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ABSTRACT

SENSITIVITY TO DISTRIBUTIONAL ASSUMPTIONS IN ESTIMATION OF

THE ODP THRESHOLDING FUNCTION

Wendy J. Bunn

Department of Statistics

Master of Science

Recent technological advances in fields like medicine and genomics have pro-

duced high-dimensional data sets and a challenge to correctly interpret experimental

results. The Optimal Discovery Procedure (ODP) (Storey 2005) builds on the frame-

work of Neyman-Pearson hypothesis testing to optimally test thousands of hypotheses

simultaneously. The method relies on the assumption of normally distributed data;

however, many applications of this method will violate this assumption. This thesis

investigates the sensitivity of this method to detection of significant but nonnormal

data. Overall, estimation of the ODP with the method described in this thesis is

satisfactory, except when the nonnormal alternative distribution has high variance

and expectation only one standard deviation away from the null distribution.
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1. MULTIPLE COMPARISONS IN GENE EXPRESSION EXPERIMENTS

Advances in modern technology, particularly in high-dimensional biological stud-

ies, have yielded vast data repositories. The task of sorting through the volume of

resulting data becomes problematic, particularly when the goal is to test multiple

hypotheses simultaneously. In response, the theory and methods of hypothesis test-

ing have been refined for a broad range of applications, including magnetic resonance

imaging (MRI), proteomics, and gene expression experimentation.

MRI is a widely used technology in medicine which utilizes magnets and radio

waves to probe the human body (Harvey et al. 2006). During the imaging procedure,

the patient is placed in a strong uniform magnetic field. This causes hydrogen nuclei

in the patient’s cells to align themselves either parallel or antiparallel to the field.

Brief pulses of electromagnetic energy are sent through the field, perpendicular to the

direction of the field. Some of the aligned nuclei absorb the pulses of electromagnetic

energy and shift out of their alignment with the magnetic field. After the pulse passes,

the nuclei emit their additional energy and realign themselves with the field. These

energy emissions are recorded as signal output and combined to create the image;

computers can rotate this image to construct a three-dimensional map of the body’s

interior. This imaging process is important because it allows clinicians to view vital

body structures in a non-invasive way. Therefore, it is crucial that imaging software

is able to sort out the millions of wave measurements into a clear representation of

the body.

Improved methods for proteomics and genomics experimentation have recently

been developed with the help of computers and automated equipment. In proteomics

experimentation, the entire collection of proteins from a cell or organism is sepa-

rated into smaller subgroups by their polarity, size, and other distinguishing features.

From there, the structure and function of these proteins is investigated using tech-
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niques such as x-ray crystallography, amino acid sequencing, and mass spectrometry.

Implementing each of these methods relies heavily on the proper interpretation of

data.

Gene expression experiments use microarrays to determine the function of a

specific gene or pinpoint the genes that are expressed in a cell at a certain time. For

example, a researcher might be interested in knowing which genes in a human brain

cancer tumor cell are being expressed differentially; that is, genes that are expressed

at different levels (either higher or lower) when compared to a normal brain cell.

Microarray technology makes it easy to assay the expression levels of thousands of

genes simultaneously on one array. Due to the expense of these arrays, comparatively

few replicates are created (usually fewer than 20). On these precious few arrays, many

thousands of genes are compared.

The quest to discover differentially expressed genes among the thousands present

on a microarray chip or to detect subtle changes in the density of brain tissue with

MRI has introduced concern over how to sort out the valid signal from the data

noise. The debate regarding control of errors made in high-dimensional multiple test-

ing situations has been difficult to resolve. The application of statistical analyses

to large-scale data sets has motivated many of the recent advancements in multiple

testing, particularly the Optimal Discovery Procedure which will be discussed in the

next two chapters.
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2. MULTIPLE COMPARISON PROBLEM

The problem of multiple comparisons, or multiple testing, has been a focus of statis-

ticians for many decades. Although a procedure for testing a single hypothesis was

established in the early 1900s, applying this optimal method to many tests simulta-

neously continues to challenge statisticians.

2.1 Simple Hypothesis Testing

The modern foundations of hypothesis testing stem primarily from the con-

tributions of R. A. Fisher, Jerzy Neyman, and Egon Pearson. Their ideas can be

separated into two different approaches: Fisher’s “p-value procedures”(Royall 1997)

and Neyman-Pearson likelihood-based inference. The basic hypothesis testing frame-

work begins with the construction of two competing hypotheses, H0 and H1, and a

parameter of interest, θ; in the simple case, H0 : θ = θ0 and H1 : θ = θ1. After

gathering data, the most likely hypothesis should be favored.

Fisher’s p-value approach computes a test statistic (a function of the data),

such as the t-statistic for a one-sample test, t =
x̄

s/
√

n
(Fisher 1925), which follows

a t-distribution. The probability that a particular extreme statistic was obtained by

chance is the p-value, and is computed under the assumptions of the null hypothesis.

These p-values are often interpreted as the strength of the evidence against the null

hypothesis. A small p-value for a particular test corresponds to a small probability

that the data were generated by the null distribution. A large p-value, on the other

hand, implies that the observed statistic could reasonably occur if θ = θ0. Large

p-values suggest that there is insufficient evidence against the null hypothesis, not

that the null hypothesis is necessarily true.

After a p-value is computed, a decision must be made: reject the null hypothesis

and favor the alternative, or fail to reject the null hypothesis. Using this procedure,

very small p-values—less than 0.05 or 0.01—may be declared statistically significant.
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This decision results in the subsequent rejection of the null hypothesis in favor of

the alternative hypothesis; however, even if the null hypothesis is rejected, there is

a chance that a mistake was made. The probability that the null hypothesis was

rejected falsely is called the Type I error, or α (there is also a Type II error related to

power). A false rejection of the null hypothesis occurs when the randomly sampled

data give evidence in favor of the wrong conclusion. In general, this error is serious

enough that it needs to be controlled below a small value. In Fisher hypothesis

testing, the Type I error (α) can be controlled by fixing it at some acceptable level,

such as 0.05 or 0.01. The resulting p-values are then compared to α in order to make

a decision. If the p-value is smaller than the chosen α, then the null hypothesis is

rejected. Although there is a nonzero probability that a Type I error has been made,

it has been controlled to be no more than α.

The hypothesis testing approach proposed by Neyman and Pearson is based on

the likelihood ratio. This ratio consists of the likelihood of the null hypothesis given

the data, divided by the likelihood of the alternative hypothesis given the data:

λ(x; θ0, θ1) =
L(θ0 | x)

L(θ1 | x)
.

If this ratio is greater than 1, then the data support the null hypothesis over the

alternative. Conversely, if the ratio is less than one, then the alternative hypothesis is

better supported by the data than the null. Slight favoring of one hypothesis over the

other is insufficient to make the decision to reject or fail to reject the null hypothesis.

A critical region must be constructed such that the null hypothesis should be rejected

if the likelihood ratio is less than k. The most powerful method for testing the

hypotheses stated previously is given by the Neyman-Pearson lemma (Neyman and

Pearson 1928a). This method specifies that a critical region C should be constructed

from values of x so that the likelihood ratio is less than or equal to k

C = {x | λ(x; θ0, θ1) ≤ k},
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where k is some constant so that P(X ∈ C | θ0) = α. If the likelihood ratio is

less than the specified k, then the null hypothesis will be rejected. Like the p-value

procedure, if the null hypothesis is rejected using the likelihood approach, there is

still a chance of a Type I error. This error is controlled by adjusting the width of

the critical region C. Again, α is set to a reasonable level and then the value of

k is chosen according to the formula above, ensuring that the Type I error rate is

controlled. This method is optimal because it has the most power to detect true

alternative hypotheses. Power is the ability of a test to detect a true alternative

hypothesis and is a desirable characteristic of any test. In fact, the critical region

defined by C above is the most powerful critical region of size α.

2.2 Multiple Hypothesis Testing

Although the work of Fisher and Neyman and Pearson presented straightfor-

ward techniques for testing a single hypothesis, a standardized approach for com-

paring several quantities in a pair-by-pair fashion still does not exist. The problem

of multiple comparisons is a complicated extension of the single hypothesis test sce-

nario. One simple approach involved comparing each possible pair of groups using a

two-sided t-test, for a total of
(

m

2

)

tests for m groups, with the resulting p-values all

compared to α to determine significance. This reasoning creates a problem with the

analysis—the overall probability of a Type I error occurring is actually larger than

α. This multiplicity effect (Tukey 1977) can be explained as chance structure that

appears in a large number of test statistics (Diaconis 1985, p. 9). This apparent

structure shows up when one attempts to indiscriminately use a single-test method

in a multiple-comparison problem.

The Neyman-Pearson approach only guarantees its rejection region to be of

size α when the test is performed once; there is no assertion that many independent

tests performed simultaneously will have an overall error rate equal to α. As an
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example, consider 10 independent hypothesis tests. Each of the 10 resulting p-values

is compared to α = 0.05 to determine significance. The probability that a Type I

error has not been made in the first test is (1 − α) = 0.95; however, the probability

that a Type I error has not been made in any of the 10 tests is (1 − α)10 = 0.599.

Because the probability of a Type I error is inflated, this method is clearly inadequate

for arriving at correct decisions about the hypotheses. In order to present more

reasonable multiple testing methods, other error measures will be defined that might

be desirable to control, depending on the situation. Additionally, methods that have

been developed to control these errors will be discussed later in this chapter.

