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ABSTRACT

An Introduction to Bayesian Methodology
via WinBUGS & PROC MCMC

Heidi L. Lindsey
Department of Statistics, BYU

Master of Science

Bayesian statistical methods have long been computationally out of reach because
the analysis often requires integration of high-dimensional functions. Recent advancements
in computational tools to apply Markov Chain Monte Carlo (MCMC) methods are making
Bayesian data analysis accessible for all statisticians. Two such computer tools are Win-
BUGS and SAS R© 9.2’s PROC MCMC. Bayesian methodology will be introduced through
discussion of fourteen statistical examples with code and computer output to demonstrate
the power of these computational tools in a wide variety of settings.
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chapter 1

INTRODUCTION

The purpose of this project is to create a primer on the use of Bayesian statistical methods

as implemented in the computer programs WinBUGS and PROC MCMC in SAS R© 9.2. This

primer will illustrate these computer tools by demonstrating fourteen examples.

Bayesian statistical methods are more prevalent than in the past because of compu-

tational advances. However, proper training in the use of Bayesian methods is not as readily

available as training in frequentist methodology. Therefore, this primer will serve as a guide

for statisticians who desire to implement Bayesian methods but lack training.

WinBUGS is software that was developed by the Bayesian inference Using Gibbs

Sampling (BUGS) project (BUGS 1996-2008). This group was concerned with flexible soft-

ware for Bayesian analysis of complex statistical models using Markov chain Monte Carlo

(MCMC) methods. The project began in 1989 in the MRC Biostatistics Unit of Cam-

bridge University under the direction of David Spiegelhalter and chief programmer, Andrew

Thomas. In 1996 the project expanded to include the Imperial College School of Medicine

at St Mary’s, London with the influence of Nicky Best, Jon Wakefield, and Dave Lunn.

In 2004, Andrew Thomas moved to the University of Helsinki, Finland and began work on

OpenBUGS while Nicky Best, Jon Wakefield, and Dave Lunn continued work on WinBUGS.

(see OpenBUGS 2004)

The MCMC proceedure in SAS R© 9.2 also uses Markov chain Monte Carlo (MCMC)

simulation. PROC MCMC is a general purpose tool in SAS R© 9.2 which one can utilize to

implement Bayesian methods.

In both computer applications, a likelihood function for the data is proposed along

with prior distributions for the parameters. Then relying on the notion that the appropriate
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posterior distributions for the parameters in question are scaled products of the likelihood

times the prior, the programs draw from the appropriate posterior distributions, producing

summary diagnostic statistics computed from these draws.

The fourteen examples include: (1) one sample gamma, (2) two sample t-test, (3)

linear regression, (4) multiple regression, (5) one-way ANOVA, (6) factorial design, (7)

analysis of covariance, (8) linear mixed model, (9) random coefficient model, (10) logistic

regression, (11) logistic regression with random effect, (12) Poisson model, (13) Poisson

regression, and (14) survival model with censored data. These examples will demonstrate

how the implementation of Bayesian methods is supported by these computational tools. A

discussion of the computer output will also be included.
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chapter 2

BACKGROUND

Bayesian data analysis employs practical methods for making inferences from data using

probability models for observed quantities about which one desires to learn. These methods

are based on the work of Thomas Bayes, an English mathematician and Presbyterian minister

who lived from 1702 – 1761 and formulated a probability theorem that bears his name. In

an essay that was published after his death in 1763, Thomas Bayes presented a rule based

on probability according to which “we ought to estimate the chance that the probability for

the happening of an event perfectly unknown, should lie between any two named degrees of

probabilty.”(see Price 1763)

He wanted to use a set of binomial data, comprising of the number of successes out of

a fixed number of attempts, to learn about the underlying chance of success for any randomly

chosen event. Bayes’ key contribution was to use a probability distribution to represent all of

the uncertainty involved in the event space. This distribution represents the uncertainty due

to a lack of knowledge concerning the underlying relationships governing the probability of

future events, such as the uncertainty in a game of chance or a medical outcome. The essen-

tial characteristic of Bayesian methods is the explicit handling of probability in such a way

as to incorporate prior beliefs or prior events into the model for the purpose of quantifying

the uncertainty associated with the event of interest in the statistical data analysis.

Bayes’ theorem is founded in probability theory, uses probability in its structure,

and the theorem’s approach follows the scientific method when appropriately implemented

by a researcher working to predict the chance of the occurrence of an event of interest. It

is flexible in that it can be employed to analyze simple as well as complex situations. A
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powerful result is that all conclusions from the use of Bayes’ theorem strictly obey the laws

of probability.

2.1 Probability

We now provide a review of probability–vocabulary, theorems, and examples–that might be

useful to prepare someone for further study in Bayesian methods.

Outcome: The building blocks of events. A single happening.

Event: A combination of outcomes, or a set of outcomes that are of interest.

Universal Event: The event that includes all possible events or outcomes. Also referred to

as sample space, which is the set of all possible outcomes of a particular experiment.

Experiment: Any process that facilitates researchers in obtaining observations.

Union: The union of two sets, A and B, written as A∪B, is the set of outcomes that belong

to A, B, or both. For example,

• Let A = {12, 24, 36} and B = {8, 10, 12},

• A ∪B = {8, 10, 12, 24, 36}.

Intersection: The intersection of two sets, A and B, written as A∩B, is the set of outcomes

that belong to both A and B. For example,

• Let A = {12, 24, 36} and B = {8, 10, 12},

• A ∩B = {12}.
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Complement: The set of outcomes from the sample space that do not contain any outcomes

that are in set A. The complement is written as ∼A and is read as “not A”. For example,

• Let the universal set U = {8, 10, 12, 24, 36, 40, 48} and let A = {12, 24, 36},

• ∼A = {8, 10, 40, 48}.

Empty Set: The set consisting of no outcomes and written as ∅. A related term is Impossible

Event which is an event that cannot happen.

Mutually Exclusive Events: Events that have no outcomes in common; events that have no

overlap in outcomes. For example,

• Let A = {12, 24, 36} and C = {9, 11},

• A ∩ C = ∅.

Probability: A value that represents how likely it is that an event will occur.

The following probability statements are taken as axiomatic:

1. If A is an event (i.e., a combination of outcomes, or a set of outcomes that is of interest),

then P (A) ≥ 0.

2. If U is the largest event possible, then P (U) = 1 (a certain event, it has to happen).

U is the sample space.

3. If events A and B are mutually exclusive events, then P (A∪B) = P (A) +P (B). The

probability of the union of two mutually exclusive sets is the sum of their respective

probabilities. This is sometimes referred to as the Law of Total Probability.

Using our probability axioms, it may be shown that:
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• P (∅) = 0

• P (A) ≤ 1

• P (A ∪ ∼A) = P (A) + P ( ∼A) = 1

• P ( ∼A) = 1− P (A)

• Examples:

– Event A: Using a single die, roll an odd number = {1,3,5}

– Event B: Using a single die, roll a four = {4}

– Event U: Using a single die, roll = {1, 2, 3, 4, 5, 6}

– P (A ∪B) = P (A) + P (B) = 3
6

+ 1
6

= 4
6

= 2
3

– For a football game between BYU and SDSU, P (BYU Win and SDSU Win) =

P (BY Uwin ∩ SDSUwin) = ∅

– P (A ∩ ∼A) = P (∅) = 0

– P (BY Uwin ∪ SDSUwin) = 1

– P (A ∪ ∼A) = 1

Fundamental Theorem of Counting: If an event can happen in m ways and another event

can happen in n ways, then the event of their union can happen in m · n ways.

• Examples:

– Event A: Selecting one shirt from a closet of ten shirts.

– Event B: Selecting one pair of pants from a closet of seven pairs.

– Therefore, A may happen in ten ways and B may happen in seven ways.

– Thus, (A ∪B) can happen together in a total of 10 · 7 = 70 ways.
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Probabilities may be assigned to outcomes. If all outcomes are equally likely, then

each outcome may logically be given an equal probability. But sometimes events are not

equally likely. What if a die is weighted or loaded? Then one side is more likely to land up

than another side. Sometimes additional information is obtained that informs us as to the

probability of an event.

There are different ways to assign probabilities to events:

1. Equally Likely, i.e., flip a fair coin or roll a fair die

2. Long Run Frequency, i.e., conduct an experiment 1,000 or more times and then count

the frequency of the outcomes

3. Degree of Belief, i.e., ask someone to state their belief of the probability of an event,

then you ask a series of further questions, a calibration experiment, to hone in their

personal degree of belief relative to the probability of an event happening. (This one

makes people uncomfortable because your belief could be different than my belief.)

Joint Probability: Two events happened at the same time; P (A ∩ B) is read as the “joint

probability of A and B”.

Example:

• Event A: Using a single die, roll an odd number, A = {1, 3, 5}

• Event B: Using a single die, roll a number greater than three, B ={4, 5, 6}

• (A ∩B) = {5} ; five is the only outcome that is in both sets.

• P (A ∩B) = 1
6

• Event C: Using a single die, roll an even number C = {2, 4, 6}

• P (A∩C) = ∅; A and C are mutually exclusive because they have no events in common.
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Conditional Probability: We take the following as a definition, although we will attempt to

show that is is intuitive. For two events, A and B in a sample space S, and P (B) > 0, then

the conditional probability of A given B has occurred, written as P (A|B), is

P (A|B) =
P (A ∩B)

P (B)
.

Intuitively, knowing that event B happened may tell us something about event A. Note that

in this calculation of the conditional probability, B shrinks the sample space of S such that

B becomes the new sample space, see figure 2.1.

• Conditioning on B occurring, shrinks the probability space. We are only working in

the space of B. Figure 2.1 shows this with a Venn Diagram.

Figure 2.1: The conditional probability of event A given B is only the overlap space of A
and B. The probability of the universal set is one: P(U)=1.

– If A has occurred, it can only occur in the overlap space.

– We need to scale the probability by dividing by P (B).

• Consider the following sets of events:

– Event A: Using a single die, roll an odd number, A = {1,3,5}

– Event B: Using a single die, roll a number larger than three,

B ={4, 5, 6}
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– Event C: Using a single die, roll an even number, C = {2, 4, 6}

• If you know that event B happened, what is the probability now that an odd number

was rolled, i.e. P (A|B)?

– The P (A), the unconditional probability that an odd number is rolled, = 1
2
.

– The P (B), the unconditional probability that a number larger than three is rolled,

= 1
2
.

– The P (C), the unconditional probability that an even number is rolled, = 1
2
.

– However, the conditional probability that an odd number was rolled given a num-

ber greater than three has occurred, is one-third.

P (A|B) =
P (A ∩B)

P (B)
=

1
6
1
2

=
1

3

• Bayes’ Theorem

Using the definition of conditional probability:

P (A|B) =
P (A ∩B)

P (B)
.

Similarly,

P (B|A) =
P (A ∩B)

P (A)
.

• Thus,

P (A ∩B) = P (A|B)P (B)

P (B ∩ A) = P (B|A)P (A)

=⇒

P (A|B)P (B) = P (B|A)P (A)

=⇒

9



P (A|B) =
P (B|A)P (A)

P (B)
.

Similarly,

P (B|A) =
P (A|B)P (B)

P (A)
.

These last two statements give Bayes’ Theorem in its most basic form.

The following example demonstrates conditional probability and the fundamental theorem

of counting.

• What is the probability that there is a common birthday among the individuals at any

gathering of 25 people?

• P (Common) = 1− P (∼ Common)

• P (∼ Common) = 365
365
· 364

365
· 363

365
. . . until the last person present, or 365−24

365

– The first person could have a birthday on any of the 365 days of the year. The

second person cannot have a birthday on the same day that the first person has

theirs, so this person has 364 days they could have a birthday. The third person

has two days that their birthday cannot be on, so their birthday could be on

any of the remaining 363 days. This continues until the last person present, then

these conditional probability fractions can all be multiplied because P (A ∩B) =

P (B|A)P (A).

• This simplifies to:
( 365!

340!)
36525

• The result is that P (∼ Common) = 0.4313003

• P (Common) = 1− P (∼ Common) = 1− 0.4313003 = 0.5686997

Consider mutually exclusive events, A and B. What is P (A|B)? Figure 2.2 demonstrates

that this is an impossible event, P (A|B) = 0. Because A and B are mutually exclusive,

knowing that B happened leads to the conclusion that A did not happen.

10



Figure 2.2: The conditional probability of A given B is zero here.

Law of Total Probability: Let’s revisit the Law of Total Probability, the third axiom of prob-

ability. In figure 2.3:

P (B) = P (B ∩ A) ∪ P (B ∩ ∼A)

= P (B ∩ A) + P (B ∩ ∼A)

= P (B|A)P (A) + P (B|∼A)P (∼A).

Figure 2.3: Demonstrating the law of total probability.

• Recall these conditional probability statements:
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– P (A|B) = P (A∩B)
P (B)

– P (B|A) = P (A∩B)
P (A)

– P (A ∩B) = P (B|A) · P (A)

Figure 2.4: Extending the law of total probability.

In figure 2.4:

P (B) = P (B|A)P (A) + P (B|C)P (C) + P (B|D)P (D) + P (B|E)P (E) + P (B|F )P (F )

As long as the sample space is partitioned into mutually exclusive events, the individual

probabilities can be summed, by the law of total probability.

The next example demonstrates this concept. Tovi is in a chess tournament and wants

to know the probability he will win his next match, but there are two people he might play

because they are still playing their game with each other and the winner is undetermined.

Tovi wants to know the unconditional probability that he will win. Consider the probability

of each part:

P (Win|Play John) =
7

10

P (Win|Play Maritza) =
4

10

P (Play John) =
2

5

P (Play Maritza) =
3

5
= P (∼ Play John)

12



P (Win) = P (Win|Play John)P (Play John) + P (Win| ∼ Play John)P (∼ Play John)

=
7

10
· 2

5
+

4

10
· 3

5

=
14

50
+

12

50

=
26

50
=

13

25

Therefore, with a 13
25

probability of winning, Tovi will win more often than lose if he plays

over and over. This also means that if Tovi bets to win, he will win money if this scenario

could be repeated over and over.

Bayes’ Theorem: Now, combining the results from page 10 and page 12, we can state Bayes’

Theorem another way. For any two events A and B, with P (B) > 0,

P (A|B) =
P (B|A)P (A)

P (B)
from p.10

=
P (B|A)P (A)

P (B|A)P (A) + P (B|∼A)P (∼A).
from p.12

However, the law of total probability allows for Bayes’ Theorem to be extended to any

partition of the sample space into mutually exclusive events. Let A1, A2, . . . Ai be such a

partition and let B be any subset of the sample space. Then for each j = 1, 2, . . . , i,

P (Aj|B) =
P (B|Aj)P (Aj)

P (B)

=
P (B|Aj)P (Aj)
i∑

j=1

P (B|Aj)P (Aj)

.

Let’s return to Tovi’s chess tournament and suppose Tovi tells you he won. Can we determine

the conditional probability he played John given he won? P (Played John|Tovi Won). Can

this be unraveled?
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Let’s use Bayes’ rule:

P (Jplayed John|Wwin) =
P (J ∩W )

P (W )
=

P (W |J)P (J)

P (W |J)P (J) + P (W | ∼ J)P (∼ J)

=
7
10
· 2

5
13
25

=
14
50
26
50

=
14

26
=

7

13

Note, conditional probability allows us to formulate the following statements:

• P (J ∩W ) = P (J |W )P (W )

• P (W |J) = P (J∩W )
P (J)

• P (J ∩W ) = P (W |J)P (J)

Bayes’ rule will be further demonstrated through a discussion of the solution to the Monty

Hall problem (Let’s Make A Deal Game). Three boxes are presented to you as the contestant.

One box has the key to a new car. Two boxes contain goats, or something equally non-

desirable.

1. Play begins and you pick a box.

2. Before showing you what is in the box you picked, the MC shows you what is in one

of the other two boxes that you did not pick. We will assume that he knows what is

in the boxes and that the box shown to you will never have the key.

3. Now you are asked if you want to stay with your chosen box, or switch to the other

box: stay or switch? What is the “right” choice? Is there a choice that can increase

your probability of winning?
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In the beginning of the game, you have no prior probability of preferring a given box.

P (Box 1 wins) = P (Box 2 wins) = P (Box 3 wins) =
1

3

Let’s say you chose box 2 as the box that holds the key and let’s say the MC shows you box

1 because he knows the key is not in box 1:

P (key in your box (2)|MC shows empty box (1)) =
P (1|2) · P (2)

P (1)

=
P (1|2) · P (2)

P (1|1) · P (1) + P (1|2) · P (2) + P (1|3) · P (3)

=
1
2
· 1

3

0 · 1
3

+ 1
2
· 1

3
+ 1 · 1

3

=
1
6

1
6

+ 1
3

=
1
6
3
6

=
1

3

Probability has not changed.

–Additionally–

P (key in unselected box (3)|MC shows empty box (1)) =
P (1|3) · P (3)

P (1)

=
P (1|3) · P (3)

P (1|1) · P (1) + P (1|2) · P (2) + P (1|3) · P (3)

=
1 · 1

3

0 · 1
3

+ 1
2
· 1

3
+ 1 · 1

3

=
1
3

1
6

+ 1
3

=
1
3
3
6

=
1

3
· 6

3
=

2

3

⇒ If you stay, P (You Win) =
1

3
;

⇒ If you switch, P (You Win) =
2

3
.

These new probability values are a result of the probability from Box 1 essentially

being transferred to Box 3. Switching is the correct thing to do, but you still may not win.

Switching raises the probability of a win, but it does not guarantee a win.
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Independent Events: Intuitively, independence means that knowing something about one

event informs nothing about the other event. By definition, two events are statistically

independent if

P (A ∩B) = P (A) · P (B).

Example, keeping Event A, Event B, and Event C as previously defined,

• Event A: Using a single die, roll an odd number, A = {1, 3, 5}

• Event B: Using a single die, roll a number greater than three, B ={4, 5, 6}

• Event C: Using a single die, roll an even number, C = {2, 4, 6}

• Recall from p.7 and p.8, P (A ∩B) = 1
6
, P (A) = 1

2
, and P (B) = 1

2

• Are A and B independent events?

• Is P (A) · P (B) = 1
6
?

1
2
· 1

2
= 1

4
6= 1

6

• No, A and B are not independent events.

• B ∩ C = {4, 6}; four and six are elements in both sets

• P (B ∩ C) = 2
6

= 1
3

• Are B and C independent events?

• Is P (B) · P (C) = 1
3
?

1
2
· 1

2
= 1

4
6= 1

3

• No, B and C are not independent events.

Independent probabilities can be extended beyond two events in the following manner:

P (A ∩B ∩ C . . . ∩Q) = P (A) · P (B) · P (C) · . . . · P (Q).
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Note: This extension of independent probabilities does not imply pairwise indepen-

dence.

Exchangeability: Two experiments are considered exchangeable if three conditions are met.

1. Possible outcomes are the same in both experiments

2. Probability of each outcome is the same in both experiments

3. The conditional probability of the second given the first is the same as the conditional

probability of the first given the second.

Figure 2.5:

Some experiments are independent which is helpful when calculat-

ing probabilities. However, some experiments are not independent

but they are exchangeable which is helpful for Bayesian statistics,

because exchangeable experiments have the same properties as in-

dependent experiments. The characteristic of exchangeability is not

as strong as independence.

• Let’s say you select two cards from a bowl of four cards num-

bered 1 through 4 without replacing the first card.

• The first draw is not independent with the second draw.

– The probability of any given number on the first draw is

one-fourth.

– The probability of the remaining numbers on the second

draw is one-third.

– Thus the probability for each of the possible pairs to be

selected is one-twelveth, see figure 2.5.
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Suppose two experiments were carried out on drawing cards from

the bowl. Both experiments have the same set of four cards. Remember there are three

criteria for events to be exchangeable:

1. Possible outcomes are the same in both experiments.

• {1, 2, 3, 4} is the same as {2, 1, 3, 4}

2. The probability of each outcome is the same in both experiments.

• The probability of drawing a 1 first is 1
4

P (11) =
1

4

• The probability of drawing a 1 second is 3
12

= 1
4
. This may also be shown with a

tree diagram outlining all possible outcomes, see figure 2.5.

P (12) =
1

12
+

1

12
+

1

12
=

3

12
=

1

4

3. The conditional probability of the second given the first is the same as the conditional

probability of the first given the second.

• The conditional probability of drawing a 2 second given a 1 was drawn first is 1
3

P (22|11) =
1

3

• The conditional probability of drawing a 1 second given a 2 was drawn first is 1
3

P (12|21) =
1

3

2.2 Probability Density Functions

Random Variable: A random variable is a function that assigns a single numerical value

to each outcome of an experiment. The value is specific to the outcome from a given ex-

periment. For example, if our experiment involved flipping a coin four times and recording
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each outcome, the sample space includes outcomes of heads or tails and the random variable

associated with this experiment could be to assign a numerical value of 1 if the coin landed

heads and a 0 if the coin landed tails. These numerical values would be recorded as the

experiment progresses and are referred to as random because we do not know what the next

value is until after the experiment has been conducted.

Probability Density Function: A probability density function (PDF) is a function that as-

signs probability to each random variable in the data. Technically, if the random variable

is discrete, the function is a probability mass function (pmf) and if the random variable is

continuous, the function is a probability density function (pdf). However, we will refer to

these functions collectively as PDFs. It is recommended that the reader become familiar

with the common PDFs because they are a crucial part of how Baye’s Theorem is utilized

in the Bayesian approach to data analysis.

Parameter: Something that describes a population, is used in a PDF, and is represented

with a Greek letter. The parameter controls the value of the function.

Statistic: A quantity we compute from the data.

PDF Examples.

• The Bernoulli(θ) PDF describes data limited to two possible outcomes, a success (1)

or a failure (0). The parameter θ describes the probability of a success and 0 ≤ θ ≤ 1,

while x = {0, 1},

f(x|θ) = θx(1− θ)1−x.

– Mean and variance:

EX = θ, V arX = θ(1− θ).
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• The Beta(α, β) PDF describes data limited to outcomes from 0 to 1 inclusive, 0 ≤ x ≤

1, with parameters α > 0 and β > 0,

f(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

– Mean and variance:

EX =
α

α + β
, V arX =

αβ

(α + β)2(α + β + 1)
.

• The Gaussian(µ, σ) PDF, also called the normal distribution, describes data that can

fall anywhere in the < number line with parameters σ > 0 and −∞ ≤ µ ≤ ∞,

f(x|µ, σ) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 .

– Mean and variance:

EX = µ, V arX = σ2.

• The Gamma(shape=α, scale=β) PDF describes data limited to positive outcomes,

0 ≤ x <∞, with parameters α > 0 and β > 0,

f(x|α, β) =
1

Γ(α)βα
xα−1e−

x
β .

– Mean and variance:

EX = αβ, V arX = αβ2.

• The Inverse Gamma(shape=α, scale=β) PDF describes data limited to positive out-

comes, 0 ≤ x <∞, with parameters α > 0 and β > 0,

f(x|α, β) =
1

Γ(α)βα
(x)−(α+1)e−

1
βx .

– Mean and variance:

EX =
1

β(α− 1)
for α > 1, V arX =

1

(α− 2)β2(α− 1)2
for α > 2.
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• The Poisson(λ) PDF describes data limited to the whole numbers, x = 0, 1, . . ., with

parameter 0 ≤ λ <∞,

f(x|λ) =
e−λλx

x!
.

– Mean and variance:

EX = λ, V arX = λ.

Likelihood: Probability of obtaining a particular set of data. If data are independent, or

exchangeable, the likelihood may be computed by multiplying the probabilities associated

with each data point.

f(X|θ) =
n∏
i=1

f(xi|θ) = Lik(X|θ)

1. Frequentists make inferences on parameters from the likelihood function to obtain

a possible value for parameters. Frequentists believe that parameters are fixed but

unknown.

2. Bayesians put a prior distribution on the likelihood to obtain a posterior distribution

describing each parameter. Bayesians believe that since we don’t know the value of

the parameter, our uncertainty about the value can be appropriately described using

a PDF.

Figure 2.6: A population of Bernoulli data.
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An example to demonstrate computing the likelihood.

Flip a coin once and compute the likelihood: Let’s define tails = 0 and heads = 1. These

data follow a Bernoulli likelihood, describing a series of successes, see figure 2.6.

Once we know what the data are, we can compute the vlue of the likelihood.

Computing the likelihood for a flip that yields a tail with θ=0.1:

Lik(x|θ) = .10(1− 0.1)(1−0) = 0.9

Computing the likelihood for a flip that yields a tail with θ=0.2:

Lik(x|θ) = .20(1− 0.2)(1−0) = 0.8

A different value for the parameter gives a different value for the likelihood.

Let’s set θ = 0.1 and gather more data by throwing a coin several more times. Thus we have

the following data set:

{0, 0, 0, 1, 1, 1, 0}

Note: These trials are each independent; knowing one outcome doesn’t tell me anything

about the other outcomes. The event I am interested in is P (T ∩T ∩T ∩H∩H∩H∩T ) and

because these events are independent, I can multiply the individual probabilities for each

event together: P (T ) · P (T ) · P (T ) · P (H) · P (H) · P (H) · P (T ).

Lik(data|θ = 0.1) = .10(1− .1)(1−0) · .10(1− .1)(1−0) · .10(1− .1)(1−0) · .11(1− .1)(1−1)·

.11(1− .1)(1−1) · .11(1− .1)(1−1) · .10(1− .1)(1−0)·

= .9 · .9 · .9 · .1 · .1 · .1 · .9

= 0.0006561

Computing the likelihood in general:

Lik =
n∏
i=1

θxi(1− θ)(1−xi)

= θx1(1− θ)(1−x1) · θx2(1− θ)(1−x2) · θx3(1− θ)(1−x3) · . . . · θxn(1− θ)(1−xn)

= θ
P
xi(1− θ)(n−

P
xi).

22



Maximizing the Likelihood: It is possible to maximize the likelihood relative to the parame-

ter, θ. To maximize the likelihood, take the derivative, set it equal to zero, and solve for the

desired variable. However, we can make it easier to take the derivative of the function by

taking the log of the function first. The resulting function will have the maximum y value

at the same x value as the original function,

log(Lik) =
∑

xilog(θ) + (n−
∑

xi)log(1− θ).

Now, remember that the x’s are data and that we are maximizing with respect to θ. Thus,

we will find the derivative with respect to θ,

∂

∂θ
=

∑
xi
θ
− (n−

∑
xi)

(1− θ)
.

Now, set the derivative equal to zero,

0 =

∑
xi

θ̂
− (n−

∑
xi)

(1− θ̂)
(n−

∑
xi)

(1− θ̂)
=

∑
xi

θ̂
.

Solving for θ̂,

θ̂(n−
∑

xi) =
∑

xi(1− θ̂)

nθ̂ − θ̂
∑

xi =
∑

xi − θ̂
∑

xi

θ̂ =

∑
xi
n

θ̂ = x̄.

Note: θ̂ is the maximum likelihood estimator and θ̂ maximizes the likelihood function. The

statistic x̄ estimates θ. Here then, according to the data, x̄ = 3
7
≈ 0.429.

Prior: The prior is uncertainty associated with a PDF selected to summarize previous

belief about the parameter. Following is a sampling of PDF prior choices.
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• If the data are described as a Bernoulli(π) PDF with x ∈ (0, 1) and 0 ≤ π ≤ 1, then a

reasonable prior PDF to describe π is a Beta(α, β) with 0 ≤ π ≤ 1, α > 0, and β > 0.

• If the data are described as a Poisson(λ) PDF with x = 0, 1, . . . and 0 ≤ λ <∞, then

a reasonable prior PDF to describe λ is a Gamma(α, β) with 0 ≤ λ <∞, α > 0, and

β > 0.

• If the data are described as a Normal(µ, σ) PDF with −∞ < x < ∞, −∞ < µ < ∞,

and σ > 0, then a reasonable prior PDF to describe µ is a Normal(µµ, σµ) with −∞ <

µ <∞, −∞ < µµ <∞, and σµ > 0 and an Inverse Gamma(ασ, βσ) to describe σ with

0 ≤ σ <∞, ασ > 0, and βσ > 0.

Bayes’ theorem can be thought of as a way of coherently updating our uncertainty in light

of new evidence. This update is modeled with probability distributions that serve as a

statement expressing uncertainty and results from a choice that is based on logical reason-

ing. Beginning with the assumption that a sample is an exchangeable sequence of random

variables, x1, x2, . . . , xn, from a population of interest, means that the sequence at hand

behaves like earlier samples, or that any order of the sample is equally likely. A sequence

of independent and identically distributed random variables is exchangeable. Assumptions

about exchangeability are equivalent to assuming events are independent conditional on

some unknown parameter that has a prior probability distribution and a likelihood function

describing the events.

The process of Bayesian data analysis follows three steps: (1) setting up a full prob-

ability model with an appropriate likelihood function to model the exchangeable sample

conditioned on observed data

f(X|θ) = Lik(X|θ);

(2) choosing prior probability distribution(s) to preserve the parameter space and model the

prior probability associated with the parameter(s) in the likelihood

π(θ);
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and (3) evaluating the fit of the model and the implications of the resulting posterior distri-

bution

p(θ|X) =

∏n
i=1 f(X|θ) · π(θ)∫

Ω

∏n
i=1 f(X|θ) · π(θ)∂θ

.

(Note that this final equation is a special use of Bayes’ theorem.)

Posterior Probability Density Function part A: A probability density function describing

the updated belief about the parameter that is based on the prior belief about the parameter

and incorporates the data. Notice how this form follows Bayes’ Rule:

p(parameter|data) =
Lik(data|parameter) · Prior(parameter)∫

Lik(data|parameter)Prior(parameter)∂parameter

p(θ|X) =
Lik(X|θ) · π(θ)∫

Ω
Lik(X|θ) · π(θ)∂θ

• Example: Back to the coin flip data set. This data was modeled with a Bernoulli

likelihood. What is a reasonable choice for a prior distribution to model θ? The

parameter here represents the probability of a coin flip and as such is limited to 0 ≤

θ ≤ 1. Therefore, a Beta PDF is a reasonable choice for a prior distribution on θ.

Normalizing Constant: The denominator in the posterior probability density function turns

the numerator into a proper PDF because it appropriately scales the numerator.

∫
Lik(parameter|data)Prior(parameter)∂parameter

Once the parameter has been integrated out, what remains is a constant. The constant can

be put aside momentarily, as discussed later.

Posterior Probability Density Function part B: Putting the Bernoulli likelihood together

with the Beta prior from the coin flip example:

Post(θ|data) =
Lik(data|θ)Prior(θ)∫
Lik(data|θ)Prior(θ)∂θ

Post(θ|data) ∝ Lik(data|θ)Prior(θ)

25



Note: the symbol ∝ means “is proportional to”. The constants are put together, taken out,

and “forgotten” about momentarily, while the variable parts are treated as proportional to

what was there before.

And now, putting together the posterior density function, using Bayes’ theorem.

Post(θ|data) =

n∏
i=1

θxi(1− θ)(1−xi) · Γ(a+ b)

Γ(a)Γ(b)
· θa−1(1− θ)b−1

∫ 1

0

n∏
i=1

θxi(1− θ)(1−xi) · Γ(a+ b)

Γ(a)Γ(b)
· θa−1(1− θ)b−1∂θ

Any term that is a constant will be combined with the normalizing constant and momentarily

ignored. The factors with x′s and θ′s are of interest because they are variables, but constants

will be ignored for now.

Post(θ|data) =

n∏
i=1

θxi(1− θ)(1−xi) ·
�
�
�
�
��>

constant
Γ(a+ b)

Γ(a)Γ(b)
· θa−1(1− θ)b−1

��
���

���
���

���
���

���
���

���
�:constant∫ 1

0

n∏
i=1

θxi(1− θ)(1−xi) · Γ(a+ b)

Γ(a)Γ(b)
· θa−1(1− θ)b−1∂θ

Post(θ|data) ∝ θx1(1− θ)1−x1 · θx2(1− θ)1−x2 · . . . · θxn(1− θ)1−xn · θa−1(1− θ)b−1

Post(θ|data) ∝ θ(
P
xi+a)−1(1− θ)(n−

P
xi+b)−1

This is a probability function whose support is from 0 to 1. The next step is to obtain a

constant to multiply the function with so the function will integrate to 1. Compare the beta

PDF with this last function. What is in place of the beta function’s “a” and “b” in the last

line above? Note that “a” = (
∑
xi + a) and that “b” = (n−

∑
xi + b).

Incorporating the new a and b into the beta PDF, we see that the posterior function is

another Beta PDF with new values for a and b:

Post(θ|data) = θ(
P
xi+a)−1(1− θ)(n−

P
xi+b)−1 Γ(

∑
xi + a+ n−

∑
xi + b)

Γ(
∑
xi + a)Γ(n−

∑
xi + b)
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Conjugate Prior: The prior has the same functional form as the posterior. If the prior is a

beta, the conjugate posterior will be a beta.

Practical use of the Bayesian approach requires careful consideration of challenging probabil-

ity concepts, including the source of the prior distribution, the choice of a likelihood function,

computation and summary of the posterior distribution in high-dimensional problems, and

making a convincing presentation of the analysis. Advances in Bayesian data analysis have

been made in the last twenty years due to the evolution of computational methods using the

power of computers.

