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A B S T R A C T

Rapid changes that are taking place in the urban environment have significant impact on urban growth. Most
cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing
requirements and rapidity of introducing new technologies to all aspects of residents’ lives force cities and urban
regions to implement "smart cities" concepts in their activities. Real estate is one of the principal anthropogenic
components of urban environment thus become a subject of thorough multidisciplinary analysis in the field of
data requiring spatial information systems. Recent advances in information technology, combined with the
increased availability of high-resolution imagery from Earth observation, create an opportunity to use new
sources of data that enable to identify, monitor, and solved many of urban environmental problem. The aim of
the paper is to elaborate precise, complete and detailed property information with the use of remote sensing
observations in a suitable numerical algorithm. The authors concentrate on providing one of the most important,
and probably the most lacking, feature describing properties – building usable floor area (BUFA). The solution is
elaborated in the form of an automatic algorithm based on machine learning and computer vision technology
related to LiDAR (big data), close range images with respect to spatial information systems requirements. The
obtained results related to BUFA estimation in comparison to the state-of-the-art results are satisfactory and may
increase the reliability of decision-making in investment, fiscal, registration and planning aspects.

1. Introduction

The rapidly expanding urban areas of the world constitute challenge
for the 21 st century that requires both new analytic approaches and
new sources of data and information (Miller and Small, 2003). Modern
management of the urban area is to be considered from many aspects,
where one of them, is access to the tailor-made information within the
smart cities systems. The Miller and Small (Miller and Small, 2003),
Gillanders et al. (Gillanders et al. (2008)) and Zhou et al. (Zhou et al.
(2012)) point out that increasing availability of remotely sensed ob-
servations and a variety of other geospatial information significantly
support the development of new tools and approaches for under-
standing the urban space. Land cover relate the physical and biological
cover over the surface of land, including water, vegetation, bare soil,
and/or artificial structures. Land use usually refers to signs of human
activities such as agriculture, forestry and building construction
(Banzhaf and Hofer, 2008). The structure elements of buildings are one
of a scale-dependent of the urban analysis elements (Rashed and
Jurgens, 2010). Process of urbanization at the scale of local and re-
gional area effects must be documented, analysed, evaluated and if
possible, predicted. This goal can be only achieved by involvement of

researchers and stakeholders to cooperating and exchanging knowledge
(Longley, 2002; Grimm et al., 2000; Lee and Sasaki, 2018). Indis-
pensable in that scope is defining and monitoring of land-cover and
land-use as a part of urban environment with the Urban Remote Sensing
technologies. The Urban Remote Sensing (URS) according to Rashed
and Jürgens “has proved to be a useful tool for cross-scale urban
planning and urban ecological research” recently (Longley, 2002).

Buildings are principal components of urban environment. Sooner
or later everyone has contact with buildings that are a place for life,
work, investment and relaxation. That is why buildings are part of
many decision-making systems related to valuation, taxes, land plan-
ning and sustainable development of the areas. However, due to the
complex specificity of properties (many functions, influenced by many
unstable and stagnant features, unspecified relations and strong beha-
vioural impact), these are very difficult /troublesome components
(subject) of the decision-support systems. For this reason information
technology is increasingly being utilized in this field (AlZaghrini et al.,
2019).

Decision-making systems fed with property (building) information
are based on different methods and models. One of them is based on
geostatistical analysis which additionally takes into account property
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geographic location or use geographic information systems (GIS) in-
tegrated with others (Abbas et al., 2019; Renigier-Bilozor et al., 2019;
McCluskey et al., 1997; Renigier-Biłozor et al., 2018). Another ap-
proach, currently even more dominant, involves artificial intelligence-
based methods, data mining and machine learning in the framework of
GeoComputation uses (Zavadskas et al., 2017; Barber, 2017; Park and
Bae, 2015; Bello and Verdegay, 2012; McCluskey et al., 2012; Bieda
et al., 2019). Even though public authorities in many countries are
responsible for running public property information registers, the in-
formation provided from them in terms of property analysis seems in-
adequate or incomplete (Kustra et al., 2019; Benduch, 2017; Christidou
and Fountas, 2017). The problem of insufficient property data or un-
availability of information on the property market increases uncertainty
in the analysis (Renigier-Biłozor et al., 2019, 2017; Yigitcanlar, 2015;
Foord, 2013; Yovanof and Hazapis, 2009; Szulwic et al., 2015).

Due to the above the paper proposed new automatic algorithm
presented in experimental work related to building usable floor area
estimation in the following work structure. First, an explanation of the
reasons for looking for a usable floor area estimation new solutions is
provided - Section 2. Section 3 presents methods, data, and algorithm
methodology of BUFA estimation. Section 4 presents workflow of pro-
posed BUFA estimation algorithm and empirical results obtained on the
basis of residential buildings case studies. Finally, Section 5 presents the
conclusions and future directions of research.

2. Literature review - property information sources and usable
floor area (UFA) determination

Property information sources, if understood as public registers, are
considered as parts of land administration systems (LAS) which provide
support in general decision making and assist the public administration
in the process of fulfilling its statutory duties (Lepkova et al., 2008;
Dawidowicz and Źróbek, 2017). According to Dawidowicz and Źróbek
(ISO 19152, 2012ISO 19152, 2012), many countries are in the process
of integrating Land Information Systems (LIS) in order to develop LAS.
This is a consequence of the introduction of the Land Administration
Domain Model (LADM) as an International Standard (Kalantari et al.,
2015) which forced administration bodies worldwide to adopt this
standard into their current processes and cadastral information systems
(Manzhynski et al., 2016). Since that time, bridging the gap between
LADM and different property information sources began (Kalantari
et al., 2013; Zareiforoush et al., 2015).

