Brigham Young University

BYU ScholarsArchive

All Theses and Dissertations

2011-07-06

An Introduction to Bayesian Methodology via
WinBUGS and PROC MCMC

Heidi Lula Lindsey
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
b Part of the Statistics and Probability Commons

BYU ScholarsArchive Citation

Lindsey, Heidi Lula, "An Introduction to Bayesian Methodology via WinBUGS and PROC MCMC" (2011). All Theses and
Dissertations. 2784.
https://scholarsarchive.byu.edu/etd /2784

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and
Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu,

ellen_amatangelo@byu.edu.

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2784?utm_source=scholarsarchive.byu.edu%2Fetd%2F2784&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

An Introduction to Bayesian Methodology
via WinBUGS & PROC MCMC

Heidi L. Lindsey

A Project submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Gilbert W. Fellingham, Chair
William F. Christensen
Scott D. Grimshaw

Department of Statistics
Brigham Young University

August 2011

Copyright (©) 2011 Heidi L. Lindsey

All Rights Reserved

ABSTRACT

An Introduction to Bayesian Methodology
via WinBUGS & PROC MCMC

Heidi L. Lindsey
Department of Statistics, BYU
Master of Science

Bayesian statistical methods have long been computationally out of reach because
the analysis often requires integration of high-dimensional functions. Recent advancements
in computational tools to apply Markov Chain Monte Carlo (MCMC) methods are making
Bayesian data analysis accessible for all statisticians. Two such computer tools are Win-
BUGS and SAS® 9.2’s PROC MCMC. Bayesian methodology will be introduced through
discussion of fourteen statistical examples with code and computer output to demonstrate
the power of these computational tools in a wide variety of settings.

Keywords: Bayesian data analysis, WinBUGS, PROC MCMC, statistical examples

ACKNOWLEDGMENTS

I would like to thank Dr. Fellingham for giving me the opportunity to work on this
project and for his patient tutelage. I would also like to acknowledge that my work here at

BYU was made possible by the love and support of my family, Tobias, Victoria and Connor.

CONTENTS

Contents e vii
1 Introduction 1
2 Backgroundo 3
2.1 Probability 4
2.2 Probability Density Functions 18
2.3 Markov chain Monte Carlo (MCMC) 27
24 WinBUGS 30
2.5 PROC MCMC 31
3 Computer Syntax Introduction o oL 33
3.1 WinBUGS 33
3.2 PROC MCMC e 39
3.3 Side by Side Computer Code 43
3.4 The General WinBUGS Procedure 43
4 Two Sample T-Test 47
4.1 WinBUGS e 48
4.2 PROC MCMC 50
4.3 Side by Side Computer Code 54
5 Linear Regression L 57
51 WinBUGS 58

Vil

5.2 PROC MCMC e 60

5.3 Side by Side Computer Code 64
6 Multiple Regressiono 69
6.1 WinBUGS e 70
6.2 PROC MCMC e 73
6.3 Side by Side Computer Codeo 7
7 One-Way Anova 81
7.1 WinBUGS 82
7.2 PROC MCMC e 84
7.3 Side by Side Computer Code L. 88
8 Factorial Design 93
81 WinBUGS 94
8.2 PROC MCMC e 96
8.3 Side by Side Computer Code 99
9 Analysis of Covariance 103
9.1 WinBUGS 104
9.2 PROC MCMC 107
9.3 Side by Side Computer Code 109
10 Linear Mixed Model 113
10.1 WinBUGS e 114
10.2 PROC MCMC o 116
10.3 Side by Side Computer Code 120
11 Random Coefficient Model oL 123
11.1 WinBUGS o 125

viil

11.2 PROC MCMC o 128

11.3 Side by Side Computer Code 132
12 Logistic Regression with a Binomial Likelihood 137
12.1 WinBUGS 138
12.2 PROC MCMC 141
12.3 Side by Side Computer Code L 142
13 Logistic Regression with Random Effect 147
13.1 WinBUGS o 148
13.2 PROC MCMC e 152
13.3 Side by Side Computer Code 156
14 Poisson Model 159
14.1 WinBUGS 160
14.2 PROC MCMC e 163
14.3 Side by Side Computer Code 170
15 Poisson Regression L 175
15.1 WinBUGS 178
15.2 PROC MCMC e 179
15.3 Side by Side Computer Code 185
16 Survival Model with Censoring 189
16.1 WinBUGS e 190
16.2 PROC MCMC 192
16.3 Side by Side Computer Code 198
Bibliography 203

X

CHAPTER 1

INTRODUCTION

The purpose of this project is to create a primer on the use of Bayesian statistical methods
as implemented in the computer programs WinBUGS and PROC MCMC in SAS® 9.2. This
primer will illustrate these computer tools by demonstrating fourteen examples.

Bayesian statistical methods are more prevalent than in the past because of compu-
tational advances. However, proper training in the use of Bayesian methods is not as readily
available as training in frequentist methodology. Therefore, this primer will serve as a guide
for statisticians who desire to implement Bayesian methods but lack training.

WinBUGS is software that was developed by the Bayesian inference Using Gibbs
Sampling (BUGS) project (BUGS 1996-2008). This group was concerned with flexible soft-
ware for Bayesian analysis of complex statistical models using Markov chain Monte Carlo
(MCMC) methods. The project began in 1989 in the MRC Biostatistics Unit of Cam-
bridge University under the direction of David Spiegelhalter and chief programmer, Andrew
Thomas. In 1996 the project expanded to include the Imperial College School of Medicine
at St Mary’s, London with the influence of Nicky Best, Jon Wakefield, and Dave Lunn.
In 2004, Andrew Thomas moved to the University of Helsinki, Finland and began work on
OpenBUGS while Nicky Best, Jon Wakefield, and Dave Lunn continued work on WinBUGS.
(see OpenBUGS 2004)

The MCMC proceedure in SAS® 9.2 also uses Markov chain Monte Carlo (MCMC)
simulation. PROC MCMC is a general purpose tool in SAS® 9.2 which one can utilize to
implement Bayesian methods.

In both computer applications, a likelihood function for the data is proposed along

with prior distributions for the parameters. Then relying on the notion that the appropriate

posterior distributions for the parameters in question are scaled products of the likelihood
times the prior, the programs draw from the appropriate posterior distributions, producing
summary diagnostic statistics computed from these draws.

The fourteen examples include: (1) one sample gamma, (2) two sample t-test, (3)
linear regression, (4) multiple regression, (5) one-way ANOVA, (6) factorial design, (7)
analysis of covariance, (8) linear mixed model, (9) random coefficient model, (10) logistic
regression, (11) logistic regression with random effect, (12) Poisson model, (13) Poisson
regression, and (14) survival model with censored data. These examples will demonstrate
how the implementation of Bayesian methods is supported by these computational tools. A

discussion of the computer output will also be included.

CHAPTER 2

BACKGROUND

Bayesian data analysis employs practical methods for making inferences from data using
probability models for observed quantities about which one desires to learn. These methods
are based on the work of Thomas Bayes, an English mathematician and Presbyterian minister
who lived from 1702 — 1761 and formulated a probability theorem that bears his name. In
an essay that was published after his death in 1763, Thomas Bayes presented a rule based
on probability according to which “we ought to estimate the chance that the probability for
the happening of an event perfectly unknown, should lie between any two named degrees of
probabilty.” (see Price 1763)

He wanted to use a set of binomial data, comprising of the number of successes out of
a fixed number of attempts, to learn about the underlying chance of success for any randomly
chosen event. Bayes’ key contribution was to use a probability distribution to represent all of
the uncertainty involved in the event space. This distribution represents the uncertainty due
to a lack of knowledge concerning the underlying relationships governing the probability of
future events, such as the uncertainty in a game of chance or a medical outcome. The essen-
tial characteristic of Bayesian methods is the explicit handling of probability in such a way
as to incorporate prior beliefs or prior events into the model for the purpose of quantifying
the uncertainty associated with the event of interest in the statistical data analysis.

Bayes’ theorem is founded in probability theory, uses probability in its structure,
and the theorem’s approach follows the scientific method when appropriately implemented
by a researcher working to predict the chance of the occurrence of an event of interest. It

is flexible in that it can be employed to analyze simple as well as complex situations. A

powerful result is that all conclusions from the use of Bayes’ theorem strictly obey the laws

of probability.

2.1 PROBABILITY

We now provide a review of probability—vocabulary, theorems, and examples—that might be

useful to prepare someone for further study in Bayesian methods.

Qutcome: The building blocks of events. A single happening.

FEvent: A combination of outcomes, or a set of outcomes that are of interest.

Unwversal Event: The event that includes all possible events or outcomes. Also referred to

as sample space, which is the set of all possible outcomes of a particular experiment.

Experiment: Any process that facilitates researchers in obtaining observations.

Union: The union of two sets, A and B, written as AU B, is the set of outcomes that belong

to A, B, or both. For example,
o Let A= {12, 24, 36} and B = {8, 10, 12},

e AUB = {8, 10, 12, 24, 36}.

Intersection: The intersection of two sets, A and B, written as AN B, is the set of outcomes

that belong to both A and B. For example,
o Let A = {12, 24, 36} and B = {8, 10, 12},

e ANB = {12}.

Complement: The set of outcomes from the sample space that do not contain any outcomes

that are in set A. The complement is written as ~A and is read as “not A”. For example,
e Let the universal set U = {8, 10, 12, 24, 36, 40, 48} and let A = {12, 24, 36},

e ~A = {8, 10, 40, 48}.

Empty Set: The set consisting of no outcomes and written as (). A related term is Impossible

FEvent which is an event that cannot happen.

Mutually Fxclusive Fvents: Events that have no outcomes in common; events that have no

overlap in outcomes. For example,
o Let A ={12,24,36} and C = {9, 11},

e ANC =0.

Probability: A value that represents how likely it is that an event will occur.

The following probability statements are taken as axiomatic:

1. If Ais an event (i.e., a combination of outcomes, or a set of outcomes that is of interest),

then P(A) > 0.

2. If U is the largest event possible, then P(U) = 1 (a certain event, it has to happen).

U is the sample space.

3. If events A and B are mutually exclusive events, then P(AU B) = P(A) + P(B). The
probability of the union of two mutually exclusive sets is the sum of their respective

probabilities. This is sometimes referred to as the Law of Total Probability.

Using our probability axioms, it may be shown that:

o P(AU~A)=P(A)+ P(~A) =1

o P(~A)=1— P(A)

Examples:

— Event A: Using a single die, roll an odd number = {1,3,5}

— Event B: Using a single die, roll a four = {4}

— Event U: Using a single die, roll = {1, 2, 3, 4, 5, 6}

~ P(AUB)=PA)+PB)=¢+;=5=3

— For a football game between BYU and SDSU, P(BYU Win and SDSU Win) =
P(BY Upin, N SDSU,i) = 0

— P(AN~A)=P(0) =0

— P(AU~A) =1

Fundamental Theorem of Counting: If an event can happen in m ways and another event

can happen in n ways, then the event of their union can happen in m - n ways.

e Examples:

Event A: Selecting one shirt from a closet of ten shirts.
— Event B: Selecting one pair of pants from a closet of seven pairs.

— Therefore, A may happen in ten ways and B may happen in seven ways.

Thus, (AU B) can happen together in a total of 10 - 7 = 70 ways.

Probabilities may be assigned to outcomes. If all outcomes are equally likely, then
each outcome may logically be given an equal probability. But sometimes events are not
equally likely. What if a die is weighted or loaded? Then one side is more likely to land up
than another side. Sometimes additional information is obtained that informs us as to the
probability of an event.

There are different ways to assign probabilities to events:
1. Equally Likely, i.e., flip a fair coin or roll a fair die

2. Long Run Frequency, i.e., conduct an experiment 1,000 or more times and then count

the frequency of the outcomes

3. Degree of Belief, i.e., ask someone to state their belief of the probability of an event,
then you ask a series of further questions, a calibration experiment, to hone in their
personal degree of belief relative to the probability of an event happening. (This one

makes people uncomfortable because your belief could be different than my belief.)

Joint Probability: Two events happened at the same time; P(A N B) is read as the “joint

probability of A and B”.

Example:
e Event A: Using a single die, roll an odd number, A = {1, 3, 5}

Event B: Using a single die, roll a number greater than three, B ={4, 5, 6}

(AN B) = {5} ; five is the only outcome that is in both sets.

° P(AQB):%

Event C: Using a single die, roll an even number C' = {2, 4, 6}

P(ANC) = (; A and C are mutually exclusive because they have no events in common.

Conditional Probability: We take the following as a definition, although we will attempt to

show that is is intuitive. For two events, A and B in a sample space S, and P(B) > 0, then

the conditional probability of A given B has occurred, written as P(A|B), is

P(AB) = %.

Intuitively, knowing that event B happened may tell us something about event A. Note that
in this calculation of the conditional probability, B shrinks the sample space of S such that

B becomes the new sample space, see figure 2.1.

e Conditioning on B occurring, shrinks the probability space. We are only working in

the space of B. Figure 2.1 shows this with a Venn Diagram.

Figure 2.1: The conditional probability of event A given B is only the overlap space of A
and B. The probability of the universal set is one: P(U)=1.

— If A has occurred, it can only occur in the overlap space.

— We need to scale the probability by dividing by P(B).
e Consider the following sets of events:

— Event A: Using a single die, roll an odd number, A = {1,3,5}

— Event B: Using a single die, roll a number larger than three,

B ={4, 5, 6}

— Event C: Using a single die, roll an even number, C' = {2, 4, 6}

e [f you know that event B happened, what is the probability now that an odd number
was rolled, i.e. P(A|B)?

— The P(A), the unconditional probability that an odd number is rolled, = %

— The P(B), the unconditional probability that a number larger than three is rolled,

_1
L

1

— The P(C), the unconditional probability that an even number is rolled, = 3.

— However, the conditional probability that an odd number was rolled given a num-

ber greater than three has occurred, is one-third.

P(AnB) L 1
PAB)= ————~-=%=C
(41B) P(B) % 3
e Bayes’ Theorem
Using the definition of conditional probability:
P(ANB)
P(AB) = ————=
(A1B) = =5
Similarly,
P(ANB)
P(B|A) =
(B14) = =5
e Thus,

P(A|B)P(B) = P(B|A)P(A)

—

P(B]A)P(A)

P(AIB) = =5
Similarly,
pisya) - PARPE)

These last two statements give Bayes’ Theorem in its most basic form.

The following example demonstrates conditional probability and the fundamental theorem

of counting.

e What is the probability that there is a common birthday among the individuals at any
gathering of 25 people?
e P(Common) =1— P(~ Common)

o P(~ Common) = 38 . 364363 " yntil the last person present, or 365:’6_524

— The first person could have a birthday on any of the 365 days of the year. The
second person cannot have a birthday on the same day that the first person has
theirs, so this person has 364 days they could have a birthday. The third person
has two days that their birthday cannot be on, so their birthday could be on
any of the remaining 363 days. This continues until the last person present, then
these conditional probability fractions can all be multiplied because P(A N B) =
P(B|A)P(A).

(365!)
340!

36525

e This simplifies to:
e The result is that P(~ Common) = 0.4313003
e P(Common) =1— P(~ Common) =1 — 0.4313003 = 0.5686997

Consider mutually exclusive events, A and B. What is P(A|B)? Figure 2.2 demonstrates
that this is an impossible event, P(A|B) = 0. Because A and B are mutually exclusive,

knowing that B happened leads to the conclusion that A did not happen.

10

Figure 2.2: The conditional probability of A given B is zero here.

Law of Total Probability: Let’s revisit the Law of Total Probability, the third axiom of prob-

ability. In figure 2.3:

P(B)=P(BNA)UPBN ~A)
=P(BNA)+P(Bn ~A)

= P(BJA)P(A) + P(B|~ A)P(~ A).

Figure 2.3: Demonstrating the law of total probability.

e Recall these conditional probability statements:

11

Figure 2.4: Extending the law of total probability.

In figure 2.4:
P(B) = P(B|A)P(A) + P(B|C)P(C) + P(B|D)P(D) + P(B|E)P(E) + P(B|F)P(F)

As long as the sample space is partitioned into mutually exclusive events, the individual
probabilities can be summed, by the law of total probability.

The next example demonstrates this concept. Tovi is in a chess tournament and wants
to know the probability he will win his next match, but there are two people he might play
because they are still playing their game with each other and the winner is undetermined.
Tovi wants to know the unconditional probability that he will win. Consider the probability
of each part:

7
P(Win|Play John) = 1

P(Win|Play Maritza) = %
2
P(Play John) = s
3
P(Play Maritza) = 5= P(~ Play John)

12

P(Win) = P(Win|Play John)P(Play John) + P(Win| ~ Play John)P(~ Play John)

_ 72,43
10 5 10 5
_14+12
50 50
_ 2613
50 25

Therefore, with a % probability of winning, Tovi will win more often than lose if he plays
over and over. This also means that if Tovi bets to win, he will win money if this scenario

could be repeated over and over.

Bayes” Theorem: Now, combining the results from page 10 and page 12, we can state Bayes’

Theorem another way. For any two events A and B, with P(B) > 0,

p(ap) = ZEAA) (B]L‘?g 4)

- P(B|A)P(A)
~ P(B|A)P(A)+ P(B|~A)P(~A).

from p.10

from p.12

However, the law of total probability allows for Bayes’ Theorem to be extended to any
partition of the sample space into mutually exclusive events. Let A;, Ag,...A; be such a

partition and let B be any subset of the sample space. Then for each j =1,2,...,1,

P(B|A;)P(A;)
P(B)
P(B|A;)P(4))

ZP(BIAj)P(Aj)

P(4;|B) =

Let’s return to Tovi’s chess tournament and suppose Tovi tells you he won. Can we determine
the conditional probability he played John given he won? P(Played John|Tovi Won). Can

this be unraveled?

13

Let’s use Bayes’ rule:

P ”V»_PUHWL_ PWI]J)P(J)
played John|VV win) — P(W) - P(W|J)P(J) + P(W‘ ~ J)P(N J)
_Tos
13
25
14
_ 50
26
50
14T
S 26 13

Note, conditional probability allows us to formulate the following statements:
o P(JNW)=P(JW)P(W)

o P(W]J) = 2550

o P(JNW) = P(W|J)P(J)

Bayes’ rule will be further demonstrated through a discussion of the solution to the Monty
Hall problem (Let’s Make A Deal Game). Three boxes are presented to you as the contestant.
One box has the key to a new car. Two boxes contain goats, or something equally non-

desirable.

1. Play begins and you pick a box.

2. Before showing you what is in the box you picked, the MC shows you what is in one
of the other two boxes that you did not pick. We will assume that he knows what is

in the boxes and that the box shown to you will never have the key.

3. Now you are asked if you want to stay with your chosen box, or switch to the other
box: stay or switch? What is the “right” choice? Is there a choice that can increase

your probability of winning?

14

In the beginning of the game, you have no prior probability of preferring a given box.
1
P(Box 1 wins) = P(Box 2 wins) = P(Box 3 wins) = 3

Let’s say you chose box 2 as the box that holds the key and let’s say the MC shows you box

1 because he knows the key is not in box 1:

P(key in your box (2)|MC shows empty box (1)) = %1)})(2)
B P(1]2) - P(2)

- P(11) - P(1) + P(12)- P(2) + P

Probability has not changed.

—Additionally—
P(13) - P(3)
P(1)

P(key in unselected box (3)|MC shows empty box (1))

_ P(1)3) - P(3)
~ P(11) - P(1) + P(1]2) - P(2) + P

olwe|wl—

These new probability values are a result of the probability from Box 1 essentially
being transferred to Box 3. Switching is the correct thing to do, but you still may not win.

Switching raises the probability of a win, but it does not guarantee a win.

15

Independent Events: Intuitively, independence means that knowing something about one

event informs nothing about the other event. By definition, two events are statistically
independent if
P(ANnB) = P(A)- P(B).

Example, keeping Event A, Event B, and Event C' as previously defined,
e Event A: Using a single die, roll an odd number, A = {1, 3, 5}
e Event B: Using a single die, roll a number greater than three, B ={4, 5, 6}
e Event C: Using a single die, roll an even number, C' = {2, 4, 6}

e Recall from p.7 and p.8, P(AN B) = %, P(A) =3, and P(B) =1

e Are A and B independent events?

19
5!

o Is P(A)- P(B) =

4

PN
D=

1,1
22
e No, A and B are not independent events.

e BNC = {4,6}; four and six are elements in both sets

e P(BNC)=2=

1
3
e Are B and C independent events?

e Is P(B)- P(C) = 17

Wl

11 _
2 2

,

=
W=

e No, B and C' are not independent events.
Independent probabilities can be extended beyond two events in the following manner:
P(ANnBNC...NnQ)=P(A)-P(B)-P(C)-...- P(Q).

16

Note: This extension of independent probabilities does not imply pairwise indepen-

dence.

Ezchangeability: Two experiments are considered exchangeable if three conditions are met.

1. Possible outcomes are the same in both experiments
2. Probability of each outcome is the same in both experiments

3. The conditional probability of the second given the first is the same as the conditional

probability of the first given the second.

Some experiments are independent which is helpful when calculat-

ing probabilities. However, some experiments are not independent _
First Draw Second Draw

but they are exchangeable which is helpful for Bayesian statistics, 2
1
because exchangeable experiments have the same properties as in- E 2
. .. e 4
dependent experiments. The characteristic of exchangeability is not
1
as strong as independence. ’ :_:
3
e Let’s say you select two cards from a bowl of four cards num- 4
bered 1 through 4 without replacing the first card. 2
3 < 1
e The first draw is not independent with the second draw.)
— The probability of any given number on the first draw is 2
4 < 3
one-fourth.
1
— The probability of the remaining numbers on the second
draw is one-third.
rAW IS onemtit Figure 2.5:

— Thus the probability for each of the possible pairs to be

selected is one-twelveth, see figure 2.5.

17

Suppose two experiments were carried out on drawing cards from
the bowl. Both experiments have the same set of four cards. Remember there are three

criteria for events to be exchangeable:
1. Possible outcomes are the same in both experiments.
e {1,2,3,4} is the same as {2,1,3,4}
2. The probability of each outcome is the same in both experiments.

e The probability of drawing a 1 first is §

P(1) =

A

e The probability of drawing a 1 second is 13—2 = }l. This may also be shown with a

tree diagram outlining all possible outcomes, see figure 2.5.

1 1 1 3 1
P(l) = — 4+ — 4+ — =2 — =
(12) LT TR 1

3. The conditional probability of the second given the first is the same as the conditional

probability of the first given the second.

e The conditional probability of drawing a 2 second given a 1 was drawn first is

Wl

1
P(2:]1) = 3

e The conditional probability of drawing a 1 second given a 2 was drawn first is

Wl

1
P(Lo[21) = 5

2.2 PROBABILITY DENSITY FUNCTIONS

Random Variable: A random variable is a function that assigns a single numerical value
to each outcome of an experiment. The value is specific to the outcome from a given ex-

periment. For example, if our experiment involved flipping a coin four times and recording

18

each outcome, the sample space includes outcomes of heads or tails and the random variable
associated with this experiment could be to assign a numerical value of 1 if the coin landed
heads and a 0 if the coin landed tails. These numerical values would be recorded as the
experiment progresses and are referred to as random because we do not know what the next

value is until after the experiment has been conducted.

Probability Density Function: A probability density function (PDF) is a function that as-

signs probability to each random variable in the data. Technically, if the random variable
is discrete, the function is a probability mass function (pmf) and if the random variable is
continuous, the function is a probability density function (pdf). However, we will refer to
these functions collectively as PDFs. It is recommended that the reader become familiar
with the common PDFs because they are a crucial part of how Baye’s Theorem is utilized

in the Bayesian approach to data analysis.

Parameter: Something that describes a population, is used in a PDF, and is represented

with a Greek letter. The parameter controls the value of the function.

Statistic: A quantity we compute from the data.

PDF Examples.

e The Bernoulli(#) PDF describes data limited to two possible outcomes, a success (1)
or a failure (0). The parameter 6 describes the probability of a success and 0 < 0 < 1,
while z = {0, 1},

f(z|0) =0"(1 —).

— Mean and variance:
EX =0, VarX =6(1 —0).

19

e The Beta(a, 3) PDF describes data limited to outcomes from 0 to 1 inclusive, 0 < z <

1, with parameters a > 0 and 3 > 0,

_ Lla+08) ., —1
f(z]|a, B) = Wﬁﬁ (1—a) "

— Mean and variance:

o . of
B T O R

e The Gaussian(u, o) PDF, also called the normal distribution, describes data that can

fall anywhere in the ® number line with parameters ¢ > 0 and —oco < p < o0,

1
flalp,0) = ez,

vV 2mo?

— Mean and variance:

EX = p, VarX = o°.

e The Gamma(shape=a, scale=(3) PDF describes data limited to positive outcomes,

0 <z < oo, with parameters o > 0 and 3 > 0,

1
[(a)se

T
ale7h,

f(zla, B) =

— Mean and variance:

EX = ap, VarX = af>

e The Inverse Gamma(shape=«, scale=3) PDF describes data limited to positive out-

comes, 0 < x < 0o, with parameters a > 0 and § > 0,

flala B) = e (@)

— Mean and variance:

1 1
EX=——fora>1, VarX = for a > 2.

Bla—1) (@ —2)F*(a—1)

20

e The Poisson(\) PDF describes data limited to the whole numbers, z = 0,1, ..., with

parameter 0 < A\ < oo,
eANT

z!

f(@|A) =

— Mean and variance:

EX =)\, VarX = \.

Likelihood: Probability of obtaining a particular set of data. If data are independent, or
exchangeable, the likelihood may be computed by multiplying the probabilities associated

with each data point.

n

F(X10) =[] f(2:l0) = Lik(X[6)

i=1
1. Frequentists make inferences on parameters from the likelihood function to obtain
a possible value for parameters. Frequentists believe that parameters are fixed but

unknown.

2. Bayesians put a prior distribution on the likelihood to obtain a posterior distribution
describing each parameter. Bayesians believe that since we don’t know the value of

the parameter, our uncertainty about the value can be appropriately described using

a PDF.

Population

1,0,1,1,0,0,0,1,0,1,0,01,1,0,0,...

Figure 2.6: A population of Bernoulli data.

21

An example to demonstrate computing the likelihood.

Flip a coin once and compute the likelihood: Let’s define tails = 0 and heads = 1. These
data follow a Bernoulli likelihood, describing a series of successes, see figure 2.6.

Once we know what the data are, we can compute the vlue of the likelihood.

Computing the likelihood for a flip that yields a tail with 6=0.1:
Lik(z]0) = .1°(1 = 0.1)079 = 0.9

Computing the likelihood for a flip that yields a tail with 6=0.2:
Lik(z]0) = 2°(1 — 0.2)079 = 0.8

A different value for the parameter gives a different value for the likelihood.
Let’s set 6 = 0.1 and gather more data by throwing a coin several more times. Thus we have
the following data set:

{0,0,0,1,1,1,0}

Note: These trials are each independent; knowing one outcome doesn’t tell me anything
about the other outcomes. The event I am interested in is P(TNTNTNHNHNHNT) and
because these events are independent, I can multiply the individual probabilities for each
event together: P(T)- P(T)-P(T)-P(H)-P(H)-P(H) - P(T).
Lik(datald = 0.1) = .1°(1 —.1)3=9 . 1°(1 — .1)8=9 . 101 — . 1)0=0 . 111 — 1)V,
B EYGTE B ISt IS B ORI B ISt S 6 B B [
=9-9-9-1-1-1-9
= 0.0006561

Computing the likelihood in general:
Lik = [J 6" (1 - 6)"
i=1

=07 (1 —0) ™) g7 (1 —)72 g (1 —)" g (1 —)

22

Maximizing the Likelihood: 1t is possible to maximize the likelihood relative to the parame-

ter, #. To maximize the likelihood, take the derivative, set it equal to zero, and solve for the
desired variable. However, we can make it easier to take the derivative of the function by
taking the log of the function first. The resulting function will have the maximum gy value

at the same x value as the original function,

log(Lik) = inlog(ﬁ) +(n— in)log(l —0).

Now, remember that the x’s are data and that we are maximizing with respect to 6. Thus,

we will find the derivative with respect to 6,

0 :Z%‘ (n—> i)

0 0 (1-0)

Now, set the derivative equal to zero,

0 :Z:Ti (n=>x)

~

6 (1-6)
(n—> i) :sz‘
(1—6) 0

Solving for é,

On—Y x) =) x;(1—9)

DT

n

D>
I

D>
Il

Z.

