
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-07-11

A Modified Cluster-Weighted Approach to
Nonlinear Time Series
Mark Ballatore Lyman
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Statistics and Probability Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Lyman, Mark Ballatore, "A Modified Cluster-Weighted Approach to Nonlinear Time Series" (2007). All Theses and Dissertations. 1170.
https://scholarsarchive.byu.edu/etd/1170

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1170?utm_source=scholarsarchive.byu.edu%2Fetd%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A MODIFIED CLUSTER-WEIGHTED MODEL APPROACH TO NONLINEAR

TIME SERIES

by

Mark B. Lyman

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Statistics

Brigham Young University

August 2007

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Mark B. Lyman

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date H. Dennis Tolley, Chair

Date Scott D. Grimshaw

Date John S. Lawson

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Mark B.
Lyman in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date H. Dennis Tolley
Chair, Graduate Committee

Accepted for the Department

Scott D. Grimshaw
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

A MODIFIED CLUSTER-WEIGHTED MODEL APPROACH TO NONLINEAR

TIME SERIES

Mark B. Lyman

Department of Statistics

Master of Science

In many applications involving data collected over time, it is important to

get timely estimates and adjustments of the parameters associated with a dynamic

model. When the dynamics of the model must be updated, time and computational

simplicity are important issues. When the dynamic system is not linear the problem

of adaptation and response to feedback are exacerbated. A linear approximation of

the process at various levels or “states” may approximate the non-linear system. In

this case the approximation is linear within a state and transitions from state to state

over time. The transition probabilities are parametrized as a Markov chain, and the

within-state dynamics are modeled by an AR time series model. However, in order

to make the estimates available almost instantaneously, least squares and weighted

least squares estimates are used. This is a modification of the cluster-weighted models

proposed by Gershenfeld, Schoner, and Metois (1999). A simulation study compares

the models and explores the adequacy of least squares estimators.

CONTENTS

CHAPTER

1 Introduction 1

1.1 Modified Cluster-Weighted Model (MCWM) 3

1.2 MCWM Estimators . 5

2 Literature Review 6

2.1 Cluster-Weighted Model (CWM) . 6

2.2 Hidden Markov Models . 7

2.3 Functional Coefficient Models . 8

2.4 Time Series Estimation . 9

2.5 Root-n Adjustment . 9

3 Methodology 11

3.1 Comparison of Time Series Estimators 11

3.2 Modified Cluster Weighted Model Estimators 11

3.2.1 Non-iterative Methods . 13

3.2.2 Iterative Methods . 14

3.2.3 Shock Adjustment . 15

3.2.4 Computer Algorithms . 15

4 Results 17

4.1 Time Series Estimators . 17

4.2 Comparison of Modified Cluster Weighted Estimators 19

4.2.1 State Transition Parameters 23

4.2.2 Autoregressive Parameters . 23

ix

4.2.3 One-Step-Ahead Prediction 28

4.2.4 Misclassification . 28

5 Conclusions 34

APPENDIX

A Computer Code 38

A.1 Simulation Code . 38

A.2 Data Simulation Code . 41

A.3 MCWM: Maximum Likelihood Method 42

A.3.1 MCWM: ML—lik.func . 44

A.4 CWM: Maximum Likelihood Method 44

A.4.1 CWM: ML—clust.log.lik . 46

A.5 MCWM: Least Squares Method . 46

A.6 MCWM: Yule-Walker Method . 48

A.7 MCWM: Root-n Method . 49

A.7.1 MCWM: Root-n—information 50

A.7.2 MCWM: Root-n—score . 55

A.7.3 MCWM: Root-n—lik.func . 56

A.8 Shock Adjustment . 56

A.9 Prediction . 57

A.10 Estimation Function Wrapper Function 58

A.11 Miscellaneous Simulation Specific Functions 58

x

TABLES

Table

4.1 AR(1) Least Squares Estimator Bias× T 17

4.2 AR(2) Least Squares Estimator Bias× T 18

4.3 Transition Probability Parameters’ Average Mean-Square Error . . . 26

4.4 Autoregressive Coefficients’ Average Mean-Square Error 28

4.5 Variance Parameters’ Average Mean-Square Error 31

4.6 Average Misclassification Rate . 32

xi

FIGURES

Figure

1.1 Simulated nonlinear time series data with states shown. 2

4.1 Bias for AR Model Parameters . 20

4.2 MSE for AR Model Parameters . 21

4.3 Absolute Bias for AR Model One-Step-Ahead Predictions 22

4.4 Change in Absolute Bias of Parameters 24

4.5 State Transition Parameter Absolute Bias. 25

4.6 Autoregressive Parameter Absolute Bias. 27

4.7 Variance Parameter Absolute Bias. 29

4.8 One-Step-Ahead Prediction Absolute Bias. 30

4.9 Misclassification Rate. 33

xii

1. INTRODUCTION

One of the principal tools for modeling stochastic processes is the linear systems

approach. Linear systems, or processes, are used in economic time series analysis,

forecasting and prediction, stochastic system identification, and stochastic control.

There has been considerable success in applying the linear systems approach to real

world applications. One reason for this success is, arguably, the mathematical and

statistical properties of linear systems modeling. Such questions as bias, prediction

error, stability, and, more recently, robustness have all received rigorous attention in

the literature. Computational tools to estimate the parameters of a linear system

and to assess the order of the process are readily available to the user. Consequently,

most of the statistical problems of linear systems may be viewed as either resolved

or as having received a unifying rigorous treatment upon which computational tools

and examples of implementation will soon emerge.

Nonlinear systems have also received considerable attention in recent years.

While many of the major issues of linear systems are identified and most of them re-

solved, such is not the case of nonlinear systems. Indeed, modeling and implementing

linear systems has been so successful that one major method of solving a nonlinear

system is to use a linear approximation. One method of using linear system meth-

ods to approximate the nonlinear problem is to consider the process at various local

levels to be linear. In this thesis the local region used for the linear approximation is

described as a “state.”1 Thus, the process is viewed as linear within a state, and it

transitions from state to state over time. Such a process is then modeled as a linear

time series locally. Figure 1.1 contains an example of a nonlinear system with the

two states shown.

1 Note that this use of state is consistent with the common statistical use but differs from systems
engineering where state refers to a different condition.

1

Time

x t

−10

−5

0

5

0 20 40 60 80 100

State 0
State 1

Figure 1.1: Simulated nonlinear time series data with states shown.

2

This approach is often especially valuable because the states have worth beyond

serving as a tool in modeling. For example, it is quite common to model stock returns

with a time series model, but estimates of the model parameters, and any subsequent

predictions, might benefit if the state of the market, “bear” or “bull,” was known

or could be predicted. In this example, knowledge of the state and of the system

dynamics is useful. It is also apparent that the ability to predict the state along with

the value of the return would greatly enhance the worth of this model.

In many applications involving data sampled across time, it is important to

get estimates of the system and adjustments of the parameters associated with the

dynamic model in a timely manner. For example, in stochastic control, the manner

in which feedback is used requires quick decisions. When the dynamics of the model

must be updated, time and computational simplicity are important issues. When the

dynamic system is nonlinear the problems of adaptation and response to feedback are

exacerbated.

1.1 Modified Cluster-Weighted Model (MCWM)

This thesis introduces a likelihood-based model, the modified cluster-weighted

model (MCWM), that incorporates the local linear process and the state-jumping

process. The linear dynamic process applies while the process remains in the same

state. The jumping process defines the transition from one state, kt, to another state

over time, which is dictated by the nonlinear process xt and an additional observed

random variable yt. This jumping process is assumed to follow a Markov chain. The

contribution to the likelihood of one observation, kt, conditional on kt−1 and xt−1,

for these transitions is shown in Equation 1.1, where the free transition probabilities

are θ =
(
θ11, . . . , θ1i, . . . , θ(i−1)i

)
for i = (1, . . . ,m), where m is the number of states

and θij is the probability of transitioning from state i to state j. The transitions

depend on the exogenous variable yt and xt through a logistic model of the transition

3

probabilities shown in Equation 1.2, where β is the vector of all β parameters.

L (θ; kt|kt−1, xt−1, yt−1) = θ
I(kt 6=0)
kt−1kt

(
1−

m∑
i=1

θkt−1i

)I(kt=0)

(1.1)

L (β; kt|kt−1, xt−1, yt−1) =

 exp
(
β

kt−1kt

0 + β
kt−1kt

1 xt−1 + β
kt−1kt

2 yt−1

)
1 +

∑m
i=1 exp

(
β

kt−1i
0 + β

kt−1i
1 xt−1 + β

kt−1i
2 yt−1

)

I(kt=0)

×

 1

1 +
∑m

i=1 exp
(
β

kt−1i
0 + β

kt−1i
1 xt−1 + β

kt−1i
2 yt−1

)

I(kt 6=0)

(1.2)

The within-state dynamics, conditional on kt, are modeled by an autoregressive

(AR) time series model. Equation 1.3 is the contribution to the likelihood of one

observation from the nonlinear process, xt, where ω = (φ, σ2). The form of the

model is the same for each state; the actual parameters (both AR coefficients and

variance), and possibly the model order, pkt , vary across states.

L (ω; xt|xt−1, . . . , xt−p; kt) =
(
2πσ2

kt

)−1
exp

(
xt − φkt +

∑pkt
i=1 φkt

i xt−i

)2

2σ2
kt

 (1.3)

The product of the AR model and the Markov chain model results in a two-

stage joint likelihood for the observed time series data and the observed yt values (see

Equation 1.4, where n∗ is the maximum order of the m states, and n is the number

of observations from the nonlinear process). By estimating the parameters of the

transition probabilities, we can also predict the state of future observations as we

would make a prediction with any logistic regression model.

L (ω, θ|k1, . . . , kn∗ , x1, . . . , xn∗) =
n∏
n∗

L (ω; xt|xt−1, . . . , xt−p; kt)

× L (β; kt|kt−1, xt−1) (1.4)

4

1.2 MCWM Estimators

Parameter estimates can be obtained using nonlinear maximization algorithms,

like the Expectation-Maximization (EM) algorithm; however, such methods cannot

provide estimates of these parameters fast enough for many real-time applications.

Therefore, a method of moments-type procedure that contains a first-order likelihood

correction term makes the estimates available almost instantaneously. The model is

broken into pieces that can be fitted using real-time parameter estimates and up-

dates from least squares and weighted least squares. A one-step adjustment to the

estimates based on the likelihood is then implemented to establish asymptotic effi-

ciency. However, simulation results indicate that the adjustment is not helpful and,

in some cases, results in worse estimates. These non-iterative methods provide a way

to estimate the MCWM in a fixed amount of time, whereas the iterative methods

converge in an unknown number of iterations.

Chapter 2 contains a review of recent literature on nonlinear systems, including

a discussion of cluster-weighted models and functional-coefficient regression models.

Also, recent literature on the properties of various time series estimators is discussed.

Chapter 3 describes the simulations that show the usefulness of the modified cluster-

weighted model and the adequacy of non-iterative estimation methods based on two

computer simulations. Chapter 4 contains the results of the simulations discussed in

Chapter 3, and Chapter 5 contains conclusions and suggestions for future research.

