualizing ideas.  He describes himself as a visual learner.  When 

explaining to Chris he gestured to his graph and also uses visual language, “Like if we 

were to draw a line passing through that dot.” [1:43:40] Mark’s whole argument is visual 

and Chris accepts Mark’s strategy.  

In order to find the slope Mark knows that you need two points.  He also knows 

that to find the slope of a point, or at least a close approximation, you need to have two 

points very close together—or as he says, “infinitesimally close together.”  Finding these 

points and the slope between them are the focus of Mark’s thinking—a key idea for 

Mark.  He makes several comments, similar to the one below explaining why he wants to 

find two points infinitesimally close together while working on this task: 

1:43:57 Kam:   Should we just like get [the graph] bigger.  You know 
 Josh:  Just keep zooming in? 
 Mark:  That's the idea.  You get like two points that are infinitesimally close 

together then you find the slope between those two infinitely close 
together points. That's the whole idea between limits and stuff.  But I 
never understood a derivative to begin with, like in high school, so 
[trails off].  But we would still—if we want to blow up this section of 
the graph right here [data points around frame 10] you know, like we'd 
still need to know with our archaic way of graphing things we'd still 
need to know multiple points in between there and we don't have 
multiple points in between the frames. 

 Chris:   Well, no, no we don't.   
1:45:45 Mark:  That's why we started with this graph to begin with because that's what 

we knew where frame was, so [trails off] 
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The discrete data and Mark’s idea of limits with Zeno’s Paradox make it seem 

impossible to find two infinitely close together points, yet he knows that a derivative 

yields instantaneous speed so it must be possible.  How do you get very close, 

infinitesimally close, data when the data is discrete? The graph can be an estimation of 

the data they do not have, but if they “zoom in” too much, their data will not be sufficient 

to even make a graph.  As Mark pointed out somehow they need more data and they are 

using this graph to estimate data they do not have.  He sees the possible errors that could 

be made while graphing and wants something more exact.  However, not being able to 

think of any other way to do it, Mark suggests, “We could arbitrarily just draw a line and 

give our best estimation between it” [1:46:18].  They decide to do an estimation of a 

tangent line on Mark’s graph, but to make the estimation “easier,” or to estimate the 

tangent more accurately, Mark decides to “blow up” the graph like Kam suggested and 

just graph frames 8-12.  The data was discrete so technically the only points they knew 

were the cat’s positions at each frame.  However, Mark and his group decide that the cat 

would probably have pretty fluid motion and so a curve passing through the points should 

generate a good estimation of the cat’s motion between the discrete data points. 
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Figure 5.2 Mark’s graph of the cat’s motion from frames 8-12 

With a carefully generated graph, Mark estimated a tangent to the curve at frame 

ten finding the slope of the tangent and thus an approximation for the cat’s speed at that 

instant.  Mark justifies his belief that the slope of the tangent line tells us the 

instantaneous speed of the cat through graphical and visual means.  He thinks of the 

tangent line as a continuation of the instantaneous speed at that moment—as if there were 

a physical projectile following the graph with the given displacement over time and then 

some force made it continue with the same velocity at a given point in time, yielding a 

linear graph from there.  It is through these means that Mark justifies his reasons that the 

slope of the tangent to the curve at frame ten would yield the cat’s instantaneous velocity.  

We see strong indications of visual thinking and connections with physics in Mark’s 

approaches to solving the cat task. 

Mark determines the slope of the tangent line by measuring the rise over run 

according to the scale of his axes and estimates the slope to be 107.5 cm/sec (later he 
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changes it to 134 cm/sec because he remeasured).  This estimate falls between the 

estimates that Chris made at the beginning, which the group thinks is good.  Mark admits 

it was pure estimation, and not completely satisfied he and Josh are still interested in 

finding something more exact. 

2:23:59 Josh:  So you just kinda estimated which way the slopes would go.   
 Mark:  It's totally an estimation.  Like if we could plot an infinite amount of 

points between here then we might be able to have a perfect graph and 
then we might be able to, um  

2:24:24 Josh: How would you perfectly estimate the tangent line? 
 Mark:  [laughing] Perfectly.  Analyzing the tangent line. 
 Josh: How do you get it? 
2:24:31 Mark: I don’t know. 
 

Again Mark sees the limitations of the discrete data that they have and how such 

data limits their estimates.  He believes that an equation would help, but he still does not 

show any signs of knowing where to go even once an equation is obtained.  Mark and his 

group members begin to wonder how to find the tangent line.  “Perfectly estimating” the 

tangent line becomes an important quest for Mark.  Also, we will see that Mark’s interest 

in finding the tangent line persists even after he has found how to find the derivative or 

slope of the tangent line. 

All conversation regarding the tangent line is stopped when Josh announces he 

has an equation on his calculator [2:27:41].  Rather than first showing his group the 

equation, Josh shows the graphs of the plotted points, the regression line, and the average 

velocity graph he had made using Kam’s points, on the same axes.  Mark tries to make 

sense of the equation asking what the variables stand for and discussing the equations and 

graphs with Josh.  Mark’s desire to truly make sense of the mathematics is part of what 

leads him to the discoveries that he makes in this class.  
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Even with a regression equation from the calculator, Mark sees that any answer 

obtained with a slope from two points very close together on the regression curve is still 

an estimation of the cat’s speed.  He says, “So we might take like 39 and the next point 

up is like 39.00000001, but you know, you still . . . it’s still an estimation” [2:35:30].  

Mark also points out that drawing a tangent line to a graph by hand will also always be an 

estimation.  Because of this variation with hand-drawn graphs, Mark feels that “like it’s 

gonna be, it’s gotta be done with numbers or mathematically in the end.  Cause you can’t 

have infinite points, you know” [2:31:40].  He is dissatisfied with any approximation 

throughout the process of his search for the derivative and seems to want to find a 

“mathematical” way of finding the slope at a point.  For Mark, this “mathematical” way 

needs to involve limits and equations that are as accurate as possible.  As he puts it, 

“Well, eventually you are going to get to a point where you are going to like be adding 

and subtracting limits.  Like it’s eventually going to get to that point,” [1:56:11] and “It's 

eventually going to come down to an equation” [2:03:06]. But as yet, he does not know 

how to use either limits or an equation to solve the task.  He is not entirely sure how a 

limit is used in calculus even though he knows that limits play an important role in 

defining the derivative.  He has seen equations in physics classes and other classes he has 

previously taken and thinks equations need to be involved in solving the cat task. 

Josh asks if you can ever get exact velocity and Mark replies that he doesn’t 

know.  Josh feels like there has to be and Mark agrees.  Mark’s desire to know how to 

find the instantaneous velocity of the cat is growing stronger and stronger.  He has 

questions and wants to find answers.  The classroom setting allows him time and freedom 

to explore ideas both individually and collectively.  As Mark himself commented in the 
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interview, all the struggle they had in solving the cat task made finding out about 

mathematical ideas such as the derivative all that more satisfying and exciting. 

