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ABSTRACT

MODELING TRANSITION PROBABILITIES FOR LOAN STATES USING A

BAYESIAN HIERARCHICAL MODEL

Rebecca M. Richardson

Department of Statistics

Master of Science

A Markov Chain model can be used to model loan defaults because loans move

through delinquency states as the borrower fails to make monthly payments. The

transition matrix contains in each location a probability that a borrower in a given

state one month moves to the possible delinquency states the next month. In order

to use this model, it is necessary to know the transition probabilities, which are un-

known quantities. A Bayesian hierarchical model is postulated because there may not

be sufficient data for some rare transition probabilities. Using a hierarchical model,

similarities between types or families of loans can be taken advantage of to improve es-

timation, especially for those probabilities with little associated data. The transition

probabilities are estimated using MCMC and the Metropolis-Hastings algorithm.
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1. INTRODUCTION

1.1 Markov Chains

A Markov Chain is defined as a sequence of random variables where the prob-

ability of being in a given state is dependent only on the state in the previous time

period. That is, the future state is completely independent of the past, given a current

state. As a more formal definition,

P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1, X0 = x0) = P (Xn+1 = x|Xn = xn)

In this paper, consider the discrete case Markov chain, in which there are a fixed

number of discrete states, k, to which the random variable may move. The probability

of moving from state i to state j at time n is given by

p
(n)
ij = P (Xn+1 = xj|Xn = xi)

. Combining these probabilities yields a matrix, called a transition matrix, where

each row is a current state for the random variable, and each column represents the

next state for the random variable. This matrix appears below:

P (n) =



p
(n)
11 p

(n)
12 . . . p

(n)
1k

p
(n)
21 p

(n)
22 . . . p

(n)
2k

...
...

. . .
...

p
(n)
k1 p

(n)
k2 . . . p

(n)
kk


.

Note that each row of this matrix must sum to one. That is, a random variable cannot

disappear. If the variable is in a defined state at time n, it must also be in a defined

state at time n+1. If a state exists such that once a random variable enters that state

it remains there, this state is known as an absorbing state. Pre-multiplying a vector

containing the current state of a random variable at time n by this matrix yields

1



a vector containing the probability of being in each state in the next time period.

Mathematically, this can be seen as

p(n + 1) = p(n)



p
(n)
11 p

(n)
12 . . . p

(n)
1k

p
(n)
21 p

(n)
22 . . . p

(n)
2k

...
...

. . .
...

p
(n)
k1 p

(n)
k2 . . . p

(n)
kk


.

In the case where it is only of interest to predict one time period from the future,

and the random variable is known to be in state one in the current time period, the

prediction for the next time period will be[
p11 p12 . . . p1n

]
.

Expanding this idea, by multiplying the vector of probabilities for the next time

period by the transition matrix once again, a vector of probabilities may be created

for the state of a random variable in two time periods. If all transition matrices are

available, predictions can be made t steps ahead.

1.1.1 Properties of Markov Chains

Certain properties that may be possessed by a Markov chain are desirable for

purposes of prediction. Two of these are homogeneity and stationarity.

A population of Markov chains, X`, may be described as homogeneous if P
(n)
` =

P (n) for all `. That is, all elements in the population have the same transition matrix

at time n. This allows the creation of a single transition matrix at each time for

any number of objects in the population. If objects in a population have unique

transition matrices, it is necessary to create a transition matrix for each member of

the population at each time. This makes estimation impossible.

A Markov chain, X`, can be described as stationary if P
(n)
` = P` for all n. This

condition implies that time does not affect the matrix, but rather the Markov process

2



can be observed at any time and the same transition matrix will be found. Forecasts

are more difficult when a Markov process is nonstationary since P (n), n = 1, . . . , T

must be estimated.

1.2 Business Applications

Markov Chain models are commonly used in business. In a text by Hillier and

Lieberman (1995), an example of a Markov chain is given for a department store

credit line. In this example, a customer’s accounts are classified as fully paid, less

than 30 days delinquent, between 30 and 60 days delinquent, or bad debt. A customer

can move between these states, and the chance they move from one given state to

another is defined by some probability. These values may be used to determine the

probability of credit extended becoming bad debt.

Another example of Markov chains is given in a text by Jensen and Bard (2003).

In this example, equipment failure is modeled. Two computers have given probabili-

ties of failure. If both fail, all work must be sent out of the office. The office, therefore,

has some interest in keeping at least one computer working at all times. The proba-

bility of having at least one computer working all day can be modeled using a Markov

chain based on the number of working computers at the beginning of the day. This

example works well assuming stationarity. The probability of a computer breaking

down is the same for any given day.

This text also lists several other situations in which a Markov chain can be used

to understand natural phenomena. They can:

(1) predict market shares at specific future points in time,

(2) assess rates of change in market shares over time,

(3) predict market share equilibria (if they exist),

(4) assess the specific effects of marketing strategies when market
shares are unfavorable, and

(5) evaluate the process for introducing new products.

3



This project uses a Markov chain model for mortgage repayment. A certain

number of loans are extended, and there is some probability of each loan becoming

delinquent or defaulting. More specifically, the loans can be in one of seven states:

current, 30 days delinquent, 60 days delinquent, 90 days delinquent, 120 days delin-

quent, default, or paid off. Those extending the loan are interested in determining

whether a loan will become delinquent or default.

To determine whether a loan will enter a delinquent or default state, it is nec-

essary to model the loan’s movement from month to month. Considering these move-

ments to be transition probabilities allows for a Markov framework. Notice that this

model is very similar to the credit example in a department store listed earlier. Each

loan exists in a current state and has some probability of moving to another state in

the next time period, dependent on the state they are currently in. Because every

loan must be in some state in each time period, the probabilities conditional on the

current state must sum to one. A Markov chain model fits this situation, since row

probabilities are constrained to sum to one. A loan state such as delinquent or paid

off would be considered to be an absorbing state, since loans which move into these

states will stay there. A loan that is in one of the delinquent states or current may

be current, in one of the delinquent states, default, or be paid off in the next time

period. Because default and paid off are absorbing states, there is no need to estimate

a transition matrix for these rows. Although these rows are still part of the matrix,

they are not of interest in understanding the movement of a loan.

1.3 Transition Matrix Estimation

As observed above, the Markov chain model seems to fit the problem above

nicely. It has intrinsically attractive properties for interpretability and problem-

solving in a real-world situation. However, one difficulty remains. In order to use

the model, it is necessary to know the transition probabilities, which are unknown
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quantities.

In order to estimate a transition matrix for a given population, either the as-

sumption of homogeneity or the assumption of stationarity must be made. If the

elements within a population are homogeneous, data can be pooled across individual

elements of the population. If the transition matrices are stationary, data from differ-

ent months can be pooled together to estimate a transition matrix for each element of

the population. Even with the assumption of homogeneity being satisfied, however,

non-stationarity is still a concern. If a population of Markov chains is non-stationary,

it is more difficult to justify using an estimated matrix as a prediction for a future

transition matrix.

It is possible to construct a transition matrix to be used in estimation without

using any data. It can be hypothesized by experts in the field and then used for

prediction. This is done in many applications. If someone truly understands the

process, he or she may create a matrix representing observations made over years

of study in the field. While possible, however, this method of prediction is naive.

Any one person can only observe some small proportion of the whole field, and their

understanding will not be complete. The understanding held by such a person is

valuable, but should not be used for prediction by itself.

A more standard method of estimating the transition probabilities is to simply

use proportions from whatever data has been collected. Many advantages exist for

estimation in this way. Because actual numbers are being used, the variation in

the loans is available and can be used to create intervals of possible values for the

probabilities. However, this method takes out any information that might be available

outside of the loans. Again, it is unlikely that information about all loans is contained

in the data set. A priori information may be available about loan default probabilities,

and such information should be included to improve estimation.

A Bayesian solution combines data collected with expert opinion, allowing all
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sources of information to be used. The transition probabilities are estimated using

a posterior distribution, which is created using the data, but a corrective factor is

included based on what experts in the field believe should be observed. In this

approach, any information known about the loans is included in a prior distribution.

The information from the data is summarized in a likelihood function, and the two

are combined to create a posterior distribution. Prior distributions are constructed

with the information gathered from experts, allowing the use of information known

before data is collected. The likelihood portion allows the inclusion of actual variation

within the data. Combining these two yields more specificity in the distribution, but

still yields a range of possible values for the probabilities in the transition matrix.

With this distribution, forecasts can be made with the knowledge that they are based

on a solid statistical foundation.

Consider a Bayesian solution to the problem of estimating the transition proba-

bilities for the loan question. Experts who work in the banking field are consulted to

determine an expected transition matrix, and this information is used to create prior

distributions. These distributions are combined with the data to create the posterior

distribution used for estimation.

Before performing this analysis, the data to be used must be determined. For

each month, the state of the loan in the previous month and the state of the loan

in the current month is recorded; loans that match are summed and put into tables

similar in form to a transition matrix, but using counts instead of probabilities.

One property in this method of estimation that would be desirable is that more

data would lead to more accuracy, as in a frequentist model. In a Bayesian model,

more data leads to estimates that rely more heavily on the data and less heavily

on the prior information. Also, as in a frequentist model, more data leads to tighter

distributions around parameters. Since each parameter has a unique distribution, the

same data will not be used for each parameter. Only loans actually in a specific state
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will be used to estimate the transition probability for that state. Thus, probabilities

with more data observed are expected to be more precise — that is, have tighter

distributions — than those with few observations.

1.4 Hierarchical Models

As noted previously, one of the assumptions that can be made in order to

estimate a transition matrix using data is homogeneity. That is, every loan in the

population has the same transition matrix. However, this may not be a practical

assumption. It is believed that loans originating at different times may have different

transition matrices. There may not be enough data for some of these types of loans,

however, to estimate the transition matrix well. In order to improve estimation,

perhaps it is reasonable to believe that some transition probabilities differ, but others

are the same. A method is then sought to pool the information across loans to

take advantage of similarities, but still allow different transition matrices. When

information is pooled, the estimates taken from this information will be biased away

from the estimates based on non-pooled data. However, if the variance around the

estimator decreases enough, or if a quantity that was previously impossible to estimate

is now estimable, the tradeoff may be worthwhile. A hierarchical model may be used

to pool information and create more accurate, though biased, estimates.