5

2. LITERATURE REVIEW

The mathematical and statistical properties of linear systems have been thor-

oughly presented in standard textbooks by authors such as Box, Jenkins, and Reinsel

(1994), Pandit and Wu (1983), and Brockwell and Davis (1983). The properties of

nonlinear processes are much less well-known. However, Fan and Yao (2003) and

Tong (1990) provide a good discussion of many commonly used approaches to mod-

eling such processes.

2.1 Cluster-Weighted Model (CWM)

One approach to modeling non-linear time series is a cluster-weighted model

(CWM) (Gershenfeld, Schoner, and Metois 1999). A CWM is a mixture model in

which the distributions of the sub-populations are described by a time series. Let

the density of the time series, x, be written as in Equation 2.1, where p(x|cm) is

multivariate normal, N(µm, Cm), p(cm) is the weight of the cluster, and M is the

number of clusters. The parameter, M , is generally determined by cross-validation

to control under- and over-fitting (Schoner, Cooper, Douglas, and Gershenfeld 1999).

In this thesis, the number of states is known for both the CWM and the MCWM,

but cross-validation can be used for the MCWM as well. The mean vectors µm are

usually a function of lagged values of x. Gershenfeld et al. (1999) proposed these

models as a way of fitting linear models to an overall non-linear system because fewer

parameters could be used to model a system to achieve a given error. Estimates

are computed iteratively. Gershenfeld et al. (1999) use an expectation-maximization

algorithm to find the cluster weights and parameter estimates.

6

p(x) =
M∑

m=1

p(x, cm) =
M∑

m=1

p(x|cm)p(cm) (2.1)

As noted previously, it is often desirable to predict the state or cluster of future

observations; however, CWMs lack a method for predicting the cluster of future

observations. The state of an observation is only indirectly related to the state of a

previous observation through the process variable. The clusters are used only as a tool

for modeling a complex system; thus, any interpretation of the clusters themselves is

largely coincidental.

CWMs have been applied in several areas. Uses in financial models are given by

Wong and Chan (2005) and Ferreira et al. (2003). Schoner et al. (1999) demonstrate

uses in acoustics, and He et al. (2002) use a CWM to model heart rates. Ferreira

et al. (2003) and Wong and Chan (2005) also compare CWMs with several other

approaches to modeling non-linear time series. Anandamohan and Ram (2005) show

the strengths of the cluster-weighted model in complex driven systems.

2.2 Hidden Markov Models

A model similar to CWMs is a Markov-switching model. A Markov-switching

model is an extension of hidden Markov models in which the conditional distribution

of a random variable depends not only on the unobserved state but also on previous

realizations of the random variable (Cappé, Moulines, and Rydén 2005). As with ordi-

nary hidden Markov models, the unobserved state is a Markov chain. Parameters are

estimated with an iterative algorithm similar to the EM algorithm. Hamilton (1989)

proposed the use of these models for modeling the U.S. business cycle. For example,

the quarterly GNP comes from one of two autoregressive processes, depending on the

state of the economy (expansion or contraction). Markov-switching models, unlike

CWMs, allow prediction and interpretation of states, but the transitions between

7

states do not depend on the linear processes within the states or on an exogenous

variable, like they do in the MCWM.

Cox (1981) discusses two similar model types, those that are “observation-

driven” and those that are “parameter-driven.” Zeger (1988) describes a type of

“observation-driven” model, Markov regression models. In Markov regression models,

the distribution of the observations at time t is determined by a linear model of a

function of observations at previous times. Unlike the MCWM, the parameters are

constant; that is, the observations are always related to past observations in the same

manner.

The parameter-driven models, on the other hand, do not relate the observations

to past observations directly. In these models, the parameters of the observations are

related to past parameter values. Thus, observations are related only through the

parameter process. Keenan (1982), Azzalini (1982), and Zeger (1988) describe some

examples of parameter-driven models.

2.3 Functional Coefficient Models

Functional-coefficient regression models are another development in the area

of nonlinear time series (Cai, Fan, and Yao 2000). Functional-coefficient models

are a rich set of models in which the coefficients of the model are functions rather

than constants. Included in this general model framework are functional-coefficient

autoregressive models (Chen and Tsay 1993), threshold autoregressive models (Tong

1990), exponential autoregressive models (Haggan and Ozaki 1981; Ozaki 1982), and

regression with random coefficients (Granger and Teräsvirta 1993). In their 2000

paper, Cai et al. developed many asymptotic properties of these models. Harvill and

Ray (2005) study the use of these models in forecasting.

8

2.4 Time Series Estimation

As mentioned above, one of the goals of fitting models in this fashion is to

obtain estimates of the parameters and get predictions of future observations quickly.

Most applications of the CWM use the EM algorithm to estimate model parameters,

and, while the EM algorithm generally performs well, there is no guarantee it will

converge in a small number of iterations. Spitzer (1979) and Alpargu and Dutilleul

(2001) extensively compared several estimation methods for AR(1) models. Least

squares estimators performed significantly worse than maximum likelihood and Yule-

Walker estimators only for highly correlated series. With autocorrelations between

-0.5 and 0.5, least squares estimators actually had a better Mean-Square Error (MSE)

than maximum likelihood and Yule-Walker estimators. Only when autocorrelations

were greater than 0.9 was the MSE for least squares twice as large as that of Yule-

Walker and maximum likelihood estimators.

2.5 Root-n Adjustment

While iterative methods are potentially too slow for real-time applications, the

convergence properties these methods provide are desirable. In cases where cor-

relation in the random variable over time is bounded away from 1 and a uniform

mixing condition applies, least squares estimates of a fixed finite set of parameters

is
√

(n) consistent. The least squares estimates are assumed to be
√

(n) consis-

tent by adjusting least squares estimates, θ̃n, by the score function, S
(
θ̃n

)
, and the

Fisher information, I−1
(
θ̃n

)
, as in Equation 2.2. If the likelihood is regular, then

√
n(δn − θ)

L→ N (0, 1/I(θ)). Equation 2.2 is clearly the first step of the Newton-

Raphson method with the least squares estimator as a starting value. By only using

the first step, there is little time penalty, but because the likelihood of the within-

state dynamics is regular, it ensures that our estimator converges at least at a rate of

9

1/
√

n. This is ideal if the within-state dynamics are of primary importance. Lehmann

(2001) discusses this adjustment and proves the convergence property.

δn = θ̃n − S
(
θ̃n

)
I−1

(
θ̃n

)
(2.2)

10

3. METHODOLOGY

3.1 Comparison of Time Series Estimators

Because many applications require nearly instantaneous results, one major ob-

jective was to develop quick methods of parameter estimation. A simulation study

and theoretical results from Shaman and Stine (1988) illustrate the adequacy of the

least squares method compared to maximum likelihood and Yule-Walker methods

of estimating autoregressive model parameters in a standard AR model. Maximum

likelihood estimation was performed using a quasi-Newton-Raphson algorithm imple-

mented in the R function optim (R Development Core Team 2006). The data were

simulated using the R function arima.sim (R Development Core Team 2006), from a

Gaussian distribution with variance of 1. The settings for the simulation were com-

prised of sample sizes of 20, 50, and 100 with all possible permutations of coefficients

-0.9, -0.5, -0.2, 0.2, 0.5, 0.9 that provide a stationary series for an AR(p) series where

p = 1, 2. Each combination of parameters and sample sizes was replicated 1000

times. The least squares estimators were compared, analytically for large series and

by simulation for practical finite samples. The criteria for comparison were MSE and

bias of the parameter estimates and bias of one-step-ahead predictions.

3.2 Modified Cluster Weighted Model Estimators

A simulation of an MCWM with two states, state 0 and state 1, and a Markov

chain modeling the probability of a transition between them was done to investigate

the MCWM and its estimators (see Equation 1.4). The two local dynamic processes

are AR(p) processes with p = 1, 2. The same sample sizes, except for 20, and coeffi-

cient values as in the pure AR simulation comprised the settings for this simulation

11

as in the pure AR simulation. Samples of size 20 were excluded because all of the

simulated observations too often fell into one state. However, there were two series to

permute the coefficients between. The innovations for both processes were normally

distributed with mean 0 and variance 1. The series in state 0 was centered at -3 and

the series in state 1 was centered at 3. Thus, the two series overlapped slightly in the

tails, but they were still separate enough to distinguish between them.

The parameters for the transition probabilities were chosen such that, on av-

erage, a change in state will occur every 10 observations (θ11 = 10/11, θ01 = 1/11)

and every 30 observations (θ11 = 30/31, θ01 = 1/31) when the process variable and

the exogenous variable are equal to their respective means. The coefficients for the

process itself were set equal to the intercepts so that both would have equal weight in

determining transitions. The coefficient relating the exogenous process yt was set to

be 1.5 times as large as the xt coefficients. For example, the parameters determining

θ01 (β01
0 , the intercept; β01

1 , the parameter relating the process to the state transition;

and β01
2 , the parameter relating the exogoneous process to the state transition) are

determined as follows (see Equation 3.1). Setting the process and the exogoneous

process to their means, xt−1 = −3 and yt−1 = 0,

log
θ01

1− θ01

= exp
(
β01

0 + β01
1 xt−1 + β01

2 yt−1

)
,

log
0.09

0.91
≈ 1.15 + 1.15(−3) + 1.73(0). (3.1)

The parameters were estimated under the assumption that the CWM and the

MCWM fit with four different methods: least squares, least squares with first or-

der likelihood correction, Yule-Walker, and maximum likelihood. The number of

states was known in estimating the parameters, but the state of each observation

was unknown. Initial estimates of state membership were obtained using the k-

means clustering. The first p observations were assumed to be known, both value and

12

state, analogous to the common practice for least squares estimators of time series

parameters. The criteria for comparison of all five methods was the proportion of

misclassified states, MSE and bias of the estimators, and bias of the one-step-ahead

prediction, where the final three criteria will assume the correct state was estimated.

The simulation results showed that the least squares estimates perform adequately

when compared with the iterative maximum likelihood method and that the MCWM

performs well when compared to the CWM and allows a prediction of a future obser-

vation.

3.2.1 Non-iterative Methods

The two least squares methods estimate the AR coefficients with ordinary least

squares computed separately based on the state membership of the observation at

time t. Thus, the autoregressive parameter estimates are the solution to the normal

equations in Equation 3.2, and the variance of xt was estimated by the mean-square

error. For convenience, a weight matrix is used with an indicator function of member-

ship in a given state as the weight. For i = 0, . . . ,m− 1 and t = pkt + 1, . . . , n, where

X is the model matrix formed with a column of ones, and the observations lagged

one step and, if appropriate, the observations lagged two steps. And xt contains

observations pkt + 1, . . . , n from the process,

XT
t−1diag (I (kt = i)) Xt−1φ = XT

t−1diag (I (kt = i)) xt. (3.2)

The estimates of the logistic model coefficients in these methods were found

using weighted least squares with the binary response of membership of the observa-

tion at time t in state 1 or state 0. The estimates were computed separately based

on the observation’s state at time t − 1. First, starting values are estimated with

ordinary least squares as in Equation 3.3, where kt is the state membership at time t

13

for observations pkt + 1, . . . , n. A weight matrix is used for convenience. Then, using

the solution β̂∗
i , π̂i is calculated as in Equation 3.4. Next, the working vector, yi

is calculated, Equation 3.5. Finally, the logistic model coefficients are the solutions

of the normal equations in Equation 3.7 using the working vector and appropriate

weights (see Section A.5).

