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ABSTRACT

DEVELOPMENT OF INFORMATIVE PRIORS IN MICROARRAY STUDIES

Kassandra M. Fronczyk

Department of Statistics

Master of Science

Microarrays measure the abundance of DNA transcripts for thousands of gene

sequences, simultaneously facilitating genomic comparisons across tissue types or dis-

ease status. These experiments are used to understand fundamental aspects of growth

and development and to explore the underlying genetic causes of many diseases.

The data from most microarray studies are found in open-access online databases.

Bayesian models are ideal for the analysis of microarray data because of their ability

to integrate prior information; however, most current Bayesian analyses use empiri-

cal or flat priors. We present a Perl script to build an informative prior by mining

online databases for similar microarray experiments. Four prior distributions are in-

vestigated: a power prior including information from multiple previous experiments,

an informative prior using information from one previous experiment, an empirically

estimated prior, and a flat prior. The method is illustrated with a two-sample exper-

iment to determine the preferential regulation of genes by tamoxifen in breast cancer

cells.
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1. INTRODUCTION

The study of differential expression is important for understanding biological

processes because it provides information about which proteins are produced in a

cell. Knowledge of protein expression provides clues about the functions of particular

genes, allows identification of clusters of related genes, and motivates new hypotheses

and experiments. Protein expression is difficult to measure reliably; consequently,

mRNA expression levels serve as a reasonable surrogate. For example, recognizing

which genes are differentially expressed in cancer cells and normal cells can give some

information about cancer.

Until recently, monitoring the simultaneous expression level of thousands of

genes in a single experiment was not possible. The Southern blot is a method for

searching for a specific DNA molecule. The Southern blot, proposed in 1975, intro-

duced a one-to-one correspondence between clones and hybridization signals. After

the invention of the Southern blot, the use of non-porous solid supports and the de-

velopment of methods for high-density spatial synthesis of oligonucleotides opened up

the world of DNA microarray technologies (Lander 1999), which provides expression

measurements for thousands of genes at once (Duggan et al. 1999, Shena et al. 1995).

Because patterns in which a gene is expressed can be temporal, developmental, and

physiological, the factors studied could be different types of tissues, drug treatments,

or time points of a biological process.

Considering the microarray community’s willingness to share data, the Bayesian

framework seems to be a logical approach to the analysis of these experiments; how-

ever, most of the current Bayesian analyses do not incorporate biological knowledge.

This thesis presents a method for incorporating the information from previous studies

into an informative prior for a two-sample Bayesian t-test. Results are compared to
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the use of an empirical Bayesian-estimated prior.

An overview of the elicitation process is given in Chapter 2. This includes

the reasons behind elicitation, a discussion of different approaches to elicitation, and

the constraints and limitations of using elicited information. Chapter 3 considers

some of the current Bayesian methods for analyzing microarray data. Some of the

methods investigated are Efron’s empirical Bayes analysis, Lönnstedt and Speed’s

B-statistic, and Conlon’s hierarchical Bayesian model for pooling microarray studies.

Chapter 4 presents the case study, and the design and analysis goals of the experiment

are explained and the types of prior information available are discussed. Chapter 5

describes the proposed model and the Perl script for automation. Chapter 6 presents

the results from the analysis of ten genes and chapter 7 gives the conclusions.
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2. ELICITING PRIOR INFORMATION

We live in an uncertain world, and probability risk assessment deals
as directly with that fact as anything we do. Uncertainty arises partly
because we are fallible. Mostly, however, uncertainty arises because
the world is not as simple as we would have it. The variability of
phenomena (including human technology, and often in spite of our
pet theories) yields the most uncertainty. —E. M. Dougherty (1993)

Probability has several common interpretations. One of the most common ap-

proaches is to interpret probability as an objective long-range frequency. A second

interpretation of probability is as a degree of belief, or epistemic probability. This

subjective approach suggests probability may be specific to each individual. The elic-

itation process allows a statistician to quantify individually held beliefs as a number

between zero and one. If an individual does not have complete knowledge about a

probabilistically well-defined event, that uncertainty can be represented as a proba-

bility distribution.

In any statistical analysis, there is some form of background, or prior, knowledge

available in addition to the data. Prior knowledge can be elicited from different places,

but the most reliable and worthwhile reference is an expert in the field (Kadane and

Wolfson 1998). Elicitation is used when estimates are needed on new, rare, or complex

phenomena; for forecasting and predictions; to interpret data; and to understand or

determine a problem-solving process. It can also include work in selecting or defining

the scope of the problem, work in refining the problem, and the processes involved

in arriving at a solution to the problem. This information is a representation of the

expert’s knowledge at a specific point in time; it can and should change when new

information becomes available. The knowledge elicitation process has a considerable

influence on the quality of the resultant prior knowledge.
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2.1 Methods

A substantive expert has opinions and knowledge about his or her field. These

opinions can be given in terms of processes, scales, ranks, and countless other forms.

Through the elicitation process, an analyst may work with an expert to extract pa-

rameters of a family of probability distributions in an organized and logical manner.

As Savage (1971) explains, if two experts with the same knowledge are induced to

reveal their opinions, then the resulting probability distributions should be the same.

Most experts do not know the parameters of these distributions or how to express

their knowledge in probabilistic terms. A statistician must be able to pose intuitive

questions and discuss the subject matter with the expert to adequately define an in-

telligible prior distribution that captures the main ideas of the expert’s opinion while

integrating experience and knowledge of the literature. Kadane and Wolfson (1998)

examine the psychology of getting experts to express what they know in distribu-

tional form. Meyer and Booker (2001) present a systematic approach for eliciting this

expert knowledge.

Knowledge elicitation methods are classified according to how directly informa-

tion is obtained from the expert. Indirect methods are used to obtain information

that cannot be easily expressed directly. Some indirect methods include construct

elicitation, document analysis, and laddering. Direct methods elicit the required in-

formation directly from the expert, and include interviewing, protocol analysis, and

simulation. These techniques are based on the assumption that the expert is able to

articulate his or her knowledge. This assumption is not always warranted, as some

tasks become automatic after years of repetition.

Construct elicitation methods obtain information about how the expert discrim-

inates between entities in the problem domain. As an example, consider a 90-year-old

man who sits at the end of a manufacturing line to remove defective ball bearings.

From years of practice, he is able to run his fingers over the ball bearings and remove
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the defective ball bearings without being able to express his basis for the rejection. He

is now retiring and his replacement must be trained. Using a sample of defective and

acceptable ball bearings, the inspector asks the elderly man to verbalize the percep-

tions influencing his acceptance or rejection of each bearing. This practice has been

applied with products ranging from clothing and chocolate, to injection molds and

machine faults, to ball bearings and steel ladles (Reeve et al. 2004). The most com-

monly used construct elimination method is Repertory Grid Analysis (Kelley 1955).

For this method, the expert is presented with a list of entities and is asked to describe

the similarities and differences between them. These similarities and differences are

used to determine important attributes of the entities. After evaluating the initial

list of attributes, the researcher works with the expert to assign ratings to each pair

of entities and attributes.

Document analysis gathers information from existing subject-area literature.

This method may or may not involve interaction with a human expert to confirm or

enhance this information. For example, literature is integrated in biology studies in

different ways: hand-curated pathways have been sufficient for assembling models in

numerous studies; literature is frequently accessed for concepts or functional relation-

ships in databases like the Medical Subject Headings (MeSH) and Gene Ontologies

(GO); and mining text directly for specific types of information is becoming more

popular as text analytics methods become more accurate and accessible (Roberts

2006).

Laddering is a diagramming technique in which the analyst asks the expert

questions to systematically build a hierarchy of subject concepts. The analyst begins

by stating the name of a seed item from the subject field. Specific questions are used

to lead the expert through the task domain or hierarchy. This technique is useful

when the subject constructs are known but the interrelationships between them are

poorly understood. For example, when interviewing a manager on how to improve
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team performance, the interviewer starts with the term productivity and the manager

is asked a series of standard questions to find terms that are up, down, or lateral in

the hierarchy. To move down the hierarchy, the interviewer may ask for examples

of productivity; to move up, he may ask about what some same-level items have in

common; to move across the hierarchy, he may ask for examples of the upper-level

item apart from the same-level item.

These indirect techniques are often effective at obtaining information that is

not easily expressed. However, in some situations, these indirect methods do not

produce the information needed by the analyst. Instead, the analyst may use a direct

method to increase the quality of information and the possibility of error reduction.

The most common direct methods include interviewing, protocol analysis, simulation

studies, and prototyping.

Interviewing consists of asking the expert questions about the subject of interest

and how they perform their tasks. Interviews can be unstructured, semi-structured,

or structured. The success of an interview session is dependent on the questions

asked and the expert’s ability to articulate his or her knowledge; it is difficult to

know which questions should be asked, particularly if the interviewer is not familiar

with the subject matter.

Protocol analysis (Ericsson and Simon 1984) involves asking the expert to per-

form a task while “thinking aloud.” The intent is to capture both the actions per-

formed and the mental process used to determine these actions. For example, a study

examines adults building a lifting device using a child’s construction set. Performance

evaluation considers specific actions, such as bolting two parts together. The analyst

categorizes verbal statements according to reference—the goals of a particular action

or the evaluation of the outcome of a test component. On the basis of the references,

actions can be grouped into behavioral traits, revealing a pattern of goal decomposi-

tion exercised by the problem solver. As with all of the direct methods, the success
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of the protocol analysis depends on the ability of the expert to describe why he or

she is making a decision. In some cases, the expert may not remember that things

are done a certain way. In many cases, the verbalized thoughts will only be a subset

of the actual knowledge used to perform the task. One method used to augment

this information is interruption analysis. For this method, the analyst interrupts the

expert at critical points in the task to ask questions about why a particular action is

performed.

Simulation methods use a computer system to reproduce a complex task. A

simulation attempts to mimic an abstract model of a particular system. These simula-

tions are a useful part of modelling many systems in physics, biology, economics, and

engineering to gain insight into the operation of those systems. These techniques are

used to study the behavior of objects or systems that cannot be easily or safely tested

in reality. In simulation studies, the expert behaves as though a simulation is occur-

ing. For example, with the Wizard-of-Oz technique, people may believe that they

are communicating with a piece of software although they are linked to an individual

that is trained to respond to the consumer’s actions.