Note: 6 is the maximum likelihood estimator and § maximizes the likelihood function. The

statistic T estimates 6. Here then, according to the data, z = % ~ 0.429.

Prior: The prior is uncertainty associated with a PDF selected to summarize previous

belief about the parameter. Following is a sampling of PDF prior choices.

23

e If the data are described as a Bernoulli(7) PDF with € (0,1) and 0 < 7 < 1, then a

reasonable prior PDF to describe 7 is a Beta(a,) with 0 <7 <1, & > 0, and 3 > 0.

e If the data are described as a Poisson(\) PDF with x =0,1,... and 0 < A < oo, then
a reasonable prior PDF to describe A is a Gamma(a,) with 0 < A < 0o, a > 0, and

6> 0.

e If the data are described as a Normal(y, o) PDF with —co < x < 00, —00 < 1 < 00,
and o > 0, then a reasonable prior PDF to describe y is a Normal(p,,, 0,,) with —oo <
p < 00, —00 < 1, < 00, and o, > 0 and an Inverse Gamma(c, 3,) to describe o with

0<o0< o0, a,>0,and g3, > 0.

Bayes’ theorem can be thought of as a way of coherently updating our uncertainty in light
of new evidence. This update is modeled with probability distributions that serve as a
statement expressing uncertainty and results from a choice that is based on logical reason-
ing. Beginning with the assumption that a sample is an exchangeable sequence of random
variables, x1,%,...,x,, from a population of interest, means that the sequence at hand
behaves like earlier samples, or that any order of the sample is equally likely. A sequence
of independent and identically distributed random variables is exchangeable. Assumptions
about exchangeability are equivalent to assuming events are independent conditional on
some unknown parameter that has a prior probability distribution and a likelihood function
describing the events.

The process of Bayesian data analysis follows three steps: (1) setting up a full prob-
ability model with an appropriate likelihood function to model the exchangeable sample

conditioned on observed data

f(X|0) = Lik(X|6);

(2) choosing prior probability distribution(s) to preserve the parameter space and model the

prior probability associated with the parameter(s) in the likelihood
(8);

24

and (3) evaluating the fit of the model and the implications of the resulting posterior distri-

bution
T, AX6) - (6)
POIX) = T IIr F(X[8) - =(6)06

(Note that this final equation is a special use of Bayes’ theorem.)

Posterior Probability Density Function part A: A probability density function describing

the updated belief about the parameter that is based on the prior belief about the parameter

and incorporates the data. Notice how this form follows Bayes’ Rule:

Lik(data|parameter) - Prior(parameter)

arameter|data) =
p(p |) | Lik(data|parameter)Prior(parameter)dparameter

Lik(X|6) - 7(6)
I, Lik(X|6) - 7(6)06

p(01X) =

e Example: Back to the coin flip data set. This data was modeled with a Bernoulli
likelihood. What is a reasonable choice for a prior distribution to model 87 The
parameter here represents the probability of a coin flip and as such is limited to 0 <

0 < 1. Therefore, a Beta PDF is a reasonable choice for a prior distribution on 6.

Normalizing Constant: The denominator in the posterior probability density function turns

the numerator into a proper PDF because it appropriately scales the numerator.

/ Lik(parameter|data)Prior(parameter)dparameter

Once the parameter has been integrated out, what remains is a constant. The constant can

be put aside momentarily, as discussed later.

Posterior Probability Density Function part B: Putting the Bernoulli likelihood together

with the Beta prior from the coin flip example:

Lik(data|@)Prior(6)
P =
ost(f|data) [Lik(data|g)Prior(0)96

Post(f|data) o< Lik(data|@)Prior ()

25

Note: the symbol o« means “is proportional to”. The constants are put together, taken out,
and “forgotten” about momentarily, while the variable parts are treated as proportional to
what was there before.

And now, putting together the posterior density function, using Bayes’ theorem.

-)
H@xl(l . Q)(l—zz) . (a + b) . 00,—1(1 . Q)b—l

i=1 He)re)

Post(f|data) = —=; ['(a+b)
T 1—z; a -l bt
A (0 R

Any term that is a constant will be combined with the normalizing constant and momentarily
ignored. The factors with 2’s and #’s are of interest because they are variables, but constants

will be ignored for now.

constant
n

, y (a4
| | Ti(] — (I—a;) | L0011 — b—1
o g(1-6) Cta)T'(b) o (1=9)
Post(f|data) = —=

constant

Post(6]data) oc 671 (1 — 0)1771 . g72(1 —)12 . . g=n(1 — §)1=on . go=L(1 — g)b=!

Post(f|data) oc §=7Fa)=1(] — g)(n—raitb)—1

This is a probability function whose support is from 0 to 1. The next step is to obtain a
constant to multiply the function with so the function will integrate to 1. Compare the beta
PDF with this last function. What is in place of the beta function’s “a” and “b” in the last

line above? Note that “a” = (> x; + a) and that “b” = (n — > x; +b).

Incorporating the new a and b into the beta PDF, we see that the posterior function is

another Beta PDF with new values for a and b:

Oozita+n—> z;+0b)

r
Post(f|data) = §-ita)=1(] — 9)(”*Zwi+b)711ﬂ

26

Conjugate Prior: The prior has the same functional form as the posterior. If the prior is a

beta, the conjugate posterior will be a beta.

Practical use of the Bayesian approach requires careful consideration of challenging probabil-
ity concepts, including the source of the prior distribution, the choice of a likelihood function,
computation and summary of the posterior distribution in high-dimensional problems, and
making a convincing presentation of the analysis. Advances in Bayesian data analysis have
been made in the last twenty years due to the evolution of computational methods using the

power of computers.

2.3 MARKOV CHAIN MONTE CARLO (MCMC)

A major limitation on the widespread implementation of Bayesian methods of data anal-
ysis was that obtaining the posterior distribution often required the integration of high-
dimensional functions. This can be mathematically very difficult, and as such, inhibited the
use of Bayesian methods since Bayes’ first proposal on the subject in 1763. The advancement
of computational methods has greatly simplified the application of Bayesian data analysis
and made these methods more accessible for all statisticians. One such development is
Markov chain Monte Carlo (MCMC).

Markov chain Monte Carlo methods include random walk Monte Carlo methods and
are a class of algorithms for sampling from probability distributions based on constructing a
Markov chain that has the desired distribution as its target distribution. The Monte Carlo
method for multidimensional integrals simply consists of integrating over a random sampling
of points instead of over a regular array of points. (Metropolis et al. 1953)

The chain begins at an initial value and is allowed to run for n iterations before the
researcher keeps the draws. These first n iterations are referred to as a “burn-in”, the value
of n is usually a large number, and a trace plot of the drawn values against the iteration

number guides in the selection of n. After n iterations or steps, the chain is kept and used

27

as a sample from the desired distribution. The quality of the sample improves as a function
of the number of steps taken in the algorithm. MCMC is based on drawing values of € from
approximate distributions and then correcting those draws to better approximate the target
posterior distribution. Samples are drawn sequentially with the distribution of the sample
draws depending on the last value drawn, thus forming a Markov chain. The next value
drawn depends upon the current value.

Typically, it is not hard to construct a Markov chain that will have the desired
properties. It is more difficult to determine the n steps that are needed to converge to
the desired, stationary distribution within an acceptable error. The key to the method’s
success is not the Markov property, however, but rather that the approximate distributions
are improved at each of the n steps in the simulation. Thus, the more steps that are taken,

the closer is the convergence to the desired target distribution.

Metropolis Algorithm

Statistical MCMC methods have their roots in the Metropolis algorithm as presented by
Metropolis et al. (1953) and later generalized and improved by Hastings from the University
of Toronto (Hastings 1970). The Metropolis algorithm computes complex integrals by ex-
pressing them as expectations for some distribution and then estimating this expectation by
drawing samples from that distribution. This method consists simply of “integrating over
a random sampling of points instead of over a regular array of points.” (Metropolis et al.
1953)

The Metropolis algorithm hinges on a function proportional to the distribution to be
sampled. This function is a rejection/acceptance criteria and requires a candidate density
from which draws are obtained and then fed into the function h(f) to determine rejection or

acceptance of that draw.

p(0|X) x g(8) = f(X|0)7(8).

28

The algorithm begins by specifying a candidate or proposal density q(6*]0"~Y) that is a
valid density meeting all of the required conditions to be a valid density for every possible
value of the conditioning variable 81 and also satisfies q(8*|0"~V) = ¢(6~"|0"), which
means that ¢ is symmetric in its arguments.

Here is a description of the Metropolis Algorithm: Given a starting value 8 at

iteration t = 0, then for t = 1,..., T, repeat:
1. Draw 0" from ¢(-|@*™V)

2. Compute the ratio r = %

0" with probability r
3. Ifr>1, set 0 = 0% if r < 1, set 8 =

0"~Y with probability 1 - .

It has been shown that a draw 8% converges in distribution to a draw from the true

posterior density p(6|x). (Carlin and Louis 2009)
Gibbs Sampler

The Gibbs sampler, as introduced by Geman and Geman (1984), sparked a major increase
in the application of Bayesian analysis, making Bayesian analysis feasible in practice. This
method provides an approach that reduces the hard multivariate problem to a series of simple
lower-dimensional problems. This method assumes the availability of all £ full conditional
distributions, one for each parameter, and is known to converge slowly in applications with
a large number of k. The Gibbs sampler will sample from the full conditional distributions
at each iteration and the collection of full conditional distributions uniquely determines the
joint posterior distribution, p(@|X) along with all marginal posterior distributions p(6;|x),
1=1,...,k.

Here is a description of the Gibbs Sampler Algorithm: For ¢t = 1,...,T, repeat:

Step 1: Draw 6" from p(6a|6§ ", 657, 61~)

29

Step 2: Draw Gét) from p(92|0§t)’ 9:(;*1)7 . 79}(5*1)’ x)

Step k: Draw 9,(:) from p(0k|e§t), Hét), . ,0,(:21, X)

It has been shown that this k-tuple from the ¢ iteration of this algorithm converges
in distribution to a draw from the true joint posterior distribution p(@|x). Hence, for ¢
sufficiently large, larger than the n “burn-in” iterations, @ is a correlated sample from the
true posterior from which posterior quantities of interest may be calculated. For example, a

sample mean for f5 can estimate the posterior mean for 6. (Carlin and Louis 2009)
2.4 WINBUGS

In 1989, the BUGS (Bayesian inference Using Gibbs Sampling) project began under the
direction of David Spiegelhalter and chief programmer Andrew Thomas in the MRC Bio-
statistics Unit, Cambridge, and led initially to the ‘Classic’ BUGS program. The Imperial
College School of Medicine at St Mary’s, London joined the project in 1996 with the work
of Nicky Best, Jon Wakefield, and Dave Lunn (BUGS 1996-2008). Andrew Thomas moved
to Helsinki, Finland in 2004 and began work on OpenBUGS at the University of Helsinki.
(OpenBUGS 2004) Currently the program runs only in the Microsoft Windows operating
system.

WinBUGS is a windows-based computer program designed to conduct Bayesian Anal-
yses of complex statistical models using Markov chain Monte Carlo (MCMC) methods. It
is a ‘point-and-click’ environment that utilizes Markov chain Monte Carlo computational
power to analyze a wide class of Bayesian full probability models. Herein, models will be
specified textually, but they may also be specified graphically. (Lunn et al. 2000)

WinBUGS is part of the BUGS project, which aims to make practical MCMC meth-
ods available to applied statisticians. In this program, the user specifies a model and starting

values, and then a Markov chain simulation is automatically implemented for the resulting

30

posterior distribution. It can use either a standard ’point-and-click’ windows interface for
controlling the analysis, or can construct the model using a graphical interface called Doo-
dleBUGS. WinBUGS is a stand-alone program that can also be called from other software,
like R. For further information on this, see the OpenBUGS site.

MCMC algorithms are implemented in this program to generate simulated obser-
vations from the posterior distribution of the unknown quantities in the statistical model.
With sufficiently many simulated observations, it is possible to get an accurate picture of

the posterior distribution.

2.5 PROC MCMC

SASg is a statistical program that was created to meet the need for a computerized statistics
program to analyze vast amounts of agricultural data. The establishment of such software
was all-important to members of the University Statisticians Southern Experiment Stations,
a consortium of eight land-grant universities largely funded by the USDA. These schools
came together under a grant from the National Institutes of Health in the development of
SASg . North Carolina State University became the leader of the consortium and the project
found a home in the Statistics Department under the leadership of Jim Goodnight and Jim
Barr (SAS 1976).

SASg programs define a sequence of operations to be performed on data stored
as tables. These operations are libraried as procedures or PROC commands. One of the
procedures new to SASg 9.2 is the PROC MCMC command. This is a general-purpose
MCMC simulation procedure for fitting a wide range of Bayesian models. PROC MCMC uses
a random walk Metropolis algorithm to obtain posterior samples. By default, PROC MCMC
assumes that all observations in the data set are independent, and therefore exchangeable.

Unlike most other SASg procedures, PROC MCMC is designed for Bayesian statisti-
cal analysis and inference. This procedure needs a likelihood function to be specified for the

data and prior distributions for the parameters; hyperprior distributions are needed if the

31

model is hierarchical. Prior distributions for the parameters are specified with PRIOR state-
ments and the likelihood function for the data is specified with a MODEL statement. This
procedure bases its inferences from simulation rather than through analytic or numerical
methods. The default algorithm is an adaptive blocked random walk Metropolis algorithm
that uses a normal proposal distribution. Therefore, a second run of the same problem will
produce slightly different answers from the first run unless the same random number seed
is used. PROC MCMC saves the posterior sample draws in an output data set that can be

used for further analysis and it also produces summary and diagnostic statistics.

32

CHAPTER 3

COMPUTER SYNTAX INTRODUCTION

3.1 WINBUGS

WinBUGS may be downloaded from the BUGS Project website at
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. Users are not required to
register in order to obtain a key for unrestricted use. Follow the installation instructions to
obtain a key and appropriate download of WinBUGS.

In the help menu, users may access the user manual. It is here where you may read
how WinBUGS parameterizes various distributions. Such knowledge is crucial as you specify
prior distributions and likelihoods in your Bayesian models because WinBUGS syntax must
be incorporated appropriately to obtain results for the desired model.

Computer syntax will be introduced by working through an example. This example
contains seven data points that were simulated from a Gamma (shape=6, scale=8) distri-
bution. It will be assumed that this distribution is unknown and the prior distributions for

both a and 3 will be Gamma distributions.

x ~ Gamma(a, 3)
a ~ Gamma(ay, 5a)

B ~ Gamma(ag, B3)

The likelihood for the data is

n

fXle9) =15

i=1

L4

-5

1 a—1
(Bt °

33

The prior distributions are

() = 1 a% e a

[) Bae

1 B
e} 1 B
e .

[(ap) B4

Baye’s theorem tells us that the posterior distribution is

[Iiey /(Xla, §) - m(e) - 7(5)

Pl O1X) = T X,) - 7la) - 7(3)0a08

which, after some algebraic manipulation, removing of constants, and taking the log, is

proportional to

pla, BIX) o< = nlog(I'() = nalog(8) + (= 1) 3 log(w:) - —Z?ﬁ

i=1

+ (g — 1) log(ar) — E + (ag — 1) log(B) — ﬁi;

The first step is to type your model in a new document window and when saved
it needs to be in *.odc format. It is necessary that the user is aware of how WinBUGS
parameterizes distributions. In the user manual, it can be seen that WinBUGS parameterizes
the gamma distribution with the inverse of the shape parameter. Thus, when defining your
model in WinBUGS, it is necessary that you account for differences in parameterizing. One

such way is in the following model statement that was saved in *.odc format.

model {

for (i in 1:7) {

likehood

y[i] = dgamma(a,b);
}

prior for a

a ~ dgamma(3, .5);

34

prior for b

b <- 1/c ;

c ~ dgamma(4,.5);
+

Next, open another window to display the *.txt format of the data. The first line tells
WinBUGS about each column in the dataset while the last line indicates when the program

should stop looking for data. This dataset has only one column, which are the responses, y;.

y[]
65.1
42.8
62.7
131.3
57.3
45.8
113.8

END{};

Opening a series of windows make up the next steps in the process. Click Model
on the upper menu bar and choose Specification..., see figure 3.1, the Specification Tool
window will appear. Activate the *.odc window where the model is typed, then click the
check model button; look for the message “model is syntactically correct” in the lower left
corner of the WinBUGS window. Activate the *.txt window where the data is displayed,
then click the load data button; look for the message ”data loaded”. Click the compile
button; look for the message "model compiled”. Click the gen inits button and look for
the message “initial values generated, model initialized”. Click Model on the upper menu
bar and choose Update..., see figure 3.2, the Update Tool window will appear with 1000

highlighted in the update field. Click the update button and look for the message “updates

35

model { A checkmodsl load dsta |

for(lin1.7){ ;
y[i] ~ dgamma(a.b) 1 nomel 1
3 3

e s | gk [1—5

a~dgamma(3, 5)

b<-1/c #thisisacomment END[: B (it
c~dgamma(4, 5)

Figure 3.1: Model specification screen shot.

model A(

for(1in 1:7) {
. vli] ~ dgamma(a.b)

a~dgamma(3, 5)
b<-1/c #thisisacomme
¢~ dgamma(4, 5)

updated1000 refrest [100
updlate | thin [T iteratic [§

Toverrel: ™ adapting

Figure 3.2: Model update screen shot.

36

took 0 s”, which indicates that WinBUGS ran 1000 burn-in iterations through the MCMC
algorithm. Click Inference on the upper menu bar and choose Samples..., see figure 3.3, the
Sample Monitor Tool window will appear. In the nod field, indicate which variables from
the model WinBUGS should keep track of. Type a, then click the set button; type b, then
click the set button; type c, then click the set button. After all desired variables have been
set, type * which will populate the other buttons in the window, see figure 3.4. Activate the
Update Tool window and type the desired number of iterations for the MCMC algorithm,
perhaps 10000, in the update field, then click update and look for the “updates took 6 s”

message.

ol
Compare...
model { Corzlations

for (i in 1.7} { Summary..
¥l ~ dgamma(a,b)
}

a ~ dgamma(3, .5)
b<-1/c #thisis a comment
¢ ~dgamma(4,.5)

, 'é Samp!eMomtovTaol

= updafed1000 refregt [100
nod fa =lchainfl fi pere update | thin [T iteraiic [To00

bea i end 1000000 iy 1 = | Coverrele [adapting

(ST | zel ' Irell= | [EEA il | ||—?1|JLJ 9'

=Io\E l =ody I (‘Mhi‘;fl b Lm;i alto ,wl :

Figure 3.3: Sample monitor screen shot.

At this point, the researcher might want to look at trace plots, density graphs, time
series graphs, summary statistics for the variables, or perhaps the draws themselves. These
may be accessed from the Sample Monitor Tool window. Trace plots may be viewed by
clicking the trace button. Density plots for each variable may be viewed by clicking the

density button. Time series graphs may be viewed by clicking the history button. Summary

37

iz Tools Edit Atibuter infa Modsl Inference Optinns |Doodle Wap Ted Window | Help

' mampt (=l |f e T 1155 [speibnsion oot
model { Sl 3

for (iin1:7){
y[i] ~ dgamma(a b)
}

a ~dgamma(3, .5)
b<-1/c #thisisa comment
c ~ dgamma(4,.5)

snd 1000000 i 1 o Moverrele [adapting

| trece | history | density|

»ates s‘

Figure 3.4: Update screen shot.

statistics may be viewed by clicking the stats button. The actual draws and an index may
be accessed by clicking the coda button.

The summary stats for the analysis of this model are shown below in Table 3.1. As
you can see, the estimate for shape=a is 7.09 and the estimate for scale=b is 10.96. These

values are reasonably close to the original values of a=6 and b=8 from which the data were

simulated.

Table 3.1: Summary Statistics for Example 1 from WinBUGS.

mean sd 25% 25% 50% 7% 97.5%

a 709 204 380 563 686 825 11.76
b 0.10 0.03 0.05 0.08 0.09 0.11 0.16
c 1096 3.12 6.15 870 10.53 12.75 18.36

Figure 3.5 shows a sampling of the diagnostic plots that WinBUGS generates.

38

200
15.0
0.0
540
0.0

T 1

1 1 T
1001 2500 5000 7500 10000
Heration

(a) Trace plot

8
101 a zampjs. 10000
ool o)
NEF A e
-1.0 . . y CIE —// \\‘\
0 20 40 0.0F . e
lag 0.0 S0 16,0 15.0
(b) Autocorrelation (c) Posterior density

Figure 3.5: Summary plots for o as generated by WinBUGS.

3.2 PROC MCMC

Computer syntax for SASg 9.2 will be demonstrated by working through the same example
that was shown for WinBUGS with the same priors placed on a and (3. Below is SASg 9.2
code demonstrating PROC MCMC with each line assigned a number for the purpose of this
discussion. As was stressed earlier for WinBUGS, it is just as crucial that users familiarize
themselves with the distributional forms SASg 9.2 is programed to work with by looking
through the user manual for PROC MCMC.

* read in the data file;

1 data examplel;

2 infile ’c:\examplel.txt’;
3 input y;

4 run;

39

* print the data file for inspection;
6 proc print data=examplel;

7 run;

* turn on graphics device;

9 ods graphics on;

10 proc mcmc data=examplel outpost=examplout
* set parameters and initial values;
11 parms a 5 b .2;

* define priors;

12 prior a“gamma(3, scale=2);

13 prior b~gamma(4, scale=2);

* likelihood;

14 model y~gamma(a, scale=b);

15 run;

16

* turn off graphics device;

17 ods graphics off;

nmc=10000 nbi=1000 seed=12345;

Lines one through four direct SASg 9.2 to read in the data file and tells SASg 9.2

what it should find therein. Line one gives a name for SASg 9.2 to refer to the data. Line

two gives the file path where SASg 9.2 can find the file. Line three tells SASg 9.2 what

variable(s) are located in the datafile and the variable name(s) for the column(s). Line four

ends the directions to SASg 9.2 by indicating to SASg 9.2 that it should run lines one

through four together. Line six directs SASg 9.2 to print the data in the output window,

line seven ends the direction and indicates that SASg 9.2 should run line six. After running

40

lines one through six, take a moment and look over the printout of the data to check that it
was read correctly by SASg 9.2 and that you have correctly defined the variable(s).

The PROC MCMC statement is found in lines ten through fifteen. Line nine and
seventeen together tell SASg 9.2 to prepare to produce graphics in the next set of directions
and when to stop being ready to produce graphics. Line 10 indicated that SASg 9.2 should
apply the MCMC procedure on the data referred to as examplel, to name the posterior
output as examplout, to run 10000 MCMC iterations, to run 1000 burn-in iterations and
to set the random seed generator at 12345. Initial values for the parameters are set in
line eleven such that a begins at 5 and b begins at .2. Defining the distributional form of
the priors is given in lines twelve and thirteen using the SASg 9.2 definition of the gamma
distribution. The model for y is defined in line fourteen using the SASg 9.2 definition of the

gamma distribution. The procedure is concluded in line fifteen.

Table 3.2: Summary Statistics for Example 1 from PROC MCMC.

Posterior Summaries

Percentiles

Standard
Parameter N | Mean | Deviation | 25% | 50% 75%

10000 | 9.2144 2.9484 | 7.0373 | 8.8827 | 11.0280

b 10000 | 0.1324 0.0424 | 0.1009] 0.1282| 0.1593

Running lines nine through fifteen will produce several tables of output and diagnostic
plots for each of the priors. Figure 3.6 shows a sample of the diagnostic plots that PROC
MCMC generates. Of particular interest in the output is the table of posterior summaries
as shown in table 3.2. Output tables also include tuning history, posterior intervals, Monte
Carlo standard errors, posterior autocorrelations, among others. It should be noted that

SAS@ 9.2 has two possible parameterizations for the gamma distribution; the inverse scale

41

was utilized for this example. As such, take the inverse of b in table 3.2 to compare this

posterior value with WinBUGS’ value of ¢ in table 3.1.

Figure 3.6: Summary plots for a as generated by PROC MCMC.

Diagnostics for a

0- T T T T T
2000 4000 6000 8000 10000
Tteration

1.0 -
o - b
9 0.5 1 g
: i <
@ R
g 0.0 "I“lllllln ------ §
(=3 -
£ g
Z -05- &

105 T T T T T T T T T T T

0 10 20 30 40 50 0 5 10 15 20 25
Lag a

42

3.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code:

SAS Code:

model { data examplel;

for (i in 1:7) { infile ’c:\examplel.txt ’;
y[i] ~ dgamma(a,b) ; input y;
} a 7 dgamma(3, .5) ; run;
b <— 1/c;
¢ ~ dgamma(4,.5); proc print data=examplel;
} run;

ods graphics on;

proc mcmc data=examplel outpost
=examplout

nmc=10000 nbi=1000 seed=12345;

parms a 5 b .2;

prior a gamma(3, scale=2);

prior b gamma(4, scale=2);

model y gamma(a, scale=b);

run;

ods graphics off;

3.4 THE GENERAL WINBUGS PROCEDURE

Here is an outline of the steps to run the model in WinBUGS, provided as a general reference.
1. The model code should be saved in .odc format
2. The data code should be saved in .txt format

a) The first row of the data file must be the column names followed by brackets.

b) The last row of the data file must be END{}.

y[]

43

65.1
42.8
62.7
131.3
57.3
45.8
113.8

END{};
3. Load the model and data: Model — Specification

a) Click check model (make sure the *.odc window is selected).
b) Click load data (make sure the *.txt window is selected).
c¢) Click compile.

d) Click gen inits.
4. Create burnin: Model — Update...

a) Enter the number of burnin draws in the updates text field.

Note: Usually 1,000 should be sufficient.

b) Click update to create burnin draws.
5. Tell WinBUGS which parameters to keep track of: Inference — Samples...

a) For each parameter you want to keep track of:

i. In the node text field, enter the name of the parameter (as it appears in the
* . odc file).
Note: When you have entered an acceptable parameter, the set button will

turn black.

ii. Click set.

44

b) When you have entered all parameters you want to keep track of, enter * in the
node text field.

Note: All buttons (except for the set button) will turn black.
6. Calculate the DIC (optional): Inference — DIC...
a) Click set.
7. Create joint posterior draws: Return to Update Tool window

a) Enter the number of posterior draws in the updates text field.
Note: Usually 10,000 should be sufficient.
Note: If you would like to watch the trace plot as the draws are updated, return

to the Sample Monitor Tool and click trace.

b) Click update to create posterior draws.
8. View your results: Return to the Sample Monitor Tool

a) Click stats to see statistics for model parameters.
b) Click trace to see parameter trace plots.
c¢) Click density to see density plots of model parameters.

d) Click auto cor to see monitor autocorrelation within parameters.
9. View DIC results: Return to the DIC Tool
a) Click DIC to see results.
10. Saving the posterior draws: Return to the Sample Monitor Tool

a) Click coda, two windows will pop up.

i. The CODA for chain * window lists the posterior draws for all parameters

that were set in Step 5. The draws are listed consecutively by parameter.

45

The first column is the observation number, and the second column is the

posterior draws.

ii. The CODA index window gives the starting and ending index for each param-

eter in the second column of the CODA for chain * window.

b) File — Save As... (make sure the CODA index window is selected).

46

CHAPTER 4

TWO SAMPLE T-TEST

Consider the situation where two independent samples from two different normal distri-

butions are obtained. Let x; have sample size n; and x5 have sample size ns; note that

1 7£’I’L2.

x1 ~ Normal(jy, 07)

w9 ~ Normal(jy, 03)

A typical Frequentist approach is to assume that the variances are equal and proceed with
a two-sample t-test to obtain confidence intervals and test the equality of the two means.
In this setting, the distribution of the test statistic under the null hypothesis is known and
the methods are reliable. However, a problem with this approach is that the test is very
sensitive to the assumption of equal variances and in practice it is almost impossible to
satisfy the assumption. This situation is famous in the history of statistics and is referred to
as the Behrens-Fisher problem. When the equal variance assumption cannot be satisfied, the
distribution of the test statistic is unknown and must be approximated. This approximation
is not pleasant and can result in incorrect conclusions because of the sensitivity of the test
to the assumption (Casella and Berger 2002).

Within the Bayesian framework this setting poses none of the above problems. We can
take a straightforward approach because the posterior distribution of 111 — o can be estimated
while simultaneously taking into account the uncertainties of all parameters involved by

treating them as random variables (SAS Institute Inc. 2008).