2.3 Error Rates

In the context of multiple testing, there are several error measures that evaluate

how well a multiple testing procedure performs. The three most common are the per-

comparison error rate (PCER), the family-wise error rate (FWER) and the per-family

error rate (PFER). The per-comparison error rate and the family-wise error rate have

been used generally over many years, and the per-family error rate is a function of the

per-comparison error rate. To illustrate these error rates, consider Table 2.1 below

(Benjamini and Hochberg 1995).

Table 2.1: Benjamini and Hochberg table for testing m null hypotheses. Of the m hy-
potheses tested, m0 are true and m−m0 are false. There are R rejected hypotheses—V
of them are rejected incorrectly and the remaining S are false null hypotheses.

Declared non-significant Declared significant Total
True null hypotheses U V m

False null hypotheses T S m − m

Total m − R R m
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The PFER measures how many Type I errors are expected when testing a family

of m hypotheses.

PFER = E(V ),

where V is the number of true null hypotheses rejected (false positive findings). The

PCER is a function of the PFER; the expected number of false positives is divided by

m, the number of tests, to yield the expected number of false positives per comparison

being made.

The family-wise error rate (FWER) measures the probability of at least one

Type I error occurring in a set of hypotheses. The FWER is defined as:

FWER = Pr(V ≥ 1),

where, again, V is the number of false positive findings.

In general, these error rates are related by the following equation:

PCER ≦ FWER ≦ PFER.

Control of these error rates at a minimal level is the goal of a variety of multiple

testing procedures. Hochberg and Tamhane (1987) describe the advantages of con-

trolling either the FWER or the PFER. First, minimizing the FWER for a family

with an infinite number of possible inferences is possible; controlling the PFER in this

situation is not possible. Also, controlling the FWER produces inferences that are

simultaneously correct. Alternatively, minimizing the PFER in a finite family situa-

tion also controls the FWER, because the PFER is an upper bound. Controlling the

PFER also penalizes the experimenter for testing an excessive number of hypotheses.

Besides these error rates, there are other less conservative measures that have been

developed to perform well in specific applications, such as microarray gene expression

experiments. Standard methods for controlling these rates are the subject of the next

section.
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2.4 Standard Controlling Methods

It would be wrong, I argue strongly, to try to find a single multiple
comparisons procedure for general use. There can be, very occasion-
ally, “a man for all seasons”; but we do not dare to seek “a single
procedure for all experiments.”

—From John W. Tukey’s preface to “The Collected Works of John
W. Tukey”

The vast spectrum of existing multiple comparison procedures began with two

basic methods developed by R. A. Fisher (Hochberg and Tamhane 1987): the least

significant difference (LSD) and Bonferroni procedures. These two procedures became

the foundation for a variety of multiple testing techniques that are widely used today.

The Bonferroni procedure is a single-step method that controls the PFER,

thereby controlling the Type I error rate in the strong sense; that is, any combination

of true and false null hypotheses will result in a controlled α level. This procedure is

based on the Bonferroni inequality (also known as Boole’s inequality):

P (
n

⋃

i=1

Ei) ≤
n

∑

i=1

P (Ei),

where P (Ei) is the probability that Ei is obtained for Ei not necessarily disjoint

events in the sample space. So, P (
⋃n

i=1 Ei) is the probability that any Ei will be

obtained. This probability is always less than or equal to the sum of the individual

probabilities. In the multiple testing situation, the Bonferroni correction states that

if n hypotheses are tested, then α should be set at α
n
. So, if

P (Ti ∈ γ | H0) ≤
α

n

for all i in n, then using the Bonferroni inequality,

P (Ti ∈ γ | H0) ≤ α

for any i in n. This simple correction becomes problematic as the number of hypothe-

ses increases. For example, if testing 1000 hypotheses individually at α = 0.00005,
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the null hypothesis would only be rejected for extremely small p-values and this test

would not have much power.

Least Signficant Difference (LSD) is a two-step procedure that controls the

FWER and thereby controls the Type I error rate in the weak sense; that is, the

Type I error is generally controlled when all null hypotheses are true, but under

other combinations of hypotheses (i.e., one false hypothesis and the remaining true

hypotheses), α will be larger than expected; however, this method is more powerful

than the Bonferroni procedure. The LSD procedure works as follows: first, all the

comparisons are tested using ANOVA with the null hypothesis of equal group means;

next, if this overall test is significant, all pairwise comparisons are tested using a

t-test. This method initially seemed to protect against false positives by first testing

if all means were equal; however, as mentioned above, this procedure can give a high

error rate when only a few means in the set are different from the others.

Both of the procedures discussed above have limitations, and attempts have

been made in many cases to remedy them. As a result, many multiple comparison

procedures have been developed during the last half-century. Some procedures are

intended for use in broad situations, and others are recommended only in specific

applications. The existence of a variety of methods echoes the sentiments voiced by

John W. Tukey at the beginning of this section and allows the statistician to choose

the method that best suits the type of problem. Two commonly used multiple testing

methods are Scheffe’s S procedure and Tukey’s T procedure. These were developed

for balanced designs—designs in which an equal number of observations are made

for each treatment combination. Note that there are many other procedures, both

single-step and multi-step, that will not be included here for the sake of brevity.

Scheffe’s S procedure gives corrected simultaneous confidence intervals and is

closely related to the ANOVA F -test. Scheffe’s procedure adjusts the general formula

for confidence intervals by using a t table value instead of an F table value. For a

9



two-sided confidence interval for one test, the formula is

ȳi − ȳj ± table value × SE(ȳi − ȳj),

where the table value is the 100(1 − α
2
) percentile from a t-distribution. The t-

distribution resembles the symmetric, unimodal normal distribution but has heavier

tails when the sample size is small.

In some multiple testing situations, however, the desired comparisons are linear

combinations of the treatment means—they are not just pairwise comparisons. In

this case, Scheffe’s procedure corrects the table value to that shown in the formula

below. Notice that this procedure does not penalize for the number of comparisons

being made and does not require contrasts to be specified before data analysis begins.

table value =
√

r − 1 ×
√

F (r − 1, dferror),

where r is the number of treatment means and n is the total sample size.

Tukey’s T procedure gives simultaneous confidence intervals for pairwise com-

parisons, and is optimal when computing all possible pairwise comparisons. Again,

the multiple comparison correction by Tukey lies in the table value for the confidence

interval. This correction incorporates the standard range test and distribution into

its formula, shown below as confidence intervals for all possible pairwise comparisons.

ȳi − ȳj ±
√

MSE ×
√

1

ni

+
1

nj

× q(r, dferror)√
2

In this equation, q(r,dferror)√
2

is the table value from the standard range distribution, r is

the number of treatment means, and n is the total sample size. Tukey’s T procedure

can be modified to apply to unbalanced designs as well, as shown by the methods

proposed by Tukey and (independently) Kramer, and those proposed by Miller and

Winer.
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2.5 FDR Solution

The false discovery rate (FDR) is a Type I error–controlling method formally

stated by Benjamini and Hochberg (1995). Developed specifically for multiple com-

parison situations, this method is attractive when control of the FWER is too strict

and rejects too few hypotheses to be useful. Though a small Type I error rate is

desirable, in some applications allowing a few falsely rejected hypotheses is worth

the resulting gain in power. There is a key distinction, however, between the Type I

error rate and the FDR. For example, a Type I error rate of 5% corresponds to 5%

of the true null hypotheses being rejected; however, an FDR of 5% means that 5% of

hypotheses that are declared significant are in fact true null hypotheses (Storey and

Tibshirani 2003). The goal of the false discovery rate is to determine the expected

proportion of rejected null hypotheses that have been wrongly declared significant.

Benjamini and Hochberg (1995) define the FDR as

FDR = E

(

V

R

∣

∣

∣

∣

R > 0

)

× P (R > 0).

This error rate can be estimated using p-values according to the algorithm from

Storey (2002):

F̂DR(t) =
π̂0M × t

#{pi ≤ t; i = 1, ...M} .

The quantity π̂0 is the estimated proportion of true null hypotheses among the M

tested hypotheses, and the denominator calculates the number of p-values, pi, that

are less than the cutoff value t.

Another equivalent estimation method resamples the observations after permut-

ing the treatment group labels. This method, outlined in the supporting appendix of

Storey, Xiao, Leek, Tompkins, and Davis (2005b), estimates the FDR as follows for

a fixed significance cutoff c:

F̂DR(c) =
π̂0

1
B

∑B

b=1 #{F 0b
i ≥ c; i = 1, ...,M}

#{Fi ≥ c; i = 1, ...,M} ,
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where π̂0 is derived from

π̂0(c
′) =

#{Fi < c′; i = 1, ...,M}
1
B

∑B

b=1 #{F 0b
i < c′; i = 1, ...,M}

.

The statistics F 0b
1 , F 0b

2 , ..., F 0b
M are simulated null statistics generated using the boot-

strap of the alternative model residuals added to the null model, and Fi are the

observed F test statistics. This method finds the proportion of estimated null statis-

tics that are greater than some cutoff c and divides that proportion by the number

of observed F statistics that are greater than c. The resulting value represents the

expected proportion of the observed “extreme” (larger than c) F statistics that are

actually null. As the algorithm suggests, the estimate for π0 is first found by re-

sampling, then integrated into the resampling-based FDR estimate analogous to the

method in Storey (2002).

