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Abstract 

Background:  Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel 
disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, 
the function of MCs in IBD remains to be fully elucidated.

Results:  In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 
or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that 
MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier func-
tion, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to 
inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), 
Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different 
tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 
expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of 
HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal 
mucosa of patients with IBD compared with those healthy control.

Conclusions:  These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expres-
sion, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for 
therapeutic treatment of IBD.
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Background
Inflammatory bowel disease (IBD) is a chronic gas-
troenterological inflammatory disease, and increasing 

evidences have demonstrated that the mechanism of the 
pathogenesis in IBD is associated with dysfunction of 
intestinal epithelial barrier [1]. Imbalance between pro-
inflammatory and anti-inflammatory effect in intestinal 
mucosa is major cause in development of IBD. Interest-
ingly, the hallmark of IBD is a dysregulated intestinal 
immune response in which mast cells (MCs) accumulate 
in the inflamed gut of IBD patients [2]. Meanwhile, the 
report by Vivinus et  al. [3] showed that increased MCs 
numbers were counted in the colon of both Crohn’s Dis-
ease (CD) and Ulcerative colitis (UC) patients compared 
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to that in healthy controls, while activation of MCs are 
suggested by increased expression or release of MCs 
mediators in the mucosa, including proteases [4], his-
tamine [5], chemokines and cytokines [6], leading to 
the attraction of inflammatory cells, changes in barrier 
function, tissue remodeling etc. However, the specific 
function of MCs in IBD development remains to be eluci-
dated, especially the aberrant interactions between MCs 
and IECs or others underlying resident cells, which is 
fundamental for immunopathological regulation.

Intercellular communication is critical event to elicit 
efficient cell biology to aggravate or alleviate the process 
of IBD. In addition to various of inflammatory factors, 
small extracellular vesicles contain multifarious cargos 
such as proteins, mRNAs, lnRNA and miRNAs, also 
known as exosomes, which could be released by MCs to 
suppress allergic reactions by binding to immunoglobulin 
E (IgE) [7] and active T cells via bioactive lipids like phos-
pholipid scramblase, fatty acid binding protein phos-
pholipases [8], and promote dendritic cell and B cells 
proliferation, maturation and cytokine secretion through 
CD40, CD80 and CD86 [9]. These studies suggested 
that MCs aggravated intestinal inflammation by trigger-
ing immunoreaction among immune cells to promote 
development of IBD. While the intestinal epithelial bar-
rier is crucial for maintaining the intestinal homoeostasis 
because of its location between the luminal bacteria and 
the host’s innate immune system. Tight junction-related 
proteins, including tight junction proteins 1 (TJP1, 
ZO-1), Occludin (OCLN), the junctional adhesion mol-
ecule (JAM) [10] and CLDN family [11], are the main 
components of the intestinal epithelial barrier, and they 
play an important role in controlling cellular polarity and 
adhesion [12]. Among these, CLDNs, in particular CLDN 
8, have been regarded as backbone of intestinal barrier 
and reported to be the most important related to IBD 
and diminished in IBD patients [13–15], which further 
focused us to analyze the potential relationship between 
MCs and tight junction proteins, especially CLDN 8, in 
IECs.

Evidences for the regulation of IBD by altered micro-
RNA (miRNAs) is increasing [14, 16–18]. MiRNAs are a 
group of small, noncoding, endogenous RNAs that nega-
tively regulate target genes, usually by imperfect comple-
mentation sequence pairing to the 3′untranslated region 
(UTR) of the target genes, leading to mRNA cleavage and 
translational repression [19]. In this study, we revealed 
that MCs destroys intestinal barrier function via reduc-
tion of tight junction-related proteins, major in changes 
of CLDN 8 expression, mediated by exosomal miR-223, 
leading to increase epithelial permeability and contribute 
to development of IBD. Enrichment exosomal of miR-
223 in vesicles are secreted, transferred and internalized 

by IECs, resulting in suppressing CLDN 8 expression. 
These results demonstrate that, by targeting CLDN 8 in 
recipient cells, MCs-derived extracellular miR-223 is able 
to destroy intestinal barrier integrity to facilitate disease 
progression.