2.3 Markov chain Monte Carlo (MCMC)

A major limitation on the widespread implementation of Bayesian methods of data anal-

ysis was that obtaining the posterior distribution often required the integration of high-

dimensional functions. This can be mathematically very difficult, and as such, inhibited the

use of Bayesian methods since Bayes’ first proposal on the subject in 1763. The advancement

of computational methods has greatly simplified the application of Bayesian data analysis

and made these methods more accessible for all statisticians. One such development is

Markov chain Monte Carlo (MCMC).

Markov chain Monte Carlo methods include random walk Monte Carlo methods and

are a class of algorithms for sampling from probability distributions based on constructing a

Markov chain that has the desired distribution as its target distribution. The Monte Carlo

method for multidimensional integrals simply consists of integrating over a random sampling

of points instead of over a regular array of points. (Metropolis et al. 1953)

The chain begins at an initial value and is allowed to run for n iterations before the

researcher keeps the draws. These first n iterations are referred to as a “burn-in”, the value

of n is usually a large number, and a trace plot of the drawn values against the iteration

number guides in the selection of n. After n iterations or steps, the chain is kept and used
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as a sample from the desired distribution. The quality of the sample improves as a function

of the number of steps taken in the algorithm. MCMC is based on drawing values of θ from

approximate distributions and then correcting those draws to better approximate the target

posterior distribution. Samples are drawn sequentially with the distribution of the sample

draws depending on the last value drawn, thus forming a Markov chain. The next value

drawn depends upon the current value.

Typically, it is not hard to construct a Markov chain that will have the desired

properties. It is more difficult to determine the n steps that are needed to converge to

the desired, stationary distribution within an acceptable error. The key to the method’s

success is not the Markov property, however, but rather that the approximate distributions

are improved at each of the n steps in the simulation. Thus, the more steps that are taken,

the closer is the convergence to the desired target distribution.

Metropolis Algorithm

Statistical MCMC methods have their roots in the Metropolis algorithm as presented by

Metropolis et al. (1953) and later generalized and improved by Hastings from the University

of Toronto (Hastings 1970). The Metropolis algorithm computes complex integrals by ex-

pressing them as expectations for some distribution and then estimating this expectation by

drawing samples from that distribution. This method consists simply of “integrating over

a random sampling of points instead of over a regular array of points.” (Metropolis et al.

1953)

The Metropolis algorithm hinges on a function proportional to the distribution to be

sampled. This function is a rejection/acceptance criteria and requires a candidate density

from which draws are obtained and then fed into the function h(θ) to determine rejection or

acceptance of that draw.

p(θ|X) ∝ g(θ) ≡ f(X|θ)π(θ).
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The algorithm begins by specifying a candidate or proposal density q(θ∗|θ(t−1)) that is a

valid density meeting all of the required conditions to be a valid density for every possible

value of the conditioning variable θ(t−1) and also satisfies q(θ∗|θ(t−1)) = q(θ(t−1)|θ∗), which

means that q is symmetric in its arguments.

Here is a description of the Metropolis Algorithm: Given a starting value θ(0) at

iteration t = 0, then for t = 1, . . . , T , repeat:

1. Draw θ∗ from q(·|θ(t−1))

2. Compute the ratio r = g(θ∗)

g(θ(t−1))

3. If r ≥ 1, set θ(t) = θ∗; if r < 1, set θ(t) =

 θ∗ with probability r

θ(t−1) with probability 1 - r.

It has been shown that a draw θ(t) converges in distribution to a draw from the true

posterior density p(θ|x). (Carlin and Louis 2009)

Gibbs Sampler

The Gibbs sampler, as introduced by Geman and Geman (1984), sparked a major increase

in the application of Bayesian analysis, making Bayesian analysis feasible in practice. This

method provides an approach that reduces the hard multivariate problem to a series of simple

lower-dimensional problems. This method assumes the availability of all k full conditional

distributions, one for each parameter, and is known to converge slowly in applications with

a large number of k. The Gibbs sampler will sample from the full conditional distributions

at each iteration and the collection of full conditional distributions uniquely determines the

joint posterior distribution, p(θ|X) along with all marginal posterior distributions p(θi|x),

i = 1, . . . , k.

Here is a description of the Gibbs Sampler Algorithm: For t = 1, . . . , T , repeat:

Step 1: Draw θ
(t)
1 from p(θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
k ,x)
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Step 2: Draw θ
(t)
2 from p(θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
k ,x)

...

Step k: Draw θ
(t)
k from p(θk|θ(t)

1 , θ
(t)
2 , . . . , θ

(t)
k−1,x)

It has been shown that this k-tuple from the tth iteration of this algorithm converges

in distribution to a draw from the true joint posterior distribution p(θ|x). Hence, for t

sufficiently large, larger than the n “burn-in” iterations, θ is a correlated sample from the

true posterior from which posterior quantities of interest may be calculated. For example, a

sample mean for θ̂3 can estimate the posterior mean for θ3. (Carlin and Louis 2009)

2.4 WinBUGS

In 1989, the BUGS (Bayesian inference Using Gibbs Sampling) project began under the

direction of David Spiegelhalter and chief programmer Andrew Thomas in the MRC Bio-

statistics Unit, Cambridge, and led initially to the ‘Classic’ BUGS program. The Imperial

College School of Medicine at St Mary’s, London joined the project in 1996 with the work

of Nicky Best, Jon Wakefield, and Dave Lunn (BUGS 1996-2008). Andrew Thomas moved

to Helsinki, Finland in 2004 and began work on OpenBUGS at the University of Helsinki.

(OpenBUGS 2004) Currently the program runs only in the Microsoft Windows operating

system.

WinBUGS is a windows-based computer program designed to conduct Bayesian Anal-

yses of complex statistical models using Markov chain Monte Carlo (MCMC) methods. It

is a ‘point-and-click’ environment that utilizes Markov chain Monte Carlo computational

power to analyze a wide class of Bayesian full probability models. Herein, models will be

specified textually, but they may also be specified graphically. (Lunn et al. 2000)

WinBUGS is part of the BUGS project, which aims to make practical MCMC meth-

ods available to applied statisticians. In this program, the user specifies a model and starting

values, and then a Markov chain simulation is automatically implemented for the resulting

30



posterior distribution. It can use either a standard ’point-and-click’ windows interface for

controlling the analysis, or can construct the model using a graphical interface called Doo-

dleBUGS. WinBUGS is a stand-alone program that can also be called from other software,

like R. For further information on this, see the OpenBUGS site.

MCMC algorithms are implemented in this program to generate simulated obser-

vations from the posterior distribution of the unknown quantities in the statistical model.

With sufficiently many simulated observations, it is possible to get an accurate picture of

the posterior distribution.

2.5 PROC MCMC

SAS R© is a statistical program that was created to meet the need for a computerized statistics

program to analyze vast amounts of agricultural data. The establishment of such software

was all-important to members of the University Statisticians Southern Experiment Stations,

a consortium of eight land-grant universities largely funded by the USDA. These schools

came together under a grant from the National Institutes of Health in the development of

SAS R© . North Carolina State University became the leader of the consortium and the project

found a home in the Statistics Department under the leadership of Jim Goodnight and Jim

Barr (SAS 1976).

SAS R© programs define a sequence of operations to be performed on data stored

as tables. These operations are libraried as procedures or PROC commands. One of the

procedures new to SAS R© 9.2 is the PROC MCMC command. This is a general-purpose

MCMC simulation procedure for fitting a wide range of Bayesian models. PROC MCMC uses

a random walk Metropolis algorithm to obtain posterior samples. By default, PROC MCMC

assumes that all observations in the data set are independent, and therefore exchangeable.

Unlike most other SAS R© procedures, PROC MCMC is designed for Bayesian statisti-

cal analysis and inference. This procedure needs a likelihood function to be specified for the

data and prior distributions for the parameters; hyperprior distributions are needed if the
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model is hierarchical. Prior distributions for the parameters are specified with PRIOR state-

ments and the likelihood function for the data is specified with a MODEL statement. This

procedure bases its inferences from simulation rather than through analytic or numerical

methods. The default algorithm is an adaptive blocked random walk Metropolis algorithm

that uses a normal proposal distribution. Therefore, a second run of the same problem will

produce slightly different answers from the first run unless the same random number seed

is used. PROC MCMC saves the posterior sample draws in an output data set that can be

used for further analysis and it also produces summary and diagnostic statistics.
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chapter 3

COMPUTER SYNTAX INTRODUCTION

3.1 WinBUGS

WinBUGS may be downloaded from the BUGS Project website at

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. Users are not required to

register in order to obtain a key for unrestricted use. Follow the installation instructions to

obtain a key and appropriate download of WinBUGS.

In the help menu, users may access the user manual. It is here where you may read

how WinBUGS parameterizes various distributions. Such knowledge is crucial as you specify

prior distributions and likelihoods in your Bayesian models because WinBUGS syntax must

be incorporated appropriately to obtain results for the desired model.

Computer syntax will be introduced by working through an example. This example

contains seven data points that were simulated from a Gamma (shape=6, scale=8) distri-

bution. It will be assumed that this distribution is unknown and the prior distributions for

both α and β will be Gamma distributions.

x ∼ Gamma(α, β)

α ∼ Gamma(αα, βα)

β ∼ Gamma(αβ, ββ)

The likelihood for the data is

f(X|α, β) =
n∏
i=1

1

Γ(α)βα
xα−1
i e−

xi
β .
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The prior distributions are

π(α) =
1

Γ(αα)βααα
ααα−1e−

α
βα

π(β) =
1

Γ(αβ)β
αβ
β

βαβ−1e
− β
ββ .

Baye’s theorem tells us that the posterior distribution is

p(α, β|X) =

∏n
i=1 f(X|α, β) · π(α) · π(β)∫

Ω

∏n
i=1 f(X|α, β) · π(α) · π(β)∂α∂β

which, after some algebraic manipulation, removing of constants, and taking the log, is

proportional to

p(α, β|X) ∝− n log(Γ(α))− nα log(β) + (α− 1)
n∑
i=1

log(xi)−
∑n

i=1 xi
β

+ (αα − 1) log(α)− α

βα
+ (αβ − 1) log(β)− β

ββ

The first step is to type your model in a new document window and when saved

it needs to be in *.odc format. It is necessary that the user is aware of how WinBUGS

parameterizes distributions. In the user manual, it can be seen that WinBUGS parameterizes

the gamma distribution with the inverse of the shape parameter. Thus, when defining your

model in WinBUGS, it is necessary that you account for differences in parameterizing. One

such way is in the following model statement that was saved in *.odc format.

model {

for (i in 1:7) {

# likehood

y[i] ~ dgamma(a,b);

}

# prior for a

a ~ dgamma(3, .5);
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# prior for b

b <- 1/c ;

c ~ dgamma(4,.5);

}

Next, open another window to display the *.txt format of the data. The first line tells

WinBUGS about each column in the dataset while the last line indicates when the program

should stop looking for data. This dataset has only one column, which are the responses, yi.

y[]

65.1

42.8

62.7

131.3

57.3

45.8

113.8

END{};

Opening a series of windows make up the next steps in the process. Click Model

on the upper menu bar and choose Specification..., see figure 3.1, the Specification Tool

window will appear. Activate the *.odc window where the model is typed, then click the

check model button; look for the message “model is syntactically correct” in the lower left

corner of the WinBUGS window. Activate the *.txt window where the data is displayed,

then click the load data button; look for the message ”data loaded”. Click the compile

button; look for the message ”model compiled”. Click the gen inits button and look for

the message “initial values generated, model initialized”. Click Model on the upper menu

bar and choose Update..., see figure 3.2, the Update Tool window will appear with 1000

highlighted in the update field. Click the update button and look for the message “updates
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Figure 3.1: Model specification screen shot.

Figure 3.2: Model update screen shot.
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took 0 s”, which indicates that WinBUGS ran 1000 burn-in iterations through the MCMC

algorithm. Click Inference on the upper menu bar and choose Samples..., see figure 3.3, the

Sample Monitor Tool window will appear. In the nod field, indicate which variables from

the model WinBUGS should keep track of. Type a, then click the set button; type b, then

click the set button; type c, then click the set button. After all desired variables have been

set, type * which will populate the other buttons in the window, see figure 3.4. Activate the

Update Tool window and type the desired number of iterations for the MCMC algorithm,

perhaps 10000, in the update field, then click update and look for the “updates took 6 s”

message.

Figure 3.3: Sample monitor screen shot.

At this point, the researcher might want to look at trace plots, density graphs, time

series graphs, summary statistics for the variables, or perhaps the draws themselves. These

may be accessed from the Sample Monitor Tool window. Trace plots may be viewed by

clicking the trace button. Density plots for each variable may be viewed by clicking the

density button. Time series graphs may be viewed by clicking the history button. Summary
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Figure 3.4: Update screen shot.

statistics may be viewed by clicking the stats button. The actual draws and an index may

be accessed by clicking the coda button.

The summary stats for the analysis of this model are shown below in Table 3.1. As

you can see, the estimate for shape=a is 7.09 and the estimate for scale=b is 10.96. These

values are reasonably close to the original values of a=6 and b=8 from which the data were

simulated.

Table 3.1: Summary Statistics for Example 1 from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%

a 7.09 2.04 3.80 5.63 6.86 8.25 11.76

b 0.10 0.03 0.05 0.08 0.09 0.11 0.16

c 10.96 3.12 6.15 8.70 10.53 12.75 18.36

Figure 3.5 shows a sampling of the diagnostic plots that WinBUGS generates.
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 3.5: Summary plots for α as generated by WinBUGS.

3.2 PROC MCMC

Computer syntax for SAS R© 9.2 will be demonstrated by working through the same example

that was shown for WinBUGS with the same priors placed on α and β. Below is SAS R© 9.2

code demonstrating PROC MCMC with each line assigned a number for the purpose of this

discussion. As was stressed earlier for WinBUGS, it is just as crucial that users familiarize

themselves with the distributional forms SAS R© 9.2 is programed to work with by looking

through the user manual for PROC MCMC.

* read in the data file;

1 data example1;

2 infile ’c:\example1.txt’;

3 input y;

4 run;
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5

* print the data file for inspection;

6 proc print data=example1;

7 run;

8

* turn on graphics device;

9 ods graphics on;

10 proc mcmc data=example1 outpost=examp1out nmc=10000 nbi=1000 seed=12345;

* set parameters and initial values;

11 parms a 5 b .2;

* define priors;

12 prior a~gamma(3, scale=2);

13 prior b~gamma(4, scale=2);

* likelihood;

14 model y~gamma(a, scale=b);

15 run;

16

* turn off graphics device;

17 ods graphics off;

Lines one through four direct SAS R© 9.2 to read in the data file and tells SAS R© 9.2

what it should find therein. Line one gives a name for SAS R© 9.2 to refer to the data. Line

two gives the file path where SAS R© 9.2 can find the file. Line three tells SAS R© 9.2 what

variable(s) are located in the datafile and the variable name(s) for the column(s). Line four

ends the directions to SAS R© 9.2 by indicating to SAS R© 9.2 that it should run lines one

through four together. Line six directs SAS R© 9.2 to print the data in the output window,

line seven ends the direction and indicates that SAS R© 9.2 should run line six. After running

40



lines one through six, take a moment and look over the printout of the data to check that it

was read correctly by SAS R© 9.2 and that you have correctly defined the variable(s).

The PROC MCMC statement is found in lines ten through fifteen. Line nine and

seventeen together tell SAS R© 9.2 to prepare to produce graphics in the next set of directions

and when to stop being ready to produce graphics. Line 10 indicated that SAS R© 9.2 should

apply the MCMC procedure on the data referred to as example1, to name the posterior

output as examp1out, to run 10000 MCMC iterations, to run 1000 burn-in iterations and

to set the random seed generator at 12345. Initial values for the parameters are set in

line eleven such that a begins at 5 and b begins at .2. Defining the distributional form of

the priors is given in lines twelve and thirteen using the SAS R© 9.2 definition of the gamma

distribution. The model for y is defined in line fourteen using the SAS R© 9.2 definition of the

gamma distribution. The procedure is concluded in line fifteen.

Table 3.2: Summary Statistics for Example 1 from PROC MCMC.
The SAS System 1 2 : 0 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 1

The M CM C  P ro cedu re

The SAS System 1 2 : 0 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 1

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5% 5 0% 7 5%

a 1 0 0 0 0 9 .2 1 4 4 2 .9 4 8 4 7 .0 3 7 3 8 .8 8 2 7 1 1 .0 2 8 0

b 1 0 0 0 0 0 .1 3 2 4 0 .0 4 2 4 0 .1 0 0 9 0 .1 2 8 2 0 .1 5 9 3

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

a 0 .0 5 0 4 .3 1 6 9 1 5 .5 7 5 5 3 .9 1 5 2 1 4 .7 9 1 4

b 0 .0 5 0 0 .0 6 1 2 0 .2 2 3 5 0 .0 5 3 7 0 .2 1 4 2

Running lines nine through fifteen will produce several tables of output and diagnostic

plots for each of the priors. Figure 3.6 shows a sample of the diagnostic plots that PROC

MCMC generates. Of particular interest in the output is the table of posterior summaries

as shown in table 3.2. Output tables also include tuning history, posterior intervals, Monte

Carlo standard errors, posterior autocorrelations, among others. It should be noted that

SAS R© 9.2 has two possible parameterizations for the gamma distribution; the inverse scale
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was utilized for this example. As such, take the inverse of b in table 3.2 to compare this

posterior value with WinBUGS’ value of c in table 3.1.

Figure 3.6: Summary plots for α as generated by PROC MCMC.The SAS System 1 2 : 0 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 2

The M CM C  P ro cedu re

The SAS System 1 2 : 0 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 2

The M CM C  P ro cedu re
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3.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model {
f o r ( i in 1 : 7 ) {

y [ i ] ˜ dgamma(a , b) ;
} a ˜ dgamma(3 , . 5 ) ;
b <− 1/ c ;
c ˜ dgamma( 4 , . 5 ) ;
}

data example1 ;
i n f i l e ’ c :\ example1 . txt ’ ;
input y ;
run ;

proc p r i n t data=example1 ;
run ;

ods g raph i c s on ;
proc mcmc data=example1 outpost

=examp1out
nmc=10000 nbi=1000 seed =12345;
parms a 5 b . 2 ;
p r i o r a˜gamma(3 , s c a l e =2) ;
p r i o r b˜gamma(4 , s c a l e =2) ;
model y˜gamma(a , s c a l e=b) ;
run ;

ods g raph i c s o f f ;

3.4 The General WinBUGS Procedure

Here is an outline of the steps to run the model in WinBUGS, provided as a general reference.

1. The model code should be saved in .odc format

2. The data code should be saved in .txt format

a) The first row of the data file must be the column names followed by brackets.

b) The last row of the data file must be END{}.

y[]
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65.1

42.8

62.7

131.3

57.3

45.8

113.8

END{};

3. Load the model and data: Model → Specification

a) Click check model (make sure the *.odc window is selected).

b) Click load data (make sure the *.txt window is selected).

c) Click compile.

d) Click gen inits.

4. Create burnin: Model → Update...

a) Enter the number of burnin draws in the updates text field.

Note: Usually 1,000 should be sufficient.

b) Click update to create burnin draws.

5. Tell WinBUGS which parameters to keep track of: Inference → Samples...

a) For each parameter you want to keep track of:

i. In the node text field, enter the name of the parameter (as it appears in the

*.odc file).

Note: When you have entered an acceptable parameter, the set button will

turn black.

ii. Click set.
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b) When you have entered all parameters you want to keep track of, enter * in the

node text field.

Note: All buttons (except for the set button) will turn black.

6. Calculate the DIC (optional): Inference → DIC...

a) Click set.

7. Create joint posterior draws: Return to Update Tool window

a) Enter the number of posterior draws in the updates text field.

Note: Usually 10,000 should be sufficient.

Note: If you would like to watch the trace plot as the draws are updated, return

to the Sample Monitor Tool and click trace.

b) Click update to create posterior draws.

8. View your results: Return to the Sample Monitor Tool

a) Click stats to see statistics for model parameters.

b) Click trace to see parameter trace plots.

c) Click density to see density plots of model parameters.

d) Click auto cor to see monitor autocorrelation within parameters.

9. View DIC results: Return to the DIC Tool

a) Click DIC to see results.

10. Saving the posterior draws: Return to the Sample Monitor Tool

a) Click coda, two windows will pop up.

i. The CODA for chain * window lists the posterior draws for all parameters

that were set in Step 5. The draws are listed consecutively by parameter.
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The first column is the observation number, and the second column is the

posterior draws.

ii. The CODA index window gives the starting and ending index for each param-

eter in the second column of the CODA for chain * window.

b) File → Save As... (make sure the CODA index window is selected).
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chapter 4

TWO SAMPLE T-TEST

Consider the situation where two independent samples from two different normal distri-

butions are obtained. Let x1 have sample size n1 and x2 have sample size n2; note that

n1 6= n2.

x1 ∼ Normal(µ1, σ
2
1)

x2 ∼ Normal(µ2, σ
2
2)

A typical Frequentist approach is to assume that the variances are equal and proceed with

a two-sample t-test to obtain confidence intervals and test the equality of the two means.

In this setting, the distribution of the test statistic under the null hypothesis is known and

the methods are reliable. However, a problem with this approach is that the test is very

sensitive to the assumption of equal variances and in practice it is almost impossible to

satisfy the assumption. This situation is famous in the history of statistics and is referred to

as the Behrens-Fisher problem. When the equal variance assumption cannot be satisfied, the

distribution of the test statistic is unknown and must be approximated. This approximation

is not pleasant and can result in incorrect conclusions because of the sensitivity of the test

to the assumption (Casella and Berger 2002).

Within the Bayesian framework this setting poses none of the above problems. We can

take a straightforward approach because the posterior distribution of µ1−µ2 can be estimated

while simultaneously taking into account the uncertainties of all parameters involved by

treating them as random variables (SAS Institute Inc. 2008).
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For this analysis, the data will be modeled as normal and the mean will have a prior

distribution of normal while the variance will have a prior distribution of a gamma.

xij ∼Normal(µi, σ
2
i )

µi ∼Normal(150, σ2
µ = 100, 000, 000)

σ2
i ∼Gamma(2, scale = 25)

The prior values for the mean and variance were selected to preserve the parameter space

while not restricting the MCMC process in the random walk.

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

4.1 WinBUGS

The code below shows the model statement that should be saved as *.odc and the data

file that should be saved as a *.txt file. Here the data are modeled as normal with each

treatment having its own mean µ and precision τ . In WinBUGS’s documentation, it can

be seen that the parameterization for the normal distribution involves a precision which is

the reciprocal of the variance σ2. The treatment means are modeled as normal with mean

100 and variance of 100,000,000. The σ2
i ’s are modeled with their own gamma distributions

because we are not assuming they are equal. An approximate standard deviation for each

treatment may be obtained by taking the range of the data and dividing by four. This look

at the data tells us that treatment two possibly has a smaller variance, to account for this, σ2

is allowed to vary for the two treatments. The model statement also instructs WinBUGS to

compute the posterior distribution of the difference of means and the ratio of the variances.

48



The model statement:

model {
# l i k e l i h o o d
f o r ( i in 1 : 33 )
{ y [ i ] ˜ dnorm(mu[ tmt [ i ] ] , prec [ tmt [ i ] ] ) ;
}
f o r ( i in 1 : 2 )
{ prec [ i ] <− 1/ var [ i ] ;
# the p r i o r s
mu[ i ] ˜ dnorm(100 , 0 .00000001) ;
var [ i ] ˜ dgamma(2 , 0 . 04 ) ;
}
# va r i a b l e s o f i n t e r e s t in the ana l y s i s
mudif <− mu[ 1 ] − mu [ 2 ] ;
v a r r a t i o <− var [ 1 ] / var [ 2 ] ;
}

Table 4.1 shows a sample of the summary statistics for the posterior distribution

and indicates that the means of the two samples are different because the distribution of the

differences does not include zero. Additionally, the ratio of the two variances would be one

if the two variances were the same, but the posterior distribution shown indicates that this

ratio is not close to one. These results were obtained without any approximations as would

be required in a Frequentist analysis of this same data.

Table 4.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
mu[1] 134.61 4.01 126.70 132.00 134.60 137.30 142.40
mu[2] 121.43 1.88 117.70 120.20 121.40 122.70 125.10
mudif 13.18 4.43 4.41 10.22 13.22 16.21 21.81

varratio 6.84 2.66 2.94 4.92 6.42 8.30 13.19
deviance 275.32 4.21 268.80 272.20 274.80 277.80 285.00

A sample of the posterior summary plots are shown in Figure 4.1. The trace plot

indicates that convergence was reached. There were no problems with autocorrelation. The

posterior density of the difference of means is also shown.
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 4.1: WinBUGS summary plots for the posterior distribution of the difference of
means.

4.2 PROC MCMC

As was done in chapter 3, each line of code has been numbered for the purpose of this

discussion. Please note that line two below needs a directory path for the desired data file

to be read into SAS if one is using the following code. Lines one through four direct SAS

to read in the data file and tells SAS what it should find therein. Line one gives a name

for SAS to refer to the data. Line two gives the file path where SAS can find the file. Line

three tells SAS what variable(s) are located in the data file and the variable name(s) for the

column(s). Line four ends the directions to SAS by indicating to SAS that it should run lines

one through four together. Line six directs SAS to print the data in the output window, line

seven ends the direction and indicates that SAS should run line six. After running lines one
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through six, take a moment and look over the printout of the data to check that it was read

correctly by SAS and that you have correctly defined the variable(s).

The PROC MCMC statement is found in lines ten through twenty-seven. Lines

nine and twenty-eight together tell SAS to prepare to produce graphics in the next set of

directions and when to stop being ready to produce graphics. Line ten indicated that SAS

should apply the MCMC procedure on the data referred to as examp2, to name the posterior

output as examp2out, to run 10000 MCMC iterations, to run 1000 burn-in iterations, and to

set the random seed generator at 478. Initial values for the parameters are set in lines eleven

and thirteen. Line twelve sets an array of length two for σ2. Defining the distributional

form of the priors is given in lines fourteen and fifteen using the SAS definition of the

gamma distribution. Line sixteen defines mudif as the difference of the two samples means;

line seventeen defines varratio as the ratio of the two population variances. Lines eighteen

through twenty-five are for bookkeeping to keep track of which parameters go with which

sample. The model for y is defined in line twenty-six using the SAS definition of the normal

distribution. The procedure is concluded in line twenty-seven.

∗ read in the data f i l e ;
1 data examp2 ;
2 i n f i l e ’ ’ ;
3 input tmt y ;
4 run ;
5
∗ pr in t the data f o r i n sp e c t i on ;
6 proc p r i n t data=examp2 ;
7 run ;
8
∗ turn on graph i c s dev i c e ;
9 ods g raph i c s on ;
10 proc mcmc data=ex2 outpost=examp2out nmc=10000 seed=478 nbi=1000

monitor=( parms mudif v a r r a t i o ) d i c ;
∗ s e t parameters and i n i t i a l va lue s ;
11 parm mu1 0 mu2 0 ;
∗ i n i t i a l i z e an array o f l ength 2 f o r s i g 2 ;
12 array s i g 2 [ 2 ] ;
∗ s e t parameter and i n i t i a l va lue ;
13 parm s i g 2 : 1 ;
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∗ de f i n e p r i o r s ;
14 p r i o r mu: ˜ normal (100 , var =100000000) ;
15 p r i o r s i g 2 : ˜ gamma(2 , s c a l e =25) ;
∗ de f i n e v a r i a b l e s o f i n t e r e s t ;
16 mudif = mu1 − mu2 ;
17 va r r a t i o = s i g 2 [ 1 ] / s i g 2 [ 2 ] ;
∗ i f−then to keep track o f group membership ;
18 i f tmt = 1 then do ;
19 mu=mu1 ;
20 vv=s i g 2 [ 1 ] ;
21 end ;
22 e l s e do ;
23 mu=mu2 ;
24 vv=s i g 2 [ 2 ] ;
25 end ;
∗ l i k e l i h o o d ;
26 model y ˜ normal (mu, var=vv ) ;
27 run ;
∗ turn o f f g raph i c s dev i c e ;
28 ods g raph i c s o f f ;

Running lines nine through twenty-eight will produce several tables of output and

diagnostic plots for each of the priors. Figure 4.2 shows the diagnostic plots that PROC

MCMC generates for the difference of means. Of particular interest in the output is the table

of posterior summaries as shown in table 4.2. Other output tables are available, including

tuning history, posterior intervals, Monte Carlo standard errors, posterior autocorrelations,

among others.

The code produced the following output as shown in Table 4.2 and Figure 4.2.

The trace plot indicated that convergence was reached. The autocorrelation graph indicates

no problems and the density plot shows the posterior distribution for the difference of the

means.

SAS’ output leads the researcher to the same conclusion as did WinBUGS that the

means of the two samples are different because the distribution of the differences does not

include zero. Additionally, the ratio of the two variances also indicates that the two variances

are not the same.
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Table 4.2: Summary Statistics for Example 2 from PROC MCMC.

The SAS System 1 0 : 5 4  T u e s d a y ,  M a r c h  1 5 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 0 : 5 4  T u e s d a y ,  M a r c h  1 5 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

m u 1 1 0 0 0 0 1 3 4 .6 3 .9 5 3 5 1 3 2 .0 1 3 4 .6 1 3 7 .2

m u 2 1 0 0 0 0 1 2 1 .4 1 .8 7 6 9 1 2 0 .2 1 2 1 .4 1 2 2 .6

s ig 2 1 1 0 0 0 0 2 9 8 .6 5 3 .8 3 3 0 2 5 9 .6 2 9 3 .4 3 3 1 .7

s ig 2 2 1 0 0 0 0 4 9 .7 4 2 7 1 7 .8 0 8 3 3 7 .1 2 0 4 4 6 .4 4 3 7 5 8 .4 2 5 2

m u d if 1 0 0 0 0 1 3 .2 3 0 1 4 .3 8 6 9 1 0 .1 8 6 1 1 3 .2 1 9 0 1 6 .0 8 3 1

v a r r a t io 1 0 0 0 0 6 .7 2 0 5 2 .5 8 5 3 4 .8 3 4 9 6 .2 9 2 9 8 .1 2 3 2

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 1 2 6 .9 1 4 2 .4 1 2 7 .2 1 4 2 .5

m u 2 0 .0 5 0 1 1 7 .6 1 2 5 .1 1 1 7 .7 1 2 5 .1

s ig 2 1 0 .0 5 0 2 0 7 .9 4 1 3 .8 2 0 5 .6 4 0 7 .8

s ig 2 2 0 .0 5 0 2 4 .8 2 5 9 9 4 .3 9 0 1 2 1 .6 1 7 1 8 5 .5 0 2 8

m u d if 0 .0 5 0 4 .8 1 5 2 2 2 .0 9 8 7 4 .5 2 8 9 2 1 .7 0 0 0

v a r r a t io 0 .0 5 0 2 .9 1 2 3 1 3 .0 9 0 7 2 .7 0 9 9 1 2 .4 4 8 6

Figure 4.2: Summary plot for the posterior distribution of difference of means.
The SAS System 1 0 : 5 4  T u e s d a y ,  M a r c h  1 5 ,  2 0 1 1 8

The M CM C  P ro cedu re
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4.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model { data examp2 ;

f o r ( i in 1 : 33 ) i n f i l e ’ ’ ;

{ y [ i ] ˜ dnorm(mu[ tmt [ i ] ] , prec [ input tmt y ;

tmt [ i ] ] ) ; run ;

}

f o r ( i in 1 : 2 ) proc p r i n t data=examp2 ;

{ prec [ i ] <− 1/ var [ i ] ; run ;

mu[ i ] ˜ dnorm(100 , 0 .00000001) ;

var [ i ] ˜ dgamma(2 , 0 . 04 ) ; ods g raph i c s on ;

} proc mcmc data=ex2 outpost=

mudif <− mu[ 1 ] − mu [ 2 ] ; examp2out nmc=10000 seed=478

va r r a t i o <− var [ 1 ] / var [ 2 ] ; nbi=1000 monitor=( parms mudif

} va r r a t i o ) d i c ;

tmt [ ] y [ ] parm mu1 0 mu2 0 ;

1 121 array s i g 2 [ 2 ] ;

1 94 parm s i g 2 : 1 ;

1 119 p r i o r mu: ˜ normal (100 , var

1 122 =100000000) ;

1 142 p r i o r s i g 2 : ˜ gamma(2 , s c a l e =25) ;

1 168 mudif = mu1 − mu2 ;

1 116 va r r a t i o = s i g 2 [ 1 ] / s i g 2 [ 2 ] ;

1 172 i f tmt = 1 then do ;

1 155 mu=mu1 ;
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1 107 vv=s i g 2 [ 1 ] ;

1 180 end ;

1 119 e l s e do ;

1 157 mu=mu2 ;

1 101 vv=s i g 2 [ 2 ] ;

1 145 end ;

1 148 model y ˜ normal (mu, var=vv ) ;

1 120 run ;

1 147 ods g raph i c s o f f ;

1 125

2 126

2 125

2 130

2 130

2 122

2 118

2 118

2 111

2 123

2 126

2 127

2 111

2 112

2 121

END{} ;
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chapter 5

LINEAR REGRESSION

In this chapter, the data set will be used to demonstrate a simple linear regression setting.

Here the desire is to understand the functional dependence of one variable on another and

the model takes on the form

yi = β0 + β1xi,

where yi is the response variable and xi is an observed variable that predicts yi.

Y ∼ Normal (β0 + β1xi, σ
2)

The form of the above equation is like unto the slope-intercept line of y = mx+ b where β0

equates to the intercept of the line and β1 equates to the slope of the line. Hence, β0 + β1xi

is the mean at the line and σ2 is the variance of the data around the line.