 Josh asks how you could get exact location for points on the curve and Mark 

responds, “I don’t know!”  He then says, “the notation of calculus is like, yeah,” 

[2:36:11] trailing off.  Mark thinks there must be a way using the notation of calculus to 

get an exact answer, but he has forgotten whatever notation he had previously learned, 

and never really knew what it meant in the first place (see quote from interview on 

following page).  To Mark, notation is a very important part of mathematics and while he 

relies on visual approaches as well as physics reasoning, he wants to be able to express 

these ideas in a more well-defined manner that notation makes possible.  Notation is a 

means of communicating and expressing mathematical ideas.  When notation is 

developed mathematical ideas can be more rigorously defined and work progresses at a 

faster pace. 

 At this point Mark and Josh’s conversation ends and they begin to listen to what 

Kam and Chris have been discussing.  Chris used the power rule that he had previously 

learned in a calculus class to take the derivative of the quadratic equation that Josh found 

on his calculator and got that the instantaneous velocity was 134 cm/sec.  Mark and Josh 

are interested but neither is satisfied with the strictly procedural explanation Chris gives 

of the power rule.  In this class the students are working in contextual situations and are 

not satisfied with strictly procedural knowledge but seek a conceptual understanding that 

makes sense in context. 

2:36:27 Josh:  Wait.  With your calculator you took the derivative?  
 Chris:  No, I just knew it.   
 Josh:  How do you do it?  
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 Chris:  Um, the power rule.  You take this exponent and you drop it down in 
front.  Have you had calculus before?  

 Josh:  It's been a long time man!  
 Chris:  Ok, so the exponent goes down and you multiply it by the cofactor and 

then you take x to the zero is 1.  1 times that is the same and then the 
there's no x so the constants go away.   

 Mark:  Wait, could you show me what you just did?   
2:36:51 Josh:  But why?  Why do you do that?  
 
 When Chris “explains” the power rule, or in other words, when Chris tells them 

the steps in the procedure used in the power rule to find the derivative, neither Mark nor 

Josh is satisfied with the explanation. They want to make sense of it, tie meaning to it, 

know where it comes from and why it works.  They are not satisfied that Chris took 

calculus and remembers a rule.  They want to understand that rule.   

 In the interview Mark talked about how he had procedural knowledge in his high 

school calculus class, but that he never really understood what it meant: 

   I'm a high school student.  I'm not going to read the math book, you know, 
of course not, and so like I would memorize procedures and steps.  I had 
no idea what they meant.  I would find the derivative.  I didn't even know 
what a derivative was.  I was like okay, well, I know derivative is dx-du--
dy over dx, you know.  Like I'd memorize the procedures, I knew enough 
of the procedures to get me through the class.  But I didn't know what was 
going on, at all. 

 
 Here Mark tells us that he had memorized procedures in his high school classes 

and was able to get through the class.  The procedures did not stick with him into college 

because by the time he got into this calculus class a few years later he did not remember 

any of the procedures and very little of the notation.  In fact, seeing procedures or 

notation did not even trigger a memory of them.  It is also interesting to see that despite 

Mark’s ability to perform the procedures sufficiently to get through class, he says he had 

no understanding as to what a derivative was or what it meant.  In this class the group 

members want to know why and how things work.  They are making sense of the 
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mathematics.  Chris’ procedural explanation does not help them make sense of the 

problem or arrive closer to a solution they are confident with, so they reject it. 

 Their conversation is again cut when the instructors ask the group to present their 

work in progress. Mark’s group decides to put the range of 80.6 cm/sec to 153 cm/sec 

and a happy medium of the estimates: 120 cm/sec.  They compare their answers to the 

other groups’ answers, but are still not sure.  At the end of class Mark shows that he still 

has unanswered questions: 

2:51:47 Mark:  Are we totally off?   
 Chris:  No, I think we're really close actually.   
 Josh:   [quietly] close to the wrong answer.   
2:52:05 Mark:  AAhhhh… My head hurts. 
 
 Class ends and they pick up again on Monday.  This shows the frustration the 

students are feeling and the lack of closure they feel currently with the task.  The lack of 

closure the students are experiencing makes it all the more important to find a solution 

they are satisfied with.   It also lets them feel like they are in charge of finding a solution 

instead of having one handed to them—thus augmenting their ability to exercise their 

agency in problem solving. 

Monday, 23 January 2006 

 Kam comes to class and says that he had an epiphany the night before and has the 

answer.  Kam’s approach to the problem does not include any of the aspects that Mark 

has previously been thinking about: slope of a point, tangents, derivatives, limits, etc., but 

rather considers that the cat’s average velocity remains the same for the next 3 or 4 

frames so the cat must have reached that average velocity (roughly 225cm/sec) before 

frame 10.  Mark takes quite a while to understand what Kam means and is finally fairly 

convinced by Kam’s visual presentation.   

49 
 



 

 

Figure 5.3: Kam’s table and graph of the cat’s average velocities 

 Kam explains, using a graph, how the cat would have to reach a speed higher than 

225 cm/sec between frames 10 and 11 if the initial speed were lower than 225 cm/sec for 

the average to come out to 225 cm/sec.  When Mark starts to believe Kam’s reasoning he 

says, “Why didn't we just see that before?!  I can't believe we didn't just check that.  Like 

it's there.  Like, you know, I just checked all your numbers and it all worked.  So, this 

graph is way off!”  Mark’s graphical solution had been an estimate but at least they 

thought it had been a close estimate.  Now that Kam’s solution seems to have reasonable 

backing, Mark is surprised that their answers are so different.  It is important to note here 

that given the discreteness of the data, it is not possible to find the instantaneous velocity, 

only to make reasonable estimates.  All the estimates they have come up with are 
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reasonable.  This instance again shows how Mark communicates visually.  It is not until 

Kam shows how the velocity graph would have to change that Mark accepts his solution. 

 Even though Mark seems to be fairly convinced that Kam solution is reasonable, 

he still seems to think there must be a different way to solve the task—a way involving 

calculus.  The following conversation also takes place in which we see that Mark believes 

they still have not used calculus: 

3:20:02 Mark:  I still can't believe we overcomplicated that thing so much.   
 Josh:  It was fun.   
 Kam:  We learned some calculus [smiling].  
3:20:12 Mark:  We still haven't learned any calculus yet.  We're still just, a, we haven't 

even gotten to limits yet.  So how else could we get any closer? 
 Kam:  I don't think we can.   
 Mark:  You'd have to get an equation of some sort.   
 Kam:  Which I don't think is even.   
 Mark:  You don't think it's possible?   
 Kam:  I don't think so.   
 Mark:  The calculator could do it couldn't it?   
3:20:40 Kam:  Because it would still be guessing. 
 