While a number of studies have concentrated on the use of parti-
cular models/method/algorithms with insufficient data (Renigier-
Biłozor et al., 2017) in the authors' opinion, attention should be paid to
solutions providing appropriate and precise information to feed the
models. For this reason, the authors of the paper formulated the fol-
lowing thesis: an automatic algorithm based on mutual technologies
and methods fusion: spatial estimation, machine learning, computer
vision, fuzzy theory enable crucial information delivery with buildings
related data that increase reliability of land information system. In
order to solve real world computation problems, a combination of
computational techniques is preferred to the exclusive use of single
methods (Kara et al., 2018).

One of the key decisions that should be taken into account includes
determination of the buildings comparison unit to which the compar-
ison refers (e.g. m2 of land area, m2 of building space, m3 of cubic ca-
pacity). The usable floor area of buildings tends to be the most fa-
vourable comparison unit in terms of residential property analysis.
Generally, the property "usable floor area" (UFA) is understood as the
area measured along the internal length of the walls on all floors of the
residential rooms intended for permanent residents. Kara et al. (2018)
noted that floor area definitions and measurement principles might
create dramatic variances in practice, even among terms that have very
close definitions. Many countries maintain a national standard for re-
presenting the measurements of floor areas in buildings. The nationalTa
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standards generally use similar basis for measuring building floor areas,
in fact, areas specified in national standards often have semantic dif-
ferences (Łuczyński and Kotarba, 2017). There are many detailed reg-
ulations concerning the UFA determination/measurement (Table 1).

Even though UFA of buildings is widely used, the access to in-
formation concerning this attribute is limited or questionable in terms
of its precision. This is caused by the way of information provision. The
usable area (in case of direct way of provision) is either declared by
building owners (the source of lack of preciseness – conscious/un-
conscious) or determined with specific algorithms for administrative
purposes (if possible) (Zbroś, 2016; Telega et al., 2002; Benduch and
Hanus, 2018). Other cases of UFA provision are significantly limited
because of the protection of property ownership rights, in other words,
there are no other ways of direct building UFA determination. That is
why there were rare attempts of usable area determination based on
indirect methods. According to Kara et al. sources of areas of property
units or parts, such as land registers, building and dwelling registers
and architectural projects, generally do not provide explicit information
on the procedures, semantics and methods used to compute them.
Additionally, national measurement standards more or less use similar
basis for measuring floor areas, but semantic differences between var-
ious types of areas specified in national standards often found mis-
leading (e.g. measuring a specific floor area in one building using dif-
ferent national standards results in variations up to 30 %) (Łuczyński
and Kotarba, 2017).

Analyses of the current state-of-the-art revealed that one attempt of
UFA determination was imposed at the administrative level in Polish
legal system - Guidelines for general property taxation (Benduch and
Hanus, 2018). According to the §20 of the mentioned guidelines, the
area of the land components is determined as follows:

• the plane of a multi-storey building (residential, office, etc.) is the
product of the building area and the number of storeys (2.5 m,
3.5 m); usable attic is taken as 0.7 storeys, basement as 0.5 storeys:
(Eq. 1):

PPTN1 = PB·LS + PB·LA·0,7 + PB·LB·0,5 (1)

where:
PPTN1 – estimated UFA of a building,
PB – building area (surface area of the object),
LS – number of storeys,
LA– number of attics,
LB– number of basements.

• the area of buildings with a different number of storeys is the sum of
the products of parts of the building area and the number of storeys
in these parts (Benduch and Hanus, 2018) (Eq. 2).

∑=
=

P P L·PTN
i

n

BPi SPi2
1 (2)

where:
PPTN2 – estimated UFA of a building,
PBPi – building area parts,
LSPi – number of storeys in building parts.
Benduch and Hanus (He et al., 2017) proposed the concept of es-

timating UFA of buildings based on cadastral data which tried to “allow
for a subtle avoidance of the limitation”. The authors proposed three
approaches: simplified, general and detailed. The simplified approach is
based on the geometry of objects and the number of storeys (over-
ground and underground) of a building (Eq. 3). The general approach is
based on data from the simplified approach and additional information
on the material used for the construction of external walls of a building
(Eq. 4). The detailed approach is based on data from the general ap-
proach and additional information on the number of chambers in a

residential building (Eq. 5).

PUI = PB · LKn + PBB + POZ (3)

PUII = (PB · LKn + PBB + POZ) – PSZ (4)

PUII = PUI – PSZ

PUIII = (PB · LKn + PBB + POZ) – PSZ – PSW (5)

PUIII = PUII – PSW

where:
PUI – estimated UFA of a building within the simplified approach,
PUII – UFA general approach,
PUIII – UFA detailed approach,
PB – surface area of the object,
LKn – number of overground storeys of a building,
PBB – surface area of selected blocks of a building,
POZ – surface area of selected structures permanently attached to a

building,
PSW – surface area of internal walls of a residential building, de-

termined based on the number of chambers in a building,
PSZ – surface area of external walls of a building made of a specific

material.
Unfortunately, the proposed methods encountered significant lim-

itations. In order to compare the proposed solution by the authors with
the current methods, the authors tried to identify the required and
accessible data (provided by property registers) (Table 2).