For this analysis, the data will be modeled as normal and the mean will have a prior

for β0 and for β1. Three different approaches will be shown in WinBUGS for modeling σ2,

the variance of the data around the line.

yi ∼Normal(µi, σ
2)

µi =β0 + β1xi

β0 ∼Normal(0, 1000000)

β1 ∼Normal(0, 1000000)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function
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and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

5.1 WinBUGS

In the code below, the first two lines are included because WinBUGS does not allow the

model to exclude any column of the data set. Hence, dd1 and dd2 are needed as dummy

variables because these two columns of the data set are not used to model the yi’s.

The model statement defines the yi’s to be normally distributed around the line as

defined by µ with precision τ . Recall that WinBUGS parameterizes the normal distribution

with precision which is the reciprocal of variance. The βi’s are also set to be normally

distributed around zero with a very large variance.

There are three different model statements here to allow for three different approaches

to the variance around the line or the modeling of σ2. The first model sets the variance to

be constant for each xi. The second model defines the precision to be a linear function of

the standard deviation. The third model defines the precision to be a linear function of the

variance.

The data file is shown below in the Side-By-Side section. These models could be

adjusted to replace with y as y1 for the response variable or again as y2 in the data set

to predict the line for these other columns of responses. Note, that the second and third

models are using y2 as the response variable.

model {
# dummy va r i a b l e s to use a l l columns in data s e t
dd1 <− y1 [ 1 ] ;
dd2 <− y2 [ 1 ] ;

f o r ( i in 1 : 10 ) {
# l i k e l i h o o d
y [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean
mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ;
}

# the p r i o r s f o r be t a i
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b [ 1 ] ˜ dnorm(0 , 0 .000001) ;
b [ 2 ] ˜ dnorm (0 ,0 . 000001 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec <− 1/ s i g 2 ;
# p r i o r f o r var i ance
s i g 2 ˜ dgamma( 1 , 0 . 1 ) ;

}

# A second model :
model {

# dummy va r i a b l e s to use a l l columns in data s e t
dd1 <− y [ 1 ] ;
dd2 <− y1 [ 1 ] ;

f o r ( i in 1 : 10 ) {
# l i k e l i h o od , a l l ow ing var iance to change with each x i
y2 [ i ] ˜ dnorm(mu[ i ] , prec [ i ] ) ;
# de f i n e the mean
mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ;
cc [ i ] <− (1/(b [ 3 ] ∗ x [ i ]∗ s q r t ( varreg ) ) ) ;
# c c i r e l a t e s to the standard dev i a t i on o f the data
# the new p r e c i s i o n i s a l i n e a r func t i on o f the standard

dev i a t i on
prec [ i ] <− cc [ i ]∗ cc [ i ] ;
}

# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(0 , 0 .0001) ;
b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;
b [ 3 ] ˜ dgamma( 1 , . 2 ) ;
#b [ 3 ] i s a dgamma because i t has to be p o s i t i v e
#the dgamma has a p o s i t i v e support
varreg ˜ dgamma( 2 , . 2 ) ;

}

# A th i rd model :
model {

# dummy va r i a b l e s to use a l l columns in data s e t
dd1 <− y [ 1 ] ;
dd2 <− y1 [ 1 ] ;

f o r ( i in 1 : 10 ) {
# l i k e l i h o od , a l l ow ing var iance to change with each x i
y2 [ i ] ˜ dnorm(mu[ i ] , prec [ i ] ) ;
# de f i n e the mean
mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ;
cc [ i ] <− (1/(b [ 3 ] ∗ x [ i ] ∗ ( varreg ) ) ) ;
#c c i r e l a t e s to the var iance o f the data
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# the new p r e c i s i o n i s a l i n e a r func t i on o f the var iance
prec [ i ] <− cc [ i ]∗ cc [ i ] ;
}

# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(0 , 0 .0001) ; b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;
b [ 3 ] ˜ dgamma( 1 , . 2 ) ;
#b [ 3 ] i s a dgamma because i t has to be p o s i t i v e
#the dgamma has a p o s i t i v e support
varreg ˜ dgamma( 2 , . 2 ) ;

}

Table 5.1 shows a sample of the summary statistics for the posterior distribution

from the first model and indicates that the intercept of the regression line is about 10 and

the slope is 2. A sample of the posterior summary plots is shown in Figure 5.1. The trace

plot indicates that convergence was reached. There were no problems with autocorrelation.

The posterior density of the variance around the line is also shown.

Table 5.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 9.98 2.77 4.46 8.22 10.01 11.75 15.49
b[2] 2.00 0.05 1.90 1.97 2.00 2.03 2.10
sig2 9.34 4.77 3.63 6.08 8.20 11.31 21.63

deviance 49.53 2.51 46.54 47.65 48.92 50.78 55.82

5.2 PROC MCMC

Here in PROC MCMC, only the model with constant variance is shown. Other code could

be created to model the behavior of the variance as in the ways shown above in WinBUGS.

As was done in chapter 3, each line of code has been numbered for the purpose of

this discussion. Please note that lines two and twenty-one both have space for the directory

path for the file name to be read and the file to be saved. Lines one through four direct

SAS to read in the data file and tell SAS what it should find therein. Line one gives a name

for SAS to refer to the data. Line two gives the file path where SAS can find the file. Line

three tells SAS what variable(s) are located in the data file and the variable name(s) for the
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 5.1: WinBUGS summary plots for the posterior distribution of the variance around
the line.

column(s). Line four ends the directions to SAS by indicating to SAS that it should run

lines one through four together.

The PROC MCMC statement is found in lines seven through sixteen. Lines six and

seventeen together tell SAS to prepare to produce graphics in the next set of directions and

when to stop being ready to produce graphics. Line seven indicates that SAS should apply

the MCMC procedure on the data referred to as ex3, to name the posterior postex3, to

run 510000 MCMC iterations, to have 10000 burn-in iterations, and to thin the draws by

taking only every fiftieth one. Line eight continues the MCMC procedure by setting the

random seed generator at 123 and asking SAS to monitor β0, β1, and σ2. Initial values

for the parameters are set in lines nine and ten. Lines eleven through thirteen define the

distributional form of the priors using the SAS definition of distributions. Line fourteen

defines µ and line fifteen defines the model. The procedure is concluded in line sixteen.
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Lines nineteen through twenty-four ask SAS to export the posterior draws to a .csv file that

can be read into another program for further analysis.

The code produced the following output as shown in Table 5.2 and Figure 5.2. Notice

that SAS predicts the intercept of the line to be about 10 and the slope to be about 2. The

trace plot indicated that convergence was reached. The autocorrelation graph indicates no

problem and the density plot shows the posterior distribution for σ2.

Table 5.2: Summary Statistics for Example 3 from PROC MCMC.
The SAS System 0 9 : 4 0  F r i d a y ,  M a r c h  4 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 0 9 : 4 0  F r i d a y ,  M a r c h  4 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

b 0 1 0 2 0 0 9 .9 6 1 5 2 .8 0 2 7 8 .1 6 5 7 9 .9 7 0 2 1 1 .7 4 1 0

b 1 1 0 2 0 0 2 .0 0 0 5 0 .0 5 2 9 1 .9 6 6 7 2 .0 0 0 8 2 .0 3 4 5

s 2 e r r 1 0 2 0 0 9 .2 8 2 0 4 .1 8 9 5 6 .3 2 7 3 8 .4 1 5 7 1 1 .2 7 3 8

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b 0 0 .0 5 0 4 .3 9 2 0 1 5 .5 1 1 1 4 .5 7 7 7 1 5 .6 5 8 1

b 1 0 .0 5 0 1 .8 9 4 1 2 .1 0 5 2 1 .8 9 1 2 2 .1 0 1 3

s 2 e r r 0 .0 5 0 3 .8 2 9 2 1 9 .6 2 7 2 3 .0 0 7 9 1 7 .4 6 4 9

∗ read in the data f i l e ;
1 data ex3 ;
2 i n f i l e ’ ’ ;
3 input x y y1 y2 ;
4 run ;
5
∗ turn on graph i c s dev i c e ;
6 ods g raph i c s on ;
7 proc mcmc data=ex3 outpost=postex3 nmc=510000 nbi=10000 th in=50
8 seed=123 monitor=(b0 b1 s 2 e r r ) ;
∗ s e t parameters and i n i t i a l va lue s ;
9 parms b0 0 b1 1 ;
10 parms s 2 e r r 10 ;
∗ de f i n e p r i o r s ;
11 p r i o r b0 ˜ normal (0 , var=10000) ;
12 p r i o r b1 ˜ normal (0 , var=100) ;
13 p r i o r s 2 e r r ˜ gamma(2 , s c a l e =5) ;
∗ de f i n e the mean , which i s the l i n e ;
14 mu=b0 + b1∗x ;
∗ l i k e l i h o o d ;
15 model y ˜ normal (mu, var=s2 e r r ) ;
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Figure 5.2: Summary plot for the posterior distribution of the variance around the line.The SAS System 0 9 : 4 0  F r i d a y ,  M a r c h  4 ,  2 0 1 1 6

The M CM C  P ro cedu re

16 run ;
∗ turn o f f g raph i c s dev i c e ;
17 ods g raph i c s o f f ;
18
19 /∗ c r e a t i n g the chain o f draws : ∗/
20 proc export data=postex3
21 o u t f i l e =’ ’
22 dbms=csv
23 r ep l a c e ;
24 run ;
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5.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model { i n f i l e ’ ’ ;

dd1 <− y1 [ 1 ] ; input x y y1 y2 ;

dd2 <− y2 [ 1 ] ; run ;

f o r ( i in 1 : 10 ) { ods g raph i c s on ;

y [ i ] ˜ dnorm(mu[ i ] , prec ) ; proc mcmc data=ex3 outpost=

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ; postex3 nmc=510000 nbi=10000

} th in=50

seed=123 monitor=(b0 b1 s 2 e r r

b [ 1 ] ˜ dnorm(0 , 0 .000001) ; ) ;

#a very smal l parms b0 0 b1 1 ;

#p r e c i s i o n ge t s a very big parms s 2 e r r 10 ;

var i ance p r i o r b0 ˜ normal (0 , var

b [ 2 ] ˜ dnorm (0 ,0 . 000001 ) ; =10000) ;

prec <− 1/ s i g 2 ; p r i o r b1 ˜ normal (0 , var=100)

s i g 2 ˜ dgamma( 1 , 0 . 1 ) ; ;

} p r i o r s 2 e r r ˜ gamma(2 , s c a l e

=5) ;

# A second model : mu=b0 + b1∗x ;

model { model y ˜ normal (mu, var=

dd1 <− y [ 1 ] ; s 2 e r r ) ;

dd2 <− y1 [ 1 ] ; run ;

ods g raph i c s o f f ;
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f o r ( i in 1 : 10 ) {

y2 [ i ] ˜ dnorm(mu[ i ] , prec [ i /∗ c r e a t i n g the chain o f draws :

] ) ; ∗/

#a l l ow ing var iance to proc export data=postex3

change with each x i o u t f i l e =’ ’

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ; dbms=csv

cc [ i ] <− (1/(b [ 3 ] ∗ x [ i ]∗ s q r t r ep l a c e ;

( varreg ) ) ) ; run ;

#c c i r e l a t e s to the

standard dev i a t i on o f the

data The data f i l e :

# the new p r e c i s i o n i s a x [ ] y [ ] y1 [ ] y2 [ ]

l i n e a r func t i on o f the 30 73 41 88

standard dev i a t i on 20 50 82 53

prec [ i ] <− cc [ i ]∗ cc [ i ] ; 60 128 131 140

} 80 170 157 204

40 87 87 92

b [ 1 ] ˜ dnorm(0 , 0 .0001) ; 50 108 88 96

#a very smal l 60 135 130 114

#p r e c i s i o n ge t s a very big 30 69 59 81

var iance 70 148 160 200

b [ 2 ] ˜ dnorm (0 , . 0 1 ) ; 60 132 168 161

b [ 3 ] ˜ dgamma( 1 , . 2 ) ; END{} ;

#b [ 3 ] i s a dgamma because i t

has to be p o s i t i v e

#the dgamma has a p o s i t i v e

support
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varreg ˜ dgamma( 2 , . 2 ) ;

}

# A th i rd model :

model {

dd1 <− y [ 1 ] ;

dd2 <− y1 [ 1 ] ;

f o r ( i in 1 : 10 ) {

y2 [ i ] ˜ dnorm(mu[ i ] , prec [ i

] ) ;

#a l l ow ing var iance to

change with each x i

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ x [ i ] ;

cc [ i ] <− (1/(b [ 3 ] ∗ x [ i ] ∗ (

varreg ) ) ) ;

#c c i r e l a t e s to the

standard dev i a t i on o f the

data

# the new p r e c i s i o n i s a

l i n e a r func t i on o f the

standard dev i a t i on

prec [ i ] <− cc [ i ]∗ cc [ i ] ;

}

b [ 1 ] ˜ dnorm(0 , 0 .0001) ;

#a very smal l
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#pr e c i s i o n ge t s a very big

var iance

b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;

b [ 3 ] ˜ dgamma( 1 , . 2 ) ;

#b [ 3 ] i s a dgamma because i t

has to be p o s i t i v e

#the dgamma has a p o s i t i v e

support

#prec <− 1/ varreg ;

varreg ˜ dgamma( 2 , . 2 ) ;

}
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chapter 6

MULTIPLE REGRESSION

In the previous chapter, the desire was to relate a single dependent response variable, y to

a single independent predictor variable x. This chapter expands this approach to include

multiple independent predictor variables xm which model the behavior of a single dependent

response variable y. For each yi in the data set, there are m columns of the xm’s that will

be used for prediction. The model takes on the form

yi = β0 + β1x1 + β2x2 + . . .+ βmxm

with

Y ∼ Normal(β0 + β1x1 + β2x2 + . . .+ βjxm, σ
2).

The form of the above equation is like unto the slope-intercept line of y = mx+ b where the

intercept is β0 and the idea of slope is expanded to include the sum of the remaining βj that

are coefficients on the xm’s. Hence, β0 + β1x1 + β2x2 + . . . + βjxm is the mean at the line

and σ2 is the variance of the data around the line.

For this analysis, the data will be modeled as normal and the mean will have a prior

for each of the βi’s. Three different models will show three approaches for modeling the

mean; the first model is given below.
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yi ∼Normal(µi, σ
2)

µi =β0 + β1x1i + β2x2i

β0 ∼Normal(0, 10000)

β1 ∼Normal)(0, 100)

β2 ∼Normal(0, 100)

σ2 ∼Gamma(3, scale = 10)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Here in this chapter the concept of model selection will be introduced by discussing

DIC which means Deviance Information Criterion. Three different models will be looked

at and evaluated for their goodness of fit as calculated by DIC = -2log(likelihood) + (the

effective number of parameters). The model with the smallest DIC has the best fit. For

further information about DIC, see the WinBUGS user manual, the SAS User’s Guide, or

Carlin and Louis (2009).

6.1 WinBUGS

This data set has three columns and is shown in the side-by-side code section below. The

objective is to predict the hours as a function of number of interviews and number of miles

driven. The first model in the code is the full model using all three columns of the data set

such that hours = β0 + β1*miles + β2*interviews. The second model removes the interviews

column and just models hours = β0 + β1*miles. The third model removes the miles column
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and just models hours = β0 + β2*interviews. For all three models, WinBUGS will calculate

DIC and this value will be used to determine which model has a better goodness of fit.

model {
f o r ( i in 1 : 14 ) {

# l i k e l i h o o d
hours [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ mi le s [ i ] + b [ 3 ] ∗ i n t s [ i ] ;
}
# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(0 , 0 .0001) ;
b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;
b [ 3 ] ˜ dnorm (0 , . 0 1 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec <− 1/ varreg ;
# p r i o r f o r var i ance
varreg ˜ dgamma( 3 , . 1 ) ;
}

# A second model :
model {

# dummy va r i ab l e to use a l l columns in data s e t
dummy1 <− i n t s [ 1 ] ;

f o r ( i in 1 : 14 ) {
# l i k e l i h o o d

hours [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ mi le s [ i ] ;
}
# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(0 , 0 .0001) ;
b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;
#b [ 3 ] ˜ dnorm (0 , . 0 1 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec <− 1/ varreg ;
# p r i o r f o r var i ance
varreg ˜ dgamma( 3 , . 1 ) ;
}

# A th i rd model :
model {

# dummy va r i ab l e to use a l l columns in data s e t
dummy1 <− mi le s [ 1 ] ;

f o r ( i in 1 : 14 ) {
# l i k e l i h o o d
hours [ i ] ˜ dnorm(mu[ i ] , prec ) ;
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# de f i n e the mean
mu[ i ] <− b [ 1 ] + b [ 3 ] ∗ i n t s [ i ] ;

}
# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(0 , 0 .0001) ;
#b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;
b [ 3 ] ˜ dnorm (0 , . 0 1 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec <− 1/ varreg ;
# p r i o r f o r var i ance
varreg ˜ dgamma( 3 , . 1 ) ;

}

Table 6.1 shows a sample of the summary statistics for the posterior distribution of

the third model. Figure 6.1 gives a sample of the posterior summary plots for β0 in the

third model. Convergence was reached, there were no problems with autocorrelation, and

the posterior distribution is shown.

Table 6.1: Summary statistics for all three models from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 0.77 4.30 -7.76 -2.08 0.77 3.62 9.29
b[2] 0.69 0.51 -0.32 0.36 0.69 1.03 1.70
b[3] 1.82 1.11 -0.40 1.09 1.81 2.55 4.04

varreg 35.61 11.96 18.13 26.96 33.67 42.01 64.23
deviance 90.20 2.62 86.87 88.26 89.62 91.55 96.70

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 2.57 4.32 -6.19 -0.28 2.60 5.40 11.20
b[2] 1.49 0.15 1.19 1.39 1.49 1.59 1.79

varreg 38.78 12.29 20.68 29.92 36.81 45.40 68.49
deviance 92.04 2.18 89.63 90.48 91.45 93.01 97.74

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 0.77 4.37 -7.99 -2.14 0.78 3.65 9.33
b[3] 3.27 0.32 2.63 3.06 3.27 3.48 3.90

varreg 37.15 12.09 19.41 28.51 35.12 43.76 66.35
deviance 91.10 2.19 88.64 89.52 90.51 92.07 96.74
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DIC for model 1: 93.643

DIC for model 2: 94.583

DIC for model 3: 93.641

(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 6.1: WinBUGS summary plots for the posterior distribution of the regression line’s
intercept from model three.

These DIC values give a measure of model fit and allow the researcher to compare

how different models perform their ability to model the data satisfactorily. The lower DIC

value indicates which model fits the data best. Here, model 3 has the lowest DIC, so this

model is the best choice of the three.

6.2 PROC MCMC

The code for the first and third models are presented here and the summary statistics are

shown in table 6.2. The second model was not included because it had the highest DIC
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and it is very similar to the code for model 3. Notice on lines nine and thirty-seven that

nmc has been increased along with nbi and we added an option to thin the draws every

50. These changes can be made when the posterior distribution has a little trouble reaching

convergence and shows problems with autocorrelation. These chosen values for the number

of MCMC iterations and number of burn-in values have allowed the posterior here to reach

convergence satisfactorily and have no autocorrelation issues as seen in figure 6.2.

As was done in chapter 3, each line of code has been numbered for the purpose of this

discussion. Please note that lines two, twenty-three, thirty, and fifty-one have space for the

directory path for the file name to be read and the file to be saved. Lines one through four

and twenty-nine through thirty-two direct SAS to read in the data file and tell SAS what

it should find therein. Lines one and twenty-nine give a name for SAS to refer to the data.

Lines two and thirty give the file path where SAS can find the file. Lines three and thirty-one

tell SAS what variables are located in the data file and the variable names for the columns.

Lines four and thirty-two end the directions to SAS by indicating to SAS that it should run

lines one through four and lines twenty-seven through thirty-two together respectively.

The PROC MCMC statement is found in lines nine through twenty-one and again in

lines thirty-seven through forty-nine. Initial values for the parameters are set in lines eleven

through fourteen and thirty-nine through forty-two. The distributional forms of the priors

are set in lines fifteen through eighteen and forty-three through forty-six. Lines nineteen and

forty-seven define µ and lines twenty and forty-eight define the model. The procedures are

concluded in lines twenty-one and forty-nine. Lines twenty-three through twenty-four and

fifty-one through fifty-two ask SAS to export the posterior draws to a .csv file that can be

read into another program for further analysis.

The code produced the following output as shown in Table 6.2 and Figure 6.2.

∗ read in the data f i l e ;
1 data no4 ;
2 i n f i l e ‘ ‘ ’ ’ ;
3 input hours i n t s mi l e s ;
4 run ;
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Table 6.2: Summary Statistics for Example 4 from PROC MCMC. Posterior summaries for
the first and third models are shown.

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

b e ta 0 1 0 0 0 0 0 .8 5 6 9 4 .3 5 7 8 - 1 .9 8 7 4 0 .7 9 6 5 3 .7 1 4 3

b e ta 1 1 0 0 0 0 1 .8 2 8 6 1 .1 1 4 5 1 .0 6 7 8 1 .8 2 3 0 2 .5 5 3 2

b e ta 2 1 0 0 0 0 0 .6 8 5 1 0 .5 0 8 0 0 .3 5 5 8 0 .6 8 4 1 1 .0 2 4 3

s 2 e r r 1 0 0 0 0 3 5 .5 9 2 4 1 1 .7 5 8 2 2 7 .1 9 9 0 3 3 .6 3 5 1 4 1 .8 6 5 3

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b e ta 0 0 .0 5 0 - 7 .6 8 8 1 9 .4 4 3 8 - 7 .6 8 9 2 9 .4 3 6 8

b e ta 1 0 .0 5 0 - 0 .3 2 4 5 4 .0 8 1 9 - 0 .3 1 0 3 4 .0 8 4 6

b e ta 2 0 .0 5 0 - 0 .3 5 7 2 1 .6 5 6 2 - 0 .3 1 1 0 1 .6 9 3 6

s 2 e r r 0 .0 5 0 1 8 .1 9 4 2 6 3 .9 6 3 8 1 5 .6 3 8 8 5 9 .3 5 8 5

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

b e ta 0 1 0 0 0 0 0 .7 5 2 1 4 .3 4 6 6 - 2 .1 0 8 8 0 .7 5 0 1 3 .5 4 2 7

b e ta 1 1 0 0 0 0 3 .2 7 5 5 0 .3 2 1 9 3 .0 6 4 9 3 .2 7 5 4 3 .4 9 1 7

s 2 e r r 1 0 0 0 0 3 7 .0 8 1 0 1 1 .9 1 8 3 2 8 .4 8 3 2 3 5 .1 1 2 7 4 3 .3 9 8 8

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b e ta 0 0 .0 5 0 - 7 .8 5 2 8 9 .4 2 3 0 - 8 .2 7 7 2 8 .8 6 7 9

b e ta 1 0 .0 5 0 2 .6 3 2 9 3 .9 0 8 9 2 .6 2 8 9 3 .9 0 0 7

s 2 e r r 0 .0 5 0 1 9 .5 2 1 8 6 5 .5 0 7 3 1 6 .7 4 4 5 6 0 .6 6 6 0

5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t data=no4 ;
7 run ;
8
9 proc mcmc data=no4 outpost=no4post nmc=500000 nbi=10000 th in=50

seed=1234
10 monitor=( parms ) d i c ;
∗ s e t parameters and i n i t i a l va lue s ;
11 parms beta0 0 ;
12 parms beta1 0 ;
13 parms beta2 0 ;
14 parms s 2 e r r 10 ;
∗ de f i n e p r i o r s ;
15 p r i o r beta0 ˜ normal (0 , prec =.0001) ;
16 p r i o r beta1 ˜ normal (0 , prec =.01) ;
17 p r i o r beta2 ˜ normal (0 , prec =.01) ;
18 p r i o r s 2 e r r ˜ gamma(3 , i s c a l e =.1) ;
∗ de f i n e the mean , which i s the l i n e ;
19 mu = beta0 + beta1 ∗ i n t s + beta2 ∗mi le s ;

75



Figure 6.2: Summary plots for the posterior distribution of the regression line’s intercept
from model three.

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 5

The M CM C  P ro cedu re

The SAS System 1 1 : 2 6  M o n d a y ,  M a y  2 ,  2 0 1 1 5

The M CM C  P ro cedu re

∗ l i k e l i h o o d ;
20 model hours ˜ normal (mu, var=s2 e r r ) ;
21 run ;
22
∗ export the p o s t e r i o r MCMC draws and save the . csv f i l e ;
23 proc export data=no4post o u t f i l e = ‘ ‘ ’ ’ dbms=csv r ep l a c e ;
24 run ;
25
26 /∗ The th i rd model : ∗/
27
28
∗ read in the data f i l e ;
29 data no4 ;
30 i n f i l e ‘ ‘ ’ ’ ;
31 input hours i n t s mi l e s ;
32 run ;
33
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∗ pr in t the data f i l e f o r i n sp e c t i on ;
34 proc p r i n t data=no4 ;
35 run ;
36
37 proc mcmc data=no4 outpost=no4post nmc=500000 nbi=10000 th in=50

seed=1234
38 monitor=( parms ) d i c ;
∗ s e t parameters and i n i t i a l va lue s ;
39 parms beta0 0 ;
40 parms beta1 0 ;
41 ∗parms beta2 0 ;
42 parms s 2 e r r 10 ;
∗ de f i n e p r i o r s ;
43 p r i o r beta0 ˜ normal (0 , prec =.0001) ;
44 p r i o r beta1 ˜ normal (0 , prec =.01) ;
45 ∗ p r i o r beta2 ˜ normal (0 , prec =.01) ;
46 p r i o r s 2 e r r ˜ gamma(3 , i s c a l e =.1) ;
∗ de f i n e the mean ;
47 mu = beta0 + beta1 ∗ i n t s ;
∗ l i k e l i h o o d ;
48 model hours ˜ normal (mu, var=s2 e r r ) ;
49 run ;
50
∗ export the p o s t e r i o r MCMC draws and save the . csv f i l e ;
51 proc export data=no4post o u t f i l e = ‘ ‘ ’ ’ dbms=csv r ep l a c e ;
52 run ;

6.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model { data no4 ;

f o r ( i in 1 : 14 ) { i n f i l e ‘ ‘ ’ ’ ;

hours [ i ] ˜ dnorm(mu[ i input hours i n t s mi l e s ;

] , prec ) ; run ;

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗

mi le s [ i ] + b [ 3 ] ∗ i n t s [ i proc p r i n t data=no4 ;

] ; run ;

}
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b [ 1 ] ˜ dnorm(0 , 0 .0001) ; proc mcmc data=no4 outpost=

b [ 2 ] ˜ dnorm (0 , . 0 1 ) ; no4post nmc=500000 nbi=10000

b [ 3 ] ˜ dnorm (0 , . 0 1 ) ; th in=50 seed=1234

prec <− 1/ varreg ; monitor=( parms ) d i c ;

varreg ˜ dgamma( 3 , . 1 ) ; parms beta0 0 ;

} parms beta1 0 ;

parms beta2 0 ;

# A second model : parms s 2 e r r 10 ;

model { p r i o r beta0 ˜ normal (0 , prec

dummy1 <− i n t s [ 1 ] ; =.0001) ;

f o r ( i in 1 : 14 ) { p r i o r beta1 ˜ normal (0 , prec =.01) ;

hours [ i ] ˜ dnorm(mu[ i p r i o r beta2 ˜ normal (0 , prec =.01)

] , prec ) ; ;

mu[ i ] <− b [ 1 ] + b [ 2 ] ∗ p r i o r s 2 e r r ˜ gamma(3 , i s c a l e =.1)

mi l e s [ i ] ; ;

} mu = beta0 + beta1 ∗ i n t s + beta2 ∗

b [ 1 ] ˜ dnorm(0 , 0 .0001) ; mi l e s ;

b [ 2 ] ˜ dnorm (0 , . 0 1 ) ; model hours ˜ normal (mu, var=

#b [ 3 ] ˜ dnorm (0 , . 0 1 ) ; s 2 e r r ) ;

prec <− 1/ varreg ; run ;

varreg ˜ dgamma( 3 , . 1 ) ;

} proc export data=no4post o u t f i l e

= ‘ ‘ ’ ’ dbms=csv r ep l a c e ;

# A th i rd model : run ;

model {

dummy1 <− mi le s [ 1 ] ; /∗ The th i rd model : ∗/

f o r ( i in 1 : 14 ) { data no4 ;
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hours [ i ] ˜ dnorm(mu[ i i n f i l e ‘ ‘ ’ ’ ;

] , prec ) ; input hours i n t s mi l e s ;

mu[ i ] <− b [ 1 ] + b [ 3 ] ∗ run ;

i n t s [ i ] ;

} proc p r in t data=no4 ;

b [ 1 ] ˜ dnorm(0 , 0 .0001) ; run ;

#b [ 2 ] ˜ dnorm (0 , . 0 1 ) ;

b [ 3 ] ˜ dnorm (0 , . 0 1 ) ; proc mcmc data=no4 outpost=

prec <− 1/ varreg ; no4post nmc=500000 nbi=10000

varreg ˜ dgamma( 3 , . 1 ) ; th in=50 seed=1234

} monitor=( parms ) d i c ;

parms beta0 0 ;

parms beta1 0 ;

# The data s e t : ∗parms beta2 0 ;

hours [ ] i n t s [ ] m i l e s [ ] parms s 2 e r r 10 ;

52 .1 17 35 .7 p r i o r beta0 ˜ normal (0 , prec

24 .6 6 11 .4 =.0001) ;

49 .2 13 28 .6 p r i o r beta1 ˜ normal (0 , prec =.01) ;

30 .0 11 25 .8 ∗ p r i o r beta2 ˜ normal (0 , prec

82 .2 23 50 .6 =.01) ;

42 .4 16 27 .2 p r i o r s 2 e r r ˜ gamma(3 , i s c a l e =.1)

55 .7 15 31 .3 ;

21 .1 5 10 mu = beta0 + beta1 ∗ i n t s ;

27 .7 10 18 .9 model hours ˜ normal (mu, var=

36 .3 12 25 .2 s 2 e r r ) ;

69 .1 20 39 .9 run ;

38 .8 12 32 .5

79



22 .8 8 13 .6 proc export data=no4post o u t f i l e

34 .7 8 19 = ‘ ‘ ’ ’ dbms=csv r ep l a c e ;

END{} ; run ;
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chapter 7

ONE-WAY ANOVA

A one-way analysis of variance (ANOVA) is a factorial design with one treatment at multiple

levels. Of interest are the sample means and whether or not there are differences among

them. ANOVA is a way to test the null hypotheses that samples from two or more treatment

groups are drawn from the same population under the assumption that the variances of the

populations are equal. Under the Bayesian paradigm we can test two models, one where

the variances are allowed to be different for each group and the other where the variance is

the same for all groups. The performance of these models will be compared using DIC to

determine which model fits better.

For this analysis, the data will be modeled as normal with a prior for each treatment’s

µ and a prior for σ2. Model one will allow each treatment its own σ2 while model two will

only model a single σ2 for all treatments. Here is the outline for model one, model two’s

outline is very similar.

yi ∼Normal(µj, σ
2
j )

µj ∼Normal(20, 10000)

σ2
j ∼Gamma(2, scale = 25)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.
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7.1 WinBUGS

This data set contains responses from four treatment groups and the objective is to determine

if the responses among these four treatments are the same. The first model in the code

allows the variances for each group to be different. The second model in the code treats the

variances for the groups as equal.

model{
# dummy va r i ab l e to use a l l columns o f data s e t
dummy1 <− tmt [ 1 ] ;

f o r ( i in 1 : 28 ) {
# l i k e l i h o o d
y [ i ] ˜ dnorm(mu[ t r t [ i ] ] , prec [ t r t [ i ] ] ) ;
}

f o r ( i in 1 : 4 ) {
# the p r i o r s
mu[ i ] ˜ dnorm(20 , 0 .0001) ;
s2 [ i ] ˜ dgamma(2 , 0 . 0 4 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec [ i ] <− 1/ s2 [ i ] ;
}

}

# Second model r e s t r i c t s sigma2 to be same f o r a l l groups :
model{

# dummy va r i ab l e to use a l l columns o f data s e t
dummy1 <− tmt [ 1 ] ;

f o r ( i in 1 : 28 ) {
# l i k e l i h o o d
y [ i ] ˜ dnorm(mu[ t r t [ i ] ] , prec ) ;
}

f o r ( i in 1 : 4 ) {
# the p r i o r s
mu[ i ] ˜ dnorm(20 , 0 .0001) ;
}
s2 ˜ dgamma(2 , 0 . 0 4 ) ;
# adjus t the var iance in terms o f p r e c i s i o n
prec <− 1/ s2 ;

}
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Table 7.1 shows the summary statistics for the posterior distribution of these two

models. As you can see, the first model gives values for each samples’ variance while the

second model has only one variance. Figure 7.1 gives a sample of the posterior summary

plots for group one’s mean response from the first model. Convergence was reached, there

were no problems with autocorrelation, and the posterior distribution is shown. However,

model 2 is the better fitting model because DIC is lower here which indicates that it is

appropriate to assume the variance for these four groups to be the same. Further analysis

of the posterior distributions may be done to determine if the mean responses are the same

among the four groups.