Not only estimating, but also controlling the FDR is of particular interest. Ben-

jamini and Hochberg offer a method—referred to by Storey (2002) as the sequential

p-value method—to control the FDR at some level q∗. By the algorithm presented by

Benjamini and Hochberg, the p-values from the m hypothesis tests are ordered from

smallest to largest and a cutoff value k̂ is computed as follows:

k̂ = max

{

i : pi <
i × q∗

m

}

.

All p-values less than the cutoff k̂ are declared significant. A plot showing a set

of ordered p-values overlaid with the k̂ calculation i×q∗

m
with q∗ = 0.05 is shown in

Figure 2.1.

The cutoff (k̂) can be easily identified in Figure 2.1 as the point where the p-

values (shown in red) are larger than the computation i×q∗

m
(shown in blue). The value

of k̂ for these data is close to 100, which is the point just before the red p-values rise

above the blue line. In this example, the 101 smallest p-values are declared significant,

and the FDR is controlled at q∗ = 0.05.
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Figure 2.1: Benjamini and Hochberg cutoff k̂ for controlling FDR. This figure shows

the p-values (in red) plotted against the cutoff k̂ computed by i×q∗

m
for each ith p-value

(in blue). The cutoff is located at the vertical line, where the p-values exceed the i×q∗

m

line.

In general, if i = m, then all null hypotheses are rejected at a level equal to q∗,

or α. If i = 1, then the hypothesis corresponding to the smallest p-value is rejected

and the FDR is controlled by the Bonferroni correction method.

FDR control in a multiple comparison setting can also be considered from a de-

cision theoretic perspective. Müller, Parmigiani, and Rice (2006) discuss several loss

functions with associated optimal decision rules that can be applied to a microarray

analysis. Let δi be an indicator that the ith test is rejected; that is, gene i is deter-

mined to be significant. The total number of rejected hypotheses is D =
∑

δi. The

indicator variable ri is either 0 or 1; it takes on the value 1 if the ith gene is truly dif-

ferentially expressed and takes on the value 0 otherwise. With this parameterization,

the FDR is defined as follows:

FDR =

∑

(1 − ri)δi

D
.
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The ith term in the sum is nonzero when gene i is not differentially expressed, yet

it has been called significant (a false discovery). The first loss function from Müller

et al. (2006) relates the posterior expectations of false positive and false negative

counts (FD and FN , respectively). These counts are defined as

FD =
∑

(1 − ri)δi

and

FN =
∑

ri(1 − δi).

The loss function uses a linear combination of these quantities as follows:

LN(δ, z) = cFD + FN.

In this formula, z is a summary statistic, c is a fixed cutoff threshold, and vi is

P(ri = 1 | Y ), the marginal posterior probability of differential expression for gene

i given the data Y . The optimal decision indicator, δ∗, recommended by Müller

et al. is to declare all genes with marginal probability vi greater than a threshold

t as differentially expressed. This loss function relates false discoveries and false

nondiscoveries (both undesirable events), but assumes that all false negatives are

equally weighted and that all false positives are equally weighted. Müller et al. also

outline loss functions that weight the loss for each gene by how differentially expressed

the gene is. In particular, the loss function

Lm(m, δ, z) = −
∑

δimi + k
∑

(1 − δi)mi + cD

uses the parameter mi to measure differential expression; that is, mi = 0 if the ith gene

is not differentially expressed, and mi > 0 if the ith gene is differentially expressed.

The first term in this loss function gives a reward for correct discoveries, the second

term imposes a penalty on false nondiscoveries (with proportionality constant k), and

the last term inhibits the model from finding the expression of all genes significant

14



(in which case, D would equal n, the number of genes). The optimal decision rule for

this loss function is

δ∗i = I

{

m̄i ≥
c

1 + k

}

.

In other words, all genes with a posterior expectation of differential expression level

greater than a fixed cutoff should be called significant. Müller et al. also explain that

the sequential p-values method by Benjamini and Hochberg can be approximated by

using Bayes’ rule and modifications of the following loss function:

LU(δ, z) ≡ FD

αD
− gD =

FDR

α
− gD.

In this function, gD = D
n
, so the threshold j should be chosen to have an increment

in posterior probability wj less than jα

n
. Therefore, the optimal rule is to choose

threshold

j = max

{

i : ∆wB(i),i ≤
αi

n

}

,

where ∆wB(i),i is the increment in posterior probability. This rule looks quite similar

to the Benjamini and Hochberg (1995) FDR-controlling method. Müller et al. provide

additional details on the formulation of this optimal decision rule.

In an effort to address the limitations of the FDR, a new error measure called

the positive false discovery rate (pFDR) was formulated by Storey (2002).

2.6 pFDR Solution

The positive false discovery rate (pFDR) is distinguished from the FDR because

it is conditional upon at least one rejected hypothesis of the m tests. Using the

terminology of Table 1, R (the number of rejected hypotheses) must be greater than

or equal to 1. This seemingly slight adjustment provides substantial advantages in

terms of power and error control. Storey (2002) defines the pFDR as

pFDR = E

(

V

R

∣

∣

∣

∣

R > 0

)

.
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The added condition that R > 0 introduces a new quantity that is different from the

FDR in important ways: it is more liberal and more powerful, meaning that it rejects

more hypotheses, but it also controls the Type I error rate so that maximum power

can be maintained.

To control the pFDR, the rejection region is fixed and the resulting pFDR is

computed. Thus, a cutoff value is determined (i.e., 0.05 or 0.01) and the pFDR for

the tests can be estimated, thereby controlling the pFDR. The Storey (2002) method

to control the pFDR—as previously mentioned—is fundamentally different from the

sequential p-value method of Benjamini and Hochberg. Formerly, the error rate was

fixed (α), and then the rejection region was determined. Storey (2002) introduced

a reversal by first fixing the rejection region (i.e., reject p-values between 0 and γ,

where γ is small) and then estimating the achieved error rate.

In practice, Storey (2002) developed several estimates that can be combined

to find the error rate resulting from fixing the rejection region at a certain value γ.

A necessary estimate must be made as to the value of π0, the proportion of null

hypotheses that are true out of the m tests performed. Storey (2002) estimated π0

with

π̂0 =
W (λ)

(1 − λ)m
,

where W (λ) is a function of all “accepted” null hypotheses, and λ is a value between

0 and 1. This estimate can be thought of as the ratio of the observed p-values that

are greater than λ, (W (λ)), divided by the section of the range [0,1] greater than λ,

which is 1-λ. This ratio should equal the total number of null p-values π̂0 × m over

the range (1). Storey estimated the probability that a given p-value is less than γ as

̂P (P ≤ γ) =
R(γ)

m
,

where R(γ) is a function of all the rejected null hypotheses. Combining these estimates

with a few minor adjustments, Storey created an estimate of the pFDR that is quite
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useful under this new controlling method. Given that the rejection region is known

(i.e., [0,γ]), the error rate of the m hypothesis tests can be calculated easily using this

estimate:

̂pFDRλ(γ) =
W (λ) × γ

(1 − λ)(R(γ) ∨ 1)(1 − (1 − γ)m)
.

Storey (2002) also showed that by using this controlling method, the number of

hypothesis tests that are rejected increases, while the error rate is still “controlled”

at the same level. This gives the pFDR-controlling procedure the advantage of being

more liberal, but also more powerful.

As a part of the pFDR-controlling procedure, Storey also introduced a quantity

called the q-value, which is conceptually similar to the more familiar p-value. In the

context of the pFDR, the q-value is the minimum pFDR that could occur if the p-

values smaller than the chosen cutoff γ were rejected. The process for computing the

q-value in practice is detailed in Storey (2002) and can be divided into three steps:

estimate π0, choose λ, and compute q-values.

Estimation of π0 can be performed using a bootstrap method with a range of

λ values in the unit interval (Storey, Taylor, and Siegmund 2004), or a smoothing

method (Storey and Tibshirani 2003). With the bootstrap method, bootstrapped

samples of the p-values are taken and the pFDR is estimated from each sample on

the range of λ values. The λ that produces the smallest MSE among the sets of

samples is chosen as the optimal λ, which is then used to estimate π0. With the

smoothing method, π0(λ) is estimated for each possible λ. Then, the values of π̂0(λ)

are plotted against the λ values and fitted with a natural cubic spline. The final

value of π̂0 is the estimated π̂0(λ) value of the spline at λ = 1. Lastly, the q-values

are computed. To do this, the pFDR calculation is performed m times on the set

of p-values, setting γ = p(i) for each pFDR(p(i)). This step computes the pFDR

when the ith ordered p-value and all smaller p-values are declared significant. Next,

the q-value for the largest p-value is equal to ̂pFDR(p(m)). The rest of the q-values
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are found by choosing the smaller of each pFDR(p(i)) and the q-value of the next

largest p-value; that is, the ith q-value is the minimum of pFDR(p(i)) and q(i+1) for

all i = m− 1, . . . , 1. By way of example, Figure 2.2 below shows the p-values of 1000

observations plotted against their corresponding q-values.
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Figure 2.2: Plot of p-values versus their estimated q-values. The p-values in this
plot are ordered by size, then the corresponding q-value for each is computed in the
three-step process.

In simulations comparing the two procedures, the pFDR procedure performs

as well or better than the sequential p-values method in terms of the gains in power,

making the pFDR preferable to the FDR as an appropriate error measure.