In prototyping, the expert evaluates a prototype of the proposed system; this

is usually an iterative process as the system is refined. Storyboarding is a type of

paper prototyping. For example, customers, users, or developers start a software

development project by drawing pictures of the screens, toolbars, and other elements

they believe the software should provide. The group continues to evolve these ideas

until their requirements and details are finalized.

All of these elicitation methods require iteration. After drawing out parameters

for a well-defined and coherent prior, the analyst must give some sort of feedback to

the expert. The analyst can ask questions like, “If what you said is true, then . . .” and

include some information about the properties of the distribution. The expert may

agree or disagree and explain further what should happen in those terms. The analyst
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can continue asking the expert questions to further develop the prior distribution until

both the expert and the researcher are satisfied with its characteristics.

The usefulness of any of these elicitation approaches hinges on the analyst’s

ability to evoke truthful and accurate reports from the experts. Two methods that

have been used to encourage trustworthy explanations are scoring rules (Savage 1971)

and prediction-based elicitation (Grether 1980a). Scoring rules use incentives to moti-

vate people to state the probability of a random outcome thoughtfully and truthfully.

Prediction-based elicitation pays people for accurately predicting random outcomes

and then uses these predictions to infer probabilities. For example, to instigate a

prompt response to better predict the advance of a potential bird flu epidemic, health

experts are being financed to place a wager on the spread of the bird flu. This moti-

vates the experts to give their opinions truthfully and quickly.

2.2 Constraints and Limitations

The elicitation and interpretation of subjective probability is a controversial

area of statistics. Nau (2001) discusses whether or not it is even possible to elicit the

true probability or probability distribution and whether it makes any difference to

the statistical inference. Singpurwalla (2002) compares the Bayesian and frequentist

approaches to probability and their consequences. Mosleh and Bier (1996) question

whether an individual can be uncertain about a probability, separating uncertainty

about the underlying events from that of cognitive imprecision. Benson et al. (1995)

express that elicitation of probability requires both the formation of a belief and

the assessment of a probability that quantifies that belief. They believe that the

former process involves judgement and reasoning, while the latter process is purely

judgmental.

Berman (1988) examines some issues about subjective probability or personal

opinion probabilities. He suggests three additional reasons for the unreliability of
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subjective probability estimates:

(1) People tend to extrapolate linearly from existing information. Many things

in the world are non-linear.

(2) Breakthroughs in technology or understanding are by definition unpredictable.

(3) People of vision have frequently, if not always, been in the minority.

Berman also suggests that human uncertainty does not necessarily decrease as knowl-

edge increases.

Evans (2000) summarizes some of the philosophical issues in eliciting prior in-

formation:

Engineers who represent their degree-of-belief by probability must
be stout-hearted. Once you have gone through the simulations and
settled on a realistic expression of your prior beliefs, stick to them
and to the resulting afterwards belief, no matter what the actual
experimental outcome. Remember, you have already considered that
outcome in your extensive simulation. Do not let anyone convince you
to be “practical” or “realistic” on their terms. Assert yourself. Say
that you have been practical and realistic on a very sound, rational
basis.

If there is prior knowledge available, it can and should be used to fully analyze

the problem at hand. Many statisticians, including Evans, believe that incorporating

this information is a legitimate and logical approach to problem-solving.

2.3 Less Subjective Priors

In theory, the process of inference is simple. Inference involves two steps: the

assertion of hypotheses and their proper organization. Thus, there is only one pro-

cess of validating a conclusion. Many people are uncomfortable with the Bayesian

approach to inference because it does not follow a straightforward line of reasoning.
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They view the selection of a prior as arbitrary and subjective; however, priors may

be chosen to make selection more objective.

A famous example of the use of an objective prior can be found in Mosteller

and Wallace (1963). In this paper, Mosteller and Wallace conduct an analysis of

the twelve Federalist papers of unknown authorship. The Federalist Papers written

by Madison and Hamilton provide weighted prior distributions of word usage. Using

these long-range frequencies as the prior distributions for the negative binomial model,

the authors conclude that Madison, rather than Hamilton, wrote all twelve of the

disputed papers.

There are other examples of using less subjective priors. Many current Bayesian

methods for the analysis of microarray experiments assume normality of the log-

expression ratios and include reference priors on one or more of the hyperparameters.

The authors of such examples claim ignorance of the information about the genome

and include broad guesses for the values of the prior distributions. For instance,

Conlon et al. (2006) assume that any given gene has a uniform chance of differential

expression. Another approach to building a less subjective prior is using information

from previous studies.

2.3.1 Power Priors

When existing data is available, a prior may be constructed from this data.

Ibrahim and Chen (2000) present a power prior for situations in which historical data

are available. The power prior is defined as the likelihood function based on the

historical data D0 raised to a power a0, where 0 ≤ a0 ≤ 1 is a parameter that controls

the influence of the historical data on the current data. Historical data, denoted by

D0 = (n0, X0), may be combined with the prior distribution for θ before the historical

data D0 is observed, π(θ|·). A prior distribution for a0 to obtain the joint power prior

distribution for (θ, a0) is

10



π(θ, a0|D0) ∝ L(θ|D0)
a0π0(θ|c0)π(a0|γ0),

where c0 is a specified hyperparameter for the initial prior and γ0 is a specified hy-

perparameter vector. In most cases, c0 is defined to be one (Tsodikov et al. 2003; Fu

et al.2005; Ghosh et al. 2004). A natural choice for π(a0|γ0) is a beta prior. Other

choices, including a truncated gamma prior or a truncated normal prior, have similar

theoretical properties, and similar computational properties can be chosen instead

of the beta distribution. According to Ibrahim and Chen, the proposed distribu-

tions yield similar results when the hyperparameters are appropriately chosen so the

distributions look similar.

Ibrahim and Chen (2000) show that the joint power prior distribution is proper

even if π0(θ|c0) is chosen to be an improper uniform prior. This power prior can easily

be extended to the situation where there are multiple previous studies. If L0 is the

number of historical studies, then D0k = (n0k, X0k) is the historical data based on the

kth study, k = 1, . . . , L0 and D0k = (D01, D02, . . . , D0L0
). Then, Ibrahim and Chen

define a weight parameter a0k for each historical study, and take the a0k values to be

independent and identically distributed beta random variables with hyperparameters

γ0 = (δ0, λ0), k = 1, . . . , L0. Letting a0 = (a01, . . . , a0L0
), the power prior can be

expressed as

π(θ, a0|D0) ∝
L0
∏

k=1

(L(θ|D0k)
a0kπ(a0k|γ0)) π0(θ|c0). (2.1)

This approach enables the analyst to include previous studies in a simple manner.

The power prior is informative, yet not necessarily subjective.

Elicitation of reliable prior information is difficult; consequently, many statis-

ticians use uninformative prior distributions in Bayesian analyses. For science to

progress, analyses must recognize prior experiments and formalize the information
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gained for use in subsequent experiments.
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3. BAYESIAN METHODS FOR MICROARRAY EXPERIMENTS

Frequentist approaches are commonly used for the analysis of microarray ex-

periments. Inference proceeds by stating a hypothesis and collecting data that will

either support or oppose the claim. A suitable model is chosen to fit the data. This

model allows the analyst to make inferences about the hypothesis. While frequentist

procedures are associated with probability statements about how procedures behave

across repeated measurements, Bayesian inference aims instead at making probability

statements given a particular measurement or set of measurements.

Bayesian inference is an approach to statistics in which all forms of uncertainty

are expressed in terms of probability. A Bayesian approach to a problem starts with

the formulation of a model that is hopefully adequate to describe the situation of

interest. A prior distribution is formulated over the unknown parameters of the

model, which is meant to help form beliefs about the situation before seeing the data.

After observing some data, Bayes’ Rule is applied to the data to obtain a posterior

distribution for the unknown parameters, which takes account of both the prior and

the data. From this posterior distribution, probability statements and predictive

distributions for future observations can be computed.

In the microarray setting, models often calculate the posterior probability of a

gene being differentially expressed. There are many different interpretations of what

may form a suitable model and distributions reflecting prior knowledge, resulting in

different approaches to the analysis of microarray data.

3.1 Empirical Bayes Models

The large number of genes and small sample size of typical microarray experi-

ments yield inflated t-statistics and a high rate of false discoveries. Table 3.1 provides
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an example of a microarray experiment with three control and three treatment sam-

ples, and the expression levels of three genes are given. While the expression levels in

the control and treatment groups are not remarkably different, the variance is very

small, making the absolute value of the t-statistic very large (Feingold 2003).

Table 3.1: Calculated t-statistic from replicated study. The three genes displayed
have small within-group variability leading to inflated t-statistics.

Control Treatment |t|
TUBA6 6.84 6.99 6.96 3.87 3.96 4.02 50.2

K-ALPHA-1 6.61 6.79 6.76 5.01 5.06 5.13 25.3
RAB31 5.76 5.88 5.73 4.29 4.24 4.37 23.2

To address the unrealistically small variance estimates, Lönnstedt and Speed

(2002) introduce a new statistic for assessing differential expression in microarray

datasets with few replicates. Lönnstedt and Speed use an Empirical Bayes approach

that uses the data to estimate the hyperparameters and then combines the hyperpa-

rameters with statistics taken from the data in the B-statistic, which calculates the

log posterior odds of differential expression occurrence.

The expression levels for each gene i in sample j, Mij, are assumed to be inde-

pendent random variables from an N(µi, σ
2
i ). These parameters, (µi, σ2

i ), are given

conjugate priors: normal distributions for the µi and inverse gamma distributions for

the σ2
i . The hyperparameters for the priors are estimated by first fixing the unknown

proportion of genes that are differentially expressed, p. Bi can then be calculated for

each gene i using an explicit formula

Bi = log





p

1 − p

1√
1 + nc

(

a + s2
g + M2

g.

a + s2
g +

M2
g.