Materials and methods
Cell cultures
The IECs, including a normal human colon mucosal epi-
thelial cell line NCM460, and human colorectal adeno-
carcinoma cell line HT-29 and CaCO2, were obtained 
from the ATCC and the human mast cells (HMCs-1) was 
purchased form Jiniou Company. HMCs-1 were main-
tained in Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10% exosome depleted fetal bovine 
serum (FBS), 100 units/ml penicillin, 100 μg/ml strepto-
mycin, 2 mM l-glutamine and 1.2 mM alpha-thioglycerol 
(all reagents were from Sigma-Aldrich, St Louis, MO, 
USA). NCM460, HT-29 and CaCO2 cells were routinely 
maintained in DMEM medium (HyClone Laboratories, 
Inc.) supplemented with 10% FBS, 100 units/ml penicillin 
and 100 μg/ml streptomycin. All cells were cultured at 37 
°C in a humidified atmosphere of 5% CO2.

Antibodies
The antibodies including c-kit (Catalog:A0357); ZO-1 
(Catalog:A0659); Occludin (Catalog:A2601); Clau-
din1 (Catalog:A2196); GAPDH (Catalog:AC033); CD63 
(Catalog:A5271); TSG101 (Catalog:A1692); Actin 
(Catalog:AC026); Calnexin (Catalog: A4846) were pur-
chased from Abclonal Company. GOLGA2/GM130 
(Catalog:11308-1-AP) was purchased from Proteintech 
Company. Histone 3 (Catalog: D2B12) was purchased 
from Cell Signaling Technology Company.

Isolation of exosomes
Exosomes were isolated from the supernatant of HMCs-1 
as described in Xiao et al. [20] study, briefly, cell super-
natant were harvested, centrifuged at 300×g for 10 min 
to eliminate cells and at 16,500×g for 20 min, followed 
by filtration through 0.2 μm filter (Sarstedt, Numbre-
cht, Germany) to remove cellular debris and larger vesi-
cles. Exosomes were pelleted by ultracentrifugation at 
120,000×g for 70 min. Exosomes were measured for their 
protein content using the BCA protein assay kit (Thermo 
Scientific Pierce, Rockford, IL, USA).

PKH67‑labelled exosome of HMCs‑1 uptake into IECs
After isolation from HMCs-1 culture medium, exosomes 
were labelled with PKH67 fluorescent cell linker (Sigma-
Aldrich, St. Louis, MO) according to manufacturer’s 
instructions. 10 μg of the PKH67-stained exosomal 
solution or control solution were added into DMEM to 
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co-culture with IECs in slides for 24 h respectively. After 
washing and fixation with 4% formaldehyde solution for 
15 min, the slides were washed with PBS, stained nuclei 
using a Prolong Gold Antifade Reagent with 4′,6-diami-
dino-2-phenylindole (DAPI; Life Technologies), covered 
with coverslips and visualized under a confocal micro-
scope (LSM710; Carl Zeiss, Oberkochen, Germany).

Generation of stable HMCs‑1 Cell line
The lentivirus vectors Lv-miRNA-223 mimics, Lv-
miRNA-NC were purchased from Genepharma. Puro-
mycin was purchased from Sigma and used to select for 
stably cell lines.

Immunofluorescence microscopy
Immunofluorescence (IF) was performed in our previ-
ous studies [1, 19]. Cells plated on coverslips were pre-
treated with 0.2% Triton X-100 in PBS (PBST) for 5 min 
after fixation with 4% paraformaldehyde followed by 
treatment with glycine for another 5 min to stop fixa-
tion with, the slides were blocked with 1% bovine serum 
albumin in PBST for 30 min followed by incubation 
with primary antibodies for overnight at 4 °C, and then 
washed with PBST for 3 times and incubated with sec-
ondary antibodies for another 1 h at room temperature. 
DNA was stained with 4,6-diamidino2-phenylindole 
(DAPI) for 2–3 min and covered with glass. Images were 
captured and analyzed under a confocal laser scanning 
microscope.

Transfer of miRNA to IECs
To determine if the miRNAs could be transferred via 
exosomes, exosomes (10 μg) were added to IECs to incu-
bate for 24 h. The total RNA was extracted and miRNA 
was detected using miRNA Kit from Shanghai Genep-
harm, and real-time polymerase chain reaction (PCR) 
was performed to detect.

Western blot analysis
Western blotting was performed in our previously stud-
ies [19], the total proteins were collected and subjected 
to SDS-PAGE, transferred to nitrocellulose membrane 
(Bio-Rad Laboratories). After blocked with 5% bovine 
serum albumin (BSA) in PBS with tween 20 (PBST) for 1 
h, the membrane was then incubated with indicated pri-
mary antibody for overnight at 4 °C followed by incuba-
tion with a horseradish peroxidase secondary antibody 
(Jackson ImmunoResearch) for 1 h at room temperature. 
Proteins were detected using an enhanced chemilumi-
nescence (Perkin Elmer).