Consider a simple example to demonstrate a Bayesian hierarchical model. The

data being analyzed are drawn from a distribution with parameters in turn being

drawn from another distribution. Notationally,

yij ∼ f(θi)

and

θi ∼ g(γ).
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Finally, to specify the model,

γ ∼ h(a, b)

. That is, the jth individual in group i is drawn from the distribution f(θi) and the

parameter θi is drawn from an overall distribution. In this notation, a and b are

numbers developed through research and expert opinion.

For example, all the data may be drawn from normal distributions with the

same variance, but each individual i has a unique mean. In this specific case, then,

the following distributions would be used:

yi ∼ N(µi, σ
2)

and

µi ∼ N(ν, τ 2).

At this point, distributions would be specified for σ2, ν, and τ 2. Each parameter

realization, therefore, is a draw from its distribution, as per the Bayesian framework.

Consider an exam given in class. This exam is designed to test a student’s

ability and understanding; however, the score is not an exact representation of the

student’s ability. Illness may drop the score below the student’s actual ability, while

lucky guessing may yield a score higher than the student’s actual ability. Therefore

each score is not the student’s ability, but an observation from some distribution

centered around the student’s ability. In order to estimate the student’s true ability

level, it is necessary to assume that all students’ abilities come from some overall

distribution. In this case, that constraint makes sense — for students in the same

class, some range of ability levels for all the students makes sense. No student should

have an ability level less than 40, and no student could have an ability level above

100. These two numbers allow us to construct a distribution, and then each student is

a draw from this distribution. Combining the scores with this overall distribution, a

distribution can be developed for each student’s true ability. Nothing comes without
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a penalty, however, and the distribution for each student will be moved towards the

overall mean for all students. If another test were to be administered, that score

could also be included in the model, and the estimates of true ability would improve.

Consider the following hierarchy for the loan data. Loans originated in a given

quarter have a unique transition matrix, but though they are unique, it is believed

that within a year, these transition matrices are similar. It is also believed that all

transition matrices share certain characteristics. For example, regardless of when a

loan is originated, it is not likely to move from 30 days delinquent to 120 days delin-

quent. However, for a given year, it may be more likely to move from current to

30 days delinquent, and each quarter may have a different, but similar, probability

for moving from current to 30 days delinquent. Say loans given in the first year a

bank is open were very difficult to qualify for, but as the quarters and years passed,

the qualifications became less stringent. Perhaps each year, the stated qualifications

were lowered, but in the loan application process, these changes occurred each quar-

ter. Then it might be expected that the probability of becoming 30 days delinquent

from current would increase every quarter, but this probability would be more similar

for quarters within a year than those from a different year. By combining this infor-

mation, it is possible to develop distributions for each probability for each transition

matrix.

1.4.1 Theoretical Advantages of Hierarchy

Gelman (2006) discusses some of the advantages of hierarchical models, which

he terms multilevel models. One advantage he cites is the ability of a multilevel model

to take into account the variation in estimating other parameters and correcting for

it. Because the estimation has some inherent level of variation, using the estimated

values as truth in further analysis is misleading and gives an underestimate of the

variance in the parameter estimates. Using a hierarchical model, all variance is openly
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acknowledged and adjusted for by “shrinking toward the complete pooling estimate.”

Because of the pooling of the data, there is more information available for

each estimate and, as expected, our estimates are more accurate. These distributions

will not be centered around the proportions calculated directly from the data for each

matrix, but will be between those proportions, the proportions suggested by our prior

information, and the overall proportion for that portion of the transition matrix. The

distribution will be narrower.

1.5 Convergence Assessment

To assess convergence of the MCMC algorithm, mixing plots should be exam-

ined. These plots, which consist of the values of one specific parameter plotted against

their iteration number, give some idea of whether the plot has reached convergence.

Several different features should be examined.

First, consider the overall appearance of the graph. If the overall trend of the

line plot appears to be either increasing or decreasing, convergence has probably not

been reached. If the beginning of the graph trends either up or down but then angles

to become a horizontal pattern, it is possible that convergence has been reached. If

the starting values are correct there will be no trend in the graph at all because no

iterations were needed for the parameters to be in the proper range.

If a curvilinear pattern is evident in the mixing plot then the jump distance, or

candidate sigma, could be too small. If the plot is not allowed to make large jumps

relative to the variance in the parameter, it is unlikely that the realizations will span

the parameter space. Another sign that the candidate sigma is too small is found

in the staying percentage. The Metropolis-Hastings algorithm is designed such that

some significant percent of the time, the proposed value will not be accepted. If all

or most proposed values are accepted, the candidate sigma may be too small for the

realizations to span the parameter space. The candidate sigma could also be too
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large, which can be seen if there are large “plateaus” appearing in the graph. If such

features are found, the algorithm should be rerun with a smaller candidate sigma.

If the plot does not appear to have converged, the second run should be done

with better starting values. This will not change the final distribution, but it may

increase the speed of convergence. Beyond these diagnostic, several further methods

have been proposed for monitoring convergence. Three such methods will be discussed

here.

One method of monitoring convergence was proposed by Gelman and Rubin

(1992). The method they propose has two steps: first, an estimate of the target

distribution is created, and an overdispersed distribution is created; second, values

are generated from this overdispersed distribution as starting values for multiple se-

quences which are then generated and used to assess the performance of the simula-

tion.

Finding an overdispersed distribution is done in three proposed steps. First, the

modes of the target distribution should be found. From these, high-density regions

are found, and the full distribution is modeled as a multivariate normal with modes

matching the target distribution. Second, values are drawn from the normal mix-

ture and then divided by some scalar random variable. This insures overdispersion.

Finally, the approximation is sharpened by downweighting the sections of the distri-

bution that have low density with the target distribution. While it is true that in

most cases the target distribution is unknown, the shape of the distribution generally

is known up to a constant. This makes the method feasible.

Once an overdispersed distribution is determined, m values are drawn from

this distribution and a random sequence is started from each value with length 2n.

The first n iterations are considered burn, and only the last n are used. With these

sequences, the between-sequence variance is calculated, as well as the average within-

sequence variance. Also calculated are the sample mean, which is the mean over
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all sequences, and the target variance, which is a weighed average of the between-

sequence and within-sequence variance. From these values, the improvement possible

by running the chain longer may be determined with some degree of confidence, and

it can be observed whether the chains are converging to the overall mean.

The proposed method is beneficial in that it seeks to use statistical inference

to determine whether the chain has converged. However, in practice, finding an

overdispersed distribution from which to draw starting values is very difficult, and

ultimately, it may not be possible to determine whether such a distribution has been

found when dimensionality is high.

Raftery and Lewis (1992) propose a different method for analyzing convergence.

Calling the method proposed by Gelman and Rubin inefficient, they propose using

a single chain with restarts if the chain does not appear to be converging. If the

advantage of multiple starts is simply to avoid poor starting values, Raftery and

Lewis suggest that simply choosing new starting values through trial and error is as

effective as using the complicated mode-finding method of Gelman and Rubin. Since

simply choosing new starting values and restarting the iterations appears to be as

effective as running multiple chains in achieving convergence, this simpler method

would be preferred.

Polson (1996) proposed a theoretical solution to solve for the upper bound on

the number of iterations needed to reach convergence. Given some arbitrary ε > 0,

Polson posits that it is possible to find an upper bound such that after that number

of iterations the Markov chain will have reached stationarity. However, while this is

theoretically possible, the math required to find this upper bound is fairly difficult and

unique to each problem. Because of this, the implementer must solve for the upper

bound of the rate of convergence and show that this constant is polynomially bounded.

Thus, although Polson has provided a theoretical method to attain convergence, it is

not necessarily feasible to implement.
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2. A SIMPLE EXAMPLE

In this simple case, consider the situation where a loan can be in one of only two

states — current or default. A loan in each of these states will have some probability

of staying in that state, and one minus that probability of moving to the opposite

state. Also consider that each loan comes from a “family” of loans based on some

characteristic of the loan itself. For example, the loan origination year may be the

defining characteristic of a family of loans. In a hierarchical framework, each of these

families is also considered to be related to the others via some distribution.

2.1 Sample Data Set

Consider the following example, where a bank offers loans to three types of

borrowers. For each borrower type, the monthly transitions between two states,

namely current and delinquent, are tallied. These transitions are recorded in the

following matrices:

Borrower Type I:

940 10

1 49



Borrower Type II:

250 50

190 10



Borrower Type III:

200 10

10 30

 .

The first row represents the loans beginning in state one, or current. The second row

represents the loans beginning in state two, or default. The first column represents

loans that will be current in the next time period, and the second column represents

loans that will default in the next time period. For example, in the first family of
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loans, 940 loans that are current this time period will be current next period, and 10

loans that were current this time period will be delinquent next period.

It appears that borrower type one is most likely to stay current of the three

types. However, if a borrower does default, he or she is likely to stay in that category.

This borrower type also has far more data than the other borrower types. The second

type of borrower is in default far more regularly, but is also very likely to move back

to current in the next time period. Less data are observed for this borrower type.

The third borrower type has the least data and shows a similar pattern to type one,

with the exception that the probabilities are closer to each other than for type one.

Because of the amount of data in each matrix, it is expected that the distribution

around estimates of probabilities for borrower type one will be narrower than the

distribution around the other probabilities.

Notice that these matrices are in terms of frequencies. The model used will

generate probabilities, so instead of the matrices listed above, the following matrices

will be generated:

Borrower Type I:

.989 .011

.020 .980



Borrower Type II:

.833 .167

.950 .050



Borrower Type III:

.952 .048

.250 .750

 .