1+nc

)v+n
2



 ,

where s2
g is the gene-specific sum of squares over n and Mg. is the average expression

level for each gene.
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Relative to the t-statistic, the B-statistic decreases the number of false positives

and false negatives. The B-statistic also deals with the possible inflation due to small

within-group variation and a small number of replicates.

Efron et al. (2001) propose an alternate empirical Bayes approach for detection

of differentially expressed genes and estimation of the false discovery rate. Efron et al.

assume that the observed gene expression values are a mixture of non-differentially

expressed genes and differentially expressed genes. The expression levels of non-

differentially expressed genes are characterized by density f0; the expression levels of

differentially expressed genes are characterized by a bimodal distribution, f1, reflect-

ing the genes which are either turned on or turned off. Neither of these distributions

is known; what is observed is the distribution of the scores, f , which is a mixture of

f0 and f1, shown in Figure 3.1 as a solid line. From the mixture scores, the authors

estimate f0 and f1 and the posterior probability that a gene is differentially expressed.
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Figure 3.1: Efron’s empirically estimated densities of the null and alternative distri-
butions from the observed mixture distribution. The observed f is the mixture of the
null f0 and the alternative f1.

A modified t-statistic with a fudge factor, a0, summarizes the expression values

of each gene:
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Zi =
D̄i

a0 + Si

,

where D̄i is the average of the differences in expression between sample types and

Si is the sample standard deviation for each gene i. The null distribution of Zi is

generated by permuting the sample labels. A logistic regression analysis estimates the

ratio of f0(Z)/f(Z), where f0(Z) is the density function of the scores for unaffected

genes and f(Z) is the mixture density. The posterior probability that a gene with

score Z is differentially expressed is calculated by

p1(Z) = 1 − p0
f0(Z)

f(Z)
,

where p0 is the prior probability of differential expression.

Genes with low expression levels have little variance, resulting in very large

t-statistics; the smoothing parameter, a0, in the denominator of the scores prevents

such genes from dominating the results of the analysis. The fudge factor, a0, is

obtained by performing the analysis for a range of values for a0 and then selecting

an optimal value. Efron suggests that the a0 value selected should find the greatest

number of differentially expressed genes.

Efron’s method is useful in that it handles high-dimensional data robustly when

sample sizes are small. Also, a full Bayesian analysis would require prior specification

of p0, p1, f0, and f1, but the authors use the structure of microarray data to estimate

an empirical version. The main weakness in Efron’s method is that instead of using

historical data to estimate p0, p1, f0, and f1 a priori, the authors use the current data.

This method uses the data twice, once to estimate the priors and once to perform the

analysis using those priors.

Kendziorski et al. (2003) propose an empirical Bayes methodology to improve

the estimation of expression fold change by the use of posterior odds for the assess-

ment of differential expression. Fold-change analysis is used to identify genes with
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expression ratios or differences between a treatment and a control that are outside of

a given cutoff or threshold. In this case, inference on each gene uses the information

about the fluctuations of expression measurements from all genes.

The authors assume that measurements which share a common mean expres-

sion level µg appear independently and identically from an observed fobs(·|µg). Two

components of the mixture model are specified as the observed fobs(·|µg), which char-

acterizes fluctuations in repeated measurements from a gene having a latent expression

level µg, and a genome-wide distribution π(µg), which represents fluctuations in these

means among genes. The authors explore two families for fobs(·|µg). The first family

assumes gamma-distributed measurements and the second family uses log-normally

distributed measurements. A constant coefficient of variation is assumed in both

models. These models also account for differential variation in apparent fold change.

In the gamma-gamma model, the fobs(·|µg) is a gamma distribution with mean

value µg, shape parameter α, and scale parameter λg = α/µg for measurements

z > 0.The genome-wide distribution, π(µg), is assumed to be an inverse gamma;

fixing α, the quantity λg = α/µg has a gamma distribution with shape parameter

α0 and scale parameter v. In cases in which there are two conditions, control and

treatment, the posterior probability can be calculated by

oddsg =
pvα

0 Γ(n1α + α0)Γ(n2α + α0)(
∑n1

i=1 xg,i +
∑n2

i=1 yg,i + v)Nα+α0

(1 − p)Γ(α0)Γ(Nα + α0)(
∑n1

i=1 xg,i + v)n1α+α0(
∑n2

i=1 yg,i + v)n2α+α0

,

where xig and yig are the measurements from the two conditions for each gene and

N = n1 +n2 is the total number of observations on each gene g. All hyperparameters

are estimated by the data.

While this method is dependent on parametric model assumptions, the authors

suggest that the method may miss some genes, but a gene that is called differentially

expressed is most likely accurately labeled.
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Fox and Dimmic (2006) propose a two-sample t-test to determine whether or

not a gene is differentially expressed in two different samples. The proposed method

explicitly calculates the marginal distribution for the difference in the mean expression

of two samples, removing the need for point estimates of the variance that were needed

in earlier attempts to construct a t-test.

The authors assume that the likelihood of the observed data for a single gene

follows a normal distribution, dependent on the given treatment. That is, the samples

from each treatment follow a normal distribution with equal variances and possibly

different means, shown by

yi ∼ N(µ, σ2),

yj ∼ N(µ + ∆µ, σ2),

where i = 1, . . . , n1 and j = 1, . . . , n2 represents the number of replicates in the

control and treatment samples.

The priors on µ and ∆µ are taken to be flat. The prior probability of σ2 follows

a scaled inverse gamma distribution with parameters ν0 and σ2
0, where ν0 = 0 and σ2

0

is estimated by the data. The priors and likelihood are combined to give the following

posterior distribution:

p(µ, ∆µ, σ2|y) ∝ p(µ, ∆µ, σ2)

n1
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2
(yi − µ)2

)

×
n2
∏

j=1

1√
2πσ2

exp

(

− 1

2σ2
(yj − (µ + ∆µ))2

)

,

where n1 and n2 are the number of measurements in each sample. The use of the

authors’ assumptions and definitions causes the marginal posterior distribution of ∆µ

to follow a t-distribution. That is,

∆µ − ∆ȳ

σnsqrt 1
n1

+ 1
n2

|Θ ∼ tνn
,
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where νn = n1 + n2 − 2 and νnσ
2
n = ν0σ

2
0 + (n1 − 1)s2

1 + (n2 − 1)s2
2. A hypothesis test

is then performed by asserting the null hypothesis that there is no true difference in

expression levels, ∆µ = 0. When the posterior probability of having no differential

expression, P(∆µ = 0|y), approaches zero, the null is rejected and the gene is called

differentially expressed.

3.2 Hierarchical Models

Gottardo et al. (2003) present a hierarchical Bayesian model with independent

Gaussian modelling that addresses the two main issues in microarray studies: the

small number of replicates and the large number of genes. This model gives rise to

four statistics that are useful in different situations.

The first statistic is based on the situation in which there is only treatment

data available. The statistic is calculated as follows, where ν0, τ0, νa and τa are the

hyperparameters of the inverse gamma priors for the variances of the genes that are

not differentially expressed, ν0 and τ0, and the genes that are differentially expressed,

νa and τa.

B1 =

(

1 +
1 − p

p

√
2
Γ(νa)Γ(ν0 + n2/2)

Γ(ν0)Γ(νa + n2/2)

τ ν0

0

τ νa
a

(τa + n2−1
2

S2
g )

νa+n2/2

(τ0 + n2

2
S2

g0)
ν0+n2/2

)−1

,

where S2
g =

∑n2

i=1(Ygi− Ȳg)
2/(n2−1) and S2

g0 =
∑n2

i=1(Ygi−0)2/(n2). The B1 statistic

is found to be more powerful than the B-statistic calculated by Lönnstedt and Speed

(2002) through simulation studies when the sample size is less than 5. When sample

size increases, the variations of the B-statistic are comparable.

The second statistic is used when both control and treatment data are available

for each gene; therefore, the analysis is treated as a two-sample problem to determine

if there is a difference in mean expression. The calculation of B2 is essentially the

same as the calculation of B1, with functions of hyperparameters and the expected

proportion of differentially expressed genes. The major difference is in the estimates
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of the variability of gene expression: in B2 the numerator variability estimate is

equivalent to a two-sample pooled s2, and the denominator is also a pooled estimate

of s2, using a weighted average of the mean from both samples.

A change in the variance of the expression ratios can be attributed to a biolog-

ical event. Therefore, a third statistic is used to test for a difference in the variance

of the expression levels between the control and treatment conditions. The princi-

pal difference between calculating B2 and B3 is that both the numerator and the

denominator include the different functions of the same estimates of gene expression

variability for the control and treatment data.

The fourth statistic detects a given gene with different mean ratios and/or

different variances in the control and treatment groups. Primarily, B4 calculation

differs from B3 calculation by using a pooled variance in the denominator, as in B2.

Gottardo et al. compare B1 and B2 to many equivalent statistics and find the

B-statistics to be superior in finding correctly differentially expressed genes. There

are no current statistics that relate to B3 and B4. Lönnstedt and Speed’s B-statistic

assumes a normal likelihood for the data with normal and inverse gamma priors for

the means and variances, respectively. Gottardo’s B-statistics account for another

level of uncertainty by including normal priors on the mean of the gene expression

means and including gamma priors on the parameters of the inverse gamma prior on

the variances.

In order to build a suitable parametric model to allow for comparison of normal

and tumor tissues and to characterize the behavior of the genes in each group, Ibrahim

et al. (2002) develop a class of models with hierarchical priors for the parameters that

allow for correlation between the genes.

The expression level for a given gene, xjig, can be described by a mixture random

variable with a discrete and a continuous component if j = 1, 2 indexes the tissue

type, normal vs cancer, and xjig is the mixture random variable for the jth tissue
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type for the ith individual, i = 1, 2, ..., nj , and the gth gene, g = 1, 2, ..., G. The

discrete portion is a point mass at some c0, a threshold value assumed to be the

level of expression at which a gene is not differentially expressed. The continuous

component, y, is the expression level of the gene and is lognormally distributed. The

observed gene expression can be written as

xjig =















c0 with probability p

c0 + y with probability 1 − p,

letting δjig = I(xjig = c0) and pjg = P (δjig = 1). The likelihood function based on

the data, D, is given by

L(µ, σ2,p|D) =
2

∏

j=1

nj
∏

i=1

G
∏

g=1

p
δjig

jg (1 − pjg)
1−δjigp(yjig|µjg, σ

2
jg)

1−δjig .