Please note the use of a dummy variable in these two models. WinBUGS requires

that every column in the data set be utilized in some way in the model code. However,

sometimes, a column of observations is not needed as part of the analysis. One option is to

remove this column from the data set. Another option is to assign the unused column to a

dummy variable as we have done here with “dummy1”.

Table 7.1: Summary statistics for both models from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
mu[1] 19.19 2.01 15.22 17.92 19.18 20.43 23.27
mu[2] 25.80 2.42 20.93 24.30 25.82 27.30 30.71
mu[3] 11.46 2.67 6.12 9.79 11.48 13.10 16.75
mu[4] 15.26 2.47 10.35 13.69 15.23 16.83 20.16
s2[1] 28.97 17.41 8.79 16.82 24.46 36.31 74.58
s2[2] 41.48 21.89 14.75 26.18 36.59 50.82 99.60
s2[3] 49.68 24.22 18.61 32.48 44.11 60.79 111.50
s2[4] 42.20 21.52 14.99 27.12 37.19 51.82 97.86

deviance 176.19 3.86 170.20 173.30 175.70 178.40 184.90

mean sd 2.5% 25% 50% 75% 97.5%
mu[1] 19.14 2.18 14.83 17.70 19.13 20.58 23.46
mu[2] 25.79 2.15 21.49 24.38 25.75 27.19 30.08
mu[3] 11.43 2.18 7.18 10.02 11.43 12.89 15.74
mu[4] 15.26 2.18 10.91 13.82 15.24 16.70 19.59

s2 32.90 10.02 18.72 25.82 31.16 38.04 57.28
deviance 174.81 3.56 170.10 172.20 174.10 176.70 183.60
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 7.1: WinBUGS summary plots for the posterior distribution of group one’s mean
from model one.

DIC for model 1: 181.2

DIC for model 2: 179.4

7.2 PROC MCMC

The code for both models is given. Of note is line fifteen and sixteen from our first model

where we define an array for µ and σ2. Since we will be working with four group means

and four group variances, we need to define an array of length four for both variables.

Additionally, lines seventeen and eighteen have a colon after the variable names to indicate

that the starting value should be applied to all array entries. Similarly, lines nineteen and

twenty have a colon after the variable names to indicate that the distributions should be

applied to all array entries. In the model statement on line twenty-one, we are telling SAS
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that the “trt” column indicates how the mean and variance are grouped with the response

values.

The second model defines only an array for µ, line thirty-three, because we are working

with a single σ2 for each group here. Notice that the likelihood statement on line thirty-eight

allows only µ to vary by group while σ2 is held constant. Lines thirty-four and thirty-five

set the parameters and give their initial values. Lines thirty-six and thirty-seven define the

prior distributions for µ and σ2.

As an aside, lines ten, eleven, and twenty-four along with lines twenty-eight, twenty-

nine and forty-two ask SAS to save the graphics and output tables as a *.pdf file. Line ten

or twenty-eight begins this command, line eleven or twenty-nine gives the file path, and line

twenty-five or forty-two ends the command. This is a nice tool to have in one’s SAS toolbox.

∗ read in the data f i l e ;
1 data no5 ;
2 i n f i l e ” ” ;
3 input tmt y t r t ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t data=no5 ;
7 run ;
8
9 /∗ Model 1 ∗/
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
10 ods pdf
11 f i l e =” ” ;
∗ turn on graph i c s dev i c e ;
12 ods g raph i c s on ;
13 proc mcmc data=no5 outpost=no5post nmc=100000 nbi=1000 th in=10 seed

=1234
14 monitor=( parms ) d i c ;
∗ de f i n e ar rays o f l ength 4 ;
15 array mu [ 4 ] ;
16 array s2 [ 4 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
17 parms mu: 0 ;
18 parms s2 : 1 ;
∗ de f i n e p r i o r s ;
19 p r i o r mu: ˜normal (20 , prec =0.0001) ;
20 p r i o r s2 : ˜gamma(2 , i s c a l e =0.04) ;
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∗ l i k e l i h o o d ;
21 model y ˜ normal (mu[ t r t ] , var=s2 [ t r t ] ) ;
22 run ;
23
∗ turn o f f g raph i c s dev i c e ;
24 ods g raph i c s o f f ;
∗ s tops sav ing output f i l e ;
25 ods pdf c l o s e ;
26
27 /∗ Model 2 ∗/
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
28 ods pdf
29 f i l e =” ” ;
∗ turn on graph i c s dev i c e ;
30 ods g raph i c s on ;
31 proc mcmc data=no5 outpost=no5post nmc=100000 nbi=1000 th in=10 seed

=1234
32 monitor=( parms ) d i c ;
∗ i n i t i a l i z e array o f l ength 4 ;
33 array mu [ 4 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
34 parms mu: 0 ;
35 parms s2 1 ;
∗ de f i n e p r i o r s ;
36 p r i o r mu: ˜normal (20 , prec =0.0001) ;
37 p r i o r s2 ˜gamma(2 , i s c a l e =0.04) ;
∗ l i k e l i h o o d ;
38 model y ˜ normal (mu[ t r t ] , var=s2 ) ;
39 run ;
40
∗ turn o f f g raph i c s dev i c e ;
41 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
42 ods pdf c l o s e ;

Table 7.2 shows the summary statistics for both models. In comparison with the

summary statistics from WinBUGS, the posterior values are very close for all of the variables

in both models. Figure 7.2 gives the posterior plots for group one’s mean response from

the first model. As was found in WinBUGS, model 2 with a single variance fits better than

model 1, DIC for model 1 is 181.035 and DIC for model 2 is 179.473. Recall that with DIC,

the smaller value indicates a better fitting model.
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Table 7.2: Summary Statistics for Example 5 from PROC MCMC, both models are shown.The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

m u 1 1 0 0 0 0 1 9 .2 0 3 8 2 .0 2 6 7 1 7 .9 2 0 2 1 9 .2 1 9 2 2 0 .4 2 1 6

m u 2 1 0 0 0 0 2 5 .7 7 9 3 2 .4 6 2 7 2 4 .2 4 5 6 2 5 .8 0 9 4 2 7 .3 1 4 8

m u 3 1 0 0 0 0 1 1 .4 1 2 5 2 .5 9 2 4 9 .7 9 6 4 1 1 .3 8 7 7 1 3 .0 3 8 4

m u 4 1 0 0 0 0 1 5 .3 1 1 2 2 .4 3 8 5 1 3 .7 6 8 8 1 5 .2 7 1 2 1 6 .8 6 7 7

s 2 1 1 0 0 0 0 2 8 .4 6 6 5 1 6 .9 2 5 3 1 6 .7 9 6 6 2 3 .9 4 7 2 3 5 .4 9 7 6

s 2 2 1 0 0 0 0 4 1 .4 4 6 4 2 2 .1 6 9 8 2 6 .1 3 0 3 3 6 .3 5 2 6 5 0 .7 2 9 1

s 2 3 1 0 0 0 0 4 8 .4 4 1 2 2 2 .7 8 2 1 3 2 .3 0 7 0 4 3 .6 1 4 2 5 9 .3 1 2 1

s 2 4 1 0 0 0 0 4 2 .6 5 8 9 2 1 .6 6 6 6 2 7 .2 7 9 8 3 7 .7 7 2 5 5 2 .7 9 6 8

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 1 5 .1 2 6 3 2 3 .3 1 6 1 1 4 .9 9 4 1 2 3 .1 4 8 6

m u 2 0 .0 5 0 2 0 .8 8 0 9 3 0 .6 8 3 6 2 0 .8 7 5 1 3 0 .6 5 5 1

m u 3 0 .0 5 0 6 .1 7 7 1 1 6 .5 6 6 2 6 .2 9 5 3 1 6 .6 6 5 7

m u 4 0 .0 5 0 1 0 .4 5 4 0 2 0 .2 6 0 7 1 0 .2 7 8 0 2 0 .0 3 6 0

s 2 1 0 .0 5 0 8 .8 0 2 4 7 2 .9 5 7 1 6 .4 8 0 5 6 2 .4 1 7 4

s 2 2 0 .0 5 0 1 4 .3 0 1 1 1 0 0 .6 1 0 .1 8 5 3 8 6 .0 8 6 2

s 2 3 0 .0 5 0 1 8 .6 9 7 7 1 0 5 .9 1 4 .3 3 5 2 9 3 .4 6 1 0

s 2 4 0 .0 5 0 1 5 .0 5 6 7 9 6 .2 9 2 5 1 0 .4 2 1 7 8 4 .4 0 6 8

The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

m u 1 1 0 0 0 0 1 9 .2 0 4 9 2 .1 8 2 0 1 7 .7 7 7 2 1 9 .1 8 3 7 2 0 .6 4 3 7

m u 2 1 0 0 0 0 2 5 .6 8 7 4 2 .1 6 2 9 2 4 .2 7 2 9 2 5 .6 8 9 4 2 7 .1 6 1 3

m u 3 1 0 0 0 0 1 1 .4 4 8 8 2 .1 6 2 5 1 0 .0 2 2 1 1 1 .4 5 3 8 1 2 .8 7 3 4

m u 4 1 0 0 0 0 1 5 .2 3 6 0 2 .1 8 9 6 1 3 .8 0 5 0 1 5 .2 1 3 9 1 6 .7 0 9 0

s 2 1 0 0 0 0 3 2 .9 9 5 9 9 .8 8 1 0 2 5 .9 8 3 9 3 1 .4 0 9 2 3 8 .1 2 6 0

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 1 4 .8 8 2 9 2 3 .5 6 1 0 1 4 .8 0 8 4 2 3 .4 2 1 8

m u 2 0 .0 5 0 2 1 .3 6 9 4 2 9 .8 2 9 2 2 1 .4 2 3 7 2 9 .8 5 3 1

m u 3 0 .0 5 0 7 .1 8 6 6 1 5 .7 2 9 9 7 .3 5 3 3 1 5 .8 3 5 3

m u 4 0 .0 5 0 1 0 .8 3 9 2 1 9 .5 2 7 8 1 1 .0 6 3 5 1 9 .6 8 4 7

s 2 0 .0 5 0 1 8 .4 2 8 3 5 6 .3 8 0 5 1 6 .5 0 6 5 5 2 .2 2 4 0
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Figure 7.2: Summary plots for the posterior distribution group one’s mean response from

model 1. The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 6

The M CM C  P ro cedu re

The SAS System 1 5 : 2 2  M o n d a y ,  J u n e  2 0 ,  2 0 1 1 6

The M CM C  P ro cedu re

7.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model{ /∗ Model 1 ∗/

dummy1 <− tmt [ 1 ] ; ods pdf

f i l e = ‘ ‘ ’ ’ ;

f o r ( i in 1 : 28 ) { ods g raph i c s on ;

y [ i ] ˜ dnorm(mu[ t r t [ i ] ] , prec [ proc mcmc data=no5 outpost=
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t r t [ i ] ] ) ; no5post nmc=100000 nbi=1000

} th in=10 seed=1234 monitor=(

parms ) d i c ;

f o r ( i in 1 : 4 ) { array mu [ 4 ] ;

mu[ i ] ˜ dnorm(20 , 0 .0001) ; array s2 [ 4 ] ;

s2 [ i ] ˜ dgamma(2 , 0 . 0 4 ) ; parms mu: 0 ;

prec [ i ] <− 1/ s2 [ i ] ; parms s2 : 1 ;

} p r i o r mu: ˜normal (20 , prec

} =0.0001) ;

p r i o r s2 : ˜gamma(2 , i s c a l e

# Second model : =0.04) ;

model{ model y ˜ normal (mu[ t r t ] , var

dummy1 <− tmt [ 1 ] ; =s2 [ t r t ] ) ;

run ;

f o r ( i in 1 : 28 ) {

y [ i ] ˜ dnorm(mu[ t r t [ i ] ] , prec ) ods g raph i c s o f f ;

; ods pdf c l o s e ;

}

/∗ Model 2 ∗/

f o r ( i in 1 : 4 ) { ods pdf

mu[ i ] ˜ dnorm(20 , 0 .0001) ; f i l e = ‘ ‘ ’ ’ ;

} ods g raph i c s on ;

s2 ˜ dgamma(2 , 0 . 0 4 ) ; proc mcmc data=no5 outpost=

prec <− 1/ s2 ; no5post nmc=100000 nbi=1000

} th in=10 seed=1234 monitor=(

parms ) d i c ;

array mu [ 4 ] ;
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# The data s e t : parms mu: 0 ;

tmt [ ] y [ ] t r t [ ] parms s2 1 ;

1 13.225551 1 p r i o r mu: ˜normal (20 , prec

1 16.381329 1 =0.0001) ;

1 23.350272 1 p r i o r s2 ˜gamma(2 , i s c a l e

1 24.639941 1 =0.04) ;

1 19.277215 1 model y ˜ normal (mu[ t r t ] , var

1 19.905660 1 =s2 ) ;

1 17.503872 1 run ;

2 31.442618 2

2 25.883180 2 ods g raph i c s o f f ;

2 20.322800 2 ods pdf c l o s e ;

2 23.431178 2

2 24.424148 2

2 34.437840 2

2 20.375937 2

3 18.949881 3

3 3.731357 3

3 16.063343 3

3 16.670093 3

3 6.878069 3

3 4.329623 3

3 13.505717 3

4 8.880663 4

4 8.762337 4

4 20.413043 4

4 17.576046 4
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4 16.054745 4

4 12.249461 4

4 22.734480 4

END{} ;
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chapter 8

FACTORIAL DESIGN

A factorial design is used when the objective is to understand the effect of two or more

independent treatment variables upon a single dependent response variable. These are also

called two-way ANOVA. Of interest is determining the optimal combination of variables to

give the most desired response. It is often helpful to see the data arranged in a table as shown

in table 8.1. Participants will be assigned to one of the sixteen treatment combinations and

their responses will be recorded. The most challenging part of this analysis is the bookkeeping

to keep track of which response values should be grouped with which µ values because there

are sixteen of them.

Table 8.1: Arrangement of a 4x4 factorial design experiment.

Treatment B Levels
1 2 3 4

1 µ1,1 µ1,2 µ1,3 µ1,4

Treatment A 2 µ2,1 µ2,2 µ2,3 µ2,4

Levels 3 µ3,1 µ3,2 µ3,3 µ3,4

4 µ4,1 µ4,2 µ4,3 µ4,4

For this analysis, the data will be modeled as normal with a prior for each treatment

combination’s µ. The data will be modeled with a single variance, σ2.

yi ∼Normal(µ[A,B], σ
2)

µ[A,B] ∼Normal(1, 10000)

σ2 ∼Gamma(2, scale=0.5)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the
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functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

An advantage of the Bayesian approach to this analysis is that posterior draws are

obtained and available to compute any linear combination of the cell means without worrying

about multiple test adjustments.

8.1 WinBUGS

This data set contains responses of thirty-three participants in a feeding trial where they

were tested for their response to two treatments that each have four possible levels as shown

in table 8.1. We have sixteen different treatment combinations, (4x4), to consider as we try

to determine the optimal treatment combination.

model{
# dummy va r i ab l e to use a l l columns o f data s e t
dummy1 <− tmt [ 1 ] ;
f o r ( i in 1 : 33 ) {
# l i k e l i h o o d
gain [ i ] ˜ dnorm(mu[ tmtA [ i ] , tmtB [ i ] ] , prec ) ;
}
# de f i n i n g the 16 p r i o r s f o r mu
f o r ( i in 1 : 4 ) {
f o r ( j in 1 : 4 ) {
mu[ i , j ] ˜ dnorm (1 , 0 . 0001 ) ;
}

}
# pr i o r f o r sigma2 and ad ju s t i ng var iance in terms o f p r e c i s i o n
s2 ˜ dgamma(2 , 2 ) ;
prec <− 1/ s2 ;
}

The summary statistics for the posterior distribution are given in table 8.2. As you

can see, there is quite a range of mean responses among the different cells. Figure 8.1 gives

a sample of the posterior summary plots, showing the posterior distribution of treatment A
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at the fourth level and treatment B at the third level. Convergence was reached, there were

no problems with autocorrelation, and the posterior distribution is shown.

A researcher could save the posterior draws and read them into another program to

conduct further analysis to determine the optimal treatment combination. The posterior

draws could be used to find the marginal means for both treatments along with confidence

intervals. Density plots of the posterior distributions for these marginal means could be

created along with posterior distributions for each of the sixteen cell means from the posterior

draws. Contrast statements would indicate that there is an interaction term to account for

which, after further analysis, would lead to the conclusion that µ[4,3] is the optimal treatment

combination.

Table 8.2: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
mu[1,1] 1.11 0.27 0.58 0.94 1.11 1.29 1.64
mu[1,2] 0.88 0.22 0.46 0.74 0.88 1.03 1.33
mu[1,3] 1.14 0.38 0.38 0.90 1.14 1.38 1.89
mu[1,4] 1.10 0.27 0.56 0.92 1.10 1.27 1.62
mu[2,1] 0.77 0.27 0.23 0.59 0.76 0.94 1.30
mu[2,2] 1.30 0.22 0.86 1.16 1.30 1.44 1.73
mu[2,3] 1.01 0.27 0.48 0.83 1.00 1.18 1.54
mu[2,4] 1.58 0.27 1.04 1.41 1.58 1.75 2.11
mu[3,1] 0.79 0.27 0.25 0.61 0.79 0.96 1.32
mu[3,2] 1.02 0.22 0.58 0.88 1.02 1.17 1.46
mu[3,3] 1.79 0.27 1.27 1.62 1.79 1.96 2.33
mu[3,4] 0.97 0.27 0.45 0.80 0.97 1.15 1.50
mu[4,1] 1.38 0.38 0.63 1.13 1.38 1.63 2.12
mu[4,2] 1.25 0.27 0.72 1.07 1.25 1.42 1.78
mu[4,3] 1.20 0.27 0.64 1.03 1.20 1.37 1.74
mu[4,4] 1.45 0.27 0.92 1.28 1.45 1.63 1.99

s2 0.14 0.06 0.07 0.10 0.13 0.17 0.29
deviance 24.12 9.43 8.41 17.44 23.10 29.91 45.26
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 8.1: WinBUGS summary plots for the posterior distribution of treatment A at the
fourth level and treatment B at the third level.

8.2 PROC MCMC

In SAS, when one of the variables is categorical, this fact needs to be indicated as done in

line three with the $ signs after tmtA and tmtB. Notice that line fourteen defines an array

of length sixteen for µ, and in line nineteen’s model, µ is grouped by the sixteen treatment

combinations while the entire dataset is modeled with a single σ2. Lines fifteen and seventeen

have a colon after µ to indicate that the initial value and the prior distribution should be

applied to each of the sixteen array entries.

∗ read in the data f i l e ;
1 data no5 ;
2 i n f i l e ‘ ‘ ’ ’ ;
3 input gain tmtA $ tmtB $ tmt ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
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6 proc p r i n t data=no5 ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12 proc mcmc data=no5 outpost=no5post nmc=1000000 nbi=10000 seed=4826

th in=100
13 monitor=( parms ) d i c ;
∗ c r e a t e an array o f l ength 16 f o r mu;
14 array mu[ 1 6 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on mu ind i c a t ed that the i n i t i a l va lue be app l i ed to a l l

array e n t r i e s ;
15 parms mu: 0 ;
16 parms s2 1 ;
∗ de f i n e p r i o r s ;
∗ the co lon on mu i nd i c a t e s that the p r i o r be app l i ed to a l l array

e n t r i e s ;
17 p r i o r mu: ˜normal (1 , prec =.0001) ;
18 p r i o r s2 ˜gamma(2 , i s c a l e =2) ;
∗ l i k e l i h o o d ;
19 model ga in ˜normal (mu[ tmt ] , var=s2 ) ;
20 run ;
21
∗ export the p o s t e r i o r MCMC draws and save the . csv f i l e ;
22 proc export data=no5post o u t f i l e = ‘ ‘ ’ ’ dbms=csv r ep l a c e ;
23 run ;
24
∗ turn o f f g raph i c s dev i c e ;
25 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
26 ods pdf c l o s e ;

Table 8.3 shows the summary statistics for this analysis. In comparison with the

summary from WinBUGS, it can be seen that both programs are providing similar posterior

summaries for all seventeen variables. Figure 8.2 gives the posterior plots which indicate

convergence was reached and there were no problems with autocorrelation.
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Table 8.3: Summary Statistics for Example 6 from PROC MCMC.The SAS System 1 5 : 0 7  T u e s d a y ,  M a y  3 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 5 : 0 7  T u e s d a y ,  M a y  3 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

m u 1 1 0 0 0 0 1 .1 1 9 4 0 .2 6 6 5 0 .9 4 6 0 1 .1 1 7 0 1 .2 9 0 5

m u 2 1 0 0 0 0 0 .8 8 1 9 0 .2 2 1 1 0 .7 4 1 2 0 .8 8 2 0 1 .0 2 2 3

m u 3 1 0 0 0 0 1 .1 5 0 5 0 .3 8 0 6 0 .9 0 8 1 1 .1 4 6 0 1 .3 9 3 5

m u 4 1 0 0 0 0 1 .0 9 1 5 0 .2 6 7 8 0 .9 2 4 0 1 .0 9 3 8 1 .2 6 4 5

m u 5 1 0 0 0 0 0 .7 6 2 4 0 .2 7 0 3 0 .5 9 0 2 0 .7 6 3 7 0 .9 3 5 2

m u 6 1 0 0 0 0 1 .2 9 7 4 0 .2 2 6 6 1 .1 5 1 4 1 .2 9 5 4 1 .4 4 3 1

m u 7 1 0 0 0 0 1 .0 0 3 4 0 .2 7 4 0 0 .8 2 8 6 1 .0 0 3 8 1 .1 7 5 7

m u 8 1 0 0 0 0 1 .5 8 4 2 0 .2 6 8 9 1 .4 0 9 2 1 .5 8 3 7 1 .7 5 6 9

m u 9 1 0 0 0 0 0 .7 8 7 6 0 .2 7 0 0 0 .6 1 5 0 0 .7 9 0 0 0 .9 6 0 3

m u 1 0 1 0 0 0 0 1 .0 2 2 9 0 .2 2 0 1 0 .8 8 0 9 1 .0 2 4 4 1 .1 6 6 8

m u 1 1 1 0 0 0 0 1 .7 9 6 6 0 .2 7 1 8 1 .6 1 8 8 1 .7 9 6 1 1 .9 7 5 8

m u 1 2 1 0 0 0 0 0 .9 7 4 5 0 .2 7 3 5 0 .8 0 0 4 0 .9 7 5 8 1 .1 4 7 3

m u 1 3 1 0 0 0 0 1 .3 8 3 9 0 .3 8 4 6 1 .1 3 6 7 1 .3 8 4 2 1 .6 3 1 3

m u 1 4 1 0 0 0 0 1 .2 4 2 9 0 .2 7 1 0 1 .0 6 9 7 1 .2 4 3 1 1 .4 1 6 0

m u 1 5 1 0 0 0 0 1 .2 0 0 0 0 .2 7 2 6 1 .0 2 9 2 1 .2 0 4 6 1 .3 7 2 8

m u 1 6 1 0 0 0 0 1 .4 5 3 7 0 .2 7 2 8 1 .2 8 0 3 1 .4 5 4 8 1 .6 3 1 0

s 2 1 0 0 0 0 0 .1 4 6 4 0 .0 6 3 4 0 .1 0 3 3 0 .1 3 2 1 0 .1 7 3 4

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 0 .5 8 8 0 1 .6 5 0 5 0 .5 8 6 6 1 .6 4 6 6

m u 2 0 .0 5 0 0 .4 4 5 1 1 .3 1 7 3 0 .4 4 5 2 1 .3 1 7 3

m u 3 0 .0 5 0 0 .3 9 2 3 1 .9 0 3 6 0 .3 9 5 5 1 .9 0 4 3

m u 4 0 .0 5 0 0 .5 3 7 5 1 .6 1 3 0 0 .5 6 8 2 1 .6 3 0 8

m u 5 0 .0 5 0 0 .2 2 3 7 1 .3 0 2 7 0 .2 4 9 1 1 .3 2 5 3

m u 6 0 .0 5 0 0 .8 6 1 5 1 .7 4 9 7 0 .8 6 8 8 1 .7 5 4 5

m u 7 0 .0 5 0 0 .4 7 1 1 1 .5 5 1 8 0 .4 8 0 8 1 .5 5 5 6

m u 8 0 .0 5 0 1 .0 6 3 8 2 .1 2 0 8 1 .0 5 4 4 2 .1 1 0 3

m u 9 0 .0 5 0 0 .2 4 3 3 1 .3 1 7 5 0 .2 6 3 1 1 .3 2 7 8

m u 1 0 0 .0 5 0 0 .5 8 5 3 1 .4 5 9 0 0 .5 9 4 8 1 .4 6 6 8
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Figure 8.2: Summary plots for the posterior distribution of treatment A at the fourth level

and treatment B at the third level. The SAS System 1 5 : 0 7  T u e s d a y ,  M a y  3 ,  2 0 1 1 1 5

The M CM C  P ro cedu re

8.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model{ data no5 ;

dummy1 <− tmt [ 1 ] ; i n f i l e ’ z :\my documents\

f o r ( i in 1 : 33 ) { s tat595R bayes ian \hmwk\hmwk 5\

gain [ i ] ˜ dnorm(mu[ tmtA [ i ] , tmtB [ i hmwk5 . txt ’ ;

] ] , prec ) ; input gain tmtA $ tmtB $ tmt ;
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} run ;

f o r ( i in 1 : 4 ) {

f o r ( j in 1 : 4 ) { proc p r in t data=no5 ;

mu[ i , j ] ˜ dnorm (1 , 0 . 0001 ) ; run ;

}

} ods pdf

s2 ˜ dgamma(2 , 2 ) ; f i l e = ’ z :\my documents\

prec <− 1/ s2 ; s t a t 595 r baye s i an \hmwk\hmwk 5\

} SASoutput . pdf ’ ;

ods g raph i c s on ;

# The data s e t : proc mcmc data=no5 outpost=

gain [ ] tmtA [ ] tmtB [ ] tmt [ ] no5post nmc=1000000 nbi=10000

1.06601955230029 1 1 1 seed=4826 th in=100

1.1717077129235 1 1 1 monitor=( parms ) d i c ;

1 .13299485302514 1 2 2 array mu[ 1 6 ] ;

0 .725519010925458 1 2 2 parms mu: 0 ;

0.790168559937335 1 2 2 parms s2 1 ;

1.14275707613406 1 3 3 p r i o r mu: ˜normal (1 , prec

1.26275163486356 1 4 4 =.0001) ;

0 .924987112824956 1 4 4 p r i o r s2 ˜gamma(2 , i s c a l e =2) ;

0.635748752652977 2 1 5 model ga in ˜normal (mu[ tmt ] ,

0 .89040183526832 2 1 5 var=s2 ) ;

1 .40850641235961 2 2 6 run ;

1.05334779462587 2 2 6

1.42454603147834 2 2 6 proc export data=no5post o u t f i l e

0.876869178935861 2 3 7 =’z :\my documents\

1.13417236833904 2 3 7 s t a t 595 r baye s i an \hmwk\hmwk 5\
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1.5307166136822 2 4 8 no5post . csv ’ dbms=csv r ep l a c e ;

1 .62876422747221 2 4 8 run ;

0.91869954925839 3 1 9

0.651574142026445 3 1 9 ods g raph i c s o f f ;

0 .964795917174517 3 2 10 ods pdf c l o s e ;

1 .13567909147059 3 2 10

0.971842851689181 3 2 10

1.86789905425025 3 3 11

1.71858834375702 3 3 11

0.828461308629336 3 4 12

1.12405391192776 3 4 12

1.37895018583156 4 1 13

0.79139772956555 4 2 14

1.70889873968731 4 2 14

0.585982054786358 4 3 15

1.81194876837391 4 3 15

1.21187262044929 4 4 16

1.69330934499011 4 4 16

END{} ;
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chapter 9

ANALYSIS OF COVARIANCE

Analysis of Covariance, ANCOVA, combines one-way or two-way ANOVA with linear re-

gression. ANCOVA is used when there is a continuous response variable and two or more

predictor variables, one being categorical and one being continuous. Here, we are comparing

one variable in two or more groups taking into account variability of other variables, called

covariates. Since ANCOVA is a method based on linear regression, the relationship of the

dependent variable to the independent variable(s) must be linear in the parameters. Figure

9.1 shows that the relationship in our data set is indeed linear. In fact it might be possible

that each group has its own y-intercept and slope. Two models will be presented that will

explore these possibilities. The first model allows for two intercepts and two slopes while

the second model allows for two intercepts but restricts the slopes to be the same. The two

models will be compared via DIC values to determine which fits the data better. Here is an

outline of the first model.

yi ∼Normal(µj, σ
2)

µj =β0j + β1jxi

β0j ∼Normal(10, 10000)

β1j ∼Normal(0, 100)

σ2 ∼Gamma(7, scale = 25)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

103



and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.
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Figure 9.1: Linear relationship between variables.

9.1 WinBUGS

This analysis will look at production data from two different production lines with the

objective of determining how much scrap is produced as the speed of an assembly line

increases. We have three variables in the data set, line number (1 or 2), line speed, and

amount of scrap produced. The data are grouped by line number and the response variable

is the amount of scrap with a covariate of line speed.

# model one has two i n t e r c e p t s and two s l op e s
model{

f o r ( i in 1 : 27 ) {
# l i k e l i h o o d
scrap [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean
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mu[ i ] <− b [ l i n e [ i ] ] + b1 [ l i n e [ i ] ] ∗ speed [ i ] ;
}

# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(10 , 0 .0001) ;
b [ 2 ] ˜ dnorm(10 , 0 .0001) ;
b1 [ 1 ] ˜ dnorm(0 , 0 . 01 ) ;
b1 [ 2 ] ˜ dnorm(0 , 0 . 01 ) ;
# p r i o r f o r var i ance and ad jus t i t in terms o f p r e c i s i o n
s2 ˜ dgamma(7 , 0 . 04 ) ;
prec <− 1/ s2 ;

}

# model two has two i n t e r c e p t s and one s l ope
model{

f o r ( i in 1 : 27 ) {
# l i k e l i h o o d
scrap [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean
mu[ i ] <− b [ l i n e [ i ] ] + b1 [ 1 ] ∗ speed [ i ]
}

# the p r i o r s f o r be t a i
b [ 1 ] ˜ dnorm(10 , 0 .0001) ;
b [ 2 ] ˜ dnorm(10 , 0 .0001) ;
b1 [ 1 ] ˜ dnorm(0 , 0 . 01 ) ;
# p r i o r f o r var i ance and ad jus t i t in terms o f p r e c i s i o n
s2 ˜ dgamma(5 , 0 . 01 ) ;
prec <− 1/ s2 ;

}

Table 9.1: Summary statistics from WinBUGS for both models.

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 94.11 20.81 52.60 80.37 94.45 108.10 134.50
b[2] 7.82 22.68 -36.68 -7.06 7.78 22.81 52.41

b1[1] 1.16 0.10 0.97 1.10 1.16 1.23 1.36
b1[2] 1.32 0.10 1.12 1.25 1.32 1.39 1.52

s2 534.02 137.45 321.19 435.07 514.60 614.62 855.40
deviance 242.03 3.45 237.10 239.50 241.40 244.00 250.30

mean sd 2.5% 25% 50% 75% 97.5%
b[1] 78.47 14.75 49.14 68.75 78.53 88.16 107.50
b[2] 25.42 15.70 -6.13 14.92 25.33 35.72 55.84

b1[1] 1.24 0.07 1.11 1.20 1.24 1.28 1.37
s2 482.11 122.42 293.70 395.37 465.60 549.40 769.60

deviance 242.20 2.77 238.70 240.20 241.60 243.60 249.10
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Model 1 DIC: 246.292

Model 2 DIC: 245.72

(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 9.2: WinBUGS summary plots for the posterior distribution of the single slope pa-
rameter from the second model.

The summary statistics for both models are shown in table 9.1. In comparing these

two models, we see that DIC for model two is lower, therefore model two with the single

slope fits better. Figure 9.2 gives a sample of the posterior summary plots, showing the

posterior distribution of the single slope parameter from the second model. Convergence

was reached, there were no problems with autocorrelation, and the posterior distribution is

shown.
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9.2 PROC MCMC

The models are presented in the code below in the same order as they appear in WinBUGS

above. The data are read in and defined with lines one through four and printed for review

before the analysis in lines six and seven. Lines nine, ten, and thirty-nine prepare a *.pdf

file where SAS will save the output tables and graphs. Model one is coded in lines twelve

through twenty-three and model two in lines twenty-six through thirty-six. Compare how µ

is defined in lines twenty-one and thirty-four. In model one, µ is defined to have a slope and

intercept for each group while in model two, it is defined to have two intercepts but the same

slope for the two groups. As such, model one has an array of length two for both β0 and β1

while model two only needs an array of length two for β0. Also notice that on lines twelve

and twenty-six, the number of MCMC iterations has been increased along with the number

of burn-in iterations and the thin option has been defined so that the simulation is thinned

to take only every fiftieth one to reduce autocorrelation and reach convergence satisfactorily

as seen in figure 9.3. The summary statistics for both models are shown in table 9.2.