Storey (2003) also explains that the pFDR can be interpreted from a Bayesian

point of view. For a multiple comparison of m tests using the statistics T1, ..., Tm and

a given significance region Γ, the pFDR is

pFDR(Γ) = E

(

V (Γ)

R(Γ)

∣

∣

∣

∣

R(Γ) > 0

)

,

where V (Γ) = # {null Ti : Ti ∈ Γ} and R(Γ) = # {Ti : Ti ∈ Γ}. The variable Hi = 0

18



if the null hypothesis is true and Hi = 1 if the alternative hypothesis is true. The Hi

are Bernoulli random variables with a priori probability π0. Applying the Bayesian

interpretation, if Ti | Hi ∼ (1 − Hi) × F0 + Hi × F1 for the null distribution F0 and

the alternative distribution F1, then

pFDR(Γ) = P (H = 0 | T ∈ Γ).

This statement holds because P (Hi = 0 | Ti ∈ Γ) is the same for every i = 1 . . . m.

Therefore, the pFDR is simply the posterior probability that the null hypothesis is

true, given that the statistic falls in the rejection region. Storey (2003) also gives the

q-value a Bayesian interpretation; specifically,

q-value(t) = inf
{Γα:t∈Γα}

P (H = 0 | T ∈ Γα).

Storey shows here that the q-value can actually be thought of as a “posterior Bayesian

p-value,” or the minimum posterior probability that H = 0 for all significance regions

that contain the statistic T .

As discussed in this chapter, the majority of research performed in the field

of multiple testing has been focused on the problem of creating significance cutoffs

for p-values, or modifying the p-values to adjust for multiplicity. Storey (2005) sug-

gests that these methods are all theoretically inadequate because they neglect data

structure by testing each hypothesis separately. In the following chapter, the Op-

timal Discovery Procedure (ODP) developed by Storey (2005) will be presented as

a method to optimally test a set of hypotheses as a whole in a similar fashion to

Neyman-Pearson hypothesis testing with a single hypothesis.
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3. OPTIMAL DISCOVERY PROCEDURE

The majority of research performed in the field of multiple testing has been focused

on the problem of creating appropriate significance cutoffs for p-values, or modifying

the p-values themselves to adjust for multiplicity. Additionally, many researchers

have tried to find the best way to determine the rate at which errors are made, using

various error rate measures or controlling methods. Storey (2005) suggests that these

methods are all theoretically inadequate because they neglect the inherent structure

in the data across hypotheses and test each hypothesis separately. The Optimal

Discovery Procedure (ODP) expands the fundamental ideas of Neyman and Pearson—

the optimal testing of a single hypothesis—to optimally test a set of hypotheses as a

whole (Storey 2005). In many applications, the data are expected to have complex

structure; therefore, it makes sense to test these related hypotheses in a joint fashion

and assess the significance of each hypothesis relative to the others.

Recall that the Neyman-Pearson lemma uses the likelihood ratio

likelihood under alternative distribution

likelihood under null distribution

to optimally test a single hypothesis. The null hypothesis is rejected if this ratio

is greater than the chosen cutoff. The ratio can be thought of as a significance

thresholding function of the data (Storey 2005) used to determine the significance

of that single hypothesis test. In the same way, the ODP is based on a significance

thresholding function of null and alternative hypotheses, but combines information

from all hypothesis tests in the set:

SODP (z) =
sum of true alternative densities evaluated at z

sum of true null densities evaluated at z
.

The form of this thresholding function is analogous to the Neyman-Pearson likelihood

ratio described previously. This function is valuable because it offers a multivariate
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approach for analyzing high-dimensional data simultaneously, rather than testing

hypothesis i without regard to the information contained in other tests.

The goal of the ODP is to maximize the expected number of true positives for

a given number of false positives. That is, a true null hypothesis has a Type I error

rate equal to the expected number of false positives from that test. Therefore, if

the Type I error rates from all true null hypotheses were added together, the result

would be the expected number of false positives, or EFP. In the same way, the sum

of the power for each true alternative hypotheses gives the expected number of true

positives (ETP). This idea relates to the FDR in the following way:

FDR ≈ EFP

EFP+ETP
.

The numerator of this equation looks quite similar to the quantity V and the denom-

inator can be thought of as R in Table 2.1 (Benjamini and Hochberg 1995). As the

ETP is maximized for a given EFP, the optimality goal is achieved. Storey (2005)

shows that this optimality is equivalent to that reached by the Neyman-Pearson

lemma for testing single hypotheses.

3.1 Motivating Example

To illustrate this new procedure, Storey (2005) applies the ODP principles to

the following example. This situation tests eight simple hypotheses on normally

distributed data with mean µ and unit variance. The hypotheses being tested are

H0 : µ = 0 versus H1 : µ = µi. Each hypothesis test has a single observed datum

z and the true µ values are shown in Table 3.1. The true significance thresholding

function SODP for these data is calculated by

SODP (z) =
φ(z;−2) + φ(z; 1) + φ(z; 2) + φ(z; 3)

φ(z; 0) + φ(z; 0) + φ(z; 0) + φ(z; 0)
.

The true significance thresholding function for a realized observation z (SODP (z)) is

also found in the table.
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Table 3.1: Densities and true means for the normal example, as well as true ODP,
estimated ODP and Neyman-Pearson rankings of eight hypothesis tests.

Significance test i 1 2 3 4 5 6 7 8
Alternative value of µi -3 -2 -2 -1 1 2 2 3

True value of µi 0 -2 0 0 1 2 0 3
Observed datum zi 1.0 -2.3 -0.02 -0.4 0.5 2.2 -0.1 3.4

ODP rank 4 3 6 8 5 2 7 1
Estimated ODP rank 4 3 6 8 5 2 7 1
UMP unbiased rank 4 2 8 6 5 3 7 1

Inspection of the significance thresholding function reveals that if zi is from a

true alternative density, the value of the numerator will increase because zi is “prob-

ably” close to µi. Likewise, if there are other true alternative densities close to zi, the

numerator will increase because zi is “probably” close to values of other µj’s; however,

if all other densities are true null densities, the sum of true alternative densities will

be relatively small, and SODP will behave like a Neyman-Pearson statistic (Storey

2005).

3.2 Estimation

Though attractively simple, the true ODP significance thresholding function of

the data described here and in the previous example cannot be directly evaluated. The

primary difficulty with the above formulation is that it requires the true distribution

for each test to be known. The true ODP thresholding function separates known

true densities into true alternative densities in the numerator and true null densities

in the denominator. Although it is not feasible to apply the true ODP thresholding

function in practice, there are several methods that can estimate the true thresholding

function and overcome this issue.

Because the numeric values of each SODP (zi) are important only for finding

the ranking of the tests from most to least significant, an equivalent form of the
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significance thresholding function is shown in the following formula:

Ŝ∗
ODP (z) =

∑m

i=1 φ(z; µ̂i)

φ(z; 0)
.

This estimated form of the true ODP (shown for testing the normal hypotheses in

this example) sums the estimated true densities divided by the common hypothesized

null density, with µ = 0. The estimated parameters for the true density are calculated

using the observed data (in this example, a single data point z) generated by that

density. Further, prior identification of the true alternative densities is no longer

necessary because the numerator includes estimated densities for all tests, not just

those with true alternative hypotheses. Again, because the numeric values of the

SODP statistics are only used to rank the tests, this estimated formula produces the

correct ranking even though the statistics have not been scaled.

Storey, Dai, and Leek (2005a) report applicable approaches to estimate the

ODP statistic: the “canonical” ODP estimate, weighted estimates, and a nuisance

parameter invariance estimate. The canonical ODP estimate generalizes the likeli-

hood ratio test, but is not particularly useful because it requires that the true densities

of the null hypotheses be known. This difficulty can be overcome in some cases if a

common null density for all null hypotheses (f(x)) is known. Thus, the estimated

ODP is

ŜODP =

∑m

i=1 ĝi(x)

f(x)
,

where ĝi(x) is the estimated density for the ith observation evaluated at x and f(x)

is the known common null density. A weighted estimate can be computed if weights

for the true status of each hypothesis are known. This weighted estimate of the ODP,

ŜODP =

∑m

i=1 ĝi(x)
∑m

i=1 ŵif̂i(x)
,

changes as the sample size increases. If the null hypothesis is true, the weight ŵi

will go to 1 as n increases, and if the alternative hypothesis is true, ŵi will go to
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0 as n increases. This estimation method is useful when the weights are known.

Another estimation method involves the principle of nuisance parameter invariance.

The ODP thresholding rule is estimated by imposing the constraint that all of the

null distributions fi are the same, or that
∑m

i=1 fi/m =
∑m0

i=1 fi/m0, where m0 is the

number of true null hypotheses. The form of the ODP thresholding rule is then

ŜODP =

∑m

i=1 ĝi(x)
∑m

i=1 f̂i(x)
.

This estimation approach is important to consider because of the effect that nuisance

parameters can have on the estimated ODP function (details given in Supplementary

Information of Storey et al. (2005a)).

After comparing the ODP with the UMP unbiased test (based on the Neyman-

Pearson lemma), Storey’s (2005) results show that the ODP performs as well as, or in

some situations better than, the UMP test. These findings indicate that an optimal

procedure for a single hypothesis case may not be optimal for many simultaneous

tests.

For the simulation study described in the following chapter, true and estimated

ODP scores will be compared. The true ODP score of observation i is

SODP (zi) =
sum of true alternative densities evaluated at zi

sum of true null densities evaluated at zi

.