47

For this analysis, the data will be modeled as normal and the mean will have a prior

distribution of normal while the variance will have a prior distribution of a gamma.

z;; ~Normal(p;, 07)
p1; ~Normal(150, o = 100, 000, 000)

o7 ~Gamma(2, scale = 25)

The prior values for the mean and variance were selected to preserve the parameter space
while not restricting the MCMC process in the random walk.

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

4.1 WINBUGS

The code below shows the model statement that should be saved as *.odc and the data
file that should be saved as a *.txt file. Here the data are modeled as normal with each
treatment having its own mean p and precision 7. In WinBUGS’s documentation, it can
be seen that the parameterization for the normal distribution involves a precision which is
the reciprocal of the variance o?. The treatment means are modeled as normal with mean
100 and variance of 100,000,000. The ¢2’s are modeled with their own gamma distributions
because we are not assuming they are equal. An approximate standard deviation for each
treatment may be obtained by taking the range of the data and dividing by four. This look
at the data tells us that treatment two possibly has a smaller variance, to account for this, o2
is allowed to vary for the two treatments. The model statement also instructs WinBUGS to

compute the posterior distribution of the difference of means and the ratio of the variances.

48

The model statement:

model {

likelihood

for (i in 1:33)

{ y[i] = dnorm(mu[tmt[i]], prec[tmt[i]]);
}

for (i in 1:2)

{ prec[i] <= 1/var[i];

the priors

mu[i] 7 dnorm (100, 0.00000001);

var[i] 7 dgamma(2, 0.04);

}

variables of interest in the analysis
mudif <— mu[l] — mu[2];

varratio <— var[l]/var[2];

}

Table 4.1 shows a sample of the summary statistics for the posterior distribution
and indicates that the means of the two samples are different because the distribution of the
differences does not include zero. Additionally, the ratio of the two variances would be one
if the two variances were the same, but the posterior distribution shown indicates that this
ratio is not close to one. These results were obtained without any approximations as would

be required in a Frequentist analysis of this same data.

Table 4.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 5% 97.5%

mu[l] 134.61 4.01 126.70 132.00 134.60 137.30 142.40
mul2] 121.43 1.88 117.70 120.20 121.40 122.70 125.10
mudif 13.18 4.43 441 1022 13.22 16.21 21.81
varratio 6.84 2.66 2.94 4.92 6.42 830 13.19
deviance 275.32 4.21 268.80 272.20 274.80 277.80 285.00

A sample of the posterior summary plots are shown in Figure 4.1. The trace plot
indicates that convergence was reached. There were no problems with autocorrelation. The

posterior density of the difference of means is also shown.

49

muedif
301
200F
10o0r
(1]
100
|(;01 25’00 SOlOO 75'00 IOI'JOO
teration

(a) Trace plot

it
mudif miudif =ampie: 10000
el oore| 200
0.5 'I LIor ™~
| 005}t / L
05¢ 0.025F gy %,
-1.0¢ 0o — o
T T T | T T T T
0 20 4D -10.0 00 100 200
lag
(b) Autocorrelation (c) Posterior density

Figure 4.1: WinBUGS summary plots for the posterior distribution of the difference of
means.

4.2 PROC MCMC

As was done in chapter 3, each line of code has been numbered for the purpose of this
discussion. Please note that line two below needs a directory path for the desired data file
to be read into SAS if one is using the following code. Lines one through four direct SAS
to read in the data file and tells SAS what it should find therein. Line one gives a name
for SAS to refer to the data. Line two gives the file path where SAS can find the file. Line
three tells SAS what variable(s) are located in the data file and the variable name(s) for the
column(s). Line four ends the directions to SAS by indicating to SAS that it should run lines
one through four together. Line six directs SAS to print the data in the output window, line

seven ends the direction and indicates that SAS should run line six. After running lines one

90

through six, take a moment and look over the printout of the data to check that it was read
correctly by SAS and that you have correctly defined the variable(s).

The PROC MCMC statement is found in lines ten through twenty-seven. Lines
nine and twenty-eight together tell SAS to prepare to produce graphics in the next set of
directions and when to stop being ready to produce graphics. Line ten indicated that SAS
should apply the MCMC procedure on the data referred to as examp2, to name the posterior
output as examp2out, to run 10000 MCMC iterations, to run 1000 burn-in iterations, and to
set the random seed generator at 478. Initial values for the parameters are set in lines eleven
and thirteen. Line twelve sets an array of length two for o2. Defining the distributional
form of the priors is given in lines fourteen and fifteen using the SAS definition of the
gamma distribution. Line sixteen defines mudif as the difference of the two samples means;
line seventeen defines varratio as the ratio of the two population variances. Lines eighteen
through twenty-five are for bookkeeping to keep track of which parameters go with which
sample. The model for y is defined in line twenty-six using the SAS definition of the normal

distribution. The procedure is concluded in line twenty-seven.

read in the data file;
data examp?2;

infile * 7;

input tmt y;

run;

proc print data=examp?2;
run;

turn on graphics device;
ods graphics on;

0 proc mcmc data=ex2 outpost=examp2out nmc=10000 seed=478 nbi=1000
monitor=(_parms_ mudif varratio) dic;

% set parameters and initial values;

11 parm mul 0 mu2 0;

x initialize an array of length 2 for sig2;

12 array sig2[2];

% set parameter and initial value;

13 parm sig2: 1;

*
1
2
3
4
5
* print the data for inspection;
6
7
8
*
9
1

51

* define priors;

14 prior mu: ~ normal(100, var=100000000);
15 prior sig2: = gamma(2, scale=25);

* define variables of interest;

16 mudif = mul — mu2;

17 varratio = sig2[1]/sig2[2];

x if —then to keep track of group membership;
18 if tmt = 1 then do;

19 mu=mul;

20 vv=sig2[1];

21 end;

22 else do;

23 mu=mu?2;

24 vv=sig2[2];

25 end;

% likelihood ;

26 model y ~ normal(mu, var=vv);

27 run;

* turn off graphics device;

28 ods graphics off;

Running lines nine through twenty-eight will produce several tables of output and
diagnostic plots for each of the priors. Figure 4.2 shows the diagnostic plots that PROC
MCMC generates for the difference of means. Of particular interest in the output is the table
of posterior summaries as shown in table 4.2. Other output tables are available, including
tuning history, posterior intervals, Monte Carlo standard errors, posterior autocorrelations,
among others.

The code produced the following output as shown in Table 4.2 and Figure 4.2.
The trace plot indicated that convergence was reached. The autocorrelation graph indicates
no problems and the density plot shows the posterior distribution for the difference of the
means.

SAS’ output leads the researcher to the same conclusion as did WinBUGS that the
means of the two samples are different because the distribution of the differences does not
include zero. Additionally, the ratio of the two variances also indicates that the two variances

are not the same.

52

Table 4.2: Summary Statistics for Example 2 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N | Mean | Deviation | 25% 50% 75%
mul 10000 134.6 3.9535 132.0 134.6 137.2
mu2 10000 1214 1.8769 120.2 1214 122.6
sig21 10000 298.6 53.8330 259.6 2934 331.7
sig22 10000 | 49.7427 17.8083 | 37.1204 | 46.4437 | 58.4252
mudif 10000 | 13.2301 4.3869110.1861 | 13.2190 | 16.0831
varratio 10000 | 6.7205 25853 4.8349| 6.2929 | 8.1232

Figure 4.2: Summary plot for the posterior distribution of difference
Diagnostics for mudif
::,-;
£
T T T T T
2000 4000 6000 8000 10000
Iteration
1.0
-
B 054 || E
& | g
= =~
E o0 ||I||I||.. - §
2 £
Z 051 3
1,0 T T T T T T T
0 10 20 40 50 10 20 30
Lag mudif

93

4.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code: SAS Code:

model { data examp?2;
for (i in 1:33) infile * 7
{ y[i] = dnorm(mu[tmt[i]], prec] input tmt y;

tmt [1]]) run
}
for (i in 1:2) proc print data=examp?2;
{ prec[i] <= 1/var[i]; run;

mu[i] ~ dnorm (100, 0.00000001);

var[i] 7 dgamma(2, 0.04); ods graphics on;

} proc mcmc data=ex2 outpost=
mudif <— mu[l] — mu[2]; examp2out nmc=10000 seed =478
varratio <— var[l]/var[2]; nbi=1000 monitor=(_parms_ mudif
} varratio) dic;

tmt [] y[] parm mul 0 mu2 0;

1 121 array sig2[2];

1 94 parm sig2: 1;

1 119 prior mu: - normal (100, var

1 122 =100000000) ;

1 142 prior sig2: ~ gamma(2, scale=25);
1 168 mudif = mul — mu2;

1 116 varratio = sig2[1]/sig2[2];

1 172 if tmt = 1 then do;

1 155 mu=mul ;

o4

1 107
1 180
1 119
1 157
1 101
1 145
1 148
1 120
1 147
1 125
2 126
2 125
2 130
2 130
2 122
2 118
2 118
2 111
2 123
2 126
2 127
2 111
2 112
2 121

END{};

95

vv=sig2 [1];

end ;

else do;

mu=mu?2 ;

vv=sig2 [2];

end ;

model y 7 normal (mu, var=vv);
run;

ods graphics off;

CHAPTER b

LINEAR REGRESSION

In this chapter, the data set will be used to demonstrate a simple linear regression setting.
Here the desire is to understand the functional dependence of one variable on another and

the model takes on the form

yi = Bo + B,

where y; is the response variable and z; is an observed variable that predicts ;.
Y ~ Normal (5 + B12, 0%)

The form of the above equation is like unto the slope-intercept line of y = max + b where (3,
equates to the intercept of the line and (3; equates to the slope of the line. Hence, 5y + (1x;
is the mean at the line and o2 is the variance of the data around the line.

For this analysis, the data will be modeled as normal and the mean will have a prior
for 3y and for 3;. Three different approaches will be shown in WinBUGS for modeling o2,

the variance of the data around the line.

y; ~Normal(p;, o)
i =Po + P
By ~Normal(0, 1000000)

(1 ~Normal(0, 1000000)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

o7

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

5.1 WINBUGS

In the code below, the first two lines are included because WinBUGS does not allow the
model to exclude any column of the data set. Hence, dd1 and dd2 are needed as dummy
variables because these two columns of the data set are not used to model the y;’s.

The model statement defines the 1;’s to be normally distributed around the line as
defined by p with precision 7. Recall that WinBUGS parameterizes the normal distribution
with precision which is the reciprocal of variance. The f;’s are also set to be normally
distributed around zero with a very large variance.

There are three different model statements here to allow for three different approaches
to the variance around the line or the modeling of ¢2. The first model sets the variance to
be constant for each z;. The second model defines the precision to be a linear function of
the standard deviation. The third model defines the precision to be a linear function of the
variance.

The data file is shown below in the Side-By-Side section. These models could be
adjusted to replace with y as y1 for the response variable or again as y2 in the data set
to predict the line for these other columns of responses. Note, that the second and third

models are using y2 as the response variable.

model {
dummy variables to use all columns in data set
ddl <— y1[1];
dd2 <— y2[1];

for(i in 1:10){
likelihood
y[i] 7 dnorm(mu[i], prec);
define the mean
mu[i] <— b[1] + b[2]*xx[i];
}

the priors for betai

o8

b[1] 7 dnorm (0, 0.000001);

b[2] = dnorm(0,0.000001);

adjust the variance in terms of precision
prec <— 1/sig2;

prior for variance

sig2 = dgamma(1,0.1);

}

A second model:

model {
dummy variables to use all columns in data set
ddl <— y[1];

dd2 <— y1[1];

for (i in 1:10){
likelihood , allowing variance to change with each xi
y2[i] 7 dnorm(mu[i], prec[i]);
define the mean
mu[i] <— b[1] + b[2]*x[i];
cc[i] <= (1/(b[3]*x[i]xsqrt(varreg)));
cci relates to the standard deviation of the data
the new precision is a linear function of the standard
deviation
prec[i] <— cc[i]*xcc[i];
}
the priors for betai
b[1] = dnorm (0, 0.0001);
b[2] = dnorm(0,.01);
b[3] ~ dgamma(1,.2);
#b[3] is a dgamma because it has to be positive
#the dgamma has a positive support
varreg ~ dgamma(2,.2);

}

A third model:

model {
dummy variables to use all columns in data set
ddl <— y[1];
dd2 <— y1[1];

for (i in 1:10){
likelihood , allowing variance to change with each xi
y2[i] 7 dnorm(mul[i], prec[i]);
define the mean
mu[i] <— b[1l] + b[2]*x[i];
cc[i] <= (1/(b[3]*x[i]*(varreg)));
#cci relates to the variance of the data

99

the new precision is a linear function of the variance
prec[i] <— cc[i]*cc[i];
}

the priors for betai

b[1l] 7 dnorm(0, 0.0001); b[2] 7 dnorm(0,.01);

b[3] ~ dgamma(l,.2);

#b[3] is a dgamma because it has to be positive

#the dgamma has a positive support

varreg ~ dgamma(2,.2);

Table 5.1 shows a sample of the summary statistics for the posterior distribution
from the first model and indicates that the intercept of the regression line is about 10 and
the slope is 2. A sample of the posterior summary plots is shown in Figure 5.1. The trace
plot indicates that convergence was reached. There were no problems with autocorrelation.

The posterior density of the variance around the line is also shown.

Table 5.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%

b[l] 998 277 446 822 1001 11.75 15.49
bl2] 200 005 190 1.97 200 203 210
sig2 9.3 477 363 608 820 11.31 21.63
deviance 49.53 2.51 46.54 47.65 4892 50.78 55.82

5.2 PROC MCMC

Here in PROC MCMC, only the model with constant variance is shown. Other code could
be created to model the behavior of the variance as in the ways shown above in WinBUGS.

As was done in chapter 3, each line of code has been numbered for the purpose of
this discussion. Please note that lines two and twenty-one both have space for the directory
path for the file name to be read and the file to be saved. Lines one through four direct
SAS to read in the data file and tell SAS what it should find therein. Line one gives a name
for SAS to refer to the data. Line two gives the file path where SAS can find the file. Line

three tells SAS what variable(s) are located in the data file and the variable name(s) for the

60

sia2

Al

80,0
88,0
4001
2001

00

1601 2500 S060 7500 10000
teration

(a) Trace plot

5ig2
1.0 t sig2-sample: 10000
05r
0ok % =——r0r - 85 = = D145
05t G1F S
10t , . 03¢} I \

0 20 40) >

1 | | 1 T
iag 2C 20.0 400 e0.0
(b) Autocorrelation (c) Posterior density

Figure 5.1: WinBUGS summary plots for the posterior distribution of the variance around
the line.

column(s). Line four ends the directions to SAS by indicating to SAS that it should run
lines one through four together.

The PROC MCMC statement is found in lines seven through sixteen. Lines six and
seventeen together tell SAS to prepare to produce graphics in the next set of directions and
when to stop being ready to produce graphics. Line seven indicates that SAS should apply
the MCMC procedure on the data referred to as ex3, to name the posterior postex3, to
run 510000 MCMC iterations, to have 10000 burn-in iterations, and to thin the draws by
taking only every fiftieth one. Line eight continues the MCMC procedure by setting the
random seed generator at 123 and asking SAS to monitor 3y, 31, and 2. Initial values
for the parameters are set in lines nine and ten. Lines eleven through thirteen define the
distributional form of the priors using the SAS definition of distributions. Line fourteen

defines 1 and line fifteen defines the model. The procedure is concluded in line sixteen.

61

Lines nineteen through twenty-four ask SAS to export the posterior draws to a .csv file that
can be read into another program for further analysis.

The code produced the following output as shown in Table 5.2 and Figure 5.2. Notice
that SAS predicts the intercept of the line to be about 10 and the slope to be about 2. The
trace plot indicated that convergence was reached. The autocorrelation graph indicates no

problem and the density plot shows the posterior distribution for o2.

Table 5.2: Summary Statistics for Example 3 from PROC MCMC.

Posterior Summaries

Percentiles
Standard
Parameter N [Mean | Deviation | 25% | 50% 75%
b0 10200 [9.9615 2.8027 | 8.1657 [9.9702 [11.7410
bl 10200 | 2.0005 0.0529 [1.9667 | 2.0008 | 2.0345
s2err 10200 | 9.2820 4.1895 | 6.3273 | 8.4157 | 11.2738

read in the data file;
data ex3;
infile ~’ T
input x y yl y2;
run;

turn on graphics device;

ods graphics on;

proc mcmc data=ex3 outpost=postex3d nmc=510000 nbi=10000 thin=50
seed=123 monitor=(b0 bl s2err);

set parameters and initial values;

parms b0 0 bl 1;

10 parms s2err 10;

x define priors;

11 prior b0 ~ mnormal (0,var=10000);

12 prior bl ~ normal (0, var=100);

13 prior s2err ~ gamma(2, scale=5);

% define the mean, which is the line;

14 mu=b0 + blxx;

x likelihood ;

15 model y ~ normal(mu, var=s2err);

O % 00 I O % O W = %

62

Figure 5.2: Summary plot for the posterior distribution of the variance around the line.

Diagnostics for s2err
40 -
=
A
w
0 T T T T T
0 100000 200000 300000 400000 500000
Tteration
1.0
{m| 0.5 ‘E‘
a 2] @
& g
= =
£ 00 5
o -
= &
E v
2 -05- &
-1.0 7 T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40
Lag s2err
16 run;

* turn off graphics device;

17 ods graphics off;

18

19 /* creating the chain of draws: x/
20 proc export data=postex3

21 outfile=’ ’
22 dbms=csv

23 replace;

24 run;

63

5.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code:

model {
ddl <— y1[1];
dd2 <— y2[1];

for (i in 1:10){
y[i] 7 dnorm(mu[i], prec);
mu[i] <— b[1] + b[2]*x[i];

}

b[1] = dnorm (0, 0.000001);

#a very small

#precision gets a very big
variance

b[2] ~ dnorm(0,0.000001);

prec <— 1/sig2;

sig2 ~ dgamma(1,0.1);

A second model:

model {
ddl <— y[1];
dd2 <— y1[1];

64

SAS Code:
infile ~’ "
input x y yl y2;

run;

ods graphics on;

proc mcmc data=ex3 outpost=
postex3d nmc=510000 nbi=10000
thin=50

seed=123 monitor=(b0 bl s2err

)

parms b0 0 bl 1;

parms s2err 10;

prior b0 ~ normal (0, var
=10000) ;

prior bl 7 normal(0, var=100)

prior s2err ~ gamma(2, scale
=5);

mu=b0 + blxx;

model y 7 normal(mu, var=

s2err) ;

run;

ods graphics off;

for (i in 1:10){

y2[i] 7 dnorm(mu[i], prec[i

1)

#allowing variance to

/* creating the chain of draws:

*/

proc export data=postex3

change with each xi outfile=’ ’
mu[i] <— b[1l] + b[2]*x[i]; dbms=csv
cc[i] <= (1/(b[3]*x[i]*xsqrt replace;
(varreg))); run
#cci relates to the
standard deviation of the
data The data file:

the new precision is a x[] vI[] y1[] y2[]

linear function of the 30 73 41 88
standard deviation 20 50 82 53
prec[i] <— cc[i]xcc[i]; 60 128 131 140
} 80 170 157 204
40 87 87 92
b[1] = dnorm (0, 0.0001); 50 108 88 96
#a very small 60 135 130 114
#precision gets a very big 30 69 59 81
variance 70 148 160 200
b[2] 7 dnorm(0,.01); 60 132 168 161

b[3] ~ dgamma(1l,.2); END{ };
#b[3] is a dgamma because it
has to be positive

#the dgamma has a positive

support

65

varreg ~ dgamma(2,.2);

A third model:

model {
ddl <— y[1];
dd2 <— y1[1];

for(i in 1:10){

y2[i] 7 dnorm(mu[i], prec][i
DE

#allowing variance to
change with each xi

mu[i] <— b[1] + b[2]*x[i];

ccli] <= (1/(b[3]*x[1]x*(
varreg)));

#cci relates to the
standard deviation of the
data

the new precision is a
linear function of the
standard deviation

prec[i] <— cc[i]*cc[i];

}

b[1] = dnorm (0, 0.0001);

#a very small

66

#precision gets a very big
variance

b[2] * dnorm(0,.01);

b[3] = dgamma(1l,.2);

#b[3] is a dgamma because it
has to be positive

#the dgamma has a positive
support

#prec <— 1/varreg;

varreg ~ dgamma(2,.2);

67

CHAPTER 6

MULTIPLE REGRESSION

In the previous chapter, the desire was to relate a single dependent response variable, y to
a single independent predictor variable x. This chapter expands this approach to include
multiple independent predictor variables x,, which model the behavior of a single dependent
response variable y. For each y; in the data set, there are m columns of the z,,’s that will

be used for prediction. The model takes on the form
Yi = Po + w1 + ey + ..+ B
with
Y ~ Normal(fy + fiz1 + foxo + ... + BT, o?).

The form of the above equation is like unto the slope-intercept line of y = max + b where the
intercept is 3, and the idea of slope is expanded to include the sum of the remaining 3; that
are coefficients on the z,,,’s. Hence, By + Bix1 + Box2 + ... + BTy, is the mean at the line
and o2 is the variance of the data around the line.

For this analysis, the data will be modeled as normal and the mean will have a prior
for each of the (3;’s. Three different models will show three approaches for modeling the

mean; the first model is given below.

69

y; ~Normal(y;, o)

fi =Po + iz + Baw
Bo ~Normal(0, 10000)
(1 ~Normal)(0, 100)
fs ~Normal(0, 100)

o ~Gamma(3, scale = 10)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the
posterior distribution from there.

Here in this chapter the concept of model selection will be introduced by discussing
DIC which means Deviance Information Criterion. Three different models will be looked
at and evaluated for their goodness of fit as calculated by DIC = -2log(likelihood) + (the
effective number of parameters). The model with the smallest DIC has the best fit. For
further information about DIC, see the WinBUGS user manual, the SAS User’s Guide, or

Carlin and Louis (2009).

6.1 WINBUGS

This data set has three columns and is shown in the side-by-side code section below. The
objective is to predict the hours as a function of number of interviews and number of miles
driven. The first model in the code is the full model using all three columns of the data set
such that hours = 8y + (1 *miles + By*interviews. The second model removes the interviews

column and just models hours = 3y + (;*miles. The third model removes the miles column

70

and just models hours = 3y + Gx*interviews. For all three models, WinBUGS will calculate

DIC and this value will be used to determine which model has a better goodness of fit.

model {
for (i in 1:14) {
likelihood
hours[i] 7 dnorm(mu[i],prec);
define the mean
mu[i] <— b[1l] + b[2]*miles[i] + b[3]xints[i];
}
the priors for betai
b[1] = dnorm (0, 0.0001);
b[2] ~ dnorm(0,.01);
b[3] = dnorm(0,.01);
adjust the variance in terms of precision
prec <— 1/varreg;
prior for variance
varreg ~ dgamma(3,.1);

}

A second model:
model {
dummy variable to use all columns in data set
dummyl <— ints [1];
for (i in 1:14) {
likelihood
hours[i] 7 dnorm(mu[i],prec);
define the mean
mu[i] <— b[l] + b[2]+miles[i];

[1] ~ dnorm (0, 0.0001);
[2] 7 dnorm(0,.01);
#b[3] 7 dnorm(0,.01);
adjust the variance in terms of precision
prec <— 1/varreg;
prior for variance
varreg ~ dgamma(3,.1);

}

A third model:
model {
dummy variable to use all columns in data set
dummyl <— miles [1];
for (i in 1:14) {
likelihood

hours[i] 7 dnorm(mu[i],prec);

}
the priors for betai
b
b

71

define the mean
mu[i] <— b[1l] + b[3]*xints[i];
}

the priors for betai

b[1l] 7 dnorm(0, 0.0001);

#b[2] 7 dnorm(0,.01);

b[3] 7 dnorm(0,.01);

adjust the variance in terms of precision
prec <— 1/varreg;

prior for variance

varreg ~ dgamma(3,.1);

Table 6.1 shows a sample of the summary statistics for the posterior distribution of
the third model. Figure 6.1 gives a sample of the posterior summary plots for 3, in the
third model. Convergence was reached, there were no problems with autocorrelation, and

the posterior distribution is shown.

Table 6.1: Summary statistics for all three models from WinBUGS.

mean sd 25% 25% 50% 5% 97.5%

b[1] 0.77 430 -7.76 -2.08 0.77 3.62 9.29

b[2] 0.69 0.51 -032 036 069 1.03 1.70

b[3] 1.82 1.11 -0.40 1.09 1.81 2.55 4.04
varreg 35.61 11.96 18.13 26.96 33.67 42.01 64.23
deviance 90.20 2.62 &86.87 88.26 89.62 91.55 96.70

mean sd 25% 25% 50% 5% 97.5%

b[l] 257 432 -6.19 -0.28 2.60 540 11.20

b[2] 1.49 0.15 1.19 1.39 1.49 1.59 1.79
varreg 38.78 12.29 20.68 29.92 36.81 45.40 68.49
deviance 92.04 2.18 89.63 90.48 91.45 93.01 97.74

mean sd 25% 25% 50% 75% 97.5%

b[l] 077 437 -799 -2.14 0.78 3.65 9.33

b[3] 327 032 263 3.06 327 348 3.90
varreg 37.15 12.09 19.41 2851 35.12 43.76 66.35
deviance 91.10 219 88.64 89.52 90.51 92.07 96.74

72

DIC for model 1: 93.643
DIC for model 2: 94.583
DIC for model 3: 93.641

b{1}
4001
200
0.0F
-200F
' ' ' ' '
oot 2550 5000 7500 10000
terafion
(a) Trace plot
b{1)
10 b1} sampiz: 10000
05F
0.1F n
gor D075+ va"
-05 B 0 05 |).‘ \
ok B! F
T T T S J
0 20 49 00 = \‘ ;
lsg 400 200 6o 200
(b) Autocorrelation (c) Posterior density

Figure 6.1: WinBUGS summary plots for the posterior distribution of the regression line’s
intercept from model three.

These DIC values give a measure of model fit and allow the researcher to compare
how different models perform their ability to model the data satisfactorily. The lower DIC
value indicates which model fits the data best. Here, model 3 has the lowest DIC, so this

model is the best choice of the three.

6.2 PROC MCMC

The code for the first and third models are presented here and the summary statistics are

shown in table 6.2. The second model was not included because it had the highest DIC

73

and it is very similar to the code for model 3. Notice on lines nine and thirty-seven that
nmc has been increased along with nbi and we added an option to thin the draws every
50. These changes can be made when the posterior distribution has a little trouble reaching
convergence and shows problems with autocorrelation. These chosen values for the number
of MCMC iterations and number of burn-in values have allowed the posterior here to reach
convergence satisfactorily and have no autocorrelation issues as seen in figure 6.2.

As was done in chapter 3, each line of code has been numbered for the purpose of this
discussion. Please note that lines two, twenty-three, thirty, and fifty-one have space for the
directory path for the file name to be read and the file to be saved. Lines one through four
and twenty-nine through thirty-two direct SAS to read in the data file and tell SAS what
it should find therein. Lines one and twenty-nine give a name for SAS to refer to the data.
Lines two and thirty give the file path where SAS can find the file. Lines three and thirty-one
tell SAS what variables are located in the data file and the variable names for the columns.
Lines four and thirty-two end the directions to SAS by indicating to SAS that it should run
lines one through four and lines twenty-seven through thirty-two together respectively.

The PROC MCMC statement is found in lines nine through twenty-one and again in
lines thirty-seven through forty-nine. Initial values for the parameters are set in lines eleven
through fourteen and thirty-nine through forty-two. The distributional forms of the priors
are set in lines fifteen through eighteen and forty-three through forty-six. Lines nineteen and
forty-seven define i and lines twenty and forty-eight define the model. The procedures are
concluded in lines twenty-one and forty-nine. Lines twenty-three through twenty-four and
fifty-one through fifty-two ask SAS to export the posterior draws to a .csv file that can be
read into another program for further analysis.

The code produced the following output as shown in Table 6.2 and Figure 6.2.

x read in the data file;
data no4;
infile “°¢ B
input hours ints miles;
run;

B~ W N =

74

Table 6.2: Summary Statistics for Example 4 from PROC MCMC. Posterior summaries for
the first and third models are shown.