∗ read in the data f i l e ;
1 data ancova ;
2 i n f i l e ‘ ‘ ’ ’ ;
3 input tmt speed scrap ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t data=ancova ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12 proc mcmc data=ancova outpost=examp7out nmc=500000 nbi=1000 seed

=1234 th in=50 monitor=( parms ) d i c ;
∗ de f i n e ar rays o f l ength 2 f o r i n t e r c e p t and s l ope ;
13 array beta0 [ 2 ] ;
14 array beta1 [ 2 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
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∗ the co lon on the beta i ’ s i n d i c a t e that the i n i t i a l va lue s be app l i ed
to a l l array e n t r i e s ;

15 parms beta0 : 150 ;
16 parms beta1 : 0 ;
17 parms s2 500 ;
∗ de f i n e p r i o r s ;
∗ the co lon on the beta i ’ s i n d i c a t e that the p r i o r be app l i ed to a l l

array e n t r i e s ;
18 p r i o r beta0 : ˜ normal (100 , var=10000) ;
19 p r i o r beta1 : ˜ normal (0 , var=10) ;
20 p r i o r s2 ˜ gamma(7 , s c a l e =75) ;
∗ de f i n e the mean , which i s the l i n e ;
21 mu = beta0 [ tmt ] + beta1 [ tmt ]∗ speed ;
∗ l i k e l i h o o d ;
22 model scrap ˜ normal (mu, var=s2 ) ;
23 run ;
24
25
∗ change code to have one s l ope now ;
26 proc mcmc data=ancova outpost=examp7out nmc=500000 nbi=1000 seed

=1234 th in=50 monitor=( parms ) d i c ;
∗ de f i n e one array o f l ength 2 f o r i n t e r c e p t ;
27 array beta0 [ 2 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on beta0 i n d i c a t e s that the i n i t i a l va lue s be app l i ed to

a l l array e n t r i e s ;
28 parms beta0 : 150 ;
29 parms beta1 0 ;
30 parms s2 500 ;
∗ de f i n e p r i o r s ;
∗ the co lon on beta0 i n d i c a t e s that the p r i o r be app l i ed to a l l array

e n t r i e s ;
31 p r i o r beta0 : ˜ normal (100 , var=10000) ;
32 p r i o r beta1 ˜ normal (0 , var=10) ;
33 p r i o r s2 ˜ gamma(7 , s c a l e =75) ;
∗ de f i n e the mean , which i s the l i n e ;
34 mu = beta0 [ tmt ] + beta1 ∗ speed ;
∗ l i k e l i h o o d ;
35 model scrap ˜ normal (mu, var=s2 ) ;
36 run ;
37
∗ turn o f f g raph i c s dev i c e ;
38 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
39 ods pdf c l o s e ;
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Table 9.2: Summary Statistics for Example 7 from PROC MCMC.
The SAS System 1 1 : 4 8  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 1 : 4 8  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

b e ta 0 1 1 0 0 0 0 1 0 0 .2 2 0 .2 9 2 7 8 6 .7 6 6 2 1 0 0 .4 1 1 3 .4

b e ta 0 2 1 0 0 0 0 1 2 .1 2 4 1 2 1 .8 4 3 1 - 2 .2 6 0 2 1 2 .1 2 5 7 2 6 .6 8 5 4

b e ta 1 1 1 0 0 0 0 1 .1 2 8 4 0 .0 9 4 6 1 .0 6 6 1 1 .1 2 8 2 1 .1 9 1 4

b e ta 1 2 1 0 0 0 0 1 .3 0 2 6 0 .0 9 6 6 1 .2 3 9 7 1 .3 0 1 7 1 .3 6 6 1

s 2 1 0 0 0 0 4 8 7 .7 1 1 9 .1 4 0 3 .3 4 7 1 .4 5 5 6 .1

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b e ta 0 1 0 .0 5 0 6 0 .0 6 2 0 1 4 0 .5 5 9 .3 7 2 9 1 3 9 .6

b e ta 0 2 0 .0 5 0 - 3 0 .6 1 4 7 5 5 .1 0 4 8 - 3 1 .1 2 7 5 5 4 .3 0 2 4

b e ta 1 1 0 .0 5 0 0 .9 4 2 1 1 .3 1 6 5 0 .9 4 3 8 1 .3 1 6 9

b e ta 1 2 0 .0 5 0 1 .1 0 9 5 1 .4 9 2 0 1 .1 1 3 9 1 .4 9 5 5

s 2 0 .0 5 0 2 9 9 .6 7 6 4 .0 2 8 4 .8 7 3 6 .3

The SAS System 1 1 : 4 8  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 1 1

The M CM C  P ro cedu re

The SAS System 1 1 : 4 8  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 1 1

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

b e ta 0 1 1 0 0 0 0 8 2 .5 0 3 2 1 5 .2 3 5 6 7 2 .8 6 2 2 8 2 .6 1 4 8 9 2 .4 3 1 0

b e ta 0 2 1 0 0 0 0 3 1 .1 6 1 4 1 6 .2 1 4 0 2 0 .5 1 5 1 3 1 .0 1 8 3 4 1 .8 7 9 1

b e ta 1 1 0 0 0 0 1 .2 1 4 2 0 .0 6 8 8 1 .1 6 8 8 1 .2 1 4 6 1 .2 5 8 4

s 2 1 0 0 0 0 5 0 1 .0 1 2 0 .0 4 1 6 .8 4 8 6 .7 5 6 9 .6

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b e ta 0 1 0 .0 5 0 5 1 .9 8 2 6 1 1 2 .1 5 2 .5 9 9 7 1 1 2 .5

b e ta 0 2 0 .0 5 0 - 0 .8 1 1 3 6 3 .2 7 5 3 0 .4 6 9 8 6 4 .1 3 6 8

b e ta 1 0 .0 5 0 1 .0 7 9 3 1 .3 5 3 5 1 .0 7 8 0 1 .3 5 1 6

s 2 0 .0 5 0 3 0 8 .6 7 7 6 .9 2 9 5 .5 7 4 9 .4

9.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

# model one has two i n t e r c e p t s data ancova ;

and two s l op e s i n f i l e ‘ ‘ ’ ’ ;

model{ input tmt speed scrap ;

f o r ( i in 1 : 27 ) { run ;

scrap [ i ] ˜ dnorm(mu[ i ] , prec

) ; proc p r i n t data=ancova ;

mu[ i ] <− b [ l i n e [ i ] ] + b1 [ run ;
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Figure 9.3: Summary plots for the posterior distribution of the single slope parameter from
the second model. The SAS System 1 1 : 4 8  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 1 5

The M CM C  P ro cedu re

l i n e [ i ] ] ∗ speed [ i ] ;

} ods pdf

b [ 1 ] ˜ dnorm(10 , 0 .0001) ; f i l e = ‘ ‘ ’ ’ ;

b [ 2 ] ˜ dnorm(10 , 0 .0001) ; ods g raph i c s on ;

b1 [ 1 ] ˜ dnorm(0 , 0 . 01 ) ; proc mcmc data=ancova outpost=

b1 [ 2 ] ˜ dnorm(0 , 0 . 01 ) ; examp7out nmc=500000 nbi=1000

s2 ˜ dgamma(7 , 0 . 04 ) ; seed=1234 th in=50 monitor=(

prec <− 1/ s2 ; parms ) d i c ;

} array beta0 [ 2 ] ;

array beta1 [ 2 ] ;
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# model two has two i n t e r c e p t s parms beta0 : 150 ;

and one s l ope parms beta1 : 0 ;

model{ parms s2 500 ;

f o r ( i in 1 : 27 ) { p r i o r beta0 : ˜ normal (100 , var

scrap [ i ] ˜ dnorm(mu[ i ] , prec =10000) ;

) ; p r i o r beta1 : ˜ normal (0 , var

mu[ i ] <− b [ l i n e [ i ] ] + b1 =10) ;

[ 1 ] ∗ speed [ i ] p r i o r s2 ˜ gamma(7 , s c a l e =75)

} ;

b [ 1 ] ˜ dnorm(10 , 0 .0001) ; mu = beta0 [ tmt ] + beta1 [ tmt ]∗

b [ 2 ] ˜ dnorm(10 , 0 .0001) ; speed ;

b1 [ 1 ] ˜ dnorm(0 , 0 . 01 ) ; model scrap ˜ normal (mu, var=

s2 ˜ dgamma(5 , 0 . 01 ) ; s2 ) ;

prec <− 1/ s2 ; run ;

}

# The data s e t : ∗ change code to have one s l ope

l i n e [ ] speed [ ] scrap [ ] now ;

1 100 218 proc mcmc data=ancova outpost=

1 125 248 examp7out nmc=500000 nbi=1000

1 220 360 seed=1234 th in=50 monitor=(

1 205 351 parms ) d i c ;

1 300 470 array beta0 [ 2 ] ;

1 255 394 parms beta0 : 150 ;

1 225 332 parms beta1 0 ;

1 175 321 parms s2 500 ;

1 270 410 p r i o r beta0 : ˜ normal (100 , var

1 170 260 =10000) ;
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1 155 241 p r i o r beta1 ˜ normal (0 , var

1 190 331 =10) ;

1 140 275 p r i o r s2 ˜ gamma(7 , s c a l e =75)

1 290 425 ;

1 265 367 mu = beta0 [ tmt ] + beta1 ∗ speed

2 105 140 ;

2 215 277 model scrap ˜ normal (mu, var=

2 270 384 s2 ) ;

2 255 341 run ;

2 175 215

2 135 180 ods g raph i c s o f f ;

2 200 260 ods pdf c l o s e ;

2 275 361

2 155 252

2 320 422

2 190 273

2 295 410

END{} ;
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chapter 10

LINEAR MIXED MODEL

In all of the previous models, the data were assumed to be independent and exchangeable,

meaning that the order in which our sample was taken makes no difference in the probability

of the sample occurring. The order of the indexes has no influence on the calculation of the

probability.

However, it is not plausible to make the assumption for every data set. Here in the

linear mixed model, the data are not independent which means that more than one source of

variability must be accounted for. There is variability due to random error and fixed error.

This is just an extension of the linear model where the linear predictor contained all of the

variability. The usual model for the linear regression is

y = Xβ + e, e ∼ Normal(0, σ2I).

The mixed model setting, however, is more complicated because the errors are not

independent. The name is mixed because both random and fixed effects are mixed in the

model, where before only fixed effects were modeled. Mixed models are applicable to settings

where repeated measurements are taken on the same statistical unit, or where measurements

are made on clusters of related statistical units. Often the goal of the researcher is to make

inference on the entire population that these statistical units come from, and not just the

sample itself.

The Bayesian paradigm easily adjusts for this form of analysis. A term must be

added to the model that will account for the extra variability due to randomness. It is

imperative that the extra source(s) of variability be accounted for so that the inference

is valid. Typically, fixed effects are terms that have one level of priors modeling their

parameters while random effects have priors modeling their priors, called hyperpriors. The
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model now is

y = Xβ + Zu + e, e ∼ Normal(0,R),u ∼ Normal(0,G)

where X and Z are known design matrices and the covariance matrices R and G may depend

upon a set of unknown variance components.

For this analysis, the data will be modeled as normal with priors and hyperpriors as

shown below where i indicates the metal type, j indicates the ingot, and u is the effect of

each ingot.

yijk ∼Normal(µi, σ
2)

µi =βixi + uj

βi ∼Normal(72, 100)

uj ∼Normal(o, σ2
u)

σ2
u ∼Gamma(3, scale =

1

3
)

σ2 ∼Gamma(3, scale =
1

3
)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

10.1 WinBUGS

This data set comes from a study to determine the pressure required to break a metal’s

bond. The general goal was to compare the bond break pressure of the metals. The data

set contained three columns of observations, ingot, metal, and pressure as can be seen in

the side-by-side code section below. An ingot is a block of metal, typically oblong in shape,
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and it is assumed that the seven ingots in the sample represent a much larger population of

ingots to which the researcher desires to make inference.

The metals are nickel, iron, and calcium, indicated with n, i, and c in the data set.

However, this poses a problem for WinBUGS because the program is not able to manage

character entries. Therefore, a fourth column was added to the data set where n was given

a numerical value of 1, i was given a numerical value of 2, and c a value of 3. This column

will be used to inform WinBUGS as to which metal the observation belongs. The data set

must be further adjusted such that the metal column is omitted prior to reading the data

into WinBUGS because the program cannot work with character entries.

model{
f o r ( i in 1 : 21 ) {

# l i k e l i h o o d ;
p r e s su r e [ i ] ˜ dnorm(mu[ i ] , prec ) ;
# de f i n e the mean
mu[ i ] <− beta [ met [ i ] ] + u [ ingot [ i ] ]
}
# the p r i o r s f o r mean and random e f f e c t
f o r ( i in 1 : 3 ) {
beta [ i ] ˜ dnorm(72 , . 0 1 ) ;
}
f o r ( i in 1 : 7 ) {
u [ i ] ˜ dnorm(0 , prec ing ) ;
}
# pr i o r and hyperpr io r f o r the va r i anc e s and ad ju s t i ng them in

terms o f p r e c i s i o n
s2 ˜ dgamma(3 , 3 ) ;
prec <− 1/ s2 ;
s2 ing ˜ dgamma(3 , 3 ) ;
p rec ing <− 1/ s2 ing ;

}

There are seven different ingots in this study and these are considered the random

effects while the three metals are considered to be the fixed effects. These observations

cannot be assumed independent because we have repeated measurements which means there

are two sources of variability to account for in the model, the fixed effect error due to metal

as indicated by σ2 and the random effect error due to each ingot as indicated by σ2
u.
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Table 10.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
beta[1] 71.10 1.02 69.09 70.40 71.11 71.77 73.11
beta[2] 75.89 1.02 73.90 75.23 75.88 76.56 77.88
beta[3] 70.20 1.02 68.18 69.51 70.21 70.89 72.17

s2 4.67 0.92 3.14 4.02 4.57 5.22 6.70
s2ing 2.63 0.85 1.16 2.04 2.56 3.16 4.49

deviance 113.64 6.33 103.30 109.10 112.90 117.42 128.30

The summary statistics are shown in table 10.1. The mean pressure for breaking

nickel was 71.10, the mean pressure for breaking iron was 75.89, and the mean pressure for

breaking calcium was 70.20. Figure 10.1 gives a sample of the posterior summary plots,

showing the posterior distribution of the error due to each ingot. Convergence was reached,

there were no problems with autocorrelation, and the posterior distribution is shown. Even

though plots for the variance components are not shown here, convergence of these compo-

nents must be monitored carefully because variances are very challenging to model correctly

and obtain convergence. These components were monitored in this analysis and convergence

was indeed reached with no autocorrelation concerns.

It should be noted that even though the random effect of ingot was accounted for in

the model, this variable is not of concern because the goal was to generalize the results to

all ingots. The mixed model and this hierarchical Bayesian model allow for the results to be

applied to the entire population of ingots, and not just the seven in the study.

10.2 PROC MCMC

The code shown below asks SAS to create the same numeric column in lines four through six

for the metal as was used for WinBUGS. The MCMC command begins on line fifteen and

utilizes thinning of increased number of iterations after 10,000 burn-in iterations in an effort

to reduce autocorrelation and reach convergence. Lines sixteen and seventeen create the

needed arrays of length three for metal and of length seven for ingot. Lines eighteen, twenty-
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 10.1: WinBUGS summary plots for the posterior distribution of the error due to the
ingot.

one, twenty-two and twenty-three include a colon to indicate that the starting values and

priors should be applied to all array entries. Line twenty-seven gives the model’s likelihood

statement.

∗ read in the data f i l e ;
1 data bond ;
2 i n f i l e ‘ ‘ ’ ’ ;
3 input ingot metal $ p r e s su r e ;
∗ c r e a t e a treatment column o f numerica l va lue s ;
4 i f metal= ’n ’ then tmt=1;
5 i f metal=’ i ’ then tmt=2;
6 i f metal=’c ’ then tmt=3;
7 run ;
8
∗ pr in t the data f i l e f o r i n sp e c t i on ;
9 proc p r i n t ;
10 run ;
11
∗ I n i t i a l i z e s sav ing o f output as a pdf f i l e ;
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12 ods pdf
13 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
14 ods g raph i c s on ;
15 proc mcmc data=bond outpost=bondout nmc=500000 th in=50 nbi=10000

monitor=(mu s2 e r r o r s2 ingo t ) d i c seed =1234;
∗ c r e a t e ar rays f o r mean and random e f f e c t ;
16 array mu [ 3 ] ;
17 array u [ 7 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on mu and u i nd i c a t e that the i n i t i a l va lue s be app l i ed to

a l l array e n t r i e s ;
18 parms mu: 70 ;
19 parms s 2 e r r o r 10 ;
20 parms s2 ingo t 10 ;
21 parms u : 0 ;
∗ de f i n e p r i o r s ;
∗ the co lon on mu and u i nd i c a t e that the p r i o r be app l i ed to a l l array

e n t r i e s ;
22 p r i o r mu: ˜ normal (72 , var=100) ;
23 p r i o r u : ˜ normal (0 , var=s2 ingo t ) ;
24 p r i o r s 2 e r r o r ˜ gamma(3 , s c a l e =3) ;
25 p r i o r s 2 ingo t ˜ gamma(3 , s c a l e =3) ;
∗ de f i n e the mixed model l i n e ;
26 l i n e = mu[ tmt ] + u [ ingot ] ;
∗ l i k e l i h o o d ;
27 model p r e s su r e ˜ normal ( l i n e , var=s2 e r r o r ) ;
28 run ;
29
∗ turn o f f g raph i c s dev i c e ;
30 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
31 ods pdf c l o s e ;

The summary statistics are shown in table 10.2 and give posterior values very similar

to WinBUGS’ for the pressure for breaking the bond, 71.09 for nickel, 75.84 for iron, and

70.18 for calcium. Figure 10.2 shows the posterior distribution of the error due to the ingot,

indicating that convergence was reached and there was no problem with autocorrelation.
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Table 10.2: Summary Statistics for Example 8 from PROC MCMC.
The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 4

The M CM C  P ro cedu re

The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 4

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

m u 1 1 0 0 0 0 7 1 .0 8 6 9 1 .6 8 7 6 6 9 .9 8 7 5 7 1 .0 6 3 3 7 2 .2 0 4 1

m u 2 1 0 0 0 0 7 5 .8 3 5 8 1 .7 0 1 4 7 4 .7 3 0 5 7 5 .8 3 3 3 7 6 .9 6 0 8

m u 3 1 0 0 0 0 7 0 .1 8 0 5 1 .7 0 1 6 6 9 .0 3 2 9 7 0 .1 5 9 1 7 1 .3 1 4 9

s 2 e r r o r 1 0 0 0 0 1 0 .8 0 8 4 3 .4 9 7 6 8 .3 1 4 6 1 0 .2 6 7 4 1 2 .7 5 9 2

s 2 in g o t 1 0 0 0 0 1 0 .2 2 1 7 4 .5 5 6 1 6 .9 4 1 7 9 .4 9 5 7 1 2 .7 5 3 7

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 6 7 .7 8 1 5 7 4 .4 4 9 6 6 7 .5 9 6 9 7 4 .2 2 7 4

m u 2 0 .0 5 0 7 2 .4 7 4 8 7 9 .1 6 7 6 7 2 .5 1 3 9 7 9 .1 8 9 5

m u 3 0 .0 5 0 6 6 .8 5 8 4 7 3 .5 2 7 4 6 6 .8 2 4 9 7 3 .4 5 9 9

s 2 e r r o r 0 .0 5 0 5 .5 9 8 5 1 9 .1 8 1 1 4 .6 7 2 2 1 7 .5 7 7 6

s 2 in g o t 0 .0 5 0 3 .4 3 7 6 2 1 .0 2 3 7 2 .4 9 5 5 1 9 .3 3 2 4

Figure 10.2: Summary plots for the posterior distribution of the error due to the ingot.The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 9

The M CM C  P ro cedu re
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10.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model{ data bond ;

f o r ( i in 1 : 21 ) { i n f i l e ‘ ‘ ’ ’ ;

p r e s su r e [ i ] ˜ dnorm(mu[ i ] , input ingot metal $

prec ) ; p r e s su r e ;

mu[ i ] <− beta [ met [ i ] ] + u [ i f metal= ’n ’ then tmt=1;

ingot [ i ] ] i f metal=’ i ’ then tmt=2;

} i f metal=’c ’ then tmt=3;

run ;

f o r ( i in 1 : 3 ) {

beta [ i ] ˜ dnorm(72 , . 0 1 ) ; proc p r i n t ;

} run ;

f o r ( i in 1 : 7 ) {

u [ i ] ˜ dnorm(0 , prec ing ) ; ods pdf

} f i l e = ‘ ‘ ’ ’ ;

ods g raph i c s on ;

s2 ˜ dgamma(3 , 3 ) ; proc mcmc data=bond outpost=

prec <− 1/ s2 ; bondout nmc=500000 th in=50 nbi

s2 ing ˜ dgamma(3 , 3 ) ; =10000 monitor=(mu s2 e r r o r

prec ing <− 1/ s2 ing ; s 2 ingo t ) d i c seed =1234;

} array mu [ 3 ] ;

# The data s e t : array u [ 7 ] ;

i ngot [ ] metal [ ] p r e s su r e [ ] met [ ] parms mu: 70 ;

1 n 67 .0 1 parms s 2 e r r o r 10 ;
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1 i 71 .9 2 parms s2 ingo t 10 ;

1 c 72 .2 3 parms u : 0 ;

2 n 67 .5 1 p r i o r mu: ˜ normal (72 , var

2 i 68 .8 2 =100) ;

2 c 66 .4 3 p r i o r u : ˜ normal (0 , var=

3 n 76 .0 1 s2 ingo t ) ;

3 i 82 .6 2 p r i o r s 2 e r r o r ˜ gamma(3 , s c a l e

3 c 74 .5 3 =3) ;

4 n 72 .7 1 p r i o r s2 ingo t ˜ gamma(3 ,

4 i 78 .1 2 s c a l e =3) ;

4 c 67 .3 3 l i n e = mu[ tmt ] + u [ ingot ] ;

5 n 73 .1 1 model p r e s su r e ˜ normal ( l i n e ,

5 i 74 .2 2 var=s2 e r r o r ) ;

5 c 73 .2 3 run ;

6 n 65 .8 1

6 i 70 .8 2 ods g raph i c s o f f ;

6 c 68 .7 3 ods pdf c l o s e ;

7 n 75 .6 1

7 i 84 .9 2

7 c 69 .0 3

END{} ;
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chapter 11

RANDOM COEFFICIENT MODEL

The random coefficient model is an extension of the linear mixed model. Here, the notion is

that the regression equation will have fixed effects terms for overall intercept and for overall

slope, but because the data consist of different groups of observations, there will also be

terms for a random slope and a random intercept. Thus the coefficients in the model are

allowed to vary for the random effects of the different groups. The design of this analysis

is such as to allow for inference beyond the groups that are found in the sample data. The

equation for a random coefficient model is

yij = β0 + β1x1 + α0j + α1jx1 + e.

This model not only allows for the adjustment of extra variation from the different

groups, but also allows for the adjustment of different intercepts and slopes within each

group. As can be seen in the graph of the data set in figure 11.1, it is plausible that there

could be both an overall intercept and slope along with both an intercept and slope unique to

each group. The result of the random coefficient model is that the researcher can generalize

the analysis to include all possible groups in the population and not just those found in the

sample. Sometimes, this extension is a very desirable attribute when conducting research.

The population’s average slope and intercept is calculated as β0 + β1x1 and each group’s

values are calculated as β0 + α0j + (β1 + α1j)x1.

For this analysis, the data will be modeled hierarchically to have a normal likelihood

with priors and hyper-priors as shown below where i indicates the subject and j indicates

group membership. Equations for the likelihood, prior, and posterior distributions are omit-

ted here where they were provided in Chapter 3 because the MCMC algorithms do not

require finding the functional form of the posterior distribution. All that is required is
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Figure 11.1: Linear relationship between moisture and yield. The different colors and shapes
indicate group membership.

the likelihood function and the distribution for all parameters in the model. The MCMC

algorithms calculate the posterior distribution from there.
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yij ∼Normal(µij, σ
2)

µ =β0 + β1x1 + α0j + α1jx1

β0 ∼Normal(30, 10000)

β1 ∼Normal(0, 100)

α0 ∼Normal(0, σ2
intercept)

α1 ∼Normal(0, σ2
slope)

σ2 ∼Uniform(0, 2)

σ2
intercept ∼Uniform(0, 200)

σ2
slope ∼Uniform(0, 0.2)

11.1 WinBUGS

The data for this analysis are from an agriculture study on wheat varieties. The purpose

was to predict yield based on moisture while taking into account an effect for different

varieties of wheat. The data include observations on ten different varieties, but because

of the hierarchical model, inference can be made beyond these ten varieties to the entire

population of wheat varieties. The wheat varieties are random effects and the moisture

variable is the fixed effect in the model. The fixed effect will have specific priors while

the random effects will have a mean of zero and a hierarchical structure for the variance.

Remember to choose specific priors that preserve the parameter space, and as such, the

variance priors must be modeled with positive values.

model{
# dummy va r i ab l e to use a l l columns o f data s e t
dummy <− obs [ 1 ] ;
f o r ( i in 1 : 60 ) {

# l i k e l i h o o d
y i e l d [ i ] ˜ dnorm(mu[ i ] , prec ) ;
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# de f i n e the mean
mu[ i ] <− b0 + b1∗moisture [ i ] + a0 [ va r i e t y [ i ] ] + a1 [ va r i e t y [ i ] ] ∗

moisture [ i ] ;
}
# the p r i o r s f o r be t a i
b0 ˜ dnorm(30 , . 0 01 ) ;
b1 ˜ dnorm(0 , . 0 1 ) ;
# the p r i o r s f o r a lpha i
f o r ( i in 1 : 10 ) {

a0 [ i ] ˜ dnorm (0 , p r e c i n t ) ;
a1 [ i ] ˜ dnorm (0 , p r e c s l p ) ;
}
# pr i o r s f o r var iance parameters and ad ju s t i ng them in terms o f

p r e c i s i o n
s2 ˜ dun i f (0 , 2) ;
prec <− 1/ s2 ;
s 2 i n t ˜ dun i f (0 , 200) ;
p r e c i n t <− 1/ s 2 i n t ;
s 2 s l p ˜ dun i f ( 0 , . 2 ) ;
p r e c s l p <− 1/ s 2 s l p ;

}

Because variance values are positive real numbers, the researcher should thoughtfully

choose appropriate prior distributions to model them, drawing upon previous experience or

knowledge of the data. Possible variance priors are the gamma and uniform distributions,

however, modeling hierarchical variances can be very difficult unless the researcher has a good

sense of the data’s behavior. When the researcher does have a good sense, then appropriate

gamma priors could be thoughtfully selected. However, since we do not have a good sense

of this data, uniform priors were selected as a good alternate choice because the parameter

space could still be preserved.

A word of caution though, when using uniform priors on variance parameters, it is

important to monitor the trace plots closely because the uniform could prevent the algorithm

from moving into values beyond the bounds of the distribution even if the MCMC random

walk attempts such movement. Watch for a trace plot that looks like a butch hair cut. When

such a trace plot is found, return to the code and make adjustments on the prior values as

needed to allow the MCMC random walk to cover the parameter space as needed. Trace
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plots can also guide in narrowing the uniform interval if the interval is too broad and allows

the MCMC random walk too much movement.

Table 11.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
b0 33.51 1.80 29.99 32.42 33.49 34.58 37.25
b1 0.66 0.02 0.62 0.65 0.66 0.67 0.71
s2 0.39 0.09 0.25 0.32 0.38 0.44 0.62

s2int 31.80 21.82 10.15 18.05 25.56 38.06 94.05
s2slp 0.00 0.00 0.00 0.00 0.00 0.01 0.01
a0[1] 0.88 1.90 -2.99 -0.29 0.89 2.06 4.61
a0[2] -2.24 1.92 -6.11 -3.42 -2.21 -0.99 1.50
a0[3] -0.50 1.91 -4.42 -1.65 -0.47 0.70 3.15
a0[4] 0.62 1.87 -3.22 -0.51 0.67 1.78 4.26
a0[5] 0.99 2.05 -3.15 -0.30 0.98 2.27 5.04
a0[6] 4.53 1.87 0.74 3.40 4.54 5.68 8.18
a0[7] -10.73 1.85 -14.60 -11.82 -10.69 -9.56 -7.12
a0[8] 2.29 1.86 -1.54 1.18 2.31 3.45 5.98
a0[9] -0.24 1.91 -4.13 -1.42 -0.21 0.96 3.48

a0[10] 3.60 2.19 -0.73 2.17 3.58 5.04 7.95
a1[1] -0.05 0.03 -0.10 -0.07 -0.05 -0.03 0.00
a1[2] -0.07 0.03 -0.14 -0.09 -0.07 -0.05 -0.01
a1[3] 0.07 0.03 0.01 0.05 0.07 0.09 0.12
a1[4] -0.02 0.03 -0.08 -0.04 -0.02 -0.01 0.03
a1[5] -0.02 0.03 -0.08 -0.04 -0.02 0.00 0.04
a1[6] 0.02 0.02 -0.02 0.01 0.02 0.04 0.08
a1[7] 0.05 0.03 -0.00 0.04 0.05 0.07 0.11
a1[8] 0.02 0.03 -0.03 0.01 0.02 0.04 0.08
a1[9] 0.02 0.03 -0.03 0.01 0.02 0.04 0.08

a1[10] -0.03 0.03 -0.10 -0.05 -0.03 -0.01 0.03
deviance 110.40 8.37 96.31 104.40 109.60 115.50 128.90

The summary statistics are shown in table 11.1. Notice that, as expected, the

analysis gives posterior distributions for an overall intercept and overall slope along with

posterior distributions for three variance parameters, ten variety specific intercepts, and

ten variety specific slopes. Figure 11.2 gives a sample of the posterior summary plots,

showing the posterior distribution of the fixed effect’s variance. This trace plot shows that
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convergence was reached, indicating that the selected uniform prior was indeed appropriate

for this parameter. There were no problems with autocorrelation.

(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 11.2: WinBUGS summary plots for the posterior distribution of the fixed effect error.

11.2 PROC MCMC

The coding of the random coefficient model in SAS is done similarly as in previous models.

Lines one through four read in the data file and tell SAS what is should find therein. Lines

six, seven, and thirty-five create and close a *.pdf file where SAS will save the posterior

summary tables and plots that lines eight and thirty-four initiated and closed. The MCMC

procedure consists of lines nine through twenty-nine. Of note on line nine is the number of

burn-in iterations and the number of MCMC iterations along with the indication to thin

every 100. The number of iterations was increased here and the thinning was increased to

100 so as to reduce autocorrelation and aid in the convergence process. Arrays are created

in lines ten and eleven for the random slope and intercept parameters. Lines twelve through
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eighteen give initial values for all parameters while lines nineteen through twenty-six define

prior distributions for them. The random coefficient equation is defined in line twenty-seven.

The likelihood is given in line twenty-eight. The posterior draws are created and saved in

lines thirty-one and thirty-two.

The table of summary statistics is presented in table 11.2 and gives posterior values

very similar to WinBUGS. Figure 11.3 gives the posterior plots for the fixed effect’s vari-

ance. These plots indicate that convergence was reached, no autocorrelation problems were

encountered and the density of the posterior is drawn.