Real‑time PCR
As described in our previously study, total RNA was 
extracted using Trizol (life technologies), while miRNAs 
expression was detected using a SYBR Green I Real-Time 
PCR kit (GenePharma) by an Applied Biosystems StepO-
nePlus system.

Clinical sample
The intestinal tissue was drawn from each patient by 
electronic colonoscopy after we got the informed con-
sent from the patients diagnosed with IBD. This study 
was conducted in a cohort of child patients with IBD 
in Guangzhou Women and Children’s Medical Center 
approved by the Medical Ethical Review Board, named 
Scientific Research Committee of Guangzhou Women 
and Children’s Medical Center.

Immunohistochemistry
Immunohistochemistry (IHC) were performed as 
described in our previous work. The sections were 
deparaffinized, rehydrated, blocked with goat serum 
(ThermoFisher, Catalog: 16210064) and incubated with 
indicated antibody at 4 °C overnight, the bound anti-
bodies were then visualized using diaminobenzidine as 
a chromogen, and the slides were counterstained with 
hematoxylin. The area of positive staining was measured 
in six different images taken at 400× magnification on 
each slide and quantified using Image-Pro Plus 6.0 soft-
ware (Media Cybernetics).

Statistical analysis
All analysis was conducted using GraphPad Prism V 
software. A P value < 0.05 was considered statistically 
significant. Statistical differences among groups were 
determined by Student’s t- test, one sample t-tests were 
used to determine the significance of between-group dif-
ferences in RT-qPCR results.

Results
HMCs‑1‑secreted exosome destroy IECs barrier function
To explore the novel way of MCs in development of 
IBD, HMCs-1 and CaCO2 and NCM460 of IECs were 
employed as models for studying HMCs-1-secreted 
exosomes and miRNAs. As described in Zhou et al. [21] 
study, purified exosomes, a size range of 30 to 100 nm 
and morphology confirmed by transmission electron 
microscope (TEM) (Additional file 1: Fig. S1A), isolated 
from HMCs-1 conditioned media displayed exosome 
marker CD63 and TSG101, but not GM130, Histone 3 
and Calnexin(Additional file 1: Fig. S1B), by western blot-
ting analysis to confirm that these vesicles were exosomes 
(Fig.  1a), implying exosomes were efficiency extracted. 
Next, we focused our attention on IECs in this study for 
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their critical barrier function in response to HMCs-1-de-
rived exosome. Interestingly, when exosomes labelled 
with the fluorescent dye PKH67 were incubated with 
IECs, the recipient cells exhibited high up-take efficiency 
as indicated by fluorescence microscopy (Fig.  1b), and 
in  vitro permeability assay were performed by measur-
ing the traversing of rhodamine-labeled dextran probes 
through CaCO2 monolayers growing on 0.4-mm filters. 
The results showed that treatment of the intestinal bar-
rier with HMCs-1 exosomes induced passage of the fluo-
rescent probes from the top to the bottom, with about 4 
times increment of the OD value compared to PBS group 
(Fig.  1c). These findings suggested HMCs-1-derived 
exosomes were internalized and increased intestinal 
permeability.

To further identify the potential changes of tight 
junction-related proteins, including TJP1, OCLN, and 
CLDNs, in response to HMCs-1-secreted exosome 

treatment. We co-cultured CaCO2 or NCM460 cells in 
DMEM medium, with 10% exosome-depleted FBS, with 
20 μg/ml exosomes for 72 h. Control cells (PBS group) 
were CaCO2 or NCM460 cells that were not exposed 
to exosomes. As shown in Fig.  1d, CaCO2 monolayers 
treated with exosomes drastically reduced ZO-1, OCLN 
and CLDN 8 by immunofluorescence analysis, the west-
ern blotting (Fig. 1e) and quantitation (Additional file 1: 
Fig. S1C) results also showed ZO-1, OCLN and CLDN8 
were significantly reduced in CaCO2 and NCM460 
treated with exosome compared with that PBS group. 
Taken together, these results indicated the HMCs-1 exo-
some destroyed intestinal barrier function by inhibition 
of ZO-1, OCLN and CLDN 8.