β̂∗
i =

(
XT

t−1diag (I (kt−1 = i)) Xt−1

)−1
XT

t−1diag (I (kt−1 = i)) kt (3.3)

π̂i =
exp

(
β̂T Xt−1

)
1 + exp

(
β̂T Xt−1

) (3.4)

yi = π̂i +
kt − π̂i

π̂i (1− π̂i)
(3.5)

Wi = diag (π̂iyi) (3.6)

β̂i =
(
XT

t−1WiXt−1

)−1
XT

t−1Wiyi (3.7)

The other non-iterative methods use the above calculations with slight differ-

ences. The first-order likelihood correction of the Root-n method is one iteration of

the Newton-Raphson algorithm. The score function and the Fisher Information are

evaluated at the least squares parameter estimates. The product of the score function

and inverse Fisher Information is then subtracted from the vector of least squares pa-

rameter estimates (see Equation 2.2 and Appendix A.7). The Yule-Walker method is

similar to the least squares method, except the AR parameters are estimated using

the Yule-Walker equations (see Appendix A.6).

3.2.2 Iterative Methods

The MCWM maximum likelihood method and the CWM were both fitted using

the EM algorithm. Least squares estimates were used as initial parameter estimates.

The cluster-weighted algorithm was implemented as described by Gershenfeld et al.

(1999) (see Appendix A.3). The steps of the EM algorithm for the MCWM are as

follows (see Appendix A.4):

14

(1) Estimate P̂ (kt = i) = p(θ̂0|kt=i)

p(θ̂0|kt=1)+p(θ̂0|kt=2)
.

(2) Set k̂t = P̂ (kt = i)

(3) Maximize the likelihood for each set of parameters using the least squares

methodology with the updated probabilities of state membership as weights.

(4) Repeat steps 1–3 until likelihood converges.

3.2.3 Shock Adjustment

It seems logical that the nonlinear process experiences a shock following a tran-

sition. The shock is strongest immediately following a transition to a state and

decreases as long as the process remains in that state. An adjustment is implemented

in order to correct for this shock, as shown in Equation 3.8:

zi
t = xi

t − δ̂qt
i ∗ sij, (3.8)

where xi
t is the observation at time t in state i, zi

t is the corresponding adjusted

observation, qt is the number of consecutive observations in state i up to time t,

and sij = x̄j − x̄i is the shock estimate of an observation following a transition from

state i to state j. δ̂i is the estimated coefficient of the AR(1) model, (xi
t − x̄i) =

δi(x
i
t−1 − x̄i) + ε; that is, the response is the observation at time t that falls in

state i and xi
t−1 is the preceding observation regardless of state. All of the methods

described above use data that is adjusted for such a shock. Initial state membership

is determined by k-means clustering.

3.2.4 Computer Algorithms

All of the algorithms described above were implemented using R. Because the

states are not completely independent of each other, the parameters could not be

15

estimated by simply separating the observations into states and estimating the pa-

rameters independently. While current software can handle missing values in time

series, the values in the other states are not truly missing and have some affect on

the parameters of the state in question. To estimate the MCWM, some values must

be used to estimate parameters but not be considered part of the current series of

interest. Thus, it was necessary to write functions for performing all of the above

methods, including least squares and Yule-Walker methods. The algorithms were

written specifically to handle the two-state situation. Of course, they could be mod-

ified to handle a greater number of states.

The root-n method uses the analytical score vector and information matrix

because this gives the algorithm a “better” chance of succeeding than using numerical

approximations. Thus, the root-n methods failures can not be attributed to poor

approximations of the score function and Fisher Information.

16

4. RESULTS

The data from both simulations is available on a DVD for reproduction of the

results or for further investigation.

4.1 Time Series Estimators

The first simulation compares the maximum likelihood, Yule-Walker, and least

squares estimators of the standard linear AR(p) model. Shaman and Stine (1988)

developed an algorithm for deriving the T−1 order bias of least squares autoregressive

estimators as a function of the true parameters, where T is the series length. For

a first-order AR model, the bias of the least squares estimator is (1−3φ1)
T

and, for a

second-order AR model, the biases for the first and second coefficients are 1−φ1−φ2

T
and

2−4φ2

T
, respectively. Table 4.1 and 4.2 contain the bias estimates for each combination

of autoregressive parameters used in the simulations for the first- and second-order

models respectively. The least squares estimators are less biased when the true auto-

regressive parameters are positive or near zero. Some of the bias estimates are large

enough to be worrisome, especially the negative parameters and those with large

absolute values.

φ1 Bias
(
φ̂1

)
−0.90 3.70
−0.50 2.50
−0.20 1.60

0.20 0.40
0.50 −0.50
0.90 −1.70

Table 4.1: AR(1) Least Squares Estimator Bias× T

The results of the simulation comparing the maximum likelihood, Yule-Walker,

17

φ1 φ2 Bias
(
φ̂1

)
Bias

(
φ̂2

)
−0.90 −0.90 2.80 5.60
−0.50 −0.90 2.40 5.60
−0.20 −0.90 2.10 5.60

0.20 −0.90 1.70 5.60
0.50 −0.90 1.40 5.60
0.90 −0.90 1.00 5.60

−0.90 −0.50 2.40 4.00
−0.50 −0.50 2.00 4.00
−0.20 −0.50 1.70 4.00

0.20 −0.50 1.30 4.00
0.50 −0.50 1.00 4.00
0.90 −0.50 0.60 4.00

−0.90 −0.20 2.10 2.80
−0.50 −0.20 1.70 2.80
−0.20 −0.20 1.40 2.80

0.20 −0.20 1.00 2.80
0.50 −0.20 0.70 2.80
0.90 −0.20 0.30 2.80

−0.50 0.20 1.30 1.20
−0.20 0.20 1.00 1.20

0.20 0.20 0.60 1.20
0.50 0.20 0.30 1.20

−0.20 0.50 0.70 0.00
0.20 0.50 0.30 0.00

Table 4.2: AR(2) Least Squares Estimator Bias× T

18

and least squares time series estimators indicate that the least squares estimators are

adequate even for small sample sizes. Figures 4.1 and 4.2 contain boxplots of the

absolute bias and mean-square error of each simulation. Figure 4.3 contains boxplots

of the absolute bias of one-step-ahead predictions for each simulation.

The least squares method is the worst estimator of the three, but it does not

appear to be significantly worse than the maximum likelihood or the Yule-Walker

method. Increasing the sample size improves the performance of each of the estima-

tors greatly. It is interesting to note that the results from the simulations seem to

indicate that the bias of the estimators is closer to zero than Shaman and Stine (1988)

proposed. However, there is no real difference among the methods with respect to

prediction (see Figure 4.3), and increasing the sample size does not seem to alter the

prediction accuracy.

4.2 Comparison of Modified Cluster Weighted Estimators

There are 12 to 14 parameters to be estimated for each of the models described

in Section 3.2. There are 6 parameters determining the transition probabilities for

all models but the CWM (one intercept parameter, one parameter associated with

the process itself, and one parameter associated with the exogenous process for each

transition probability), 6–8 parameters determining the within-state AR processes

(one variance parameter and one or two autoregressive parameters for each within

state process). Each dot in the boxplots of this section represents the 10% trimmed

sample mean for all simulations that fit the given criteria. The trimmed mean was

used because of some very large outliers (see Figure 4.5–Figure 4.9).

Figure 4.4 shows that all of the methods, except the root-n, did not change

much at all by removing the outliers. The root-n method, however, changed quite

a bit. Because the other methods hardly changed at all, only the root-n method

had extreme outliers. Surprisingly, the bias of the least squares transition parameter

19

Method

A
bs

ol
ut

e
B

ia
s

−1.0

−0.5

0.0

0.5

1.0

LS YW ML

20φ 1

LS YW ML

50φ 1

LS YW ML

10
0

φ 1

20φ 2 50φ 2

−1.0

−0.5

0.0

0.5

1.0

10
0

φ 2

Figure 4.1: Bias for AR Model Parameters

20

Method

M
ea

n−
S

qu
ar

e
E

rr
or

0.0

0.5

1.0

1.5

LS YW ML

20φ 1

LS YW ML

50φ 1

LS YW ML

10
0

φ 1

20φ 2 50φ 2

0.0

0.5

1.0

1.5

10
0

φ 2

Figure 4.2: MSE for AR Model Parameters

21

Method

A
bs

ol
ut

e
B

ia
s

−4

−2

0

2

4

LS YW ML

20

LS YW ML

50

−4

−2

0

2

4

100

Figure 4.3: Absolute Bias for AR Model One-Step-Ahead Predictions

22

estimators changed less than the bias of the maximum likelihood estimators, but all

of the other parameters were about the same for both methods.

4.2.1 State Transition Parameters

Figure 4.5 contains boxplot summaries of the distribution of the 10% trimmed

mean absolute bias of each state transition parameter estimator by sample size, and

Table 4.3 contains the average 10% trimmed mean-square errors. It is evident that

all of the methods generally underestimate the state transition parameters. However,

the least squares method performs more favorably than the other methods.

The mean-square error for the maximum likelihood method is often higher than

the other methods. Also, the mean-square error and the absolute bias do not seem

to be affected by the sample size. An increase of sample size from 50 to 100 does

not improve the estimates of the transition parameters. It is unclear why this is so.

Perhaps the advantages of having more observations to estimate the parameters are

outweighed by the increased difficulty to correctly classify the observations (see Sec-

tion 4.2.4). The problems with classification might be caused by too many transitions

that accompany the increase in sample size, but there is also a problem when there

are too few transitions because there are not enough observations to estimate some

of the transition parameters.

4.2.2 Autoregressive Parameters

Figure 4.6 contains boxplot summaries of the distribution of the 10% trimmed

mean absolute bias of each of the autoregressive parameter estimators by sample

size, and Table 4.4 contains the average 10% trimmed mean-square errors. The

estimators all appear to be equally biased. It is unclear why the intercept parameters

are estimated so much worse than the other parameters.