 Remembering vaguely from high school and also that Instructor 1 had 

emphasized limits in relation to the definition of the derivative, Mark thinks that they 

have not done any calculus yet because they have “not even gotten to limits” [3:20:12]—

a concept that is introduced early on in most calculus classes.  Because he does not feel 

that they have used calculus he wonders if they can get a closer answer [3:20:12].  They 

are working on this task in a calculus class so it seems reasonable that “calculus” should 

be used to solve the task.  Mark thinks limits, equations, and calculus notation need to be 

involved somehow.  We will see how knowing how to find a derivative symbolically 

helps Mark make sense of limits in calculus, instantaneous velocity, and the slope of a 

point, and finally allows Mark to feel satisfied because the symbolic definition uses 

notation, limits, and equations. 
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 Josh redoes his regression equation and uses the calculator’s derivative function at 

frame 10 and gets 137cm/sec—very close to the number Mark got from his graph.  Mark 

is pleasantly surprised but wonders if there could be human error in the graph or in 

entering information into the calculator.  He also wonders if 137 cm/sec could be right, 

but referring to Kam’s reasoning he asks, “But does that mean that at some point she 

raises her speed above 225 for an instant, do you think?” [3:37:29] Now Mark is not sure 

what to believe.  The coincidence of coming up with the same numbers on the calculator 

and graph makes it seem like it might not just be coincidence and yet Kam’s reasoning 

about the average velocities had made sense to Mark.  Mark says, “it made me feel kinda 

special” when Josh had gotten the same answer with the calculator that Mark had gotten 

with the graph.  Not only did getting the same answer make Mark feel good, it spurred 

him to more questions—is there some other way?  Were they missing something?  

 Sarah asks why there are different answers.  In answer to her question, Mark 

explains how he thinks that variation both of the cat’s movement and in plotting the data 

(human error) could cause the differences in the answers.  Josh thinks that they were 

wrong, that the estimate of 137 cm/sec that they got from both the calculator and the 

graph were wrong and thinks that it could be the residuals that are accounting for the 

error.  For now Mark says he’s okay with them being wrong.   His questions spur him to 

seek other options to solving the task. 

  By an hour and a half into class Mark has started to draw curves (see Figure 5.4) 

on his paper with secant lines going through the curves.   
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Figure 5.4: Mark’s sketches on paper 

He shows Kam and they speak in low voices the camera can’t pick up.  When the camera 

tries to focus in on them they say it is irrelevant.  Mark continues to work with these little 

diagrams for the remainder of the class.  By the end of the class he has spent the last half 

hour playing with his ideas and is frustrated.  Chris asks him what he is frustrated about 

and he says, “I'm just trying to see—I had an idea.  I was following the idea, but I think 

it’s a dead end.”  He tells them he was playing with some ideas involving trigonometry 

because he is good at trigonometry, but they weren’t going anywhere.  He still wants to 

find something more accurate than they had before: 

5:00:13 Mark: I want to know if we can get something more accurate.  That's my 
question—if we can get anything more accurate than what we have.  Can 
it be done?  If it can, I'm going to keep working at it. 

 
 After class he talks to Instructor 1 hoping to get some direction. It is difficult to 

find concise enough transcript to explain Mark’s ideas so I will summarize for the reader 

to understand then will give transcript using Mark’s own words.   

 Mark drew the diagram in Figure 4.3.  His idea was to use the data points they 

were given around frame 10, labeled points a, b, and c, and use the relationships such as 
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law of sines or cosines with the triangles and angles formed by the secant lines in order to 

find the tangent line.  He was hoping that he could find a trigonometric relationship to 

determine the angle in which to draw the tangent. 

 

 

  
a     

    
    

 
    

 

 

c 

b 

Figure 5.5: Mark’s secant lines 

 Mark’s idea and questions of his idea are given in his following explanation to 

Instructor 1 and Kam, which take place after class on Monday: 

5:03:32 Mark:  But if we were to like draw a line between there [between intersections a 
an c] and draw a line between there [between intersections a and b] and 
then take the triangle and then take the angles between them. I'm 
wondering if there's a relationship between that and a tangent line that 
passes through that single point [intersection a] right here.  

 Ins 1:  umm.  
 Kam:  Oh, I get what you're asking.  
5:03:50 Mark:   You see, that's kinda, like, I don't know, yet.  That's why I'm asking, 

like, well, is there?  Like cause we know points.  Like is there a 
relationship between those angles and those points and a tangent curve? 

   
 Mark has taken trigonometry and was thinking about similar triangles, angles and 

relationships between tangents, secants and angles.  He is hoping to find a way to predict 

the exact location of the tangent line using secants from the given data (which is 

discrete), angles formed between them and a tangent line at the same point by perhaps 

using the law of sines or cosines.  He has not figured out a way to do that, but wants to 
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know if this has been done before and if he is going in a good direction.  It is interesting 

to see how Mark is thinking about the data he has.  Since the data is discrete, the 

traditional calculus approach of secant lines getting closer and closer to the tangent line 

until when taking the limit they essentially become the tangent line, will not be possible 

given that they do not have a continues curve of motion.  However, just having finished a 

class in which many of the solutions to problems could be found in relationships between 

angles in triangles, his approach seems logical.  What a wonderful thing to have a student 

develop ideas like this!  He is creatively thinking and exploring, building on his 

experience and trying to solve the task.   

 The following transcript helps us see that Mark really does know what he is 

looking for and has a basis for the direction he wants to take.  Here he explains the “why” 

he is trying to do what he is with the triangles and angles. 

5:04:05 Ins 1:  That's a really good question.  And, why are you trying to find the 
tangent?   

 Mark:  Well, because that would give you, ‘cause we know that the slope of the 
position graph is the velocity and that was the question asked, to find the 
instantaneous velocity of—at this point—at frame 10. 

 Ins 1:  And so what does that have to do with the tangent?  
5:04:38 Mark:  Well, because, if this, if it were to have, if this curve were to have a 

constant velocity, it would follow that line.  It would be that slope. 
  
 Mark knows that the slope of the position graph yields the instantaneous velocity.  

He thinks of the tangent line as a continuation of movement with the instantaneous 

velocity from the point at which it stems.   Mark still confuses the tangent line itself with 

the slope subsequent to this conversation even though he says slope in this instance, again 

a common slip that many calculus students make (Walter & Gerson, 2007; Zandieh, 

2006).  However, whenever he gives reasoning for what he is doing, he always refers to 

wanting to find the slope of the tangent line and not just the tangent line in and of itself.  
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Knowing what he is looking for is an important part of Mark’s making sense of the 

derivative, and this is a great example of Mark knowing what he is looking for and why.  