∗ read in the data f i l e ;
1 data wheat ;
2 i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;
3 input obs va r i e t y y i e l d moisture ;
4 run ;
5
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
6 ods pdf
7 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
8 ods g raph i c s on ;
9 proc mcmc data=wheat nbi=100000 nmc=1000000 th in=100 outpost=

postwheat d i c seed=1234 monitor=( parms ) ;
∗ de f i n e ar rays o f l ength 10 f o r a lph i ’ s ;
10 array a0 [ 1 0 ] ;
11 array a1 [ 1 0 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on the a lphai ’ s i n d i c a t e that the i n i t i a l va lue s be app l i ed

to a l l array e n t r i e s ;
12 parms b0 30 ;
13 parms b1 0 ;
14 parms a0 : 0 ;
15 parms a1 : 0 ;
16 parms s2 1 ;
17 parms s 2 s l p . 0 0 4 ;
18 parms s 2 i n t 30 ;
∗ de f i n e the p r i o r s ;
∗ the co lon on the a lphai ’ s i n d i c a t e that the p r i o r be app l i ed to a l l

array e n t r i e s ;
19 p r i o r a0 : ˜ normal (0 , var=s2 i n t ) ;
20 p r i o r a1 : ˜ normal (0 , var=s2 s l p ) ;
21 p r i o r b0 ˜ normal (30 , var=1000) ;
22 ∗ var iance i s r e c i p r o c a l o f WinBUGS p r e c i s i o n ;
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23 p r i o r b1 ˜ normal (0 , var=100) ;
24 p r i o r s2 ˜ uniform (0 , 2 ) ;
25 p r i o r s 2 i n t ˜ uniform (0 ,200) ;
26 p r i o r s 2 s l p ˜ uniform (0 , . 2 ) ;
∗ de f i n e the random c o e f f i c i e n t s l i n e ;
27 mu = b0 + b1 ∗ moisture + a0 [ va r i e t y ] + a1 [ va r i e t y ]∗ moisture ;
∗ l i k e l i h o o d ;
28 model y i e l d ˜ normal (mu, var=s2 ) ;
29 run ;
30
∗ export the p o s t e r i o r MCMC draws and save the . csv f i l e ;
31 proc export data=postwheat o u t f i l e = ‘ ‘ ’ ’ dbms=csv r ep l a c e ;
32 run ;
33
∗ turn o f f g raph i c s dev i c e ;
34 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
35 ods pdf c l o s e ;

Figure 11.3: Summary plots for the posterior distribution of the fixed effect error.The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 2 3

The M CM C  P ro cedu re
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Table 11.2: Summary Statistics for Example 9 from PROC MCMC.
The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 6

The M CM C  P ro cedu re

The SAS System 1 3 : 1 1  W e d n e s d a y ,  M a y  4 ,  2 0 1 1 6

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

b 0 1 0 0 0 0 3 3 .3 9 1 5 1 .8 1 3 1 3 2 .2 1 5 7 3 3 .2 5 7 5 3 4 .4 0 0 0

b 1 1 0 0 0 0 0 .6 6 2 8 0 .0 2 2 9 0 .6 4 8 2 0 .6 6 2 8 0 .6 7 6 9

a 0 1 1 0 0 0 0 0 .9 7 4 2 1 .9 5 2 0 - 0 .1 2 5 6 1 .1 0 2 4 2 .2 5 3 5

a 0 2 1 0 0 0 0 - 2 .0 7 3 2 1 .8 8 7 1 - 3 .1 3 6 7 - 2 .0 1 3 4 - 0 .8 8 5 4

a 0 3 1 0 0 0 0 - 0 .4 2 0 5 1 .9 8 8 0 - 1 .5 5 6 9 - 0 .3 0 9 8 0 .9 4 3 6

a 0 4 1 0 0 0 0 0 .7 6 3 8 1 .8 4 1 6 - 0 .2 4 9 3 0 .8 6 8 8 1 .9 4 7 9

a 0 5 1 0 0 0 0 1 .0 7 6 4 2 .1 0 9 2 - 0 .2 0 1 4 1 .0 1 2 6 2 .3 7 5 7

a 0 6 1 0 0 0 0 4 .6 6 5 6 1 .8 6 6 5 3 .5 8 4 1 4 .7 9 3 3 5 .8 7 5 2

a 0 7 1 0 0 0 0 - 1 0 .6 0 8 4 1 .8 7 5 3 - 1 1 .6 6 0 4 - 1 0 .4 8 8 1 - 9 .3 9 5 0

a 0 8 1 0 0 0 0 2 .3 8 1 4 1 .9 0 6 3 1 .2 8 6 1 2 .4 5 7 4 3 .6 1 0 2

a 0 9 1 0 0 0 0 - 0 .1 5 4 9 1 .9 1 7 7 - 1 .2 7 4 1 - 0 .0 3 7 6 1 .1 1 7 7

a 0 1 0 1 0 0 0 0 3 .7 6 6 5 2 .0 9 1 0 2 .4 7 6 9 3 .7 9 7 5 5 .0 5 8 7

a 1 1 1 0 0 0 0 - 0 .0 4 9 8 0 .0 2 6 2 - 0 .0 6 6 4 - 0 .0 4 9 6 - 0 .0 3 2 9

a 1 2 1 0 0 0 0 - 0 .0 7 4 5 0 .0 3 3 7 - 0 .0 9 6 4 - 0 .0 7 3 2 - 0 .0 5 1 2

a 1 3 1 0 0 0 0 0 .0 6 7 8 0 .0 2 8 5 0 .0 4 8 5 0 .0 6 6 7 0 .0 8 5 7

a 1 4 1 0 0 0 0 - 0 .0 2 5 3 0 .0 2 8 8 - 0 .0 4 3 5 - 0 .0 2 4 7 - 0 .0 0 5 7 5

a 1 5 1 0 0 0 0 - 0 .0 1 9 3 0 .0 3 1 3 - 0 .0 3 8 3 - 0 .0 1 7 7 0 .0 0 1 5 8

a 1 6 1 0 0 0 0 0 .0 2 3 5 0 .0 2 5 7 0 .0 0 7 3 0 0 .0 2 3 5 0 .0 3 9 5

a 1 7 1 0 0 0 0 0 .0 5 2 0 0 .0 2 8 5 0 .0 3 3 4 0 .0 5 1 5 0 .0 6 9 9

a 1 8 1 0 0 0 0 0 .0 2 3 3 0 .0 2 7 4 0 .0 0 5 9 0 0 .0 2 3 4 0 .0 4 1 0

a 1 9 1 0 0 0 0 0 .0 2 2 9 0 .0 2 7 3 0 .0 0 5 0 6 0 .0 2 2 7 0 .0 4 0 6

a 1 1 0 1 0 0 0 0 - 0 .0 3 4 0 0 .0 3 3 3 - 0 .0 5 5 7 - 0 .0 3 3 9 - 0 .0 1 1 9

s 2 1 0 0 0 0 0 .3 9 0 6 0 .0 9 6 1 0 .3 2 2 4 0 .3 7 6 5 0 .4 4 1 5

s 2 s lp 1 0 0 0 0 0 .0 0 4 5 3 0 .0 0 3 8 0 0 .0 0 2 3 1 0 .0 0 3 4 9 0 .0 0 5 4 5

s 2 in t 1 0 0 0 0 3 2 .4 9 4 3 2 2 .5 8 4 2 1 8 .3 6 8 8 2 6 .0 3 7 3 3 8 .7 5 3 9
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11.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

model{ data wheat ;

dummy <− obs [ 1 ] ; i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;

f o r ( i in 1 : 60 ) { input obs va r i e t y y i e l d

y i e l d [ i ] ˜ dnorm(mu[ i ] , moisture ;

prec ) ; run ;

mu[ i ] <− b0 + b1∗moisture [ i

] + a0 [ va r i e t y [ i ] ] + a1 [ ods pdf

va r i e t y [ i ] ] ∗ moisture [ i ] ; f i l e = ‘ ‘ ’ ’ ;

} ods g raph i c s on ;

proc mcmc data=wheat nbi=100000

b0 ˜ dnorm(30 , . 0 01 ) ; nmc=1000000 th in=100 outpost=

b1 ˜ dnorm(0 , . 0 1 ) ; postwheat d i c seed=1234 monitor

=( parms ) ;

f o r ( i in 1 : 10 ) { array a0 [ 1 0 ] ;

a0 [ i ] ˜ dnorm (0 , p r e c i n t ) ; array a1 [ 1 0 ] ;

a1 [ i ] ˜ dnorm (0 , p r e c s l p ) ; parms b0 30 ;

} parms b1 0 ;

s2 ˜ dun i f (0 , 2) ; parms a0 : 0 ;

prec <− 1/ s2 ; parms a1 : 0 ;

s 2 i n t ˜ dun i f (0 , 200) ; parms s2 1 ;

p r e c i n t <− 1/ s 2 i n t ; parms s 2 s l p . 0 0 4 ;

s 2 s l p ˜ dun i f ( 0 , . 2 ) ; parms s 2 i n t 30 ;

p r e c s l p <− 1/ s 2 s l p ; p r i o r a0 : ˜ normal (0 , var=
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} s 2 i n t ) ;

#The data s e t : p r i o r a1 : ˜ normal (0 , var=

obs [ ] v a r i e t y [ ] y i e l d [ ] s 2 s l p ) ;

moisture [ ] p r i o r b0 ˜ normal (30 , var

1 1 41 10 =1000) ;

2 1 69 57 ∗ var iance i s r e c i p r o c a l o f

3 1 53 32 WinBUGS p r e c i s i o n ;

4 1 66 52 p r i o r b1 ˜ normal (0 , var=100)

5 1 64 47 ;

6 1 64 48 p r i o r s2 ˜ uniform (0 , 2 ) ;

7 2 49 30 p r i o r s 2 i n t ˜ uniform (0 ,200) ;

8 2 44 21 p r i o r s 2 s l p ˜ uniform (0 , . 2 ) ;

9 2 44 20 mu = b0 + b1 ∗ moisture + a0 [

10 2 46 26 va r i e t y ] + a1 [ va r i e t y ]∗

11 2 57 44 moisture ;

12 2 42 19 model y i e l d ˜ normal (mu, var=

13 3 69 50 s2 ) ;

14 3 62 40 run ;

15 3 50 23

16 3 76 58 proc export data=postwheat

17 3 48 21 o u t f i l e = ‘ ‘ ’ ’ dbms=csv

18 3 55 30 r ep l a c e ;

19 4 48 22 run ;

20 4 60 40

21 4 45 17 ods g raph i c s o f f ;

22 4 47 21 ods pdf c l o s e ;

23 4 62 44
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24 4 43 13

25 5 65 49

26 5 63 44

27 5 71 57

28 5 68 51

29 5 52 27

30 5 68 52

31 6 76 55

32 6 46 11

33 6 45 11

34 6 67 43

35 6 65 38

36 6 79 60

37 7 35 17

38 7 37 20

39 7 30 11

40 7 30 10

41 7 57 48

42 7 49 36

43 8 75 57

44 8 64 41

45 8 46 15

46 8 54 28

47 8 52 23

48 8 52 23

49 9 51 26

50 9 63 44
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51 9 42 13

52 9 61 40

53 9 67 48

54 9 69 53

55 10 60 37

56 10 73 58

57 10 66 44

58 10 71 53

59 10 67 48

60 10 74 59

END{} ;
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chapter 12

LOGISTIC REGRESSION WITH A BINOMIAL LIKELIHOOD

When the researcher is looking at success/failure data or even count data, a normal likelihood

is not the appropriate choice of distribution to model the data. So it is for this logistic

regression with a binomial likelihood example.

The binomial likelihood models discrete data counting the number of successes in a

sequence of n independent yes/no experiments. Each experiment will yield a success with

probability p. A single experiment, when n = 1, is called a Bernoulli trial. A binomial

distribution consists of n such experiments with success probability p; n is fixed or set and

the parameter of interest is p, the probability of success. As such, p is restricted to be in

the interval 0 ≤ p ≤ 1. The maximum likelihood estimator for p is (number of successes)/n.

However, a Bayesian model will be explained herein.

Recall that the odds for an experiment are found as p
1−p . The log of the odds will be

set equal to the regression line with an intercept and coefficients for each of the covariates,

log

(
p

1− p

)
= β0 + β1x1 + β2x2 + β3x3.

The log of the odds, or a logit transformation, is used because this function keeps things in

their proper domain. The logit transformation allows for values in the regression equation

along the entire real line, but also keeps p in its restricted interval. Thus, p is transformed

from the real line to the interval 0 ≤ p ≤ 1 and the parameter space is preserved. The logit

transformation allows the β’s to be any real number, while preserving the parameter space

of the binomial p.

The data will be modeled with a binomial likelihood and normal priors as shown.

Additionally, the logit transformation links the regression line to the binomial probability p.
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y ∼Binomial(n, p)

logit(p) =β0 + β1x1 + β2x2 + β3x3

β0 ∼Normal(0, 1)

β1 ∼Normal(0, 1)

β2 ∼Normal(0, 1)

β3 ∼Normal(0, 1)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Table 12.1: Arrangement of data is like a three-way ANOVA.

Young Old
Low Normal ECG P1 P2

Catecholamine Abnormal ECG P3 P4

High Normal ECG P5 P6

Catecholamine Abnormal ECG P7 P8

12.1 WinBUGS

The data for this example include eight different groups of patients in an observational study

who are at risk of developing coronary heart disease (CHD) and are shown in the side-by-

side code section below. These patients were stratified into eight groups as determined by

how they exhibited four characteristics, or covariates. There are five columns, one response

column and four covariate columns. The values in the response column of CHD are a count of
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the number of patients who developed coronary heart disease. The covariates are n, the total

number of patients in each group; catecholamine, low=0 or high=1; age group, young=0 or

old=1; and abnormal ECG, no=0 or yes=1. The data may be placed in a table like unto a

three-way ANOVA as shown in table 12.1, indicating that the analysis will look for eight

different binomial probabilities. Indeed, the binomial likelihood appears to be appropriate

because the data set gives the number of patients who developed the disease out of a total

number of patients at risk of possibly developing the disease.

model{
f o r ( i in 1 : 8 ) {
# l i k e l i h o o d −− note that WinBUGS r e qu i r e s p f i r s t f o r dbin ( )
CHD[ i ] ˜ dbin (p [ i ] , nRisk [ i ] ) ;
# l o g i t t rans fo rmat ion to pre s e rve parameter space o f p
l o g i t (p [ i ] ) <− bint + bcat ∗Cat [ i ] + bage∗ agegrp [ i ] + becg∗abECG[ i ] ;
}
# pr i o r s f o r each b e t a i
b int ˜ dnorm (0 , 1 ) ;
bcat ˜ dnorm (0 , 1 ) ;
bage ˜ dnorm (0 , 1 ) ;
becg ˜ dnorm (0 , 1 ) ;
}

Table 12.2: Summary statistics from WinBUGS

mean sd 2.5% 25% 50% 75% 97.5%
bint -2.50 0.19 -2.89 -2.63 -2.50 -2.37 -2.13
bcat 0.58 0.30 -0.02 0.39 0.58 0.79 1.18
bage 0.51 0.26 0.00 0.33 0.51 0.69 1.02
becg 0.30 0.28 -0.25 0.12 0.30 0.48 0.83
p[1] 0.08 0.01 0.05 0.07 0.08 0.09 0.11
p[2] 0.12 0.02 0.08 0.11 0.12 0.14 0.18
p[3] 0.10 0.03 0.06 0.08 0.10 0.12 0.16
p[4] 0.16 0.04 0.09 0.13 0.16 0.18 0.24
p[5] 0.13 0.04 0.07 0.10 0.13 0.16 0.22
p[6] 0.20 0.05 0.12 0.17 0.20 0.23 0.30
p[7] 0.17 0.05 0.10 0.14 0.17 0.20 0.27
p[8] 0.25 0.05 0.17 0.22 0.25 0.28 0.35

deviance 33.74 2.87 30.14 31.62 33.08 35.18 41.03
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Please note that the parameterization of the binomial likelihood in WinBUGS takes

p first and n second. It is crucial that the researcher become aware of the distributional

definitions WinBUGS is programed with along with those SAS is programmed with. Their

parameterizations are not always equivalent and adjustments need to be made when needed.

The summary statistics are shown in table 12.2, giving summaries for the four β

parameters and the eight binomial probabilities, p. Figure 12.1 gives a sample of the

posterior summary plots, showing the posterior distribution of the intercept parameter.

The plots indicate that convergence was reached and that there were no problems with

autocorrelation.

One of the most useful mathematical properties of Bayesian logistic regression is that

the parameters can be unraveled in the output. The βi’s and pi’s are related to each other

and as such, can be calculated from the other

p =
1

1 + e−Xβ
.

The X matrix is the design matrix of zeros and ones that “turns on” each βi value when it

applies to a treatment combination. The following equations give each of the equivalencies

particular to this analysis.
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p1 =
1

1 + e−βint

p2 =
1

1 + e−βint−βage

p3 =
1

1 + e−βint−βecg

p4 =
1

1 + e−βint−βecg−βage

p5 =
1

1 + e−βint−βcat

p6 =
1

1 + e−βint−βcat−βage

p7 =
1

1 + e−βint−βcat−βecg

p8 =
1

1 + e−βint−βcat−βage−βecg

12.2 PROC MCMC

The coding of logistic regression with a binomial likelihood follows the same pattern as

previous models. New to this model is the inclusion of the logistic function as found in line

twenty-two. The likelihood given in line twenty-three gives the binomial parameterization

SAS is programmed for. The MCMC procedure consists of lines thirteen through twenty-

four.

The summary statistics are given in table 12.3 and give summaries for the four β’s

but only one p. The eight p’s can be calculated using the above equations and the results will

be very similar to those given by WinBUGS. Figure 12.2 gives the posterior plots for the

intercept parameter. These plots indicate that convergence was reached, no autocorrelation

problems were encountered and the density of the posterior is drawn.

∗ read in the data f i l e ;
1 data heart ;
2 i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;
3 input CHD nRisk Cat agegrp abECG;
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4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e =” ” ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12
13 proc mcmc data=heart outpost=heartout nmc=500000 th in=50 nbi=10000

monitor=( parms pi ) d i c seed =1234;
∗ s e t parameters and i n i t i a l va lue s ;
14 parms b int 0 ;
15 parms bcat 0 ;
16 parms bage 0 ;
17 parms becg 0 ;
∗ de f i n e p r i o r s ;
18 p r i o r b int ˜ normal (0 , var=1) ;
19 p r i o r bcat ˜ normal (0 , var=1) ;
20 p r i o r bage ˜ normal (0 , var=1) ;
21 p r i o r becg ˜ normal (0 , var=1) ;
∗ l o g i t trans form equat ion ;
22 p i = l o g i s t i c ( b int + bcat ∗CAT + bage∗ agegrp + becg∗abECG) ;
∗ l i k e l i h o o d ;
23 model CHD ˜ binomial (n=nRisk , p=pi ) ;
24 run ;
25
∗ turn o f f g raph i c s dev i c e ;
26 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
27 ods pdf c l o s e ;
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Table 12.3: Summary Statistics for Example 10 from PROC MCMC.
The SAS System 1 3 : 3 0  F r i d a y ,  J u n e  1 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 3 : 3 0  F r i d a y ,  J u n e  1 0 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

b in t 1 0 0 0 0 - 2 .5 0 4 6 0 .1 9 8 3 - 2 .6 3 6 3 - 2 .5 0 0 8 - 2 .3 7 1 8

b c a t 1 0 0 0 0 0 .5 8 8 2 0 .3 0 4 1 0 .3 8 8 4 0 .5 9 1 8 0 .7 9 3 9

b a g e 1 0 0 0 0 0 .5 1 2 5 0 .2 6 8 7 0 .3 3 0 2 0 .5 1 3 0 0 .6 9 2 8

b e c g 1 0 0 0 0 0 .3 0 4 0 0 .2 7 3 4 0 .1 2 3 4 0 .3 0 5 3 0 .4 9 1 4

p i 1 0 0 0 0 0 .2 5 2 5 0 .0 4 5 4 0 .2 2 0 7 0 .2 5 0 7 0 .2 8 2 9

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b in t 0 .0 5 0 - 2 .9 0 8 7 - 2 .1 2 7 0 - 2 .8 9 1 6 - 2 .1 1 3 9

b c a t 0 .0 5 0 - 0 .0 1 1 5 1 .1 7 9 9 - 0 .0 1 1 1 1 .1 7 9 9

b a g e 0 .0 5 0 - 0 .0 0 4 6 3 1 .0 4 2 7 - 0 .0 0 4 9 8 1 .0 4 1 7

b e c g 0 .0 5 0 - 0 .2 4 8 0 0 .8 4 0 4 - 0 .2 5 9 8 0 .8 2 5 8

p i 0 .0 5 0 0 .1 6 9 8 0 .3 4 6 1 0 .1 6 5 2 0 .3 4 0 7

(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 12.1: WinBUGS summary plots for the posterior distribution of the intercept param-
eter.
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Figure 12.2: Summary plots for the posterior distribution of the intercept parameter.
The SAS System 1 3 : 3 0  F r i d a y ,  J u n e  1 0 ,  2 0 1 1 6

The M CM C  P ro cedu re

The SAS System 1 3 : 3 0  F r i d a y ,  J u n e  1 0 ,  2 0 1 1 6

The M CM C  P ro cedu re
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12.3 Side by Side Computer Code

WinBUGS code: SAS code:

model{ data heart ;

f o r ( i in 1 : 8 ) { i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;

CHD[ i ] ˜ dbin (p [ i ] , nRisk [ i ] ) ; input CHD nRisk Cat agegrp

l o g i t (p [ i ] ) <− bint + bcat ∗Cat abECG;

[ i ] + bage∗ agegrp [ i ] + becg∗ run ;

abECG[ i ] ;

} proc p r in t ;

b int ˜ dnorm (0 , 1 ) ; run ;

bcat ˜ dnorm (0 , 1 ) ;

bage ˜ dnorm (0 , 1 ) ; ods pdf

becg ˜ dnorm (0 , 1 ) ; f i l e =” ” ;

} ods g raph i c s on ;

#The data s e t : proc mcmc data=heart outpost=

CHD[ ] nRisk [ ] Cat [ ] agegrp [ ] heartout nmc=500000 th in=50 nbi

abECG [ ] =10000 monitor=( parms pi ) d i c

17 274 0 0 0 seed =1234;

15 122 0 1 0 parms b int 0 ;

7 59 0 0 1 parms bcat 0 ;

5 32 0 1 1 parms bage 0 ;

1 8 1 0 0 parms becg 0 ;

9 39 1 1 0 p r i o r b int ˜ normal (0 , var=1) ;

3 17 1 0 1 p r i o r bcat ˜ normal (0 , var=1) ;
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14 58 1 1 1 p r i o r bage ˜ normal (0 , var=1) ;

END{} ; p r i o r becg ˜ normal (0 , var=1) ;

p i = l o g i s t i c ( b int + bcat ∗CAT

+ bage∗ agegrp + becg∗abECG

) ;

model CHD ˜ binomial (n=nRisk ,

p=pi ) ;

run ;

ods g raph i c s o f f ;

ods pdf c l o s e ;
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chapter 13

LOGISTIC REGRESSION WITH RANDOM EFFECT

When the dependent response variable is a proportion, the traditional approach is to perform

a logit transformation on the data. This approach is appropriate when the data give the

number of successes out of the total number of trials as in a binomial likelihood.

In this setting π, the binomial probability, is modeled as

π =
1

1 + e−Xβ
.

The logit transformation links π and the β parameters with the function

log

(
π

1− π

)
= Xβ.

The covariates will be obtained by using a two-by-two factorial designed cell means model

with a cell for each treatment combination as shown in table 13.1.

The analysis for this example, however, will also deal with replicates in the treatment

combinations and as such is an extension of the mixed model. Two models will be presented

and compared using the Deviance Information Criteria (DIC). The first model will simply

model the binomial probability with the logit transform. The second model will extend this

model to include the added variability of the replicates in each treatment combination.

The extra variability that might exist in this data set may or may not be adequately

modeled with the added variance term. If this were a linear regression model, the σ2 term

typically accounts for the amount of noise in the data. The question in this setting is can this

noise be sufficiently captured in the binomial likelihood or should an error term be added to

the model to account for the added variability explicitly? Calculating the DIC values and

comparing them will answer this question.

The data will be modeled with a binomial likelihood and priors as shown below.

Additionally, the logit transformation links the binomial π with the parameters. The first
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model is

π ∼Binomial(n, p)

logit(p) = Xβ

β ∼Normal(0, 1),

and the second model is

π ∼Binomial(n, p)

logit(p) = Xβ + e

β ∼Normal(0, 1),

e ∼Normal(0, σ2)

σ2 ∼Uniform(0, 1).

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

Table 13.1: A two-by-two factorial cell means model.

Bean Cuc Bean Cuc
a75 π1,1 π1,2 ⇔ a75 π1 π2

a73 π2,1 π2,2 a73 π3 π4

13.1 WinBUGS

The data come from an experiment monitoring germination rates of seed varieties and seed

types with the goal of estimating the proportion of seeds that will germinate in each treat-
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ment combination. It includes an identifier for seed variety, a75 or a73; an identifier for

seed type, bean or cuc; the number of seeds that germinated on a particular plate; and the

number of seeds that were on the plate initially. Since the first two columns were character

value entries and WinBUGS is not able to handle this type of data, a fifth column was added

to the data to identify treatment combination membership of which there are four. Before

reading the data into WinBUGS, these two character columns must be omitted to prevent

errors.

An interesting feature of this data set is that each treatment combination was repli-

cated five or six times for a total of twenty-one observations. When the data set is structured

like this, it is often helpful to draw a table of the experimental design, as is shown in table

13.1, for use as a bookkeeping tool to keep track of treatment combination membership and

linking this correctly with the corresponding probability.

The first model shown in the code is set up to predict the four binomial probabilities,

one for each treatment combination while ignoring the replicates in the data. The second

model takes into account the extra variability of the replicates by adding an error term to the

logit equation and hierarchically placing priors on its variance parameter. Model comparison

via DIC will determine which model sufficiently captures all of the variability here.

#Model 1
model{

f o r ( i in 1 : 21 ) {
# l i k e l i h o o d −− note that WinBUGS r e qu i r e s p f i r s t f o r dbin ( )
r [ i ] ˜ dbin (p [ i ] , n [ i ] ) ;
# l o g i t t rans fo rmat ion to pre s e rve parameter space o f p
l o g i t (p [ i ] ) <− b [ tmt [ i ] ] ;
}
# pr i o r s f o r each b
f o r ( i in 1 : 4 ) {
b [ i ] ˜ dnorm(0 , 1) ;
}
}

#Model 2
model{

f o r ( i in 1 : 21 ) {
# l i k e l i h o o d −− note that WinBUGS r e qu i r e s p f i r s t f o r dbin ( )

149



r [ i ] ˜ dbin (p [ i ] , n [ i ] ) ;
# l o g i t t rans fo rmat ion to pre s e rve parameter space o f p
l o g i t (p [ i ] ) <− b [ tmt [ i ] ] + e [ i ] ;
}
# pr i o r s f o r each b
f o r ( i in 1 : 4 ) {
b [ i ] ˜ dnorm (0 , 1 ) ;
}
# pr i o r s f o r random e r r o r term
f o r ( i in 1 : 21 ) {
e [ i ] ˜ dnorm(0 , prec ) ;
}
# hyperpr io r f o r var i ance and a l s o ad ju s t i ng var iance in terms o f

p r e c i s i o n
s2 ˜ dun i f ( 0 , 1 ) ;
prec <− 1/ s2 ;
}

Please note that the parameterization of the binomial likelihood in WinBUGS takes

p first and n second. It is crucial that the researcher become aware of the distributional

definitions WinBUGS is programmed with along with those SAS is programmed with. Their

parameterizations are not always equivalent and adjustments need to be made as needed.

The evaluation of model fit between the two models compares the two deviance

information criteria values with the lower number indicating the model with the better fit.

The first model gives a DIC value of 115.4 while the second model gives a DIC value of 111.7.

Thus the second model with the term accounting for added variability among the replicates

fits the data more accurately. This demonstrates that mixed models indeed are a powerful

tool in data analysis as a researcher searches for a model that best fits the data.

The summary statistics are shown in table 13.2, giving posterior summaries of the

four β parameters and the twenty-one π parameters from model one. Figure 13.1 gives a

sample of the posterior summary plots, showing the posterior distribution of β1 from model

one. The plots indicate that convergence was reached and that there were no problems with

autocorrelation.
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Table 13.2: Summary statistics from model 1 in WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
b[1] -0.55 0.12 -0.80 -0.64 -0.55 -0.47 -0.30
b[2] 0.80 0.12 0.56 0.71 0.80 0.88 1.05
b[3] -0.40 0.18 -0.76 -0.52 -0.40 -0.28 -0.04
b[4] 0.13 0.17 -0.19 0.01 0.12 0.24 0.45
p[1] 0.37 0.03 0.31 0.35 0.37 0.38 0.42
p[2] 0.37 0.03 0.31 0.35 0.37 0.38 0.42
p[3] 0.37 0.03 0.31 0.35 0.37 0.38 0.42
p[4] 0.37 0.03 0.31 0.35 0.37 0.38 0.42
p[5] 0.37 0.03 0.31 0.35 0.37 0.38 0.42
p[6] 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[7] 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[8] 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[9] 0.69 0.03 0.64 0.67 0.69 0.71 0.74

p[10] 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[11] 0.69 0.03 0.64 0.67 0.69 0.71 0.74
p[12] 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[13] 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[14] 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[15] 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[16] 0.40 0.04 0.32 0.37 0.40 0.43 0.49
p[17] 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[18] 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[19] 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[20] 0.53 0.04 0.45 0.50 0.53 0.56 0.61
p[21] 0.53 0.04 0.45 0.50 0.53 0.56 0.61

deviance 111.52 2.79 108.10 109.40 110.90 112.90 118.40

A useful mathematical property of the logit transform is that, like in logistic regres-

sion, one can convert each of the β’s to estimates of the binomial probabilities πj as

πj =
1

1 + e−βj
.

Thus, β1 gives a binomial probability π1 = 0.3659. Notice that the first five p estimates shown

in table 13.2 are equivalent. The reason for this is that for each treatment combination,

there are five or six replicates in the data but only one probability estimate. Each of the

other three πj estimates can be transformed in like manner.
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 13.1: WinBUGS summary plots for the posterior distribution of β1 from model 1.

13.2 PROC MCMC

As was coded in WinBUGS, two models are presented here for SAS to run. Notice how these

models are very similar to the models for logistic regression. However, before reading in the

data file to SAS, a column with indicator values from 1 to 21 that refer to the observation

numbers was added to the data. This column was needed to include the error term in

the second model. The MCMC procedures begin on lines thirteen and twenty-three. The

second model needed more thinning than the first model to reduce autocorrelation and reach

convergence satisfactorily. Notice that these two models have the logit transform in lines

eighteen and thirty-three with model two adding the error term. Model two also has priors

on this error term and its variance parameter. The likelihood statements are in lines nineteen

and thirty-four.
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∗ read in the data f i l e ;
1 data seeds ;
2 i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;
3 input seed $ type $ r n tmt observ ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12 ∗Model 1 ;
13 proc mcmc data=seeds outpost=seedsout nmc=500000 th in=50 nbi=10000

monitor=(b pi ) d i c seed =1234;
∗ de f i n e ar rays o f l ength 4 ;
14 array b [ 4 ] ;
15 array p i [ 4 ] ;
∗ s e t parameter and i n i t i a l va lue ;
∗ the co lon i n d i c a t e s that the i n i t i a l va lue be app l i ed to a l l array

e n t r i e s ;
16 parms b : 0 ;
∗ de f i n e p r i o r ;
∗ the co lon i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l array

e n t r i e s ;
17 p r i o r b : ˜ normal (0 , var=1) ;
∗ l o g i t t rans fo rmat ion equat ion to pre s e rve parameter space o f p ;
18 p i [ tmt ] = l o g i s t i c (b [ tmt ] ) ;
∗ l i k e l i h o o d ;
19 model r ˜ binomial (n=n , p=pi [ tmt ] ) ;
20 run ;
21
22 ∗Model 2 ;
23 proc mcmc data=seeds outpost=seedsout nmc=5000000 th in=500 nbi

=10000 monitor=(b pi ) d i c seed =1234;
∗ de f i n e ar rays o f l ength 4 and 21 ;
24 array b [ 4 ] ;
25 array p i [ 4 ] ;
26 array e [ 2 1 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon i n d i c a t e s that the i n i t i a l va lue s be app l i ed to a l l array

e n t r i e s ;
27 parms b : 0 ;
28 parms e : 0 ;

153



29 parms s2 . 5 ;
∗ de f i n e p r i o r ;
∗ the co lon i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l array

e n t r i e s ;
30 p r i o r b : ˜ normal (0 , var=1) ;
31 p r i o r e : ˜ normal (0 , var=s2 ) ;
32 p r i o r s2 ˜ uniform (0 , 1) ;
∗ l o g i t t rans fo rmat ion equat ion to pre s e rve parameter space o f p ;
33 p i [ tmt ] = l o g i s t i c (b [ tmt ] + e [ observ ] ) ;
∗ l i k e l i h o o d ;
34 model r ˜ binomial (n=n , p=pi [ tmt ] ) ;
35 run ;
36
∗ turn o f f g raph i c s dev i c e ;
37 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
38 ods pdf c l o s e ;

Table 13.3: Summary Statistics for model 1 from PROC MCMC.
The SAS System 1 0 : 2 0  M o n d a y ,  M a y  9 ,  2 0 1 1 2

The M CM C  P ro cedu re

The SAS System 1 0 : 2 0  M o n d a y ,  M a y  9 ,  2 0 1 1 2

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

b 1 1 0 0 0 0 - 0 .5 5 2 9 0 .1 2 5 6 - 0 .6 3 8 0 - 0 .5 5 3 0 - 0 .4 6 7 1

b 2 1 0 0 0 0 0 .7 9 7 6 0 .1 2 3 8 0 .7 1 4 2 0 .7 9 7 3 0 .8 7 9 4

b 3 1 0 0 0 0 - 0 .4 0 3 6 0 .1 8 1 4 - 0 .5 2 4 7 - 0 .4 0 2 2 - 0 .2 7 9 3

b 4 1 0 0 0 0 0 .1 2 3 4 0 .1 6 6 1 0 .0 1 1 2 0 .1 2 2 6 0 .2 3 2 4

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

b 1 0 .0 5 0 - 0 .7 9 8 9 - 0 .3 0 7 9 - 0 .7 9 4 5 - 0 .3 0 5 5

b 2 0 .0 5 0 0 .5 5 6 1 1 .0 4 5 2 0 .5 4 7 3 1 .0 3 2 4

b 3 0 .0 5 0 - 0 .7 6 3 0 - 0 .0 5 1 0 - 0 .7 7 3 6 - 0 .0 6 3 7

b 4 0 .0 5 0 - 0 .2 0 0 4 0 .4 5 1 9 - 0 .2 0 0 9 0 .4 4 9 7

The summary statistics are given in table 13.3 for model one, showing posterior

summaries of the four β parameters. Figure 13.2 gives the posterior plots for the distribution

of β1 from model one. These plots indicate that convergence was reached, no autocorrelation

problems exist, and the density of the posterior is drawn. The DIC values calculated in SAS

also indicate that model two is the better fitting model for this data.