Posterior Summaries

Percentiles
Standard
Parameter N| Mean | Deviation| 25% 50% 75%
betal 10000 [0.8569 435781 -1.9874| 0.7965| 3.7143
betal 10000 | 1.8286 1.1145] 1.0678 | 1.8230(2.5532
beta2 10000 [0.6851 0.5080 [0.3558 | 0.6841| 1.0243
s2err 10000 | 35.5924 11.7582 | 27.1990 | 33.6351 | 41.8653

Posterior Summaries

Percentiles
Standard
Parameter N| Mean | Deviation | 25% | 50% | 75%
betal 10000 [0.7521 43466 | -2.1088 | 0.7501 | 3.5427
betal 10000 [3.2755 03219 3.0649 | 3.2754| 3.4917
s2err 10000 | 37.0810 11.9183 | 28.4832 35.1127 | 43.3988

print the data file for inspection;
proc print data=no4;
run;

© 0 3 3 ¥ O

proc mcmc data=no4 outpost=no4post nmc=500000 nbi=10000 thin=>50
seed=1234

10 monitor=(_parms_) dic;

% set parameters and initial values;

11 parms betaO O0;
12 parms betal 0;
13 parms beta2 0
14 parms s2err 1
* define priors;
15 prior beta0 ~ normal(0,prec=.0001);
16 prior betal ~ normal(0,prec=.01);

17 prior beta2 ~ normal(0, prec=.01);

18 prior s2err ~ gamma(3, iscale=.1);

* define the mean, which is the line;

19 mu = betal + betalxints + beta2sxmiles;

0;

75

Figure 6.2: Summary plots for the posterior distribution of the regression line’s intercept
from model three.

Diagnostics for betal

betal

0 100000 200000 300000 400000 500000
Tteration
1.0
(=} 0.5 b
o .2 - T
2 g
3 A
5 oo™ 3
: g
a4 -0.5- &
“1:05 T T T T T T T T T
0 10 20 30 40 50 2 3 4 5
Lag betal
% likelihood ;
20 model hours = normal(mu, var=s2err);
21 run;
22

* export the posterior MCMC draws and save the .csv file;
23 proc export data=nodpost outfile=‘* ’’ dbms=csv replace;

24 run;

25

26 /x The third model: =/
27

28

* read in the data file;
29 data no4;

30 infile *¢ B

31 input hours ints miles;
32 run;

33

76

* print the data file for inspection;

34 proc print data=no4;

35 run;

36

37 proc mcmc data=no4d outpost=nodpost nmc=500000 nbi=10000 thin=50
seed=1234

38 monitor=(_parms_) dic;

* set parameters and initial values;

39 parms betalO 0;

40 parms betal O0;

41 =xparms beta2 O0;

42 parms s2err 10;

x define priors;

43 prior beta0 ~ normal(0,prec=.0001);

44 prior betal ~ normal(0,prec=.01);

45 xprior beta2 7 normal(0, prec=.01);

46 prior s2err - gamma(3, iscale=.1);

x define the mean;

47 mu = beta0 + betalxints;

% likelihood ;

48 model hours 7 normal(mu, var=s2err);

49 run;

50

x export the posterior MCMC draws and save the .csv file;

51 proc export data=nodpost outfile="*‘ ’7 dbms=csv replace;
52 run;

6.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code: SAS Code:
model { data no4;
for (i in 1:14) { infile *¢ 7
hours[i] 7 dnorm(mu]i input hours ints miles;
| ,prec); run;

mu[i] <— b[1l] + b[2]x
miles[i] + b[3]xints[i proc print data=no4;

E run

77

b[1] 7 dnorm (0, 0.0001);
b[2] 7 dnorm(0,.01);
b[3] ~ dnorm(0,.01);

prec <— 1/varreg;
varreg ~ dgamma(3,.1);

}

A second model:
model {
dummyl <— ints [1];
for (i in 1:14) {
hours[i] = dnorm (muli
], prec);
mu[i] <— b[1l] + b[2]=x

miles [1i];

b[1l] 7 dnorm(0, 0.0001);
b[2] = dnorm(0,.01);
#b[3] 7 dnorm(0,.01);

prec <— 1/varreg;

varreg

}

" dgamma(3,.1) ;

A third model:
model {
dummyl <— miles [1];

for (i in 1:14) {

78

proc mcmc data=no4 outpost=

nodpost nmc=500000 nbi=10000
thin=50 seed=1234
monitor=(_parms_) dic;

parms betalO 0;

parms betal O0;

parms beta2 0;

parms s2err

prior beta0 ~ mnormal(0,prec
=.0001);
prior betal normal (0, prec=.01);

prior beta2 normal (0, prec=.01)

9

prior s2err ~ gamma(3, iscale=.1)
mu = beta0 + betalxints + beta2x

miles ;
model hours ~ normal (mu, var=
s2err);

run;

proc export data=nodpost outfile

= "7 dbms=csv replace;

run;

/ * The third model:

data no4;

*/

hours[i] 7 dnorm (mufi infile *¢ i

] ,prec); input hours ints miles;
mu[i] <— b[1l] + b[3]x run;
ints[i];
} proc print data=no4;
b[1] 7 dnorm (0, 0.0001); run;

#b[2] 7 dnorm(0,.01);

b[3] ~ dnorm(0,.01); proc memc data=no4 outpost=
prec <— 1/varreg; nodpost nmec=500000 nbi=10000
varreg ~ dgamma(3,.1); thin=50 seed=1234

} monitor=(_parms_) dic;

parms beta0 0;

parms betal O0;

The data set: xparms beta2 O0;

hours [] ints [] miles[] parms s2err 10;

52.1 17 35.7 prior beta0 ~ normal(0,prec

24.6 6 11.4 =.0001);

49.2 13 28.6 prior betal ~ mnormal(0,prec=.01);
30.0 11 25.8 xprior beta2 ~ normal(0, prec
82.2 23 50.6 =.01);

42.4 16 27.2 prior s2err ~ gamma(3, iscale=.1)

55.7 15 31.3 ;

21.1 5 10 mu = betal + betalxints;

27.7 10 18.9 model hours ~ normal(mu, var=
36.3 12 25.2 s2err) ;

69.1 20 39.9 run;

38.8 12 32.5

79

22.8
34.7

END{};

13.6

19

30

proc export data=nodpost outfile

= "7 dbms=csv replace;

run;

CHAPTER 7

ONE-WAY ANOVA

A one-way analysis of variance (ANOVA) is a factorial design with one treatment at multiple
levels. Of interest are the sample means and whether or not there are differences among
them. ANOVA is a way to test the null hypotheses that samples from two or more treatment
groups are drawn from the same population under the assumption that the variances of the
populations are equal. Under the Bayesian paradigm we can test two models, one where
the variances are allowed to be different for each group and the other where the variance is
the same for all groups. The performance of these models will be compared using DIC to
determine which model fits better.

For this analysis, the data will be modeled as normal with a prior for each treatment’s
i and a prior for o2. Model one will allow each treatment its own o2 while model two will
only model a single o2 for all treatments. Here is the outline for model one, model two’s

outline is very similar.

y; ~Normal(y;, 0?)
; ~Normal(20, 10000)

0]2- ~Gamma(2, scale = 25)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

81

7.1 WINBUGS

This data set contains responses from four treatment groups and the objective is to determine
if the responses among these four treatments are the same. The first model in the code

allows the variances for each group to be different. The second model in the code treats the

variances for the groups as equal.

model{

dummy variable to use all columns of data set
dummyl <— tmt[1];

for(i in 1:28){
likelihood
y[i] 7 dnorm(mu[trt[i]], prec[trt[i]]);

}

for (i in 1:4){

the priors

mu[i] 7 dnorm (20, 0.0001);

s2[i] 7 dgamma(2,0.04);

adjust the variance in terms of precision
prec[i] <= 1/s2]i];

}

Second model restricts sigma2 to be same for all groups:
model{

dummy variable to use all columns of data set
dummyl <— tmt[1];

for (i in 1:28){
likelihood
y[i] 7 dnorm(mu[trt[i]], prec);

}

for (i in 1:4){

the priors

mu[i] 7 dnorm (20, 0.0001);

}

s2 ~ dgamma(2,0.04) ;

adjust the variance in terms of precision
prec <— 1/s2;

82

Table 7.1 shows the summary statistics for the posterior distribution of these two
models. As you can see, the first model gives values for each samples’ variance while the
second model has only one variance. Figure 7.1 gives a sample of the posterior summary
plots for group one’s mean response from the first model. Convergence was reached, there
were no problems with autocorrelation, and the posterior distribution is shown. However,
model 2 is the better fitting model because DIC is lower here which indicates that it is
appropriate to assume the variance for these four groups to be the same. Further analysis
of the posterior distributions may be done to determine if the mean responses are the same
among the four groups.

Please note the use of a dummy variable in these two models. WinBUGS requires
that every column in the data set be utilized in some way in the model code. However,
sometimes, a column of observations is not needed as part of the analysis. One option is to
remove this column from the data set. Another option is to assign the unused column to a

dummy variable as we have done here with “dummy1”.

Table 7.1: Summary statistics for both models from WinBUGS.
mean sd 2.5% 25% 50% 5% 97.5%

mufl] 19.19 2,01 1522 1792 19.18 2043 23.27
mu[2] 25.80 242 20.93 2430 2582 27.30 30.71
mu[3] 11.46 2.67 6.12 9.79 1148 13.10 16.75
mu[4] 1526 247 1035 13.69 1523 16.83 20.16
s2[1] 2897 1741 879 16.82 2446 36.31 74.58
s22] 4148 21.89 14.75 26.18 36.59 50.82 99.60
s2[3] 49.68 24.22 18.61 3248 44.11 60.79 111.50
s2[4] 4220 21.52 14.99 27.12 37.19 51.82 97.86

deviance 176.19 3.86 170.20 173.30 175.70 178.40 184.90
mean sd 2.5% 25% 50% 5% 97.5%

muf[l] 19.14 218 1483 17.70 19.13 20.58 23.46
mu[2] 2579 215 2149 2438 2575 27.19 30.08
mu[3] 11.43 2.18 718 10.02 11.43 1289 15.74
mu[4] 1526 218 1091 13.82 1524 16.70 19.59

s2 3290 10.02 1872 2582 31.16 38.04 57.28
deviance 174.81 3.56 170.10 172.20 174.10 176.70 183.60

33

mu[1]
200
300
2001
10.0F
0.0}
T 1 T L T
1001 2500 5000 7500 100060

iteration

(a) Trace plot

mui1] muf1] sample: 10000

10F 0:3F

05F 02k “

oot = - ! / \

0.5 _/ \

-1 o L 0 O - —— ! | !
| T T T T
0 20 40 0.0 10.0 20.0 30.0

(b) Autocorrelation (c) Posterior density

Figure 7.1: WinBUGS summary plots for the posterior distribution of group one’s mean
from model one.

DIC for model 1: 181.2
DIC for model 2: 179.4

7.2 PROC MCMC

The code for both models is given. Of note is line fifteen and sixteen from our first model
where we define an array for u and o2. Since we will be working with four group means
and four group variances, we need to define an array of length four for both variables.
Additionally, lines seventeen and eighteen have a colon after the variable names to indicate
that the starting value should be applied to all array entries. Similarly, lines nineteen and
twenty have a colon after the variable names to indicate that the distributions should be

applied to all array entries. In the model statement on line twenty-one, we are telling SAS

84

that the “trt” column indicates how the mean and variance are grouped with the response
values.
The second model defines only an array for u, line thirty-three, because we are working

with a single o2 for each group here. Notice that the likelihood statement on line thirty-eight

2

allows only p to vary by group while ¢ is held constant. Lines thirty-four and thirty-five

set the parameters and give their initial values. Lines thirty-six and thirty-seven define the
prior distributions for x4 and o2

As an aside, lines ten, eleven, and twenty-four along with lines twenty-eight, twenty-
nine and forty-two ask SAS to save the graphics and output tables as a *.pdf file. Line ten
or twenty-eight begins this command, line eleven or twenty-nine gives the file path, and line

twenty-five or forty-two ends the command. This is a nice tool to have in one’s SAS toolbox.

read in the data file;
data nob;

infile 7 7,

input tmt y trt;

run;

print the data file for inspection;
proc print data=nob;
run;

/* Model 1 x/
initializes saving of output as a pdf file;
10 ods pdf

11 file=" 7

)

¥ O© 00 ~J O ¥ Tk W N - ¥

* turn on graphics device;

12 ods graphics on;

13 proc mcmec data=nob outpost=nobpost nmc=100000 nbi=1000 thin=10 seed
=1234

14 monitor=(_parms_) dic;

x define arrays of length 4;

15 array mu[4];

16 array s2[4];

% set parameters and initial values;

17 parms mu: O0;

18 parms s2: 1;

* define priors;

19 prior mu: “normal (20, prec=0.0001);
20 prior s2: “gamma(2, iscale=0.04);

85

% likelihood ;

21 model y ~ normal(muf[trt], var=s2[trt]);

22 run;

23

* turn off graphics device;

24 ods graphics off;

x stops saving output file;

25 ods pdf close;

26

27 /% Model 2 %/

x initializes saving of output as a pdf file;

28 ods pdf

29 file=" n

* turn on graphics device;

30 ods graphics on;

31 proc memc data=nod outpost=no5post nmc=100000 nbi=1000 thin=10 seed
=1234

32 monitor=(_parms_) dic;

* initialize array of length 4;

33 array mu[4];

* set parameters and initial values;

34 parms mu: O0;

35 parms s2 1;

x define priors;

36 prior mu: “normal (20, prec=0.0001);
37 prior s2 “gamma(2, iscale=0.04);
% likelihood ;

38 model y ~ normal(muf[trt], var=s2);
39 run;

40

x turn off graphics device;
41 ods graphics off;

x stop saving output file;
42 ods pdf close;

Table 7.2 shows the summary statistics for both models. In comparison with the
summary statistics from WinBUGS, the posterior values are very close for all of the variables
in both models. Figure 7.2 gives the posterior plots for group one’s mean response from
the first model. As was found in WinBUGS, model 2 with a single variance fits better than
model 1, DIC for model 1 is 181.035 and DIC for model 2 is 179.473. Recall that with DIC,

the smaller value indicates a better fitting model.

36

Table 7.2: Summary Statistics for Example 5 from PROC MCMC, both models are shown.

Posterior Summaries

Percentiles
Standard
Parameter N| Mean | Deviation | 25% | 50% | 75%
mul 10000 | 19.2038 2.0267 [17.9202 | 19.2192] 20.4216
mu?2 10000 | 25.7793 2.4627 | 24.2456 | 25.8094 | 27.3148
mu3 10000 | 11.4125 25924 9.7964 | 11.3877 | 13.0384
mu4 10000 | 15.3112 2.4385 [13.7688 | 15.2712 | 16.8677
s21 10000 | 28.4665 16.9253 | 16.7966 | 23.9472 | 35.4976
s22 10000 | 41.4464 22.1698 | 26.1303 | 36.3526 | 50.7291
s23 10000 | 48.4412 22.7821132.3070 | 43.6142 | 59.3121
s24 10000 | 42.6589 21.6666 | 27.2798 | 37.7725 | 52.7968

Posterior Summaries

Percentiles
Standard
Parameter N | Mean | Deviation | 25% 50% 75%
mul 10000 | 19.2049 2.1820(17.7772 [19.1837 | 20.6437
mu2 10000 | 25.6874 2.1629 | 24.2729 | 25.6894 | 27.1613
mu3 10000 | 11.4488 2.1625(10.0221 [11.4538 | 12.8734
mu4 10000 | 15.2360 2.1896 | 13.8050 | 15.2139 | 16.7090
s2 10000 | 32.9959 9.8810 | 25.9839 | 31.4092 | 38.1260

87

Figure 7.2: Summary plots for the posterior distribution group one’s mean response from

model 1.

Diagnostics for mul

mul

0 20000 40000 60000 80000 100000
Tteration
1.0 H
2 0.5 z
=) 2 &
2 g
= (S=]
E ool
g 2
2 05+ 2
1.0 T T T T T T T T T T
0 10 20 30 40 50 10 15 20 25 30
Lag mul
7.3 SIDE BY SIDE COMPUTER CODE
WinBUGS Code: SAS Code:
model{ /* Model 1 x/
dummyl <— tmt [1]; ods pdf
file="* "
for (i in 1:28){ ods graphics on;
y[i] 7 dnorm(mu[trt[i]], prec] proc memc data=no5 outpost=

38

tre [i]]);

for (i in 1:4){
mu[i] 7 dnorm (20, 0.0001);
s2[1] 7 dgamma(2,0.04);
prec[i] <= 1/s2]i];

}

Second model:
model{

dummyl <— tmt[1];

for(i in 1:28){

y[i] 7 dnorm(mu[trt[i]], prec)

for (i in 1:4){
muli|

}
s2 7 dgamma(2,0.04);

~ dnorm (20, 0.0001);

prec <— 1/82;

39

nob5post nmc=100000 nbi=1000
thin=10 seed=1234 monitor=(
parms) dic;

array mu[4];

array s2[4];

parms mu: O0;

parms s2: 1

prior mu: “normal (20, prec

~0.0001) ;

prior s2: “gamma(2, iscale
=0.04);

model y ~ normal(mu[trt], var
=s2[trt]);

run;

ods graphics off;

ods pdf close;

/* Model 2 x/
ods pdf
file= 77
ods graphics on;
proc mcmc data=nob outpost=
nob5post nmc=100000 nbi=1000
thin=10 seed=1234 monitor=(
parms) dic;

array mul4];

The data set:

tmt []

1

1

13.

16.

23.

24.

19.

19.

17.

31

25.

20.

23

24.

34.

20.

18.

3.

16.

16.

20

17.

y (]
225551

381329
350272
639941
277215
905660

503872

442618

883180

322800

431178

424148

437840

375937

949881

731357

063343

670093

.878069

.329623

5056717

.880663

762337

.413043

576046

tre []

90

parms mu: O0;

parms s2 1;

prior mu: “normal (20, prec
=0.0001);

prior s2 “gamma(2, iscale
=0.04);

model y ~ normal(mu[trt], var
=s2);

run;

ods graphics off;

ods pdf close;

4 16.054745
4 12.249461
4 22.734480

END{ };

4

4

4

91

CHAPTER &

FACTORIAL DESIGN

A factorial design is used when the objective is to understand the effect of two or more
independent treatment variables upon a single dependent response variable. These are also
called two-way ANOVA. Of interest is determining the optimal combination of variables to
give the most desired response. It is often helpful to see the data arranged in a table as shown
in table 8.1. Participants will be assigned to one of the sixteen treatment combinations and
their responses will be recorded. The most challenging part of this analysis is the bookkeeping
to keep track of which response values should be grouped with which p values because there
are sixteen of them.

Table 8.1: Arrangement of a 4x4 factorial design experiment.

Treatment B Levels
1 2 3 4

Ll | g | a3 | 14
Treatment A 2 | poy | po2 | Ha3 | foa
Levels 3| p3a | p32 | (33 | M34

4| pay | pap | pa3 | Haa

For this analysis, the data will be modeled as normal with a prior for each treatment

combination’s p. The data will be modeled with a single variance, o2

y; ~Normal(ia,5), o?)
M[A,B] NNOI‘m&l(]_, 10000)

o ~Gamma(2, scale=0.5)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

93

functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the
posterior distribution from there.

An advantage of the Bayesian approach to this analysis is that posterior draws are
obtained and available to compute any linear combination of the cell means without worrying

about multiple test adjustments.

8.1 WINBUGS

This data set contains responses of thirty-three participants in a feeding trial where they
were tested for their response to two treatments that each have four possible levels as shown
in table 8.1. We have sixteen different treatment combinations, (4x4), to consider as we try

to determine the optimal treatment combination.

model{
dummy variable to use all columns of data set
dummyl <— tmt [1];
for (i in 1:33){
likelihood
gain[i] 7 dnorm (mu[tmtA[i],tmtB[i]], prec);
}
defining the 16 priors for mu
for (i in 1:4){
for(j in 1:4) {
mul[i,j] ~ dnorm(1,0.0001);
}

}

prior for sigma2 and adjusting variance in terms of precision
s2 7~ dgamma(2,2) ;
prec <— 1/82;

}

The summary statistics for the posterior distribution are given in table 8.2. As you
can see, there is quite a range of mean responses among the different cells. Figure 8.1 gives

a sample of the posterior summary plots, showing the posterior distribution of treatment A

94

at the fourth level and treatment B at the third level. Convergence was reached, there were
no problems with autocorrelation, and the posterior distribution is shown.

A researcher could save the posterior draws and read them into another program to
conduct further analysis to determine the optimal treatment combination. The posterior
draws could be used to find the marginal means for both treatments along with confidence
intervals. Density plots of the posterior distributions for these marginal means could be
created along with posterior distributions for each of the sixteen cell means from the posterior
draws. Contrast statements would indicate that there is an interaction term to account for
which, after further analysis, would lead to the conclusion that p 3 is the optimal treatment

combination.

Table 8.2: Summary statistics from WinBUGS.
mean sd 25% 25% 50% 75% 97.5%

mu[1,1] 111 027 058 094 111 129 164
mu[1,2] 088 022 046 074 088 1.03 1.33
mu[1,3] 1.14 038 038 090 114 138 1.89
mu[1,4 110 027 056 092 110 127 1.62
mu[2,1] 077 027 023 059 076 094 1.30
mu2,2] 130 022 086 1.16 130 144 1.73
mu2,3] 1.01 027 048 083 100 118 1.54
mu2,4] 158 027 104 141 158 1.75 211
mu[3,1] 0.79 027 025 061 079 096 1.32
mu3.2] 1.02 022 058 088 102 117 146
mu3,3] 179 027 127 162 179 196 2.33
mu[34] 097 027 045 080 097 115 150
mu[4,1] 1.38 038 063 1.13 138 1.63 212
mu[4,2] 1.25 027 072 1.07 125 142 1.78
mu[4,3] 1.20 027 064 1.03 120 137 1.74
mu[44] 145 027 092 128 145 1.63 1.9

102]
(\]

0.14 0.06 0.07r 0.10 0.13 0.17 0.29
deviance 24.12 9.43 841 1744 23.10 29.91 45.26

95

muf£.3}
30F
20F
10F
0.0F
0k
1 0'0 1 25'00 SB]DD 75:)0 1 0600
fieration

(a) Trace plot

mui4.3]
1.0 mul4, 3] sampie. 10000
=L
x 20r
201 - - - 18k
0.5} ,
ot 10
1.0 b /\
1] | o~
) 20 40 0.0 . ._' . \|_ .
lag 10 00 10 20
(b) Autocorrelation (¢c) Posterior density

Figure 8.1: WinBUGS summary plots for the posterior distribution of treatment A at the
fourth level and treatment B at the third level.

8.2 PROC MCMC

In SAS, when one of the variables is categorical, this fact needs to be indicated as done in
line three with the $ signs after tmtA and tmtB. Notice that line fourteen defines an array
of length sixteen for u, and in line nineteen’s model, p is grouped by the sixteen treatment
combinations while the entire dataset is modeled with a single o2. Lines fifteen and seventeen
have a colon after i to indicate that the initial value and the prior distribution should be

applied to each of the sixteen array entries.

x+ read in the data file;

1 data nob;

2 infile ‘¢ 77

3 input gain tmtA $ tmtB $ tmt;

4 run;

5

x print the data file for inspection;

96

6 proc print data=nod;

7 run;

8

* initializes saving of output as a pdf file;
9 ods pdf

10 file =+ g

* turn on graphics device;

11 ods graphics on;

12 proc mcmc data=nob outpost=nobpost nmc=1000000 nbi=10000 seed=4826
thin=100

13 monitor=(_parms_) dic;
* create an array of length 16 for mu;
14 array mu[l6];

* set parameters and initial values;

% the colon on mu indicated that the initial wvalue be applied to all
array entries;

15 parms mu: 0;

16 parms s2 1;

* define priors;

* the colon on mu indicates that the prior be applied to all array

entries ;
17 prior mu: “normal(1l,prec=.0001);
18 prior s2 gamma(2,iscale=2);
% likelihood ;
19 model gain normal (mu[tmt], var=s2);
20 run;
21

x export the posterior MCMC draws and save the .csv file;

22 proc export data=nobpost outfile=*¢ »’ dbms=csv replace;
23 run;

24

* turn off graphics device;

25 ods graphics off;

* stop saving output file;

26 ods pdf close;

Table 8.3 shows the summary statistics for this analysis. In comparison with the
summary from WinBUGS, it can be seen that both programs are providing similar posterior
summaries for all seventeen variables. Figure 8.2 gives the posterior plots which indicate

convergence was reached and there were no problems with autocorrelation.

97

Table 8.3: Summary Statistics for Example 6 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N [Mean | Deviation | 25% [50% | 75%
mul 10000 | 1.1194 0.2665 [0.9460 1 1.1170 | 1.2905
mu?2 10000 | 0.8819 0.2211 | 0.7412 | 0.8820 | 1.0223
mu3 10000 | 1.1505 0.3806 | 0.9081 | 1.1460 | 1.3935
mu4 10000 | 1.0915 0.2678 [0.9240 | 1.0938 | 1.2645
mu5 10000 | 0.7624 0.2703 0.5902 1 0.7637 | 0.9352
mu6 10000 | 1.2974 0.2266 | 1.1514 | 1.2954 | 1.4431
mu7 10000 | 1.0034 0.2740 [0.8286 1 1.0038 | 1.1757
mu8 10000 | 1.5842 0.2689 | 1.4092 | 1.5837 | 1.7569
mu9 10000 | 0.7876 0.2700 | 0.6150 1 0.7900 | 0.9603
mul(10000 | 1.0229 0.2201 [0.8809 |1 1.0244 | 1.1668
mull 10000 | 1.7966 0.2718 [1.6188 1 1.7961 | 1.9758
mul2 10000 | 0.9745 0.2735(0.8004 1 0.9758 | 1.1473
mul3 10000 | 1.3839 0.3846 | 1.1367 | 1.3842 | 1.6313
mul4 10000 | 1.2429 0.2710 | 1.0697 | 1.2431 | 1.4160
mul5 10000 | 1.2000 0.2726 (1.0292 1 1.2046 | 1.3728
mulé6 10000 | 1.4537 0.2728 [1.2803 |1 1.4548 | 1.6310
s2 10000 | 0.1464 0.0634 | 0.1033]0.1321] 0.1734

98

Figure 8.2: Summary plots for the posterior distribution of treatment A at the fourth level

and treatment B at the third level.

Diagnostics for mul5
25
E
E
0.0
T T T T T T
0 200000 400000 600000 800000 1000000
Tteration
1.0
(=) 0.5 b
a 27 7
5 £
= (S=]
£ oot s}
£ Z
2 054 &
1.0 N T T T T T T T T
0 10 20 30 40 50 0 1 2
Lag mul5
8.3 SIDE BY SIDE COMPUTER CODE
WinBUGS Code: SAS Code:
model{ data nob;
dummyl <— tmt[1]; infile ’z:\my documents)
for (i in 1:33){ statb95R _bayesian \hmwk\hmwk_5\
gain[i] 7 dnorm (mu[tmtA[i],tmtB[i hmwk5. txt 7;
], prec); input gain tmtA $ tmtB $ tmt;

99

} run;
for (i in 1:4){
for(j in 1:4) { proc print data=nob;
mu[i,j] ~ dnorm(1,0.0001); run;
}
} ods pdf
s2 ~ dgamma(2,2); file = ’z:\my documents)
prec <— 1/s82; stat595r_bayesian \hmwk\hmwk 5\
} SASoutput.pdf ’;

ods graphics on;
The data set: proc mcmc data=nob5 outpost=
gain [] tmtA[] tmtB[] tmt][] nobpost nmc=1000000 nbi=10000
1.06601955230029 1 1 1 seed=4826 thin=100
1.1717077129235 1 1 1 monitor=(_parms_) dic;
1.13299485302514 1 2 2 array mu[l16];
0.725519010925458 1 2 2 parms mu: O0;
0.790168559937335 1 2 2 parms s2 1;
1.14275707613406 1 3 3 prior mu: “normal(1,prec
1.26275163486356 1 4 4 =.0001);
0.924987112824956 1 4 4 prior s2 gamma(2,iscale=2);
0.635748752652977 2 1 5 model gain normal (mu[tmt],
0.89040183526832 2 1 5 var=s2) ;
1.40850641235961 2 2 6 run;

.05334779462587 2 2 6

.42454603147834 2 2 6 proc export data=nobpost outfile
.876869178935861 2 3 7 ="z:\my documents\
.13417236833904 2 3 7 stat595r_bayesian \hmwk\hmwk_5\

100

1.56307166136822 2 4 8 nobpost.csv’ dbms=csv replace;
1.62876422747221 2 4 8 run;
0.91869954925839 3 1 9

0.651574142026445 3 1 9 ods graphics off;
0.964795917174517 3 2 10 ods pdf close;
1.13567909147059 3 2 10

0.971842851689181 3 2 10

1.86789905425025 3 3 11

1.71858834375702 3 3 11

0.828461308629336 3 4 12

1.12405391192776 3 4 12

1.37895018583156 4 1 13

0.79139772956555 4 2 14

1.70889873968731 4 2 14

0.585982054786358 4 3 15

1.81194876837391 4 3 15

1.21187262044929 4 4 16

1.69330934499011 4 4 16

END{};

101

CHAPTER 9

ANALYSIS OF COVARIANCE

Analysis of Covariance, ANCOVA, combines one-way or two-way ANOVA with linear re-
gression. ANCOVA is used when there is a continuous response variable and two or more
predictor variables, one being categorical and one being continuous. Here, we are comparing
one variable in two or more groups taking into account variability of other variables, called
covariates. Since ANCOVA is a method based on linear regression, the relationship of the
dependent variable to the independent variable(s) must be linear in the parameters. Figure
9.1 shows that the relationship in our data set is indeed linear. In fact it might be possible
that each group has its own y-intercept and slope. Two models will be presented that will
explore these possibilities. The first model allows for two intercepts and two slopes while
the second model allows for two intercepts but restricts the slopes to be the same. The two
models will be compared via DIC values to determine which fits the data better. Here is an

outline of the first model.

y; ~Normal(g;, 02)

i =Boj + Brjxi
Bo; ~Normal(10, 10000)
B1; ~Normal(0, 100)

0? ~Gamma(7, scale = 25)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

103

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Assembly Line Speed vs. Scrap Produced

Scrap
250 300 350 400 450 500
| | | | |
e
[N
i
.