Ibrahim et al. then compute the posterior distribution for each gene of ξg =

ψ2g/ψ1g, where

ψjg = c0pjg + (1 − pjg)

(

c0 + exp µjg +
σ2

jg

2

)

.

As in many other Bayesian microarray analyses, Ibrahim et al. (2002) spec-

ify a hierarchical prior for µjg as being independent N(µj0, τ0σ
2
jg/n̄j), where n̄j =

1
G

∑G
g=1(nj − ∑nj

i=1 δjig) and τ0 > 0 is a defined scalar. The µj0 have a prior of

N(mj0, ν
2
j0). For σ2

jg, the priors are independent inverse gamma with hyperparame-

ters (aj0, bj0). There is also a gamma prior put on bj0 with hyperparameters (qj0, tj0),

which allow prior correlation between the genes. Finally, pjg is transformed to ejg by

taking the log(
pjg

1−pjg
). For these values of ejg, a normal prior is designated with mean

µj0 and variance kj0w
2
j0, where µj0 is distributed as N(µ̂j0, hj0w

2
j0) and kj0, hj0, and

w2
j0, are the specified hyperparameters. These hyperparameters can either be defined

by historical data or expert opinion; if neither is available, Ibrahim and Chen provide

some guide values.
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Ibrahim and Chen’s model is very similar to Kendziorski et al. (2003), with the

exception of the prior structure. This approach provides more flexibility for making

inferences about the differential expression of genes than other types of clustering

algorithms. It distinguishes the pattern of gene expression in the two types of tissue,

and can easily be extended to more than two tissue types.

The Bayesian models discussed previously are useful for the analysis of any

experiment because of their integration of many levels of uncertainty and because

of their possible resolution of the difficulties inherent in microarray data. Bayesian

models are also useful when data includes many levels of replication. Oftentimes,

many independent, but not necessarily identical, studies are conducted in order to

understand a certain biological process. Conlon et al. (2006) introduce a framework

for incorporating data from multiple independent microarray experiments with several

sources of replication. This framework includes a hierarchical Bayesian model that

takes into account each gene on each slide from each experiment.

Conlon et al. (2006) assume that there are only two conditions present in each in-

dependent experiment, control and treatment, and that each experiment is conducted

using the same assay platform. The model that produces the posterior probability

that a gene is differentially expressed based on gene expression levels across j = 1, ..., J

independent studies is presented in Figure 3.2, where yjges is the log-expression ratio

for gene g in experiment e on slide s. The average expression over all slides within

experiment e of study j is given by µjge. The log-expression ratio for each gene of

study j is given by θjg. There is also an indicator function, Ig, for differential expres-

sion of gene g, where p is the percent of differentially expressed genes. The percent

of differentially expressed genes, p, has a uniform prior distribution. The posterior

distributions for each parameter are simulated using MCMC methods. Finally, the

posterior probability, Dg, is calculated for gene g across all studies.

Conlon et al. (2006) use the False Discovery Rate (FDR) defined by Benjamini
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yjges|µjge ∼ N(µjge, τ2

jg)

µjge|θjg ∼ N(θjg, σ2

jg)

θjg|Ig = 0 ∼ N(0, η2

jg0
)

θjg|Ig = 1 ∼ N(0, cj × η2

jg0
)

η2

jg0
∼

as2

1

χ2
a

cj ∼
bs2

2

χ2

b

Ig ∼ Bernoulli(p)

p ∼ Uniform(0, 1)

Figure 3.2: Hierarchical model for the probability that a gene is differentially ex-
pressed based on gene expression levels across j = 1, ..., J independent studies.

and Hochberg (1995) and the Integration-driven Discovery Rate (IDR) defined by

Choi et al. (2003) to evaluate the proposed model. The FDR is the number of

false discoveries made divided by the total number of discoveries. The IDR is the

number of genes discovered in a meta-analysis that were not discovered in any of

the individual studies alone divided by the total number of discoveries. Essentially,

the IDR quantifies the gain of information by pooling individual experiments. These

studies showed that by using this heirarchical model for pooling data, there was a

considerable increase in the IDR for multiple values of γ, while FDR is consistently

low; more truly differentially expressed genes were ascertained with a smaller chance

of false positives with this model as compared to the individual studies.
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4. CASE STUDY

4.1 Tamoxifen and Breast Cancer

This work examines an experiment performed to determine the preferential

regulation of genes by tamoxifen in breast cancer cells (Frasor et al. 2006). Estrogens

act on target tissues by binding to estrogen receptors. An estrogen receptor is a

protein molecule found inside cells that are targets for estrogen action. Estrogen

receptors, located in the cell nucleus, contain a site to which only estrogens or closely

related molecules can bind. In the absence of estrogen molecules, these estrogen

receptors are inactive and have no influence on DNA, but when an estrogen molecule

enters a cell and passes into the nucleus the estrogen binds to its receptor and causes

the shape of the receptor to change (Parker et al. 1997). This estrogen-receptor

complex then binds to specific DNA sites. After the complex binds to the DNA sites,

nearby genes become active. The active genes produce molecules of mRNA, which

give rise to specific proteins that influence the function of the cell (Hayashi et al.

2003). Estrogen is important in programming the body for sexual reproduction,

controlling cholesterol production, and preserving bone strength. Estrogen can also

have a deleterious effect on health by advancing the production of epithelial cells

in the breast. Although the ability to stimulate cell production is one of estrogen’s

normal roles, it can also increase a woman’s chance of developing breast cancer (Clark

et al. 1998).

Although estrogen does not appear to directly cause the DNA mutations that

trigger the development of human cancer, estrogen does stimulate cell production. If

one or more breast cells already possesses a DNA mutation that increases the risk

of developing cancer, these cells, along with normal epithelial cells, will reproduce

in response to estrogen stimulation. Thus, estrogen-induced cell production leads to
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an increase in the total number of mutant cells that exist. These cells have an in-

creased risk of becoming cancerous, so the chance that cancer may develop is increased

(Parker et al. 1997). Some drugs that block the action of estrogen in certain tissues

can mimic the action of estrogen in other tissues. Differences in chemical structure

allow estrogen-like drugs to interact with the estrogen receptors of different tissues.

Tamoxifen blocks the action of estrogen in breast tissue by binding to the estrogen

receptors of epithelial cells (Swain 2001). The experiment to be investigated assesses

an estrogen receptor α (ERα) positive breast cancer cell line (MCF-7) infected with

adenovirus-ERβ and treated with tamoxifen. The cells were infected with adenovirus

carrying either estrogen receptor β (AdERβ) or no insert (Ad), and treated with

trans-hydroxytamoxifen (TOT). The results provide insight into tamoxifen activity

in the presence of both ERα and ERβ, which illuminates the potential therapeutic

and diagnostic implications of tamoxifen with regard to breast cancer.

4.2 Data Analysis

In a typical microarray experiment, RNA obtained under various conditions

(patients, treatments, disease states, etc.) is hybridized to microarrays. By tagging

the RNA with a fluorescent marker, intensity values can be obtained that correspond

to the amount of labeled RNA bound to the array. On the widely used Affymetrix

platform, gene expression is measured using probe sets consisting of 11 to 20 perfect

match (PM) probes of 25 nucleotides, which are complementary to a target sequence,

and a similar number of mismatch (MM) probes in which the 13th nucleotide has

been changed. The MM probe measurements are thought to comprise most of the

background cross-hybridization and stray signals affecting the PM probes (Affymetrix

1992). The tamoxifen experiment is conducted using Affymetrix chips.

In performing an exploratory analysis of the six data samples, boxplots of the

probe intensities for each chip are created (see Figure 4.1). The box plots of inten-
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sities from all arrays should have a similar mean and range. The first sample of the

treatment data may be different from the other two samples. This must be corrected

for in order to find differences in expression levels due to biological effects rather than

slightly different samples. The samples are skewed because the measurements are

bounded below by zero.

Ad AdERb

6
8
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12
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Figure 4.1: Boxplots of the data before normalization; the three control (Ad) repli-
cates are on the left and the three treatment (AdERb) replicates are on the right.

To explore the dependence of the variance of the signal intensities on the

strength of the signal, an MVA plot of a pair of chips is examined or the average

signals of treatment groups are examined (Heber and Sick 2006). Figure 4.2 is a

scatter plot of the average log differences of a pair of chips versus the average mean

of their log signals. The MVA plots comparing sample chips within the control do

not have any significant abnormalities. There are some problems with the MVA plots

comparing the treatment sample chips, as seen in Figure 4.2; while the MVA plots

should be linear, this plot has noticable curvature.

To conduct a chip-to-chip analysis, the data must be standardized. The nor-

malization corrects for systematic differences within slides or between slides that do

not represent true biological variation between samples.

To normalize the data, a method called IdealMM is used (Bolstad 2001). This

approach compares the mismatch and perfect match probe intensities. The quantile
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Figure 4.2: MVA plot of two chips within the treatment sample before normalization,
where A is the x-axis and M is the y-axis.

normalization method is used to correct for the differences in the distributions of in-

tensities of the chips. This method gives all the chips the same empirical distribution.

Finally, the median-polish summary method is used; this method fits a multi-chip lin-

ear model to the data from each probe set. The boxplots in Figure 4.3 show that the

post-standardization probe intensities are less variable and have a constant median

across chips.
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Figure 4.3: Boxplots of the data after normalization; the three control replicates are
on the left and the three treatment replicates are on the right.

The normalization process also removes the curvature and other problems in

the MVA plots within the treatment samples. The post-normalization MVA plot in
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Figure 4.4 displays the same samples observed in Figure 4.2, but no curvature is

apparent.

Figure 4.4: MVA plot of two chips within the treatment sample after normalization,
where A is the x-axis and M is the y-axis.