It must be noted that when displaying the information in this form, the amount

of data in each matrix is lost.
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2.2 Distributional Choices for the Model

The first and second rows of the transition matrix will be modeled separately

since rows are mutually exclusive states the previous month. A loan may be in

only one state in a given time period. Consider the first row of each matrix. The

probabilities in this row must sum to one, and since a current loan can be considered

a “success” and a default loan can be considered a “failure,” a binomial model is

a natural modeling choice. Consider each yiij, the number of loans in the ith state

this month that remain in the ith state next month for borrower type j, to have a

binomial distribution, yiij ∼ Bin(ni, πi), where ni is the number of loans in the ith

state this month and πij is the probability of staying in the ith state next month

for borrower type j. Each πij ∼ Beta(αj, βj), taking advantage of conjugacy, and

αj ∼ Gam(a1j, b1j), βj ∼ Gam(a2j, b2j). Each i has a unique hierarchical model. The

beta distribution is an obvious choice when modeling probabilities because the range

of values of the random variable is [0,1] and the conjugacy results in a closed form

solution for the conditional distribution of πi. The gamma distribution seems to be

a good choice for α and β for a few reasons. Most importantly, this distribution

maintains the parameter space. The parameters α and β must be greater than zero,

and a gamma random variable has range greater than zero. The gamma allows a

great deal of flexibility in the shape of the distribution itself. It is possible to specify

parameters such that both the mean and the variance can be adjusted, whereas in

other distributions where parameter space is maintained, only one parameter can be

selected, and both the mean and the variance are determined from this one parameter.

2.3 Gibbs Sampling and Metropolis-Hastings

The posterior distribution of a hierarchical model is given as

p(θ|y) =
f(y|πi)π(πi|α, β)π(α)π(β)∫
f(y|πi)π(πi|α, β)π(α)π(β)dθ

,
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where θ = (π, α, β). From the distributional choices given above and noting that

the divisor is simply a constant, the following proportional posterior distribution is

developed:

p(θ|y) ∝
3∏

i=1

π
P

j yij

i (1− πi)
ni−
P

j yij
Γ(a + b)

Γ(a)Γ(b)
πa−1

i (1− πi)
b−1aα1−1e−a/β1bα2−1e−b/β2

The proportional distribution is used in place of the actual distribution because the

divisor, called the constant of integration, is not available in closed form. Because

this distribution cannot be written out exactly, the Metropolis-Hastings algorithm

will be used to generate the posterior distribution.

In the Metropolis-Hastings Algorithm, the difficulty to be overcome is attempt-

ing to generate from a distribution with no closed-form answer. To solve this problem,

a random walk algorithm will be used to simulate draws from the distribution. This

algorithm proceeds as follows:

(1) Set starting values for each parameter in the distribution. Call these θ0. Note

that these values must be possible values for the distribution.

(2) Choose a candidate density function. This should be a distribution that is

easily sampled from. It must also maintain the space of the possible values

of the parameter. Using the full Metropolis-Hastings algorithm, it is not

necessary to choose a symmetric distribution. Call this D∗(θ).

(3) Solve for the complete conditionals — those portions of the unnormalized

posterior involving the parameter of interest. Call this c(θ).

(4) For t=1, 2, . . ., n,

(a) generate a value from your candidate density function, θ∗;

(b) calculate the ratio of densities:

c(θ∗|y)/D∗(θ∗|θt−1)

c(θt−1|y)/D∗(θt−1|θ∗)
;
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(c) generate a Uniform(0,1) random variable, and compare it with the ratio

calculated in the previous step. If the ratio is greater than the uniform

variable, the move is “accepted,” and θt is assigned the value θ∗. If the

ratio is lower than the uniform random variable, θt is assigned the value

θt−1.

(5) Continue this process for some number of iterations and eventually these

generated values will be draws from the posterior distribution.

Through this algorithm, likely values of θ will have high ratios and will rarely

be less than any draw from a uniform distribution. Unlikely values of θ will have low

ratios and will usually be lower than any draw from a uniform distribution. Because

of the comparison to a uniform random variable, however, some likely values of θ will

be rejected and some unlikely values of θ will be accepted.

Gibbs sampling is a simpler algorithm that can be used when generation di-

rectly from the complete conditionals is possible. That is, if the complete conditional

for some parameter forms the kernel of some known distribution, then it is possible

to sample directly from that distribution given the current values of the other pa-

rameters. Each parameter is sampled from each iteration, so the current values of

the other parameters will change each step. In this way, a value is generated for each

parameter at each iteration. After some number of iterations, the values generated

will be realizations from the posterior distribution, just as in the Metropolis-Hastings

Algorithm.

2.4 Complete Conditionals

Because the beta is conjugate with the binomial, it can be seen that the complete

condition for the πi’s forms the kernel of a Beta (
∑

j yij + a, ni −
∑

j yij + b), and a

Gibbs sampler can be used to generate these values from that beta distribution. The
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complete conditionals for α and β do not have closed form, but

[α] ∝ Γ(α + β)3

Γ(α)3Γ(β)3
(π1π2π3)

α−1αa1−1e−α/b1

and

[β] ∝ Γ(α + β)3

Γ(α)3Γ(β)3
((1− π1)(1− π2)(1− π3))

β−1βa2−1e−β/b2 .

These functions are the c(θ) functions described in the algorithm above. Because these

functions do not form the kernel of any known distribution, the Metropolis-Hastings

algorithm must be used to generate from the posterior distribution of both α and β.

Consequently, the posterior distribution will be generated using both methods.

2.4.1 Candidate density function

Because α and β are constrained to be greater than 1, the Truncated Normal

distribution will be used as the candidate density function. This distribution cuts the

normal distribution off at chosen cut points and rescales the portion that remains to

be a valid distribution. In this case, the distribution will be such that only values

greater than one are possible. The shape of this distribution will appear identical to

a normal distribution, simply higher by some proportion. Figure 2.1 shows a normal

distribution centered at 3 with a standard deviation of 1.5, compared to the same

distribution truncated at 1. The shape of the distribution appears identical except

for a scaling factor.

Using this distribution as a candidate density function in this problem has

the advantage of only allowing possible values for α and β to be generated, as it is

truncated at 1. Also, generating from this distribution is easy. Because it is only

different from the normal distribution by a scaling factor, a simple modification of

the already written function in R for generating normal random variables will allow

generation from this distribution. Unfortunately, the truncated normal distribution

is not a symmetric distribution, so the full Metropolis-Hastings algorithm must be
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Figure 2.1: Normal distribution compared to a truncated normal distribution
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used.

2.4.2 Prior Elicitation

In eliciting a prior for the beta distribution in a simple case, it may be easier

to consider an alternate parametrization of the beta distribution. Note that a
a+b

is

the expected proportion of success, and a + b is the effective sample size representing

the expert’s level of knowledge. In this example, it has been determined from expert

opinion that the probability of moving from current to current is .95 with 100 samples

worth of information. That is, the expert consulted felt the estimate of .95 carried

with it the same weight as 100 samples would. This leads to a mean for the gamma

hyperprior on a of 95. However, this information is only dealing with the overall

loan mean for this probability. The purpose for using the hierarchical model is to

allow flexibility in the distributions. Using a variance of 25, which yields a standard

deviation of 5, allows for more variability in the amount of prior information available

for any specific type of loan. The distribution is fairly symmetric, with a mean,

median, and mode all around .95. The gamma distribution on b is centered around 5,

which will place the overall mean of the probability for the current to current move

at .95. The standard deviation of about 1.5 again gives a fairly diffuse distribution,

allowing for a great deal of variation in the information and mean for each loan type.

To assess whether the prior information is truly representative of a priori information,

consider the prior predictive distribution displayed in Figure 2.2.

This graph is a distribution of realizations for the probability of the current

to current move. Notice that the mode is .955; the interval (.888, .988) contains

approximately 95% of the values. This distribution might be slightly more disperse

than is probable, but this will allow the data to have greater influence on the posterior

distribution.

20



2.5 Assessing Metropolis-Hastings

After running the iterative sampler, mixing plots were examined. These plots

appear in Figure 2.3. From these mixing plots, which are looking only at a subsection

of 1000 draws, it appears that convergence has been reached. There is no systematic

pattern either up or down, and the space appears to be spanned. To check a final

worrisome possibility, a scatterplot of π2 and α is examined. If the two parameters

are correlated, it is possible that not all of the parameter space will be spanned.

However, examining Figure 2.4, this seems to be a needless concern because there is

no correlation visible. π2 was chosen because there is little data associated with it,

making it the most vulnerable to correlation.

Figure 2.6 contains the posterior distributions for α and β. Looking at the

posterior distributions for the probabilities of staying current for each loan type, which

are displayed in Figure 2.5, the patterns observed in the data are seen in the posterior

distributions. The first probability, π11, which is associated with the borrower type

with the most data and the highest probability of staying current, is displayed in

black and has the highest mean and the narrowest distribution. The second borrower

type, which had a lower probability as well as less data, is displayed in red and shows

a lower mean with a wider distribution. The third borrower type, which is displayed

in blue, has a slightly lower mean than the first, but the distribution is much wider.

When comparing the means calculated directly from the data with the obser-

vations drawn from the posterior distribution, the “borrowing of strength” between

borrower types is apparent. While the posterior realizations are similar to the data,

they show a moderated relationship. All values have shrunk somewhat to the overall

mean, as can be seen in Table 2.1.
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Borrower Type Estimate from Data Posterior Mean
I .98947 .9887
II .83333 .868
III .95238 .961

Table 2.1: Table comparing data predictions to posterior predictions.
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Figure 2.2: Prior Predictive Distribution for the current to current move. Notice that
it is centered around .95, but has significant density as low as .85.
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Figure 2.4: Scatterplot of α and π2. Notice that the alpha parameter is not correlated
with the probabilities at all.
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Figure 2.5: Posterior distributions for the probability of staying current for each loan
type
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3. A SIMULATION STUDY

3.1 Expansion of Question

Because of sparse data in rare transitions, it is of interest to determine whether

a hierarchical model may be used in estimating a more complicated transition matrix.

This model allows for strength to be borrowed across quarters so that those transition

probabilities that correspond to rare transitions can be estimated.

Computationally, this is a far more difficult problem than the simple case con-

sidered in Chapter 2. The Metropolis-Hastings Algorithm is still being used, but the

number of parameters whose distributions need to be simulated has increased dramat-

ically. As this occurs, the time the simulation needs to run increases exponentially.

It also becomes more difficult to assess convergence because more parameters must

converge for convergence to be reached.