200
1

150
1

100 150 200 250 300

Speed

Figure 9.1: Linear relationship between variables.

9.1 WINBUGS

This analysis will look at production data from two different production lines with the
objective of determining how much scrap is produced as the speed of an assembly line
increases. We have three variables in the data set, line number (1 or 2), line speed, and
amount of scrap produced. The data are grouped by line number and the response variable

is the amount of scrap with a covariate of line speed.

model one has two intercepts and two slopes
model{
for (i in 1:27){
likelihood
scrap[i] 7 dnorm(mu[i], prec);
define the mean

104

mu[i] <— b[line[i]] + bl[line[i]]*speed][i];

}

the priors for betai

b[1] ~ dnorm (10, 0.0001);
b[2] 7 dnorm (10, 0.0001);

bl[1] = dnorm (0, 0.01);
bl1[2] = dnorm (0, 0.01);

prior for variance and adjust
s2 7 dgamma(7, 0.04);
prec <— 1/s82;

}

model two has two intercepts and one slope

model{

for (i in 1:27){
likelihood

scrap [1]

" dnorm (mu[i], prec);
define the mean

it in terms of precision

mu[i] <— b[line[i]] + bl[l]*speed]|i]

the priors for betai

b[1] ~ dnorm (10, 0.0001);
b[2] 7 dnorm(10, 0.0001);

bl[1] = dnorm (0, 0.01);

prior for variance and adjust
s2 7 dgamma(5, 0.01);
prec <— 1/s2;

it in terms of precision

Table 9.1: Summary statistics from WinBUGS for both models.

mean sd 2.5% 25% 50% 5% 97.5%

b[1] 94.11 20.81 52.60 80.37 94.45 108.10 134.50

b[2] 7.82 2268 -36.68 -7.06 778 22.81 52.41
bl[l] 1.16 0.10 0.97 1.10 1.16 1.23 1.36
bl[?] 1.32 0.10 1.12 1.25 1.32 1.39 1.52

s2 534.02 137.45 321.19 435.07 514.60 614.62 &855.40
deviance 242.03 3.45 237.10 239.50 241.40 244.00 250.30
mean sd 2.5% 25% 50% 5% 97.5%

b[1] 7847 1475 49.14 68.75 7853 88.16 107.50

b[2] 25.42 15.70 -6.13 14.92 25.33 35.72 55.84
bl[l] 1.24 0.07 1.11 1.20 1.24 1.28 1.37

s2 482.11 122.42 293.70 395.37 465.60 549.40 769.60
deviance 242.20 277 238.70 240.20 241.60 243.60 249.10

105

Model 1 DIC: 246.292
Model 2 DIC: 245.72

(1]

L

186
14t

12

_“

T

T

1.0
ne

T

T T T T
1001 2500 S000 7500 10000
iteration

(a) Trace plot

B1l1] b1[1] sample. 10000
1.0 gor
05 5.0
[e Y 1 /\
LS 20F / v
1.0k X S — |

Ll Ll ! 1 1 1l 1 1 1

0 20 40 e 10 12 1e 18

lag
(b) Autocorrelation (c) Posterior density

Figure 9.2: WinBUGS summary plots for the posterior distribution of the single slope pa-
rameter from the second model.

The summary statistics for both models are shown in table 9.1. In comparing these
two models, we see that DIC for model two is lower, therefore model two with the single
slope fits better. Figure 9.2 gives a sample of the posterior summary plots, showing the
posterior distribution of the single slope parameter from the second model. Convergence
was reached, there were no problems with autocorrelation, and the posterior distribution is

shown.

106

9.2 PROC MCMC

The models are presented in the code below in the same order as they appear in WinBUGS
above. The data are read in and defined with lines one through four and printed for review
before the analysis in lines six and seven. Lines nine, ten, and thirty-nine prepare a *.pdf
file where SAS will save the output tables and graphs. Model one is coded in lines twelve
through twenty-three and model two in lines twenty-six through thirty-six. Compare how p
is defined in lines twenty-one and thirty-four. In model one, p is defined to have a slope and
intercept for each group while in model two, it is defined to have two intercepts but the same
slope for the two groups. As such, model one has an array of length two for both 5y and (;
while model two only needs an array of length two for ;. Also notice that on lines twelve
and twenty-six, the number of MCMC iterations has been increased along with the number
of burn-in iterations and the thin option has been defined so that the simulation is thinned
to take only every fiftieth one to reduce autocorrelation and reach convergence satisfactorily

as seen in figure 9.3. The summary statistics for both models are shown in table 9.2.

* read in the data file;

1 data ancova;

2 infile “¢ B

3 input tmt speed scrap;

4 run;

5

* print the data file for inspection;
6 proc print data=ancova;

7 run;

8

* initializes saving of output as a pdf file;
9 ods pdf

10 file = ¢ B

* turn on graphics device;

11 ods graphics on;

12 proc mcmc data=ancova outpost=examp7out nmc=500000 nbi=1000 seed
=1234 thin=50 monitor=(_parms.) dic;

x define arrays of length 2 for intercept and slope;

13 array beta0 [2];

14 array betal [2];

% set parameters and initial values;

107

* the colon on the betai’s indicate that the initial values be applied
to all array entries;

15 parms betal: 150;
16 parms betal: O0;
17 parms s2 500;

x define priors;
% the colon on the betai’s indicate that the prior be applied to all
array entries;

18 prior beta0: ~ normal(100,var=10000);
19 prior betal: ~ normal(0, var=10);

20 prior s2 ~ gamma(7, scale=T75);

% define the mean, which is the line;

21 mu = betal [tmt] + betal [tmt]*speed;

% likelihood ;

22 model scrap ~ normal(mu, var=s2);

23 run;

24

25

* change code to have one slope now;

26 proc memec data=ancova outpost=exampT7out nmc=500000 nbi=1000 seed
=1234 thin=50 monitor=(_parms_) dic;

* define one array of length 2 for intercept;

27 array beta0[2];

% set parameters and initial values;

* the colon on betal indicates that the initial values be applied to
all array entries;

28 parms betal: 150;
29 parms betal O0;
30 parms s2 500;

x define priors;
* the colon on betal indicates that the prior be applied to all array

entries ;
31 prior beta0: ~ normal(100,var=10000);
32 prior betal = normal(0, var=10);
33 prior s2 ~ gamma(7, scale=T75);
% define the mean, which is the line;
34 mu = betal[tmt] + betals*speed;
% likelihood ;
35 model scrap ~ normal(mu, var=s2);
36 run;
37

x turn off graphics device;
38 ods graphics off;

x stop saving output file;
39 ods pdf close;

108

Table 9.2: Summary Statistics for Example 7 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N | Mean | Deviation 25% 50% 75%
beta01 10000 100.2 20.2927 | 86.7662 100.4 1134
beta02 10000 | 12.1241 21.8431 | -2.2602[12.1257 | 26.6854
betall 10000 | 1.1284 0.0946 | 1.0661| 1.1282| 1.1914
betal2 10000 | 1.3026 0.0966 | 1.2397| 1.3017| 1.3661
s2 10000 487.7 119.1 403.3 4714 556.1
Posterior Summaries
Percentiles
Standard
Parameter N | Mean | Deviation 25% 50% 75%
beta01l 10000 | 82.5032 15.2356 | 72.8622 | 82.6148 | 92.4310
beta02 10000 | 31.1614 16.2140 | 20.5151 | 31.0183 | 41.8791
betal 10000 | 1.2142 0.0688 | 1.1688| 1.2146| 1.2584
s2 10000 501.0 120.0 416.8 486.7 569.6
9.3 SIDE BY SIDE COMPUTER CODE
WinBUGS Code: SAS Code:
model one has two intercepts data ancova;
and two slopes infile ‘¢ B
model{ input tmt speed scrap;
for (i in 1:27){ run;
scrap[i] 7 dnorm(mu[i],prec
); proc print data=ancova;
mu[i] <— b[line[i]] + bl] run;

109

Figure 9.3: Summary plots for the posterior distribution of the single slope parameter from
the second model.

Diagnostics for betal
z
T T T T T T
0 100000 200000 300000 400000 500000
Tteration
1.0 5
g 054 2
£ g
£ ool 5
g : 2
£ 2
Z 05+ 2
1'0_| T T T T T T T T
0 10 20 30 40 50 1.0 1.2 14
Lag betal
line [i]]*speed[i];
} ods pdf
b[1l] 7 dnorm(10, 0.0001); file = *¢ B
b[2] = dnorm(10, 0.0001); ods graphics on;
bl[1] ~ dnorm(0, 0.01); proc mcmc data=ancova outpost=
bl1[2] ~ dnorm (0, 0.01); exampT7out nmc=500000 nbi=1000
s2 7 dgamma(7, 0.04); seed=1234 thin=50 monitor=(
prec <— 1/s82; _parms_) dic;
} array beta0[2];

array betal [2];

110

model two has two intercepts
and one slope
model{
for (i in 1:27){
scrap[i] 7 dnorm(mul[i],prec
)
mu[i] <— b[line[i]] + bl

[1]*speed[i]

b[1] = dnorm (10, 0.0001);
b[2] 7 dnorm (10, 0.0001);
bl1[1] ~ dnorm(0, 0.01);
s2 7 dgamma(5, 0.01);
prec <— 1/s82;
}

The data set:

line [] speed|[] scrap]|]

1 100 218

1 125 248

1 220 360

1 205 351

1 300 470

1 255 394

1 225 332

1 175 321

1 270 410

1 170 260

run;

parms betalO: 150;
parms betal: O;

parms s2 500;

prior beta0: ~ normal(100,var
=10000) ;

prior betal: ~ normal(0, var
=10);

prior s2 ~ gamma(7, scale=T75)

mu = betal [tmt] + betal [tmt]x
speed ;

model scrap ~ normal(mu, var=

s2);

* change code to have one slope

now ;

proc mcmc data=ancova outpost=

examp7out nmc=500000 nbi=1000

seed=1234 thin=50 monitor=(

parms) dic;

array beta0[2];

parms betaO: 150;

parms betal O0;

parms s2 500;

prior beta0: ~ normal(100,var

=10000) ;

2

155

190

140

290

265

105

215

270

255

175

135

200

275

155

320

190

241

331

275

425

367

140

277

384

341

215

180

260

361

252

422

273

2 295 410

END{ };

112

run;

ods

ods

prior betal = normal(0, var
=10);

prior s2 ~ gamma(7, scale=T75)

mu = betal [tmt] + betalxspeed

" normal (mu, var=

model scrap

s2);

graphics off;

pdf close;

CHAPTER 10

LINEAR MIXED MODEL

In all of the previous models, the data were assumed to be independent and exchangeable,
meaning that the order in which our sample was taken makes no difference in the probability
of the sample occurring. The order of the indexes has no influence on the calculation of the
probability.

However, it is not plausible to make the assumption for every data set. Here in the
linear mixed model, the data are not independent which means that more than one source of
variability must be accounted for. There is variability due to random error and fixed error.
This is just an extension of the linear model where the linear predictor contained all of the

variability. The usual model for the linear regression is
y=XB+e, e~ Normal(0,0%]).

The mixed model setting, however, is more complicated because the errors are not
independent. The name is mixed because both random and fixed effects are mixed in the
model, where before only fixed effects were modeled. Mixed models are applicable to settings
where repeated measurements are taken on the same statistical unit, or where measurements
are made on clusters of related statistical units. Often the goal of the researcher is to make
inference on the entire population that these statistical units come from, and not just the
sample itself.

The Bayesian paradigm easily adjusts for this form of analysis. A term must be
added to the model that will account for the extra variability due to randomness. It is
imperative that the extra source(s) of variability be accounted for so that the inference
is valid. Typically, fixed effects are terms that have one level of priors modeling their

parameters while random effects have priors modeling their priors, called hyperpriors. The

113

model now is
y=XB+Zu+e, e~ Normal(0,R),u~ Normal(0,Q)

where X and Z are known design matrices and the covariance matrices R and G may depend
upon a set of unknown variance components.

For this analysis, the data will be modeled as normal with priors and hyperpriors as
shown below where ¢ indicates the metal type, j indicates the ingot, and u is the effect of

each ingot.

Yijr. ~Normal(p;, 0?)
i =Biw; + uj
B; ~Normal(72,100)
u; ~Normal(o, 02)
o, ~Gamma(3, scale = %)

1
0° ~Gammay(3, scale = §)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

10.1 WINBUGS

This data set comes from a study to determine the pressure required to break a metal’s
bond. The general goal was to compare the bond break pressure of the metals. The data
set contained three columns of observations, ingot, metal, and pressure as can be seen in

the side-by-side code section below. An ingot is a block of metal, typically oblong in shape,

114

and it is assumed that the seven ingots in the sample represent a much larger population of
ingots to which the researcher desires to make inference.

The metals are nickel, iron, and calcium, indicated with n, 7, and c¢ in the data set.
However, this poses a problem for WinBUGS because the program is not able to manage
character entries. Therefore, a fourth column was added to the data set where n was given
a numerical value of 1, ¢ was given a numerical value of 2, and ¢ a value of 3. This column
will be used to inform WinBUGS as to which metal the observation belongs. The data set
must be further adjusted such that the metal column is omitted prior to reading the data

into WinBUGS because the program cannot work with character entries.

model{
for (i in 1:21){
likelihood;

pressure[i] 7 dnorm(mu[i],prec);

define the mean

mul[i] <— beta[met[i]] 4+ u[ingot[i]]
}

the priors for mean and random effect
for (i in 1:3){
beta[i] ~ dnorm (72, .01);

}
for(i in 1:7){
1}1[1] " dnorm (0, precing);

prior and hyperprior for the variances and adjusting them in
terms of precision

s2 ~ dgamma(3,3);

prec <— 1/s2;

s2ing = dgamma(3,3);

precing <— 1/s2ing;

There are seven different ingots in this study and these are considered the random
effects while the three metals are considered to be the fixed effects. These observations
cannot be assumed independent because we have repeated measurements which means there
are two sources of variability to account for in the model, the fixed effect error due to metal

as indicated by 02 and the random effect error due to each ingot as indicated by o2

115

Table 10.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 5% 97.5%

betal[l] 71.10 1.02 69.09 7040 71.11 7107 73.11
beta|[2] 75.89 1.02 7390 7523 7588 76.56 77.88
beta[S] 70.20 1.02 68.18 69.51 70.21 70.89 72.17
s2 4.67 0.92 3.14 4.02 4.57 5.22 6.70

s2ing 2.63 0.85 1.16 2.04 2.56 3.16 4.49
deviance 113.64 6.33 103.30 109.10 11290 117.42 128.30

The summary statistics are shown in table 10.1. The mean pressure for breaking
nickel was 71.10, the mean pressure for breaking iron was 75.89, and the mean pressure for
breaking calcium was 70.20. Figure 10.1 gives a sample of the posterior summary plots,
showing the posterior distribution of the error due to each ingot. Convergence was reached,
there were no problems with autocorrelation, and the posterior distribution is shown. Even
though plots for the variance components are not shown here, convergence of these compo-
nents must be monitored carefully because variances are very challenging to model correctly
and obtain convergence. These components were monitored in this analysis and convergence
was indeed reached with no autocorrelation concerns.

It should be noted that even though the random effect of ingot was accounted for in
the model, this variable is not of concern because the goal was to generalize the results to
all ingots. The mixed model and this hierarchical Bayesian model allow for the results to be

applied to the entire population of ingots, and not just the seven in the study.

10.2 PROC MCMC

The code shown below asks SAS to create the same numeric column in lines four through six
for the metal as was used for WinBUGS. The MCMC command begins on line fifteen and
utilizes thinning of increased number of iterations after 10,000 burn-in iterations in an effort
to reduce autocorrelation and reach convergence. Lines sixteen and seventeen create the

needed arrays of length three for metal and of length seven for ingot. Lines eighteen, twenty-

116

sZng
30F
50F
20r
20F
0op
L ' L .]
1001 2500 S000 7500 10CC0
feraion
(a) Trace plot
s s2ng ssmpis. 10000
1.0F Q5+
0= l ! et
R e = T - =3 ™
DS+ o2r / ‘\
-10¢ ool —~ o —
0 20 40 0o 20 249 80
B2
(b) Autocorrelation (c) Posterior density

Figure 10.1: WinBUGS summary plots for the posterior distribution of the error due to the
ingot.

one, twenty-two and twenty-three include a colon to indicate that the starting values and

priors should be applied to all array entries. Line twenty-seven gives the model’s likelihood

statement.

* read in the data file;

O % 00 O Ui ¥ W N~

—_
o

11

data bond;
infile “°¢ B
input ingot metal $ pressure;
create a treatment column of numerical values;
if metal= 'n’ then tmt=1;
if metal="i’ then tmt=2;
if metal=’c’ then tmt=3;
run;

print the data file for inspection;
proc print;

run;

x Initializes saving of output as a pdf file;

117

12 ods pdf

13 file = ¢ i

* turn on graphics device;

14 ods graphics on;

15 proc mcmec data=bond outpost=bondout nmc=500000 thin=50 nbi=10000
monitor=(mu s2error s2ingot) dic seed=1234;

x create arrays for mean and random effect;

16 array mul[3];

17 array u[7];

* set parameters and initial values;

% the colon on mu and u indicate that the initial wvalues be applied to
all array entries;

18 parms mu: 70;

19 parms sZ2error 10;
20 parms s2ingot 10;
21 parms u: 0;

x define priors;
* the colon on mu and u indicate that the prior be applied to all array

entries;
22 prior mu: ~ normal (72, var=100);
23 prior u: ~ normal (0, var=s2ingot);
24 prior s2error ~ gamma(3,scale=3);
25 prior s2ingot ~ gamma(3, scale=3);
x define the mixed model line;
26 line = mu[tmt] + u[ingot |;
% likelihood ;
27 model pressure ~ normal(line, var=s2error);
28 run;

29

* turn off graphics device;
30 ods graphics off;

* stop saving output file;
31 ods pdf close;

The summary statistics are shown in table 10.2 and give posterior values very similar
to WinBUGS’ for the pressure for breaking the bond, 71.09 for nickel, 75.84 for iron, and
70.18 for calcium. Figure 10.2 shows the posterior distribution of the error due to the ingot,

indicating that convergence was reached and there was no problem with autocorrelation.

118

Figure 10.2: Summary plots for the posterior distribution of the error

Table 10.2: Summary Statistics for Example 8 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N| Mean | Deviation| 25% 50% 75%
mul 10000 | 71.0869 1.6876 1 69.9875 | 71.0633 | 72.2041
mu2 10000 | 75.8358 1.7014 | 74.7305 | 75.8333 | 76.9608
mu3 10000 | 70.1805 1.7016 |1 69.0329 | 70.1591 | 71.3149
s2error 10000 | 10.8084 34976 | 8.3146(10.2674] 12.7592
s2ingot 10000 | 10.2217 45561 6.9417 9.4957]12.7537

due to the ingot.

s2ingot

Autocorrelation

Diagnostics for s2ingot

0 100000 200000 300000 400000 500000
Iteration

1.0
=

0.5+ E
&L
=)

0.0 5
2

-0.5 ch

1.0+ T T T T T T T T T

10 20 30 40 50 0 10 20 30
Lag s2ingot

119

10.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code:

model{
for (i in 1:21){

pressure[i] = dnorm(mul[i],

prec) ;
mul[i] <— beta[met[i]] + u]
ingot [i]]

for (i in 1:3){
beta[1i]
}
for (i in 1:7){

" dnorm (72, .01);

uli]

}

~ dnorm (0, precing);

s2 7 dgamma(3,3) ;
prec <— 1/s2;
s2ing ~ dgamma(3,3);

precing <— 1/s2ing;
}

The data set:

ingot [] metal [] pressure[] met|]

1 n 67.0 1

120

SAS Code:

data bond;

3 I
)

infile
input ingot metal $
pressure ;

if metal= ’'n’

then tmt=1;
if metal=’i’ then tmt=2;
if metal=’c’ then tmt=3;

run;

proc print;

run;

ods pdf

file = * s

ods graphics on;
proc mcmc data=bond outpost=

bondout nmc=500000 thin=>50 nbi

=10000 monitor=(mu s2error
s2ingot) dic seed=1234;
array mu[3];
array u[7];
parms

70;

parms s2error 10;

1 i 71.9 2 parms s2ingot 10;

1 c 72.2 3 parms u: 0;

2 n 67.5 1 prior mu: ~ normal (72, var

2 i 68.8 2 =100);

2 ¢ 66.4 3 prior u: ~ normal (0, var=

3 n 76.0 1 s2ingot) ;

3 i 82.6 2 prior s2error ~ gamma(3,scale
3 c 74.5 3 =3);

4 n 72.7 1 prior s2ingot ~ gamma(3,

4 i 78.1 2 scale=3);

4 c 67.3 3 line = mu[tmt] + u[ingot];

) n 73.1 1 model pressure ~ normal(line
5 i 74.2 2 var=s2error) ;

5 c 73.2 3 run;

6 n 65.8 1

6 i 70.8 2 ods graphics off;

6 c 68.7 3 ods pdf close;

7 n 75.6 1

7 i 84.9 2

7 ¢ 69.0 3

END{};

121

CHAPTER 11

RANDOM COEFFICIENT MODEL

The random coefficient model is an extension of the linear mixed model. Here, the notion is
that the regression equation will have fixed effects terms for overall intercept and for overall
slope, but because the data consist of different groups of observations, there will also be
terms for a random slope and a random intercept. Thus the coefficients in the model are
allowed to vary for the random effects of the different groups. The design of this analysis
is such as to allow for inference beyond the groups that are found in the sample data. The

equation for a random coefficient model is
Yij = Bo + Bz + o + aqx +e.

This model not only allows for the adjustment of extra variation from the different
groups, but also allows for the adjustment of different intercepts and slopes within each
group. As can be seen in the graph of the data set in figure 11.1, it is plausible that there
could be both an overall intercept and slope along with both an intercept and slope unique to
each group. The result of the random coefficient model is that the researcher can generalize
the analysis to include all possible groups in the population and not just those found in the
sample. Sometimes, this extension is a very desirable attribute when conducting research.
The population’s average slope and intercept is calculated as By + [fi1x1 and each group’s
values are calculated as By + ag; + (61 + o).

For this analysis, the data will be modeled hierarchically to have a normal likelihood
with priors and hyper-priors as shown below where ¢ indicates the subject and j indicates
group membership. Equations for the likelihood, prior, and posterior distributions are omit-
ted here where they were provided in Chapter 3 because the MCMC algorithms do not

require finding the functional form of the posterior distribution. All that is required is

123

Moisture vs. Yield by Wheat Variety

Variety 1
Variety 2 v
Variety 3
Variety 4 v
Variety 5

Variety 6 *
Variety 7 ¢
Variety 8 P

Variety 9
Variety 10 + * °

IREERRERNY!

Yield
+

44
x

*x
>

40
1

30
L

Moisture

Figure 11.1: Linear relationship between moisture and yield. The different colors and shapes
indicate group membership.

the likelihood function and the distribution for all parameters in the model. The MCMC

algorithms calculate the posterior distribution from there.

124

11.1 WINBUGS

The data for this analysis are from an agriculture study on wheat varieties. The purpose
was to predict yield based on moisture while taking into account an effect for different
varieties of wheat. The data include observations on ten different varieties, but because
of the hierarchical model, inference can be made beyond these ten varieties to the entire
population of wheat varieties.
variable is the fixed effect in the model.
the random effects will have a mean of zero and a hierarchical structure for the variance.

Remember to choose specific priors that preserve the parameter space, and as such, the

wntercept

yi; ~Normal(p;;, o)
=0 + Bz + o + gy
Bo ~Normal(30, 10000)
f1 ~Normal(0, 100)
ag ~Normal(0, 070 cept)
ay ~Normal(0, aglope)

o? ~Uniform(0, 2)

~Uniform(0, 200)

0 21ope ~Uniform(0,0.2)

The wheat varieties are random effects and the moisture

variance priors must be modeled with positive values.

model{

dummy variable to use all columns of data set

dummy <— obs[1];

for (i in 1:60){
likelihood

yield [i] 7 dnorm(mu[i], prec);

125

The fixed effect will have specific priors while

define the mean
mu[i] <— b0 + blsxmoisture[i] + aO[variety[i]] + al[variety[i]]=x
moisture[i];
}
the priors for betai
b0 = dnorm (30, .001);
bl 7 dnorm (0, .01);
the priors for alphai
for(i in 1:10){

a0[i] ~ dnorm(0,precint);
al[i] ~ dnorm (0, precslp);
¥

priors for variance parameters and adjusting them in terms of
precision

s2 7 dunif (0, 2);

prec <— 1/s82;

s2int ~ dunif (0, 200);

precint <— 1/s2int;

s2slp 7 dunif (0,.2);

precslp <— 1/s2slp;

Because variance values are positive real numbers, the researcher should thoughtfully
choose appropriate prior distributions to model them, drawing upon previous experience or
knowledge of the data. Possible variance priors are the gamma and uniform distributions,
however, modeling hierarchical variances can be very difficult unless the researcher has a good
sense of the data’s behavior. When the researcher does have a good sense, then appropriate
gamma priors could be thoughtfully selected. However, since we do not have a good sense
of this data, uniform priors were selected as a good alternate choice because the parameter
space could still be preserved.

A word of caution though, when using uniform priors on variance parameters, it is
important to monitor the trace plots closely because the uniform could prevent the algorithm
from moving into values beyond the bounds of the distribution even if the MCMC random
walk attempts such movement. Watch for a trace plot that looks like a butch hair cut. When
such a trace plot is found, return to the code and make adjustments on the prior values as

needed to allow the MCMC random walk to cover the parameter space as needed. Trace

126

plots can also guide in narrowing the uniform interval if the interval is too broad and allows

the MCMC random walk too much movement.