Fig. 1  MCs-secreted exosomes were internalized and destroyed intestinal barrier function. a Western blotting analysis of indicated proteins in 
HMCs-1, NCM460 and exosomes. b Indicated IECs were incubated with PKH67-labelled exosomes (green) for 24 h before fluorescent and phase 
contrast images were captured. c The permeability of treated CaCO2 monolayers grown on 0.4 mm filters was measured by the appearance 
of rhodamine-dextran, which was added to the top well at the beginning of the experiment, in the bottom well during a 1 h time course. The 
absorbance at the 1 h time point was compared with the PBS (control) condition. ***p < 0.001. d IF analysis of CLDN 8, OCLN and ZO-1 in CaCO2 
cells treated with or without exosomes. e Western blotting analysis of the changes of tight junction protein in CaCO2 and NCM460 cells treated as 
indicated
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MiR‑223 is carried by exosomes and suppresses CLDN 8 
in IECs
It is well known that exosomes, carrying miRNAs and 
other substances, could be internalized and regulated 
biological function of recipient cells. Interestingly, in line 
with Chevillet et al. [22] study, a panel of miRNAs, espe-
cially enrichment of miR-223, was detected in HMCs-1 
exosomes listed in Table 1 by miRNA microarray (Addi-
tional file 2: Table S1). Upon these findings, we tried to 
seek whether miR-223 were delivered from MCs to IECs 
via exosome to induce IBD. The exosome isolated from 
HMCs-1 infected with miR-223 lentivirus were co-cul-
tured with IECs for analysis the level of miRNAs expres-
sion. As shown in Fig. 2a, after 24 h co-culture, exosome 
containing miR-223 (green) were located in cytosolic of 
HT-29 and NCM460 of IECs under fluorescence capture 
(left panel). The analysis of exosome-treated HT-29 and 
NCM460 cells by (Flow Cytometry) FCM showed that 
HT-29 and NCM460 cells internalized exosomal miR-
223, respectively (right panel).

Next, the total RNA was extracted to detect indi-
cated miRNA expression, the result revealed that the 
level of most miRNAs, especial miR-223, in HT-29 cells 
with exosomes treatment were significantly higher than 
that without exosomes co-culture, which indicated that 

exosomes are potential mediator of miRNAs in commu-
nication between MCs and HT-29 cells (Fig.  2b). Based 
on these findings, we could conclude that a serial of miR-
NAs, including miR-223, were transferred into IECs via 

MCs-derived exosome. To further confirm exosome-
mediated miRNA destroy tight junction-related proteins 
via these regulatory miRNAs, an antagonized experi-
ment for top three miRNAs was performed to confirm 
the effect of exosomes could be abolished by transfect-
ing the recipient cells with miRNA inhibitor. The results 
showed that inhibition of miR-223 in HT-29 cells by 
transfection with miR-223 inhibitor significantly reversed 
the inhibition of exosome on CLDN 8 expression, lead-
ing to decrease intestinal epithelial permeability (Fig. 2c), 
the similar results were obtained in IECs treatment with 
miR-21 and miR-16 (Additional file  1: Fig. S1D). Taken 
together, we concluded that miRNAs can be delivered by 
the exosomes of HMCs-1 and suppress the expression of 
tight junction-related proteins.

The relationship between tight junction proteins 
and exosomal miRNAs
Dysregulated Inflammation-triggered miRNAs could 
promote cancer cell proliferation through PI3K/Akt. 
Such as miR-223 is upregulated in human colorectal 
cancer(CRC), IBD, and the IL-10 knockout mouse model 
of IBD [23], while miR-34a, miR-142–5p, miR-146a, miR-
148a, and miR-223 were altered in AOM/DSS-regulated 
miRNAs and human IBD, and upregulated in three DSS 

cycles confirmed by PCR experiments [23, 24]. As shown 
in Table 1, in addition to the report by Wang et al. [14] 
showed that CLDN8 is a target of miR-223, respec-
tively, while ZO-1 is showed a target of miR-101 [25] and 

Table 1  Schematic representation of tight junction-related protein affected by miRNAs