Surprisingly, the root-n method does significantly worse than the other estima-

23

Biastrim − Bias

M
et

ho
d

CWM

LS

ML

RN

YW

0 100 300

0.03
0.02

0.06
0.03

0.03
0.02

0.08
0.03

β0
0

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

β1
0

0 100 300

0.03
0.02

0.04
0.02

0.03
0.02

0.04
0.03

β2
0

0.01
0

0.03
0.01

0.01
0

1.2
0.04

β0
1

0 100 300

0
0

0
0

0
0

0.11
0

β1
1

0.01
0

0.01
0.01

0.01
0

0.42
0.01

β2
1

CWM

LS

ML

RN

YW

0.01
0.01

0.01
0.01

0
0

0.02
0.01

0.03
0.02

φ0
0

0
0

0
0

1.4
110

0
0

0
0

φ1
0

0
0

0
0

1.9
280

0
0

0
0

φ2
0

0.01
0.01

0.01
0.01

0
0

0.01
0.01

0.03
0.02

φ0
1

0
0

0
0

0.36
2.4

0
0

0
0

φ1
1

0
0

0
0

2.1
0.36

0
0

0.01
0

φ2
1

CWM

LS

ML

RN

YW

0.06
0.04

0.06
0.04

7.2
150

0.08
0.06

0.12
0.08

σ0
2

0 100 300

0.06
0.04

0.07
0.05

0.99
0.25

0.07
0.05

0.12
0.08

σ1
2

0.12
0.13

0.11
0.13

0.37
25

0.11
0.13

0.14
0.14

Prediction
Sample Size

50
100

Figure 4.4: Change in Absolute Bias of Parameters

24

Method

A
bs

ol
ut

e
B

ia
s

−6
−4
−2

0
2

LS YW RN ML

50β 00

LS YW RN ML

10
0

β 00

50β 10

10
0

β 10

−6
−4
−2

0
2

50β 20

10
0

β 20

50β 01

10
0

β 01

−6
−4
−2

0
2

50β 11

10
0

β 11

50β 21

10
0

β 21

Figure 4.5: State Transition Parameter Absolute Bias—boxplots of the 10% trimmed
mean absolute bias by sample size. Note: “0” superscript indicates a parameter for the
probability of the process transitioning from state 0 to state 1, and a “1” superscript
indicates a parameter for the probability of the process remaining in state 1.

25

n parameter LS YW RN ML
50 β0

0 0.20 0.35 0.20 0.46
100 β0

0 0.11 0.17 0.11 0.20
50 β0

1 0.11 0.11 0.11 0.12
100 β0

1 0.10 0.10 0.10 0.10
50 β0

2 0.48 0.60 0.48 0.73
100 β0

2 0.45 0.50 0.45 0.57
50 β1

0 0.63 0.72 0.63 1.00
100 β1

0 0.59 0.64 0.59 0.79
50 β1

1 0.17 0.18 0.17 0.24
100 β1

1 0.18 0.19 0.18 0.23
50 β1

2 0.32 0.44 0.32 0.66
100 β1

2 0.27 0.35 0.27 0.44

Table 4.3: Transition Probability Parameters’ Average Mean-Square Error

tors. It appears that the likelihood is irregular enough that the one-step adjustment

actually converges to a local maximum. However, as with the transition parameter

estimators, the least squares estimator has as small a bias as the other estimators.

The mean-square error for the root-n estimator is, of course, much larger than

that of the other estimators, but the other methods are all very comparable. The

MCWM methods, including the least squares method, estimate the parameters as

well as the CWM method, indicating that the least squares MCWM estimator is

generally sufficient for modeling a nonlinear process. Again, it is interesting to note

that overall the sample size has little effect except that the root-n method actually

performs worse with a larger sample size.

The variance of the autoregressive process is also estimated well by all of the

methods, except the root-n method. In this case, the bias of the root-n method

is several orders of magnitude higher than the other methods. In order to allow

a graphical comparison of the remaining methods, Figure 4.7 does not contain the

data from the root-n method. Again, the reader may access the raw data from the

simulation contained on the included DVD. All of the plotted methods overestimate

26

Method

A
bs

ol
ut

e
B

ia
s

−5
0
5

10

LS YW RN ML CWM

50φ 00

LS YW RN ML CWM

10
0

φ 00

50φ 10

10
0

φ 10

−5
0
5

10

50φ 20

10
0

φ 20

50φ 01

10
0

φ 01

−5
0
5

10

50φ 11

10
0

φ 11

50φ 21

10
0

φ 21

Figure 4.6: Autoregressive Parameter Absolute Bias—boxplots of the 10% trimmed
mean absolute bias by sample size. Note: “0” superscript indicates a parameter for
the autoregressive process in state 0, and a “1” superscript indicates a parameter for
the autoregressive process in state 1.

27

n parameter LS YW RN ML CWM
50 φ0

0 0.16 0.16 0.17 0.19 0.23
100 φ0

0 0.11 0.11 0.53 0.13 0.15
50 φ0

1 0.09 0.09 3.26 0.09 0.09
100 φ0

1 0.09 0.09 3.78 0.08 0.08
50 φ0

2 0.05 0.05 4.51 0.05 0.06
100 φ0

2 0.05 0.05 5.36 0.05 0.05
50 φ1

0 0.16 0.16 0.21 0.19 0.23
100 φ1

0 0.11 0.11 0.59 0.13 0.16
50 φ1

1 0.09 0.09 3.27 0.09 0.09
100 φ1

1 0.09 0.09 3.88 0.08 0.08
50 φ1

2 0.13 0.13 4.39 0.13 0.13
100 φ1

2 0.13 0.13 4.92 0.13 0.14

Table 4.4: Autoregressive Coefficients’ Average Mean-Square Error

the variance, and the least squares method is generally worse than the other methods.

The least squares estimator is more biased than the maximum likelihood estimator,

but the majority of the results for both methods are similar. Also, the average mean-

square errors for the two methods are not very different, (Table 4.5).

4.2.3 One-Step-Ahead Prediction

One of the major goals of time series modeling is prediction. Figure 4.8 indicates

that all of the methods are relatively unbiased. Again, the least squares method

predicts about as well as any of the other methods, and the CWM was no better

or worse than the MCWM. It is interesting to note that all of the methods predict

better with a smaller sample size. It is unclear exactly why this might be, but it

could be caused by failure to correctly classify the t + 1 observation, as suggested by

Figure 4.9.

4.2.4 Misclassification

Because knowledge of the state of the process is often valuable, another im-

portant criterion of method performance is misclassification rate. The non-iterative

28

Method

A
bs

ol
ut

e
B

ia
s

0

5

10

15

20

LS YW ML CWM

50σ 02

LS YW ML CWM

10
0

σ 02

50σ 12

10
0

σ 12

Figure 4.7: Variance Parameter Absolute Biasboxplots of the 10% trimmed mean
absolute bias by sample size. Note: “0” superscript indicates a parameter for the
autoregressive process in state 0, and a “1” superscript indicates a parameter for the
autoregressive process in state 1.

29

Method

A
bs

ol
ut

e
B

ia
s

−30

−20

−10

0

10

20

LS YW RN ML CWM

50

LS YW RN ML CWM

100

Figure 4.8: One-Step Ahead Prediction Absolute Bias—boxplots of the 10% trimmed
mean absolute bias by sample size.

30

n parameter LS YW RN ML CWM
50 σ2

0 0.27 0.26 46.18 0.30 0.46
100 σ2

0 0.25 0.23 1742.73 0.27 0.46
50 σ2

1 0.27 0.35 49.07 0.30 0.49
100 σ2

1 0.23 0.32 1283.40 0.26 0.48

Table 4.5: Variance Parameters’ Average Mean-Square Error

MCWM methods determine the state of an observation by the k-means method.

The maximum likelihood methods, CWM and MCWM, determine the state of an

observation by estimating the probability of an observation being in a state (see

Section 3.2.2).

For the MCWM, the probability of an observation belonging to a state is a

function of the previous observations from the nonlinear series and the exogenous

variable. For the CWM, the probability of an observation belonging to a state for the

CWM is a function of that observation only. As mentioned previously, this prevents

the CWM from predicting future state membership. For the purpose of calculating

the misclassification rate, the state of an observation is the state with the highest

probability.

Figure 4.9 shows that all of the methods had about the same misclassification

rate overall. Of course, the three non-iterative methods’ success is merely the success

of the k-means method. Comparing the mean misclassification rates in Table 4.6, the

CWM is slightly worse than the other methods. The MCWM and the CWM maxi-

mum likelihood methods had lower misclassification rates in the upper tail than the

three non-iterative methods, but the improvement does not appear to be substantial.

The MCWM maximum likelihood method had a slightly lower misclassification in the

upper tail than that of the CWM but, again, it was not substantially lower. Overall,

the MCWM method classified the greatest number of observations correctly, but the

non-iterative methods were almost equally as accurate on average. As mentioned pre-

31

viously, it is interesting that all of the methods had slightly higher misclassification

rates in the upper tail with the larger sample size.

n LS YW RN ML CWM
50 0.028 0.028 0.028 0.026 0.034
100 0.028 0.028 0.028 0.023 0.029

Table 4.6: Average Misclassification Rate

32

Method

M
is

cl
as

si
fic

at
io

n
R

at
e

0.0

0.1

0.2

0.3

0.4

LS YW RN ML CWM

50

LS YW RN ML CWM

100

Figure 4.9: Misclassification Rate—boxplots of the misclassification rate by sample
size.

33

5. CONCLUSIONS

In all of the previous figures the least squares method appears to perform nearly

as well or better than the MCWM, CWM, root-n, and Yule-Walker methods. Along

with the results of the simulation comparing time series estimators, showing that

least squares estimation is a viable alternative to maximum likelihood estimators for

first- and second-order models, this result indicates that attacking the problem of

estimating MCWM’s piecemeal with a least squares approach is perfectly acceptable.

In fact, with the guarantee of only one iteration, it is much more desirable in real-time

applications.

However, none of the methods of estimating the MCWM appear to perform

better than the CWM. The MCWM is comparable to the CWM in modeling a non-

linear process, but also allows prediction of future observations’ states. Because of

this additional benefit, the MCWM is recommended as a viable alternative to the

CWM, especially when the state of the observations or the method in which the

process changes state is of interest.

Areas of further study could include how the MCWM performs when adjusted

for autocorrelation structure and probability of transition from state to state, to

what extent the states can overlap before the parameters can no longer be adequately

estimated, and how to estimate initial states more accurately.

34

BIBLIOGRAPHY

Alpargu, G. and Dutilleul, P. (2001), “Efficiency Analysis of Ten Estimation Pro-

cedures for Quantitative Linear Models with Autocorrelated Errors,” Journal of

Statistical Computation and Simulation, 69, 257–275.

Anandamohan, G. and Ram, R. (2005), “Cluster-weighted Modeling: Estimation of

the Lyapunov Spectrum in Driven Systems,” Physical Review E, 71, 016224–1–

016224–6.

Azzalini, A. (1982), “Approximate Filtering of Parameter Driven Processes,” Journal

of Time Series Analysis, 3, 219–223.

Box, G. E. P., Jenkins, G. N., and Reinsel, G. C. (1994), Time Series Analysis,

Englewood Cliffs, NJ: Prentice Hall, 3rd ed.

Brockwell, P. J. and Davis, R. A. (1983), Time Series: Theory and Methods, New

York, NY: Wiley, 2nd ed.

Cai, Z., Fan, J., and Yao, Q. (2000), “Functional-Coefficient Regression Models for

Nonlinear Time Series,” Journal of the American Statistical Association, 95, 941–

956.

Cappé, O., Moulines, E., and Rydén, T. (2005), Inference in Hidden Markov Models,

New York, NY: Springer.