Table 11.1: Summary statistics from WinBUGS.

mean sd 25% 2% 50% 75% 97.5%

b0 3351 180 29.99 3242 3349 3458 37.25
bl 066 002 062 065 066 067 0.1
s2 039 009 025 032 038 044 0.62
s2int 31.80 21.82 10.15 18.05 2556 38.06 94.05
s2slp 0.00 0.00 000 000 000 001 001
a0[l] 0.88 190 -299 -029 089 206 4.6l
a0[2] -2.24 192 -611 -342 221 -099 1.50
a0[3] -050 1.91 -442 -1.65 -047 070 3.15
a4 062 187 -322 -051 067 1.78 426
a[5] 099 205 -315 -0.30 098 227 5.04
a0[6] 453 187 0.74 340 454 568 8.18
a0[7] -10.73 1.85 -14.60 -11.82 -10.69 -9.56 -7.12
a0[8] 229 1.86 -154 1.18 231 345 5.98
a0[9] -024 191 -413 -142 -021 096 3.48
[0] 360 219 -073 217 358 504 795
alll] -0.05 003 -010 -0.07 -0.05 -0.03 0.00
all2] -0.07 003 -014 -0.09 -0.07 -0.05 -0.01
al[3] 007 003 001 005 007 009 0.2
all4 -0.02 003 -0.08 -0.04 -0.02 -0.01 0.3
alls] -0.02 003 -0.08 -0.04 -0.02 000 0.04
all)] 0.02 002 -002 00l 002 004 008
all7] 005 003 -000 004 005 007 0.11
allg] 0.02 003 -003 00l 002 004 008
all] 0.02 003 -003 00l 002 004 008
al[lO] 0.03 003 -0.10 -0.05 -0.03 -0.01 0.03
deviance 110.40 837 96.31 104.40 109.60 115.50 128.90

The summary statistics are shown in table

11.1.

Notice that, as expected, the

analysis gives posterior distributions for an overall intercept and overall slope along with

posterior distributions for three variance parameters, ten variety specific intercepts, and

ten variety specific slopes.

Figure 11.2 gives a sample of the posterior summary plots,

showing the posterior distribution of the fixed effect’s variance. This trace plot shows that

127

convergence was reached, indicating that the selected uniform prior was indeed appropriate

for this parameter. There were no problems with autocorrelation.

2

LR
DEF
DEr
gaf
02f
00}

1] L) L] L] T
1001 2500 000 7300 10000
=aton
(a) Trace plot

=2 sZ sampie- R0
1.0} 2 gt
sall - - 30 /_m\
By | o g A S
:.'v Z'G ;G 00 '.:25 03 3175
&g
(b) Autocorrelation (c) Posterior density

Figure 11.2: WinBUGS summary plots for the posterior distribution of the fixed effect error.

11.2 PROC MCMC

The coding of the random coefficient model in SAS is done similarly as in previous models.
Lines one through four read in the data file and tell SAS what is should find therein. Lines
six, seven, and thirty-five create and close a *.pdf file where SAS will save the posterior
summary tables and plots that lines eight and thirty-four initiated and closed. The MCMC
procedure consists of lines nine through twenty-nine. Of note on line nine is the number of
burn-in iterations and the number of MCMC iterations along with the indication to thin
every 100. The number of iterations was increased here and the thinning was increased to
100 so as to reduce autocorrelation and aid in the convergence process. Arrays are created

in lines ten and eleven for the random slope and intercept parameters. Lines twelve through

128

eighteen give initial values for all parameters while lines nineteen through twenty-six define
prior distributions for them. The random coefficient equation is defined in line twenty-seven.
The likelihood is given in line twenty-eight. The posterior draws are created and saved in
lines thirty-one and thirty-two.

The table of summary statistics is presented in table 11.2 and gives posterior values
very similar to WinBUGS. Figure 11.3 gives the posterior plots for the fixed effect’s vari-
ance. These plots indicate that convergence was reached, no autocorrelation problems were

encountered and the density of the posterior is drawn.

turn on graphics device;

ods graphics on;

proc mcmc data=wheat nbi=100000 nmc=1000000 thin=100 outpost=
postwheat dic seed=1234 monitor=(_parms_);

* define arrays of length 10 for alphi’s;

10 array a0[10];

11 array al[l10];

* set parameters and initial values;

% the colon on the alphai’s indicate that the initial wvalues be applied
to all array entries;

x read in the data file;

1 data wheat;

2 infile *“°¢ 77 firstobs=2;

3 input obs variety yield moisture;
4 run;

5

* initializes saving of output as a pdf file;
6 ods pdf

7 file = *“¢ B

*

8

9

12 parms b0 30;

13 parms bl 0;

14 parms a0: O0;

15 parms al: O0;

16 parms s2 1;

17 parms s2slp .004;
18 parms s2int 30;

x define the priors;
* the colon on the alphai’s indicate that the prior be applied to all
array entries;

19 prior a0: 7 normal(0,var=s2int);
20 prior al: = mnormal (0, var=s2slp);
21 prior b0 7 normal (30, var=1000);
22 xvariance is reciprocal of WinBUGS precision;

129

23 prior bl 7 normal (0, var=100);

24 prior s2 ~ uniform (0,2);

25 prior s2int ~ uniform(0,200);

26 prior s2slp = uniform (0, .2);

% define the random coefficients line;

27 mu = b0 + bl % moisture + a0[variety]| + al[variety|*moisture;
% likelihood ;

28 model yield ~ normal(mu, var=s2);

29 run;

30

x export the posterior MCMC draws and save the .csv file;

31 proc export data=postwheat outfile=** "7 dbms=csv replace;
32 run;

33

* turn off graphics device;

34 ods graphics off;

* stop saving output file;

35 ods pdf close;

Figure 11.3: Summary plots for the posterior distribution of the fixed effect error.

Diagnostics for s2

1.0

200000 400000 600000 800000 1000000
Iteration

1.0 -
(=} 0 = b
=i 27 &
% 00 I“l"llllll...ul.l- iy E
(&3 -
: g
Z -05- E

3.0 T T T T T T T T T T

0 10 20 30 40 50 0.2 0.4 0.6 0.8 1.0
Lag §2

130

Table 11.2: Summary Statistics for Example 9 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N| Mean | Deviation 25% 50% 75%
b0 10000 [33.3915 1.8131 | 32.2157 | 33.2575 | 34.4000
bl 10000 0.6628 0.0229(0.6482| 0.6628| 0.6769
a0l 10000 0.9742 1.9520 | -0.1256 1.1024 | 2.2535
a02 10000 | -2.0732 1.8871| -3.1367 | -2.0134| -0.8854
a03 10000 | -0.4205 1.9880 | -1.5569(-0.3098 | 0.9436
al4 10000 0.7638 1.8416 | -0.2493 | 0.8688 1.9479
a05 10000 1.0764 2.1092| -0.2014 1.0126 | 23757
a06 10000 [4.6656 1.8665 3.5841 47933 | 5.8752
a07 10000 | -10.6084 1.87531-11.6604 | -10.4881 | -9.3950
al8 10000 2.3814 1.9063 1.2861 245741 3.6102
a09 10000 [-0.1549 19177 -1.2741| -0.0376 1.1177
a010 10000 [3.7665 2.0910| 2.4769| 3.7975 5.0587
all 10000 [-0.0498 0.0262 | -0.0664| -0.0496| -0.0329
al2 10000 | -0.0745 0.0337 | -0.0964| -0.0732(-0.0512
al3 10000 0.0678 0.0285 0.0485| 0.0667 0.0857
al4 10000 [-0.0253 0.0288 | -0.0435| -0.0247 | -0.00575
al5 10000 (-0.0193 0.0313 | -0.0383| -0.0177| 0.00158
alé 10000 0.0235 0.0257 | 0.00730 | 0.0235 0.0395
al7 10000 0.0520 0.0285 0.0334 0.0515 0.0699
al8 10000 0.0233 0.0274 (0.00590 | 0.0234(0.0410
al9 10000 0.0229 0.0273 | 0.00506 | 0.0227 0.0406
allo0 10000 [-0.0340 0.0333 | -0.0557| -0.0339| -0.0119
s2 10000 0.3906 0.0961 0.3224 | 0.3765 0.4415
s2slp 10000 | 0.00453 0.00380 | 0.00231 | 0.00349 | 0.00545
s2int 10000 | 32.4943 22.5842 | 18.3688 | 26.0373 | 38.7539

131

11.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code: SAS Code:
model{ data wheat;
dummy <— obs[1]; infile *¢ "7 firstobs =2;
for (i in 1:60){ input obs variety yield
yield [i] 7 dnorm(mul[i], moisture ;
prec); run ;

mu|[i] <— b0 + blsxmoisture[i

] + a0[variety[i]] + al] ods pdf
variety [1]]* moisture[1i]; file = *¢ B
} ods graphics on;

proc mcmc data=wheat nbi=100000
b0 = dnorm (30, .001); nmc=1000000 thin=100 outpost=
bl 7 dnorm (0, .01); postwheat dic seed=1234 monitor

=(_parms_);

for (i in 1:10){ array a0[10];
a0[i] = dnorm(0,precint); array al[10];
al[i] 7 dnorm (0, precslp); parms b0 30;
} parms bl 0;
s2 7 dunif (0, 2); parms a0: O;
prec <— 1/s82; parms al: O;
s2int ~ dunif(0, 200); parms s2 1;
precint <— 1/s2int; parms s2slp .004;
s2slp 7 dunif(0,.2); parms s2int 30;
precslp <— 1/s2slp; prior a0: ~ normal(0,var=

132

}

#The data set:

obs[] variety []
moisture []
1 1
2 1
3 1
4 1
5 1
6 1
7 2
8 2
9 2
10 2
11 2
12 2
13 3
14 3
15 3
16 3
17 3
18 3
19 4
20 4
21 4
22 4
23 4

yield []

41
69
53
66
64
64
49
44
44
46
57
42
69
62
50
76
48
59
48
60
45
47

62

10

o7

32

52

47

48

30

21

20

26

44

19

50

40

23

58

21

30

22

40

17

21

44

s2int) ;

prior al: = normal (0, var=
s2slp);

prior b0 7 normal (30, var
=1000) ;

xvariance is reciprocal of
WinBUGS precision

prior bl 7 normal (0, var=100)

prior s2 ~ uniform (0,2);

prior s2int ~ uniform (0,200);

prior s2slp 7 uniform (0, .2);

mu = b0 + bl % moisture + a0
variety | + al[variety]x
moisture;

model yield = normal(mu, var=
s2);

run;

proc export data=postwheat
outfile=*" > dbms=csv
replace;

run;

ods graphics off;

ods pdf close;

133

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

43

65

63

71

68

52

68

76

46

45

67

65

79

35

37

30

30

57

49

75

64

46

54

52

52

51

63

13

49

44

o7

o1

27

52

55

11

11

43

38

60

17

20

11

10

48

36

o7

41

15

28

23

23

26

44

134

51
52
53
o4
55
56
o7
58
59
60

END{};

10

10

10

10

10

10

42

61

67

69

60

73

66

71

67

74

13

40

48

53

37

58

44

53

48

59

135

CHAPTER 12

LOGISTIC REGRESSION WITH A BINOMIAL LIKELIHOOD

When the researcher is looking at success/failure data or even count data, a normal likelihood
is not the appropriate choice of distribution to model the data. So it is for this logistic
regression with a binomial likelihood example.

The binomial likelihood models discrete data counting the number of successes in a
sequence of n independent yes/no experiments. Each experiment will yield a success with
probability p. A single experiment, when n = 1, is called a Bernoulli trial. A binomial
distribution consists of n such experiments with success probability p; n is fixed or set and
the parameter of interest is p, the probability of success. As such, p is restricted to be in
the interval 0 < p < 1. The maximum likelihood estimator for p is (number of successes)/n.
However, a Bayesian model will be explained herein.

Recall that the odds for an experiment are found as ﬁ. The log of the odds will be

set equal to the regression line with an intercept and coefficients for each of the covariates,

log (%) = Bo + Bix1 + oz + Baxs.

The log of the odds, or a logit transformation, is used because this function keeps things in
their proper domain. The logit transformation allows for values in the regression equation
along the entire real line, but also keeps p in its restricted interval. Thus, p is transformed
from the real line to the interval 0 < p < 1 and the parameter space is preserved. The logit
transformation allows the 3’s to be any real number, while preserving the parameter space
of the binomial p.

The data will be modeled with a binomial likelihood and normal priors as shown.

Additionally, the logit transformation links the regression line to the binomial probability p.

137

y ~Binomial(n, p)
logit(p) =0 + Bi1z1 + Paw2 + B3
Bo ~Normal(0, 1)
1 ~Normal(0, 1)
s ~Normal(0, 1)

B3 ~Normal(0, 1)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Table 12.1: Arrangement of data is like a three-way ANOVA.

Young | Old
Low Normal ECG P b
Catecholamine | Abnormal ECG Py P,
High Normal ECG b By
Catecholamine | Abnormal ECG P B

12.1 WINBUGS

The data for this example include eight different groups of patients in an observational study
who are at risk of developing coronary heart disease (CHD) and are shown in the side-by-
side code section below. These patients were stratified into eight groups as determined by
how they exhibited four characteristics, or covariates. There are five columns, one response

column and four covariate columns. The values in the response column of CHD are a count of

138

the number of patients who developed coronary heart disease. The covariates are n, the total
number of patients in each group; catecholamine, low=0 or high=1; age group, young=0 or
old=1; and abnormal ECG, no=0 or yes=1. The data may be placed in a table like unto a
three-way ANOVA as shown in table 12.1, indicating that the analysis will look for eight
different binomial probabilities. Indeed, the binomial likelihood appears to be appropriate
because the data set gives the number of patients who developed the disease out of a total

number of patients at risk of possibly developing the disease.

model{
for (i in 1:8){
likelihood — note that WinBUGS requires p first for dbin ()
CHD[i] = dbin(p[i], nRisk[i]);
logit transformation to preserve parameter space of p
logit (p[i]) <— bint 4+ bcat*Cat[i]| + bagexagegrp[i] + becg+abECG]1i |;

priors for each beta_i

bint = dnorm(0,1);
bcat ~ dnorm(0,1);
bage ~ dnorm(0,1);
becg ~ dnorm(0,1);
}

Table 12.2: Summary statistics from WinBUGS

mean sd 25% 25% 50% 5% 97.5%
bint -2.50 0.19 -2.89 -2.63 -2.50 -2.37 -2.13
bcat 0.58 0.30 -0.02 0.39 0.58 0.79 1.18
bage 0.51 0.26 0.00 0.33 051 0.69 1.02
becg 0.30 0.28 -0.25 0.12 0.30 048 0.83
p[l] 0.08 0.01 0.05 0.07 0.08 0.09 0.11

pl2] 012 002 008 011 012 014 0.18
p[3] 010 003 006 008 010 012 0.16
p[4] 016 004 009 013 016 0.18 0.24
p[5] 013 004 007 010 0.13 0.16 0.22
pl6] 020 005 012 017 020 023 0.0
p[7] 017 005 010 014 017 020 027
p[8] 025 005 017 022 025 028 0.35

deviance 33.74 287 30.14 31.62 33.08 35.18 41.03

139

Please note that the parameterization of the binomial likelihood in WinBUGS takes
p first and n second. It is crucial that the researcher become aware of the distributional
definitions WinBUGS is programed with along with those SAS is programmed with. Their
parameterizations are not always equivalent and adjustments need to be made when needed.

The summary statistics are shown in table 12.2, giving summaries for the four 3
parameters and the eight binomial probabilities, p. Figure 12.1 gives a sample of the
posterior summary plots, showing the posterior distribution of the intercept parameter.
The plots indicate that convergence was reached and that there were no problems with
autocorrelation.

One of the most useful mathematical properties of Bayesian logistic regression is that
the parameters can be unraveled in the output. The ;’s and p;’s are related to each other

and as such, can be calculated from the other

1

Po 1 exs

The X matrix is the design matrix of zeros and ones that “turns on” each [3; value when it
applies to a treatment combination. The following equations give each of the equivalencies

particular to this analysis.

140

1

=
1
P =T
1
P =
1
P it Pecg—Bage
1
R s e
1
Ps = 1 + e—Bint—Beat—Lage
1
pr = 1 4+ e Bint—Beat—Becg
1
bs

:1 + 6_5int_ﬁcat_ﬂage_,6ecg

12.2 PROC MCMC

The coding of logistic regression with a binomial likelihood follows the same pattern as
previous models. New to this model is the inclusion of the logistic function as found in line
twenty-two. The likelihood given in line twenty-three gives the binomial parameterization
SAS is programmed for. The MCMC procedure consists of lines thirteen through twenty-
four.

The summary statistics are given in table 12.3 and give summaries for the four (3’s
but only one p. The eight p’s can be calculated using the above equations and the results will
be very similar to those given by WinBUGS. Figure 12.2 gives the posterior plots for the
intercept parameter. These plots indicate that convergence was reached, no autocorrelation

problems were encountered and the density of the posterior is drawn.

* read in the data file;

1 data heart;
2 infile “°¢ 77 firstobs=2;
3 input CHD nRisk Cat agegrp abECG;

141

run;

print
proc
run;

© % 00 3 O % O

ods

—_
o

x turn
11 ods
12

13 proc mcmc data=heart outpost=heartout nmc=500000 thin=50 nbi=10000

initializes

the data file for
print ;

pdf
file=" 7

on graphics device;

graphics on;

inspection;

saving of output as a pdf file;

monitor=(_parms_ pi) dic seed=1234;

% set parameters and

14
15
16
17

parms bint
parms bcat 0;
parms bage O0;
parms becg 0

0;

initial

values;

x define priors;

18 prior bint ~ normal(0,var=1);
19 prior bcat = normal(0,var=1);
20 prior bage ~ normal(0,var=1);
21 prior becg = normal(0,var=1);

* logit transform equamion,

22 pi = logistic(bint + bcat«CAT 4+ bagexagegrp + becg*abECG) ;
% likelihood ;

23 model CHD ~ binomial (n=nRisk, p=pi);

24 run;

25

x turn off graphics device;

26 ods graphics off;

x stop saving output file;

27 ods pdf close;

142

Table 12.3: Summary Statistics for Example 10 from PROC MCMC.

Posterior Summaries

Percentiles
Standard
Parameter N | Mean | Deviation| 25% | 50% | 75%
bint 10000 | -2.5046 0.1983 | -2.6363 | -2.5008 | -2.3718
bcat 10000 | 0.5882 0.3041 | 0.3884 | 0.5918 | 0.7939
bage 10000 | 0.5125 0.2687 | 0.3302 | 0.5130| 0.6928
becg 10000 | 0.3040 0.2734 0.1234 | 0.3053| 0.4914
pi 10000 | 0.2525 0.0454 | 0.2207 | 0.2507 | 0.2829
bint
15k
20k |
=25
-3 0 R ' | | |
-3SF
1] 1] ' 1
1001 2500 5000 7500 10000
teration
(a) Trace plot
pint birt samgie: 10000
1.0F 201
05F A .
ook il._ — = =0 e x_
95t 1.0r e N\
1.0k 0o —— N—
] 20 40 25 -3.0 25 20
iag
(b) Autocorrelation (c) Posterior density

Figure 12.1: WinBUGS summary plots for the posterior distribution of the intercept param-
eter.

143

Figure 12.2: Summary plots for the posterior distribution of the intercept parameter.

Diagnostics for bint

bint

T T T T T T
0 100000 200000 300000 400000 500000

Tteration

Autocorrelation
i =

3 =
Posterior Density

144

12.3 SIDE BY SIDE COMPUTER CODE

WinBUGS code:

model{

for (i in 1:8){

CHD[i] = dbin(p[i], nRisk[i]);
logit (p[i]) <— bint + bcatxCat

[i] + bagexagegrp|[i] + becgx

abECG[1i];
}
bint ~ dnorm(0,1);
bcat dnorm (0,1) ;
bage ~ dnorm(0,1);
becg ~ dnorm(0,1);
}

#The data set:

CHD[] nRisk[] Cat[] agegrp]
abECG []
17 274 0 0 O
15 122 0 1 O
7 59 0 0 1
) 32 0 1 1
1 8 1 0 0
9 39 1 1 0
3 17 1 0 1

145

SAS code:

data heart;

infile ¢ B

input CHD nRisk Cat agegrp
abECG;

run;

proc print;

run;

ods pdf
file=" 7

ods graphics on;

proc mcmc data=heart outpost=
heartout nmc=500000 thin=>50
=10000 monitor=(_parms._ pi)
seed =1234;
parms bint
parms bcat
parms bage
parms becg
bint

prior

prior bcat

firstobs=2;

nbi

dic

" normal (0,var=1);

" normal (0,var=1);

14 58

END{ };

146

run;

ods

ods

prior bage ~ normal(0,var=1);

prior becg ~ normal(0,var=1);

pi = logistic(bint 4+ bcat*CAT
+ bagexagegrp + becgxabECG
)

model CHD ~ binomial (n=nRisk,

p=pi) ;

graphics off;

pdf close;

CHAPTER 13

LOGISTIC REGRESSION WITH RANDOM EFFECT

When the dependent response variable is a proportion, the traditional approach is to perform
a logit transformation on the data. This approach is appropriate when the data give the
number of successes out of the total number of trials as in a binomial likelihood.

In this setting 7, the binomial probability, is modeled as

1
Tl exE

The logit transformation links 7 and the 3 parameters with the function

log (&) = X3.

The covariates will be obtained by using a two-by-two factorial designed cell means model
with a cell for each treatment combination as shown in table 13.1.

The analysis for this example, however, will also deal with replicates in the treatment
combinations and as such is an extension of the mixed model. Two models will be presented
and compared using the Deviance Information Criteria (DIC). The first model will simply
model the binomial probability with the logit transform. The second model will extend this
model to include the added variability of the replicates in each treatment combination.

The extra variability that might exist in this data set may or may not be adequately
modeled with the added variance term. If this were a linear regression model, the o2 term
typically accounts for the amount of noise in the data. The question in this setting is can this
noise be sufficiently captured in the binomial likelihood or should an error term be added to
the model to account for the added variability explicitly? Calculating the DIC values and
comparing them will answer this question.

The data will be modeled with a binomial likelihood and priors as shown below.

Additionally, the logit transformation links the binomial © with the parameters. The first

147

model is

7 ~Binomial(n, p)

logit(p) = X8

B ~Normal(0, 1),

and the second model is

7 ~Binomial(n, p)

logit(p) = XB + e
B ~Normal(0, 1),
e ~Normal(0, 0?)

o? ~Uniform(0, 1).

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Table 13.1: A two-by-two factorial cell means model.

Bean | Cuc Bean | Cuc
arb 1,1 1,2 <~ arb T o
a7l T2.1 72,2 ar3 T3 T4

13.1 WINBUGS

The data come from an experiment monitoring germination rates of seed varieties and seed

types with the goal of estimating the proportion of seeds that will germinate in each treat-

148

ment combination. It includes an identifier for seed variety, a75 or a73; an identifier for
seed type, bean or cuc; the number of seeds that germinated on a particular plate; and the
number of seeds that were on the plate initially. Since the first two columns were character
value entries and WinBUGS is not able to handle this type of data, a fifth column was added
to the data to identify treatment combination membership of which there are four. Before
reading the data into WinBUGS, these two character columns must be omitted to prevent
€rrors.

An interesting feature of this data set is that each treatment combination was repli-
cated five or six times for a total of twenty-one observations. When the data set is structured
like this, it is often helpful to draw a table of the experimental design, as is shown in table
13.1, for use as a bookkeeping tool to keep track of treatment combination membership and
linking this correctly with the corresponding probability.

The first model shown in the code is set up to predict the four binomial probabilities,
one for each treatment combination while ignoring the replicates in the data. The second
model takes into account the extra variability of the replicates by adding an error term to the
logit equation and hierarchically placing priors on its variance parameter. Model comparison

via DIC will determine which model sufficiently captures all of the variability here.

#Model 1

model{
for (i in 1:21){
likelihood — note that WmBUGS requires p first for dbin()
v[i] ~ dbin(pli], n[i]):
logit transformation to preserve parameter space of p
logit (p[i]) <= bltmt[i]];

priors for each b
for (i in 1:4){

b[i] 7 dnorm(0, 1);
}

}
#Model 2

model{
for(i in 1:21){
likelihood — note that WmBUGS requires p first for dbin()

149

r[i] 7 dbin(p[i], n[i]);
logit transformation to preserve parameter space of p
logit (p[i]) <— b[tmt[i]] + e[i];

priors for each b
for (i in 1:4){

b[i] 7 dnorm(0,1);
}

priors for random error term
for (i in 1:21){

e[i] 7 dnorm (0, prec);

}

hyperprior for variance and also adjusting variance in terms of
precision

s2 7 dunif(0,1);
prec <— 1/s82;

}

Please note that the parameterization of the binomial likelihood in WinBUGS takes
p first and n second. It is crucial that the researcher become aware of the distributional
definitions WinBUGS is programmed with along with those SAS is programmed with. Their
parameterizations are not always equivalent and adjustments need to be made as needed.

The evaluation of model fit between the two models compares the two deviance
information criteria values with the lower number indicating the model with the better fit.
The first model gives a DIC value of 115.4 while the second model gives a DIC value of 111.7.
Thus the second model with the term accounting for added variability among the replicates
fits the data more accurately. This demonstrates that mixed models indeed are a powerful
tool in data analysis as a researcher searches for a model that best fits the data.

The summary statistics are shown in table 13.2, giving posterior summaries of the
four § parameters and the twenty-one 7 parameters from model one. Figure 13.1 gives a
sample of the posterior summary plots, showing the posterior distribution of 3; from model
one. The plots indicate that convergence was reached and that there were no problems with

autocorrelation.

150

Table 13.2: Summary statistics from model 1 in WinBUGS.

mean sd 2.5% 25% 50% 5% 97.5%
-0.55 0.12 -0.80 -0.64 -0.55 -0.47 -0.30
0.80 0.12 0.56 0.71 0.80 0.88 1.05
-0.40 0.18 -0.76 -0.52 -0.40 -0.28 -0.04
0.13 0.17 -0.19 0.01 0.12 0.24 0.45
0.37 0.03 0.31 0.35 0.37 0.38 0.42
0.37 0.03 0.31 0.35 0.37 0.38 0.42
0.37 0.03 0.31 0.35 0.37 0.38 0.42
0.37 0.03 0.31 0.35 0.37 0.38 0.42
0.37 0.03 0.31 0.35 0.37 0.38 0.42
0.69 0.03 0.64 0.67 0.69 0.71 0.74
0.69 0.03 0.64 0.67 0.69 0.71 0.74
0.69 0.03 0.64 0.67 0.69 0.71 0.74

1

N —

Ne) ~J O Ot i~
AP A/ L S R L e e R A et L e e UL s e LY

Tttt OO oo
S0 OT e W = e 0l N =

0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[10 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[ll 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[12 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[13 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[l4 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[15 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[16 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[17 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[18 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[19 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[20 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[21 0.53 0.04 0.45 0.50 0.53 0.56 0.61

deviance 111.52 2.79 108.10 109.40 110.90 112.90 118.40

A useful mathematical property of the logit transform is that, like in logistic regres-

sion, one can convert each of the 3’s to estimates of the binomial probabilities 7; as

B 1
[EA

Thus, 3 gives a binomial probability m; = 0.3659. Notice that the first five p estimates shown
in table 13.2 are equivalent. The reason for this is that for each treatment combination,

there are five or six replicates in the data but only one probability estimate. Each of the

other three 7; estimates can be transformed in like manner.

151

bi1}

T

0.0
-0.28
-05
-0.75
-1.0
-1.25¢

T

T

T

L) 1 1 1
1001 2500 3000 TR 10000
teration

(a) Trace plot

B[1] b{1] sample. 10000
1.0F 40r
Y 30k ,/t‘w\
oot --- S 20} \
-05F 10F J \'\
10 0of S
' 1 [| U T T
0 20 40 -1& -1.0 -0.5
fag
(b) Autocorrelation (¢) Posterior density

Figure 13.1: WinBUGS summary plots for the posterior distribution of 3; from model 1.

13.2 PROC MCMC

As was coded in WinBUGS, two models are presented here for SAS to run. Notice how these
models are very similar to the models for logistic regression. However, before reading in the
data file to SAS, a column with indicator values from 1 to 21 that refer to the observation
numbers was added to the data. This column was needed to include the error term in
the second model. The MCMC procedures begin on lines thirteen and twenty-three. The
second model needed more thinning than the first model to reduce autocorrelation and reach
convergence satisfactorily. Notice that these two models have the logit transform in lines
eighteen and thirty-three with model two adding the error term. Model two also has priors
on this error term and its variance parameter. The likelihood statements are in lines nineteen

and thirty-four.