Other limitations identified by both the authors of the paper and
authors of the analysed methods are: controversy with respect to cap-
turing, collecting geometric data of the building and ambiguity of the
terminology (e.g. overhang, vestibule, veranda), up-to-dateness of the
data contained in the real estate cadastre, impossibility of including
rooms of different heights in the calculation process and polysemy of
the term of UFA.

In order to decrease the aforementioned limitations in achieving the
aim of the paper, an algorithm fusion based on mutual modern tech-
nologies and methods combination was proposed.

3. Materials and methods

3.1. The methods and technologies included in BUFA estimation

The main purpose of the algorithm developments was to find the
building description model that is optimal in terms of effectiveness,
uniqueness and conciseness, giving the possibility of comparing (and
differentiating) the examined objects with each other, with respect to
the saved entities of the sample models. Hence, the algorithm assumed
a gradual (stepwise data enrichment) transition from measurement
data, from various sources, to a simplified model of the building

Table 2
Required and accessible data.
Source: Own study basis on property registers.

PTN1 PTN2 PUI PUII PUIII

Building area / building parts (blocks) area - PB,
PBPi, PBB, POZ

+ + + + +

Number of storeys / Number of storeys in
building parts (blocks) – LS, LSPi

+ + + + +

Number of attics – LA +/- +/- – – –
Number of basements – LB +/- +/- – – –
Surface area of external walls – – – + +
Number of chambers in the building (for internal

walls area determination)
– – – – +

+Required data.
-Unavailable data.
+/-Available data of poor quality (certain mistakes).
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containing the unique values of its features.
Considering the need to increase the efficiency of analyses and the

inability to implement the indicated steps using only one of the avail-
able data sets, it required different methods and the sequential and
iteration use of their results (Fig. 1).

In the presented algorithms fusion, the several approaches and
technologies in the framework of spatial estimation, machine learning,
computer vision, fuzzy theory use were applied in order to solve crucial
technical problems in the BUFA estimation procedure: detection of roof
planes; doors and windows detection on the building facade; identifi-
cation of a similar group of properties to the investigated house. For the
purposes of the paper analyses the calculation of the components
building usable floor area (possible to consider) was based on PN-70/B
Polish Standards (Poland).

All described algorithms were done by own developed application
in python environment.

The first problem was to determine the geometrical characteristics
of the building's roof: its shape in 3D and dimensions. Typical registers
(publicly available) do not contain such information or are contained in
a complex form of numerical architectural design. The data should
therefore be obtained from other sources. Fast and accurate acquisition
of spatial data characterized by time coherence describing a large area
of land requires the use of modern tools for remote data acquisition.
Remote solutions enable to among others presentation of land surface,
for example Pacific Catastrophe Risk Assessment and Financing
Initiative (PCRAFI) used satellite imagery of different resolution and
vintage and validated with the aid of some ground truthing, virtual
truthing using high-resolution imagery of more recent vintage and
other internet resources, agriculture census, and other ancillary data to
developing of land use/land cover maps (Banzhaf and Hofer, 2008).
The authors proposed the use of Airborne Laser Scanning (ALS) tech-
nology. Its growing popularity (there are also solutions based on un-
manned aerial vehicle (UAV) data – competitive from economic point of
view) indicates that it will be a generally available solution in the near
future. LiDAR is a remote sensing technology that collects geometric
and geographic information from targets on the earth’s surface (both on
distance to the ground and spatial direction measurement) in the form
of point clouds (Hill et al., 2000). This method has been used for a wide
range of applications in order to increase in procedure data analysis,
e.g. high-resolution topographic mapping (Zhao et al., 2008), 3D sur-
face modeling (Polat et al., 2015; Chen et al., 2012), infrastructure and
biomass studies (Doneus et al., 2013), archaeological sites detecting
(Rodrigues et al., 2011), remote monitoring of measured objects
(Puente et al., 2014), and object detection (Díaz-Vilariño et al., 2015;
Burdziakowski and Tysiac, 2019).The only problem that arises with the
use of LiDAR big data is the clustering of measurement results to re-
place independent observations of spatial points with their coherent
geometric model - parameterized geometric primitives (segments, tri-
angles, polygons and other complex 3D objects) (Ossowski et al., 2019;

Janowski, 2018). In this work, LiDAR data filtration to describe roof
geometry was carried out using the modified Msplit estimation
(Błaszczak-Bąk et al., 2015; Rapiński and Janowski, 2013; Zienkiewicz,
2014; Wiśniewski, 2010; Gadelmawla, 2017) considered as spatial es-
timation.

The necessity of detailed building's structural characteristics in-
formation collections in conjunction with the assumption of time and
equipment resources reduction implied the use of digital images of the
assessed object. The acquired digital images of facades with a method
other than close range photogrammetry defined as a method for remote
measurement object located within approximately 300m (cost reduc-
tion) was also indicated. Such images are characterized by a lack of
metrics, in contradiction to typical photogrammetric images products.
Due to the lack of image calibration (chromatic and geometric) and
analysis of only flat elements in the images, it was assumed that the use
of projective transformation (commonly used in photogrammetry tasks
especially by computer vision approaches) would be sufficient to as-
semble metric data of the building model (from previous stage) with the
facade representation found in the images. Measurement methods
based on photogrammetry and image processing have found applica-
tion in numerous diverse fields, especially when immediate and accu-
rate results required (Corrêa Alegria and Cruz Serra, 2000; Zheng et al.,
2016; Ziółkowski and Niedostatkiewicz, 2019).