The miRNAs detected in MCs-derived exosomes have been reported to target different tight junction proteins. The enrichment of miRNA CT value was listed in 
Additional file 1: Table S1

miRNA Targets miRNA Targets

hsa-miR-223 CLDN8 [14] hsa-miR-212 CLDN, JAMC, TJP1 [41, 42]

hsa-miR-21 OCLN, CLDN1, CLDN5 [43–45, 39] hsa-miR-29a CLDN1 [46]

hsa-miR-16 ZO-1, OCLN, CLDN2 [47, 48] hsa-miR-18a ZO-1, OCLN, CLDN5 [49, 50]

hsa-miR-23a ZO-1 [40] hsa-miR-146a CLDN1, OCLN, JAMA [51]

hsa-miR-320a JAMA [52] hsa-miR-34c-5p ZO-1, OCLN [53]

hsa-miR-191 ZO-1 [54] hsa-miR-34c-3p ZO-1, OCLN [53]

hsa-miR-99b CLDN11 [55] hsa-miR-181a ZO-1, OCLN, CLDN5 [28]

hsa-let-7b OCLN, ZO-1 [56] hsa-miR-122 ZO-1, ZO-3, OCLN [57, 58]

hsa-miR-132 CLDN1, JAM3, TJP1 [41, 59] hsa-miR-143 ZO-1, ZO-3, OCLN, CLDN5 [60, 61]

hsa-miR-101 VE-cadherin [62] hsa-miR-21-3p OCLN, CLDN5, ZO-1 [63]

hsa-miR-15a ZO-1, OCLN [48] hsa-miR-125b CLDN2 [47]

hsa-miR-210 OCLN [64] hsa-miR-200b OCLN, CLDN5, CLDN1, ZO-1 [65, 66]

hsa-miR-34a ZO-1, OCLN, CLDN5 [67] hsa-miR-96 ZO-1 [68]

hsa-miR-150 CLDN5 [69] hsa-miR-429 OCLN [70]

hsa-miR-107 ZO-1, OCLN, CLDN5 [71] hsa-miR-30a CLDN1, CLDN2, CLDN3 [72]

hsa-miR-144 OCLN, ZO-1, CLDN5 [73]
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miR-105 [26], the studies also found that OCLN, CLDN5 
and ZO-1 are targets of miR-34a [27] and miR-181a [28].

Based on the outcomes described above, we inferred 
that the tight junction-related proteins, including ZO-1, 
OCLN, and CLDN family, were regulated by a several of 
miRNA analyzed by bioinformatics and verified by mul-
tiple studies, implying miRNAs play a role as pro-IBD in 
IBD. What’s more, the studies also showed that miR-223 
is significantly increased in intestinal mucosa tissues in 
patients with IBD compared with normal tissues after 
measuring the level of miR-223 by fluorescence in  situ 
hybridization (FISH) [14], while miR-21 and other miR-
NAs were also reported to target different genes involved 

in intestinal barrier function in other studies listed in 
Table 1. These finding indicated that exosomal miRNAs 
has a critical role in regulating intestinal barrier function 
in development of IBD.

Enrichment of MCs numbers in patients with IBD correlates 
with the severity of intestinal inflammation
The above results have suggested that MCs exosomal 
miRNAs target tight junction-related proteins in IECs, 
leading to increase intestinal permeability and destroy 
intestinal barrier function, which focus us to explore the 
relationship between MCs and intestinal barrier func-
tion. As shown in Fig.  3a, enrichment of MCs stained 

Fig. 2  Exosomal miR-223 was transferred into IECs and target CLDN 8 expression. a Image of co-location of exosomes and IECs (left panel), and 
FCM analysis of exosome uptake by IECs (right panel). b Real-time PCR assay were performed to indicated miRNA expression in IECs with or without 
exosome treatment. c western blotting was performed to detect Claudin 8 expression in IECs
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with C-kit by IHC in intestinal mucosa of patients with 
IBD compared with healthy control, while miR-223, an 
abundant of MCs exosomal miRNA, is also increased in 
active UC and CD by real-time PCR assay (Fig. 3b). These 
findings implied enrichment of MCs is another source of 
miR-223, leading to target CLDN8 expression.