 As Mark, Kam and Instructor 1 continue to discuss the importance of the tangent 

line, Kam asks Instructor 1 about the homework problem (see footnote 1) and wondering 

about distances approaching zero.  Mark says, “Yeah! That's why I was playing with.  I 

was trying to figure out how to approach zero.”  This comment is important because later 

he makes sense of the limit as h approaches zero and even uses the notation from the 

homework problem.  Mark is not necessarily thinking of the horizontal distances going to 

zero but he knows that he wants to find two points infinitesimally close together. 

 At the end of their discussion, Mark asks:  

5:06:15 Mark:  But am I onto something here?   
 Ins 1:  You might be.  
 Mark: I might be.   
5:06:22 Ins 1:  You might be.  I think you should think about it a little bit more.  I think 

that would be really interesting and um, one thing that I'm finding in our 
conversation here is that you are finding a reason to do the mathematics 
rather than being told here is the math that you need to know and now 
practice it.   

5:07:54 Mark: Okay, well I'm going to keep playing with that and see if I can articulate 
my ideas.  

 
 Mark trusts the teacher to validate his thinking.  Since he hasn’t entirely thought 

this through he wants to know whether it is worth his time to go on and presumes the 

instructor can tell him if he is going in a “correct” direction or not.  He is not sure what 

direction to take, so he is also hoping for some guidance.  Instructor 1 tells him, “You 

might be.  I think you should think about it a little bit more.  I think that would be really 

interesting.”   

 Duly inspired, Mark goes home and reads up on limits and derivatives. When I 

asked him what led him to reading the texts he responded, “I get questions in my head 
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and I start reading something.”  He pulled from both the university’s calculus text and 

another text he had used in calculus in high school until he had made sense of the 

derivative symbolically. He had previously tried to read the section on limits and had 

gotten frustrated because he could not understand it.  However, this time he was prepared 

for the reading because the ideas and diagrams that he had drawn and thought about 

helped him understand what had previously been difficult parts of the textbook.  What he 

read used a different approach to finding the tangent line.  The approach taken by the 

books is a traditional approach of showing secants that come closer and closer to the 

tangent line shrinking the horizontal distance between the intersections of the secant line 

then taking the limit as that distance goes to zero.  Mark’s diagram had involved secants 

and a tangent line and finding a relationship between them so although Mark’s approach 

wasn’t the very same as the book’s some of the underlying ideas of using secants to 

approximate the tangent line were similar. 

Wednesday 25 Jan 2006 

Eager to show his teachers what he had learned, Mark arrives in the classroom a 

half-hour early to tell his professors.  When they ask him to explain what he had learned 

he was able to do so, but struggled through parts of his explanations demonstrating that 

he was not just remembering, he was reconstructing what he had read in the texts. His 

work further illuminates his advancing understanding of the derivative as the limit of the 

difference quotient.  I will present the highlights of his presentation to his teachers 

including episodes that show his struggles and those that show his understanding. 
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 As he begins to explain, Mark conceptualizes the limit in two different ways: 

asymptotically, and as a dynamic process (Williams, 1991), retaining the idea of getting 

closer and closer but not quite there and then taking the limit allowing it to be “there.” 

First, he compares the limit of the secant lines and the tangent line to the asymptote of a 

hyperbola, “It's kinda like the hyperbola.  It'll constantly get closer and closer to zero but 

never actually touch zero.  That's what I understand” [5:10:04].  Mark’s conception of the 

limit also includes a dynamic movement of the intersections of the secant lines along the 

curve towards the point of tangency.  Mark points out that even when the secant line is 

really close to the tangent if you go out far enough there will actually be a great 

difference between them.  In order to get around this problem, the secant line has to be 

infinitely close to the tangent line: 

5:11:14 Mark: But, so you can't actually ever approach that.  So what they did in the 
formula is they arranged it in such a way that um, basically it takes into 
account that you almost, that you come close to infinity and then you 
possibly find the tangent. 

 
This process allows him to find two points that are infinitely close together and the slope 

between them—just like he had hoped to do.  The formula—the limit of the difference 

quotient—was the representation that finally allowed him to do this. 

Mark used the white board to explain his understanding of the difference quotient 

with the instructors.  Because of the glare on the white board I have recreated the 

diagrams that Mark drew for the reader to have a visual. 
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Figure 5.6: Mark’s diagram showing secants and a tangent line to a curve 

 
Mark begins using x0 and x1 to represent two points on the graph and writes 

f (x1) − f (x 0 )
x1 − x 0

 on the board.  It takes him about a minute and he talks to himself as he 

figures out what he wants to write. 

 Instructor 1 asks Mark what the quotient reminds him of and he says it is like the 

homework problem (see footnote 1).  Earlier, as you may recall, Instructor 1 had told 

Mark that f (b) − f (a)
b− a

 was important notation in the definition of the derivative.  Mark is 

connecting the homework problem to the notation that he had seen in the book.  

Instructor 1 asks, “So back at your graph, what's [the difference quotient] helping us 

find?” and Mark responded, “That's helping us find the slope of the tangent line at the 

end.”  Mark knows that he is looking for slope.  Mark and his group knew how to find the 

slopes of secant lines and had used secant lines in the cat task, but they did not know how 

to find the tangent line or the slope of the tangent line.  Now Mark had a way to find what 

he was looking for—and just as he had anticipated, limits played a major role. 
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 Mark then excitedly turns to an example that the book used, “They did it really 

cool.  Like the problem they did.  They did x2 . . .” Mark begins to explain how they used 

“h” to indicate the distance between x0 and x1, and changed the notation to x and x – h, 

which he later corrects to x + h.  He makes quite a few mistakes determining pluses or 

minuses and what went where.  Part of his problem stemmed from the fact that he had 

drawn another diagram with a and b ( see Figure 5.7), shown below, and referred to this 

diagram as he created Lim
x→0

f (x − h) − f (x)
x − h

.  

 

Figure 5.7 Mark’s diagram using a and b 

 
 Instructor 1 helps him correct his mistakes by asking him where each of the terms comes 

from allowing Mark time to think through what he is doing.  She does not jump in and fix 

it but sits back while Mark thinks about what the notation means and where it is coming 

from.   

 Mark’s discourse indicates that he knows he is trying to find rise over run.  When 

he carefully considers each part of the expression in terms of rise and run, he is able to 
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correct the difference quotient and writes f (x + h) − f (x)
x + h − x

.  The process of correcting his 

mistakes took a little under 15 minutes.  In this process, Mark was building and 

solidifying ideas. 

 Still needing to correct the limit (he had had the limit as x approaches zero), Mark 

was guided by Instructor 1.  Again we are able to see that when Mark thinks about why 

and what he is doing he is able to make sense of it and correct his mistakes. 