Even though the summaries do not give the specific πj values, they can be calculated

from the βj values as was discussed in the WinBUGS section. The logit transform of these
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Figure 13.2: Summary plots for the posterior distribution of β1 from model 1.The SAS System 1 0 : 2 0  M o n d a y ,  M a y  9 ,  2 0 1 1 5

The M CM C  P ro cedu re

The SAS System 1 0 : 2 0  M o n d a y ,  M a y  9 ,  2 0 1 1 5

The M CM C  P ro cedu re

SAS values gives very similar πj values as calculated from the WinBUGS’ output, once again

showing that WinBUGS and SAS produce very similar results in the calculation of the pos-

terior distributions of the parameters and demonstrating that the MCMC algorithms indeed

converge in distribution to the desired posterior distribution of the conditional probability

of the parameters given the data.
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13.3 Side by Side Computer Code

WinBUGS code: SAS code:

#Model 1 data seeds ;

model{ i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;

f o r ( i in 1 : 21 ) { input seed $ type $ r n tmt

r [ i ] ˜ dbin (p [ i ] , n [ i ] ) ; observ ;

l o g i t (p [ i ] ) <− b [ tmt [ i ] ] ; run ;

}

f o r ( i in 1 : 4 ) { proc p r in t ;

b [ i ] ˜ dnorm(0 , 1) ; run ;

}

} ods pdf

#Model 2 f i l e = ‘ ‘ ’ ’ ;

model{ ods g raph i c s on ;

f o r ( i in 1 : 21 ) { ∗Model 1 ;

r [ i ] ˜ dbin (p [ i ] , n [ i ] ) ; proc mcmc data=seeds outpost=

l o g i t (p [ i ] ) <− b [ tmt [ i ] ] + e [ i s eedsout nmc=500000 th in=50 nbi

] ; =10000 monitor=(b pi ) d i c seed

} =1234;

f o r ( i in 1 : 4 ) { array b [ 4 ] ;

b [ i ] ˜ dnorm (0 , 1 ) ; array p i [ 4 ] ;

} parms b : 0 ;

f o r ( i in 1 : 21 ) { p r i o r b : ˜ normal (0 , var=1) ;

e [ i ] ˜ dnorm(0 , prec ) ; p i [ tmt ] = l o g i s t i c (b [ tmt ] ) ;

} model r ˜ binomial (n=n , p=pi [
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s2 ˜ dun i f ( 0 , 1 ) ; tmt ] ) ;

prec <− 1/ s2 ; run ;

}

#The data s e t : ∗Model 2 ;

seed [ ] type [ ] r [ ] n [ ] tmt [ ] proc mcmc data=seeds outpost=

a75 bean 10 39 1 seedsout nmc=5000000 th in=500

a75 bean 23 62 1 nbi=10000 monitor=(b pi ) d i c

a75 bean 23 81 1 seed =1234;

a75 bean 26 51 1 array b [ 4 ] ;

a75 bean 17 39 1 array p i [ 4 ] ;

a75 cuc 5 6 2 array e [ 2 1 ] ;

a75 cuc 53 74 2 parms b : 0 ;

a75 cuc 55 72 2 parms e : 0 ;

a75 cuc 32 51 2 parms s2 . 5 ;

a75 cuc 49 79 2 p r i o r b : ˜ normal (0 , var=1) ;

a75 cuc 10 13 2 p r i o r e : ˜ normal (0 , var=s2 ) ;

a73 bean 8 16 3 p r i o r s2 ˜ uniform (0 , 1) ;

a73 bean 10 30 3 p i [ tmt ] = l o g i s t i c (b [ tmt ] + e

a73 bean 8 28 3 [ observ ] ) ;

a73 bean 23 45 3 model r ˜ binomial (n=n , p=pi [

a73 bean 0 4 3 tmt ] ) ;

a73 cuc 3 12 4 run ;

a73 cuc 22 41 4

a73 cuc 15 30 4 ods g raph i c s o f f ;

a73 cuc 32 51 4 ods pdf c l o s e ;

a73 cuc 3 7 4

END{} ;
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chapter 14

POISSON MODEL

When the quantity of interest is the number of occurrences of an event over a given interval,

the Poisson distribution is the distribution of choice to model the probability of these rates.

The number of occurrences is a discrete count and the interval could be measured in time,

distance, area, or volume, among others.

Three such situations where the Poisson distribution is appropriate are the number

of pumps that fail at time t, the number of customers to arrive at a checkout stand at time

t, or the number of bombs that hit in an area a. Figure 14.1 plots the data set for example

12.

The basic Poisson model shown below can be expanded to account for more compli-

cated situations as needed to accommodate the design of the experiment and accompanying

research questions. Five models will be presented in this chapter to demonstrate this flexi-

bility.

yi ∼Poisson(λi)

λi =θλi

θ ∼Gamma(α, β)

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.
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Figure 14.1: Graph of pump failure data.

14.1 WinBUGS

The data come from an experiment monitoring the number of pumps that fail at time t.

The Poisson model is appropriate because the data are counts. Figure 14.1 shows the

relationship between these two variables. Five different models are given below with their

accompanying deviance information criteria (DIC) values displayed in table 14.1 which will

be used to make a decision about model selection.

#Model 1 i s ba s i c Poisson model
model{

# pr i o r f o r theta
theta ˜ dgamma(1 . 5 , 1) ;
f o r ( i in 1 : 10 ) {
# l i k e l i h o o d
f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time
lambda [ i ] <− theta ∗ time [ i ] ;
}
}
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#Model 2 puts a h i e ra r chy on the parameters o f alpha and beta
model{

# pr i o r f o r theta
theta ˜ dgamma( alpha , beta ) ;
f o r ( i in 1 : 10 ) {
# l i k e l i h o o d
f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time
lambda [ i ] <− theta ∗ time [ i ] ;
}
# hyperp r i o r s f o r theta
alpha ˜ dexp ( . 1 ) ;
beta ˜ dgamma(5 , . 5 ) ;
}

#Model 3 a l l ows theta to vary with each i
model{

f o r ( i in 1 : 10 ) {
# pr i o r f o r theta
theta [ i ] ˜ dgamma( alpha , beta ) ;
# l i k e l i h o o d
f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time
lambda [ i ] <− theta [ i ]∗ time [ i ] ;
}
# hyperp r i o r s f o r theta
alpha ˜ dexp ( . 1 ) ;
beta ˜ dgamma(5 , . 5 ) ;
}

#Model 4 adds an e r r o r term as f o r mixed models
model{
f o r ( i in 1 : 10 ) {
# pr i o r f o r theta
theta [ i ] ˜ dgamma( alpha , beta ) ;
# l i k e l i h o o d
f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# l i n k func t i on r e l a t i n g lambda , theta , the cova r i a t e time , and

random e f f e c t
lambda [ i ] <− theta [ i ]∗ time [ i ] + u [ i ] ;
# p r i o r f o r random e f f e c t
u [ i ] ˜ dexp (1) ;
}
# hyperp r i o r s f o r theta
alpha ˜ dexp ( . 1 ) ;
beta ˜ dgamma(5 , . 5 ) ;
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}

#Model 5 keeps the e r r o r term but models one theta
model{

# pr i o r f o r theta
theta ˜ dgamma( alpha , beta ) ;
f o r ( i in 1 : 10 ) {
# l i k e l i h o o d
f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# l i n k func t i on r e l a t i n g lambda , theta , the cova r i a t e time , and

random e f f e c t
lambda [ i ] <− theta ∗ time [ i ] + u [ i ] ;
# p r i o r f o r random e f f e c t
u [ i ] ˜ dexp (1) ;
}
# hyperp r i o r s f o r theta
alpha ˜ dexp ( . 1 ) ;
beta ˜ dgamma(5 , . 5 ) ;
}

Model one is the basic Poisson model. Model two puts hyperpriors on the parameters

of α and β. Model three keeps the hierarchical structure of model two while also allowing

θ to vary with each time t. Model four builds on model three by adding a term to the λ

equation in an effort to account for additional variability that may be present as was done

for mixed models. Model five takes model four and changes θ to one occurrence. As can

be seen in table 14.1, models three and four are the best fitting models because they have

the two lowest DIC values. There is a rather large drop in DIC from models one and two

to models three and four. Although allowing θ to vary with each time t appears to be the

right way to model this parameter, is the extra variability term adding information to the

model?

This answer is a judgement call by the researcher. We would conclude that since

the two models’ DIC values are so close, the slightly better fit from the extra variability

term does not add enough information to balance the fact that this model has an additional

ten error parameters. Thus, model three appears to be the model of choice because it is

simpler than model four. This same conclusion is reached when looking at the DIC values

as calculated by SAS R© 9.2.
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The summary statistics are shown in table 14.2, giving the posterior summaries

for model three. Figure 14.2 gives a sample of the posterior summary plots, showing the

posterior distribution of the α parameter in model 3. The plots indicate that convergence

was reached and that there were no problems with autocorrelation.

Table 14.1: Table of DIC for each model.

Model 1 Model 2 Model 3 Model 4 Model 5
WinBUGS 160.06 160.00 52.96 51.50 63.61

SAS 160.04 159.95 53.08 51.53 63.12

Table 14.2: Summary statistics from model 3 in WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
theta[1] 0.07 0.03 0.03 0.05 0.06 0.08 0.13
theta[2] 0.13 0.09 0.02 0.07 0.12 0.18 0.34
theta[3] 0.10 0.04 0.04 0.07 0.09 0.12 0.19
theta[4] 0.12 0.03 0.07 0.10 0.12 0.14 0.19
theta[5] 0.52 0.25 0.15 0.34 0.48 0.66 1.13
theta[6] 0.59 0.13 0.36 0.49 0.58 0.67 0.87
theta[7] 0.57 0.39 0.08 0.29 0.49 0.76 1.53
theta[8] 0.57 0.39 0.09 0.29 0.48 0.74 1.52
theta[9] 1.01 0.49 0.32 0.66 0.92 1.26 2.19

theta[10] 1.68 0.38 1.02 1.41 1.65 1.92 2.49
alpha 1.62 0.59 0.73 1.20 1.54 1.95 3.02
beta 3.76 1.56 1.49 2.62 3.50 4.60 7.53

deviance 45.31 5.23 37.33 41.47 44.56 48.30 57.61

14.2 PROC MCMC

The same five models are presented in SAS code as was done for WinBUGS above. As can

be seen in table 14.1, DIC dropped significantly from models one and two to models three

and four. Thus models three and four are the better fitting models because they have the

two lowest DIC values. Again, allowing θ to vary with each time t appears to be the right

way to model this parameter, and we will select model three as the model of choice here

because it is the simpler model between models three and four.
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 14.2: WinBUGS summary plots for the posterior distribution of the α parameter in
model 3.

Lines one through four direct SAS to read in the data. However, notice that line

three references an additional column in the data set. It is necessary to add a column to

the data set prior to reading it in to SAS that indicates the observation number in order to

subscript the θi’s and ui’s in models three, four, and five. This column consists of a sequence

from 1 to 10. It is good practice to look over a print out of the data after SAS has read it in,

which is what lines six and seven accomplish. Lines nine, ten, and seventy-six are a useful

tool for a researcher to capture the output in *.pdf format, but are not necessary to run the

analysis.

Lines eleven and seventy-five initialize and close the graphics windows where the plots

are sent. Model one is coded in lines thirteen through eighteen; model two is coded in lines

twenty-one through thirty; model three is coded in lines thirty-three through forty-three;

model four is coded in lines forty-six through fifty-nine; model five is coded in lines sixty-two
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through seventy-four. The first line in each model where PROC MCMC is initialized and

various options are called, increase the number of MCMC iterations, thinning, and number

of burn-in iterations from models two to three and again from models three to four. This

increase has the affect of decreasing autocorrelation and aids in the reaching of convergence.

Notice that all five models have the same likelihood statement found in lines sev-

enteen, twenty-nine, forty-two, fifty-eight, and seventy-three. Models three, four, and five

need arrays to hold the ten θi’s and/or the ten ui’s, and consequently, the parms and prior

statements for these variables in these models include the use of a colon to indicate that the

respective values be applied to each entry in the array. The indicator column in the data

set is referenced in models three, four and five to correctly subscript θi and/or ui as can be

seen in lines forty-one, fifty-seven, and seventy-two.

As a word of caution to the researcher, it is imperative that one become familiar

with the distributional parameterizations in both WinBUGS and SAS R© 9.2. The reference

manuals for both programs are invaluable in this regard. These two programs do not define

the distributions exactly the same way. If the researcher is unaware of the definitions,

problems may arise from carelessness.

∗ read in the data f i l e ;
1 data pumps ;
2 i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;
∗ c r e a t e i nd i c a t o r column f o r data f i l e ;
3 input time f a i l ind ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12
∗ Model 1 ;
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13 proc mcmc data=pumps outpost=pumpsout nmc=10000 th in=1 nbi=1000
monitor=( parms ) d i c seed =1234;

∗ s e t parameter and i n i t i a l va lue ;
14 parms theta 1 . 5 ;
∗ de f i n e p r i o r ;
15 p r i o r theta ˜ gamma( 1 . 5 , i s c a l e =1) ;
∗ l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time ;
16 lambda = theta ∗ time ;
∗ l i k e l i h o o d ;
17 model f a i l ˜ po i s son ( lambda ) ;
18 run ;
19
20
∗Model 2 ;
21 proc mcmc data=pumps outpost=pumpsout nmc=10000 th in=1 nbi=1000

monitor=( parms ) d i c seed =1234;
∗ s e t parameters and i n i t i a l va lue s ;
22 parms theta 1 . 5 ;
23 parms alpha 1 ;
24 parms beta 1 . 5 ;
∗ de f i n e p r i o r s ;
25 p r i o r theta ˜ gamma( alpha , i s c a l e=beta ) ;
26 p r i o r alpha ˜ expon ( i s c a l e =.1) ;
27 p r i o r beta ˜ gamma(5 , i s c a l e =.5) ;
∗ l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time ;
28 lambda = theta ∗ time ;
∗ l i k e l i h o o d ;
29 model f a i l ˜ po i s son ( lambda ) ;
30 run ;
31
32
∗Model 3 ;
33 proc mcmc data=pumps outpost=pumpsout nmc=500000 th in=50 nbi=10000

monitor=( parms ) d i c seed =1234;
∗ de f i n e array o f l ength 4 ;
34 array theta [ 1 0 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on theta i n d i c a t e s that the i n i t i a l va lue be app l i ed to a l l

array e n t r i e s ;
35 parms theta : 1 . 5 ;
36 parms alpha 2 ;
37 parms beta 5 ;
∗ de f i n e p r i o r s ;
∗ the co lon on theta i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l

array e n t r i e s ;
38 p r i o r theta : ˜ gamma( alpha , i s c a l e=beta ) ;
39 p r i o r alpha ˜ expon ( i s c a l e =.1) ;
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40 p r i o r beta ˜ gamma(5 , i s c a l e =.5) ;
∗ l i n k func t i on r e l a t i n g lambda , theta , and the cova r i a t e time ;
41 lambda = theta [ ind ]∗ time ;
∗ l i k e l i h o o d ;
42 model f a i l ˜ po i s son ( lambda ) ;
43 run ;
44
45
∗Model 4 ;
46 proc mcmc data=pumps outpost=pumpsout nmc=1000000 th in=100 nbi=10000

monitor=(theta alpha beta u lambda ) d i c seed =1234;
∗ de f i n e ar rays f o r theta and random e f f e c t ;
47 array theta [ 1 0 ] ;
48 array u [ 1 0 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on theta and u i nd i c a t e that the i n i t i a l va lue be app l i ed

to a l l array e n t r i e s ;
49 parms theta : 1 . 5 ;
50 parms u : 0 ;
51 parms alpha 2 ;
52 parms beta 5 ;
∗ de f i n e p r i o r s ;
∗ the co lon on theta and u i nd i c a t e that the d i s t r i b u t i o n be app l i ed to

a l l array e n t r i e s ;
53 p r i o r theta : ˜ gamma( alpha , i s c a l e=beta ) ;
54 p r i o r alpha ˜ expon ( i s c a l e =.1) ;
55 p r i o r beta ˜ gamma(5 , i s c a l e =.5) ;
56 p r i o r u : ˜ expon ( i s c a l e =1) ;
∗ l i n k func t i on r e l a t i n g lambda , theta , the random e f f e c t and the

cova r i a t e time ;
57 lambda = theta [ ind ]∗ time + u [ ind ] ;
∗ l i k e l i h o o d ;
58 model f a i l ˜ po i s son ( lambda ) ;
59 run ;
60
61
∗Model 5 ;
62 proc mcmc data=pumps outpost=pumpsout nmc=1000000 th in=100 nbi=10000

monitor=(theta alpha beta u lambda ) d i c seed =1234;
∗ de f i n e array f o r random e f f e c t ;
63 array u [ 1 0 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon on u i n d i c a t e s that the i n i t i a l va lue be app l i ed to a l l

array e n t r i e s ;
64 parms theta 1 . 5 ;
65 parms u : 0 ;
66 parms alpha 2 ;

167



67 parms beta 5 ;
∗ de f i n e p r i o r s ;
∗ the co lon on u i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l

array e n t r i e s ;
68 p r i o r theta ˜ gamma( alpha , i s c a l e=beta ) ;
69 p r i o r alpha ˜ expon ( i s c a l e =.1) ;
70 p r i o r beta ˜ gamma(5 , i s c a l e =.5) ;
71 p r i o r u : ˜ expon ( i s c a l e =1) ;
∗ l i n k func t i on r e l a t i n g lambda , theta , the random e f f e c t and the

cova r i a t e time ;
72 lambda = theta ∗ time + u [ ind ] ;
∗ l i k e l i h o o d ;
73 model f a i l ˜ po i s son ( lambda ) ;
74 run ;
∗ turn o f f g raph i c s dev i c e ;
75 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
76 ods pdf c l o s e ;

Table 14.3: Summary Statistics of Model 3 from PROC MCMC.
The SAS System 1 3 : 4 9  F r i d a y ,  M a y  6 ,  2 0 1 1 1 3

The M CM C  P ro cedu re

The SAS System 1 3 : 4 9  F r i d a y ,  M a y  6 ,  2 0 1 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

th e ta 1 1 0 0 0 0 0 .0 6 7 4 0 .0 2 6 8 0 .0 4 7 8 0 .0 6 4 0 0 .0 8 2 9

t h e ta 2 1 0 0 0 0 0 .1 3 4 6 0 .0 8 5 1 0 .0 7 1 2 0 .1 1 7 8 0 .1 8 1 4

t h e ta 3 1 0 0 0 0 0 .0 9 8 0 0 .0 3 9 1 0 .0 6 9 6 0 .0 9 2 5 0 .1 2 1 2

t h e ta 4 1 0 0 0 0 0 .1 2 0 9 0 .0 3 1 4 0 .0 9 8 7 0 .1 1 8 2 0 .1 4 0 7

t h e ta 5 1 0 0 0 0 0 .5 1 8 8 0 .2 4 9 4 0 .3 3 7 4 0 .4 7 8 3 0 .6 5 5 4

t h e ta 6 1 0 0 0 0 0 .5 8 5 1 0 .1 2 9 1 0 .4 9 3 2 0 .5 7 4 4 0 .6 6 7 7

t h e ta 7 1 0 0 0 0 0 .5 5 8 3 0 .3 8 0 0 0 .2 9 1 5 0 .4 7 8 9 0 .7 3 0 4

t h e ta 8 1 0 0 0 0 0 .5 7 1 4 0 .3 8 9 4 0 .2 9 2 6 0 .4 8 2 3 0 .7 5 5 5

t h e ta 9 1 0 0 0 0 0 .9 9 4 0 0 .4 8 1 4 0 .6 5 8 7 0 .9 0 3 1 1 .2 3 1 5

t h e ta 1 0 1 0 0 0 0 1 .6 6 4 4 0 .3 7 5 8 1 .3 9 5 6 1 .6 3 2 3 1 .8 9 7 6

a lp h a 1 0 0 0 0 1 .6 2 7 3 0 .5 8 1 7 1 .2 1 2 2 1 .5 5 0 1 1 .9 6 5 7

b e ta 1 0 0 0 0 3 .8 2 0 4 1 .5 6 1 7 2 .6 8 6 7 3 .5 7 6 4 4 .6 7 0 6

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

t h e ta 1 0 .0 5 0 0 .0 2 5 9 0 .1 2 8 7 0 .0 1 9 4 0 .1 1 8 7

t h e ta 2 0 .0 5 0 0 .0 1 9 5 0 .3 4 3 0 0 .0 0 6 6 2 0 .3 0 0 4

t h e ta 3 0 .0 5 0 0 .0 3 6 9 0 .1 8 8 9 0 .0 3 1 6 0 .1 7 8 8

t h e ta 4 0 .0 5 0 0 .0 6 6 9 0 .1 8 9 3 0 .0 6 3 8 0 .1 8 4 1

t h e ta 5 0 .0 5 0 0 .1 5 2 1 1 .1 2 2 7 0 .1 0 6 0 1 .0 0 9 8

t h e ta 6 0 .0 5 0 0 .3 6 0 1 0 .8 6 7 0 0 .3 4 8 8 0 .8 4 1 0

t h e ta 7 0 .0 5 0 0 .0 8 4 4 1 .5 1 2 2 0 .0 1 4 9 1 .2 7 0 6

t h e ta 8 0 .0 5 0 0 .0 8 8 7 1 .5 4 0 9 0 .0 2 6 8 1 .3 1 6 1

t h e ta 9 0 .0 5 0 0 .3 2 1 5 2 .1 9 2 0 0 .1 9 9 9 1 .9 3 8 9

t h e ta 1 0 0 .0 5 0 1 .0 2 2 1 2 .4 9 2 9 0 .9 5 5 6 2 .4 0 9 8

a lp h a 0 .0 5 0 0 .7 2 3 4 2 .9 8 6 9 0 .6 3 1 8 2 .7 7 2 6

b e ta 0 .0 5 0 1 .5 2 2 7 7 .5 5 8 5 1 .2 4 8 8 6 .9 9 3 5
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Figure 14.3: Summary plots for the posterior distribution of the α parameter from model 3.The SAS System 1 3 : 4 9  F r i d a y ,  M a y  6 ,  2 0 1 1 2 2

The M CM C  P ro cedu re

The summary statistics are given in table 14.3, showing posterior summaries from

model three. Figure 14.3 gives the posterior plots for the distribution of the α parameter

from model three. These plots indicate that convergence was reached, no autocorrelation

problems exist and the density of the posterior is drawn.
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14.3 Side by Side Computer Code

WinBUGS Code: SAS Code:

#Model 1 data pumps ;

model{ i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;

theta ˜ dgamma(1 . 5 , 1) ; input time f a i l ind ;

f o r ( i in 1 : 10 ) { run ;

f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ;

lambda [ i ] <− theta ∗ time [ i ] ; proc p r i n t ;

} run ;

}

ods pdf

#Model 2 puts a h i e ra r chy on the f i l e = ‘ ‘ ’ ’ ;

parameters o f alpha and beta ods g raph i c s on ;

model{ ∗ Model 1 ;

theta ˜ dgamma( alpha , beta ) ; proc mcmc data=pumps outpost=

f o r ( i in 1 : 10 ) { pumpsout nmc=10000 th in=1 nbi

f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ; =1000 monitor=( parms ) d i c

lambda [ i ] <− theta ∗ time [ i ] ; seed =1234;

} parms theta 1 . 5 ;

alpha ˜ dexp ( . 1 ) ; p r i o r theta ˜ gamma(1 . 5 ,

beta ˜ dgamma(5 , . 5 ) ; i s c a l e =1) ;

} lambda = theta ∗ time ;

model f a i l ˜ po i s son ( lambda ) ;

#Model 3 a l l ows theta to vary run ;

with each i ∗Model 2 ;
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model{ proc mcmc data=pumps outpost=

f o r ( i in 1 : 10 ) { pumpsout nmc=10000 th in=1 nbi

theta [ i ] ˜ dgamma( alpha , beta ) =1000 monitor=( parms ) d i c

; seed =1234;

f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ; parms theta 1 . 5 ;

lambda [ i ] <− theta [ i ]∗ time [ i ] ; parms alpha 1 ;

} parms beta 1 . 5 ;

alpha ˜ dexp ( . 1 ) ; p r i o r theta ˜ gamma( alpha ,

beta ˜ dgamma(5 , . 5 ) ; i s c a l e=beta ) ;

} p r i o r alpha ˜ expon ( i s c a l e

=.1) ;

#Model 4 adds an e r r o r term as p r i o r beta ˜ gamma(5 , i s c a l e

f o r mixed models =.5) ;

model{ lambda = theta ∗ time ;

f o r ( i in 1 : 10 ) { model f a i l ˜ po i s son ( lambda ) ;

theta [ i ] ˜ dgamma( alpha , run ;

beta ) ; ∗Model 3 ;

f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ; proc mcmc data=pumps outpost=

lambda [ i ] <− theta [ i ]∗ time [ pumpsout nmc=500000 th in=50 nbi

i ] + u [ i ] ; =10000 monitor=( parms ) d i c

u [ i ] ˜ dexp (1) ; seed =1234;

} array theta [ 1 0 ] ;

alpha ˜ dexp ( . 1 ) ; parms theta : 1 . 5 ;

beta ˜ dgamma(5 , . 5 ) ; parms alpha 2 ;

} parms beta 5 ;

p r i o r theta : ˜ gamma( alpha ,

#Model 5 keeps the e r r o r term but i s c a l e=beta ) ;

171



models one theta p r i o r alpha ˜ expon ( i s c a l e

model{ =.1) ;

theta ˜ dgamma( alpha , beta ) ; p r i o r beta ˜ gamma(5 , i s c a l e

f o r ( i in 1 : 10 ) { =.5) ;

f a i l [ i ] ˜ dpo i s ( lambda [ i ] ) ; lambda = theta [ ind ]∗ time ;

lambda [ i ] <− theta ∗ time [ i ] + u model f a i l ˜ po i s son ( lambda ) ;

[ i ] ; run ;

u [ i ] ˜ dexp (1) ; ∗Model 4 ;

} proc mcmc data=pumps outpost=

alpha ˜ dexp ( . 1 ) ; pumpsout nmc=1000000 th in=100

beta ˜ dgamma(5 , . 5 ) ; nbi=10000 monitor=(theta alpha

} beta u lambda ) d i c seed =1234;

array theta [ 1 0 ] ;

#The data s e t : array u [ 1 0 ] ;

time [ ] f a i l [ ] parms theta : 1 . 5 ;

94 .5 5 parms u : 0 ;

15 .7 1 parms alpha 2 ;

62 .9 5 parms beta 5 ;

126 14 p r i o r theta : ˜ gamma( alpha ,

5 .24 3 i s c a l e=beta ) ;

31 .4 19 p r i o r alpha ˜ expon ( i s c a l e

1 .05 1 =.1) ;

1 .05 1 p r i o r beta ˜ gamma(5 , i s c a l e

2 . 1 4 =.5) ;

10 .5 22 p r i o r u : ˜ expon ( i s c a l e =1) ;

END{} ; lambda = theta [ ind ]∗ time + u [

ind ] ;
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model f a i l ˜ po i s son ( lambda ) ;

run ;

∗Model 5 ;

proc mcmc data=pumps outpost=

pumpsout nmc=1000000 th in=100

nbi=10000 monitor=(theta alpha

beta u lambda ) d i c seed =1234;

array u [ 1 0 ] ;

parms theta 1 . 5 ;

parms u : 0 ;

parms alpha 2 ;

parms beta 5 ;

p r i o r theta ˜ gamma( alpha ,

i s c a l e=beta ) ;

p r i o r alpha ˜ expon ( i s c a l e

=.1) ;

p r i o r beta ˜ gamma(5 , i s c a l e

=.5) ;

p r i o r u : ˜ expon ( i s c a l e =1) ;

lambda = theta ∗ time + u [ ind ] ;

model f a i l ˜ po i s son ( lambda ) ;

run ;

ods g raph i c s o f f ;

ods pdf c l o s e ;
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chapter 15

POISSON REGRESSION

There are some settings when the response variable is a count and the researcher is interested

in how this count changes as the explanatory variable increases. One such setting is in

pharmaceutical studies of how the response variable changes as the dose is increased. The

tool for analyzing this situation is Poisson Regression.

The likelihood for the data is Poisson and the mean outcome, the λ, is considered log-

linear in the coefficients. It is typical to transform the response and explanatory variable(s)

to the log-scale because this transformation allows the model to work along the real line,

while keeping the outcome in its correct space. The log of the mean will be modeled and

then exponentiated for interpretability of the results,

Y ∼Poisson(λ)

log(λ) =Xβ

λ =eXβ.

The analysis here is designed to model how the outcome changes as the explanatory vari-

able(s) increase. The graph of the data shown in figure 15.1 shows how the log-response

relates to the log-dose for this example’s data.

The setting here consists of counting the number of colonies that grow on a particular

plate that has been exposed to a specific treatment dose. Since the response variable consists

of counts, it is reasonable to model these with a Poisson likelihood. The mean response, λ,

will undergo a log-linear transformation and the β’s will be given priors.

An interesting feature of this particular data set, however, is the fact that there

are replicates for each of the six doses. The inclusion of these replicates comes from the

researcher thoughtfully designing the experiment so that the variability due to measurement
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Figure 15.1: Graph of the data on the log scale.

error could be accounted for in the analysis. As such, two models will be presented in the

following code, the first model will include a term to model this additional variability and

the second model will not. The deviance information criteria, DIC, values will be compared

to determine if the Poisson likelihood can model all of the variability here on its own, or if

the extra variability term adds to the analysis and improves how the model fits the data.

To answer the question of whether or not the number of colonies that grow on a plate

is related to dose amount, the following models will be used to analyze the data. The first
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model is

yij ∼Poisson(λi)

log(λi) =β0 + β1 log(x+ 10) + β2x+ ui

β0 ∼Normal(0, 1)

β1 ∼Normal(0, 1)

β2 ∼Normal(0, 1)

ui ∼Normal(0, σ2)

σ2 ∼Uniform(0, 2),

and the second model is

yij ∼Poisson(λi)

log(λi) =β0 + β1 log(x+ 10) + β2x

β0 ∼Normal(0, 1)

β1 ∼Normal(0, 1)

β2 ∼Normal(0, 1).

The regression coefficients are the β’s. The variable x represents the changing dose level; its

initial value starts at zero for the control group and then increases. Notice that in log(λi)’s

second term, 10 is added to x inside the log function. This is done mainly because log(0)

is undefined. In an effort to accommodate this limitation of the log function, it is standard

practice in this type of pharmaceutical setting to add to x the difference in dose between

the control group and the first dose here in this term of the model. The DIC values for each

model will be compared to determine which one fits the data better.

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the
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functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

15.1 WinBUGS

The data come from an experiment where different doses of a treatment were applied to

plates and the number of colonies that grew as a result were recorded. The question of

interest is the relationship between dose amount and number of colonies that grow on a

plate. Six different dose amounts (0, 10, 33, 100, 333, and 1000) were chosen and each dose

amount was replicated on three plates resulting in eighteen observations. Figure 15.1 shows

how the log-response relates to the log-dose in this data set.

Two models are presented in an effort to determine if the Poisson likelihood is able to

model all of the variability, or if a term is needed to model the variability from the repeated

measurements. The first model includes this random effects term with corresponding prior

distribution while the second model leaves these out. Both sets of code begin with a dummy

variable for plate because WinBUGS requires that all columns in the data set be referenced

and this column is not necessary to run the code.

# Model with random e f f e c t :
model{

# dummy va r i ab l e to use a l l columns o f data s e t
dummy1 <− p l a t e [ 1 ] ;
f o r ( i in 1 : 18 ) {
# l i k e l i h o o d
c o l o n i e s [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# log t rans fo rmat ion o f mean i s l i n e a r in the c o e f f i c i e n t s
l og ( lambda [ i ] ) <− a + b∗ l og ( dose [ i ] + 10) + c∗dose [ i ] + u [ i ] ;
# the random e f f e c t p r i o r
u [ i ] ˜ dnorm(0 , precd ) ;
}
# pr i o r s f o r the beta c o e f f i c i e n t s
a ˜ dnorm(0 , 1) ;
b ˜ dnorm(0 , 1) ;
c ˜ dnorm(0 , 1) ;
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# hyper p r i o r f o r u ’ s var i ance and ad ju s t i ng i t in terms o f
p r e c i s i o n

s2d ˜ dun i f (0 , 2) ;
precd <− 1/ s2d ;
}

# Model without random e f f e c t :
model{

# dummy va r i ab l e to use a l l columns o f data s e t
dummy1 <− p l a t e [ 1 ] ;
f o r ( i in 1 : 18 ) {
# l i k e l i h o o d
c o l o n i e s [ i ] ˜ dpo i s ( lambda [ i ] ) ;
# log t rans fo rmat ion o f mean i s l i n e a r in the c o e f f i c i e n t s
l og ( lambda [ i ] ) <− a + b∗ l og ( dose [ i ] + 10) + c∗dose [ i ] ;
}
# pr i o r s f o r the beta c o e f f i c i e n t s
a ˜ dnorm(0 , 1) ;
b ˜ dnorm(0 , 1) ;
c ˜ dnorm(0 , 1) ;
}

Deviance information criteria (DIC) values were calculated from both models and can

be used to determine which model fits the data better. Since the lower DIC indicates better

fit and model one’s DIC of 124.211 is lower than model two’s of 152.814, we conclude that

the added term to model the extra variability should be included in the analysis. Therefore,

model one is the model of choice for this data set.

The summary statistics are shown in table 15.1, giving the posterior summaries

for model one. Figure 15.2 gives a sample of the posterior summary plots, showing the

posterior distribution of the intercept from model one. The plots indicate that convergence

was reached and that there were no problems with autocorrelation.