The indication in the raster or 3D data of the elements with general
geometric characteristics (shape or dimension) is insufficient in the
presented synergistic concept of the assessment of BUFA. It assumes the
necessity to confirm the existence of elements with specific semantics
(context) on the images. This may include traditional statistical
methods and machine learning (Tizghadam et al., 2019) and learn the
latent patterns of historical data to model the behaviour of a system and
to respond accordingly in order to automate the analytical model
building (Pawlak, 1982). The advantage of this method is the ability to
analyse large resources of complex data, draw conclusions – also from
predictive analyses – that are out of reach of the human mind (Park and
Bae, 2015).

The next important issue concerned selection (indication) of similar
(representative) properties as the investigated buildings. The practical
problem of data exploration in geoscience results mainly from the non-
homogeneity of real estate (no two buildings are identical). One of
methods that is efficient in this case study area is a method based on
fuzzy logic and rough set theory. Rough set theory, formulated by the
Polish mathematician Zdzisław Pawlak (Janowski et al., 2018), is ap-
plied to process imprecise, vague and uncertain knowledge in data
analyses. The above features are characteristic of property information
and they have to be taken into account when "vague" decisions are
made in the area of buildings analyses. Due to this fact, advanced data
mining methods were implemented based on fuzzy logic and rough set
theory related to manners and procedures of designating similarities
(indiscernibility) of buildings. In this case, a causal relationship be-
tween features expressed by the physical characteristics are definitely
more imprecise, vague and fuzzy.

The presented methodology of BUFA estimation was explained in
detail based on the example of the particular case studies of residential
buildings located in Olsztyn city area (South-Eastern part of Poland).

3.2. Data

In order to conduct calculation according to the proposed algorithm,
diverse data from different sources had to be collected. The necessary
data include objects (used for particular stages within the proposed
algorithm) and related features (describing particular buildings). The
main groups of objects were imposed by the key stages of the algorithm
procedure presented in the following chapters. The mentioned groups
of objects include:

1 non-metric images of facades with georeference tags – the position

Fig. 1. Iterative collection and processing of measurement data and their de-
rivatives to obtain a final description of the building.
Source: Own elaboration.
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of origin of 3D camera coordinate system and focal length direction
to be perpendicular to particular facades was assumed (provided by
own or public resources) – the authors obtained 1,240 images (ob-
jects) with resolution 4032× 1960 pixels, 24 Bits colour depth for
the identification of the following features: windows, doors.

2 building architecture projects (provided by the project’s architecture
agency and valuers) – the author obtained 50 projects (buildings) for
the following feature identification: number of floors, total area of
the building, built-up area, height of the building and roof, roof
shape (represented by dictionary type); stored in RDBMS.

3 property transaction databases (valuers’ transactions) – the authors
obtained 37 transactions (buildings) for the identification of the
following features: number of floors, total area of building, built-up
area; stored in RDBMS.

4 single family buildings – the authors obtained information on 108
houses (residential buildings), the information included 3D laser
point clouds for identification of the following features: height of the
building, shape of the roof; stored in RDBMS (with spatial exten-
sion).

5 build-up area – 108 geometric polygons records of property build up
area obtained from property registry (land and building); stored in
RDBMS (with spatial extension).

Such data enable an empirical study to be conducted of the BUFA
estimation and verification of the effectiveness of the developed algo-
rithm.

3.3. The methodology of BUFA estimation algorithm

The elaborated algorithm based on the example of single-family
buildings BUFA estimation consists of three main stages (algorithms).
All of the them were described and verified separately.

The first main step assumed elaboration of the 3D model of a house
hull that consists of the building dimensions crucial for BUFA estima-
tion. This step was elaborated within the particular stages. First of them
are the analyses assumed combining data from two sources of in-
formation: a property registry (land and building) and LiDAR (big data)
(Fig. 2)

From the property registry, the two kinds of data were taken: build-
up area - S and building location – Ls (polygon coordinates) which
occurred as certain information and usually exist as precise data. From
the LiDAR, a 3D point cloud of a terrain digital elevation model (DEM)
was obtained. At this stage, it should be noted that there is a problem
with proper spatial resolution of LiDAR data (provided by ALS available
as a public data). In Poland, there is public register of the IT System of
Country Protection against extraordinary threats (ISOK) consisting of
digital elevation model (DEM) in a point cloud form with a standard I –
4 points/m2 spatial resolution for most of the country that was acquired
within the period of 2010–2015 with varying accuracy of 4–12 points
per m2. This is not an acceptable resolution for the presented calcula-
tions. Due to this fact, the authors used LiDAR data with 40 points/m2

resolution obtained from the Vimap Ltd company acquired for the
purposes of particular orders.

After obtaining the cloud points, the spatial separation of the data
was conducted. In this stage, geometric queries based on spatial (geo-
metry/geography) data for getting its subsets by buffer zones, contains,
symmetric differences, covers functions were used based on build-up
area. As a result of this stage, the points belonging to the roof of the

analysed building - DLR - were detected.
After that, the points belonging to the particular q planes of roof

were determined using M-split estimation as spatial geometry estima-
tion (the method that enabled separating (clustering) the dataset of
points belonging to certain roof planes - DLRi, i ∊ …q1 ) (Fig. 3). The
slopes and areas of all planes of roof Pi (i ∊ …q1 ) were then calculated.
The roof planes were estimated using normal vectors for particular
planes of analysed roofs.