5:26:23 Ins 1: Okay, now I'm going to erase this notation [erases as x goes to zero] for 
just a minute and I want you to think about, um, about what you 
understood from the book and what you're trying to do here and what the 
notation should look like.  What is it you're trying to do generally?   

 Mark:   I'm trying to find the tangent line at point (3,9), that's what we decided.   
 Ins 1:  Okay, when you say tangent line you mean you’re trying to find the 

slope of the tangent line.  
 Mark: Yeah, I'm trying to find the slope of the tangent line is what I'm trying to 

find.   
 Ins 1:   And why is that?   

 Mark:   Because that would give us the instantaneous velocity or instantaneous 
rate of change.   

 Ins 1:  Really? [In an agreeing sort of way]  
 Mark:  Yes.  
 Ins 1:  Okay, so what  
 Mark:  Well, what I'm trying to is h.   
 Ins 1:  Oh, so then what should your notation say?   
 Mark:   Oh, as h approaches zero.   
 Ins 1:  Really?   
5:27:18 Mark:  Yeah.  So yeah, that's not as x approaches zero.  

 
 He readily corrects the limit to be the limit as h approaches zero instead of x 

approaching zero.  Instructor 1 helps him by asking him to think of the big picture and 

what he is really looking for.  He realizes that what he wants to get smaller is the value of 

h because that draws his two points closer and closer together.   
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 Mark successfully plugged x +h into x2 and rewrote the difference quotient.  

Correctly interpreting f(x +h) in a given function is something many calculus students 

struggle with, but Mark showed facility with the algebra and function notation.  He 

wanted evaluate the expression at x = 3 right away, but Instructor 1 asked him to wait to 

do that at the end.  Once the quotient was written it was reduced to 2x + h. 

 

Figure 5.8: Mark at the board 

 
5:33:32 Mark:  And, they didn't give a very good proof of this, but it makes sense to me 

in my head.  As h approaches zero, so then they just said that it equals 2x 
and that was the derivative of x squared. [Proudly showing off his work]  

 Ins 1:  Cool.   
 Mark: Yeah I was pretty excited when I.  I was like, "Oh, it worked!"   
 Ins 1:  Why, why could they say that 2x+h is just 2x, do you think?  You said 

they didn’t do a very good proof of it. 
5:34:12 Mark:  Well, in my mind, um, because it works in my mind because of this over 

here. [Indicating to his original diagram with secants and the tangent 
line.]  That's how it works in my mind.  As x gets smaller, as h gets 
smaller and smaller and smaller and smaller they say that zero is the 
limit for h.  And it's almost as if we've actually reached the limit.  Now 
that doesn't really actually happen in mathematics, usually.  I mean like 
if you divide something, divide something, divide something, divide 
something—it doesn't ever happen.  But in this instance we're almost 
like assuming, ok, well, yeah, now h is basically zero and it's the same 
number as x, sort-of.  No, since h is zero, [motioning towards board] 
yeah.  It’s almost as if we reached zero.  That’s the way I see it. 
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It is interesting to see here that Mark doesn’t think this “really actually happen[s] 

in mathematics, usually” [5:34:12].  He seems to be okay with “assuming [that] h is 

basically zero,” when he had previously been dissatisfied with any sort of estimation.  

Perhaps it was the notation that made it seem more official for Mark or the fact that he 

read it in a book, or just the fact that it was closer than the estimation that he had come up 

with because h was getting infinitely close to zero—or a combination of all three that 

make Mark readily accept this leap. 

Throughout the task Mark had continually looked for two points infinitesimally 

close together and thinking of taking the slope between those two points.  He again shows 

this train of thought when Instructor 1 asks the following question: 

5:35:01 Ins 1:   So at the end of all that you have 2x.  But why couldn't you have let h 
equal zero right from the get go?   

 Mark:  Aaahh, because, [long pause] cause then you're not dealing with two 
points.  You're dealing with one point and you're assuming...and you 
can't really define slope off of just one point.  That’s kinda what I 
understand. 

 
 Mark’s approach is a graphical/geometric, or visual approach more than an 

algebraic approach of not being able to divide by zero.  

At 5:36:30 Mark plugs in three and gets that the slope of the tangent to the curve 

x2 at the point (3,9) is six.  He also gets excited about writing the equation for the tangent 

line and proceeds to do so, but again this takes him some time to figure out—roughly two 

and a half minutes with Instructor 1’s questions.  A little later, after Mark had wanted to 

find the equation for the tangent for every example they talked about, Instructor 1 asks, 

“Why do you care about the equation of the tangent line if you already know what the 

rate of change is?” [5:40:20], and Mark says, “Another piece of knowledge to have. 

[laughs] I don’t know.”  He had been so focused on the question of how to find the exact 
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tangent line that he continued to do so instead of simply finding the slope of the tangent 

line.  Mark had really wondered how to find the tangent line.  He had played around with 

the ideas of angles and triangles, but hadn’t known where to go with that either.  Now he 

understood a way to find the tangent line, answering the question he had been asking 

himself for a few days now.  This is likely why he continually wants to find the equation 

for the tangent line as well as the slope of the tangent line. 

Fun, exciting, and invigorating are not words commonly used by students to 

describe learning about the definition of the derivative.  Mark even said that he didn’t get 

his chemistry homework done because he was looking at this—a rather significant 

disparity from the observed norm of undergraduate calculus students.  He shows both 

productive disposition and high levels of self-efficacy in his search for making sense of 

the derivative.  His enthusiasm is remarkable. 

After the presentations Mark has a chance to explain what he found to his group 

members.  When he explained it to them he did not make any of the mistakes he made 

while explaining it to the instructors earlier and was able to say why you do each step and 

where all the notation came from.  When he drew his diagrams for his group he is careful 

to label important points along the x- and y-axes and his explanation of slope flows easily 

from his diagram.  Mark’s explanation to his group members was much more concise 

than his explanation to his professors.  When group members asked Mark questions, 

Mark was not flustered, but he was able to clearly answer questions.   

 Mark retained his understanding of derivative.  In my interview with Mark at the 

end of the semester he was able to correctly answer a story problem involving 

instantaneous speed and fully explain why and how he came to the conclusion he did.  He 
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had no difficulty with the task even though he had never seen it before and was able to 

clearly explain why the answer he got was correct, thus demonstrating retention of 

calculus concepts and problem solving skills. 

I also asked Mark to reexplain the definition of derivative as if he were explaining 

it to a struggling calculus student.  He remarked that I already had it on tape three times 

but I told him I was asking him to see if he retained his knowledge.  Mark was able to 

recreate his interpretation of the definition of the derivative correctly after determining 

what the axes represented showing retention of what he had learned.  He did not falter in 

any of his explanations and explained it as clearly to me as he had to his classmates on 

the 25th of January several months prior.  
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Chapter 6 – Discussion and Implications 

 The research in this study focuses on one calculus student’s development of 

understanding of the derivative in a task-based, student-centered classroom answering the 

following research question: 

 How does Mark make sense of the concept of derivative while working on the cat 

task?   