15.2 PROC MCMC

The same two models are presented in SAS code as was done for WinBUGS above. Lines

one through four direct SAS to read in the data, and the use of lines six through seven invoke

the good practice of looking over a print out of the data after SAS has read it in to verify
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Table 15.1: Summary statistics of the first model from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
a 1.81 0.40 0.98 1.56 1.82 2.08 2.56
b 0.41 0.11 0.20 0.33 0.40 0.48 0.63
c -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00

s2d 0.13 0.08 0.04 0.08 0.11 0.16 0.33
u[1] -0.04 0.23 -0.51 -0.19 -0.04 0.11 0.42
u[2] 0.20 0.23 -0.24 0.04 0.19 0.35 0.66
u[3] 0.45 0.23 0.03 0.29 0.44 0.60 0.93
u[4] -0.17 0.21 -0.61 -0.30 -0.16 -0.02 0.24
u[5] -0.10 0.21 -0.51 -0.23 -0.09 0.04 0.31
u[6] 0.01 0.21 -0.40 -0.13 0.01 0.14 0.42
u[7] -0.36 0.21 -0.80 -0.50 -0.35 -0.22 0.04
u[8] -0.04 0.19 -0.42 -0.17 -0.04 0.08 0.34
u[9] 0.14 0.18 -0.21 0.02 0.14 0.26 0.51

u[10] -0.23 0.20 -0.65 -0.36 -0.22 -0.10 0.14
u[11] 0.09 0.18 -0.28 -0.03 0.09 0.21 0.45
u[12] 0.55 0.17 0.21 0.43 0.55 0.66 0.89
u[13] -0.21 0.20 -0.62 -0.34 -0.20 -0.07 0.16
u[14] -0.10 0.19 -0.49 -0.23 -0.10 0.03 0.26
u[15] -0.04 0.19 -0.42 -0.16 -0.04 0.09 0.33
u[16] -0.23 0.26 -0.75 -0.39 -0.23 -0.07 0.26
u[17] -0.02 0.25 -0.51 -0.18 -0.03 0.13 0.46
u[18] 0.33 0.25 -0.12 0.17 0.32 0.49 0.84

deviance 109.92 5.72 100.60 105.80 109.30 113.40 122.70

this was as expected. Lines nine, ten and thirty-eight are a useful tool for a researcher to

capture the output in *.pdf format, but are not necessary to run the analysis.

Lines eleven and thirty-seven initialize and close the graphics windows where the

plots are sent. Model one is coded in lines thirteen through twenty-five and model two is

coded in lines twenty-eight through thirty-six. Notice the large number of MCMC iterations,

thinning, and number of burn-in iterations that are called for in lines thirteen and twenty-

eight. These values were increased in an effort to reduce autocorrelation and aid in the

reaching of convergence. However, the posterior plots indicate some autocorrelation still

exists as can be seen in figure 15.3; the researcher should be mindful of this characteristic

when working with the output.
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(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 15.2: WinBUGS summary plots for the posterior distribution of the intercept from
the first model.

The likelihood statements are given in lines twenty-four and thirty-five. The array

statement in lines fourteen through sixteen and lines twenty-nine through thirty initialize

arrays of length eighteen where SAS will keep track of values as the analysis progresses.

When the parms and prior statements refer to arrays, a colon is included to indicate that

the initial values and prior distributions need to be applied to all entries in the array.

∗ read in the data f i l e ;
1 data dose ;
2 i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;
3 input dose p l a t e c o l o n i e s ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
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9 ods pdf
10 f i l e = ‘ ‘ ’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12
∗ Model with random e f f e c t ;
13 proc mcmc data=dose outpost=doseout nmc=50000000 th in=5000 nbi

=100000 monitor=(a b c s2 u) d i c seed =1234;
∗ de f i n e ar rays f o r random e f f e c t , loglambda , and lambda ;
14 array u [ 1 8 ] ;
15 array llambda [ 1 8 ] ;
16 array lambda [ 1 8 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon i n d i c a t e s that the i n i t i a l va lue should be app l i ed to a l l

array e n t r i e s ;
17 parms u : 0 ;
18 parms a 0 b 0 c 0 s2 1 ;
∗ de f i n e p r i o r s ;
∗ the co lon i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l array

e n t r i e s ;
19 p r i o r u : ˜ normal (0 , var=s2 ) ;
20 p r i o r a b c ˜ normal (0 , var=1) ;
21 p r i o r s2 ˜ uniform (0 , 2) ;
∗ l og trans form o f the mean i s l i n e a r in the c o e f f i c i e n t s ;
22 llambda [ p l a t e ] = a + b∗ l og ( dose + 10) + c∗dose + u [ p l a t e ] ;
∗ exponent ia t ing w i l l back trans form to g ive the mean ;
23 lambda [ p l a t e ] = exp ( llambda [ p l a t e ] ) ;
∗ l i k e l i h o o d ;
24 model c o l o n i e s ˜ po i s son ( lambda [ p l a t e ] ) ;
25 run ;
26
27 ∗ Model without random e f f e c t ;
28 proc mcmc data=dose outpost=doseout nmc=50000000 th in=5000 nbi

=100000 monitor=(a b c ) d i c seed =1234;
∗ de f i n e ar rays f o r loglambda and lambda ;
29 array llambda [ 1 8 ] ;
30 array lambda [ 1 8 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
31 parms a 0 b 0 c 0 ;
d e f i n e p r i o r s ;
32 p r i o r a b c ˜ normal (0 , var=1) ;
∗ l og trans form o f the mean i s l i n e a r in the c o e f f i c i e i n t s ;
33 llambda [ p l a t e ] = a + b∗ l og ( dose + 10) + c∗dose ;
∗ exponent ia t ing w i l l back trans form to g ive the mean ;
34 lambda [ p l a t e ] = exp ( llambda [ p l a t e ] ) ;
∗ l i k e l i h o o d ;
35 model c o l o n i e s ˜ po i s son ( lambda [ p l a t e ] ) ;
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36 run ;
∗ turn o f f g raph i c s dev i c e ;
37 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
38 ods pdf c l o s e ;

Table 15.2: Summary Statistics of the first model in Example 13 from PROC MCMC.
The SAS System 1 5 : 3 8  T u e s d a y ,  M a y  1 0 ,  2 0 1 1 4

The M CM C  P ro cedu re

The SAS System 1 5 : 3 8  T u e s d a y ,  M a y  1 0 ,  2 0 1 1 4

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0 % 7 5 %

a 1 0 0 0 0 1 .7 7 5 4 0 .4 3 6 6 1 .5 0 2 0 1 .7 9 2 7 2 .0 6 9 3

b 1 0 0 0 0 0 .4 1 7 7 0 .1 1 9 1 0 .3 3 7 2 0 .4 1 2 9 0 .4 9 1 9

c 1 0 0 0 0 - 0 .0 0 1 3 6 0 .0 0 0 5 3 9 - 0 .0 0 1 6 9 - 0 .0 0 1 3 3 - 0 .0 0 1 0 0

s 2 1 0 0 0 0 0 .1 3 2 9 0 .0 8 1 3 0 .0 8 0 0 0 .1 1 3 4 0 .1 6 1 4

u 1 1 0 0 0 0 - 0 .0 2 7 9 0 .2 4 2 0 - 0 .1 8 6 9 - 0 .0 2 7 9 0 .1 2 3 3

u 2 1 0 0 0 0 0 .2 0 0 4 0 .2 3 9 8 0 .0 4 1 8 0 .1 9 2 5 0 .3 4 8 9

u 3 1 0 0 0 0 0 .4 6 2 4 0 .2 4 1 4 0 .2 9 9 2 0 .4 4 7 8 0 .6 1 6 9

u 4 1 0 0 0 0 - 0 .1 6 3 1 0 .2 1 7 5 - 0 .3 0 2 6 - 0 .1 5 7 9 - 0 .0 2 0 4

u 5 1 0 0 0 0 - 0 .0 8 9 1 0 .2 1 2 7 - 0 .2 3 0 1 - 0 .0 8 7 3 0 .0 5 2 9

u 6 1 0 0 0 0 0 .0 0 8 3 8 0 .2 0 9 4 - 0 .1 2 6 9 0 .0 0 5 8 1 0 .1 4 6 5

u 7 1 0 0 0 0 - 0 .3 6 3 2 0 .2 1 5 3 - 0 .4 9 9 6 - 0 .3 5 4 8 - 0 .2 1 5 8

u 8 1 0 0 0 0 - 0 .0 3 9 8 0 .1 9 2 5 - 0 .1 6 5 0 - 0 .0 3 8 2 0 .0 8 6 3

u 9 1 0 0 0 0 0 .1 4 1 7 0 .1 8 3 3 0 .0 2 0 8 0 .1 3 9 6 0 .2 6 1 6

u 1 0 1 0 0 0 0 - 0 .2 4 2 5 0 .2 0 2 5 - 0 .3 7 0 8 - 0 .2 3 3 9 - 0 .1 0 6 4

u 1 1 1 0 0 0 0 0 .0 8 2 3 0 .1 8 5 8 - 0 .0 3 8 4 0 .0 8 0 9 0 .2 0 5 6

u 1 2 1 0 0 0 0 0 .5 4 3 3 0 .1 7 5 5 0 .4 2 5 8 0 .5 3 8 4 0 .6 5 9 1

u 1 3 1 0 0 0 0 - 0 .2 1 7 9 0 .2 0 4 5 - 0 .3 4 3 9 - 0 .2 0 9 8 - 0 .0 7 8 9

u 1 4 1 0 0 0 0 - 0 .1 1 0 1 0 .1 9 6 0 - 0 .2 3 6 4 - 0 .1 0 5 2 0 .0 2 2 5

u 1 5 1 0 0 0 0 - 0 .0 4 9 9 0 .1 9 3 4 - 0 .1 7 3 6 - 0 .0 4 3 7 0 .0 7 9 5

u 1 6 1 0 0 0 0 - 0 .2 2 3 6 0 .2 5 2 5 - 0 .3 8 1 1 - 0 .2 1 4 5 - 0 .0 6 0 6

u 1 7 1 0 0 0 0 - 0 .0 1 6 6 0 .2 4 5 6 - 0 .1 7 3 9 - 0 .0 2 0 5 0 .1 4 1 7

u 1 8 1 0 0 0 0 0 .3 3 7 7 0 .2 4 6 4 0 .1 7 3 5 0 .3 2 8 9 0 .4 9 1 8

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

a 0 .0 5 0 0 .8 4 6 6 2 .5 8 5 3 0 .8 9 5 1 2 .6 1 3 4

b 0 .0 5 0 0 .1 9 5 2 0 .6 6 7 2 0 .1 9 4 4 0 .6 6 3 6

c 0 .0 5 0 - 0 .0 0 2 4 8 - 0 .0 0 0 3 6 - 0 .0 0 2 4 4 - 0 .0 0 0 3 4

s 2 0 .0 5 0 0 .0 3 9 7 0 .3 4 2 4 0 .0 2 5 4 0 .2 8 9 4

u 1 0 .0 5 0 - 0 .5 0 2 1 0 .4 6 2 5 - 0 .5 1 3 9 0 .4 4 5 8
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Figure 15.3: Summary plots for the posterior distribution of the intercept from the first
model. The SAS System 1 5 : 3 8  T u e s d a y ,  M a y  1 0 ,  2 0 1 1 1 0

The M CM C  P ro cedu re

The SAS System 1 5 : 3 8  T u e s d a y ,  M a y  1 0 ,  2 0 1 1 1 0

The M CM C  P ro cedu re

SAS utilizes the plate column in the data set where WinBUGS did not. This column

is used as an indicator for observation number in lines twenty-two through twenty-four and

lines thirty-three through thirty-five. It should be noted that SAS does not require the use

of all columns in the data set as WinBUGS does.

The summary statistics are given in table 15.2, showing the posterior summaries from

model one. Figure 15.3 gives the posterior plots for the distribution of the intercept from

model one. These plots indicate that convergence was reached, but some autocorrelation still

exists in the draws. The researcher should be aware of such autocorrelation when using the

posterior draws from this analysis. It is interesting to note that WinBUGS’ plots indicate
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no autocorrelation concerns in its draws even though fewer iterations were required to reach

convergence.

15.3 Side by Side Computer Code

WinBUGS code: SAS code:

# Model with random e f f e c t : data dose ;

model{ i n f i l e ‘ ‘ ’ ’ f i r s t o b s =2;

dummy1 <− p l a t e [ 1 ] ; input dose p l a t e c o l o n i e s ;

f o r ( i in 1 : 18 ) { run ;

c o l o n i e s [ i ] ˜ dpo i s ( lambda [ i ] )

; proc p r i n t ;

l og ( lambda [ i ] ) <− a + b∗ l og ( run ;

dose [ i ] + 10) + c∗dose [ i ] +

u [ i ] ; ods pdf

u [ i ] ˜ dnorm(0 , precd ) ; f i l e = ‘ ‘ ’ ’ ;

} ods g raph i c s on ;

a ˜ dnorm (0 , 1) ;

b ˜ dnorm(0 , 1) ; proc mcmc data=dose outpost=

c ˜ dnorm(0 , 1) ; doseout nmc=50000000 th in=5000

s2d ˜ dun i f (0 , 2) ; nbi=100000 monitor=(a b c s2 u)

precd <− 1/ s2d ; d i c seed =1234;

} array u [ 1 8 ] ;

# Model without random e f f e c t : array llambda [ 1 8 ] ;

model{ array lambda [ 1 8 ] ;

dummy1 <− p l a t e [ 1 ] ; parms u : 0 ;

f o r ( i in 1 : 18 ) { parms a 0 b 0 c 0 s2 1 ;
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c o l o n i e s [ i ] ˜ dpo i s ( lambda [ i ] ) p r i o r u : ˜ normal (0 , var=s2 ) ;

; p r i o r a b c ˜ normal (0 , var=1) ;

l og ( lambda [ i ] ) <− a + b∗ l og ( p r i o r s2 ˜ uniform (0 , 2) ;

dose [ i ] + 10) + c∗dose [ i ] ; l lambda [ p l a t e ] = a + b∗ l og ( dose

} + 10) + c∗dose + u [ p l a t e ] ;

a ˜ dnorm (0 , 1) ; lambda [ p l a t e ] = exp ( llambda [

b ˜ dnorm(0 , 1) ; p l a t e ] ) ;

c ˜ dnorm(0 , 1) ; model c o l o n i e s ˜ po i s son ( lambda

} [ p l a t e ] ) ;

run ;

#The data s e t :

dose [ ] p l a t e [ ] c o l o n i e s [ ] ∗ Model without random e f f e c t ;

0 1 15 proc mcmc data=dose outpost=

0 2 21 doseout nmc=50000000 th in=5000

0 3 29 nbi=100000 monitor=(a b c ) d i c

10 4 16 seed =1234;

10 5 18 array llambda [ 1 8 ] ;

10 6 21 array lambda [ 1 8 ] ;

33 7 16 parms a 0 b 0 c 0 ;

33 8 26 p r i o r a b c ˜ normal (0 , var=1) ;

33 9 33 llambda [ p l a t e ] = a + b∗ l og ( dose

100 10 27 + 10) + c∗dose ;

100 11 41 lambda [ p l a t e ] = exp ( llambda [

100 12 69 p l a t e ] ) ;

333 13 33 model c o l o n i e s ˜ po i s son ( lambda

333 14 38 [ p l a t e ] ) ;

333 15 41 run ;
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1000 16 20

1000 17 27 ods g raph i c s o f f ;

1000 18 42 ods pdf c l o s e ;

END{} ;
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chapter 16

SURVIVAL MODEL WITH CENSORING

Some experiments are concluded before every experimental unit has experienced the re-

sponse, as in a study of the effect of a treatment on survival time of subjects. Not all

subjects will live for the duration of the experiment, and not all subjects will have died at

the conclusion of the experiment. This type of setting calls for a survival model.

The survival model is interested in the time until a subject experiences the event

of interest, i.e., death or failure. However, there are situations where a subject fails to

participate through to the conclusion of a study and their response is not able to be observed.

Another concern is when a subject has not experienced the event by the conclusion of the

study. These subjects should not just be removed from the data set because their responses

were not able to be observed. Such observations are said to be censored and they contain

valuable information that needs to be considered in the analysis. This characteristic is the

main feature of survival analysis, and as such, typical statistical methods do not adequately

model these situations. (Collett 2003)

The survival function is defined as the probability that the survival time is greater

than or equal to some time t,

S(t) = P (T ≥ t).

This function can be used to represent the probability that a subject will survive from the

time of origin to some time beyond t. Typically survival data is modeled with a Weibull or

Exponential distribution. However, other distributions may be used; the reader is referred

to survival analysis literature for further study on other appropriate distributional models

for survival data.
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The following analysis in WinBUGS and SAS R© 9.2 will demonstrate different models.

This is because WinBUGS is able to handle censoring of observations directly, while SAS R©

9.2 is not. The resulting posterior distributions are similar, however, despite the different

approaches shown below.

16.1 WinBUGS

WinBUGS allows for left, right, and interval censoring of the time to event.

• Right censored data:

– y ∼ dweib(a, b)I(lower bound, ).

• Left censored data:

– y ∼ dweib(a, b)I(, upper bound).

• Interval censored data:

– y ∼ dweib(a, b)I(lower bound, upper bound).

This model for WinBUGS is appropriate because our data consist of both uncensored

and right censored observations.

yij ∼Weibull(r, µi)I(c, )

µi =eβi

βi ∼Normal(0, 100)

r ∼Exponential(0.1)

The Weibull distribution is used to model the survival function here in WinBUGS because

using the Weibull is typical practice for a parametric analysis and obtaining appropriate
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summary statistics is not difficult. Here, r is the scale parameter and µ is the shape param-

eter. A linking function is used to connect the scale parameter with a function of e. It is

reasonable to model the scale parameter’s β with a normal prior and the shape parameter

with an exponential prior.

Equations for the likelihood, prior, and posterior distributions are omitted here where

they were provided in Chapter 3 because the MCMC algorithms do not require finding the

functional form of the posterior distribution. All that is required is the likelihood function

and the distribution for all parameters in the model. The MCMC algorithms calculate the

posterior distribution from there.

WinBUGS parameterizes the Weibull as

x ∼Weibull(v, λ) = vλx(v−1)e−λx
v

, x > 0.

In survival analysis, a summary statistic of great interest is median survival time because

survival times are typically heavily right skewed. With the above parameterization, the

median may be calculated as (
ln(2)

λ

) 1
v

.

The data for this analysis come from an experiment where mice were placed into

four treatment groups and each group was exposed to a different treatment. Their survival

time in days was recorded. Not every mouse had died at the conclusion of the study (40

days), however, so these observations were censored. The data set contains four columns: a

mouse ID column, an indicator for treatment membership, the observed time to event, and

a censoring indicator that is 0 if the observation was not censored and 40 if it was censored.

The code below begins with a dummy variable for mouse ID. It is necessary to utilize

every column of the data set in the WinBUGS code to avoid errors. The use of the indi-

cator for censoring in the likelihood tells WinBUGS how to handle those observations that

experienced censoring. The rest of the code follows the typical structure of previous models.
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model{
# dummy va r i ab l e to use a l l columns o f data s e t
dummy <− mid [ i ] ;
f o r ( i in 1 : 80 ) {
# l i k e l i h o o d
time [ i ] ˜ dweib ( r , mu[ tmt [ i ] ] ) I ( censored [ i ] , )
}
f o r ( i in 1 : 4 ) {
# equat ion to model mu
mu[ i ] <− exp ( beta [ i ] ) ;
# p r i o r f o r beta
beta [ i ] ˜ dnorm(0 , 0 . 01 ) ;
}
# pr i o r f o r r
r ˜ dexp ( 0 . 1 ) ;
}

The summary statistics are shown in table 16.1, giving posterior summaries of the

four µ’s and β’s along with the shape parameter r. These values, however, are not very

meaningful to a researcher because they are not in the same metric as the data. The

transformation of these values into median survival time as described above, however, gives

the posterior values in a meaningful metric. These values are shown in table 16.1. Figure

16.1 gives a sample of the posterior summary plots, showing the posterior distribution of β1.

The plots indicate that convergence was reached and that there might be some problems with

autocorrelation. Running the analysis again with increased number of burn-in iterations and

thinning of the draws will decrease autocorrelation.

16.2 PROC MCMC

SAS R© 9.2 is not able to directly model censored data in a survival model. As such, it is

necessary to construct the density function using a combination of the functions LOGPDF,

LOGCDF, and LOGSDF depending on how the data is censored. The reader is referred to

SAS R© 9.2 documentation on PROC MCMC for further study.
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Table 16.1: Summary statistics from WinBUGS.

mean sd 2.5% 25% 50% 75% 97.5%
mu[1] 0.0004 0.0004 0.0000 0.0002 0.0003 0.0005 0.0016
mu[2] 0.0002 0.0002 0.0000 0.0001 0.0001 0.0002 0.0006
mu[3] 0.0003 0.0003 0.0000 0.0001 0.0002 0.0003 0.0011
mu[4] 0.0004 0.0004 0.0000 0.0001 0.0002 0.0005 0.0014

r 2.4924 0.2617 1.9909 2.3100 2.4860 2.6690 3.0140
beta[1] -8.1569 0.9117 -9.9680 -8.7770 -8.1340 -7.5290 -6.4360
beta[2] -9.2129 0.9734 -11.1800 -9.8692 -9.1890 -8.5350 -7.3680
beta[3] -8.6718 0.9511 -10.5703 -9.3212 -8.6430 -8.0120 -6.8540
beta[4] -8.3355 0.9238 -10.1800 -8.9552 -8.3240 -7.6967 -6.5610

deviance 528.8494 3.2331 524.5000 526.4000 528.2000 530.6000 536.6000

(a) Trace plot

(b) Autocorrelation (c) Posterior density

Figure 16.1: WinBUGS summary plots for the posterior distribution of β1.

Table 16.2: Table showing the posterior mean of each treatment’s median survival time as
calculated from WinBUGS’ analysis.

Tmt1 Tmt2 Tmt3 Tmt4
22.82 35.03 28.11 24.54
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The model in SAS R© 9.2 is

yij ∼

 Normal(µi, σ
2
i ) if uncensored

S(µi) if right censored

µi ∼Normal(0, 100000)

σ2
i ∼Gamma(2, 50),

where S(·) is the survival function, S(t) = P (T > t).

It is necessary that the data file contain a column of lower bound times and a column

of upper bound times. The column of left bound times will include all of the observed time to

event values and the censored value; for this example these are taken from the time column

in the data file with the NA entries replaced by the censored value of 40. The column of

right bound times includes the time to event value with NA entries for those observations

that were censored; for this example these are equivalent to the time column in the data file.

The MCMC procedure begins on line thirteen. Notice that the number of MCMC

iterations is 500,000, thin is 50 and the number of burn-in iterations is 1,000. These values

were selected to reduce autocorrelation and aid in convergence to the posterior distribution.

A new option that is utilized in this model is the missing=AC option. This must be included

in the code so SAS knows that it needs to work with the missing data values instead of

ignoring them. This option allows for the modeling of missing values, which is necessary for

censoring. An array of length four is initialized for µ and σ2 in lines fourteen and fifteen with

their initial values set in lines sixteen and seventeen and their prior distributions defined in

lines eighteen and nineteen. The use of the colon on these last four lines asks that these

initial values and prior distributions be applied to all array entries. Lines twenty through

twenty-three instruct SAS on the appropriate log-likelihood for uncensored and censored

data. The likelihood is defined with the general likelihood in line twenty-four. The reader is

referred to the PROC MCMC manual for further study on the use of the general likelihood.
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∗ read in the data f i l e ;
1 data micetwo ;
2 i n f i l e ” ” f i r s t o b s =2;
3 input mid tmt time censored t im e l e f t ;
4 run ;
5
∗ pr in t the data f i l e f o r i n sp e c t i on ;
6 proc p r i n t ;
7 run ;
8
∗ i n i t i a l i z e s sav ing o f output as a pdf f i l e ;
9 ods pdf
10 f i l e =’ ’ ;
∗ turn on graph i c s dev i c e ;
11 ods g raph i c s on ;
12
13 proc mcmc data=micetwo outpost=miceout nmc=500000 th in=50 nbi=1000

d i c seed=1234 miss ing=AC monitor=( parms ) ;
∗ de f i n e ar rays o f l ength 4 ;
14 array mu [ 4 ] ;
15 array s i g 2 [ 4 ] ;
∗ s e t parameters and i n i t i a l va lue s ;
∗ the co lon i n d i c a t e s that the i n i t i a l va lue s should be app l i ed to a l l

array e n t r i e s ;
16 parms mu: 30 ;
17 parms s i g 2 : 50 ;
∗ de f i n e p r i o r s ;
∗ the co lon i n d i c a t e s that the d i s t r i b u t i o n be app l i ed to a l l array

e n t r i e s ;
18 p r i o r mu: ˜ normal (0 , var=100000) ;
19 p r i o r s i g 2 : ˜ gamma(2 , i s c a l e =0.02) ;
∗ i f−e l s e statements to determine appropr ia t e handl ing o f censored and

uncensored obs e rva t i on s ;
20 i f ( t im e l e f t ˆ= . and time ˆ= . and t im e l e f t=time ) then
21 l l i k e=logpd f ( ’ normal ’ , time ,mu[ tmt ] , s q r t ( s i g 2 [ tmt ] ) ) ;
22 e l s e i f ( t im e l e f t ˆ= . and time = . ) then
23 l l i k e=l o g s d f ( ’ normal ’ , t ime l e f t ,mu[ tmt ] , s q r t ( s i g 2 [ tmt ] ) ) ;
∗ l i k e l i h o o d ;
24 model g ene ra l ( l l i k e ) ;
25 run ;
26
∗ turn o f f g raph i c s dev i c e ;
27 ods g raph i c s o f f ;
∗ stop sav ing output f i l e ;
28 ods pdf c l o s e ;
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Table 16.3: Summary Statistics for Example 14 from PROC MCMC.
The SAS System 1 3 : 4 8  T u e s d a y ,  J u n e  1 4 ,  2 0 1 1 3

The M CM C  P ro cedu re

The SAS System 1 3 : 4 8  T u e s d a y ,  J u n e  1 4 ,  2 0 1 1 3

The M CM C  P ro cedu re

P o s t e r io r  S u m m a r ie s

P e r c e n t i le s

P a r a m e te r N M e a n
S ta n d a r d
D e v ia t io n 2 5 % 5 0% 7 5 %

m u 1 1 0 0 0 0 2 3 .2 5 1 5 2 .3 4 1 4 2 1 .7 1 4 2 2 3 .2 5 4 1 2 4 .7 7 0 0

m u 2 1 0 0 0 0 3 4 .6 8 7 8 2 .8 4 1 9 3 2 .7 6 3 2 3 4 .5 6 2 4 3 6 .4 8 8 9

m u 3 1 0 0 0 0 2 8 .0 4 4 1 2 .8 0 6 5 2 6 .1 9 6 6 2 7 .9 8 0 9 2 9 .8 0 0 7

m u 4 1 0 0 0 0 2 4 .8 8 9 8 2 .3 7 1 8 2 3 .3 1 9 1 2 4 .8 4 5 1 2 6 .4 2 7 6

s ig 2 1 1 0 0 0 0 1 1 0 .0 3 4 .9 9 3 8 8 5 .0 6 5 5 1 0 4 .0 1 2 8 .2

s ig 2 2 1 0 0 0 0 1 3 9 .7 4 9 .5 9 3 0 1 0 4 .8 1 3 1 .0 1 6 4 .6

s ig 2 3 1 0 0 0 0 1 5 0 .4 4 7 .9 2 9 1 1 1 5 .9 1 4 3 .4 1 7 5 .9

s ig 2 4 1 0 0 0 0 1 0 8 .1 3 7 .1 3 7 8 8 1 .5 4 1 9 1 0 1 .4 1 2 7 .3

P o s t e r io r  I n t e r v a ls

P a r a m e te r A lp h a
E q u a l-T a il
I n t e r v a l H P D  I n t e r v a l

m u 1 0 .0 5 0 1 8 .6 4 3 2 2 7 .9 3 1 0 1 8 .6 4 2 7 2 7 .9 1 8 6

m u 2 0 .0 5 0 2 9 .4 5 8 6 4 0 .6 7 9 1 2 9 .4 0 3 0 4 0 .5 7 3 3

m u 3 0 .0 5 0 2 2 .6 5 4 2 3 3 .7 9 9 6 2 2 .6 4 9 3 3 3 .7 9 0 4

m u 4 0 .0 5 0 2 0 .2 7 6 3 2 9 .6 7 5 3 2 0 .3 3 9 4 2 9 .6 9 8 6

s ig 2 1 0 .0 5 0 6 0 .0 6 5 8 1 9 3 .8 5 3 .3 7 9 9 1 7 9 .7

s ig 2 2 0 .0 5 0 6 8 .7 4 6 0 2 5 9 .2 5 6 .9 5 7 8 2 3 6 .0

s ig 2 3 0 .0 5 0 7 9 .5 7 4 8 2 6 5 .0 7 2 .5 6 3 1 2 4 6 .7

s ig 2 4 0 .0 5 0 5 5 .4 7 1 9 1 9 8 .1 4 8 .3 7 8 9 1 8 0 .7

The summary statistics are given in table 16.3, showing the posterior summaries of

the treatment means and associated variances. Figure 16.2 gives the posterior plots for the

distribution of treatment one’s mean survival time. These plots indicate that convergence

was reached, no autocorrelation problems were encountered and the density of the posterior

is drawn. Of interest, however, when looking at tables 16.1 and 16.3, one can see that

the predicted survival times are similar despite the very different models utilized by the

respective computer programs. It appears that treatment two yields the longest survival

times. Even so, the researcher should conduct further analysis to determine the statistical

significance of such an observation.
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Figure 16.2: Summary plots for the posterior distribution of the mean survival time for
treatment one. The SAS System 1 3 : 4 8  T u e s d a y ,  J u n e  1 4 ,  2 0 1 1 6

The M CM C  P ro cedu re

The SAS System 1 3 : 4 8  T u e s d a y ,  J u n e  1 4 ,  2 0 1 1 6

The M CM C  P ro cedu re
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16.3 Side by Side Computer Code

WinBUGS code: SAS code:

model{ data micetwo ;

dummy <− mid [ i ] ; i n f i l e ” ” f i r s t o b s =2;

f o r ( i in 1 : 80 ) { input mid tmt time censored

time [ i ] ˜ dweib ( r , mu[ tmt [ i ] ] ) t im e l e f t ;

I ( censored [ i ] , ) run ;

}

f o r ( i in 1 : 4 ) { proc p r in t ;

mu[ i ] <− exp ( beta [ i ] ) ; run ;

beta [ i ] ˜ dnorm(0 , 0 . 01 ) ;

} ods pdf

r ˜ dexp ( 0 . 1 ) ; f i l e = ‘ ‘ ’ ’ ;

} ods g raph i c s on ;

#The data s e t : proc mcmc data=micetwo outpost=

mid [ ] tmt [ ] time [ ] censored [ ] miceout nmc=500000 th in=50 nbi

1 1 12 0 =1000 d i c seed=1234 miss ing=AC

2 1 1 0 monitor=( parms ) ;

3 1 21 0 array mu [ 4 ] ;

4 1 25 0 array s i g 2 [ 4 ] ;

5 1 11 0 parms mu: 30 ;

6 1 26 0 parms s i g 2 : 50 ;

7 1 27 0 p r i o r mu: ˜ normal (0 , var

8 1 30 0 =100000) ;
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9 1 13 0 p r i o r s i g 2 : ˜ gamma(2 , i s c a l e

10 1 12 0 =0.02) ;

11 1 21 0 i f ( t im e l e f t ˆ= . and time ˆ=

12 1 20 0 . and t im e l e f t=time ) then

13 1 23 0 l l i k e = logpd f ( ’ normal ’ ,

14 1 25 0 time , mu[ tmt ] , s q r t (

15 1 23 0 s i g 2 [ tmt ] ) ) ;

16 1 29 0 e l s e i f ( t im e l e f t ˆ= . and

17 1 35 0 time = . ) then

18 1 NA 40 l l i k e = l o g s d f ( ’ normal ’ ,

19 1 31 0 t ime l e f t , mu[ tmt ] , s q r t

20 1 36 0 ( s i g 2 [ tmt ] ) ) ;

21 2 32 0 model g ene ra l ( l l i k e ) ;

22 2 27 0 run ;

23 2 23 0

24 2 12 0 ods g raph i c s o f f ;

25 2 18 0 ods pdf c l o s e ;

26 2 NA 40

27 2 NA 40

28 2 38 0

29 2 29 0

30 2 30 0

31 2 NA 40

32 2 32 0

33 2 NA 40

34 2 NA 40

35 2 NA 40
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36 2 NA 40

37 2 25 0

38 2 30 0

39 2 37 0

40 2 27 0

41 3 22 0

42 3 26 0

43 3 NA 40

44 3 28 0

45 3 19 0

46 3 15 0

47 3 12 0

48 3 35 0

49 3 35 0

50 3 10 0

51 3 22 0

52 3 18 0

53 3 NA 40

54 3 12 0

55 3 NA 40

56 3 NA 40

57 3 31 0

58 3 24 0

59 3 37 0

60 3 29 0

61 4 27 0

62 4 18 0

200



63 4 22 0

64 4 13 0

65 4 18 0

66 4 29 0

67 4 28 0

68 4 NA 40

69 4 16 0

70 4 22 0

71 4 26 0

72 4 19 0

73 4 NA 40

74 4 NA 40

75 4 17 0

76 4 28 0

77 4 26 0

78 4 12 0

79 4 17 0

80 4 26 0

END{} ;
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