The assumption of the Msplit estimation (robust estimation) is the
existence of n observations (the observation of the position of belonging
points) having mixed q random variables (q different roof slopes) of Eq.
6:

= =a X a XE l E l{ } , ; { } q qi q1 (1) (1) ( ) ( ) (6)

where:
a – vectors of known coefficient values,
X – vectors of unknown parameters q random variables.
Each of the observations (information on the points’ location) in-

cludes the potential opportunity to belong to one of the defined func-
tional models (roof planes) of Eq. 7:

= + = +aXl E l v v{ } (7)

Thus, a set of competing solutions in Msplit can be written as Eq. 8:

= + → →
⎧

⎨
⎩

= +
⋮

= +
aX

a X

a X
l v split

l v

l vq q q

(1) (1) (1)

( ) ( ) ( ) (8)

for each of n observed points. The purpose of the Msplit estimation is to
find the parameters of X sets describing q functional models. The gen-
eral functional model was the equation of the plane. For the q roof
plane, the q definition of the functional models of Eq. 9. was kept:

+ + + = ∈ …A x B y C z D i q0, 1i i i i (9)

As a result of solving the Msplit estimating equation from the set of
ALS points describing the roof space of the building, the q roof plane
was extracted and the edges were found and constructed using alpha-
shape (Edelsbrunner, 1995; Yang et al., 2011) flat figures located in 3D
space.

This allowed the development of the 3D roof model and the 3D
model of the house hull - HH. Due to this, the first step allowed ob-
taining the particular necessary dimensions: building height, dimen-
sions and shape of the roof, building volume and roof volume (Fig. 4).

The final result of this stage was the calculation of the range of
estimated total area with a floating (i.e. the height of particular floors
was not precisely determined) floor solution (Fig.5).

The second stage of the initial step assumed the calculation of the
estimated total building area with fixed (detected) floor heights. This
stage relied on merging (synergy) vectors (result of 1 step – wireframe
of 3D model of house hull) Hh and rasters (images contain visualisation
of house facade Ii, i ∊ …1 No. of facades). At the start, all acquired image

Fig. 2. Selecting LiDAR points belonging to the roof.
Source: own elaboration.

Fig. 3. Roof geometry determination.
Source: own elaboration.

Fig. 4. 3D model of the house hull determination.
Source: own elaboration.
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facades of the building required a chromatic correction process to im-
prove image quality according to boundary captured object inter-
pretation. In the next step, projective transformation of 2D images to a
3D house hull model was performed (semi-automatic spot detection of
homologous in vector and raster model was based on the detection of
the longest edges and their intersections in both models). The projective
transformation (recognized as well as plane-to-plane projection) was
necessary for obtaining metric information about facade objects laid
onto non-metric images by adjustment of particular coplanar elements
both on the image and house facade of the 3D model.

The crucial purpose of the following step was the context recogni-
tion of facade elements (especially doors and windows) on images with
metric information added. Therefore, using classic computer vision
edge detection operator - Canny (Gao et al., 2010; Freeman, 1961) and
Freeman (Shi and Cheung, 2006) chain code and simplification of a
vector line object (Ehsani et al., 2018), the rectangular shapes were
indicated. This was necessary since many other elements (not only
doors or windows) founded on the facade can have a rectangular shape,
e.g. ornaments or items. Reliable and efficient labelling/classification is
possible using machine learning technology. In this case, the YOLO
algorithm (Redmon and Farhadi, 2018, 2017; Gordon et al., 2018;
Rastegari et al., 2016; Redmon et al., 2016; Redmon and Angelova,
2015; Komorowski et al., 1999) frameworks were pre-tested by using a
training dataset of 1240 images of doors and windows separately using
machine learning (semi-supervised learning was used). This enabled the
validation process to reliably estimate the object detection. The correct
object detection (good recognition) equalled on average 67 % for doors
and 72 % for windows. The interpretation of acquired results means
that approximately 7 out of 10 doors/windows were detected in a
proper way (Fig. 6).

The purpose of the stage was to estimate the height of particular
floors on the basis of size and height of facade doors and windows. The
occurrence of particular doors and windows at a particular height of the
facade (thanks to adding metric information to the images in previous
step) enabled the number of usable floors to be assumed. The level of
the floor plane was assumed based on height of lowest edge of the door
or assumed distance from lowest edge of windows to the potential floor
(Fig. 7).

In the third step the main aim was the determination of the building
construction area indicator (BCAI). The BCAI includes the area of walls
(their thickness) and other common construction elements, e.g. pillars
in the house. The crucial stage in this algorithm was the selection of the
databases that can be the basis for the indication of the building con-
struction area pattern of similar properties to the investigated property.
In this case, two kinds of databases were combined: databases fed by
the valuers (with empirical measures taken during building inspection
necessary for the valuation procedure) and catalogues of building ar-
chitecture projects (due to the diverse presentations of buildings with
precise dimensions of building components) (Fig. 7). The combination

of these two databases was necessary due to the wide range of building
development periods (age of the house) and architectural styles. The
second stage in this step was the indication of variables (number of
floors - with usable character; total area of building; build-up area;
height of building and roof; roof shape and other factors, if necessary)
that exist in both databases and are crucial from an architectural point
of view. In both databases, the calculation of building construction area
for particular properties was indicated (Fig. 8).

The next step assumed the selection of the most similar properties to
the analysed one. Due to the fact that no two properties are identical,
combined with information uncertainty, imprecision, measurement
errors and the unavailability of certain types of information, a precise
(zero - one) indication of similar properties (buildings in this research)
is difficult or even impossible. In view of the above, the authors have
proposed the application of fuzzy theory and rough set methods (RST)
(Janowski et al., 2018; Renigier-Biłozor and Biłozor, 2009; Rapinski
et al., 2011; Jina et al., 2014; Stefanowski and Tsoukias, 2000) to select
a group of similar building (Fig.8).