The Bayesian t-test proposed by Fox and Dimmic (2006) is performed to de-

termine which genes are differentially expressed using non-informative priors. That

is, the mean and the difference in means are given flat priors and the variance prior

parameters are estimated by the data. The choice of likelihood and prior distribu-

tions results in the marginal posterior distribution of the difference, ∆µ, following a

t-distribution.

Using the marginal posterior distribution of ∆µ, the t-statistic (see section 3.1)

is calculated to determine differential expression. The model is simplistic but effective

in finding genes with a high probability of differential expression. The authors use a

cutoff p-value of 0.05 to indicate differential expression. Using this bound, more than

3,700 genes are called significant. The top 10 genes and the corresponding t-statistics

and p-values are shown in Table 4.1.

Figure 4.5 gives a plot of the difference in mean expression for each gene versus

the p-value. From this figure, the genes with large differences have low p-values. The

dotted line represents the cutoff p-value to indicate differential expression; in this

case, the line is the bound 0.05.
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Table 4.1: List of the top 10 genes and their corresponding t-statistics and P -values.

Gene t-statistic p-value
202240 at -38.96389 < 10e-16
211120 x at 38.00555 < 10e-16
204962 s at -38.19704 < 10e-16
202094 at -29.35590 < 10e-16
209408 at -27.15826 < 10e-16
221520 s at -25.81545 1.110223e-16
211117 x at 25.10982 1.110223e-16
219978 s at -24.61897 2.220446e-16
211118 x at 21.92268 1.887379e-15
202580 x at -21.69021 2.331468e-15
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Figure 4.5: Plot of the difference in means versus p-values. The horizontal line
represents the 0.05 cutoff p-value indicating differential expression.

The analysis of the data using flat priors for the mean and difference in means

and data-driven hyperparameters for the prior on the variance is useful. However,

there are many sources of information about the genome that should be incorporated

into the analysis.
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4.3 Types of Prior Information Available

The gene expression community shares the data collected from experiments

through online databases. As a national resource for molecular biology information,

the National Center for Biotechnology Information (NCBI) website creates literature,

journal, and nucleotide databases for public access and develops tools and software

for database mining and data analysis. As of May 1, 2007, Gene Expression Omnibus

(GEO) had catalogued more than 150,000 microarray studies (National Center for

Biotechnology Information 2002a); the Stanford MicroArray Database had details on

over 13,000 experiments (Stanford University 2003); and SAGEMAP included over

600 libraries with tissue and cell information on more than 15 organisms (National

Cancer Institute 1996).

PubMed is a database which holds articles from medical and health-related

journals. As of May 1, 2007, there were more than 14,500 articles including the

keywords breast cancer and estrogen receptors (National Center for Biotechnology

Information 2002b). By inputting these keywords and a specific gene name, more

than 350 articles were returned.

The gene Estrogen Receptor 2, or ER beta, is one gene involved in the ta-

moxifen experiment. As of May 1, 2007, the PubMed library had more than 14,500

articles containing information about Estrogen Receptor 2 and estrogen receptor-

related breast cancer (National Center for Biotechnology Information 2002b). The

first few articles are cited in Table 4.2. As of May 1, 2007, the Gene Expression

Omnibus contained twenty breast cancer experiments involving the gene ER beta,

all of which are shown in Table 4.3 (National Center for Biotechnology Information

2002a). One paper presents two separate experiments (Coser et al. 2003), and another

paper provides a series of three experiments (Wu et al. 2006). The bolded experiment

represents the Tamoxifen experiment examined in this thesis.

Four of the 20 breast cancer experiments found in GEO are very similar to the
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Table 4.2: Five of the 14,500 estrogen receptor breast cancer articles mentioning ER
beta, as of May 1, 2007.

Author Experiment
Brama et al. (2007) Osteoblast-conditioned medium promotes proliferation

and sensitizes breast cancer cells to imatinib treatment.
Eakin et al. (2007) Estrogen receptor α is a putative substrate

for the BRCA1 ubiquitin ligase.
Marx et al. (2007) Proteasome Regulated ERBB2 and Estrogen

Receptor Pathways in Breast Cancer.
Poola and Yue (2007) Estrogen receptor alpha (ERα) mRNA copy numbers

in immunohistochemically positive-, and negative breast
cancer tissues.

Ray et al. (2007) Diet-induced obesity and mammary tumor development
in relation to estrogen receptor status.

motivating experiment. The first experiment deals with the analysis of the response of

estrogen receptor (ER) negative breast cancer cells infected with full-length ER alpha

adenoviral constructs to treatment with 17beta-estradiol (E2) (Moggs et al. 2005).

The results of this experiment provide insight into the anti-proliferative effect of E2 on

breast cancer cells reexpressing ER (see Table 4.4). The second experiment explores

the expression profiling of estrogen receptor positive breast cancer cell lines treated

with estradiol for 24 hours. MCF-7, T47-D, and BT-474 breast cancer cell lines are

examined (Rae et al. 2005). The results identify candidate genes involved in estrogen-

stimulated breast cancer growth (see Table 4.5). The third experiment studies the

analysis of tumors from 49 breast cancer patients (Farmer et al. 2005). Tumors are

classified into a luminal, basal, or novel molecular apocrine class. Apocrine tumors

are estrogen receptor negative (ER-) and androgen receptor positive (AR+), while

luminal tumors are ER+ and AR+, and basal tumors are ER- and AR-. Summary

statistics for gene expression levels are shown in Table 4.6. The fourth experiment

is the analysis of estrogen receptor (ER) alpha positive MCF-7 breast cancer cells

overexpressing constitutively active c-erbB-2. Results indicate that increased MAPK

31



activation results in loss of ER-alpha expression (see Table 4.7). These four exper-

iments target estrogen receptor breast cancer. The ten excluded experiments either

examine estrogen receptors in cancers of other parts of the body or involve breast

cancer but not with respect to estrogen receptors.

Instead of the flat priors and data-driven hyperparameters used in the previous

analysis, information from these experiments are used to build informative priors.
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Table 4.3: The twenty breast cancer experiments involving ER beta, as of May 1,
2007.

Author Experiment
Coser et al. (2003) (2) Global analysis of ligand sensitivity of estrogen inducible

and suppressible genes in MCF7/BUS breast cancer
cells by DNA microarray.

Wu et al. (2003) DACH1 inhibits transforming growth factor-beta
signaling through binding Smad4.

Acevedo et al. (2004) Selective recognition of distinct classes of coactivators
by a ligand-inducible activation domain.

Mecham et al. (2004) Sequence-matched probes produce increased
cross-platform consistency and more reproducible biological
results in microarray-based gene expression measurements.

Stitziel et al. (2004) Membrane-associated and secreted genes in breast cancer.
Chen et al. (2005) Identification of transcriptional targets of HOXA5.
Farmer et al. (2005) Identification of molecular apocrine breast tumours

by microarray analysis.
Itoh et al. (2005) etrozole-, anastrozole-, and tamoxifen-responsive genes in

MCF-7aro cells: a microarray approach.
Moggs et al. (2005) Anti-proliferative effect of estrogen in breast cancer cells

that re-express ERalpha is mediated by aberrant regulation
of cell cycle genes.

Poola et al. (2005) Identification of MMP-1 as a putative breast cancer
predictive marker by global gene expression analysis.

Rae et al. (2005) GREB 1 is a critical regulator of hormone dependent
breast cancer growth.

Wonsey and Follettie (2005) Loss of the forkhead transcription factor FoxM1 causes
centrosome amplification and mitotic catastrophe.

Creighton et al. (2006) Activation of mitogen-activated protein kinase in
estrogen receptor alpha-positive breast cancer cells in vitro
induces an in vivo molecular phenotype of estrogen receptor
alpha-negative human breast tumors.

Dittmer et al. (2006) Parathyroid hormone-related protein regulates
tumor-relevant genes in breast cancer cells.

Frasor et al. (2006) Gene expression preferentially regulated by
Tamoxifen in breast cancer cells and correlations
with clinical outcome.

Richardson et al. (2006) X chromosomal abnormalities in basal-like
human breast cancer.

Wu et al. (2006) Glucocorticoid receptor activation signals through forkhead
transcription factor 3a in breast cancer cells
(Series 1, 2, 3).
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Table 4.4: Expression values for Estrogen Receptor 2 (ER beta) in breast cancer cells
reexpressing estrogen receptor alpha response to 17beta-estradiol. The expression
values for Estrogen Receptor 2 (ER beta) in the analysis of the response of estrogen
receptor (ER) negative breast cancer cells infected with full-length ERα adenoviral
constructs to treatment with 17beta-estradiol (E2).

Sample Expression Level
AdlacZ+est 68.5

15.7
97.3

AdERa+est 189
174
107

Table 4.5: Expression values for Estrogen Receptor 2 (ER beta) in the estrogen effect
on estrogen receptor alpha positive breast cancer cell lines. The expression values for
Estrogen Receptor 2 (ER beta) in estrogen receptor positive breast cancer cell lines
treated with estradiol for 24 hours. MCF-7, T47-D, and BT-474 breast cancer cell
lines examined.

Sample Expression Level
Control
MCF-7 6.16

6.22
T47-D 5.80

5.87
BT-474 5.92

5.71
Est. Treated
MCF-7 6.23

6.27
T47-D 5.89

5.86
BT-474 5.87

5.98
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Table 4.6: Expression values for Estrogen Receptor 2 (ER beta) in molecular apocrine
breast tumors. Analysis of tumors of 49 breast cancer patients. Tumors classified into
a luminal, basal, or novel molecular apocrine class. Apocrine tumors are estrogen
receptor negative (ER-) and androgen receptor positive (AR+), while luminal tumors
are ER+ and AR+, and basal tumors are ER- and AR-.

Sample Expression Level
Apocrine Tumor (n = 6) 6.442 (0.0054)
Basal Tumor (n = 16) 6.467 (0.0077)
Luminal Tumor (n = 27) 6.325 (0.354)

Table 4.7: Expression values for Estrogen Receptor 2 (ER beta) in ER α positive
breast cancer cells response to hyperactivation of MAPK pathway. The expression
values for Estrogen Receptor 2 (ER beta) in ER alpha positive MCF-7 breast cancer
cells overexpressing constitutively active c-erbB-2.