When expanding from the trivial example discussed previously, the multino-

mial is an appropriate distribution for the data, as it is an extension of the binomial

distribution, and a Dirichlet distribution is appropriate for the parameters of the

multinomial, as it is an extension of the beta. The gamma distribution is still ap-

propriate for the hyperparameters of the Dirichlet. These are standard distributions

when dealing with multiple states. A multinomial model has the same interpretation

for multiple states that a binomial model has for two states. Similarly, a Dirichlet

prior is the conjugate prior for the multinomial and is a standard extension for the

beta distribution, which was used as the prior for a binomial. The hyperprior distri-

butions themselves do not have to change. Gamma hyperpriors are still appropriate

for the same reasons as listed previously. However, in the more complicated example,

there will be more hyperprior distributions because there are more parameters in the

Dirichlet than in the beta distribution.
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In order to determine the effects of minimal data on the Bayesian hierarchical

model for a Markov chain, a simulation study will be performed. In this study, the the

true hyperprior distributions will be specified, and parameters will be simulated from

these distributions. The data will then be generated from the simulated parameters.

Because the parameters and the distributions of those parameters are known, it will

be possible to compare our estimates to the generated values and determine whether

the procedure is valid. Consider the following data. A number of loans are observed

having started in four different quarters. There are four possible states for each loan,

including: current, delinquent, default, or prepaid. The data can be organized as

follows: 

y111 y112 y113 y114

y121 y122 y123 y124

y131 y132 y133 y134

y141 y142 y143 y144




y211 y212 y213 y214

y221 y222 y223 y224

y231 y232 y233 y234

y241 y242 y243 y244




y311 y312 y313 y314

y321 y322 y323 y324

y331 y332 y333 y334

y341 y342 y343 y344




y411 y412 y413 y414

y421 y422 y423 y424

y431 y432 y433 y434

y441 y442 y443 y444


.
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Then for yijk, i represents the quarter in which the loan was originated, j

represents the state of the loan in the previous month, and k represents the state of

the loan in the current month.

3.2 Hyperprior Selection

Because of the nature of the data being analyzed, special consideration was

taken in formulating the hyperprior distributions so generated values would follow

observed loan repayment trends. Most people who take out loans make payments

on time, so the highest count of loans is expected in this square of the table. Some

number, not high, but significant, will have been current in the previous month and

delinquent in this month. It should not be possible to move from current to default

in one month, but under extreme circumstances this may happen. The probability

for this event is very low, so most likely, there will not be any loans here. If the

prior gives no probability for that occurrence, however, the posterior will have no

probability there, even if data appears in that location. Some number of loans that

were current last month are expected to prepay, so a few loans will appear in this

location in the transition matrix each month.

For those loans that were delinquent, it is expected that over half will move

from delinquent to current in the next month. Many will also stay delinquent, so a

large number of loans will appear there as well. Several will move from delinquency

to default, and a smaller number will prepay. As noted previously, more loans will

start current than will start delinquent. Based on these conditions, the hyperprior

distributions were chosen. The hyperparameters are given in Table 3.1.

3.3 Distributional Model for Data

As discussed previously, the data for loan defaults follow a multinomial distribu-

tion. Using the same subscripts as above, consider the data in the vector yj. Notice

27



Previous to Current Month states a Parameter b Parameter
Current to Current 500 5/9

Current to Delinquent 900 15
Current to Default 7 7

Current to Prepayment 80 8
Delinquent to Current 960 4.8

Delinquent to Delinquent 520 5.2
Delinquent to Default 180 3.6
Delinquent to Prepaid 205 8.1

Table 3.1: Parameters for Gamma hyperprior distributions

that this matrix is a combination of the first rows of all four matrices mentioned

previously.

yj

[
y1j1 y1j2 y1j3 y1j4 . . . y4j1 y4j2 y4j3 y4j4

]
.

That is, for one row of the matrix above, which takes data only from the top row of

the four original transition matrices,

f(yi1) =
ni!

yi11!yi12!yi13!yi14!
ypi11

i11 ypi12

i12 ypi13

i13 ypi14

i14 ,

where i represents the quarter in which the data are observed. Then, over all four

quarters,

f(y1) =
n1!n2!n3!n4!

y111!y112!y113!y114!y211!y212!y213!y214!y311!y312!y313!y314!y411!y412!y413!y414!
×

yp111

111 yp112

112 yp113

113 yp114

114 yp211

211 yp212

212 yp213

213 yp214

214 yp311

311 yp312

312 yp313

313 yp314

314 yp411

411 yp412

412 yp413

413 yp414

414 .

Dropping out constants, this becomes

f(y1) ∝ yp111

111 yp112

112 yp113

113 yp114

114 yp211

211 yp212

212 yp213

213 yp214

214 yp311

311 yp312

312 yp313

313 yp314

314 yp411

411 yp412

412 yp413

413 yp414

414

Because the second subscript refers to the row of the original matrices, and it is

constant across the constructed matrix, it will be dropped in future references. That

is, y114 will be referred to as y14.
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3.4 Distributional Model for Probabilities

Because the data are distributed according to a multinomial distribution, and

this distribution is a member of the regular exponential class, a conjugate prior exists.

This prior distribution, a Dirichlet, is used. The probabilities associated with a single

quarter for a given row of the transition matrix are distributed according to a Dirichlet

distribution with parameters αj1, αj2, αj3, and αj4, where j represents the row of the

transition matrix. Mathematically,

(pij1, pij2, pij3, pij4) ∼ Dir(αj1, αj2, αj3, αj4).

This is true for all i, or all quarters. Considering only the first row of the transition

matrix and dropping that subscript,

f(pi) =
Γ(α1 + α2 + α3 + α4)

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
pα1−1

i1 pα2−1
i2 pα3−1

i3 pα4−1
i4 .

3.5 Distributional Model for Prior Parameters

In order to maintain the positive nature of the α parameters in the Dirichlet

distribution, a gamma distribution seems appropriate. This model allows more flexi-

bility because the mean and variance are not dependent upon each other as they are

in other continuous positive distributions, such as the χ2 distribution or the expo-

nential distribution, which also maintain the parameter space. For a given row of the

transition matrix,

f(αi) =
1

Γ(a1)b
a1
1

αa1−1
1 e−α1/b1 .

29



3.6 Proportional Posterior Distribution

Combining all the previous distributions together, a function proportional to

the posterior distribution is constructed.

f(θ) ∝ yp111

111 yp112

112 yp113

113 yp114

114 yp211

211 yp212

212 yp213

213 yp214

214 yp311

311 yp312

312 yp313

313 yp314

314 yp411

411 yp412

412 yp413

413 yp414

414 ×

Γ(α1 + α2 + α3 + α4)
4

(Γ(α1)Γ(α2)Γ(α3)Γ(α4))4
(p11p21p31p41)

α1−1(p12p22p32p42)
α2−1(p13p23p33p43)

α3−1×

(p14p24p34p44)
α4−1αa1−1

1 e−α1/b1αa2−1
2 e−α2/b2αa3−1

3 e−α3/b3αa4−1
4 e−α4/b4 .

From these, complete conditionals for each of the parameters are constructed by

dropping all constants with respect to each parameter. Then the complete conditional

for α1 is

[α1] ∝
Γ(α1 + α2 + α3 + α4)

4

Γ(α1)4
(p11p21p31p41)

α1−1αa1−1
1 e−α1/b1 .

Similarly,

[α2] ∝
Γ(α1 + α2 + α3 + α4)

4

Γ(α2)4
(p12p22p32p42)

α2−1αa2−1
2 e−α2/b2 ,

[α3] ∝
Γ(α1 + α2 + α3 + α4)

4

Γ(α3)4
(p13p23p33p43)

α3−1αa3−1
3 e−α3/b3 , and

[α4] ∝
Γ(α1 + α2 + α3 + α4)

4

Γ(α4)4
(p14p24p34p44)

α4−1αa4−1
4 e−α4/b4 .

Remembering that the probabilities are generated jointly, complete conditionals

are also created for each πi.

[π1] ∝ pα1−1+y11

11 pα2−1+y12

12 pα3−1+y13

13 pα4−1+y14

14 ,

[π2] ∝ pα1−1+y21

21 pα2−1+y22

22 pα3−1+y23

23 pα4−1+y24

24 ,

30



[π3] ∝ pα1−1+y31

31 pα2−1+y32

32 pα3−1+y33

33 pα4−1+y34

34 , and

[π4] ∝ pα1−1+y41

41 pα2−1+y42

42 pα3−1+y43

43 pα4−1+y44

44 .

Notice that these are proportional to the Dirichlet distribution. Thus, it may be

stated that

[πi] ∝ Dir ((α1 + yi1), (α2 + yi2), (α3 + yi3), (α4 + yi4))

This proportionality is very useful. Because the complete conditionals for the

probabilities are proportional to a known distribution, it is unnecessary to use the

Metropolis-Hastings algorithm. Rather, a simple Gibbs sampler will work. This was

the result expected because the Dirichlet distribution is conjugate to the multinomial

distribution, and the benefit of conjugacy is a known distribution for the complete

conditional from which values may be drawn directly. The complete conditionals for

the αs, unfortunately, are not proportional to any known distribution, and therefore

a Gibbs sampler will not work. To sample from these distributions, it is necessary to

use the Metropolis-Hastings algorithm.

3.7 Generated Data

Alpha parameters are now generated from the previously chosen hyperparame-

ters. The generated values for loans that were current the time period before — that

is, the first row of the transition matrix — are displayed in Table 3.2.

Using these parameters, four sets of probabilities are generated from the Dirich-

let distribution — one for each quarter loans originated. These probabilities appear

in Table 3.3. The probabilities follow the pattern that was expected when hyperpriors

were chosen for this row of the transition matrix. Unlike the simple case where the

data were chosen to be differentiable, the probabilities generated in this simulation
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α Generated α values:
α1 874.15
α2 60.87
α3 .832
α4 9.34

Table 3.2: α values generated for simulation for the first row of the transition matrix

are very similar to one another across quarters, which may make differentiation very

difficult. The ability to differentiate will depend on the variance of the parameter

and the amount of data associated with it.

Because these are simulated values, it is more difficult to specify differences in

probabilities for each quarter than with human-created data. The most differentiable

quarter is the fourth. This quarter has the largest probability of staying current and

a much smaller probability of becoming delinquent than any of the other quarters.

This quarter seems to be the best credit risk. The second quarter has the highest

probability of prepaying and the highest probability of defaulting. The only noticeable

feature of the first quarter is that the probability of delinquency is slightly higher than

that of the other three quarters. The third quarter has a higher default rate that the

other quarters.