 What are ways that the classroom structure influenced Mark’s learning? 

The findings in this study contribute new details about how calculus students 

might solve tasks, develop strategies, and communicate with each other (Thompson, 

1994).  Based on the data presented in chapter five, arriving at a sound understanding 

required time for sustained inquiry and multiple degrees of partial understanding weaving 

together to arrive at the culminating understanding. 

Analysis in chapter five provided a detailed account of how Mark made sense of 

the concept of the derivative while working on the cat task.  In this chapter I will 

summarize the analysis and further connect it to the theoretical perspective and literature 

review to answer the above research questions.  I will address the first question by 

reviewing the analysis in light of the river analogy given in chapter two, discussing 

Mark’s use of physics, Mark as a visual learner, the representations he used to make 

sense of the derivative in light of Zandieh’s framework, and his conceptions of the limit 

over time.  Secondly, I will address the influence of the classroom setting on his learning 

and his display of productive disposition and self-efficacy. 
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The Development of Mark’s Understanding 

 
Back to the river analogy.  Before even receiving the cat task, Mark had already 

formed some ideas that guided his thought processes.  In a sense he had already begun his 

journey down the river of understanding the derivative with the following ideas churning 

in the water:  

 Mark had learned about average velocity in previous math and physics classes, 

 He had wondered how you find instantaneous velocity but did not know how, 

 He thought finding two points infinitesimally close together would help, and 

 His research on Zeno’s Paradox laid the foundation for his understanding of 

limits. 

These ideas stemmed from experience in previous classes—mainly physics 

courses.  The second and third ideas were still questions in Mark’s mind that he faced 

again as he tried to find the cat’s speed at frame 10.  Because he was already curious 

about how to find instantaneous velocity and had thought that finding two points 

infinitesimally close together could help determine instantaneous velocity, these became 

key ideas throughout the cat task.  
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Figure 6.1 River Analogy Revisited 

 
As he traveled down his river of sense making (see Figure 6.1), tributaries such as 

seeing the slope of the tangent line to the position curve as instantaneous velocity, 

developing important notation, trying to approximate the tangent line graphically and 

using trigonometry, reading the calculus books, and responding to comments and 

questions from instructors and peers were added to his “river” of knowledge and 

understanding.  Entrances of the tributaries were critical events (Maher & Martino, 1996) 

in Mark’s learning.  Sometimes some of these ideas, such as the notation 
f (b) − f (a)

b − a
, 

would be set aside like a fork in the river, only to meet up again later when Mark found a 

way to connect them more firmly to the understanding he was developing.  Certain ideas 

such as using trigonometry to find the tangent line were discarded after Mark read 

calculus textbooks, but parts of the idea such as the way in which the graph was drawn 
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remained in the river.  Those that stayed were key ideas that Mark had built up 

heuristically and which he used to communicate his understanding (Raman, 2003).    

Mark’s understanding of the derivative progressed over time.  Many ideas 

contributed to Mark’s understanding—major ideas are shown in the river diagram.  

Questions brought up by peers, and by Mark himself, also spurred and directed Mark’s 

sense making.  His preparatory experiences, or the ideas and events contributing were 

vital for his subsequent level of understanding. 

Use of physics.  Mark built upon context-based, intuitive understandings 

regarding the derivative before he made sense of the formal definition with its notation 

and procedures.  Like the students in Marrongelle’s (2004) and Schnepp and 

Nemirovsky’s (2001) studies, Mark used his understanding of physics to help him solve 

calculus tasks.  He thought of the position, velocity, and acceleration of projectiles and 

how they could relate and help him understand how to use the position and velocity of the 

cat in the cat task.  His representation of the tangent line as a continuation of constant 

velocity stemming from a point on the position curve [5:04:38] is related to ideas in 

physics.   

Visualization.  Mark relied heavily on visual exploration of ideas to make sense of 

the derivative.  While the preference to communicate, justify, and think through ideas 

visually is Mark’s preference, we can draw inferences of the positive affect visual 

thinking can have on any calculus student.  Mark’s ability to visualize helped his 

conceptual understanding.  He was able to solve tasks, reconstruct the limit of the 

difference quotient, and deepen his understanding with the use of graphs and diagrams 
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and other visual images as well as visual language when communicating with his peers or 

professors. 

Mark often used graphs or diagrams (either diagrams he himself constructed or 

that others had constructed) to make sense of calculus.  Modeling and representing 

situations with graphs and diagrams was key to Mark in both the cat task and in the Betty 

Kant task as well as other problems throughout the calculus semester.  Mark’s visual 

arguments helped him relate his ideas to other subject matter, determine the reasonability 

of his solutions and make sense of the data, and we can presume that other students 

would benefit from similar uses of visualization. 

Along with graphs and diagrams, another example of Mark’s strong use of 

visualization was the key idea that Mark had running throughout the task: finding two 

points infinitesimally close together.  When he read about the definition of the derivative 

he saw the points, described in the text as x and x1, as “moving” closer together.  In this 

way the tangent being the limit of the shrinking secant lines seems to make sense.  It is 

the shrinking of time intervals that leads to the instantaneous velocity at a given point.  

When asked why h can’t be zero to start with he says, “Because then you're not dealing 

with 2 points” [5:35:01].  He reasoned visually and geometrically instead of giving the 

algebraic answer of not being able to divide by zero.  When Mark explains that the limit 

of the secant line is the tangent, he understands why you have to go to infinity because he 

can visually see the problems if you don’t: “If you have two points.  This is just my 

thinking through it.  Like, if you had 2 points even though this might be so minute, if you 

go out far enough [motioning with hands] that distance will still be [hands spread out].  

Does that make sense?”  He explains that even though the distance between the secant 
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and the tangent right near the point of tangency could be very minute, if the lines are 

drawn out far enough the distance between them will become quite large.  Here is where 

he sees the need of h going to zero so that the secant and tangent can be “infinitely close 

together.” 

My final example of Mark’s visual thinking is his diagram of curves and triangles, 

trying to find the tangent line by using trigonometry (see Figure 5.5).  The visual 

approach Mark took in trying to find how to accurately predict the angle at which to draw 

the secant line prepared him to understand his reading when he attempted to read the 

sections on limits and derivatives in his calculus books.  Once he had visualized the 

ideas, the explanations were made clear. 

Mark’s representations of the derivative in light of Zandieh’s framework.  Mark’s 

representations can be analyzed in light of Zandieh’s derivative framework (2000).  