Sample Expression Level
Control 5.896

6.016
5.894

erbB-2 6.022
6.005
6.014
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5. METHODS

Scientists are rigorously honest about reporting experiment results and how

those results are obtained in formal publications. The National Academy of Sciences’

report on the responsibilities of authorship in Biological Life Sciences (National Re-

search Council 2003) explain that scientists have an ethical duty to allow free and

open access to supporting data. Most scientists agree with this principle because

results that cannot be replicated are suspect. This open access to data allows scien-

tists to create models that reflect an increase in genomic knowledge; this increase in

knowledge is often disregarded.

5.1 Combining Information Across Studies

Most Bayesian methods for the study of microarray analysis use vague priors

or priors with data-driven hyperparameters. Given the vast amount of genomic infor-

mation available, stronger priors may be constructed. However, the number of genes

involved, the variety of gene expression platforms, and the thousands of experiments

documented pose some difficulties in building informative priors.

Combining information across multiple studies is challenging. In the case of

microarray studies, the expression levels of the same genes have been measured on

different array platforms. In addition, technical and biological variability generally

lead to measurements of gene expression that may not be comparable across studies.

There are few methods that deal with these complications.

To avoid dealing directly with measurements of gene expression that may not

be comparable, several approaches have been proposed. Rhodes et al. (2002) com-

pute q-values (Benjamini and Hochberg 1995) for each gene and define a differential

expression signature for each experiment as the set of genes with q-values below a
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pre-defined threshold. The meta-signature is declared to be all genes present in at

least J signatures, where J is selected by permutation testing.

In another effort to combine information across studies, Parmigiani et al. (2004)

use information on the correlation between gene expression measurements. Rather

than providing an aggregate inference, this approach focuses on identifying a set of

comparable genes, namely genes for which the correlation of expression values among

other genes in the array was similar across studies. This procedure evaluates gene

expression consistencies across platforms rather than pooling gene expression values.

This method identified genes with reproducible expression patterns across studies and

improved correlation across studies.

Gene expression data generated with different microarray platforms are not

directly comparable; even within the same platform different protocols for sample

preparation, array hybridization, and data analysis can result in variation among

datasets. Because the composition of microarrays is regularly updated to incorporate

new genes with improved target sequences, it is difficult to combine data from different

generations of the same microarray platform. Despite this difficulty, Yuen et al.

(2002) compare microarray measurements between Affymetrix GeneChips and two-

color cDNA microarrays and find that, although the fold changes of differentially

expressed genes showed poor correlation across array platforms, the rank orders of

differentially expressed genes are comparable.

In light of the information accumulating about the genome and the ability to

combine information across studies, it seems reasonable to believe there is some prior

knowledge about the probability that a specific gene will be differentially expressed

in a new experiment. Public databases can be queried to obtain information about

the expression levels of a gene in different types of tissues. This information can be

combined into an informative prior on the probability of differential expression.
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5.2 Model Specifications

A two-sample Bayesian t-test will determine if there is a difference in expression

between the cells infected with adenovirus carrying either AdERβ or Ad. This test is

based on the model used in Fox and Dimmic (2006). The likelihood of the observed

data in sample i for a single gene g follows a normal distribution depending on the

treatment group. That is,

yig ∼ N(µg, σ
2) and

yig ∼ N(µg + ∆g, σ
2),

where ∆g reflects the difference in expression between the treatment groups.

Four sets of priors are explored in this work. First, of the relevant historical

studies researched, one of the experiments that is similar to the tamoxifen experiment

is used to give estimates for the conjugate prior distributions. We assume normal

priors for the mean of each gene, µg, normal priors for ∆g, and inverse gamma priors

for σ2.

A second set of priors applies the power prior approach introduced by Ibrahim

and Chen (2000). Each historical experiment has a likelihood that is assumed to

follow an N(θg, τ
2) distribution. The initial priors for µg, ∆g, and σ2 are taken to be

N(µ0, σ
2/λ0), N(0, σ2/λ0) and IG(ν0, σ

2
0), respectively. Each a0k has an independent

beta distribution with parameters (ak, bk), where k = 1, . . . , L0. The formula shown

in section 2.3.1 gives a joint power prior for (µg, ∆g, σ
2, a0).

The third set of priors uses an empirical Bayes approach to estimate the pa-

rameters of the prior distribution on the three parameters, µg, ∆g, and σ2.

The fourth set of priors uses an empirical Bayes approach to estimate the pa-

rameters of the prior distribution on the variance and assumes flat priors on the mean

and difference in means. That is, the joint prior is assumed to be proportional to the

inverse gamma prior on the variance with data-driven hyperparameters. The prior
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distributions lead to the following posterior distribution

p(µg, ∆g, σ
2|y) ∝ p(µg, ∆g, σ

2)

n1
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2
(yig − µg)

2

)

×
n2
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2
((yig − (µg + ∆g))

2

)

,

where n1 and n2 are the number of measurements in each sample. The marginal

posterior for ∆g can be found and used in a hypothesis test of differential expression.

The null hypothesis assumes that the true difference in expression levels is zero;

that is, ∆g = 0 or some other threshold degree. When the posterior probability of

no differential expression, Pr(∆g = 0|y), is less than a cutoff value α∗, the null is

rejected and the gene is called differentially expressed.

5.3 Perl Script

A Perl script obtains the hyperparameters of the priors for one gene. The

script has to search for a full list of previous experiments involving the gene, choose

the relevant experiments, and extract information from these experiments to specify

the hyperparameters of the prior distributions.

The script accesses the GEO database to search for experiments involving es-

trogen receptors, breast cancer, and the given gene. The resulting list includes a

summary of each experiment, as seen in Figure 5.1. The relevant experiments are

chosen by searching the experiment summary, the ”Experiment” field in Figure 5.1,

for both breast cancer and estrogen receptors. The experiments that are not chosen

may examine estrogen receptors in cancers of other parts of the body or involve breast

cancer but not with respect to estrogen receptors.

The data set from each of the relevant studies is split into two groups. The

web page includes check-boxes that correspond to a specific group of samples. These

check-boxes are shown in Figure 5.2 in the ”4 assigned subsets” table under the

heading ”Samples”. The subsets may split the samples according to the treatment
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Figure 5.1: List of experiments for one gene from GEO. The Perl script searches the
Experiment field for both breast cancer and estrogen receptors to identify the relevant
experiments (National Center for Biotechnology Information 2002a).

or by some facet of the tissues. To extract the groups of samples, the HTML source

code is searched for the check-box code, and the subset of samples is retrieved from

this portion of the HTML code. The script exports the groups of sample numbers to

a text file.

The script prints out the labels of the subsets of each data set. The user chooses

two of the labels that split the data into two subsets. The files corresponding to the

two groups specified by the user are imported. For each sample number within each

file, the script retrieves the webpage that includes the table of expression values for

all genes in the sample, as seen in Figure 5.3. The gene name is located and the

script keeps all information between the gene name and the next gene number. The

expression value is extracted from this information, stored in an array, and written

to a text file. These files are read into R for further analysis.
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(a) All samples

(b) Subset of samples

Figure 5.2: Possible subsets of samples marked by check-boxes. In (a), all samples
are marked by a check. In (b), the subset of samples marked by the first check-box
are now un-checked (National Center for Biotechnology Information 2002a).
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Figure 5.3: Table of expression values of all genes for one sample.
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6. DATA ANALYSIS

The method described in the previous chapter is applied to 10 of the 22,283

genes in the data set. For ease of explanation, the ten genes are given numbers,

as shown in Table 6.1. The first five of the genes are randomly chosen from those

genes that are differentially expressed, the next two are from the list of genes that

are equivalently expressed, and the last three are from the list of genes that are

moderately expressed.

Table 6.1: Genes to which the proposed method is applied. These genes are selected
from the case study analysis; five from the list of differentially expressed genes, three
just beyond the cutoff p-value, and two non-significant genes.

Group Reference Number Gene Reference Number
Differentially Expressed Gene 1 211120 x at

Gene 2 218039 at
Gene 3 200974 at
Gene 4 202240 at
Gene 5 61732 r at

Equivalently Expressed Gene 6 213570 at
Gene 7 204773 at

Moderately Expressed Gene 8 91952 at
Gene 9 202378 s at
Gene 10 31799 at

Table 6.2 gives the four experiments that are returned for all ten genes. This is

not a requirement of the script, but a feature of the data. After further investigation

of the five data sets, it is determined that all five experiments involve the same genes.

The only exceptions are the control genes.

Gene 1 has a very high probability of differential expression. The Perl script

is run for Gene 1. The script brings back the list of ways to split the data for four

experiments. The control and treatment groups are entered for each experiment. The

eight text files with the arrays of gene expression values are imported into R. The two-
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Table 6.2: The four breast cancer experiments mined by the Perl script. These four
experiments are used in the analysis of all ten genes.

Author Experiment
Farmer et al. (2005) Identification of molecular apocrine breast tumours

by microarray analysis.
Moggs et al. (2005) Anti-proliferative effect of estrogen in breast cancer cells

that re-express ERalpha is mediated by aberrant regulation
of cell cycle genes.

Rae et al. (2005) GREB 1 is a critical regulator of hormone dependent
breast cancer growth.

Creighton et al. (2006) Activation of mitogen-activated protein kinase in
estrogen receptor alpha-positive breast cancer cells in vitro
induces an in vivo molecular phenotype of estrogen receptor
alpha-negative human breast tumors.

sample t-test model is run four times: once with the power prior distribution using all

four previous experiments, ”Power Prior,” once using the first experiment to estimate

the hyperparameters of the prior distributions, ”Informative Prior,” once using the

tamoxifen data to estimate the hyperparameters of the prior distributions, ”Empirical

Prior,” and once with the joint prior proportional to the prior for the variance with

data-driven hyperparameters, ”Flat Priors”. Figure 6.1 gives a plot of the marginal

posterior distribution for ∆g using all four priors. The use of the flat priors on the

mean and difference in means and the data-driven hyperparameters of the variance

prior and the empirically estimated prior give nearly identical posterior distributions.