The α parameters are also generated for the second row of the transition matrix,

as the second row of the transition matrix acts independently of the first. These

parameters are seen in Table 3.4. These values for α are much smaller than those

Quarter Current Delinquent Default Prepay
First Quarter .926 .063 .000185 .011

Second Quarter .920 .062 .00268 .016
Third Quarter .936 .056 .00120 .0071
Fourth Quarter .942 .047 .000180 .011

Table 3.3: Generated probabilities for all four quarters for the first row of the tran-
sition matrix
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α Generated α values:
α1 210.68
α2 103.81
α3 45.86
α4 24.78

Table 3.4: α values generated for simulation for the second row of the transition
matrix

for the first row of the transition matrix. This drop in size is caused by the smaller

amount of data in second row as compared to the first. The pattern chosen in the

hyperparameters is still visible.

From these αs, probabilities are generated for the second row. These probabil-

ities can be seen in Table 3.5. Because the αs are so different between the first and

second rows of the transition matrix, the probabilities should be as well. Differences

among quarters should also be less extreme because less data will be generated.

For this row of the transition matrix, the first and third quarters have the

highest probability of returning to current. The fourth quarter has the smallest prob-

ability of returning to current and the highest probability of remaining delinquent.

The second quarter has the highest probability of prepaying. Those in quarter one

are most likely to default.

From each of these sets of probabilities, data are generated. The data for the

first row of the transition matrix are found in Table 3.6, and the data for the second

row of the transition matrix are found in Table 3.7.

Quarter Current Delinquent Default Prepay
First Quarter .571 .250 .121 .059

Second Quarter .549 .279 .107 .065
Third Quarter .568 .267 .106 .058
Fourth Quarter .515 .318 .117 .050

Table 3.5: Generated probabilities for all four quarters for the second row of the
transition matrix
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Quarter Current Delinquent Default Prepay
First Quarter 9244 635 1 120

Second Quarter 9200 597 27 176
Third Quarter 9330 586 9 75
Fourth Quarter 9457 447 1 95

Table 3.6: Generated data for all four quarters for the first row of the transition
matrix

Quarter Current Delinquent Default Prepay
First Quarter 380 169 105 46

Second Quarter 408 183 61 48
Third Quarter 414 173 64 49
Fourth Quarter 382 212 73 33

Table 3.7: Generated data for all four quarters for the second row of the transition
matrix
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It is of interest to see whether the data exhibit the same patterns the generated

probabilities do. If the data do not exhibit the same patterns, it will be impossible

for the generated distributions to each probability will show the trends noticed above.

For the data from the first row of the transition matrix, the extremes noticed

in quarter four seem to have translated perfectly into the data. The probability of

staying current is the highest of the four quarters, and the probability of becoming

delinquent is the lowest. For the second quarter, the number of prepaid loans is much

higher, just as it was in the probabilities, and the number of defaults is much higher

that the other quarters and is higher than expected. The probability for defaulting

for the second quarter was only twice the next highest, but the number of loan is three

times higher than the next closest. Quarter one does not show anything. A slightly

higher delinquency rate is observed, but it is very close to that of other quarters.

For the data from the second row of the transition matrix, the third quarter

shows a higher probability of becoming current, as expected, but the first quarter

moves from one of the highest probabilities of moving to current to the lowest number

of loans. This is an unfortunate result of less data, and is not necessarily surprising.

The fourth quarter still has a small number of loans staying current, but this is now

very close to the number of loans staying current in the first quarter. Delinquency

is still highest for the fourth quarter, however. Although the second quarter had the

highest rate of prepay, this does not appear in the loan data, as all numbers of prepay

are very similar. The first quarter shows a much higher rate of default than the other

three, as is seen in the probabilities.

All in all, most of the trends observed in the probability tables are still evident

in the generated loan tables. Those differences still noticeable should be visible in the

distribution of each probability. Those differences that were not visible in the data

will not be seen in the same distributions.
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3.8 Convergence of MCMC

To assess convergence, mixing plots are examined. Figure 3.1 shows the mixing

plot for α1 for the first row of the transition matrix. The graph shows no trends either

up or down, and there is no reason to believe that the simulation has yet to reach the

parameter space. It appears that the simulation does not need to run longer to reach

the appropriate parameter space.
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Figure 3.1: Mixing plot for α1 for the first row

In order to make sure the parameter has converged, that the whole parameter

space has been spanned, and that the candidate sigma has been chosen appropriately

to span the parameter space, the mixing plots are more closely examined. This is

shown in Figure 3.2. Periods where no change exists can be seen, indicating that

the candidate sigma chosen is large enough, and multiple jumps are also apparent.

The choice of candidate sigma seems appropriate, and the space seems to have been

spanned. The parameter α1 appears to have converged.

Similar graphs for α2, α3, and α4, the same patterns are noted. All appear to

have converged. This may be seen in Appendix C.
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α π1 π2 π3 π4

α1 .069 .071 .068 .082
α2 .053 .053 .052 .043
α3 .256 .257 .167 .041
α4 .077 .069 .084 .091

Table 3.8: Correlation Coefficients for αs and associated πs

Correlation between parameters may create problems with convergence even

when mixing plots show no problems. If two parameters are highly correlated, a

portion of the parameter space may not have been reached, and the convergence seen

will be false. To make sure this is not an issue, correlations of interest will be looked

at as a final check of convergence. A correlation of interest is a correlation involving

the probability directly associated with each α and the α itself. These correlations

are contained in Table 3.8

Looking at these correlations, it is easy to see that there is no concern developing

from correlation. There are a few expected patterns. Probabilities associated with

α3 tend to be more highly correlated with α3 than other probabilities are with the

other αs. This is expected and follows the same pattern as the simple case. That is,

the probabilities associated with very rare occurrences and thus, less data, are more

dependent upon the α parameter than are those with more data. Though this pattern

is visible, it is not of concern, as no correlation is higher than .257, which is not a

strong enough correlation to cause any problems.

Figure 3.3 contains the density for α1. Notice the vertical line drawn on the

graph for the generated value. Although not directly in the middle, the line falls in

the main portion of the graph, showing that the method has succeeded. The value

used to generate data is contained in the main portion of the density.

The same pattern is observed in Figures C.10, C.11, and C.12 for the other αs.

Although not necessarily in the center, the generated αs are always close to the mode
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of the distribution.

The αs have converged satisfactorily, so it is meaningful to examine the prob-

abilities. Since these were generated using a Gibbs Sampler, it is not necessary to

examine convergence. The important factor here is whether or not the generated

probability falls within the generated range. Examining Figures C.13 and the graphs

for probabilities associated with α2, α3, and α4 in Appendix C, it is apparent that the

generated probabilities, marked with the vertical lines, are within the normal range

of the simulated draws. Additionally, the patterns observed in the generated proba-

bilities and the data seem to have translated into the graphs. For example, consider

the probability of defaulting. It was previously noted that the second quarter had the

highest probability, the fourth quarter had the lowest probability, and the third quar-

ter had a high probability, but not the highest. The graphs show this relationship, as

well as all other relationships noted previously. For this row, the methodology chosen

appears to have worked very well.

The first row appears to have converged, but that is the row with more data.

It is important to know whether the method will work with less data. To determine

this, consider the second row of the original transition matrix. Because this row deals

with an initial state of delinquent, it will contain much less data. Less data always

makes a statistical procedure more volatile, so to determine whether the method is

truly working, it is necessary to consider the second row as well as the first.
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Figure 3.2: Mixing plot for α1 over 300 observations
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Figure 3.3: Density for α1 for the first row
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Figure 3.4: Densities for probabilities in the first row, first column (current to current)
of the transition matrix
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Again, consider α1, but now examine mixing for the second row. Notice the

stationarity demonstrated in Figure 3.5. There does not appear to be any systematic

change in the mean of the graph, so there is no reason to assume convergence has not

been reached. Looking at Figure 3.6, the choice for the candidate sigma appears to

be appropriate, as there are periods where the simulated value doesn’t change, but

they are not large enough to think the candidate sigma is too large.
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Figure 3.5: Mixing plot for α1 for the second row

The plots for α2, α3, and α4 show the same thing in Appendix C. Even though

there is less data, it appears that convergence has still occurred. In the simulation of

the first row, correlation was inversely proportional to the amount of data. Since this

row has less data, it is necessary to examine the correlations here. The correlations

for αs and associated probabilities for the second row are found in Table 3.9. As

noticed for the first row, the same relationships that existed for the first row of the

transition matrix exist here. No correlation is greater than .226, which is not large

enough to worry about.

Although this table follows the same pattern that the previous table of correla-
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α π1 π2 π3 π4

α1 .125 .122 .134 .106
α2 .164 .170 .154 .176
α3 .225 .213 .214 .226
α4 .154 .171 .160 .192

Table 3.9: Correlation Coefficients for αs and associated πs for the second row of the
transition matrix

tions did, that less data leads to a higher correlation; still, none of these correlations

are high enough to be worrisome. It appears that the methodology has succeeded

with the second row of the transition matrix. Because the method has been successful

on the simulated data, the real data will be considered.
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Figure 3.6: Mixing plot for 300 realizations of α1 for the second row
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Figure 3.7: Density of probabilities associated with α1 for the second row
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4. ANALYSIS OF REAL DATA

4.1 Data Description

Because of the success of the methodology on the simulated hierarchical data,

actual data will now be considered. Consider an $8 billion portfolio in the subprime

home equity market. These borrowers generally have weaker or damaged credit,

which prevents them from qualifying for loans in the prime market. It should not be

surprising, then, that loss rates in the subprime sector are greater than those in the

prime market. These loans are fixed rate with first liens secured by residential real

estate originated between 1979 and 2002, with 90% originated after 1995. Table 3

contains summary statistics on these 108,646 loans.

There are 8 states of the Markov chain model: current, loss, paid, and 1 to 30,

31 to 60, 61 to 90, 91 to 120, and 121+ days past due. The five delinquency states are

determined by comparing the due date to the last day of the month. For example, a

borrower whose payment is due on the 5th of the month and whose last payment was

1 Jan would be 23 days past due on 28 Feb, placing them in the 1 to 30 days past

due state. This definition of delinquency obviously treats borrowers whose payments

are due on the 5th and 25th the same even though the borrower whose payment is

due on the 5th is more delinquent, but it is an accepted accounting practice. The 121

or more days past due state reflects seriously delinquent borrowers who may remain

in this state while loss mitigation or foreclosure proceedings are considered. Loss and

paid are absorbing states. For this example, all states of delinquency, from 1 to 121+,

are considered delinquent. This compresses the eight by eight transition matrix into

a four by four matrix with states current, delinquent, loss, and paid.