Discussion
Despite multiple studies have showed MCs play an active 
role in the pathogenesis of a variety of pediatric gastro-
intestinal (GI) disorders, including epithelial function 
(water and electrolyte secretion, tight junction/epithelial 
barrier integrity), endothelial function (blood flow, ves-
sel contraction, endothelial permeability, coagulation/
fibrinolysis), cell influx into tissue (neutrophils, eosino-
phils, lymphocytes), neuroenteric function (intestinal 
peristalsis, pain mediation), and tissue transformation 
(wound healing, fibrosis) [29], the exact mechanism 
by which MCs mediators participate in IBD remains to 
be fully elucidated. In this study, as shown in Fig. 4, our 
results further demonstrated that HMCs-1 triggered the 
development of IBD via exosomal miRNA, including 
miRNA-223, miR-105 and so on. MCs-derived exosomes 
inhibited tight junction-related proteins, leading to 
increase intestinal epithelial permeability and destroy 
barrier function by western blotting, IF and in vitro per-
meability assay. These findings suggested a novel pathway 
of MCs contributed to development of IBD.

Accumulating evidences indicated that the func-
tion of MCs in IBD is more complicated than originally 
thought, Animal and human clinical studies suggested 
that the contribution of these cells includes regulating 
epithelium permeability, immune signal transmittance, 
maintenance and resolution of inflammatory responses, 
and subsequent tissue remodeling [2, 30–34]. What’s 

more, the study showed that the increase of MCs infiltra-
tion near the epithelium resulted in a favorable micro-
environment that expressed more beneficial proteins 
including ZO-1, FGF2, ANGPTL2, REG3γ, and REG3β, 
which are involved in signal transduction, cell growth, 
tissue repair, and homeostasis maintenance [2]. In addi-
tion to Wilcz-Villega et al. [35] study showed that a MCs 
tryptase increased permeability to macromolecules and 
decreased resistance in a CaCO2 epithelial cell layer sys-
tem, our results further demonstrated that MCs-derived 
exosomes reduced ZO-1, OCLN and CLDN1 expression, 
leading to destroy intestinal epithelial barrier function, 
which provided a novel pathway of MCs in IBD. In intes-
tinal inflammatory microenvironment, the interactions 
between MCs and IECs may result in aggravating intesti-
nal inflammation and poor patient prognosis. Preventing 
intestinal epithelium-MCs communication may alleviate 
IBD progression, which provided an important treatment 
target for IBD therapy. Active MCs contributed to aggra-
vate inflammation reaction and induced colitis-related 
cancer by releasing the classical pro-angiogenic and pro-
inflammatory factors including VEGF, FGF-2, PDGF, and 
IL-6, and nonclassical pro-angiogenic factors proteases 
including tryptase and chymase. In addition to secreted 
soluble mediators, exosomes, a membrane vesicles con-
tains numerous proteins, lipids, and even nucleic acids, 
play an important role in intercellular communication, 
which could induce transient or persistent phenotypic 
changes in the recipient cell [36, 37] and the role of exo-
somal miRNA in inflammation and barrier function has 
been highlighted [38].

Interestingly, in line with our results, the Chevillet 
et al. [22] study have also revealed that different enrich-
ment of MCs exosomal miRNA listed in Table  1 by 
quantitative and stoichiometric analysis, for example, 

Fig. 3  Enrichment of MCs in intestinal mucosa of patients with IBD. a IHC analysis of MCs stained with C-kit in tissue drawn from intestine in 
indicated group, and statistical analysis were performed to analyze the difference of mast cell number between healthy control and IBD
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miR-223, a pro-inflammatory miRNA, has been verified 
to target CLDN8 in IL-23 pathway [14], while inversely 
correlation between miR-21 expression and the levels 
of intestinal tight junction proteins OCLN and CLDN1 
in intestinal ischemia–reperfusion group, compared 
with sham group [39], and lung cancer cells exosomal 
miR-23a inhibited tight junction protein ZO-1, thereby 
increasing vascular permeability and cancer transen-
dothelial migration [40]. All these findings suggested 
that MCs exosomes have a global influence on intestinal 
barrier function by regulation of tight junction-related 
proteins. However, further work is required to elucidate 
the changes of inflammatory factors in IECs. Taken 
together, these findings provided an understanding that 
miRNAs are increased in patients with IBD. Thus, ther-
apies targeting MCs, and in combination with existing 
conventional therapies, may serve as an effective treat-
ment for active stage patients with IBD.

Conclusions
In conclusion, this study demonstrated that functional 
exosomal miRNAs can be transported from HMCs-1 
to IECs. MCs-derived exosomal miRNAs shuttled into 
IECs, and destroyed intestinal epithelial barrier func-
tion by targeting to inhibit tight junction-related pro-
teins. Thus, our study provided novel insights into the 
mechanisms of cell–cell interactions through which 
MCs regulated the intestinal epithelial barrier function 
via the exosomal miRNAs.
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