The spread of these distributions is roughly 40 gene expression units. The power prior,

the empirical prior, and the flat priors have posteriors centered at values greater than

zero, but they are not as extreme as the posterior of the informative prior. The

previous study chosen is one in which Gene 1 has a large probability of differential

expression (Moggs et al. 2005). The spread of the posterior distributions decreases

as the amount of information in the prior increases; that is, the power prior gives a

posterior with about half the spread of the posterior using the empirically estimated
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prior. The choice of prior distributions also affects the estimated means, as seen in

Table 6.3. The P(∆g > 0) is approximately the same for all four priors.

One common concern about the Bayesian approach to microarray analysis is

that prior distributions are not objective. In this case, the choice of priors used does

not affect the outcome; namely, Gene 1 is called differentially expressed regardless

of the prior distribution. This outcome is expected, as the prior distribution should

matter in cases where the difference in expression levels is near, but not equal to zero.

Figure 6.1: Marginal posterior distribution of ∆g for Gene 1 using four different priors.
The power prior has the smallest spread and the empirical prior and flat priors have
the largest spread. The informative prior has a spread in between the non-informative
priors and power prior and a mean shifted up about 100 gene expression units.

Table 6.3: Expected value of ∆g and P(∆g > 0) for Gene 1 using four different
priors. The P(∆g > 0) is approximately the same using any of the prior distributions,
regardless of the large differences in the expected values.

Prior Distribution E(∆g) P(∆g > 0)
Informative Prior 99.48 > 0.999
Power Prior 2.357 0.996
Empirical Prior 9.547 > 0.999
Flat Priors 9.695 > 0.999
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Gene 2 also has a high probability of differential expression. The Perl script

brings back the list of ways to split the data for the same four experiments as were used

for Gene 1. The control and treatment groups chosen are the same as in Gene 1. The

same experiment is used to estimate the hyperparameters for the informative prior.

The two-sample t-test model is run four times. Figure 6.2 gives a plot of the marginal

posterior distribution for ∆g using the four priors. The four posterior distributions

are roughly centered around zero, though the flat priors pull the posterior slightly to

the left. As with Gene 1, the spread of the distributions increases as the amount of

knowledge included decreases, with the exception of the empirical prior and the flat

priors. The expected value of ∆g is shown in Table 6.4 using the four priors. The

expected values and P(∆g > 0) are affected by the four priors.

Figure 6.2: Marginal posterior distribution of ∆g for Gene 2 using four different
priors. The power prior has the smallest spread and the empirical prior has the
largest spread. The informative and flat priors give posteriors with roughly the same
spread.

Gene 3, Gene 4, and Gene 5 are three other differentially expressed genes with

approximately the same difference in means. An experiment performed by Moggs

et al. (2005) is used to estimate the hyperparameters for the informative prior. The
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Table 6.4: Expected value of ∆g and P(∆g > 0) for Gene 2 using four different priors.
The use of the four priors has a noticeable effect on both the expected values and the
P(∆g > 0).

Prior Distribution E(∆g) P(∆g > 0)
Informative Prior -2.174 0.431
Power Prior -2.026 0.267
Empirical Prior -4.508 0.488
Flat Priors -3.861 0.498

marginal posterior distributions using the four priors of ∆g for Gene 3, Gene 4 and

Gene 5 are shown in Figure 6.3. The marginal posteriors for Gene 3 using the the

empirical prior and the flat priors are equivalent. The distributions are centered

roughly around zero and the spread increases as the amount of information in the

prior decreases. The marginal posteriors of Gene 4 using the empirical and power

prior look equivalent to those in Gene 3. The flat priors give a marginal posterior for

Gene 4 that is barely shifted to the right. The posterior using the informative prior is

shifted down about 40 gene expression units due to the differential expression of the

gene in the previous experiment. The posteriors for Gene 5 are close to those in Gene

3 with the exception of the informative prior. The informative prior gives a posterior

that is shifted down about 15 gene expression units. The four prior distributions

change the expected values and P(∆g > 0), as shown in Table 6.5.

Gene 4 and Gene 5 are only called differentially expressed using the informative

prior. Figure 6.4 gives a plot of the power, informative and empirical priors for both

Gene 4 and Gene 5. The empirical prior and the flat priors give equivalent posteriors

for all three genes. The power prior has the smallest spread, the empirical prior and

flat priors have the largest spread and the informative prior has a spread in between

the non-informative priors and the power prior. The informative prior is shifted to

the left for both Gene 4 and Gene 5.

The informative prior uses one historical experiment to estimate the prior pa-
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Figure 6.3: Marginal posterior distribution of ∆g for Gene 3, Gene 4, and Gene 5
using four different priors. The empirical prior and the flat priors give equivalent
posteriors for all three genes. The power prior has the smallest spread, the empirical
prior and flat priors have the largest spread, and the informative prior has a spread
in between the non-informative priors and the power prior. The informative prior is
shifted to the left for both Gene 4 and Gene 5.

rameters. The choice of experiment can radically change the prior and, consequently,

the posterior. Table 6.6 shows the estimated value of ∆0 for each of the four previous

experiments for Gene 4 and Gene 5. Experiment 3, the strongest historical evidence

of differential expression, is used in this analysis. Suppose the expert believed that

Experiment 4 is the best reflection of gene expression. With this prior distribution,
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Table 6.5: Expected value of ∆g and P(∆g > 0) for Gene 3, Gene 4, and Gene 5
using four different priors. The expected value of ∆g varies with the choice of prior
distributions for all three genes. The P(∆g > 0) also differs for all three genes, though
more so for Gene 5 than for Gene 3 or Gene 4.

Gene 3
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior 3.455 0.603
Power Prior 0.873 0.718
Empirical Prior 2.061 0.809
Flat Priors 3.802 0.798

Gene 4
Prior Distribution E(∆) P(∆g > 0)
Informative Prior -38.21 0.013
Power Prior -1.264 0.203
Empirical Prior -3.411 0.312
Flat Priors -3.461 0.321

Gene 5
Prior Distribution E(∆) P(∆g > 0)
Informative Prior -15.74 0.059
Power Prior -1.273 0.223
Empirical Prior -4.366 0.384
Flat Priors -4.394 0.387

Figure 6.4: Prior distributions for Gene 4 and Gene 5. The informative prior is shifted
to the left for both genes, whereas the power and empirical priors are closer to zero.
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P(∆g > 0) is 0.232 and is therefore not called differentially expressed. The power

prior combines the information from all four previous experiments. Besides Exper-

iment 3, neither Gene 4 nor Gene 5 has strong evidence for differential expression;

therefore, the posterior is shifted closer to zero.

Table 6.6: Estimated value of ∆0 for each of the four previous experiments for Gene
4 and Gene 5.

∆0 (difference in sample means)
Experiment Gene 4 Gene 5

1 0.102 0.051
2 -0.599 0.156
3 -64.8 -12.5
4 0.352 -0.108

Gene 6 and Gene 7 are genes with a low probability of differential expression

based on the case study analysis. The model is applied in the same fashion as in the

previous five genes. The marginal posterior distributions of ∆g using the four prior

distributions for Gene 6 and Gene 7 are shown in Figure 6.5. These distributions

have the same center, aside from the informative prior for Gene 7. The informative

prior using the experiment by Moggs et al. (2005) shifts the posterior of ∆g down

by about 5 gene expression units. The spread is different across the choice of priors.

The power prior has the smallest spread, the empirical prior and flat priors have the

largest spread, and the informative prior has a moderate spread. The choice of prior

distribution does not affect the mean for ∆g and P(∆g > 0) as much as it affects the

differentially expressed genes. The means and probabilities are shown in Table 6.7.

Finally, Gene 8, Gene 9, and Gene 10 are moderately expressed genes; that is,

these genes are near the boundary for differential expression. The Perl script returns

text files of expression values for the same four experiments as in the analysis of

all previous genes. The marginal posterior distribution for ∆g using all four prior

distributions for Gene 8, Gene 9, and Gene 10 are similar to each other (see Figure
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Figure 6.5: Marginal posterior distribution of ∆g for Gene 6 and Gene 7 using four
different priors. The marginal posteriors for both Gene 6 and Gene 7 are as expected:
they are centered around zero and the spread increases as the amount of information
in the prior decreases.

Table 6.7: Expected value of ∆g and P(∆g > 0) for Gene 6 and Gene 7 using three
different priors. While the estimates of the expected value of ∆g and P(∆g > 0)
change with the choice of prior distributions, the difference is not as dramatic as with
the differentially expressed genes.

Gene 6
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior -0.640 0.465
Power Prior -0.606 0.357
Empirical Prior 0.027 0.507
Flat Priors 0.072 0.524

Gene 7
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior -4.539 0.368
Power Prior -0.645 0.343
Empirical Prior 0.085 0.505
Flat Priors 0.044 0.523

6.6). The posteriors for Gene 8 and Gene 10 are almost identical. The marginal

posterior for Gene 9 using the informative prior is slightly shifted to the left. Also, for

both Gene 9 and Gene 10, the empirical prior is visibly more peaked than the posterior
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using the flat priors. The estimates of the expected value for ∆g and P(∆g > 0) are

affected by the choice of prior distribution, as seen in Table 6.8.

Another common concern about the Bayesian methodology for microarray anal-

ysis is that the prior distribution swamps the data. For the three moderately expressed

genes, Gene 8, Gene 9, and Gene 10, the informative priors have no greater impact

than the flat priors.

Figure 6.6: Marginal posterior distribution of ∆g for Gene 8, Gene 9, and Gene 10
using four different priors. The posteriors using the power prior and the empirical
prior and flat priors are similar for all three genes. The informative prior shifts slightly
for Gene 9 and the spread is much closer to that of the flat priors and empirical prior.
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Table 6.8: Expected value of ∆g and P(∆g > 0) for Gene 8, Gene 9, and Gene 10
using four different priors. There are more detectable differences in the expected
value of ∆g and the P(∆g > 0) than with the equivalently expressed genes, but the
changes are not as radical as with the differentially expressed genes.