Mark’s first representation of the derivative, the graph of the cat’s motion over time, was 

a combination of the first and third of Zandieh’s representations: (1) graphically as the 

slope of the tangent line to a curve and (3) as physical speed or velocity.  This 

representation evolved for days before he created his second representation, which was 

Zandieh’s fourth representation: (4) symbolically as the limit of the difference quotient.   

Let’s take a closer look at Mark’s first representation.  From the desert motion 

task previous to the cat task, he knew that the slope of the position graph was velocity 

and this idea became the basis for his work with the graph in finding the tangent to the 

graph of the cat’s position at frame 10.  Mark’s conception of the tangent line—a 

continuation of the curve at the velocity of a single point [5:04:38], tightly connected the 

geometric tangent line representation with the physical speed or velocity.  Since Mark 

71 
 



was working in a context in which the rate of change was the velocity, he only referred to 

the instantaneous velocity of the cat and relied heavily on his physics knowledge.  Thus 

the first and third representations presented in Zandieh’s framework were combined in 

one and the second representation was included in the physical velocity as instantaneous 

velocity.  

While this was Mark’s first representation, the connection between slope and 

derivative did not come immediately. In fact, it took almost an hour into the project to 

even bring up the word derivative, and a few days later to really determine the meaning 

of the word and its relation to instantaneous velocity.  The representation took time to 

build and refine.  During the process, the group discussed finding the tangent line and 

questions arose about how to accurately determine the tangent to a curve.  This led to a 

focus on the explicit image of the tangent line rather than the implicit slope of the tangent 

line—an incorrect metonymy for the term derivative (Zandieh, 2006). 

Another metonymic issue that arose was Mark had a point-by-point conception of 

the derivative.  In other words he considered the derivative to be the instantaneous 

velocity, or slope of the tangent line, at any given point, which is thinking of the whole 

concept of derivative by just part of it: the derivative value at a point.  Until Mark 

explained what he had learned from reading the text to both his professors and 

classmates, he did not show signs of having a conception of the derivative as a 

continuous function which could be graphed separately from the original function.  In the 

analysis we saw how even though Josh seemed to think of the derivative as the 

“derivative function” or “derivative graph”, this concept image did not transfer directly to 

Mark or vise versa [50:32].  Each did not see the other’s point of view for some time. 
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Mark’s final representation of the derivative was the symbolic definition, which in 

order to understand, he had to reify the concept of a ratio that generates slope and use 

limits.  As Mark stated in the interview he had not thought of the slope as derivative.  

Mark thought the instantaneous velocity could be found from the slope of the tangent line 

[50:32, 50:38], but did not know how to find the tangent until he was able to reify slope.  

In other words, he could find the slope of a line through the process of taking rise over 

run, but did not think of treating the rise over run ratio as an object over smaller and 

smaller intervals—as the symbolic definition of the derivative obliges one to do.  Only 

when Mark read the calculus text did he begin to think of the slope as an object rather 

than a process. 

It was not simply reading the text that enlightened Mark.  He had tried to read the 

textbook more than once previous to the cat task and had not understood it.  The 

difference was the preparation Mark had from the time spent in class working on and 

thinking about how to find the speed of the cat at frame ten.  The importance of slope, 

tangent lines, and secant lines had become more explicit as Mark struggled with the ideas 

and communicated those ideas to others.  It was through his communication that his ideas 

became well defined.  

Mark seemed to be the most satisfied with the symbolic representation of the 

derivative.  Limits and calculus notation were an integral part of what qualified as 

“calculus” for Mark.  He kept trying to find something more “mathematical” and said 

more than once that “it” (the solution to the cat task) would eventually come down to 

equations and limits. Even though he accepted Kam’s explanation regarding the average 

velocities, he still kept thinking that there had to be a way to get a better approximation.  I 
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believe part of the reason he felt this way was because he was in a calculus so he figured 

there was a way to solve the cat task using calculus, or by using limits and calculus 

notation.  Consequently he continued to pursue different ideas such as trying to find the 

tangent line using trigonometry and eventually came to understand the symbolic 

definition of the derivative. 

Mark’s representation of limit.  In order to understand the symbolic definition of 

the derivative a student must have an understanding of the concept of limit (Hähkiöniemi, 

2006).  Let us take a closer look at Mark’s understanding of limit.  As previously noted 

Mark’s original conceptions of limit were strongly tied to Zeno’s Paradox and the idea of 

getting closer and closer but never reaching a limit.  This class had not defined limits in 

terms of delta and epsilon so it is not surprising that Mark still has a conceptual, dynamic 

understanding of the limit instead of the static delta-epsilon definition.   

Mark’s dynamic conception of limit includes an asymptotical view as well—he 

compares the limit to the asymptote of a hyperbola [5:10:04].  Because of his concept 

image, Mark believes it is not mathematically possible to “reach a limit.”  This view 

makes sense if one considers Mark’s background and the connection he makes to Zeno’s 

paradox as well as the presentation of the definition of the derivative in the text he read 

(Garner, 2005).  Garner’s text uses the traditional approach of secant lines approaching 

the tangent line as the distance h decreases.  In this sense h is getting smaller and smaller 

from one side (a one-sided limit with a bound) and in light of Zeno’s paradox, will never 

reach a length of zero.  Mark also states that if h were to equal zero there would not be 

two points, and thus impossible to find the slope, and also algebraically one cannot divide 

by zero. 
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While Mark was able to define derivative values using the derivative function 

obtained by taking the limit of the difference quotient, his conception of the limit was still 

largely a process view at the end of the time period analyzed.  He did not reify the limit, 

but directly calculated derivative values by going through the process of taking the limit, 

finding the derivative function, then leaving the limit behind and using the derivative 

function to find derivative values. 

 
Influence of classroom structure 

 The following portion will address the second research question: “What are ways 

that the classroom structure affected Mark’s learning?”  I will discuss how Mark 

considered big ideas first then the smaller building blocks, how exploratory tasks created 

a “need” for learning mathematical concepts, the role of agency and time, and evidence 

of Mark’s productive disposition and self-efficacy. 

Most traditional calculus courses follow a text in which students first learn 

smaller concepts in isolation in an effort to prepare them for larger concepts.  For 

example, students will review function notation, study a chapter on limits, and perhaps 

have some preparatory problems involving rates of change before learning the definition 

of the derivative.  When texts do present the derivative, often the formal definition is 

given, with an explanation and students are given practice problems as homework.  In 

contrast Mark and his classmates were given a real-life task in which they were to find 

the instantaneous velocity of a cat.  The derivative being introduced, in this manner, as 

one big idea: instantaneous rate of change.  Students then built the smaller ideas such as 

limits, average rates of change, and functions in response to a need rather than in 

isolation.  In this manner these smaller ideas had more significance. 
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As shown in the previous chapter, it took time for Mark to develop ideas, 

understand concepts, and make connections.  The classroom setting in which Mark was 

developing his conception of the derivative allowed for exploration of the underlying big 

ideas in calculus such as instantaneous rate of change.  Instructors did not jump in too 

quickly, but allowed students to think through ideas thoroughly.  Students had time to 

formulate their own theories and discuss their plausibility and in so doing deepening their 

own understanding. 