For these simulations, the estimated score for observation i is

ŜODP (zi) =
sum of estimated densities evaluated at zi

common null density evaluated at zi

.

The numerator of this estimated score is a sum of estimated densities—these esti-

mated densities are normal, are centered at the other observation values, and have

unit variance. The denominator is a common null density—in this situation it is a

standard normal density—used as a scaling factor.

24



3.3 The ODP Algorithm and Gene Expression Experiments

Recently, the principles of the ODP have been utilized in an important appli-

cation of multiple testing: the analysis of microarray data with emphasis on gene

expression. Discussed briefly in Chapter 1, the motivation of gene expression experi-

ments is to measure the levels of gene expression in different groups of organisms, or in

the same organisms over time, and detect differences between groups at the molecular

level. These differences can either be up-regulation (an increase in the expression of a

gene) or down-regulation (a decrease in the expression of a gene) when compared to a

control group. The up- or down-regulated genes are termed “differentially expressed”

and are key to discovering the causes and cures for diseases and conditions such as

asthma and a variety of cancers. Although identifying individual genes of interest

may be the purpose of an experiment, the regulation of gene expression is a complex

and intertwined process involving the coordination of many genes at once. For ex-

ample, a certain gene in a tumor cell may be over-expressed (compared to a normal

tissue cell) and in response to this over-expressed gene, a group of related genes may

be noticeably under-expressed in that same tumor cell. Therefore, a broader goal of

gene expression experimentation may be to understand the ways that genes regulate

each other in a dependent fashion.

Expression experiments draw samples of genetic material from test subjects

and hybridize them to individual microarrays containing fragments of genes from

the subject’s genome (the collection of all the genetic information of an organism).

In some situations, each sample is applied to only one microarray, while in other

situations, the sample may be compared to a reference or control sample within the

same array. Often, the key question may be how a particular gene is behaving across

all microarray samples.

Applying the ODP to gene expression data, the null hypothesis states that for a

particular gene, there is no difference between treatment groups (arrays). This means
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that the gene is expressed at the same level, or in relatively the same amounts, in

every sample (treatment group). If the alternative hypothesis is true—that is, if there

is a significant difference in the expression of the gene depending on which microarray

it is located on—then that gene is differentially expressed. Of the observed scores,

those with higher scores are more significant because there is a high probability that

(1) there are genes behaving similarly to that gene, or

(2) within the gene, the arrays from different treatments are different from each

other (that is, more like their treatment means and less like the overall mean).

3.4 Normality Assumption

To estimate the true ODP, Storey et al. (2005a) use a model containing normal

densities. Their model uses these densities in both the denominator and numerator of

the thresholding function for a particular gene, i. The use of normal distributions may

seem justifiable, especially considering the argument made by Storey et al. (2005a)

that gene expression is continuous and approximately normally distributed; however,

there are potential consequences if this assumption does not hold true.

The ODP focuses mainly on the estimated thresholding function, not the true

thresholding function. In practice, estimating the true ODP is generally required

because calculating the true thresholding function implies prior knowledge about the

true distribution of every gene and whether or not it is differentially expressed. Esti-

mation of these true densities with normal densities has no effect on the true densities

themselves; it can only alter the estimated ODP’s ability to identify the differentially

expressed genes in an experiment. Storey et al. (2005a) state that because the actual

significance of the tests performed is calculated nonparametrically, it is not absolutely

necessary to use the correct parametric distribution in estimating the ODP.

26



On the contrary, there is some evidence suggesting that gene expression data

are not always normally distributed. As an example, Slonim (2002) describes the

distribution of expression data as being somewhat variable. Slonim indicates that

in practice, expression data may display variance heterogeneity between microarrays,

and in some cases appear to be generated by a continuous distribution other than a

normal. A study by Giles and Kipling (2003) revealed that genes with low expression

levels do not correlate strongly with normality, or in other words, they have distinctive

nonnormal distributions. Although Storey et al. (2005a) state that the normal density

provides a good fit for microarray data, this is not always the case.

There are potential negative consequences of applying an inappropriate approxi-

mation to the true ODP. These consequences may vary depending on if the underlying

true null density is nonnormal, if the underlying true alternative densities are non-

normal, or both. It is possible that fewer genes that are truly differentially expressed

in an experiment may be identified as significant when the estimated ODP is used.

Other possible results include an increase in the number of null genes declared signifi-

cant, or a rearrangement of the estimated significance rankings between differentially

expressed genes.
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4. SIMULATIONS AND RESULTS

To compare the performance of the estimated ODP function against the true ODP

function and the Neyman-Pearson most-powerful procedure in a variety of situations,

Storey (2005) performed a simple simulation study. Storey varied three factors in his

study: proportion of data from true alternative distributions (.25 or .50), number of

observations (48 or 2000), and set of alternative means (-1,1,2,3; 1,2,3; or -2,-1,1,2).

All data in Storey’s simulation were generated from a normal distribution with mean

zero (if true null) or one of the alternative means and unit variance. To explore the

effect of nonnormality on ODP estimated scores, this simulation study is extended to

include nonnormal observations and test the importance of the normality assumption.

This simulation study investigates how the estimation of the ODP is affected by

data that are nonnormally distributed. Four factors are of interest in this simulation:

assignment of null and alternative data to normal or nonnormal distributions, pro-

portion of data from the true alternative distribution, nonnormal distribution used,

and distance between the null and alternative distribution means (measured in null

distribution standard deviations).

4.1 Performance Evaluation

The goal of this simulation study is to identify nonnormal distributions that

result in a poorly estimated ODP function. For each simulation, the performance

of the estimated ODP compared to the true ODP is measured. Performance will

be evaluated using the area under Receiver Operating Characteristic (ROC) curves

for both the true and estimated ODP functions, and calculating the area difference

between the true and estimated functions. Additionally, the average True Positive

Rate (TPR) and False Positive Rate (FPR) for the true and estimated ODP using

the 100 highest-ranked observations will be compared.
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ROC curves are a graphical representation of the accuracy of a detection method,

screening procedure, or test. To construct an ROC curve, the TPR (the proportion

of true positives identified out of total true positives) and FPR (proportion of falsely

identified positives out of total true negatives) are calculated. The horizontal axis of

the graph displays the FPR and the vertical axis displays the TPR. Given these spec-

ifications, the curve of an accurate test starts at the origin and rises sharply to a high

value of sensitivity, continuing to rise as the FPR increases. Common applications

are found in medicine and signal detection theory; examples include screening tests

for disease (Jensen et al. 1996), weather forecasting and meteorology (Wilson 2000),

and detection of signal intensities on DNA microarray slides (Bilban et al. 2002).

ROC curves are a graphical medium by which two methods or tests can be

compared, and the information they provide can be summarized in several ways.

Two methods may be compared by considering each method’s FPR for a given TPR.

Additionally, the area under the ROC curve can be a useful nonparametric summary

of overall performance. The total possible area under the curve is 1, and generally

the values for area under the curve range from 0.5 (a diagonal line resulting from a

random guess) to 1. For some applications, the area under the curve to the right of an

FPR of 0.5 is not interesting in terms of evaluating a method’s performance; instead,

a useful measure of performance is the area under the ROC curve between FPRs of 0

and 0.5 (with possible area values between 0.25 and 0.5). It should be noted, however,

that choosing the cutoff 0.5 is a somewhat arbitrary and ad hoc choice.

In the context of ROC curves, there are two quantities that may be used to

evaluate performance: area differences and scaled area differences. Area differences

are calculated as

Area under ROC curve for true ODP − Area under ROC curve for estimated ODP.

The area differences will fall in the interval [0,1] because the true ODP ROC curve

will always outperform the estimated ODP ROC curve. Scaled area differences are
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calculated as

Area under ROC curve for true ODP − Area under ROC curve for estimated ODP

Area under ROC curve for true ODP
.

The scaled area differences will also fall in the interval [0,1], but they have an ad-

ditional interpretation. These values are the proportion of area change from true

ODP to estimated ODP, relative to the area under the ROC for the true ODP. The

decision to use scaled area differences rather than absolute area differences is rather

simple. Storey (2005) states that, theoretically, the true ODP thresholding function

is the best possible ranking function in terms of accuracy. That is, there is no way to

outperform the true ODP score function; therefore, the true ODP can be used as the

baseline to which estimators of that function can be compared. In this way, we aim

for an area under the estimated ODP ROC curve that is as close to the area under

the true ODP ROC curve as possible, not for any fixed target value. The scaled

area differences measure the percent difference between the true ODP (the best-case

scenario) and an estimator of that function.

For this simulation set, the scaled area differences and true positives out of the

top 100 observations will be averaged over 50 repeated simulations of the same set of

conditions, and their standard errors will be reported.

4.2 Preliminary Simulation Results

To begin the series of simulations, a preliminary simulation set is conducted to

clarify the factors of interest and investigate potential concerns. In these simulations,

comparisons are made between similarly shaped densities from different families. Also,

gamma distributions with a common mean and different variances are compared,

along with a trial run which varies the proportion of true alternative observations.
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4.2.1 Distribution Shape Simulation

The first simulation investigated similarly shaped densities and how the den-

sity parameterization might affect the performance of the estimated ODP. In this

simulation set, shape and skewness were held relatively constant for three nonnor-

mal densities—a t(df = 10), gamma(κ = 9, θ = 0.4), and lognormal(µ = 1.5, σ =

0.0625)—along with a Normal(µ = 3.5, σ = 1) density for comparison. The expected

value of all four densities was approximately 3.5. A plot of the four density functions

under consideration is shown in Figure 4.1.
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Figure 4.1: Four densities compared in a preliminary simulation: Normal(µ = 3.5, σ
= 1) is shown in blue, t(df = 10) is shown in red, gamma(κ = 9, θ = 0.4) is shown
in green, and lognormal(µ = 1.5, σ = 0.0625) is shown in purple.