Chen, R. and Tsay, R. S. (1993), “Functional-Coefficient Autoregressive Models,”

Journal of the American Statistical Association, 88, 298–308.

Cox, D. R. (1981), “Statistical Analysis of Time Series: Some Recent Developments,”

Scandinavian Journal of Statistics, 8, 93–108.

35

Fan, J. and Yao, Q. (2003), Nonlinear Time Series: Nonparametric and Parametric

Methods, New York, NY: Springer-Verlag.

Ferreira, F., Francisco, G., Machado, B., and Mrganandam, P. (2003), “Time Se-

ries Analysis for Minority Game Simulations of Financial Markets,” Physica A:

Statistical Mechanics and Its Applications, 321, 619–632.

Gershenfeld, N., Schoner, B., and Metois, E. (1999), “Cluster-weighted Modeling for

Time-Series Analysis,” Nature, 397, 329–332.

Granger, C. W. J. and Teräsvirta, T. (1993), Modeling Nonlinear Economic Relation-

ships, Oxford, U.K.: Oxford University Press.

Haggan, V. and Ozaki, T. (1981), “Modeling Nonlinear Vibrations Using an

Amplitude-Dependent Autoregressive Time Series Model,” Biometrika, 68, 189–

196.

Hamilton, J. D. (1989), “A New Approach to the Economic Analysis of Nonstationary

Time Series and the Business Cycle,” Econometrica, 57, 357–384.

Harvill, J. L. and Ray, B. K. (2005), “A Note on Multi-Step Forecasting with Func-

tional Coefficient Autoregressive Models,” International Journal of Forecasting, 21,

717–727.

He, Z., Pei, W., Yang, L., Hull, S. S., and Cheung, J. Y. (2002), “Modeling and Char-

acterizing Deterministic Component of Variability by Cluster-Weighted Filtering,”

Internaional Journal of Bifurcation and Chaos, 12, 2967–2976.

Keenan, D. M. (1982), “A Time Series Analysis of Binary Data,” Journal of the

American Statistical Association, 77, 816–821.

Lehmann, E. L. (2001), Elements of Large-Sample Theory, New York, NY: Springer-

Verlag.

36

Ozaki, T. (1982), “The Statistical Analysis of Perturbed Limit Cycle Processes Using

Nonlinear Time Series Models,” Journal of Time Series Analysis, 3, 29–41.

Pandit, S. M. and Wu, S.-M. (1983), Time Series and Systems Analysis, with Appli-

cations, New York, NY: Wiley.

R Development Core Team (2006), R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-

900051-07-0.

Schoner, B., Cooper, C., Douglas, C., and Gershenfeld, N. (1999), “Data-Driven

Modeling of Acoustical Instruments,” Journal of New Music Research, 28, 81–89.

Shaman, P. and Stine, R. A. (1988), “The Bias of Autoregressive Coefficient Estima-

tors,” Journal of the American Statistical Association, 83.

Spitzer, J. J. (1979), “Small-Sample Properties of Nonlinear Least Squares and Max-

imum Likelihood Estimators in the Context of Autocorrelated Errors,” Journal of

the American Statistical Association, 74, 41–47.

Tong, H. (1990), Nonlinear Time Series: A Dynamical System Approach, New York,

NY: Oxford University Press.

Wong, A. C. S. and Chan, W.-S. (2005), “Mixture Gaussian Time Series Modeling of

Long-Term Market Returns,” North American Actuarial Journal, 9, 83–94.

Zeger, S. L. (1988), “A Regression Model for Time Series Counts,” Biometrika, 75,

621–629.

37

A. COMPUTER CODE

This appendix contains the R code used in the simulations, including code used
to estimate the parameters of the MCWM and CWM using the various methods.

A.1 Simulation Code

Function for generating simulated data sets

source(’sim_nltime.R’)

Function for fitting MCWM model with EM algorithm

source(’nltime_em.R’)

Function for fitting CWM model with EM algoritm

source(’nltime_clust.R’)

Function for fitting MCWM model with least squares and weighted

least squares

source(’nltime_ls.R’)

Function for adjusting least squares estimates with Yule-Walker

equations

source(’nltime_yw.R’)

Function for adjusting least squares estimates with Root-n

adjustment

source(’nltime_rootn.R’)

Function for adjusting time series for shock

source(’nltime_adjust.R’)

Function for obtaining predictions from non-linear time series model

source(’nltime_predict.R’)

Wrapper function for other model fitting functions

source(’nltime.R’)

Miscellaneous functions primarily used for this simulation

specifically

source(’misc_func.R’)

Create matrices and vectors of values to be used in the

simulation for all parameters

beta0<-matrix(c(1.15,1.7,1.15,1.7,1.73,2.55),2)

beta1<-matrix(c(.58,.85,.58,.85,.87,1.28),2)

phi0 <- -3

phi1 <- 3

cand.phi <- c(-0.9,-0.5,-0.2,0.2,0.5,0.9)

cand.phi <- as.matrix(cand.phi)

cand.phi2<-as.matrix(expand.grid(phi1=cand.phi,phi2=cand.phi))

cand.phi2<-

38

cand.phi2[apply(matrix(apply(matrix(apply(cbind(1,-cand.phi2),

1,polyroot),2),2,Mod),2),2,min)>1,]

cand.phi<-as.matrix(rbind(cbind(cand.phi,NA),cand.phi2))

n <- c(50,100)

method <- c(’ls’,’rootn’,’yw’,’em’,’clust’)

method.f <- factor(method,levels=c(’ls’,’rootn’,’yw’,’em’,’clust’))

method.f<-as.numeric(method.f)

nsim<-1000

Combine all combinations of parameters into a data frame of all

combinations of indexes

sim.mat<-expand.grid(beta0=1:nrow(beta0),beta1=1:nrow(beta1),

phi0=1:nrow(cand.phi),phi1=1:nrow(cand.phi),n=1:length(n))

Create connections for all of the output vectors

out.connection<-file(’nltimedata_temp.dat’,’w’)

Main Simulation

for (i in 1:nrow(sim.mat))

{

Determine order of the series in both states

ar0.order<-sum(!is.na(cand.phi[sim.mat[i,’phi0’],]))

ar1.order<-sum(!is.na(cand.phi[sim.mat[i,’phi1’],]))

Create a temporary variable telling the data simulator to create an

extra observation for use in determining prediction bias

temp.n<-n[sim.mat[i,’n’]]+1

Repeat calculations for each settings nsim times

for (j in 1:nsim)

{

Create list of 5 data objects each simulated under the same

conditions, one for each estimation method

out<-replicate(length(method),sim.nltime(beta0[sim.mat[i,’beta0’],],

beta1[sim.mat[i,’beta1’],],c(phi0,cand.phi[sim.mat[i,’phi0’],]),

c(phi1,cand.phi[sim.mat[i,’phi1’],]),1,1,n[sim.mat[i,’n’]]+1),

simplify=FALSE)

Use kmeans to determine (initial) groups, assuming first or first

and second observations are known

grp<-lapply(out,grp.create)

39

Adjust data for transition shock

new.data<-mapply(data.adjust,out,grp,SIMPLIFY=FALSE)

Fit each method to one set of data

out.nl<-mapply(nl.fit,method,new.data,out,grp,SIMPLIFY=FALSE)

Perform one-step-ahead prediction for each data set

out.pred<-mapply(nl.predict,new.data,out,out.nl,method!="clust",

SIMPLIFY=FALSE)

Extract all parameter estimates in preparation for output

tmp<-unlist(out.nl)

tmp<-tmp[grep(’estimates’,names(tmp))]

Create vectors of bias for each parameter and prediction

and misclassification rate

beta00.bias<-c(tmp[grep(’beta00’,names(tmp))],NA)-

beta0[sim.mat[i,’beta0’],][1]

beta01.bias<-c(tmp[grep(’beta01’,names(tmp))],NA)-

beta0[sim.mat[i,’beta0’],][2]

beta02.bias<-c(tmp[grep(’beta02’,names(tmp))],NA)-

beta0[sim.mat[i,’beta0’],][3]

beta10.bias<-c(tmp[grep(’beta10’,names(tmp))],NA)-

beta1[sim.mat[i,’beta1’],][1]

beta11.bias<-c(tmp[grep(’beta11’,names(tmp))],NA)-

beta1[sim.mat[i,’beta1’],][2]

beta12.bias<-c(tmp[grep(’beta12’,names(tmp))],NA)-

beta1[sim.mat[i,’beta1’],][3]

phi00.bias<-tmp[grep(’phi00’,names(tmp))]-phi0

phi01.bias<-tmp[grep(’phi01’,names(tmp))]-

cand.phi[sim.mat[i,’phi0’],][1]

phi02.bias<-ifelse(rep(ar0.order,5)==2,

tmp[grep(’phi02’,names(tmp))],rep(NA,5))-

cand.phi[sim.mat[i,’phi0’],][2]

phi10.bias<-tmp[grep(’phi10’,names(tmp))]-phi1

phi11.bias<-tmp[grep(’phi11’,names(tmp))]-

cand.phi[sim.mat[i,’phi1’],][1]

phi12.bias<-ifelse(rep(ar1.order,5)==2,

tmp[grep(’phi02’,names(tmp))],rep(NA,5))-

cand.phi[sim.mat[i,’phi1’],][2]

sigma0.bias<-tmp[grep(’sigma0’,names(tmp))]-1

sigma1.bias<-tmp[grep(’sigma1’,names(tmp))]-1

predbias<-mapply(nl.predbias,out.pred,out)

misclass<-mapply(nl.misclass,out.nl,out)

Create vector indexing what set of settings the data were simulated

under

setting<-rep(i,5)

40

cat(’setting = ’,i,’iteration = ’,j,’\n’)

Write each vector to a binary file

output<-cbind(setting,method.f,beta00.bias,beta01.bias,beta02.bias,

beta10.bias,beta11.bias,beta12.bias,phi00.bias,phi01.bias,phi02.bias,

phi10.bias,phi11.bias,phi12.bias,sigma0.bias,sigma1.bias,predbias,

misclass)

write(t(output),out.connection,18,TRUE)

}

}

Close the connection for each file

close(out.connection)

A.2 Data Simulation Code

sim.nltime<-function(beta0,beta1,phi0,phi1,sigma0,sigma1,n)

{

phi0<-phi0[!is.na(phi0)]

phi1<-phi1[!is.na(phi1)]

p0<-length(phi0)-1

p1<-length(phi1)-1

x<-rep(NA,n+max(p0,p1))

k <- rep(NA,n+max(p0,p1))

y <- rnorm(n+max(p0,p1))

p<- .5

k[1] <- rbinom(1,1,p)

for (i in 1:(n-1+max(p0,p1))){

if (k[i]==0){

mu<-ifelse(i<=p0,0,embed(x[(i-p0):(i-1)],p0)%*%phi0[-1])

x[i]<-rnorm(1,mu,sqrt(sigma0))

p<-exp(beta0[1]+beta0[2]*x[i]+beta0[3]*y[i])/

(1+exp(beta0[1]+beta0[2]*x[i]+beta0[3]*y[i]))

k[i+1]<-rbinom(1,1,p)