In this particular case, the building features were divided into
conditional (measures of the building) and decisional (building con-
struction area) sets. Determination of decision rules can be written in
the form of a conditional segment (if… then…), and it can be regarded
as a decision rule. There are two general types of decisional rules. One
of them is “exact decisional or deterministic rule,” where the decisional
set contains the conditional attributes with quality and accuracy of
approximation equal to 1. The second rule is the “approximate deci-
sional rule,” in which the decisional set contains the conditional attri-
butes with quality and accuracy of approximation lower than 1 but
higher than 0 concerning vaguer, fuzzy relations. In this case, a causal
relationship between features expressed by the physical characteristics
are definitely more imprecise, vague and fuzzy. The application of
value tolerance relation (Stefanowski and Tsoukias, 2000) to the con-
ventional rough set theory based on a crisp indiscernibility relation, a
more flexible way to deal with the indiscernibility relation was ob-
tained with a better match to the property analysis. In order to select
buildings that are similar to the analysed "valued tolerance relation"
(VTR) (Stefanowski and Tsoukias, 2000), conditional variables were
applied to according to Eq. 10:

=
+ −

R x y
min c x c y k max c x c y

k
( , )

max(0; ( ( ), ( )) ( ( ), ( )))
j

j j j j

(10)

where:
Rj(x,y) - relation between objects (building) with a result of mem-

bership function [0,1],
x,y – identification of building,
cj – function of the j attribute selection from a given house,
k - threshold for the similar features set, allows objects to be con-

sidered indiscernible despite not having identical values; that is stan-
dard deviation.

The results produced by the valued tolerance relation matrix of
conditional attributes were summed up and the sum was determined
based on the below Eq. 11:

∑=
=

R x p R x p( , ) ( , )i
j

n

j i
1 (11)

where:
pi –building / object which is a candidate to a given similar group

(indiscernible).
Assuming that Wx is the collection of all similar (indiscernible)

buildings to x, its contents can be described as fulfilment of the fol-
lowing condition (Eq. 12,13):

∈ ⟺ =p W T R x p TRUE( ( , ))x (12)

= …P p p p p, , m1 , 2 3 (13)

This means that the set ofWx (a set of similar buildings to x) consists

Fig. 5. 3D model of the house hull with floating floor solution.
Source: own elaboration.
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only of pi from the P set, which satisfies the condition defined as a
function of the tolerance T. The degrees of indiscernibility were de-
termined at a given level of similarity for sets in decision subgroups. In
effect, classes of indiscernibility were determined, taking into account
95 % of similarity due to the fact of specificity of the building data that
were described above. In this stage, Eq. 14 on the toleration function is
as follows:

= ⇔ >T R TRUE R IND B d( ) 0.95max ( , )i (14)

This enabled several buildings similar (indiscernible) to investigated
building to be selected. The further step in this stage assumed calcu-
lation of the indicator of building construction area leading to correc-
tion of the building total area - indicated from second step of the al-
gorithm. In this case, the average of building construction area derived
from selected houses (considered as similar/indiscernible from ana-
lysed building point of view) was calculated.

4. Results and discussion

4.1. The workflow of the proposed BUFA estimation algorithm - single-
family buildings example

The algorithm assumed an universal approach, taking into account
the common architectural shape (hull) of European residential build-
ings, which enabled elaboration of the general Formula 15 for BUFA
calculation. The explanation of the Eq.15 was presented in the form of a
subtask list of programming process and their flowchart. The specific
measure conditions based on Polish directives were taken into account
to verify the efficiency of the proposed algorithm.

∑ ∑ ∑= − = ∙ −
= = =

BUFA UA BCAI A sec v BCAI(1 ) ( ( ) )(1 )e
k

m

e
k

m

i

n

i
c

i
1 1 1 (15)

where:
BUFAe - building usable floor area of house,
m - number of floors,
UAe - usable area including construction area,
BCAI - building construction area indicator,
seci - horizontal section of house hull for fixed height of house,

= − ∩ +sec sec (sec sec )i
c

i i i 1 for ∈ … −i 1 n 1 and =sec secn
c

n corrected
horizontal section,

A sec( )i
c – area of corrected horizontal section,

vi – coefficient including rules of usable area determination con-
nected with height of ceiling indicated by seci, n – number of defined
(domestic standards) of areas with different heights on the floor.

The specific measure conditions based on selected directive (see
Table 1) were taken into account to verify the efficiency of the proposed
algorithm (Fig. 9).

The subtask list of programming process to calculate the usable floor
area:

1 Initial steps:
1a: determination of the spatial range and location.

- S: built up area,
- LS: polygon coordinates,
- LS3D: prism developed on the LS base, 1b: initialization of the LiDAR
cloud points dataset;

- DL: cloud points set,
2 initialization of DL filtration limited to the LS range,
- DLR = LS3D □ DL; set of points belonging to the roof,
3 splitting DLR for the separate set points of q roof planes DLR-i for

∈i 1. .q,
- DLR = ∑ = −Di 1

q
LR i, q planes Pi for ∈i q1. . equation determination

using LSM (least square method) based on DLR-i for ∈i q1. .. with the
goal of minimizing function G from the Eq. 16 below for every Pi

Fig. 6. Second step of BUFA estimation algorithm – detection of height and number of floors and windows.
Source: own elaboration.