The classroom setting also allowed students to teach each other.  They listened to 

each other and learned from each other building their self-efficacy because they saw that 

they could be successful mathematics learners and teachers. Through their social 

interactions they were able to define terminology and notation.  In their public 

presentations (Raman, 2003; Speiser & Walter, 1997; Walter & Gerson, 2007), or their 

verbal presentations to one another, students clarified their thoughts and deepened their 

own understanding. 

Students were given a chance to explore and use their own thinking.  Mark and 

his group created their own models of the situation.  He was not told the best way to 

graph the information or even to draw a graph, but chose to do so and chose how to do so, 

exercising his personal agency.  Students exercised their agency in choices they made, 

not feeling like they were constrained to one way of thinking.  I do not think Mark ever 

would have explored his idea using trigonometry to find the tangent line if he had not had 

the freedom to explore the task in whatever approach seemed possible for him.  His 

personal explorations enabled him to come to a strong conceptual understanding of the 

definition of the derivative.   
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Mark described what he thought the instructors hoped for to Chris when Chris had 

expressed frustration: 

I think they just basically, we just have as much time until they're satisfied that 
we've come to an appropriate conclusion or until they've like, or until we've 
exhausted all our options, and they're like okay what are you thinking?  Guide 
your thought process.  
 
The fact that Mark believes the teachers expect him to exhaust his possibilities 

may attribute to his persistence.  He also sees the teachers as guides of his thinking rather 

than spouting founts of knowledge that he simply absorbs.  Notice the phrase “an 

appropriate conclusion.”  Mark did not say correct, right, or even the appropriate 

conclusion.  This way of thinking is unusual.  So many students would have believed that 

the teacher would just give them the answer when they had worked on it a while and not 

come up with the answer.  In this classroom the instructors did not constrain the students’ 

agency in mathematical exploration, but allowed them freedom to explore their own 

options in their own way. 

Mark shows a productive disposition (National Research Council, 2001) and a 

strong sense of self-efficacy (Bandura, 1989) throughout the analysis.  A classroom that 

allowed students to explore ideas, share and discuss those ideas fostered self-efficacy and 

productive dispositions. Mark sees himself as an effective learner and doer of 

mathematics and that with diligent effort he is capable of learning—steady effort pays 

off.  Mark believes that he has to work at math, “I don't consider myself naturally 

talented for the most part,” but if he works at it, he believes that he has the ability and 

capacity to figure out and solve mathematics problems.  Mark engages in mathematics in 

such a way that demonstrates that he believes in himself.  He contributes, listens 

attentively to others, asks thoughtful questions, and remains focused on the task.  He does 
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not readily absorb material, but processes it and determines whether it makes sense to 

him or not.   He works hard on class work and homework and is persistent even in the 

face of difficulty.  Mark sees mathematics as both useful and worthwhile.  Mark showed 

that he knows that calculus is used to solve real world problems, that mathematics is 

applicable and necessary.  He pointed out that methods similar to the cat task have been 

used to calculate physical phenomenon such as falling objects and projectiles. 

Not only did Mark display enthusiasm for the mathematics, but his entire group 

showed similar attitudes, leading me to believe that there was something beyond Mark’s 

character that led to such excitement over calculus concepts.  I believe students’ ability to 

explore, the struggles they had in finding answers, and the general classroom setting 

contributed greatly to Mark’s (and his peers’) energy and enthusiasm throughout this task 

and the rest of the semester.  As Mark himself said, “ I think this is a lot more exciting 

when I can rediscover it.”  Mark felt as if he had discovered something.  That was 

exciting. 

Student learning in context situations creates a “need” for solutions that make 

those solutions “exciting.”  Mark got very frustrated while working on the task—but not 

frustrated enough to quit.  In fact, his frustration just made conjectures and discoveries all 

the more meaningful.  When I asked Mark in the interview why students in this class 

seemed to have more enthusiasm about concepts like the definition of the derivative 

when compared to other calculus classes I’ve taken or taught, he said: 

The difference is like I think it's cause we got frustrated because we didn't have it.  
We're like, ‘Aaarg! We want to use it!  We want to figure out how to do it!!’  And 
I think that's one good thing about this class.  Like in all honesty, like, I think this 
class is a good foundational class.  Much stronger foundational class than most 
other students.  Like most other students are like that.  Are like, ‘Yipee. Learn the 
definition of derivative, throw it out next week.  I won't ever retain it’ . . . Like 
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when you're solving a puzzle and you're trying to solve a puzzle like the cat task 
here, you know.  It's like, well, how do I solve this puzzle?  How do I find a 
solution to this puzzle?  I want to solve this puzzle.  It's almost like a game you 
know.  And so when I, when we finally found a solution to the puzzle it was like, 
‘hey this is cool we found it!  Look at this!’ 
 

Mark makes reference to the social interplay that helped him make sense of the task.  

Mark did not solve the task alone, yet his individual ideas greatly contributed to the 

collaborative efforts of his group.  Mark’s entire group was excited to solve the task and 

learn the mathematics.  Letting students struggle for a while—and notice that Mark and 

his group struggled with this problem for at least a week(!)—will make the solution ever 

so much more meaningful.   

 
Implications 

In the literature review I presented many views of the lack of understanding and 

retention exhibited by many calculus students (Baker, Cooley, Trigueros, 2000; Dudley, 

1993; Schnepp & Nemirovsky, 2001; White & Mitchelmore, 1996; Zachary, 2004).  The 

research presented in this thesis shows that at least one student who excelled, 

demonstrating both procedural and conceptual understanding of the definition of the 

derivative, retaining his knowledge applying it to new tasks, and enjoying the whole 

process.  Knowing how Mark made sense of key calculus concepts can help us know how 

other students might make sense of them.  

The more we understand about how students learn mathematics, the better 

prepared we will be to teach mathematics.  This research has implications for ways in 

which calculus can be taught.  Students need to be encouraged to discuss and explore 

significant calculus ideas such as rate of change.  A teacher can give tasks that require the 

student to think deeply about big ideas.  Students can work together and present their 
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work to their classmates.  Big ideas can be a starting ground from which smaller building 

blocks can be assembled and have more meaning.  Time needs to be allotted for students 

to solidify ideas and explain why something was true or where it came from.  Creating 

such a setting can foster self-efficacy and a productive disposition in the students. 

More research can contribute and support the findings in this study answering 

questions such as:  What would have been different if Mark were not as motivated of a 

student?  Do other students in comparable classroom environments act similarly?  How 

well will Mark and other students do a few years in the future as a result of their 

experiences in this class?  
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