The estimation of the ODP might be affected by characteristics of the density

function itself, such as the dependence of mean and variance in the gamma and

lognormal distributions. Notice that these four densities are relatively symmetric

and have approximately the same shape and spread. In fact, the only important
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differences between these four densities are the properties of the individual density

families.

The true and estimated ROC curves for each of the densities are compared

in Figure 4.2. Notice that visually the estimated ODP curve follows the true ODP

curve very closely. In order to evaluate the differences between the estimation of the

densities, the scaled area differences are shown in Table 4.1. In all cases, the percent

change in area is extremely small (less than half a percent), in some cases less than one

quarter of a percent. These results imply that the true ODP is well estimated in these

four simulations and that all four distributions are estimated similarly. This second

observation supports the conclusion that densities with similar shapes, although they

are from different distributional families, produce very similar estimated ODP results.
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Figure 4.2: ROC curves for each density. The true ODP ROC curve is shown in light
green and the estimated ODP ROC curve is shown as a blue dotted line.
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Table 4.1: Summary measures of area differences and scaled area differences to eval-
uate ODP estimation performance.

Density Scaled Area Difference
(% Change in Area)

Normal .00194 (.19%)
t .00445 (.45%)

gamma .00485 (.49%)
lognormal .00098 (.10%)

4.2.2 Skewness and Variance Simulation

To investigate the effect of variance on estimating gamma-distributed data, a

second set of simulations was conducted. The expected value of each gamma distribu-

tion was held constant at 3, but the parameterizations were changed to yield differing

variances. Each of four gamma distributions with differing parameterizations but the

same expectation was compared to a standard normal null density. The distributions

of four extreme examples are shown in Figure 4.3. Notice that in Figure 4.3a, the

gamma densities peak at 0, the same location as the peak of the standard normal

density. These two gamma densities also have quite long tails. By comparison, the

gamma densities in Figure 4.3b peak some distance away from 0, with very low density

at 0. They also have smaller variance and, consequently, shorter tails.

When the true and estimated ODP scores were calculated for these four pa-

rameterizations, there was a strong connection between estimation performance and

density location as determined by variance. For the two distributions with high den-

sity close to 0 (the peak for the standard normal null density), the estimation of the

ODP was dramatically worse than it was for the two densities that had highest den-

sity farther away from 0 (see Figure 4.4). Table 4.2 shows the variations in scaled area

differences for the four gamma densities under consideration. As more of the density

in the gamma distribution moves away from zero with decreasing variance, the differ-

ence between the estimated and true ROC curves decreases. These results indicate
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(a) gamma(.5,6) and gamma(1,3)
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(b) gamma(3,1) and gamma(6,.5)

Figure 4.3: Panel a: Densities of gamma(.5,6), shown in pink, and gamma(1,3),
shown in green, compared to the standard normal density, shown in purple. Panel b:
Densities of gamma(3,1), shown in blue, and gamma(6,.5), shown in yellow, compared
to the standard normal density, shown in purple.

Table 4.2: Summary measures of scaled area differences to evaluate ODP estimation
performance in four different gamma parameterizations under consideration.

Density Scaled Area Difference
(% Change in Area)

gamma(.5,6) .2603 (26%)
gamma(1,3) .1102 (11%)
gamma(3,1) .0211 (2%)
gamma(6,.5) .0085 (.8%)

that for a given expectation, variability in the density affects how well the true ODP

is estimated. Specifically, when regions of high density in the gamma distribution

overlap with regions of high density in the standard normal density (characteristic of

a high variance gamma), the estimation of the ODP suffers. In the final simulation

set, variance is an underlying factor that is incorporated into the design because of

its impact on the results in this simulation set.
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Figure 4.4: ROC curves for each gamma density. The true ODP ROC curve is shown
in light green and the estimated ODP ROC curve is shown as a blue dotted line.

4.2.3 Density Location

Two simulations were performed to further investigate the effect of density lo-

cation relative to the null distribution. First, alternative observations were generated

from a normal distribution with mean 0.25 and unit variance. Next, alternative obser-

vations were generated from a Cauchy distribution. In both cases, the proportion of

alternative observations was constant at 0.25. Both distributions were centered near

(or at) zero, but the Cauchy distribution’s observations had a wider spread because

the distribution has thicker tails and undefined variance. The ROC curves from this

simulation are shown in Figure 4.5.

The diagonal line seen in Figure 4.5a indicates that the method is doing little

more than randomly guessing whether an observation is null or alternative. The

ROC curve for the Cauchy distribution (Figure 4.5b) does not do much better at

distinguishing between the two kinds of observations. However, the estimated ODP

curve is not far behind the true ODP in both cases.
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(a) Normal(.25,1)
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Figure 4.5: ROC curves for alternative observations generated from a Normal dis-
tribution(.25,1) (panel a) and from a Cauchy distribution (panel b). The true ODP
ROC curve is shown in light green and the estimated ODP ROC curve is shown as a
blue dotted line.

4.2.4 Proportion of Alternative Observations

In addition to exploring properties of the alternative distributions, the propor-

tion of alternative observations relative to null observations (π1) is also a factor of

interest. The four values for the proportion of alternative observations were chosen

as 0.05, 0.10, 0.25, and 0.50. The two smaller values are interesting because they

have been suggested as estimated proportions of differentially expressed genes in a

sample of microarray gene expression data in many microarray studies (Broberg 2003;

Zhang, Yin, and Zhang 2006); the two larger proportions correspond to values used in

previous simulations performed by Storey (2005). This simulation set was performed

using alternative data from two distributions, the first, gamma(1,3), and the second,

gamma(6,.5). Two distributions were used because of a potential interaction between

the variance of the distribution and the effect of increasing this proportion. The ROC

curves from these two simulations are shown in Figures 4.6 and 4.7.
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Notice that the true and estimated curves for the gamma(6,.5) simulation (Fig-

ure 4.7) are reasonably close to each other for all values of π1. Remember that this

gamma distribution is also fairly distinct from the null standard normal distribution

(recall Figure 4.3b). However, the true and estimated curves for the gamma(1,3)

simulation (Figure 4.6) fall closer together; that is, the estimation improves as the

proportion of alternative observations increases. The scaled area differences between

true and estimated ODP ROC curves are shown in Table 4.3. This higher-variance

gamma distribution is close to the null distribution (recall Figure 4.3a), and therefore

is more difficult to distinguish. The trend in these results suggests that changing

the proportion of alternative observations has a more marked effect upon those alter-

native distributions that are already difficult to separate from the null distribution.

In these cases, as the proportion of alternative observations increases, the estimated

ODP performs better (closer to the true ODP curve). However, this conclusion is

something of a simplification: although the difference between the simulation with

π1 = 0.25 and the simulation with π1 = 0.10 is essentially impossible to identify by

looking at the ROC curve areas, the numerical summary of areas under the curve

shows that there is a small lapse in accuracy as the proportion changes. This accu-

racy lapse is evidenced by a difference between true and estimated ODPs of 0.0702

when the proportion is 0.10 and a difference of 0.0707 when the proportion is 0.25 (see

Table 4.3). This is a very small lapse, however, and should not be overly concerning.

Because the results of this simulation set yielded ROC curves with differing

shapes, there is some concern over the use of a single-number summary (area under the

ROC curve) to compare simulations. Although this nonparametric value is concise, it

cannot be used to re-create the original curve. The number of ways that an ROC curve

can be constructed and still yield the same area is limitless; perhaps ROC shapes, as

well as areas, should be compared. Further investigation into ROC literature yielded

no information regarding the characterization of ROC shape. For now, this simulation
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set will only use areas under ROC curves and true positives to summarize simulation

results.

In general, the preliminary set of simulations provided a useful testing ground

on which initial questions about the ODP could be explored. The distribution shape

simulations confirmed that the shape of the density, not the density family or pa-

rameterization features, is the important characteristic of a nonnormal distribution.

The variance and skewness simulations suggested that different distribution variances

should be used because higher variance in the alternative distribution was related to

comparatively worse estimation of the ODP function. This finding motivated the

inclusion of alternative distribution variance as a factor in the next simulation study.

Also, the simulations where the density location and π1 were changed suggested that

a very small distance between densities and an increase of π1 both had negative effects

on estimation.

Table 4.3: Summary measures of scaled area differences to evaluate ODP estimation
performance with four proportions of alternative observations (alternative observa-
tions generated from a gamma(1,3)).

Proportion AUCTRUE AUCEST Scaled Area Difference
0.05 .8868 .7993 .0987
0.10 .9032 .8330 .0777
0.25 .8890 .8183 .0795
0.50 .9001 .8577 .0471

4.3 Simulation Descriptions

The simulations performed for this investigation were subjected to constraints

for the sake of simplicity and comparability. The general simulation approach taken

for n=1000 observations is as follows. First, n(1 − π1) observations were randomly

generated from the true null distribution and nπ1 observations were randomly gener-

ated from the true alternative distribution (where π1 is the proportion of alternative
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Figure 4.6: ROC curves for alternative observations generated from a gamma(1,3)
with proportions of alternative observations of 0.05, 0.10, 0.25, and 0.50, respectively.
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Figure 4.7: ROC curves for alternative observations generated from a gamma(6,.5)
with proportions of alternative observations of 0.05, 0.10, 0.25, and 0.50, respectively.
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observations). Next, the true ODP scores were calculated using the true alternative

densities in the numerator and the true null densities in the denominator. Then, the

estimated ODP scores were computed using normal densities (with means determined

by the other observations and unit variance) and a standard normal density as the

common null distribution in the denominator.