One approach to modeling the changing subprime lending environment is to

estimate a different transition matrix for loans originating in each quarter. That
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Table 4.1: Summary Statistics of an $8 Billion Portfolio of Subprime Home Equity
Loans Secured by Residential Real Estate.

Minimum Q1 Median Q3 Maximum
Interest Rate (%) 6.00 7.74 8.75 9.50 18.50
Loan Amount ($) 24,936 55,151 70,874 88,234 331,015
Loan-to-Value Ratio (%) 15.52 90.21 94.85 97.64 100.00

Percentage of Credit Report Derogatories
12.95 Filed for Bankruptcy
11.59 At Least One NSF Check
59.31 At Least One Major Derogatory

Percentage of Mortgage Repayment Delinquency
65.17 Never Delinquent
34.83 At Least One 30+
10.53 At Least One 60+
4.45 At Least One 90+
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Quarter Current Delinquent Default Prepay
First Quarter 51682 2846 11 1443

Second Quarter 73835 4069 16 2187
Third Quarter 82838 4492 18 2303
Fourth Quarter 69240 3939 11 1971

Table 4.2: Data for borrowers whose loans originated in 1991 Q1, Q2, Q3, Q4 for the
first row of the transition matrix

is, choose quarterly originations as the segmentation variable. This is somewhat

problematic since older loans have been observed longer than new loans and the rare

transition probabilities must have a sufficient sample size for every segment.

In order to determine whether this methodology is effective for real data, only

the data from a single origination year, 1991, is considered. These data are contained

in Tables 4.2 and 4.3. Table 4.2 contains data from the first row of the transition

matrix, while Table 4.3 contains data from the second row.

These tables contain far more data than was simulated in the study. Because

each quarter has a different number of loans, numbers do not compare directly. There-

fore, to try to understand the data, two new tables are created. These tables have

the probabilities for each row, and a total number of loans in the row.

In Table 4.4, the third quarter is shown to have the most loans. It also has

a slightly higher probability of staying current than the other quarters, and none

of the other probabilities associated with this quarter are extreme in any way. The

first quarter has the fewest loans, but all the probabilities associated with it are

Quarter Current Delinquent Default Prepay
First Quarter 2532 7738 88 328

Second Quarter 3703 10496 110 546
Third Quarter 3941 11327 126 551
Fourth Quarter 3491 9822 100 467

Table 4.3: Data for the second row of the transition matrix
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Number of Loans Current Delinquent Default Prepay
55982 .9232 .0508 .000196 .0258
80107 .9217 .0508 .0002 .0273
89651 .9240 .0501 .000201 .0257
75161 .9212 .0524 .000146 .0262

Table 4.4: Transition proportions computed from borrower repayment for the first
row of the transition matrix by origination quarter

less extreme than those in the other quarters. The second quarter has the highest

probability of prepaying as its only unique feature, while the fourth quarter has a

much lower probability of the loan defaulting. It also has the largest delinquency

rate, but this difference is not large.

In Table 4.5, the third quarter again has the most data, with the first quarter

having the least. The first quarter has the lowest probability of returning to current,

while the fourth quarter has the highest. While the fourth quarter is fairly close to

the other quarters for this probability, however, the first quarter is much lower than

the other quarters. The first quarter is the most likely to stay delinquent and the

most likely to default. The second quarter is most likely to prepay, while the fourth

quarter is the least likely to default, and is second least likely to prepay, with the first

quarter being the least likely.

Number of Loans Current Delinquent Default Prepay
10686 .2369 .7241 .00824 .0307
14855 .2493 .7066 .00741 .0368
15945 .2472 .7104 .00790 .0346
13880 .2515 .7076 .00721 .0336

Table 4.5: Transition proportions computed from borrower repayment for the second
row of the transition matrix by origination quarter
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4.2 Assessment of Convergence

As in Chapter 3, the mixing plots are examined to assess convergence. First,

the mixing plot for all observations is examined to determine if the simulation is still

trending in one direction. Consider Figure 4.1. These realizations appear stationary,

so it appears the process does not need to continue longer if a closer examination of

the mixing plot shows appropriate mixing.
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Figure 4.1: Mixing plot for α1 for the first row of real data

For the same parameter, now consider a subset of three hundred of the realiza-

tions. If this plot shows long time periods where the value of the parameter does not

change, the candidate sigma is too large and should be adjusted down before conver-

gence is reached. If the plot shows the parameter changing on every iteration, the

candidate sigma is too small. In Figure 4.2, it appears that the choice of candidate

sigma is appropriate. This plot appears to have converged, as there is no apparent

trend and the candidate sigma is appropriate. All other α parameters for both rows

of the transition matrix appear to have converged, as can be seen in Appendix D.

49



α Hyperprior µ Simulated µ Hyperprior σ2 Simulated σ2

α1 900.5 887.4 1642.7 1165.1
α2 60 57.6 4.0 3.4
α3 1 .73 .14 .044
α4 10 14.2 1.27 1.5

Table 4.6: Comparison between hyperprior means and variances and simulated means
and variances for αs for the first row of the transition matrix

4.3 Examination of Results

Convergence has been reached, so now it is of interest to examine the distribu-

tion of each parameter. It is possible that though convergence has been reached, the

analysis is valueless. If the posterior distributions for the parameters do not show the

patterns that were seen in the data, the analysis has not helped in understanding the

data.

Figures 4.3, 4.4, 4.5, and 4.6 show the distributions of the alpha parameters.

These values all look about as expected. For a more concise look at these distributions

and how they differ from prior knowledge, Table 4.6 contains the hyperprior means

and variances compared to the means of the generated αs and their variances. Notice

that the means are close in value, but not the same. The data has shifted the means

and, in most cases, has decreased the variance of the parameter. Only α4 does not have

a decreasing variance, and the increase is slight. Most of the hyperprior distributions

were more variable to allow for uncertainty. The prepay probability seems to simply

be more variable than expected.

Now, consider the probabilities associated with each α. Previously, associations

between these probabilities were noted. Figure 4.7 shows the density plots for the

probability associated with α1 for each quarter. In this figure, the fourth quarter

and second quarter probabilities seem lower than the first quarter and third quarter

probabilities. And, in fact, the table showing the probabilities indicates that the first
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and third quarter probabilities are higher than the second and fourth quarter. It can

also be seen that the first quarter has a wider, more spread distribution. This seems

appropriate, since the first quarter has the least data in this cell. The difference

between the second and fourth quarters does not appear large, but the difference

between the two clusters, first and third, second and fourth, does appear quite large.

Figure 4.8 also shows expected patterns. The first and second quarters have the

same probability, but the first quarter has less data. This pattern is again visible, with

the distribution of the first quarter probability wider and less specific. The fourth

quarter has the highest mean, by far, which is appropriate because the probability is

so high in the table; additionally, because the third quarter has the most data, this

curve is the narrowest.

The third column, the probability of defaulting, shows little differentiation.

This is as expected because the probabilities were extremely close and there were not

many loans here. These distributions are found in Figure 4.9. The fourth quarter has

a slightly lower probability, and the other curves are virtually on top of one another,

with the only difference being the amount of data. Though the fourth quarter’s

probability is twenty-five percent lower than the other probabilities, which is larger

than any other relative difference, very little difference is visible in the graph due to

the lack of data.

In Figure 4.10, the second quarter probability is the most differentiated from

the other posterior densities. And although the first and third quarters have virtually

the same mean, the difference in the amount of data differentiates the curves. The

fourth quarter is in between, but is closer to the first and third quarters than the

second quarter.

Now consider the second row. This row has much less data and so it is of

interest to notice whether results, which are so apparent in the data associated with

the first row of the transition matrix, are visible for this row. Figures 4.11, 4.12, 4.13,
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α Hyperprior µ Simulated µ Hyperprior σ2 Simulated σ2

α1 200 139.9 42.0 16.7
α2 100 149.0 18.7 30.5
α3 50 16.9 13.9 1.2
α4 25 19.9 3.1 1.4

Table 4.7: Comparison between hyperprior means and variances and simulated means
and variances for αs for the second row of the transition matrix

and 4.14 contain the densities for αs associated with the second row of the transition

matrix.

Table 4.7 shows that the same pattern occurs with these αs as with the αs

associated with the first row of the transition matrix. Each α may be shrunk back,

but the variances of those αs are also smaller, except for α2. It seems that the prior

means chosen had the wrong relationship. Instead of most people returning to current

from a delinquent status, it seems that most loans in a delinquent status will stay

there. The probability of staying delinquent is also more variable than expected in the

hyperpriors. All other αs for this row were shrunk back and given a smaller variance.

The shrinking of all the αs together indicates that the hierarchical relationship is not

as strong as the hyperpriors made it seem. Smaller αs lead to a larger variance for

each probability generated from the Dirichlet distribution and less influence of the

hierarchy.

Now, consider the probabilities associated with these αs. Figure 4.15 shows the

first quarter with a much lower probability as well as a wider distribution due to less

data. The second, third, and fourth quarters have very similar probabilities, and the

means increase in almost perfect intervals, with the fourth quarter being the highest,

as expected.

Figure 4.16 shows the distributions for the probabilities associated with staying

delinquent. As noticed from the αs, these are the largest probabilities. Although this

was not the case in the hyperpriors, it can be seen in the data. The first quarter is by
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far the largest probability. This density is almost completely unique from the other

densities. The third quarter is slightly higher than the second and fourth quarter,

which appear almost identical.

Now, considering loans that move to default, the first quarter is again the largest

probability here, but it is less significant than in other states due to the fact that very

few loans default. There is a lot of overlapping area between these curves, making it

difficult to differentiate one of them. Since this column only has 424 loans between

all the quarters, the dispersed distributions make sense.