152

read in the data file;
data seeds;
infile *“¢ B firstobs=2;
input seed $ type $ r n tmt observ;
run;

print the data file for inspection;
proc print;
run;

initializes saving of output as a pdf file;

ods pdf

10 file=*" B

* turn on graphics device;

11 ods graphics on;

12 xModel 1;

13 proc mecmc data=seeds outpost=seedsout nmc=500000 thin=50 nbi=10000
monitor=(b pi) dic seed=1234;

* define arrays of length 4;

14 array b[4];

15 array pi[4];

% set parameter and initial value;

* the colon indicates that the initial value be applied to all array
entries ;

16 parms b: 0;

x define prior;

* the colon indicates that the distribution be applied to all array

*
1
2
3
4
)
*
6
7
8
*
9

entries ;
17 prior b: 7 normal (0, var=1);
* logit transformation equation to preserve parameter space of p;
18 pi[tmt] = logistic(b[tmt]) ;
x likelihood;
19 model r ~ binomial (n=n, p=pi[tmt]);
20 run;
21

22 xModel 2;

23 proc meme data=seeds outpost=seedsout nmc=5000000 thin=>500 nbi
=10000 monitor=(b pi) dic seed=1234;

* define arrays of length 4 and 21;

24 array b [4];
25 array pi[4];
26 array e[21];

* set parameters and initial values;
* the colon indicates that the initial values be applied to all array

entries ;
27 parms b:0;
28 parms e: 0;

153

29 parms s2 .5;
x define prior;
* the colon indicates that the distribution be applied to all array

entries;
30 prior b: 7 normal (0, var=1);
31 prior e: ~ normal (0, var=s2);
32 prior s2 7 uniform (0, 1);
* logit transformation equation to preserve parameter space of p;
33 pi[tmt] = logistic(b[tmt] + e[observ]);
* likelihood ;
34 model r ~ binomial (n=n, p=pi[tmt]);
35 run;
36

* turn off graphics device;
37 ods graphics off;

* stop saving output file;
38 ods pdf close;

Table 13.3: Summary Statistics for model 1 from PROC MCMC.

Posterior Summaries

Percentiles
Standard
Parameter N | Mean | Deviation| 25% | 50% | 75%
b1 10000 | -0.5529 0.1256 | -0.6380 [-0.5530 | -0.4671
b2 10000 | 0.7976 0.1238 | 0.7142 | 0.7973 | 0.8794
b3 10000 | -0.4036 0.1814 | -0.5247 [-0.4022 | -0.2793
b4 10000 | 0.1234 0.1661 | 0.0112| 0.1226 | 0.2324

The summary statistics are given in table 13.3 for model one, showing posterior

summaries of the four § parameters. Figure 13.2 gives the posterior plots for the distribution

of 4, from model one. These plots indicate that convergence was reached, no autocorrelation

problems exist, and the density of the posterior is drawn. The DIC values calculated in SAS

also indicate that model two is the better fitting model for this data.

Even though the summaries do not give the specific 7; values, they can be calculated

from the 3; values as was discussed in the WinBUGS section. The logit transform of these

154

Figure 13.2: Summary plots for the posterior distribution of 3; from model 1.

Diagnostics for bl
=
L0 T T T T T
0 100000 200000 300000 400000 500000
Tteration
1.0
{m| 0.5 ‘E‘
a 2] @
& g
= =
£ 00 5
o -
=] [
= =
2 -05- &
1.0 N T T T T T T T T T T
0 10 20 30 40 50 -1.0 -0.8 -0.6 -0.4 -0.2
Lag bl

SAS values gives very similar 7; values as calculated from the WinBUGS’ output, once again
showing that WinBUGS and SAS produce very similar results in the calculation of the pos-
terior distributions of the parameters and demonstrating that the MCMC algorithms indeed
converge in distribution to the desired posterior distribution of the conditional probability

of the parameters given the data.

155

13.3 SIDE BY SIDE COMPUTER CODE

WinBUGS code: SAS code:
#Model 1 data seeds;
model{ infile *¢ Y firstobs=2;
for (i in 1:21){ input seed $ type $ r n tmt
r[i] 7 dbin(p[i], n[i]); observ;
logit (p[i]) <— b[tmt[i]]; run ;
}
for (i in 1:4){ proc print;
b[i] 7 dnorm (0, 1); run;
}
} ods pdf
#Model 2 file="¢ B
model{ ods graphics on;
for (i in 1:21){ xModel 1;
r[i] ~ dbin(p[i], n[i]); proc memc data=seeds outpost=
logit (p[i]) <— b[tmt[i]] + e]i seedsout nmc=>500000 thin=50 nbi
l; =10000 monitor=(b pi) dic seed
} =1234;
for(i in 1:4){ array b[4];
b[i] 7 dnorm(0,1); array pi[4];
} parms b: 0;
for (i in 1:21){ prior b: 7 normal (0, var=1);
e[i] 7 dnorm (0, prec); pi[tmt] = logistic(b[tmt]) ;
} model r ~ binomial (n=n, p=pi]

156

s2 7 dunif(0,1);

prec <— 1/s2;

}
#The data set:
seed [] type[] 1]
a75 bean 10 39 1
a75 bean 23 62 1
a7h bean 23 81 1
a75 bean 26 51 1
a75 bean 17 39 1
a75 cuc 5 6 2
a75 cuc 53 74 2
a7b cuc 55 T2 2
a75 cuc 32 51 2
a75 cuc 49 79 2
a75 cuc 10 13 2
a73 bean 8 16 3
a73 bean 10 30 3
a73 bean 8 28 3
a73 bean 23 45 3
a73 bean 0 4 3
a73 cuc 3 12 4
a73 cuc 22 41 4
a73 cuc 15 30 4
a73 cuc 32 51 4
a73 cuc 3 7 4

END{ };

n[] tmt[]

tmt]) ;

run;

x*Model 2;
proc mcmc data=seeds outpost=
seedsout nmc=5000000 thin=>500
nbi=10000 monitor=(b pi) dic
seed =1234;
array b[4];
array pi[4];
array e[21];
parms b:0;
parms e: 0;

parms s2 .5;

prior b: 7 normal (0, var=1);

prior e: ~ normal (0, var=s2);

prior s2 7 uniform (0, 1);

pi[tmt] = logistic(b[tmt] + e
[observ]) ;

model r ~ binomial (n=n, p=pi]
tmt]) ;

run;

ods graphics off;

ods pdf close;

157

158

CHAPTER 14

POISSON MODEL

When the quantity of interest is the number of occurrences of an event over a given interval,
the Poisson distribution is the distribution of choice to model the probability of these rates.
The number of occurrences is a discrete count and the interval could be measured in time,
distance, area, or volume, among others.

Three such situations where the Poisson distribution is appropriate are the number
of pumps that fail at time ¢, the number of customers to arrive at a checkout stand at time
t, or the number of bombs that hit in an area a. Figure 14.1 plots the data set for example
12.

The basic Poisson model shown below can be expanded to account for more compli-
cated situations as needed to accommodate the design of the experiment and accompanying
research questions. Five models will be presented in this chapter to demonstrate this flexi-

bility.
y; ~Poisson()\;)

A =0,

0 ~Gamma(a, [3)

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

159

Time vs.Number of Pump Failures

20
1

Number of Failed Pumps
10
|

0 20 40 60 80 100 120

Time

Figure 14.1: Graph of pump failure data.

14.1 WINBUGS

The data come from an experiment monitoring the number of pumps that fail at time t.
The Poisson model is appropriate because the data are counts. Figure 14.1 shows the
relationship between these two variables. Five different models are given below with their
accompanying deviance information criteria (DIC) values displayed in table 14.1 which will

be used to make a decision about model selection.

#Model 1 is basic Poisson model
model {
prior for theta
theta ~ dgamma(1l.5, 1);
for(i in 1:10){
likelihood
fail[i] = dpois(lambda[i]) ;
link function relating lambda, theta, and the covariate time
lambda[i] <— thetaxtime[1i];
}
}

160

#Model 2 puts a hierarchy on the parameters of alpha and beta
model{

prior for theta

theta ~ dgamma(alpha, beta);

for (i in 1:10){

likelihood

fail[i] = dpois(lambda[i]);

link function relating lambda, theta, and the covariate time

lambda|[i] <— thetaxtimeli];

}

hyperpriors for theta

alpha = dexp(.1);

beta ~ dgamma(5, .5);

}

#Model 3 allows theta to vary with each i
model{
for (i in 1:10){
prior for theta
theta[i] = dgamma(alpha, beta);
likelihood
fail[i] 7 dpois(lambdali]);
link function relating lambda, theta, and the covariate time
lambda|[i] <— theta[i]*time[i];
}
hyperpriors for theta
alpha ~ dexp(.1);
beta ~ dgamma(5, .5);

}

#Model 4 adds an error term as for mixed models

model {

for (i in 1:10){

prior for theta

theta[i] = dgamma(alpha, beta);

likelihood

fail[i] ~ dpois(lambda[i]);

link function relating lambda, theta, the covariate time, and
random effect

lambda|[i] <— theta[i]*time[i] + u[i];

prior for random effect

u[i] = dexp(1);

}

hyperpriors for theta

alpha = dexp (.1);

beta = dgamma(5, .5);

161

}

#Model 5 keeps the error term but models one theta
model {

prior for theta

theta ~ dgamma(alpha, beta);

for(i in 1:10){

likelihood

fail[i] = dpois(lambda[i]);

link function relating lambda, theta, the covariate time, and

random effect

lambda[i] <— thetaxtime[i] + u[i];

prior for random effect

u[i] = dexp(1);

}

hyperpriors for theta
alpha = dexp(.1);
beta = dgamma(5, .5);

}

Model one is the basic Poisson model. Model two puts hyperpriors on the parameters
of o and (3. Model three keeps the hierarchical structure of model two while also allowing
0 to vary with each time t. Model four builds on model three by adding a term to the A
equation in an effort to account for additional variability that may be present as was done
for mixed models. Model five takes model four and changes 6 to one occurrence. As can
be seen in table 14.1, models three and four are the best fitting models because they have
the two lowest DIC values. There is a rather large drop in DIC from models one and two
to models three and four. Although allowing 6 to vary with each time ¢ appears to be the
right way to model this parameter, is the extra variability term adding information to the
model?

This answer is a judgement call by the researcher. We would conclude that since
the two models’ DIC values are so close, the slightly better fit from the extra variability
term does not add enough information to balance the fact that this model has an additional
ten error parameters. Thus, model three appears to be the model of choice because it is
simpler than model four. This same conclusion is reached when looking at the DIC values

as calculated by SASg 9.2.

162

The summary statistics are shown in table 14.2, giving the posterior summaries
for model three. Figure 14.2 gives a sample of the posterior summary plots, showing the
posterior distribution of the a parameter in model 3. The plots indicate that convergence

was reached and that there were no problems with autocorrelation.

Table 14.1: Table of DIC for each model.

Model 1 Model 2 Model 3 Model 4 Model 5
WinBUGS 160.06 160.00 52.96 51.50 63.61
SAS 160.04 159.95 53.08 51.53 63.12

Table 14.2: Summary statistics from model 3 in WinBUGS.

mean sd 25% 25% 50% 75% 97.5%

theta[l] 0.07 0.03 0.03 0.05 0.06 0.08 0.13
theta[2] 0.13 0.09 0.02 0.07 0.12 0.18 0.34
theta[3] 0.10 0.04 0.04 0.07 0.09 0.12 0.19
theta[4] 0.12 0.03 0.07 0.10 0.12 0.14 0.19
theta[5] 0.52 0.25 0.15 0.34 048 0.66 1.13
thetal6] 0.59 0.13 036 0.49 0.58 0.67 0.87
theta[7] 0.57 0.39 0.08 0.29 049 0.76 1.53
theta[8] 0.57 0.39 0.09 029 048 0.74 1.52
theta[9] 1.01 0.49 032 0.66 0.92 1.26 2.19
theta[10] 1.68 0.38 1.02 141 1.65 1.92 2.49

alpha 1.62 059 073 120 154 1.95 3.02
beta 3.76 156 149 2.62 350 4.60 7.53
deviance 45.31 5.23 37.33 4147 4456 48.30 57.61

14.2 PROC MCMC

The same five models are presented in SAS code as was done for WinBUGS above. As can
be seen in table 14.1, DIC dropped significantly from models one and two to models three
and four. Thus models three and four are the better fitting models because they have the
two lowest DIC values. Again, allowing 6 to vary with each time ¢ appears to be the right
way to model this parameter, and we will select model three as the model of choice here

because it is the simpler model between models three and four.

163

alpha
80}
401
201
0or
561 25'00 50‘00 ?E:UO 1 0600
iteration

(a) Trace plot

alpha -alpha sampla: 10000
‘0 = 08 B .
05t 08} /“ \
g0 - - 04l i \
0.5f 02F / \.\\
=10 poE ~ -
1 1 I T 1 1 T
0 20 49 e 20 40
lag
(b) Autocorrelation (¢) Posterior density

Figure 14.2: WinBUGS summary plots for the posterior distribution of the o parameter in
model 3.

Lines one through four direct SAS to read in the data. However, notice that line
three references an additional column in the data set. It is necessary to add a column to
the data set prior to reading it in to SAS that indicates the observation number in order to
subscript the #;’s and u;’s in models three, four, and five. This column consists of a sequence
from 1 to 10. It is good practice to look over a print out of the data after SAS has read it in,
which is what lines six and seven accomplish. Lines nine, ten, and seventy-six are a useful
tool for a researcher to capture the output in *.pdf format, but are not necessary to run the
analysis.

Lines eleven and seventy-five initialize and close the graphics windows where the plots
are sent. Model one is coded in lines thirteen through eighteen; model two is coded in lines
twenty-one through thirty; model three is coded in lines thirty-three through forty-three;

model four is coded in lines forty-six through fifty-nine; model five is coded in lines sixty-two

164

through seventy-four. The first line in each model where PROC MCMC is initialized and
various options are called, increase the number of MCMC iterations, thinning, and number
of burn-in iterations from models two to three and again from models three to four. This
increase has the affect of decreasing autocorrelation and aids in the reaching of convergence.

Notice that all five models have the same likelihood statement found in lines sev-
enteen, twenty-nine, forty-two, fifty-eight, and seventy-three. Models three, four, and five
need arrays to hold the ten 6;’s and/or the ten u;’s, and consequently, the parms and prior
statements for these variables in these models include the use of a colon to indicate that the
respective values be applied to each entry in the array. The indicator column in the data
set is referenced in models three, four and five to correctly subscript 6; and/or u; as can be
seen in lines forty-one, fifty-seven, and seventy-two.

As a word of caution to the researcher, it is imperative that one become familiar
with the distributional parameterizations in both WinBUGS and SASg 9.2. The reference
manuals for both programs are invaluable in this regard. These two programs do not define
the distributions exactly the same way. If the researcher is unaware of the definitions,

problems may arise from carelessness.

* read in the data file;

1 data pumps;

2 infile “°¢ 77 firstobs=2;

% create indicator column for data file;
3 input time fail ind;

4 run;

5

x print the data file for inspection;

6 proc print;

7 run;

8

x initializes saving of output as a pdf file;
9 ods pdf

10 file = ¢¢ 7

)
* turn on graphics device;

11 ods graphics on;
12
* Model 1;

165

13 proc memc data=pumps outpost=pumpsout nmc=10000 thin=1 nbi=1000
monitor=(_parms_) dic seed=1234;
* set parameter and initial value;

14 parms theta 1.5;
% define prior;
15 prior theta ~ gamma(l.5, iscale=1);

x link function relating lambda, theta, and the covariate time;

16 lambda = thetaxtime;

* likelihood ;

17 model fail = poisson (lambda);

18 run;

19

20

x*Model 2;

21 proc mcmc data=pumps outpost=pumpsout nmc=10000 thin=1 nbi=1000
monitor=(_parms_) dic seed=1234;

% set parameters and initial values;

22 parms theta 1.5;

23 parms alpha 1;

24 parms beta 1.5;

* define priors;

25 prior theta ~ gamma(alpha,iscale=beta);
26 prior alpha 7 expon(iscale=.1);

27 prior beta ~ gamma(5, iscale=.5);

* link function relating lambda, theta, and the covariate time;

28 lambda = thetaxtime;

% likelihood ;

29 model fail = poisson (lambda);

30 run;

31

32

x*Model 3;

33 proc mcmc data=pumps outpost=pumpsout nmc=500000 thin=50 nbi=10000
monitor=(_parms_) dic seed=1234;

* define array of length 4;

34 array theta[10];

% set parameters and initial values;

% the colon on theta indicates that the initial wvalue be applied to all
array entries;

35 parms theta: 1.5;
36 parms alpha 2;
37 parms beta 5;

* define priors;

* the colon on theta indicates that the distribution be applied to all
array entries;

38 prior theta: ~ gamma(alpha, iscale=beta);

39 prior alpha 7 expon(iscale=.1);

166

40 prior beta = gamma(5, iscale=.5);

* link function relating lambda, theta, and the covariate time;

41 lambda = theta[ind]xtime;

* likelihood ;

42 model fail = poisson (lambda);

43 run;

44

45

x*Model 4;

46 proc mcmc data=pumps outpost=pumpsout nmc=1000000 thin=100 nbi=10000
monitor=(theta alpha beta u lambda) dic seed=1234;

* define arrays for theta and random effect;

47 array theta[10];

48 array u[l10];

% set parameters and initial values;

* the colon on theta and u indicate that the initial value be applied
to all array entries;

49 parms theta: 1.5;
50 parms u: 0;

51 parms alpha 2;
52 parms beta 5;

x define priors;
* the colon on theta and u indicate that the distribution be applied to
all array entries;

53 prior theta: ~ gamma(alpha, iscale=beta);
54 prior alpha = expon(iscale=.1);

55 prior beta ~ gamma(5, iscale=.5);

56 prior u: ~ expon(iscale=1);

x link function relating lambda, theta, the random effect and the
covariate time;

57 lambda = theta[ind]*time 4+ u[ind];
x likelihood;

58 model fail ~ poisson (lambda);

59 run;

60

61

*Model 5;

62 proc mcmc data=pumps outpost=pumpsout nmc=1000000 thin=100 nbi=10000
monitor=(theta alpha beta u lambda) dic seed=1234;

x define array for random effect;

63 array u[10];

% set parameters and initial values;

* the colon on u indicates that the initial value be applied to all
array entries;

64 parms theta 1.5;
65 parms u: 0;
66 parms alpha 2;

167

67 parms beta 5;

x define priors;

* the colon on u indicates that the distribution be applied to all
array entries;

68 prior theta ~ gamma(alpha, iscale=beta);
69 prior alpha = expon(iscale=.1);

70 prior beta ~ gamma(5, iscale=.5);

71 prior u: ~ expon(iscale=1);

* link function relating lambda, theta, the random effect and the
covariate time;

72 lambda = thetaxtime + ulind];
% likelihood ;

73 model fail = poisson (lambda);
74 run;

* turn off graphics device;
75 ods graphics off;

* stop saving output file;
76 ods pdf close;

Table 14.3: Summary Statistics of Model 3 from PROC MCMC.

Posterior Summaries

Percentiles
Standard
Parameter N [Mean | Deviation | 25% [50% | 75%
thetal 10000 | 0.0674 0.0268 | 0.0478 1 0.0640 | 0.0829
theta2 10000 | 0.1346 0.0851(0.0712]0.1178] 0.1814
theta3 10000 | 0.0980 0.0391 | 0.0696 | 0.0925 | 0.1212
theta4 10000 | 0.1209 0.0314 | 0.0987 | 0.1182 | 0.1407
theta5 10000 | 0.5188 0.2494 | 0.3374 1 0.4783 | 0.6554
theta6 10000 | 0.5851 0.1291 | 0.4932 1 0.5744 | 0.6677
theta7 10000 | 0.5583 0.3800 | 0.2915 1 0.4789 | 0.7304
theta8 10000 [0.5714 0.3894 | 0.2926 | 0.4823 | 0.7555
theta9 10000 | 0.9940 0.4814 | 0.6587 | 0.9031 | 1.2315
thetal0 10000 | 1.6644 0.3758 [1.3956 | 1.6323 | 1.8976
alpha 10000 | 1.6273 0.5817 [1.2122]11.5501 | 1.9657
beta 10000 | 3.8204 1.5617 | 2.6867 | 3.5764 | 4.6706

168

Figure 14.3: Summary plots for the posterior distribution of the o parameter from model 3.

Diagnostics for alpha
5 -
E
=
"=
0 T T T T T
0 100000 200000 300000 400000 500000
Tteration
1.0
{m| 0.5 ‘E‘
=) 27 =
E g
g 0.0 I||| f
=) : 12
o -
c =
Z -05- S
. . &
-1.0 7 T T T T T T T T T
0 10 20 30 40 50 0 2 4 6
Lag alpha

The summary statistics are given in table 14.3, showing posterior summaries from
model three. Figure 14.3 gives the posterior plots for the distribution of the o parameter
from model three. These plots indicate that convergence was reached, no autocorrelation

problems exist and the density of the posterior is drawn.

169

14.3 SIDE BY SIDE COMPUTER CODE

WinBUGS Code:

#Model 1

model{
theta ~ dgamma(1l.5, 1);

for(i in 1:10){

fail [i] dpois (lambda[i]) ;

lambda[i] <— thetaxtimel1i];

}
}

#Model 2 puts a hierarchy on the
parameters of alpha and beta

model{
theta ~ dgamma(alpha, beta);

for(i in 1:10){

fail [1] dpois (lambda[i]) ;

lambda[i] <— thetaxtime[1i];

}

alpha 7 dexp(.1);
beta ~ dgamma(5, .5);
}

#Model 3 allows theta to vary

with each i

170

SAS Code:
data pumps;
infile “¢ 77 firstobs=2;
input time fail ind;

run;

proc print;

run;

ods pdf
file = *¢ T
ods graphics on;
* Model 1;
proc mcmc data=pumps outpost=
pumpsout nmc=10000 thin=1 nbi
=1000 monitor=(_parms_) dic
seed =1234;
parms theta 1.5;
prior theta ~ gamma(1l.5,
iscale=1);
lambda = thetaxtime;
model fail poisson (lambda) ;

run;

+*Model 2;

model{

for(i in 1:10){

theta[i] ~ dgamma(alpha, beta)
fail[i] = dpois(lambda[i]);
lambda|[i] <— theta[i]xtime][i];
}

alpha = dexp(.1);

beta ~ dgamma(5, .5);

}

#Model 4 adds an error term as

for mixed models
model{

for(i in 1:10){

theta[i] ~ dgamma(alpha
beta) ;
fail [i] = dpois(lambda[i]) ;

lambda|[i] <— theta[i]xtime]
il +ulil;

uli] 7 dexp(1);

}

alpha = dexp(.1);

beta ~ dgamma(5, .5);

}

#Model 5 keeps the error term but

proc mcmc data=pumps outpost=
pumpsout nmc=10000 thin=1 nbi
=1000 monitor=(_parms_) dic
seed =1234;
parms theta 1.5;
parms alpha 1;
parms beta 1.5;
prior theta ~ gamma(alpha,
iscale=beta) ;
prior alpha = expon(iscale
=.1);

prior beta ~ gamma(5, iscale

=.5);
lambda = thetaxtime;
model fail ~ poisson (lambda);
run;
*Model 3;

proc mcmc data=pumps outpost=

pumpsout nmc=500000 thin=>50 nbi
=10000 monitor=(_parms_) dic
seed =1234;

array theta [10];

parms theta: 1.5;

parms alpha 2;

parms beta b5;

prior theta: ~ gamma(alpha,

iscale=beta) ;

171

models one theta
model{
theta ~ dgamma(alpha, beta);
for (i in 1:10){
fail[i] = dpois(lambda[i]) ;

lambda|[i] <— thetaxtime[i] + u

uli] 7 dexp(1);

alpha = dexp(.1);
beta ~ dgamma(5, .5);

}

#The data set:
time [] fail []
94.5 5

15.7 1

62.9 5

126 14

5.24 3

31.4 19

1.05 1

1.05 1

2.1 4

10.5 22

END{ };

prior alpha = expon(iscale
=.1);
prior beta ~ gamma(5, iscale
=.5);
lambda = theta[ind]*time;
model fail = poisson (lambda);
run ;
x*Model 4;

proc mcmc data=pumps outpost=

pumpsout nmc=1000000 thin=100

nbi=10000 monitor=(theta alpha

beta u lambda) dic seed=1234;

172

array theta[10];

array u[l0];

parms theta: 1.5;

parms u: 0;

parms alpha 2;

parms beta 5;

prior theta: ~ gamma(alpha,
iscale=beta) ;

prior alpha = expon(iscale
=.1);

prior beta ~ gamma(5, iscale
=.5);

prior u: ~ expon(iscale=1);

lambda = theta[ind]|*time + uf

ind |;

model fail = poisson (lambda);
run ;
*Model 5;
proc mcmc data=pumps outpost=
pumpsout nmc=1000000 thin=100
nbi=10000 monitor=(theta alpha
beta u lambda) dic seed=1234;
array u[l10];
parms theta 1.5;
parms u: 0;
parms alpha 2;
parms beta 5;
prior theta ~ gamma(alpha,
iscale=beta) ;
prior alpha = expon(iscale
=.1);
prior beta ~ gamma(5, iscale
=.5);
prior u: ~ expon(iscale=1);
lambda = thetaxtime + u[ind];
model fail = poisson (lambda);
run;
ods graphics off;

ods pdf close;

173

CHAPTER 15

POISSON REGRESSION

There are some settings when the response variable is a count and the researcher is interested
in how this count changes as the explanatory variable increases. Omne such setting is in
pharmaceutical studies of how the response variable changes as the dose is increased. The
tool for analyzing this situation is Poisson Regression.

The likelihood for the data is Poisson and the mean outcome, the A, is considered log-
linear in the coefficients. It is typical to transform the response and explanatory variable(s)
to the log-scale because this transformation allows the model to work along the real line,
while keeping the outcome in its correct space. The log of the mean will be modeled and

then exponentiated for interpretability of the results,

Y ~Poisson(\)
log(A) =X

\ =eXB,

The analysis here is designed to model how the outcome changes as the explanatory vari-
able(s) increase. The graph of the data shown in figure 15.1 shows how the log-response
relates to the log-dose for this example’s data.

The setting here consists of counting the number of colonies that grow on a particular
plate that has been exposed to a specific treatment dose. Since the response variable consists
of counts, it is reasonable to model these with a Poisson likelihood. The mean response, A,
will undergo a log-linear transformation and the 3’s will be given priors.

An interesting feature of this particular data set, however, is the fact that there
are replicates for each of the six doses. The inclusion of these replicates comes from the

researcher thoughtfully designing the experiment so that the variability due to measurement

175

Plot of data in Log scale

4.0

Log(colonies)
35
|

3.0

Log(dose)

Figure 15.1: Graph of the data on the log scale.

error could be accounted for in the analysis. As such, two models will be presented in the
following code, the first model will include a term to model this additional variability and
the second model will not. The deviance information criteria, DIC, values will be compared
to determine if the Poisson likelihood can model all of the variability here on its own, or if
the extra variability term adds to the analysis and improves how the model fits the data.
To answer the question of whether or not the number of colonies that grow on a plate

is related to dose amount, the following models will be used to analyze the data. The first

176

model is
y;; ~Poisson(\;)
log(\;) =0 + B log(x + 10) + oz + u;
Bo ~Normal(0, 1)
B1 ~Normal(0, 1)
By ~Normal(0, 1)
u; ~Normal(0, o%)

o? ~Uniform(0, 2),

and the second model is

y;; ~Poisson(\;)

log(\i) =00 + B1log(z + 10) + Box:
Bo ~Normal(0, 1)
B1 ~Normal(0, 1)

By ~Normal(0, 1).

The regression coefficients are the 3’s. The variable x represents the changing dose level; its
initial value starts at zero for the control group and then increases. Notice that in log(\;)’s
second term, 10 is added to x inside the log function. This is done mainly because log(0)
is undefined. In an effort to accommodate this limitation of the log function, it is standard
practice in this type of pharmaceutical setting to add to x the difference in dose between
the control group and the first dose here in this term of the model. The DIC values for each
model will be compared to determine which one fits the data better.

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

177

functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.
15.1 WINBUGS

The data come from an experiment where different doses of a treatment were applied to
plates and the number of colonies that grew as a result were recorded. The question of
interest is the relationship between dose amount and number of colonies that grow on a
plate. Six different dose amounts (0, 10, 33, 100, 333, and 1000) were chosen and each dose
amount was replicated on three plates resulting in eighteen observations. Figure 15.1 shows
how the log-response relates to the log-dose in this data set.

Two models are presented in an effort to determine if the Poisson likelihood is able to
model all of the variability, or if a term is needed to model the variability from the repeated
measurements. The first model includes this random effects term with corresponding prior
distribution while the second model leaves these out. Both sets of code begin with a dummy
variable for plate because WinBUGS requires that all columns in the data set be referenced

and this column is not necessary to run the code.