} else {

mu<-ifelse(i<=p1,0,embed(x[(i-p1):(i-1)],p1)%*%phi1[-1])

41

x[i]<-rnorm(1,mu,sqrt(sigma1))

p<-exp(beta1[1]+beta1[2]*x[i]+beta0[3]*y[i])/

(1+exp(beta1[1]+beta1[2]*x[i]+beta0[3]*y[i]))

k[i+1]<-rbinom(1,1,p)

}

}

x[n+max(p0,p1)]<-ifelse(k[n+max(p0,p1)]==0,

rnorm(1,embed(x[(i-p0):(i-1)],p0)%*%phi0[-1],sqrt(sigma0)),

rnorm(1,embed(x[(i-p1):(i-1)],p1)%*%phi1[-1],sqrt(sigma1)))

x<-x[-1:-max(p0,p1)]

y<-y[-1:-max(p0,p1)]

k<-k[-1:-max(p0,p1)]

x[k==0]<-x[k==0]+phi0[1]

x[k==1]<-x[k==1]+phi1[1]

return(list(x=x,y=y,k=k))

}

A.3 MCWM: Maximum Likelihood Method

nltime.em<-function(x,x2,k,param=NULL,ar0.order,ar1.order,

reltol=sqrt(.Machine$double.eps))

{

source(’lik_em.R’)

if(is.null(param)){

param<-nltime.ls(x,x2,k,ar0.order,ar1.order)$estimates

}

max.order<-max(ar0.order,ar1.order)

n<-length(x)

x2<-x2[-(n-max.order+1):-n]

X<-embed(x,max.order+1)

y<-X[,1]

X0<-cbind(1,X[,2:(ar0.order+1)])

X1<-cbind(1,X[,2:(ar1.order+1)])

X.b<-cbind(1,X[,2],x2)

beta0<-param[1:3]

beta1<-param[4:6]

phi0<-param[1:(ar0.order+1)+6]

phi1<-param[1:(ar1.order+1)+(ar0.order+7)]

42

sigma0.hat<-param[length(param)-1]

sigma1.hat<-param[length(param)]

old.lik<- -100000

k.hat<-rep(NA,nrow(X)+max.order)

k.hat[1:max.order]<-k[1:max.order]

for (i in 1:100){

for (j in 1:nrow(X))

{

cp0 <- lik.func(X0[j,]%*%phi0,X1[j,]%*%phi1,X.b[j,]%*%beta0,

X.b[j,]%*%beta1,sigma0.hat,sigma1.hat,y[j],0,k.hat[j])

cp1 <- lik.func(X0[j,]%*%phi0,X1[j,]%*%phi1,X.b[j,]%*%beta0,

X.b[j,]%*%beta1,sigma0.hat,sigma1.hat,y[j],1,k.hat[j])

deny <-cp0+cp1

new.cp1 <- cp1/deny

k.hat[j+max.order] <- new.cp1

}

W1<-diag(k.hat[-1:-max.order])

W0<-diag(1-k.hat[-1:-max.order])

phi0<-solve(t(X0)%*%W0%*%X0)%*%t(X0)%*%W0%*%y

phi1<-solve(t(X1)%*%W1%*%X1)%*%t(X1)%*%W1%*%y

pred0<-X0%*%phi0

pred1<-X1%*%phi1

res0<-y-pred0

res1<-y-pred1

sigma0.hat<-sum(diag(W0)*res0^2)/sum(diag(W0))

sigma1.hat<-sum(diag(W1)*res1^2)/sum(diag(W1))

W1.b<-diag(k.hat[(1:max.order+nrow(X))*-1])

W0.b<-diag(1-k.hat[(1:max.order+nrow(X))*-1])

theta0<-exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))

theta0[sapply(theta0,identical,1)]<-

theta0[sapply(theta0,identical,1)]-

sqrt(.Machine$double.eps)

theta1<-exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))

theta1[sapply(theta1,identical,1)]<-

43

theta1[sapply(theta1,identical,1)]-

sqrt(.Machine$double.eps)

logit.theta0<-X.b%*%beta0

logit.theta1<-X.b%*%beta1

Y0<-matrix(logit.theta0+(diag(W1)-theta0)/theta0/(1-theta0))

Y1<-matrix((logit.theta1+(diag(W1)-theta1)/theta1/(1-theta1)))

W0.b<-diag(c(theta0*(1-theta0)))%*%W0.b

W1.b<-diag(c(theta1*(1-theta1)))%*%W1.b

beta0<-solve(t(X.b)%*%W0.b%*%X.b)%*%t(X.b)%*%W0.b%*%Y0

beta1<-solve(t(X.b)%*%W1.b%*%X.b)%*%t(X.b)%*%W1.b%*%Y1

param<-c(beta0,beta1,phi0,phi1,sigma0.hat,sigma1.hat)

names(param)<-c(paste(rep(c(’beta0’,’beta1’),each=3),0:2,sep=’’,

paste(’phi0’,0:ar0.order,sep=’’),

paste(’phi1’,0:ar1.order,sep=’’),’sigma0’,’sigma1’)

lik<-sum(log(lik.func(X0%*%phi0,X1%*%phi1,X.b%*%beta0,X.b%*%beta1,

sigma0.hat,sigma1.hat,y,diag(W1),diag(W1.b))))

if (lik - old.lik < reltol *(abs(lik) + reltol))

{

break

}

old.lik<-lik

}

return(list(estimates=param,group=round(k.hat),likelihood=lik))

}

A.3.1 MCWM: ML—lik.func

lik.func<-function(mu0,mu1,log.odd0,log.odd1,sigma0,sigma1,y,kt,ktm1)

{

pi0<-exp(log.odd0)/(1+exp(log.odd0))

pi1<-exp(log.odd1)/(1+exp(log.odd1))

((sigma0)^-0.5*exp(-(y-mu0)^2/2/sigma0))^(1-kt)*

((sigma1)^-0.5*exp(-(y-mu1)^2/2/sigma1))^kt*

(pi0^kt*(1-pi0)^(1-kt))^(1-ktm1)*(pi1^kt*(1-pi1)^(1-kt))^ktm1

}

A.4 CWM: Maximum Likelihood Method

nltime.clust<-function(x,x2=NULL,k,param=NULL,ar0.order=1,ar1.order=1,

44

reltol=sqrt(.Machine$double.eps))

{

source(’log_lik_clust.R’

x2<-NULL

n<-length(x)

p.k <- mean(k)

X<-embed(x,max(ar0.order,ar1.order)+1)

y<-X[,1]

X0<-cbind(1,X[,2:(ar0.order+1)])

X1<-cbind(1,X[,2:(ar1.order+1)])

if(is.null(param)){

param<-nltime.ls(x,NULL,k,ar0.order,ar1.order)$estimates

param<-param[-1:-4]

}

phi0<-param[1:(ar0.order+1)]

phi1<-param[(ar0.order+2):(ar0.order+ar1.order+2)]

pred0<-X0%*%phi0

pred1<-X1%*%phi1

sigma0<-param[length(param)-1]

sigma1<-param[length(param)]

old.lik<- -100000

for (i in 1:100){

cp0.k <- dnorm(y,pred0,sqrt(sigma0))*(1-p.k)

cp1.k <- dnorm(y,pred1,sqrt(sigma1))*p.k

deny <- cp0.k+cp1.k

cp0.k <- ifelse(is.infinite(cp0.k) & is.infinite(deny),1,cp0.k/deny)

cp1.k <- 1-cp0.k

p.k <- mean(cp1.k)

W0<-diag(cp0.k)

W1<-diag(cp1.k)

phi0<-solve(t(X0)%*%W0%*%X0)%*%t(X0)%*%W0%*%y

phi1<-solve(t(X1)%*%W1%*%X1)%*%t(X1)%*%W1%*%y

pred0<-X0%*%phi0

pred1<-X1%*%phi1

45

res0<-y-pred0

res1<-y-pred1

sigma0<-sum(cp0.k*res0^2)/sum(cp0.k)

sigma1<-sum(cp1.k*res1^2)/sum(cp1.k)

param<-c(phi0,phi1,sigma0,sigma1)

names(param)<-c(paste(’phi0’,0:ar0.order,sep=’’),

paste(’phi1’,0:ar1.order,sep=’’),’sigma0’,’sigma1’)

lik<-clust.log.lik(phi0,phi1,sigma0,sigma1,X0,X1,y,p.k)

if (lik - old.lik < reltol*(abs(lik) + reltol)) break

old.lik<-lik

}

return(list(estimates=param,

group=round(c(k[1:max(ar0.order,ar1.order)],

cp1.k)),likelihood=lik,p.k=p.k))

}

A.4.1 CWM: ML—clust.log.lik

clust.log.lik <- function(phi0.hat,phi1.hat,sigma0.hat,sigma1.hat,

X0,X1,y,p){

mu0<-X0%*%phi0.hat

mu1<-X1%*%phi1.hat

sum(log((1-p)*dnorm(y,mu0,sqrt(sigma0.hat))+

p*dnorm(y,mu1,sqrt(sigma1.hat))))

}

A.5 MCWM: Least Squares Method

nltime.ls<-function(x,x2,k,ar0.order=1,ar1.order=1)

{

All parameters are estimate from the adjusted X values

n<-length(x)

x2<-x2[-(n-max(ar0.order,ar1.order)+1):-n]

X<-embed(x,max(ar0.order,ar1.order)+1)

y<-X[,1]

X0<-cbind(1,X[,2:(ar0.order+1)])

46

X1<-cbind(1,X[,2:(ar1.order+1)])

X.b<-cbind(1,X[,2],x2)

param <- rep(NA,10)

Estimate beta parameters for probabability of jumping

W1.b <- diag(k[-(n-max(ar0.order,ar1.order)+1):-n])

W0.b <- diag(1-k[-(n-max(ar0.order,ar1.order)+1):-n])

beta0<-solve(t(X.b)%*%W0.b%*%X.b)%*%t(X.b)%*%W0.b%*%

k[-1:-max(ar0.order,ar1.order)]

beta1<-solve(t(X.b)%*%W1.b%*%X.b)%*%t(X.b)%*%W1.b%*%

k[-1:-max(ar0.order,ar1.order)]

theta0<-exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))

theta1<-exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))

logit.theta0<-X.b%*%beta0

logit.theta1<-X.b%*%beta1

Y0<-matrix(logit.theta0+(k[-1:-max(ar0.order,ar1.order)]-theta0)/

theta0/(1-theta0))

Y1<-matrix((logit.theta1+(k[-1:-max(ar0.order,ar1.order)]-theta1)/

theta1/(1-theta1)))

W0.b<-diag(c(theta0*(1-theta0)))%*%

diag(1-k[-(n-max(ar0.order,ar1.order)+1):-n])

W1.b<-diag(c(theta1*(1-theta1)))%*%

diag(k[-(n-max(ar0.order,ar1.order)+1):-n])

beta0<-solve(t(X.b)%*%W0.b%*%X.b)%*%t(X.b)%*%W0.b%*%Y0

beta1<-solve(t(X.b)%*%W1.b%*%X.b)%*%t(X.b)%*%W1.b%*%Y1

Estimate phi parameters for local time series

W1<-diag(k[-1:-max(ar0.order,ar1.order)])