For the probability of prepaying, the first quarter has a much lower probability

than any of the others, and the second quarter is much higher. The third and fourth

quarters appear very much the same, except that the third quarter has the narrowest

distribution because it has the most data.
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Figure 4.2: Closer Examination of mixing plot for α1 for the first row of real data
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Figure 4.3: Density for α1 for the first row
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Figure 4.4: Density for α2 for the first row
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Figure 4.5: Density for α3 for the first row

55



5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Density of alpha4

N = 150000   Bandwidth = 0.1019

 

Figure 4.6: Density for α4 for the first row
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Figure 4.7: Density for probabilities by quarter associated with α1 for the first row
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Figure 4.8: Density for probabilities by quarter associated with α2 for the first row
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Figure 4.9: Density for probabilities by quarter associated with α3 for the first row
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Figure 4.10: Density for probabilities by quarter associated with α4 for the first row
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Figure 4.11: Density for α1 for the second row
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Figure 4.12: Density for α2 for the second row
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Figure 4.13: Density for α3 for the second row
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Figure 4.14: Density for α4 for the second row
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Figure 4.15: Density for probabilities by quarter associated with α1 for the second
row
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Figure 4.16: Density for probabilities by quarter associated with α2 for the second
row
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Figure 4.17: Density for probabilities by quarter associated with α3 for the second
row
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Figure 4.18: Density for probabilities by quarter associated with α4 for the second
row
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5. CONCLUSIONS

Having considered both a simulated data set as well as real data, a Bayesian hi-

erarchical model appears to perform well in the analysis of a transition matrix. All

parameters that were estimated using the Metropolis-Hastings algorithm appear to

have converged, even when poor starting positions were chosen. The fact that some

rows have little data did not appear to cause any problems with convergence.

When examining the posterior distributions of the same probability across dif-

ferent quarters, differences emerged. This was true even when examining probabilities

that did not have much data associated with them, like the probability of defaulting

given a current status. Therefore, this methodology is sensitive enough to pick up

differences between quarters even with less data. Had this not been the case, the

methodology would have been useless, even if the parameters did converge. This dif-

ferentiation is important, as it might allow a lending institution to set different levels

of reserves for loans that had different origination dates, and thus minimize both the

level of reserves as well as the risk associated with a bad loan.

One step that was not taken in this project but ought to be considered is

the performance of this methodology in a situation where a location in the transition

matrix has no data. Whether this lack of data would cause problems with convergence

is unknown, but this factor could become important when the data being analyzed

come from more recent years, where even more sparse data is expected.

Finally, it would be interesting to determine whether this methodology would

work if applied over multiple years. Only one year was considered here, with the α

parameters being generated only once for each row. If each year were considered a

draw from the α distributions, it is of interest to know whether the estimation of

the αs improve, or whether the addition of years would simply make convergence for

these parameters more challenging. The effect of analyzing multiple years at once is

63



something that should be explored further.
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A. DATA GENERATION CODE

### Simulation of Hierarchical Model ###

library(MCMCpack) library(multinomRob)

a1<-c(500,900,7,80) a2<-c(960,520,180,205) b1<-c(5/9,15,7,8)

b2<-c(4.8,5.2,3.6,8.1)

prealpha1<-rgamma(4,a1,b1) prealpha2<-rgamma(4,a2,b2) .

prob1<-rdirichlet(4,prealpha1) prob2<-rdirichlet(4,prealpha2)

x1<-matrix(data=NA,ncol=4,nrow=4) x2<-matrix(data=NA,ncol=4,nrow=4)

for (i in 1:4){ x1[i,]<-rmultinomial(10000,prob1[i,])

x2[i,]<-rmultinomial(700,prob2[i,]) }

### Data is contained in x1 and x2. True probabilities are

contained in prob1 and prob2 ###
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B. R CODE FOR MCMC

### Skeleton Code for MCMC on simulated data set ###

dtn<-function(x,mu,sigma,lowcutpoint){

dnorm(x,mu,sigma)/(1-pnorm(lowcutpoint,mu,sigma))}

rtn<-function(x,mu,sigma,lowcutpoint){

vec<-matrix(NA,x,1)

for(i in 1:x){

check<-0

while(check==0){

try<-rnorm(1,mu,sigma)

if (try>lowcutpoint){check<-1}

}

vec[i,1]<-try

}

vec

}

ga1<-function(alpha1,alpha2,alpha3,alpha4,p11,p21,p31,p41,a1,b1){

4*(lgamma(alpha1 + alpha2 + alpha3 + alpha4)-lgamma(alpha1)) +

(alpha1-1)*(log(p11)+log(p21)+log(p31)+log(p41)) +

(a1-1)*log(alpha1) - (alpha1*b1)}

ga2<-function(alpha1,alpha2,alpha3,alpha4,p12,p22,p32,p42,a2,b2){

4*(lgamma(alpha1 + alpha2 + alpha3 + alpha4)-lgamma(alpha2)) +

(alpha2-1)*(log(p12)+log(p22)+log(p32)+log(p42)) +

(a2-1)*log(alpha2) - (alpha2*b2)}

ga3<-function(alpha1,alpha2,alpha3,alpha4,p13,p23,p33,p43,a3,b3){

4*(lgamma(alpha1 + alpha2 + alpha3 + alpha4)-lgamma(alpha3)) +

(alpha3-1)*(log(p13)+log(p23)+log(p33)+log(p43)) +

(a3-1)*log(alpha3) - (alpha3*b3)}

ga4<-function(alpha1,alpha2,alpha3,alpha4,p14,p24,p34,p44,a4,b4){

4*(lgamma(alpha1 + alpha2 + alpha3 + alpha4)-lgamma(alpha4)) +

(alpha4-1)*(log(p14)+log(p24)+log(p34)+log(p44)) +

(a4-1)*log(alpha4) - (alpha4*b4)}

a1<-500

a2<-900
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a3<-7

a4<-80

b1<-(5/9)

b2<-15

b3<-7

b4<-8

y11<-51682

y12<-2846

y13<-11

y14<-1443

y21<-73835

y22<-4069

y23<-16

y24<-2187

y31<-82838

y32<-4492

y33<-18

y34<-2303

y41<-69240

y42<-3939

y43<-11

y44<-1971

length <- 100000

burn <- 50000

ralpha1 <- numeric(length+burn)

ralpha2 <- numeric(length+burn)

ralpha3 <- numeric(length+burn)

ralpha4 <- numeric(length+burn)

rp1 <- matrix(nrow=length+burn,ncol=4,NA)

rp2 <- matrix(nrow=length+burn,ncol=4,NA)

rp3 <- matrix(nrow=length+burn,ncol=4,NA)

rp4 <- matrix(nrow=length+burn,ncol=4,NA)

ralpha1[1]<-90

ralpha2[1]<-15

ralpha3[1]<-.1

ralpha4[1]<-4

rp1[1,]<-c(.93,.06,.001,.009)

rp2[1,]<-c(.93,.06,.001,.009)

rp3[1,]<-c(.93,.06,.001,.009)
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rp4[1,]<-c(.93,.06,.001,.009)

candsig.a1 <- 50

candsig.a2 <- 3

candsig.a3 <- .3

candsig.a4 <- 2

for(i in 2:(length+burn)){

#Update alpha1

ralpha1[i] <-ralpha1[i-1]

new<-rtn(1,ralpha1[i-1],candsig.a1,0)

old <-ralpha1[i-1]

llo<-ga1(old,ralpha2[i-1],ralpha3[i-1],ralpha4[i-1],rp1[i-1,1]

,rp2[i-1,1],rp3[i-1,1],rp4[i-1,1],a1,b1)

+log(dtn(new,old,candsig.a1,0))

lln<-ga1(new,ralpha2[i-1],ralpha3[i-1],ralpha4[i-1],rp1[i-1,1]

,rp2[i-1,1],rp3[i-1,1],rp4[i-1,1],a1,b1)

+log(dtn(old,new,candsig.a1,0))

uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){ralpha1[i]<-new}

# Update alpha2

ralpha2[i] <-ralpha2[i-1]

new<-rtn(1,ralpha2[i-1],candsig.a2,0)

old <-ralpha2[i-1]

llo<-ga2(ralpha1[i],old,ralpha3[i-1],ralpha4[i-1],rp1[i-1,2]

,rp2[i-1,2],rp3[i-1,2],rp4[i-1,2],a2,b2)+

log(dtn(new,old,candsig.a2,0))

lln<-ga2(ralpha1[i],new,ralpha3[i-1],ralpha4[i-1],rp1[i-1,2]

,rp2[i-1,2],rp3[i-1,2],rp4[i-1,2],a2,b2)+

log(dtn(old,new,candsig.a2,0))

uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){ralpha2[i]<-new}

# Update a3

ralpha3[i] <-ralpha3[i-1]

new<-rtn(1,ralpha3[i-1],candsig.a3,0)

old <-ralpha3[i-1]

llo<-ga3(ralpha1[i],ralpha2[i],old,ralpha4[i-1],rp1[i-1,3],

rp2[i-1,3],rp3[i-1,3],rp4[i-1,3],a3,b3)+

log(dtn(new,old,candsig.a3,0))

lln<-ga3(ralpha1[i],ralpha2[i],new,ralpha4[i-1],rp1[i-1,3],

rp2[i-1,3],rp3[i-1,3],rp4[i-1,3],a3,b3)+

log(dtn(old,new,candsig.a3,0))
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uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){ralpha3[i]<-new}

# Update a4

ralpha4[i] <-ralpha4[i-1]

new<-rtn(1,ralpha4[i-1],candsig.a4,0)

old <-ralpha4[i-1]

llo<-ga4(ralpha1[i],ralpha2[i],ralpha3[i],old,rp1[i-1,4],

rp2[i-1,4],rp3[i-1,4],rp4[i-1,4],a4,b4)+

log(dtn(new,old,candsig.a4,0))

lln<-ga4(ralpha1[i],ralpha2[i],ralpha3[i],new,rp1[i-1,4],

rp2[i-1,4],rp3[i-1,4],rp4[i-1,4],a4,b4)+

log(dtn(old,new,candsig.a4,0))

uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){ralpha4[i]<-new}

# Update p1 - p4

rp1[i,]<-rdirichlet(1,c(y11+ralpha1[i],y12+ralpha2[i],

y13+ralpha3[i],y14+ralpha4[i]))

rp2[i,]<-rdirichlet(1,c(y21+ralpha1[i],y22+ralpha2[i],

y23+ralpha3[i],y24+ralpha4[i]))

rp3[i,]<-rdirichlet(1,c(y31+ralpha1[i],y32+ralpha2[i],

y33+ralpha3[i],y34+ralpha4[i]))

rp4[i,]<-rdirichlet(1,c(y41+ralpha1[i],y42+ralpha2[i],

y43+ralpha3[i],y44+ralpha4[i]))