Model with random effect:
model {
dummy variable to use all columns of data set
dummyl <— plate [1];
for(i in 1:18){
likelihood
colonies[i] = dpois(lambda[i]);
log transformation of mean is linear in the coefficients
log (lambda[i]) <— a + bxlog(dose[i] + 10) + cxdose[i] + u[i];
the random effect prior
u[i] 7 dnorm (0, precd);
}
priors for the beta coefficients
a =~ dnorm (0, 1);
b 7 dnorm (0, 1);
¢ 7 dnorm (0, 1);

178

hyper prior for u’s variance and adjusting it in terms of
precision

s2d 7 dunif (0, 2);

precd <— 1/s2d;

}

Model without random effect:
model{
dummy variable to use all columns of data set
dummyl <— plate [1];
for(i in 1:18){
likelihood
colonies[i] ~ dpois(lambda[i]) ;
log transformation of mean is linear in the coefficients
log (lambda[i]) <— a + bxlog(dose[i] + 10) + cxdose[i];
}

priors for the beta coefficients
a = dnorm (0, 1);
b 7 dnorm (0, 1);
¢ ~ dnorm (0, 1);
}

Deviance information criteria (DIC) values were calculated from both models and can
be used to determine which model fits the data better. Since the lower DIC indicates better
fit and model one’s DIC of 124.211 is lower than model two’s of 152.814, we conclude that
the added term to model the extra variability should be included in the analysis. Therefore,
model one is the model of choice for this data set.

The summary statistics are shown in table 15.1, giving the posterior summaries
for model one. Figure 15.2 gives a sample of the posterior summary plots, showing the
posterior distribution of the intercept from model one. The plots indicate that convergence

was reached and that there were no problems with autocorrelation.
15.2 PROC MCMC

The same two models are presented in SAS code as was done for WinBUGS above. Lines
one through four direct SAS to read in the data, and the use of lines six through seven invoke

the good practice of looking over a print out of the data after SAS has read it in to verify

179

Table 15.1: Summary statistics of the first model from WinBUGS.
mean sd 2.5% 25% 50% 5% 97.5%

a 18l 040 098 156 182 208 256

b 041 011 020 033 040 048 0.63

¢ -000 000 -0.00 -0.00 -0.00 -0.00 -0.00
s2d 0.3 008 004 008 011 016 0.33
u[l] -0.04 023 -051 -0.19 -0.04 0.11 0.42
w2l 020 023 -024 004 019 035 0.66
u3] 045 023 003 029 044 060 093
u[d] -0.17 021 -061 -030 -0.16 -0.02 024
u[5] -0.10 0.21 -051 -023 -0.09 004 031
ul6] 001 021 -040 -0.13 001 0.14 0.42
u[7] -0.36 0.21 -0.80 -0.50 -0.35 -0.22 0.04
u[8] -0.04 019 -042 -0.17 -0.04 008 034
uf9] 0.4 018 -021 002 014 026 051
u[l0] -0.23 020 -0.65 -0.36 -022 -0.10 0.14
ull] 009 018 -0.28 -0.03 0.09 021 045
ul2] 055 017 021 043 055 0.66 0.89
ul13] -021 020 -0.62 -0.34 -020 -0.07 0.16
ull4] -0.10 019 -049 -023 -0.10 0.03 0.26
u[l5] -0.04 019 -042 -0.16 -0.04 0.09 0.33
ull6] -0.23 026 -0.75 -0.39 -023 -0.07 0.6
u[l7] -0.02 025 -051 -0.18 -0.03 0.3 0.6
ull8] 033 025 -0.12 017 032 049 084

deviance 109.92 5.72 100.60 105.80 109.30 113.40 122.70

this was as expected. Lines nine, ten and thirty-eight are a useful tool for a researcher to
capture the output in *.pdf format, but are not necessary to run the analysis.

Lines eleven and thirty-seven initialize and close the graphics windows where the
plots are sent. Model one is coded in lines thirteen through twenty-five and model two is
coded in lines twenty-eight through thirty-six. Notice the large number of MCMC iterations,
thinning, and number of burn-in iterations that are called for in lines thirteen and twenty-
eight. These values were increased in an effort to reduce autocorrelation and aid in the
reaching of convergence. However, the posterior plots indicate some autocorrelation still
exists as can be seen in figure 15.3; the researcher should be mindful of this characteristic

when working with the output.

180

a8
401
30F
20 :
10F !
0of
A0t
Ll I ' 1
201 2500 3000 7500
fteration
(a) Trace plot
2 ‘a sample: 10000
10F st
05 .hl' "D B ’H».'\
4 ost A
-1-0 - DAU .l l_’—‘l‘ T : I
G 26 40 -1 00 10 26 30
ag

(b) Autocorrelation (c) Posterior density

Figure 15.2: WinBUGS summary plots for the posterior distribution of the intercept from
the first model.

The likelihood statements are given in lines twenty-four and thirty-five. The array
statement in lines fourteen through sixteen and lines twenty-nine through thirty initialize
arrays of length eighteen where SAS will keep track of values as the analysis progresses.
When the parms and prior statements refer to arrays, a colon is included to indicate that

the initial values and prior distributions need to be applied to all entries in the array.

¥ 00 3 O ¥ U W N — %

read in the data file;

data dose;
infile ¢ 77 firstobs=2;
input dose plate colonies;

run;

print the data file for

proc print;
run;

initializes

inspection

saving of output as a pdf file;

181

9 ods pdf

10 file =" g

* turn on graphics device;

11 ods graphics on;

12

* Model with random effect;

13 proc mcmc data=dose outpost=doseout nmc=50000000 thin=5000 nbi
=100000 monitor=(a b ¢ s2 u) dic seed=1234;

x define arrays for random effect , loglambda, and lambda;

14 array u[18];

15 array llambda[18];

16 array lambda[18];

% set parameters and initial values;

* the colon indicates that the initial value should be applied to all
array entries;

17 parms u: O;

18 parms a 0 b 0 ¢ 0 s2 1;

x define priors;

* the colon indicates that the distribution be applied to all array

entries ;
19 prior u: ~ normal (0, var=s2);
20 prior a b ¢ ~ normal (0, var=1);
21 prior s2 7 uniform (0, 2);

* log transform of the mean is linear in the coefficients;
22 llambda[plate] = a + bxlog(dose + 10) + cxdose + ul|plate|;
* exponentiating will back transform to give the mean;

23 lambda[plate] = exp(llambda[plate]) ;

% likelihood ;

24 model colonies ~ poisson (lambda[plate]) ;
25 run;

26

27 % Model without random effect ;

28 proc mcmc data=dose outpost=doseout nmc=50000000 thin=5000 nbi
=100000 monitor=(a b c¢) dic seed=1234;

x define arrays for loglambda and lambda;

29 array llambda[18];

30 array lambda[18];

* set parameters and initial values;

31 parms a 0 b 0 ¢ O;

define priors;

32 prior a b ¢ 7 normal(0, var=1);

x log transform of the mean is linear in the coefficieints;

33 llambda[plate] = a + bxlog(dose + 10) + cxdose;

x exponentiating will back transform to give the mean;

34 lambda | plate] = exp(llambda|plate]);
% likelihood ;
35 model colonies ~ poisson (lambda[plate]) ;

182

36 run;

* turn off graphics device;

37 ods graphics off;

* stop saving output file;

38 ods pdf close;

Table 15.2: Summary Statistics

of the first model in Example 13 from

PROC MCMC.

Posterior Summaries
Percentiles
Standard

Parameter N| Mean | Deviation 25% 50% 75%

10000 1.7754 0.4366 1.5020 1.7927 | 2.0693
b 10000 0.4177 0.1191 0.3372| 0.4129| 04919
c 10000 [-0.00136 | 0.000539 [-0.00169 | -0.00133 | -0.00100
s2 10000 0.1329 0.0813 0.0800(0.1134| 0.1614
ul 10000 | -0.0279 0.2420 | -0.1869 | -0.0279(0.1233
u2 10000 0.2004 0.2398 | 0.0418| 0.1925 0.3489
u3 10000 0.4624 0.2414 | 0.2992| 0.4478| 0.6169
u4 10000 | -0.1631 0.2175| -0.3026 | -0.1579 | -0.0204
u5 10000 | -0.0891 0.2127 | -0.2301| -0.0873 | 0.0529
u6 10000 | 0.00838 0.2094 -0.1269 | 0.00581 0.1465
u7 10000 [-0.3632 0.2153 | -0.4996 | -0.3548| -0.2158
u8 10000 [-0.0398 0.1925| -0.1650| -0.0382 0.0863
u9 10000 0.1417 0.1833 0.0208 0.1396| 0.2616
ulo0 10000 | -0.2425 0.2025 | -0.3708 | -0.2339(-0.1064
ull 10000 0.0823 0.1858 -0.0384| 0.0809 (| 0.2056
ul2 10000 0.5433 0.1755 0.4258 | 0.5384| 0.6591
ul3 10000 [-0.2179 0.2045 | -0.3439| -0.2098| -0.0789
ul4 10000 | -0.1101 0.1960 [-0.2364 | -0.1052 0.0225
ul5 10000 | -0.0499 0.1934 | -0.1736 | -0.0437 0.0795
ulé6 10000 | -0.2236 0.2525(-0.3811| -0.2145| -0.0606
ul?7 10000 [-0.0166 0.2456 | -0.1739| -0.0205 0.1417
ul8 10000 0.3377 0.2464 | 0.1735| 0.3289| 04918

183

Figure 15.3: Summary plots for the posterior distribution of the intercept from the first
model.

Diagnostics for a

0 10000000 20000000 30000000 40000000 50000000
Tteration
1.0 4
B
g 054 =
P ‘ I :
% 0.0 |||||I"““"||III|| g
(5] E=|
=] =
: el
I -0.5- o
l'O_I T T T T T T T T T
0 10 20 30 40 50 0 1 2 3
Lag a

SAS utilizes the plate column in the data set where WinBUGS did not. This column
is used as an indicator for observation number in lines twenty-two through twenty-four and
lines thirty-three through thirty-five. It should be noted that SAS does not require the use
of all columns in the data set as WinBUGS does.

The summary statistics are given in table 15.2, showing the posterior summaries from
model one. Figure 15.3 gives the posterior plots for the distribution of the intercept from
model one. These plots indicate that convergence was reached, but some autocorrelation still
exists in the draws. The researcher should be aware of such autocorrelation when using the

posterior draws from this analysis. It is interesting to note that WinBUGS’ plots indicate

184

no autocorrelation concerns in its draws even though fewer iterations were required to reach

convergence.

15.3 SIDE BY SIDE COMPUTER CODE

WinBUGS code: SAS code:
Model with random effect: data dose;
model{ infile *¢ "7 firstobs=2;
dummyl <— plate [1]; input dose plate colonies;
for (i in 1:18){ run;
colonies[i] 7 dpois(lambda[i])

; proc print;
log (lambda[i]) <— a + bxlog(run;

dose[i] + 10) + cxdose[i] +

ulil; ods pdf
u[i] 7 dnorm (0, precd); file = XF
} ods graphics on;

a =~ dnorm (0, 1);

b 7 dnorm (0, 1); proc mcmc data=dose outpost=
¢ ~ dnorm (0, 1); doseout nmc=50000000 thin=5000
s2d 7 dunif (0, 2); nbi=100000 monitor=(a b ¢ s2 u)
precd <— 1/s2d; dic seed=1234;
} array u[18];
Model without random effect : array llambda [18];
model{ array lambda[18];
dummyl <— plate [1]; parms u: O0;
for(i in 1:18){ parms a 0 b 0 ¢ 0 s2 1;

185

colonies [1i] dpois (lambda[i])

log (lambda[i]) <— a + bxlog(
dose[i] + 10) + cxdose[i];

}

a ~ dnorm (0, 1);

b = dnorm (0, 1);

¢ ~ dnorm (0, 1);

}

#The data set:

dos

0

0 2

0 3

10

10

10

33

33

33

100

100

100

333

333

333

e[] plate[] colonies[]
1 15
21

29

4 16

5 18
6 21

7 16
8 26
9 33
10 27
11 41
12 69
13 33

14 38

15 41

prior u: ~ normal (0, var=s2);

prior a b ¢ 7 normal (0, var=1);

prior s2 ~ uniform (0, 2);

llambda [plate] = a + bxlog(dose
+ 10) + cxdose + u[plate];

lambda[plate]| = exp(llambda |
plate]);

model colonies ~ poisson (lambda

[plate]);

run;

* Model without random effect;

proc mcmc data=dose outpost=

doseout nmc=50000000 thin=>5000

nbi=100000 monitor=(a b c¢) dic

seed =1234;

array llambda[18];

array lambda[18];

parms a 0 b 0 ¢ O;

prior a b ¢ 7 normal (0, var=1);

llambda[plate] = a + bxlog(dose
+ 10) + cxdose;

lambda | plate] = exp(llambda |
plate]);

model colonies ~ poisson (lambda

[plate]) ;

run;

1000 16 20

1000 17 27 ods graphics off;
1000 18 42 ods pdf close;
END{};

187

CHAPTER 16

SURVIVAL MODEL WITH CENSORING

Some experiments are concluded before every experimental unit has experienced the re-
sponse, as in a study of the effect of a treatment on survival time of subjects. Not all
subjects will live for the duration of the experiment, and not all subjects will have died at
the conclusion of the experiment. This type of setting calls for a survival model.

The survival model is interested in the time until a subject experiences the event
of interest, i.e., death or failure. However, there are situations where a subject fails to
participate through to the conclusion of a study and their response is not able to be observed.
Another concern is when a subject has not experienced the event by the conclusion of the
study. These subjects should not just be removed from the data set because their responses
were not able to be observed. Such observations are said to be censored and they contain
valuable information that needs to be considered in the analysis. This characteristic is the
main feature of survival analysis, and as such, typical statistical methods do not adequately
model these situations. (Collett 2003)

The survival function is defined as the probability that the survival time is greater

than or equal to some time ¢,

S(t) = P(T > t).

This function can be used to represent the probability that a subject will survive from the
time of origin to some time beyond t. Typically survival data is modeled with a Weibull or
Exponential distribution. However, other distributions may be used; the reader is referred
to survival analysis literature for further study on other appropriate distributional models

for survival data.

189

The following analysis in WinBUGS and SASg 9.2 will demonstrate different models.
This is because WinBUGS is able to handle censoring of observations directly, while SASg
9.2 is not. The resulting posterior distributions are similar, however, despite the different

approaches shown below.

16.1 WINnBUGS

WinBUGS allows for left, right, and interval censoring of the time to event.
e Right censored data:
— y ~ dweib(a, b)I (lower bound,).
e Left censored data:
— y ~ dweib(a, b)I(,upper bound).
e Interval censored data:
— y ~ dweib(a, b)I(lower bound, upper bound).

This model for WinBUGS is appropriate because our data consist of both uncensored

and right censored observations.

Yij NWeibull(T, MJI(C,)
p—
B; ~Normal(0, 100)

r ~Exponential(0.1)

The Weibull distribution is used to model the survival function here in WinBUGS because

using the Weibull is typical practice for a parametric analysis and obtaining appropriate

190

summary statistics is not difficult. Here, r is the scale parameter and p is the shape param-
eter. A linking function is used to connect the scale parameter with a function of e. It is
reasonable to model the scale parameter’s § with a normal prior and the shape parameter
with an exponential prior.

Equations for the likelihood, prior, and posterior distributions are omitted here where
they were provided in Chapter 3 because the MCMC algorithms do not require finding the
functional form of the posterior distribution. All that is required is the likelihood function
and the distribution for all parameters in the model. The MCMC algorithms calculate the
posterior distribution from there.

WinBUGS parameterizes the Weibull as
z ~ Weibull(v, \) = oAz Ve 2" 2 > 0.

In survival analysis, a summary statistic of great interest is median survival time because

survival times are typically heavily right skewed. With the above parameterization, the

(znf))i |

The data for this analysis come from an experiment where mice were placed into

median may be calculated as

four treatment groups and each group was exposed to a different treatment. Their survival
time in days was recorded. Not every mouse had died at the conclusion of the study (40
days), however, so these observations were censored. The data set contains four columns: a
mouse ID column, an indicator for treatment membership, the observed time to event, and
a censoring indicator that is 0 if the observation was not censored and 40 if it was censored.

The code below begins with a dummy variable for mouse ID. It is necessary to utilize
every column of the data set in the WinBUGS code to avoid errors. The use of the indi-
cator for censoring in the likelihood tells WinBUGS how to handle those observations that

experienced censoring. The rest of the code follows the typical structure of previous models.

191

model{

dummy variable to use all columns of data set
dummy <— mid[i];

for (i in 1:80){

likelihood

time[i] 7 dweib(r, mu[tmt[i]]) I(censored[i],)
}

for (i in 1:4){

equation to model mu

mul[i] <— exp(beta[i]);

prior for beta

beta[i] = dnorm (0, 0.01);

}

prior for r
r ~ dexp(0.1);
}

The summary statistics are shown in table 16.1, giving posterior summaries of the
four u’s and (’s along with the shape parameter r. These values, however, are not very
meaningful to a researcher because they are not in the same metric as the data. The
transformation of these values into median survival time as described above, however, gives
the posterior values in a meaningful metric. These values are shown in table 16.1. Figure
16.1 gives a sample of the posterior summary plots, showing the posterior distribution of f;.
The plots indicate that convergence was reached and that there might be some problems with
autocorrelation. Running the analysis again with increased number of burn-in iterations and

thinning of the draws will decrease autocorrelation.

16.2 PROC MCMC

SASg 9.2 is not able to directly model censored data in a survival model. As such, it is
necessary to construct the density function using a combination of the functions LOGPDF,
LOGCDF, and LOGSDF depending on how the data is censored. The reader is referred to
SASg 9.2 documentation on PROC MCMC for further study.

192

Table 16.1: Summary statistics from WinBUGS.
mean sd 2.5% 25% 50% 75% 97.5%

mu/[1] 0.0004 0.0004 0.0000 0.0002 0.0003 0.0005 0.0016
mu|2] 0.0002 0.0002 0.0000 0.0001 0.0001 0.0002 0.0006
mu(3] 0.0003 0.0003 0.0000 0.0001 0.0002 0.0003 0.0011
mul4] 0.0004 0.0004 0.0000 0.0001 0.0002 0.0005 0.0014

r 2.4924 0.2617 1.9909 2.3100 2.4860 2.6690 3.0140
beta[l] -8.1569 0.9117 -9.9680 -8.7770 -8.1340 -7.5290 -6.4360
2] -9.2129 09734 -11.1800 -9.8692 -9.1890 -8.5350 -7.3680
beta[3] -8.6718 0.9511 -10.5703 -9.3212 -8.6430 -8.0120 -6.8540
] -8.3355 0.9238 -10.1800 -8.9552 -8.3240 -7.6967 -6.5610
deviance 528.8494 3.2331 524.5000 526.4000 528.2000 530.6000 536.6000

betail)
40}
S0
S0
1001
-120F
T | 1] 1 1]
10 2500 £300 7s00 10000
fteration

(a) Trace plot

betall} betal] sampie: 10000
1.0} 0&}
o5 Ml _ N

2t W

ol 00} ——'-'/ -

C.) ZIO 4'0 -120 1040 S.0 50

ag
(b) Autocorrelation (c) Posterior density

Figure 16.1: WinBUGS summary plots for the posterior distribution of /3.

Table 16.2: Table showing the posterior mean of each treatment’s median survival time as
calculated from WinBUGS’ analysis.

Tmtl Tmt2 Tmt3 Tmt4
22.82 35.03 28.11 24.54

193

The model in SASg 9.2 is

Normal(p;, 0?) if uncensored
Yij ~
S(p;) if right censored

p; ~Normal(0, 100000)

o7 ~Gamma(2, 50),

where S(+) is the survival function, S(t) = P(T > t).

It is necessary that the data file contain a column of lower bound times and a column
of upper bound times. The column of left bound times will include all of the observed time to
event values and the censored value; for this example these are taken from the time column
in the data file with the NA entries replaced by the censored value of 40. The column of
right bound times includes the time to event value with NA entries for those observations
that were censored; for this example these are equivalent to the time column in the data file.

The MCMC procedure begins on line thirteen. Notice that the number of MCMC
iterations is 500,000, thin is 50 and the number of burn-in iterations is 1,000. These values
were selected to reduce autocorrelation and aid in convergence to the posterior distribution.
A new option that is utilized in this model is the missing=AC option. This must be included
in the code so SAS knows that it needs to work with the missing data values instead of
ignoring them. This option allows for the modeling of missing values, which is necessary for
censoring. An array of length four is initialized for ;1 and o2 in lines fourteen and fifteen with
their initial values set in lines sixteen and seventeen and their prior distributions defined in
lines eighteen and nineteen. The use of the colon on these last four lines asks that these
initial values and prior distributions be applied to all array entries. Lines twenty through
twenty-three instruct SAS on the appropriate log-likelihood for uncensored and censored
data. The likelihood is defined with the general likelihood in line twenty-four. The reader is

referred to the PROC MCMC manual for further study on the use of the general likelihood.

194

% read in the data file;

1 data micetwo;

2 infile 7 7 firstobs=2;

3 input mid tmt time censored timeleft;
4 run;

5

x print the data file for inspection;

6 proc print;

7 run;

8

x initializes saving of output as a pdf file;
9 ods pdf

10 file=’ "

* turn on graphics device;

11 ods graphics on;

12

13 proc mcmc data=micetwo outpost=miceout nmc=500000 thin=50 nbi=1000
dic seed=1234 missing=AC monitor=(_parms_);

x define arrays of length 4;

14 array mu[4];

15 array sig2[4];

% set parameters and initial values;

* the colon indicates that the initial values should be applied to all
array entries;

16 parms mu: 30;

17 parms sig2: 50;

* define priors;

% the colon indicates that the distribution be applied to all array

entries;
18 prior mu: ~ normal (0, var=100000);
19 prior sig2: = gamma(2, iscale=0.02);

x if —else statements to determine appropriate handling of censored and
uncensored observations;

20 if (timeleft "= . and time "= . and timeleft=time) then
21 llike=logpdf(’normal’,time ,mu[tmt],sqrt(sig2 [tmt]));

22 else if (timeleft "= . and time = .) then

23 llike=logsdf (’normal’, timeleft ,muf[tmt],sqrt(sig2 [tmt]));
% likelihood ;

24 model general(llike);

25 run;

26

x turn off graphics device;
27 ods graphics off;

x stop saving output file;
28 ods pdf close;

195

Table 16.3: Summary Statistics for Example 14 from PROC MCMC.

Posterior Summaries
Percentiles
Standard
Parameter N | Mean | Deviation| 25% 50% 75%
mul 10000 | 23.2515 2.3414 | 21.7142 | 23.2541 | 24.7700
mu2 10000 | 34.6878 2.8419 [32.7632 | 34.5624 | 36.4889
mu3 10000 | 28.0441 2.8065 | 26.1966 | 27.9809 | 29.8007
mu4 10000 | 24.8898 2.3718 23.3191 | 24.8451 | 26.4276
sig21 10000 110.0 34.9938 | 85.0655 104.0 128.2
sig22 10000 139.7 49.5930 104.8 131.0 164.6
sig23 10000 150.4 47.9291 115.9 1434 175.9
sig24 10000 108.1 37.1378 | 81.5419 101.4 127.3

The summary statistics are given in table 16.3, showing the posterior summaries of
the treatment means and associated variances. Figure 16.2 gives the posterior plots for the
distribution of treatment one’s mean survival time. These plots indicate that convergence
was reached, no autocorrelation problems were encountered and the density of the posterior
is drawn. Of interest, however, when looking at tables 16.1 and 16.3, one can see that
the predicted survival times are similar despite the very different models utilized by the
respective computer programs. It appears that treatment two yields the longest survival
times. Even so, the researcher should conduct further analysis to determine the statistical

significance of such an observation.

196

Figure 16.2: Summary plots for the posterior distribution of the mean survival time for
treatment one.

Diagnostics for mul

mul

0 100000 200000 300000 400000 500000
Iteration

1.0 -
(=} 0.5 b
o .2 - T
£ Z
= =
g 0o =
: g
a4 -0.5- &

305 T T T T T T T T T T

0 10 20 30 40 50 15 20 25 30 35

197

16.3 SIDE BY SIDE COMPUTER CODE

WinBUGS code: SAS code:
model{ data micetwo;
dummy <— mid[1i]; infile 7 7 firstobs=2;
for (i in 1:80){ input mid tmt time censored
time[i] 7 dweib(r, mu[tmt[i]]) timeleft ;
I(censored[i],) run;
}
for (i in 1:4){ proc print;
mul[i] <— exp(beta[i]); run;

beta[i] ~ dnorm (0, 0.01);

} ods pdf
r ~ dexp(0.1); file="*"7;
} ods graphics on;
#The data set: proc mcmc data=micetwo outpost=
mid [] tmt[] time[] censored [] miceout nmc=500000 thin=50 nbi
11120 =1000 dic seed=1234 missing=AC
2110 monitor=(_parms_) ;
31210 array mu[4];
41250 array sig2[4];
51 11 0 parms mu: 30;
6 1 26 0 parms sig2: 50;
71270 prior mu: - normal (0, var
8§ 1 30 0 =100000) ;

198

91130 prior sig2: 7 gamma(2, iscale
10 1 12 0 =0.02);

111 21 0 if (timeleft "= . and time "=
121 20 0 . and timeleft=time) then
131 23 0 llike = logpdf(’normal’,
14 1 25 0 time , mu[tmt], sqrt(
151 23 0 sig2 [tmt]));

16 1 29 0 else if (timeleft "= . and
171 350 time = .) then

18 1 NA 40 llike = logsdf(’normal’,
19 1 31 0 timeleft , mu[tmt], sqrt
2001 36 0 (sig2[tmt]));

21 2 32 0 model general(llike);

22 2 27 0 run;

23 2 23 0

24 2 12 0 ods graphics off;

25 2 18 0 ods pdf close;

26 2 NA 40

27 2 NA 40

28 2 38 0

29 2 29 0

30 2 30 0

31 2 NA 40

32 2 32 0

33 2 NA 40

34 2 NA 40

35 2 NA 40

199

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

59

56

o7

58

59

60

61

62

NA

25

30

37

27

22

26

NA

28

19

15

12

35

35

10

22

18

NA

12

NA

NA

31

24

37

29

27

18

40

40

40

40

200

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

22

13

18

29

28

NA

16

22

26

19

NA

NA

17

28

26

12

17

26

END{};

40

40

201

BIBLIOGRAPHY

Box, G., and Tiao, G. (1973), Bayesian Inference in Statistical Analysis, Wiley Interscience.

BUGS (1996-2008), “The BUGS Project,” MRC Biostatistics Unit, Cambridge, UK, Re-

trieved December 9, 2010, http://www.buffalostate.edu/library/docs/asa.pdf.
Carlin, B., and Louis, T. (2009), Bayesian Methods for Data Analysis (3rd ed.), CRC Press.
Casella, G., and Berger, R. (2002), Statistical Inference (2nd ed.), Duxbury.

Collett, D. (2003), Modelling Survival Data in Medical Research (2nd ed.), Chapman and
Hall.

Gelfand, A., and Smith, A. (1990), “Sampling-Based Approaches to Calculating Marginal

Densities,” Journal of the American Statistical Association, 85, 398-409.

Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions and the
Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-6, 721-741.

Hastings, W. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their

Applications,” Biometrika, 57, 97-1009.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, S. (2000), “WinBUGS-A Bayesian
modelling framework: Concepts, structure, and extensibility,” Statistics and Computing,

10, 325-337.

Metropolis, N., Rosenbluth, A.; M., R., Teller, A., and Teller, E. (1953), “Equation of
State Calculations by Fast Computing Machines,” The Journal of Chemical Physics, 21,
1087-1092.

203

OpenBUGS (2004), “OpenBUGS,” University of Helsinki, Finland, Retrieved April 26, 2011,

http://www.openbugs.info/w/.

Price, R. (1763), “A letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John
Canton, M. A. and F. R. S.” Philosophical Transations of the Royal Society of London,

53, 269-271.

SAS (1976), “History: Stewardship for today, preservation for tomorrow,” SAS® [Institute

Inc., Retrieved December 29, 2010, http://www.sas.com/company /about /history.html.

SAS Institute Inc. (2008), “SAS/STAT® 9.2,” User’s Guide, NC: SAS Institute Inc.

204