In Storey’s motivating example, the common null density was standard normal.

Storey et al. (2005a) outline the general form of the estimated ODP as

ŜODP (x) =

∑m

i=1 ĝi(x)

f(x)
,

where there are m total significance tests, ĝi(x) is the estimated density for the ith

observation evaluated at x, and f(x) is the common null density. When estimating

the ODP function in the context of nonnormal (and sometimes strictly positive)

observations, determining what the common null density should be was difficult.

Given the lack of guidance afforded by the general formulation for the estimated

ODP, it was decided that any choice of null density other than a standard normal

would require information about the true null density not usually known in practice.

Although using the standard normal as the common null density was not intuitively

satisfying, simulated data showed that centering a normal density closer to where

the true null density was centered did not influence the rankings among alternative

observations produced by the two estimation methods. The decision was made to

define the estimated ODP thresholding function as

ŜODP (x) =

∑m

i=1 ĝi(x)

f(x)
,

where ĝi(x) is a normal density evaluated at x using estimated parameters from the

ith observation, and f(x) is a standard normal density evaluated at x. This formula

was taken to be the “estimated ODP,” and was used in all subsequent simulations.

After true and estimated scores were computed, these scores were sorted from

largest to smallest, producing a ranking of most to least significant observations. From
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these sorted scores, ROC curves for both groups were obtained using knowledge of true

null and true alternative observations and areas under those curves were compared. In

the process of creating the ROC curves, the true value of π1 was used, not estimated

from the data, although there are methods available to estimate this proportion.

In this set of simulations, there are three possible scenarios, shown in Table 4.4,

which are variations of the assignment of null and alternative observations to normal

or nonnormal distributions.

Table 4.4: Simulated data distribution scenarios. Scenario 1 consists of normally dis-
tributed null data and nonnormally distributed alternative data. Scenario 2 reverses
the assignments of normal and nonnormal data. Scenario 3 specifies nonnormal data
for both the null and alternative.

Scenario Null data Alternative data
1 normal nonnormal
2 nonnormal normal
3 nonnormal nonnormal

As mentioned previously, the proportion of true alternative observations (π1)

will be varied at 0.50, 0.25, 0.10 and 0.05. Varying this proportion is crucial to de-

termine whether the performance of the estimated ODP is affected by the number of

true alternatives, specifically at proportion values similar to those seen in gene ex-

pression experiments. Also, three nonnormal distributional families will be compared:

gamma, lognormal, and t.

For each simulation, observations will be randomly generated from the null and

alternative distributions, with proportion of true alternatives equal to π1. In general,

the distance between the expected values of these distributions will be varied at 1, 3,

and 5 null standard deviations. Also, the null distribution has unit variance for easier

comparability across scenarios and nonnormal distributions, with expected value 0

(for normal or t-distributed observations) or 1 (for nonnormal, strictly positive
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observations). The simulations in each of the three scenarios will now be described

in detail.

Scenario 1 consists of simulations with normal null observations and nonnor-

mal alternative observations. All null observations are randomly generated from a

standard normal distribution. Alternative observations are generated from the three

nonnormal distributions with parameterizations corresponding to expected values of

1, 3, and 5 (which are 1, 3, and 5 null standard deviations away from the standard

normal null distribution, respectively). However, the gamma, lognormal, and t- dis-

tributions are flexible enough to allow for a broad range of possible variances for any

given distribution mean. In the preliminary simulation described previously, the vari-

ance of the nonnormal distribution had an impact on the estimation performance. To

account for this additional complexity, each nonnormal density was evaluated with

all possible combinations of three means (1, 3, and 5) and three variances (2, 4,

and 8 for the gamma and lognormal; low, medium, and high for the t-distribution),

for a total of nine parameterizations with each alternative density. The scenario 1

parameterizations are shown in Tables 4.5 and 4.6.

Table 4.5: Scenario 1 null parameterization

Normal Mean=0 Variance=1

Scenario 2 consists of simulations with nonnormal null observations and normal

alternative observations. Null observations were randomly generated from the three

nonnormal distributions with unit variance—the gamma and lognormal distributions

had means of 1 and the t-distribution had a mean of 0. Alternative observations

were generated from normal distributions with parameterizations corresponding to

expected values of 1, 3, and 5 for the t-distribution nulls and 2, 4, and 6 for the log-

normal and gamma nulls (which are 1, 3, and 5 null standard deviations away from

the null distributions, respectively). To incorporate the concept of different variances
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Table 4.6: Scenario 1 alternative parameterizations

Variance=2 (Low) Variance=4 (Medium) Variance=8 (High)

Mean=1
(

1
2 , 2

)

(1
4 ,4) (1

8 ,8)

gamma(κ, θ) Mean=3
(

9
2 , 2

3

)

(9
4 ,43) (9

8 ,83)

Mean=5 (25
2 ,25) (25

4 ,45) (25
8 ,85)

Mean=1 (-1.099,1.482) (-.805,1.269) (-.5493,1.048)
lognormal(µ, σ) Mean=3 (.781,.798) (.915,.606) (.998,.448)

Mean=5 (1.471,.527) (1.535,.385) (1.571,.277)

Mean=1 (1)+1 (5)+1 (10)+1
t(df) Mean=3 (1)+3 (5)+3 (10)+3

Mean=5 (1)+5 (5)+5 (10)+5

in the alternative observations (featured in scenario 1), the normal distribution was

given low, medium, and high variances of 2, 4, and 8, respectively, resulting in nine al-

ternative observation parameterizations. The scenario 2 parameterizations are shown

in Tables 4.7 and 4.8.

Table 4.7: Scenario 2 null parameterizations

Variance=1
gamma(κ, θ) Mean=1 (1,1)

lognormal(µ, σ) Mean=1 (-.347,.693)
t(df) Mean=0 (200)

Scenario 3 consists of simulations with nonnormal null observations and non-

normal alternative observations, and draws on ideas established in the previous two

scenarios. Null observations are randomly generated from the three nonnormal dis-

tributions with unit variance, as in scenario 2. Alternative observations are generated

from nonnormal distributions with parameterizations similar to those in scenario 1 ex-

cept the gamma and lognormal alternative distributions had to be shifted in order to

be the desired number of null standard deviations away from their null counterparts.

The scenario 3 parameterizations are shown in Tables 4.9 and 4.10.
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Table 4.8: Scenario 2 alternative parameterizations

Variance=2 Variance=4 Variance=8
For gamma null: Mean=2 (2,2) (2,4) (2,8)
Normal(µ, σ2) Mean=4 (4,2) (4,4) (4,8)

Mean=6 (6,2) (6,4) (6,8)
For lognormal null Mean=2 (2,2) (2,4) (2,8)

Normal(µ, σ2) Mean=4 (4,2) (4,4) (4,8)
Mean=6 (6,2) (6,4) (6,8)

For t null: Mean=1 (1,2) (1,4) (1,8)
Normal(µ, σ2) Mean=3 (3,2) (3,4) (3,8)

Mean=5 (5,2) (5,4) (5,8)

Table 4.9: Scenario 3 null parameterizations

Variance=1
gamma(κ, θ) Mean=1 (1,1)

lognormal(µ, σ) Mean=1 (-.347,.693)
t(df) Mean=0 (200)

Table 4.10: Scenario 3 alternative parameterizations

Variance=2 (Low) Variance=4 (Medium) Variance=8 (High)

Mean=2 (2,1) (1,2) (1
2 ,4)

gamma(κ, θ) Mean=4 (8,12) (4,1) (2,2)

Mean=6 (36
2 ,26) (36

4 ,46) (36
8 ,86)

Mean=2 (.490,.637) (.347,.833) (.144,1.048)
lognormal(µ, σ) Mean=4 (1.327,.343) (1.275,.472) (1.184,.637)

Mean=6 (1.765,.233) (1.739,.325) (1.691,.448)

Mean=1 (1)+1 (5)+1 (10)+1
t(df) Mean=3 (1)+3 (5)+3 (10)+3

Mean=5 (1)+5 (5)+5 (10)+5

4.4 Simulation Results

For the 324 simulation situations discussed in the description section, results

and comparisons were obtained and summarized by scenario. Tables of the number of

true positives out of the top 100 ranked observations and the scaled area differences

44



were obtained by averaging over 50 repeated simulations. Graphs of the ROC curves

comparing the true and estimated ODP are based on data from a single unreplicated

simulation, and hence have more associated uncertainty than the averaged results.

The results of these simulations are presented in figures and tables following a more

detailed discussion of the outcomes of each scenario. In general, the estimation of

the true ODP function improves as the distance between the null and alternative

distributions increases, as the variance of the alternative distribution decreases, and

as π1 increases.