Fig. 7. Universal building features determina-
tion.
Source: own elaboration.
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plane:

∑

∑

= + + − → = ∇

= + + −

∈

∈

−

−

G A B C Ax By C z G

Ax By C z x y z

( , , ) [( ) ] (0,0, 0)

2 [( ) ]( , , )

q
j D

j j j q

j D
j j j j j j

2

LR q

LR q (16)

4 roof edges Rei for i ∈ m1. .. , estimated by 3D line equation de-
termination defined as the intersection of compared planes limited
to LS3D;

5 determination of the house hull HH based on LS and Rei for i
∈ m1. .. ,

6 8 image edge detection and facade polygon determination,
7 combining images and HH data using projective transformation. The
result is a set of metric images Ii for i ∈ No of house facades1. .. ,

8 detection of window and door sets (sets of 3D polygons);
- di doors for ∈i j1. .. ,
- wi windows for ∈i j1. .. ,
9 division of windows and doors for indication of the particular rows –
number of floors – NF,

10 indication of the height of particular floors hf for f ∈ …NF1 , based
on height of lowest edge the every row,

11 creation of heights Hvp1, Hvp2 of the virtual floating horizontal
planes Vp1, Vp2 related to the defined height of hf according to
chosen principles determined by the aim (e.g. in the Polish case, the
usable area calculation rules assume Hvp1= +h m1.40 ,f Hvp2=

+h m2.20f which indicates the calculation of usable area on the
height of floors from 1.40m to 2.20m equal 50 % and above 2.20m
equal 100 %),

12 conduction of sections sec1, sec2 planes Vp1,Vp2 with HHand calcula-
tion of their areas,

13 calculation of the estimated usable area UAe for particulars using
sec1 and sec2 (Eq. 17):

UAe=A(sec2) +A(sec1–(sec1□sec2))/2 (17)

14 indication of the building construction area indicator BCAI obtained
from most similar buildings developed on rough set theory and data
mining technologies,

15 calculation of the final estimated building usable floor area: BUFA
e= UAe⋅ (1-BCAI).

Fig. 8. Building construction area indication.
Source: own elaboration.

Fig. 9. Model of single-family building visualization – components of Eq. 15.
Source: own elaboration.

Diagram 1. Flowchart of the BUFA estimation.
Source: own elaboration.
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For greater comprehensibility and clarification, the assumed algo-
rithm was presented in the form of a flowchart (Diagram 1 ). The
presented algorithm enabled calculation adjustment to the investigated
residential building.

4.2. Discussion and empirical verification of the elaborated algorithm

The developed algorithm was validated on the basis of particular
case studies. Two of them were described in detail below (Figs. 10 and
11).

The other algorithm-validating examples are presented in Table 3.
The buildings presented in the table are representatives selected from

homogenous groups. The groups were elaborated using cluster analysis
(Fig. 12) according to features of the building (architectural shape, no
of floors, usable attic, geometry of roof etc.) from a set of 108 proper-
ties.

The selection within obtained groups was based on the lowest ac-
curacy of BUFA estimation. The tree diagram (Fig. 12) indicated the
nine homogeneous groups of buildings indicated from the k threshold
value 7. The value of the k threshold was assumed on the basis of the
junction distance. Within the value of 7 (junction distance), the
threshold enabled division into an optimal number of comparable
groups. In order to present the differences between actual and esti-
mated (according to the proposed algorithm) BUFA, a box chart was

Fig. 10. First case.
Source: own elaboration.

Fig. 11. Second case.
Source: own elaboration.
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elaborated.
In Fig. 13, a graphical depiction of nine homogenous groups and

numerical data through their quartiles is presented. The properties of
the lowest accuracy of BUFA estimation were indicated by the upper
whiskers (Fig. 13).

The obtained lowest accuracies of BUFA estimation were presented
in Table 3. The selected results enable presenting the worst possible
scenario of an applied algorithm on the set of 108 buildings Table 3.

The results of BUFA calculation, in comparison to the current state
of art (guidelines for general property taxation (see Eq. 1) and UFA
estimation within the simplified approach (see Eq. 3)), are far more
precise. The comparison to other described state of art solutions (gen-
eral approach – Eq. 4 and detailed approach – Eq. 5) was not possible
because of the lack of required data: surface area of external walls and
number of chambers in the building (Table 3). The comparison (BUFA
calculation and current state of art methods) was made on the example
of 19 buildings (Fig. 14).

The differences in results within the two current state of the art
methods (presented in Fig. 14) are mainly caused, as has been noted, by
the lack of consistent property (building) descriptions in the cadastre.
In other words, the data provided by public registers is false or in-
accurate. For example, the difference in results for building number 7 is
caused by the fact that the property register did not indicate the usable
attic appearance. A similar mistake caused by the quality of data was
identified in cases 2, 3 and 4. In these cases, the differences were made
by a lack of existing underground storey indication. The gross errors in
comparison of the current state of the art methods and actual BUFA
were caused by polysemy of the term of particular space/room in
houses.

5. Summary and conclusion

The analyses indicated that elaborated use of advanced solutions for
UFA determination in the form of a coherent system allows obtaining

Fig. 12. Tree diagram of buildings homogenous groups.
Source: own study.

Fig. 13. Range of differences in BUFA determination within homogenous groups of buildings.
Source: own study.

A. Janowski, et al. Land Use Policy 100 (2021) 104938

10



satisfactory differences between estimated and actual UFA. The greatest
differences between the area within the obtained homogenous group
equalled from 6 % to 17 %. The group of buildings with the most
complex architectural shape had the least accuracy, even though it was
much more precise than UFA estimated according to the current
methods. The less complex the architectural shape, the higher the ac-
curacy of BUFA estimation according to the proposed algorithm. The
average BUFA difference value in comparison to actual UFA equalled
9.7 % (worst cases in 9 homogenous groups of properties).