W0<-diag(1-k[-1:-max(ar0.order,ar1.order)])

phi0<-solve(t(X0)%*%W0%*%X0)%*%t(X0)%*%W0%*%y

phi1<-solve(t(X1)%*%W1%*%X1)%*%t(X1)%*%W1%*%y

pred0<-X0%*%phi0

pred1<-X1%*%phi1

res0<-y-pred0

res1<-y-pred1

Estimate variance for local time series

sigma0.hat<-sum(diag(W0)*res0^2)/sum(diag(W0))

sigma1.hat<-sum(diag(W1)*res1^2)/sum(diag(W1))

47

param<-c(beta0,beta1,phi0,phi1,sigma0.hat,sigma1.hat)

name.length<-ifelse(identical(x2,NULL),2,3)

names(param)<-c(paste(rep(c(’beta0’,’beta1’),each=name.length),

0:(name.length-1),sep=’’),paste(’phi0’,0:ar0.order,sep=’’),

paste(’phi1’,0:ar1.order,sep=’’),’sigma0’,’sigma1’)

return(list(estimates=param,group=k))

}

A.6 MCWM: Yule-Walker Method

nltime.yw<-function(x,x2,k,ar0.order=1,ar1.order=1)

{

All parameters are estimate from the adjusted X values

n<-length(x)

x2<-x2[-(n-max(ar0.order,ar1.order)+1):-n]

X<-embed(x,max(ar0.order,ar1.order)+1)

y<-X[,1]

X0<-cbind(1,X[,2:(ar0.order+1)])

X1<-cbind(1,X[,2:(ar1.order+1)])

X.b<-cbind(1,X[,2],x2)

param <- rep(NA,10)

Estimate beta parameters for probabability of jumping

W1.b <- diag(k[-(n-max(ar0.order,ar1.order)+1):-n])

W0.b <- diag(1-k[-(n-max(ar0.order,ar1.order)+1):-n])

beta0<-solve(t(X.b)%*%W0.b%*%X.b)%*%t(X.b)%*%W0.b%*%

k[-1:-max(ar0.order,ar1.order)]

beta1<-solve(t(X.b)%*%W1.b%*%X.b)%*%t(X.b)%*%W1.b%*%

k[-1:-max(ar0.order,ar1.order)]

theta0<-exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))

theta1<-exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))

logit.theta0<-X.b%*%beta0

logit.theta1<-X.b%*%beta1

Y0<-matrix(logit.theta0+(k[-1:-max(ar0.order,ar1.order)]-theta0)/

theta0/(1-theta0))

Y1<-matrix((logit.theta1+(k[-1:-max(ar0.order,ar1.order)]-theta1)/

theta1/(1-theta1)))

W0.b<-diag(c(theta0*(1-theta0)))%*%

diag(1-k[-(n-max(ar0.order,ar1.order)+1):-n])

48

W1.b<-diag(c(theta1*(1-theta1)))%*%

diag(k[-(n-max(ar0.order,ar1.order)+1):-n])

beta0<-solve(t(X.b)%*%W0.b%*%X.b)%*%t(X.b)%*%W0.b%*%Y0

beta1<-solve(t(X.b)%*%W1.b%*%X.b)%*%t(X.b)%*%W1.b%*%Y1

Estimate phi parameters for local time series

acov.mat<-matrix(NA,2,max(ar0.order,ar1.order)+1)

mean.vec<-unique(ave(x,k)[order(k)])

for (i in 1:2){

for (h in 0:max(ar0.order,ar1.order)){

acov.mat[i,h+1]<-sum((x[(h+1):n][k[1:(n-h)]==(i-1)]-mean.vec[i])*

(x[1:(n-h)][k[1:(n-h)]==(i-1)]-mean.vec[i]))/

sum(k[1:(n-h)]==(i-1))

}

}

acor.mat<-sweep(acov.mat,1,acov.mat[,1],’/’)

if (ar0.order==1) phi0 <- acor.mat[1,2]

else phi0 <- c(acor.mat[1,2]*(1-acor.mat[1,3]),

acor.mat[1,3]-acor.mat[1,2]^2)/(1-acor.mat[1,2]^2)

if (ar1.order==1) phi1 <- acor.mat[2,2]

else phi1 <- c(acor.mat[2,2]*(1-acor.mat[2,3]),

acor.mat[2,3]-acor.mat[2,2]^2)/(1-acor.mat[2,2]^2)

sigma0<-acov.mat[1,1]*(1-matrix(acor.mat[1,1:ar0.order+1],nrow=1)%*%

matrix(phi0))

sigma1<-acov.mat[2,1]*(1-matrix(acor.mat[2,1:ar1.order+1],nrow=1)%*%

matrix(phi1))

phi0<-c(mean.vec[1],phi0)

phi1<-c(mean.vec[2],phi1)

param<-c(beta0,beta1,phi0,phi1,sigma0,sigma1)

names(param)<-c(paste(rep(c(’beta0’,’beta1’),each=3),0:2,sep=’’),

paste(’phi0’,0:ar0.order,sep=’’),paste(’phi1’,0:ar1.order,sep=’’),

’sigma0’,’sigma1’)

return(list(estimates=param,group=k))

}

A.7 MCWM: Root-n Method

nltime.rootn<-function(x,x2,k,param=NULL,ar0.order,ar1.order,

reltol=sqrt(.Machine$double.eps))

49

{

source(’information3.R’)

source(’score4.R’)

source(’lik_em.R’)

if(is.null(param)){

param<-nltime.ls(x,x2,k,ar0.order,ar1.order)$estimates

}

max.order<-max(ar0.order,ar1.order)

n<-length(x)

x2<-x2[-(n-max.order+1):-n]

X<-embed(x,max.order+1)

y<-X[,1]

X0<-cbind(1,X[,2:(ar0.order+1)])

X1<-cbind(1,X[,2:(ar1.order+1)])

X.b<-cbind(1,X[,2],x2)

beta0<-param[1:3]

beta1<-param[4:6]

phi0<-param[1:(ar0.order+1)+6]

phi1<-param[1:(ar1.order+1)+(ar0.order+7)]

sigma0<-param[length(param)-1]

sigma1<-param[length(param)]

lik<-sum(log(lik.func(X0%*%phi0,X1%*%phi1,X.b%*%beta0,X.b%*%beta1,

sigma0,sigma1,y,k[-1:-max.order],k[-(n-max.order+1):-n])))

s<-score(beta0,beta1,phi0,phi1,sigma0,sigma1,X.b,X0,X1,y,

k[-1:-max.order],k[-(n-max.order+1):-n])

I<-information(beta0,beta1,phi0,phi1,sigma0,sigma1,X.b,X0,X1,y,

k[-1:-max.order],k[-(n-max.order+1):-n])

new.param<-param+s%*%solve(I)

colnames(new.param)<-

c(paste(rep(c(’beta0’,’beta1’),each=3),0:2,sep=’’),

paste(’phi0’,0:ar0.order,sep=’’),paste(’phi1’,0:ar1.order,sep=’’),

’sigma0’,’sigma1’)

return(list(estimates=new.param[1,],group=k))

}

A.7.1 MCWM: Root-n—information

information <- function(beta0,beta1,phi0,phi1,sigma0,sigma1,X.b,X0,

X1,y,kt,ktm1){

50

#I11

i11<-sum((1-ktm1)*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))^2)

#I22

i22<-sum((1-ktm1)*X.b[,2]^2*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))^2)

#I33

i33<-sum((1-ktm1)*X.b[,3]^2*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))^2)

#I44

i44<-sum(ktm1*exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))^2)

#I55

i55<-sum(ktm1*X.b[,2]^2*exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))^2)

#I66

i66<-sum(ktm1*X.b[,3]^2*exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))^2)

#I77

i77<-sum(1-kt)/sigma0

#I88

i88<-sum((1-kt)*X0[,2]^2)/sigma0

#I99

if(ncol(X0)<3) i99<-NULL else i99<-sum((1-kt)*X0[,3]^2)/sigma0

#I1010

i1010<-sum(kt)/sigma1

#I1111

i1111<-sum(kt*X1[,2]^2)/sigma1

#I1212

if(ncol(X1)<3) i1212<-NULL else i1212<-sum(kt*X1[,3]^2)/sigma1

#I1313

i1313<-sum(-(1-kt)/2/sigma0^2+(y-X0%*%phi0)^2/sigma0^3)

#I1414

i1414<-sum(-kt/2/sigma1^2+(y-X1%*%phi1)^2/sigma1^3)

#I12

i12<-sum((1-ktm1)*X.b[,2]*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))^2)

51

#I13

i13<-sum((1-ktm1)*X.b[,3]*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0))^2)

#I14-I112

i14<-i15<-i16<-i17<-i18<-0

if(ncol(X0)<3) i19<-NULL else i19<-0

i110<-i111<-0

if(ncol(X1)<3) i112<-NULL else i112<-0

i113<-i114<-0

#I23

i23<-sum((1-ktm1)*X.b[,2]*X.b[,3]*exp(X.b%*%beta0)/

(1+exp(X.b%*%beta0))^2)

#I24-I214

i24<-i25<-i26<-i27<-i28<-0

if(ncol(X0)<3) i29<-NULL else i29<-0

i210<-i211<-0

if(ncol(X1)<3) i212<-NULL else i212<-0

i213<-i214<-0

#I34-I314

i34<-i35<-i36<-i37<-i38<-0

if(ncol(X0)<3) i39<-NULL else i39<-0

i310<-i311<-0

if(ncol(X1)<3) i312<-NULL else i312<-0

i313<-i314<-0

#I45

i45<-sum(ktm1*X.b[,2]*exp(X.b%*%beta1)/(1+exp(X.b%*%beta1))^2)

#I45-I414

i45<-i46<-i47<-i48<-0

if(ncol(X0)<3) i49<-NULL else i49<-0

i410<-i411<-0

if(ncol(X1)<3) i412<-NULL else i412<-0

i413<-i414<-0

#I56

i56<-sum(ktm1*X.b[,2]*X.b[,3]*exp(X.b%*%beta1)/

(1+exp(X.b%*%beta1))^2)