}

pdf("C://Documents and Settings//Rebecca//My Documents//Statistics

//Master’s Project//ralpha1row1density.pdf")

plot(density(ralpha1), main = ’Density of alpha1’,ylab = ’ ’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents//Statistics

//Master’s Project//ralpha2row1density.pdf")

plot(density(ralpha2), main = ’Density of alpha2’,ylab = ’ ’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents//Statistics

//Master’s Project//ralpha3row1density.pdf")

plot(density(ralpha3), main = ’Density of alpha3’,ylab = ’ ’)

dev.off()
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pdf("C://Documents and Settings//Rebecca//My Documents//Statistics

//Master’s Project//ralpha4row1density.pdf")

plot(density(ralpha4), main = ’Density of alpha4’,ylab = ’ ’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha1row1line.pdf")

plot(ralpha1[(burn+1):(length+burn)],type=’l’,

main = ’Mixing Plot for Alpha1’,ylab = ’Value of Alpha1’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha2row1line.pdf")

plot(ralpha2[(burn+1):(length+burn)],type=’l’,

main = ’Mixing Plot for Alpha2’,ylab = ’Value of Alpha2’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha3row1line.pdf")

plot(ralpha3[(burn+1):(length+burn)],type=’l’,

main = ’Mixing Plot for Alpha3’,ylab = ’Value of Alpha3’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha4row1line.pdf")

plot(ralpha4[(burn+1):(length+burn)],type=’l’,

main = ’Mixing plot for alpha4’,ylab = ’Value of Alpha4’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha1row1check.pdf")

plot(ralpha1[7000:7300],type=’l’,

main = ’Portion of Mixing Plot for Alpha1’,

ylab=’Value of Alpha1’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha2row1check.pdf")

plot(ralpha2[7000:7300],type=’l’,

main = ’Portion of Mixing Plot for Alpha2’,

ylab=’Value of Alpha2’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents
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//Statistics//Master’s Project//ralpha3row1check.pdf")

plot(ralpha3[7000:7300],type=’l’,

main = ’Portion of Mixing Plot for Alpha3’,

ylab=’Value of Alpha3’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//ralpha4row1check.pdf")

plot(ralpha4[7000:7300],type=’l’,

main = ’Portion of Mixing Plot for Alpha4’,

ylab=’Value of Alpha4’)

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//rpalpha1row1density.pdf")

plot(density(rp1[(burn+1):(length+burn),1]),xlim=c(.916,.929),

ylim=c(0,450),lwd=3,main=’First Column Probabilities’)

lines(density(rp2[(burn+1):(length+burn),1]),col=’red’,lwd=3)

lines(density(rp3[(burn+1):(length+burn),1]),col=’blue’,lwd=3)

lines(density(rp4[(burn+1):(length+burn),1]),col=’darkgreen’,lwd=3)

legend("topleft",legend=c("Q1","Q2","Q3","Q4"),

col=c("black","red","blue","darkgreen"),lty=c(1,1,1,1),lwd=c(3,3,3,3))

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//rpalpha2row1density.pdf")

plot(density(rp1[(burn+1):(length+burn),2]),lwd=3,

ylim=c(0,530),main=’Second Column Probabilities’)

lines(density(rp2[(burn+1):(length+burn),2]),col=’red’,lwd=3)

lines(density(rp3[(burn+1):(length+burn),2]),col=’blue’,lwd=3)

lines(density(rp4[(burn+1):(length+burn),2]),col=’darkgreen’,lwd=3)

legend("topleft",legend=c("Q1","Q2","Q3","Q4"),

col=c("black","red","blue","darkgreen"),lty=c(1,1,1,1),lwd=c(3,3,3,3))

dev.off()

pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//rpalpha3row1density.pdf")

plot(density(rp1[(burn+1):(length+burn),3]),

ylim=c(0,9000),lwd=3,main=’Third Column Probabilities’)

lines(density(rp2[(burn+1):(length+burn),3]),col=’red’,lwd=3)

lines(density(rp3[(burn+1):(length+burn),3]),col=’blue’,lwd=3)

lines(density(rp4[(burn+1):(length+burn),3]),col=’darkgreen’,lwd=3)

legend("topleft",legend=c("Q1","Q2","Q3","Q4"),

col=c("black","red","blue","darkgreen"),lty=c(1,1,1,1),lwd=c(3,3,3,3))

dev.off()
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pdf("C://Documents and Settings//Rebecca//My Documents

//Statistics//Master’s Project//rpalpha4row1density.pdf")

plot(density(rp1[(burn+1):(length+burn),4]),

ylim=c(0,800),lwd=3,main=’Fourth Column Probabilities’)

lines(density(rp2[(burn+1):(length+burn),4]),col=’red’,lwd=3)

lines(density(rp3[(burn+1):(length+burn),4]),col=’blue’,lwd=3)

lines(density(rp4[(burn+1):(length+burn),4]),col=’darkgreen’,lwd=3)

legend("topleft",legend=c("Q1","Q2","Q3","Q4"),

col=c("black","red","blue","darkgreen"),lty=c(1,1,1,1),lwd=c(3,3,3,3))

dev.off()
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C. GRAPHS FOR CHAPTER 3
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Figure C.1: Time plot for α1 for the first row
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Figure C.2: Time plot for α1 over 300 observations
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Figure C.3: Time plot for α2 for the first row

76



0 50 100 150 200 250 300

56
58

60
62

Index

al
ph

a2
[7

00
0:

73
00

]

Figure C.4: Time plot for α2 over 300 observations
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Figure C.5: Time plot for α3 for the first row
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Figure C.6: Time plot for α3 over 300 observations
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Figure C.7: Time plot for α4 for the first row
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Figure C.8: Time plot for α4 over 300 observations
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Figure C.9: Density for α1 for the first row
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Figure C.10: Density for α2 for the first row
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Figure C.11: Density for α3 for the first row
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Figure C.12: Density for α4 for the first row
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Figure C.13: Densities for probabilities in the first row, first column (current to
current) of the transition matrix
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Figure C.14: Density for probabilities in the first row, second column of the transition
matrix
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Figure C.15: Density for probabilities in the first row, third column of the transition
matrix
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Figure C.16: Density for probabilities in the first row, fourth column of the transition
matrix
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Figure C.17: Mixing plot for α1 for the second row
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Figure C.18: Mixing plot for 300 realizations of α1 for the second row
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Figure C.19: Mixing plot for α2 for the second row
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Figure C.20: Mixing plot for 300 realizations of α2 for the second row
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Figure C.21: Mixing plot for α3 for the second row
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Figure C.22: Mixing plot for 300 realizations of α3 for the second row
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Figure C.23: Mixing plot for α4 for the second row
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Figure C.24: Mixing plot for 300 realizations of α4 for the second row
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Figure C.25: Density for α1 for the second row
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Figure C.26: Density for α2 for the second row
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Figure C.27: Density for α3 for the second row
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Figure C.28: Density for α4 for the second row
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Figure C.29: Density of probabilities associated with α1 for the second row
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Figure C.30: Density of probabilities associated with α2 for the second row

0.10 0.14 0.18

0
10

20
30

Quarter 1

N = 100000   Bandwidth = 0.0009765

D
en

si
ty

0.06 0.08 0.10 0.12 0.14

0
10

20
30

40

Quarter 2

N = 100000   Bandwidth = 0.0008473

D
en

si
ty

0.08 0.10 0.12 0.14

0
10

20
30

40

Quarter 3

N = 100000   Bandwidth = 0.000858

D
en

si
ty

0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

Quarter 4

N = 100000   Bandwidth = 0.0008852

D
en

si
ty

Figure C.31: Density of probabilities associated with α3 for the second row
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Figure C.32: Density of probabilities associated with α4 for the second row
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Figure D.1: Mixing plot for α1 for the first row
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Figure D.2: Closer examination of the mixing plot for α1 for the first row
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Figure D.3: Mixing plot for α2 for the first row
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Figure D.4: Closer examination of the mixing plot for α2 for the first row

0   e+00 2   e+04 4   e+04 6   e+04 8   e+04 1   e+05

0.
5

1.
0

1.
5

Mixing Plot for Alpha3

Index

V
al

ue
 o

f A
lp

ha
3

Figure D.5: Mixing plot for α3 for the first row
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Figure D.6: Closer examination of the mixing plot for α3 for the first row
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Figure D.7: Mixing plot for α4 for the first row
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Figure D.8: Closer examination of the mixing plot for α4 for the first row

0   e+00 2   e+04 4   e+04 6   e+04 8   e+04 1   e+05

12
5

13
0

13
5

14
0

14
5

15
0

15
5

Mixing Plot for Alpha1

Index

V
al

ue
 o

f A
lp

ha
1

Figure D.9: Mixing plot for α1 for the second row of real data
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Figure D.10: Closer examination of the mixing plot for α1 for the second row
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Figure D.11: Mixing plot for α2 for the second row
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Figure D.12: Closer examination of the mixing plot for α2 for the second row
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Figure D.13: Mixing plot for α3 for the second row
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Figure D.14: Closer examination of the mixing plot for α3 for the second row
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Figure D.15: Mixing plot for α4 for the second row
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Figure D.16: Closer examination of the mixing plot for α4 for the second row
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Figure D.17: Density for α1 for the first row

103



20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

Density of alpha2

N = 150000   Bandwidth = 0.1482

 

Figure D.18: Density for α2 for the first row
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Figure D.19: Density for α3 for the first row
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Figure D.20: Density for α4 for the first row
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Figure D.21: Density for probabilities by quarter associated with α1 for the first row
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Figure D.22: Density for probabilities by quarter associated with α2 for the first row
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Figure D.23: Density for probabilities by quarter associated with α3 for the first row
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Figure D.24: Density for probabilities by quarter associated with α4 for the first row
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Figure D.25: Density for α1 for the second row
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Figure D.26: Density for α2 for the second row
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Figure D.27: Density for α3 for the second row
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Figure D.28: Density for α4 for the second row
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Figure D.29: Density for probabilities by quarter associated with α1 for the second
row
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Figure D.30: Density for probabilities by quarter associated with α2 for the second
row
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Figure D.31: Density for probabilities by quarter associated with α3 for the second
row
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Figure D.32: Density for probabilities by quarter associated with α4 for the second
row
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