Property is one of the principal anthropogenic components of urban
area thus became a subject of thorough multidisciplinary analysis in the
field of data requiring spatial information systems. Due to the lack of
some of the most important information about usable floor area of re-
sidential buildings in public registers, there is a high probability of
making inappropriate or not entirely justified decisions for fiscal, in-
vestment, urban area analysis. Having that kind of automatic solution
enables rapid (and apparently more satisfying) BUFA estimation in
comparison with current methods (e.g. presented in Table 3). More-
over, it fills in the gap in identified limitations (Table 4).

The presented limitations in Table 4 are the most common obstacles
in calculating or verifying the UFA for residential buildings. The first
limitation is related to controversy with respect to capturing and col-
lecting geometric data of the building and ambiguity of the terminology
(e.g. overhang, vestibule, veranda). Even though the data collected in
the cadastre seems easy to interpret, in reality it causes problems in
interpretation without a field inspection of the property. In complex
architectural solids of residential houses, what seems to be build-up
area in reality can turn out to be an overhang or vestibule. Including
those elements in BUFA can lead to gross error occurrence. The algo-
rithm elaborated by the authors decreases problems in using LiDAR
observations (substitute field inspection) and machine learning tech-
nology (semantic recognition of the building components). The pro-
posed algorithm allows the cadastral data to be verified, thereby al-
lowing data error elimination and misinterpretation of the
aforementioned terminology. A quite common situation is the presence
of a usable attic in a building which, according to the cadastre, has only
one storey. This difference can be caused either by a data error in ca-
dastre or adaptation without a legally required building permit.

Another barrier is connected with updateness (reliability) of the
data contained in the property cadastre (or other public registers). This
is crucial and one of most important issues related to the area calcu-
lation or verification. The particular information is very often either
non-existent, false or imprecise. The proposed algorithm is based on
LiDAR data of high spatial and temporary resolutions and real actual
images which decrease this problem effectively.

The other problem is related to the impossibility of including rooms
of different heights in the calculation process. This problem is solved by
the proposed approaches using image context recognition (computer
vision technology) which enables labelling the particular building ele-
ments. The recognition of the windows and doors (involving machine
learning technology) enables identification of the storeys directly from
the building facade images. This is possible thanks to projective trans-
formation for obtaining metric information about facade objects. The
size and location of these objects enabled storey height determination.
An additional advantage of the proposed algorithm is its scalability
though flexibility related to metric information about the object.

The last issue related to polysemy of the term of usable floor area
has still not been solved. This problem remains outside the scope of the
following proposal since it is strictly connected with the legal side of it.
In the authors’ opinion, it can be solved either by legal acts or directives
imposing strict rules concerning its interpretation. Further research
(connected with further modification of the algorithm) concerning this
problem assumes determination of BUFA using different methods. The
recipients will, therefore, be able to choose the particular method of
BUFA determination depending on the purpose.

Further research will focus on development of the methodology toTa
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decrease its limitations in:

• calculation of the BUFA on the basis of sections - that disables
precise calculation of UFA. This limitation is a very complex issue to
solve due to the fact of no direct access to building interior area
data. A general consequence of remote solution application is in-
direct assessment of phenomena with internal structure;

• assumptions based on the roof surface approximated by planes
figure – that disables consideration of surfaces with a non-zero
curvature. The further development assumes applying different/al-
ternative method (then M-split) to obtained geometric specificity of
the roofs;

• BUFA calculation according to certain interpretation (including
every particular room to the calculation usable floor area) – this
cause problem with interpretation of BUFA for particular purposes
and related to them different legal acts/norm/standards. The further
development of the algorithm assumes calculation of BUFA with
consideration of particular rooms function (e.g. including or omit-
ting the usable area of garages/staircases/basements etc.);

• facades information collection limited to close range photo-
grammetry images - this causes problem with accessibility to facade
view (from every side) that is necessary for identification of number
and height of floors based on windows and doors location. This can
be very useful for assessment of building technical condition as well.
Due to this fact, the further development assumes, using different
source of information then just images from street view or own

images, using UAV technology or images obtained during the raid
targeted (LiDAR).

However, the decrease of limitations presented above does not have
to improve the accuracy/effectiveness of the BUFA calculation. These
are some constraints in the proposed method, observed during detailed
analyses that must be subjected to further tests. Reduction of the pre-
sented restrictions may increase precision in exchange for the need for a
greater number of information sources analyse, increase of time ana-
lyses and difficulties in interpretation. It must be underlined that the
use of solutions presented by the authors gave satisfying solutions.
Elimination of indicated restrictions may constitute an additional
component of the procedure which, in special cases (objects of complex
architectural shape) may possibly give better results.

Finally, it must be underlined, that the methodology as a way of
data collection can be especially useful in countries of limited possibi-
lities of UFA/BUFA data acquisition/collection. The proposed metho-
dology was elaborated for residential houses needs and any attempt of
widening its’ scope of application for other residential units needs de-
tailed reconsideration of the assumed solutions.
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Table 4
Comparison of BUFA and the proposed algorithm.
Source: own elaboration.

Existing
concept

Proposed
concept

controversy with respect to capturing, collecting geometric data of the building and ambiguity of the terminology (etc. overhang, vestibule, veranda) – +
updateness (reliability) of the data contained in the property cadaster – +
impossibility to include rooms of different heights in the calculation process – +
polysemy of the term of usable floor area – –
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+Filled.
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