#I57-I514

i57<-i58<-0

52

if(ncol(X0)<3) i59<-NULL else i59<-0

i510<-i511<-0

if(ncol(X1)<3) i512<-NULL else i512<-0

i513<-i514<-0

#I67-I614

i67<-i68<-0

if(ncol(X0)<3) i69<-NULL else i69<-0

i610<-i611<-0

if(ncol(X1)<3) i612<-NULL else i612<-0

i613<-i614<-0

#I78

i78<-sum((1-kt)*X0[,2])/sigma0

#I79

if(ncol(X0)<3) i79<-NULL else i79<-sum((1-kt)*X0[,3])/sigma0

#I710-I712

i710<-i711<-0

if(ncol(X1)<3) i712<-NULL else i712<-0

#I713

i713<-sum((1-kt)*(y-X0%*%phi0))/sigma0^2

#I714

i714<-0

#I89

if(ncol(X0)<3) i89<-NULL else i89<-sum((1-kt)*X0[,3]*X0[,2])/sigma0

#I810-I812

i810<-i811<-0

if(ncol(X1)<3) i812<-NULL else i812<-0

#I813

i813<-sum((1-kt)*X0[,2]*(y-X0%*%phi0))/sigma0^2

#I814

i814<-0

#I910

if(ncol(X0)<3) i910<-NULL else i910<-0

#I911

53

if(ncol(X0)<3) i911<-NULL else i911<-0

#I912

if(ncol(X0)<3 | ncol(X1)<3) i912<-NULL else i912<-0

#I913

if(ncol(X0)<3) i913<-NULL else i913<-sum((1-kt)*X0[,3]*

(y-X0%*%phi0))/sigma0^2

#I914

if(ncol(X0)<3) i914<-NULL else i914<-0

#I1011

i1011<-sum(kt*X1[,2])/sigma1

#I1012

if(ncol(X1)<3) i1012<-NULL else i1012<-sum(kt*X1[,3])/sigma1

#I1013

i1013<-0

#I1014

i1014<-sum(kt*(y-X1%*%phi1))/sigma1^2

#I1112

if(ncol(X1)<3) i1112<-NULL else i1112<-sum(kt*X1[,2]*X1[,3])/sigma1

#I1113

i1113<-0

#I1114

i1114<-sum(kt*X1[,2]*(y-X1%*%phi1))/sigma1^2

#I1213

if(ncol(X1)<3) i1213<-NULL else i1213<-0

#I1214

if(ncol(X1)<3) i1214<-NULL else i1214<-sum(kt*X1[,3]*(y-X1%*%phi1))/

sigma1^2

#I1314

i1314<-0

out<-diag(c(i11,i22,i33,i44,i55,i66,i77,i88,i99,i1010,i1111,i1212,

i1313,i1414))

out[upper.tri(out)]<-c(i12,i13,i23,i14,i24,i34,i15,i25,i35,i45,i16,

54

i26,i36,i46,i56,i17,i27,i37,i47,i57,i67,i18,i28,i38,i48,i58,i68,

i78,i19,i29,i39,i49,i59,i69,i79,i89,i110,i210,i310,i410,i510,i610,

i710,i810,i910,i111,i211,i311,i411,i511,i611,i711,i811,i911,i1011,

i112,i212,i312,i412,i512,i612,i712,i812,i912,i1012,i1112,i113,i213,

i313,i413,i513,i613,i713,i813,i913,i1013,i1113,i1213,i114,i214,

i314,i414,i514,i614,i714,i814,i914,i1014,i1114,i1214,i1314)

out[lower.tri(out)]<-t(out)[lower.tri(out)]

return(out)

}

A.7.2 MCWM: Root-n—score

score <- function(beta0,beta1,phi0,phi1,sigma0,sigma1,X.b,X0,

X1,y,kt,ktm1){

S1

s1<-sum((1-ktm1)*kt-(1-ktm1)*exp(X.b%*%beta0)/(1+exp(X.b%*%beta0)))

S2

s2<-sum((1-ktm1)*kt*X.b[,2]-(1-ktm1)*exp(X.b%*%beta0)*X.b[,2]/

(1+exp(X.b%*%beta0)))

S3

s3<-sum((1-ktm1)*kt*X.b[,3]-(1-ktm1)*exp(X.b%*%beta0)*X.b[,3]/

(1+exp(X.b%*%beta0)))

S4

s4<-sum(ktm1*kt-ktm1*exp(X.b%*%beta1)/(1+exp(X.b%*%beta1)))

S5

s5<-sum(ktm1*kt*X.b[,2]-ktm1*exp(X.b%*%beta1)*X.b[,2]/

(1+exp(X.b%*%beta1)))

S6

s6<-sum(ktm1*kt*X.b[,3]-ktm1*exp(X.b%*%beta1)*X.b[,3]/

(1+exp(X.b%*%beta1)))

S7

s7<-sum((1-kt)*(y-X0%*%phi0)/sigma0)

S8

s8<-sum(X0[,2]*(1-kt)*(y-X0%*%phi0)/sigma0)

S9

55

s9<-ifelse(ncol(X0)>2,sum(X0[,3]*(1-kt)*(y-X0%*%phi0)/sigma0),NA)

S10

s10<-sum(kt*(y-X1%*%phi1)/sigma1)

S11

s11<-sum(X1[,2]*kt*(y-X1%*%phi1)/sigma1)

S12

s12<-ifelse(ncol(X1)>2,sum(X1[,3]*kt*(y-X1%*%phi1)/sigma1),NA)

S13

s13<- sum((1-kt)*(-2*sigma0+(y-X0%*%phi0)^2)/(2*sigma0)^2)

S14

s14<- sum((1-kt)*(-2*sigma1+(y-X1%*%phi1)^2)/(2*sigma1)^2)

s<-c(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14)

return(s[!is.na(s)])

}

A.7.3 MCWM: Root-n—lik.func

See Appendix A.3.1.

A.8 Shock Adjustment

nltime.adjust<-function(x,k,ar0.order,ar1.order)

{

n<-length(x)

m<-rep(NA,n)

m[1]<-1

for (i in 2:n)

{

m[i]<-ifelse(k[i-1]==k[i],m[i-1]+1,1)

}

mean0 <- mean(x[k==0])

mean1 <- mean(x[k==1])

x0<-x[-n]-mean0

x1<-x[-n]-mean1

y0<-x[-1]-mean0

y1<-x[-1]-mean1

w0<-diag(1-k[-1])

56

w1<-diag(k[-1])

delta0 <- solve(t(x0)%*%w0%*%x0)%*%t(x0)%*%w0%*%y0

delta1 <- solve(t(x1)%*%w1%*%x1)%*%t(x1)%*%w1%*%y1

shock <- rep(0,length(x))

shock[k==0] <- mean0 - mean1

shock[k==1] <- mean1 - mean0

shock[cumsum(k!=k[1])==0] <- 0

adj.x <- rep(NA,length(x))

adj.x[k==0] <- x[k==0] - delta0^m[k==0]*shock[k==0]

adj.x[k==1] <- x[k==1] - delta1^m[k==1]*shock[k==1]

shock<-unique(shock[order(k) & shock!=0])

return(list(adj.x=adj.x,delta=c(delta0,delta1),shock=shock))

}

A.9 Prediction

predict.nltime<-function(x,y,grp,param,ar0.order,ar1.order,delta=NULL,

shock=NULL,modified=T,prob1=NULL){

n<-length(x)

if(!is.numeric(param)) return(list(x=NA,grp=NA))

if(modified){

beta0<-param[1:3]

beta1<-param[4:6]

phi0<-param[1:(ar0.order+1)+6]

phi1<-param[1:(ar1.order+1)+(ar0.order+7)]

sigma0.hat<-param[length(param)-1]

sigma1.hat<-param[length(param)]

if(grp[n]==0) {

prob1<-exp(beta0%*%c(1,x[n],y[n]))/

(1+exp(beta0%*%c(1,x[n],y[n])))

}else {

prob1<-exp(beta1%*%c(1,x[n],y[n]))/

(1+exp(beta1%*%c(1,x[n],y[n])))

}

new.grp<-prob1[1,1]

57

}else{

phi0<-param[1:(ar0.order+1)]

phi1<-param[(ar0.order+2):(ar0.order+ar1.order+2)]

sigma0.hat<-param[length(param)-1]

sigma1.hat<-param[length(param)]

new.grp<-prob1

}

new.x<-c(1,x[-1:-(n-length(phi0)+1)])%*%phi0*(1-new.grp)+

c(1,x[-1:-(n-length(phi1)+1)])%*%phi1*new.grp

new.grp<-round(new.grp)

if(!is.null(delta)){

m<-n-max(which(grp!=new.grp))+1

new.x<-new.x[1,1]+delta[new.grp+1]^m*shock[new.grp+1]

}

return(list(x=new.x,grp=new.grp))

}

A.10 Estimation Function Wrapper Function

nltime<-function(my.method,...)

{

switch(my.method,

ls = nltime.ls(...),

rootn = nltime.rootn(...),

yw = nltime.yw(...),

clust = nltime.clust(...),

em = nltime.em(...)

)

}

A.11 Miscellaneous Simulation Specific Functions

Chooses the group centers based on the first point and the second

if AR(2). If AR(1) the first point and another random point are

used as group centers.

grp.create <- function(y)

{

tmp<-ifelse(identical(y$k[2],y$k[1]),sample(y$x[c(-1,-temp.n)],1),

y$x[2])

tmp<-c(y$x[1],tmp)

58

out<-kmeans(y$x[-temp.n],tmp)$cluster-1

This line ensures that the estimation procedure does not perform

poorly by merely mislabeling the states.

if(mean(out==y$k[-temp.n])<0.5) out<-abs(out-1)

return(out)

}

Function for applying the shock adjustment to each element

of the list.

data.adjust <- function(x,y)

{

tryCatch(nltime.adjust(x$x[-temp.n],y,ar0.order,ar1.order),

error = function(e) list(adj.x = rep(NA,length(x$x[-temp.n])),

delta=c(NA,NA),shock=c(NA,NA)))

}

Function for fitting the various model fitting methods to each

element of the list

Checks for non-convergence and returns NA’s for all values if error

nl.fit <- function(method,x,y,z){

my.error.func<-function(e)

{

grp<-rep(NA,length(z))

if(identical(method,’clust’)){

param<-rep(NA,ar0.order+ar1.order+4)

names(param)<-c(paste(’phi0’,0:ar0.order,sep=’’),

paste(’phi1’,0:ar1.order,sep=’’),

’sigma0’,’sigma1’)

list(estimates=param,group=grp)

} else {

param<-rep(NA,ar0.order+ar1.order+10)

names(param)<-

c(paste(rep(c(’beta0’,’beta1’),each=3),0:2,sep=’’),

paste(’phi0’,0:ar0.order,sep=’’),

paste(’phi1’,0:ar1.order,sep=’’),’sigma0’,’sigma1’)

list(estimates=param,group=grp)

}

}

tryCatch(nltime(method,x=x$adj.x,x2=y$y[-temp.n],k=z,

ar0.order=ar0.order,ar1.order=ar1.order),error = my.error.func)

}

59

Function for obtaining one-step predictions for all elements of the

list

nl.predict <- function(x,y,z,modified=TRUE)

{

predict.nltime(x$adj.x,y$y[-temp.n],z$group,z$estimates,ar0.order,

ar1.order,x$delta,x$shock,modified=modified,prob1=mean(z$group))

}

Function for calculating one-step-ahead prediction bias

especially for elements of list

nl.predbias <- function(x,y) x$x-y$x[temp.n]

Function for calculating misclassifiaction rates especially

for elements of list

nl.misclass <- function(x,y)

{

mean(x$group[c(-1:-max(ar0.order,ar1.order))]!=

y$k[c(-1:-max(ar0.order,ar1.order),-temp.n)])

}

60