Gene 8
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior 1.114 0.635
Power Prior 0.995 0.737
Empirical Prior 1.029 0.714
Flat Priors 1.019 0.697

Gene 9
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior -6.739 0.228
Power Prior -1.949 0.105
Empirical Prior -0.777 0.317
Flat Priors -0.787 0.355

Gene 10
Prior Distribution E(∆g) P(∆g > 0)
Informative Prior 2.623 0.679
Power Prior 1.695 0.857
Empirical Prior 1.424 0.818
Flat Priors 1.404 0.839

For a given gene, the Perl script retrieves the expression values for each sample

of the historical studies. The model returns marginal posterior distributions for ∆g

using all three proposed prior distributions. The center of the marginal posterior

distributions is not as affected by the choice of prior distribution as the spread. For

all ten genes, the spread of the posterior increases as the choice of prior moves from the

power prior to the informative prior and from the informative prior to the empirical

prior. The estimates of the expected value of ∆g and P(∆g > 0) are also affected by

the choice of priors. The recommended prior distribution for all cases is the power

prior. This prior uses information from multiple previous experiments and decreases

the variance of the marginal posteriors. The informative prior provides information

that is ignored by the flat priors, but it disregards other previous experiments. One
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possible variation of the informative prior is estimating the parameters of the prior on

∆ by the mean and variance of the difference in sample means of the four experiments.
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7. CONCLUSIONS

Bayesian models are ideal for the analysis of microarray studies because of the

ability to integrate prior knowledge. Most current alternate approaches do not include

the information about previous studies in the microarray analysis. The approach

proposed in this thesis uses a Perl script to mine GEO for previous experiments

to build prior distributions. Four prior distributions are explored: a power prior

distribution using historical studies as proposed by Ibrahim and Chen (2000), an

informative prior using one historical study to estimate the hyperparameters, a prior

with data-driven hyperparameters, and flat priors. A model is proposed similar to

the two sample Bayesian t-test presented in Fox and Dimmic (2006) is proposed to

detect differentially expressed genes. The process is applied to ten genes from a breast

cancer experiment. The script and the model perform as expected.

The model chosen is simple, yet effective. A grand hierarchical model that com-

bines all of the information of the current and the past experiments could have been

proposed. While this plan may increase the power to detect differentially expressed

genes, there are many drawbacks. One major problem with a hierarchical model com-

bining multiple studies is the difficulty of keeping track of all the levels of replication.

Housekeeping can prove to be a daunting task with multiple genes from multiple

arrays within each of many studies while also accounting for any missing expression

levels, arrays, or replicates. Another difficulty with the hierarchical approach is the

choice of historical studies to include. These experiments are likely informative about

the same basic biological process, but they may target different populations of people

or include some different treatments or replicates. They may also be investigating a

different set of genes, which then requires decreasing the number of genes analyzed

to a group of common genes from all studies included. That is why, in this work, the
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historical experiments are used to build a prior distribution.

The results of the analysis imply that the choice of prior distribution does affect

the marginal posterior distribution of the difference in means. There are noticable

differences in the spread of the posteriors of all three types of genes. The power prior

gives the posterior distribution with the smallest spread, and the empirical prior

gives the posterior distribution with the largest spread. The informative prior gives

posteriors with a spread somewhere between those given by the the power prior and

the empirical prior. The estimate of the expected value of the difference also changes

between the choices of prior distributions. This change is most apparent in the genes

that are differentially expressed. The informative prior, as defined here, is heavily

sensitive to the choice of the historical study used to estimate the parameters. The

power prior is recommended as the prior distribution because of the incorporation of

multiple previous studies.

The prior distributions for the proposed model are more informative than a

flat prior on the difference in means. However, elicitation is an iterative process. In

an ideal world, this prior would be a starting point. An expert would be consulted

and the prior would be modified using elicitation methods. Therefore, in reality,

while these priors are one step above a flat prior distribution, there is much room for

improvement and further development of this distribution.

There is other information about the genome that could be included in the

analysis. Some include the proportion of experiments in which the gene is called

differentially expressed, which chromosome the gene is located on, the location of

the gene on the chromosome, whether the gene is from the positive or the negative

strand, the environment of the gene (co-factors), or information about clusters of

genes that work together. This information could be included in the construction of

a prior distribution on the probability a given gene is differentially expressed.

The prior distributions are formed with the output from the Perl script. The
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Perl script returns the expression values of a given gene from each sample in multiple

relevant previous studies. In the case of the ten chosen genes, these previous studies

are all the same, though uniformity is not required. The script is also able to overcome

obstacles such as different gene accession name forms, different successive genes across

experiments, and genes at the end of the file. However, the script does require user

input in choosing how to split the data for each experiment. Additionally, the script

only works for one gene. Future work will generalize the script to run without user

input for all the genes in the breast cancer experiment. Also, because the script is

currently specific to the case study experiment, there is future work in creating a

script that follows the entire procedure for any given experiment.

This work provides a program to mine previous microarray studies to build

informative priors for a Bayesian analysis. It presents a framework for easily incorpo-

rating genomic knowledge into an analysis. The informative priors investigated are

shown to maintain objectivity and swamp the data no more than the flat priors. The

informative prior estimated with data from one historical experiment exhibits an im-

provement in inference on genes with a moderate difference in expression. Combining

information from multiple historical studies, as with the power prior, is preferred over

prior parameter estimation using one previous study. With future work, this method

can be generalized for use in any given experiment. The resulting list of differentially

expressed genes will be more accurate and, consequently, help move genomic research

forward.
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A. PERL SCRIPT

#!/usr/bin/perl -w

use WWW::Mechanize;

use HTML::TokeParser;

my $gene = "211120_x_at";

my $agent = WWW::Mechanize->new();

##Go to GEO Profiles website

$agent->get("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo");

##Search for experiments

$agent->set_visible("GEO Profiles","$gene breast cancer estrogen receptor");

$agent->click_button(number=>1);

my $url = "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?view=data&acc=GSM";

my $coun=1;

##Get titles and GDS numbers

foreach ($agent->links){

if ($_->[0] =~ /dataset/){

$agent->get($_->[0]);

my $stream = HTML::TokeParser->new(\$agent->{content});

$stream->get_tag("html");

$stream->get_tag("head");

$stream->get_tag("meta");

$stream->get_tag("title");

my $gds = $stream->get_trimmed_text("title","/title");

if ($gds =~ m/GDS(.*)$gene/){

$dataset = $1;

chop($dataset);

chop($dataset);

chop($dataset);}

$stream->get_tag("b");

$stream->get_tag("b");

$stream->get_tag("b","/b");

my $title= $stream->get_text("/b","br");

if($title =~ /estrogen receptor/ and $title =~ /breast cancer/ and

$title !~ /tamoxifen/){

##Obtain list of how to split data

my $web = WWW::Mechanize->new();

$web->get("http://www.ncbi.nlm.nih.gov/projects/geo/gds/

gds_browse.cgi?gds=$dataset");
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my @exp;

my $cnt=0;

my $stream = HTML::TokeParser->new(\$web->{content});

while (my $token = $stream->get_tag("input")) {

my $type = $token->[1]{type} || "-";

if ($type =~/HIDDEN/){

my $text = $token->[1]{name} || "-";

if ($text =~ /sub/){

if ($text =~ /allsubnames/){

$stream->get_tag("input");

$stream->get_tag("tr");

$stream->get_tag("td","/td");

$stream->get_tag("td");

$stream->get_tag("td","/td");

$stream->get_tag("td","/td");

$stream->get_tag("td","/td");

$stream->get_tag("td","/td");

$exp[$cnt] =$stream->get_trimmed_text("td","/td");

if ($exp[$cnt] =~/control/){$exp[$cnt] = "control$cnt";}

$cnt=$cnt+1;}

my $value = $token->[1]{value} || "-";

my $file = join("\n","$exp[$cnt-1]","$coun","txt");

open file, ">>$file";

print file "$value\n";

close file;

$count=$count+1;

}}}

##Choose how to split data

my $temp = WWW::Mechanize->new();

print "@exp\n";

print "Choose first group:\n";

my $group1 =<STDIN>;

print "Choose second group:\n";

my $group2 =<STDIN>;

chomp $group1;

chomp $group2;

my $file1= join(".","$group1","$coun","txt");

my $file2= join(".","$group2","$coun","txt");

##Retrieve expression values for group 1

my @gsm1;

open input1,"$file1";
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@gsm1=<input1>;

close input1;

splice(@gsm1, 0, 1);

my @group1;

my $count=0;

foreach $gsm (@gsm1){

my $url2 = join(’’,$url,$gsm);

$temp->get($url2);

my $values = HTML::TokeParser->new(\$temp->{content});

#find table values and save them

if ($values->get_tag("\pre")){

my $title = $values->get_trimmed_text([$endtag]);

if($title =~ m/$gene(.*)\n/) {

my $num = $1;

while($num =~ m/[A-Z]/){

chop($num);}

$group1[$count]=$num;

$count=$count+1;

}}}

##Print to file

my $outfile1 = join("\n", "$group1","$coun","2","txt");

$grp1=join(",",@group1);

open out1,">$outfile1";

print out1 "$grp1";

close out1;

##Retrieve expression values for group 2

my @gsm2;

open input2,"$file2";

@gsm2=<input2>;

close input2;

splice(@gsm2, 0, 1);

my @group2;

my $count=0;

foreach $gsm (@gsm2){

my $url2 = join(’’,$url,$gsm);

$temp->get($url2);

my $values = HTML::TokeParser->new(\$temp->{content});

if ($values->get_tag("\pre")){

my $title = $values->get_trimmed_text([$endtag]);

if($title =~ m/$gene(.*)\n/) {

my $num = $1;

while($num =~ m/[A-Z]/){
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chop($num);}

$group2[$count]=$num;

$count=$count+1;

}}}

##Print to file

my $outfile2 = join(".", "$group2","$coun","2","txt");

$grp2=join(",",@group2);

open out2, ">$outfile2";

print out2 "$grp2";

close out2;}

$agent->back();

$coun=$coun+1;

}}
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