In scenario 1, the simulation goal was to use nonnormal alternative observations

(from gamma, lognormal, and t) to evaluate the performance of the estimated ODP

function. For the t-distribution situations, the estimated ODP function performed

only slightly worse than the true ODP function. Although the t-distribution is not

normal, it is symmetric and approximately normal (depending on the parameteriza-

tion), so it is not surprising that the estimated ODP function using normal densities

is appropriate in this case. For both the gamma and lognormal distributions the

estimation was reasonable, except when the distance between the centers of the two

distributions was a single null standard deviation. In the situations where the skewed

distributions were close together (see Figures 4.8 and 4.9), there was a large gap be-

tween the true and estimated ROC curves. As shown in Tables 4.11 and 4.12, the

scaled area differences for the small distance simulations range from 0.26 to 0.71 for

the gamma and from 0.14 to 0.53 for the lognormal. Scaled area differences for the

t-distribution are shown in Table 4.13. In general, estimation of the ODP suffers

when skewed nonnormal distributions that are a single null standard deviation away

from the the null distribution are used for the alternative observations.

The objective of the simulations in scenario 2 is to investigate the effect of

nonnormal null observations on the estimation of the ODP function. As was observed

in the previous scenario, using t-distributed null observations did not drastically affect
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the estimation of the ODP function (see Tables 4.16 and 4.25 for the true positives

and scaled area differences). As for the gamma and lognormal simulations, those with

a small distance between the nonnormal null and normal alternative distributions

again produced the worst estimation of the ODP relative to the other simulations;

however, none of the scaled area differences exceeded 0.3, as shown in Tables 4.14

and 4.15. In fact, the largest scaled area difference among the skewed distributions

occurred with a high variance lognormal, but was only 0.21. The ROC curves for all

three distributions with a small distance between the null and alternative distribution

means are shown in Figures 4.11, 4.12, and 4.13. It is interesting to note that although

many of these simulations have small scaled area differences, in some cases the true

ODP function itself does not accurately identify alternative observations. The goal

of this estimation method is to obtain the rankings of the true ODP with minimal

differences, but clearly there are situations in which the true ODP rankings are not

ideal. Overall, the ODP function is reasonably well estimated when nonnormal null

observations are used.

In the simulations of scenario 3, the same distributional family was used to

generate the null and alternative observations and the performance of the estimated

ODP was evaluated for each. As with scenarios 1 and 2, the estimated ODP for

the t-distribution performed well, with only minimal scaled area differences, shown in

Table 4.19. The gamma and lognormal distributions were both estimated surprisingly

accurately. The only non-zero (rounded to four decimal places) scaled area differences

in these two sets were for those simulations with high variance alternative distributions

that were a small distance from the null distribution, as shown in Tables 4.17 and 4.18.

In summary, the estimated ODP is an adequate indicator of significance even when

the null and alternative observations are both nonnormally distributed.

A second measure of estimation performance, the number of true positives, was

used in this simulation study (see Tables 4.20 to 4.28). Recall that when π1=0.05,
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there are 50 true alternative observations, 100 when π1=0.10, 250 when π1=0.25, and

500 when π1=0.50. Thus, when π1=0.05, there was a maximum of 50 true positives

that could be found in the top 100 observations. Not surprisingly, with a larger

proportion of true alternative observations in the sample, the top 100 observations

are exclusively true positives when the distance between the centers of the two dis-

tributions increases. Inspection of these results reveals conclusions similar to those

obtained using the ROC curves and scaled area differences. The skewed nonnormal

alternative observations (scenario 1) did not produce a well-estimated ODP when

the distance between distribution means was small. Nonnormal null observations,

alone or with nonnormal alternative observations, were estimated reasonably; how-

ever, the high variance skewed distributions in scenario 3 had noticeable differences

in the number of true positives when the distance between distributions was small.
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Figure 4.8: Gamma distribution from scenario 1 with mean 1 and high, medium,
and low variance. Each row corresponds to an alternative distribution variance that
is high (8), medium (4), or low (2). Each column is a different value of π1, the
proportion of true alternative observations, and increases from 0.05 to 0.50, from left
to right. All alternative distributions are 1 null standard deviation away from the
null distribution.
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Figure 4.9: Lognormal distribution from scenario 1 with mean 1 and high, medium,
and low variance. Each row corresponds to an alternative distribution variance that
is high (8), medium (4), or low (2). Each column is a different value of π1, the
proportion of true alternative observations, and increases from 0.05 to 0.50, from left
to right. All alternative distributions are 1 null standard deviation away from the
null distribution.
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Figure 4.10: Scenario 1 t-distribution with mean 1 and high, medium, and low vari-
ance. Each row corresponds to an alternative distribution variance that is high (df=1),
medium (df=5), or low (df=10). Each column is a different value of π1, the propor-
tion of true alternative observations, and increases from 0.05 to 0.50, from left to
right. All alternative distributions are 1 null standard deviation away from the null
distribution.
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Figure 4.11: Gamma distribution from scenario 2 with mean 1 and normal distribution
with mean 2 and high, medium, and low variance. Each row corresponds to an
alternative distribution variance that is high (8), medium (4), or low (2). Each
column is a different value of π1, the proportion of true alternative observations, and
increases from 0.05 to 0.50, from left to right.
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Figure 4.12: Lognormal distribution from scenario 2 with normal mean 2 and high,
medium, and low variance. Each row corresponds to an alternative distribution vari-
ance that is high (8), medium (4), or low (2). Each column is a different value of π1,
the proportion of true alternative observations, and increases from 0.05 to 0.50, from
left to right. All alternative distributions are 1 null standard deviation away from the
null distribution.
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Figure 4.13: Scenario 2 t-distribution compared to a normal with mean 1 and high,
medium, and low variance. Each row corresponds to an alternative distribution vari-
ance that is high, medium, or low. Each column is a different value of π1, the pro-
portion of true alternative observations, and increases from 0.05 to 0.50, from left to
right. All alternative distributions are 1 null standard deviation away from the null
distribution.
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Table 4.11: Scaled area differences for scenario 1 using the gamma distribution

Gamma
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.7125 0.5994 0.4454

(0.0087) (0.0104) (0.0106)

0.10
0.7149 0.5809 0.4333

(0.0064) (0.0071) (0.0067)

0.25
0.6687 0.53 0.3663

(0.0052) (0.0053) (0.005)

0.50
0.5821 0.4219 0.2594

(0.0048) (0.0043) (0.0038)

3

0.05
0.1016 0.0488 0.0224

(0.0041) (0.0018) (0.0011)

0.10
0.091 0.0464 0.0207

(0.0031) (0.0013) (0.0008)

0.25
0.0691 0.0309 0.0122

(0.0017) (0.0008) (0.0004)

0.50
0.0357 0.0156 0.0064
(0.001) (0.0006) (0.0002)

5

0.05
0.0119 0.0026 0.0005
(0.001) (0.0003) (0.0001)

0.10
0.0112 0.0022 0.0003

(0.0008) (0.0002) (0)

0.25
0.0088 0.0019 0.0002

(0.0004) (0.0001) (0)

0.50
0.0054 0.0011 0.0001

(0.0002) (0.0001) (0)
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Table 4.12: Scaled area differences for scenario 1 using the lognormal distribution

Lognormal
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.5323 0.4561 0.3687

(0.0098) (0.0103) (0.0094)

0.10
0.4935 0.4157 0.3279

(0.0067) (0.0071) (0.0069)

0.25
0.4285 0.3421 0.2452

(0.0043) (0.0052) (0.0045)

0.50
0.2998 0.2282 0.1438

(0.0037) (0.0044) (0.0034)

3

0.05
0.0657 0.0346 0.0166

(0.0024) (0.0018) (0.0008)

0.10
0.0545 0.0303 0.0147

(0.0016) (0.001) (0.0005)

0.25
0.0396 0.0191 0.0086

(0.0012) (0.0007) (0.0004)

0.50
0.0148 0.0077 0.0035

(0.0006) (0.0003) (0.0002)

5

0.05
0.0056 0.0013 0.0003

(0.0004) (0.0001) (0)

0.10
0.0047 0.001 0.0002

(0.0003) (0.0001) (0)

0.25
0.0036 0.0007 0.0001

(0.0002) (0.0001) (0)

0.50
0.002 0.0004 0.0001

(0.0001) (0) (0)
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Table 4.13: Scaled area differences for scenario 1 using the t-distribution

t

Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.0755 0.1129 0.135

(0.0052) (0.0076) (0.0066)

0.10
0.0617 0.1042 0.1179

(0.0037) (0.0053) (0.0044)

0.25
0.0472 0.0837 0.0883

(0.0028) (0.003) (0.003)

0.50
0.0309 0.0513 0.0605

(0.0019) (0.0021) (0.0023)

3

0.05
0.0113 0.0173 0.0157
(0.001) (0.0019) (0.0012)

0.10
0.0081 0.0164 0.014

(0.0012) (0.0011) (0.0009)

0.25
0.0074 0.0109 0.0116

(0.0007) (0.0007) (0.0005)

0.50
0.0022 0.0062 0.0068

(0.0004) (0.0004) (0.0003)

5

0.05
0.0012 0.0016 0.0005

(0.0008) (0.0004) (0.0002)

0.10
0.0014 0.0013 0.0005

(0.0004) (0.0004) (0.0001)

0.25
0.0013 0.0016 0.0005

(0.0003) (0.0002) (0.0001)

0.50
0.0013 0.001 0.0006

(0.0003) (0.0001) (0.0001)
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Table 4.14: Scaled area differences for scenario 2 using the gamma distribution

Gamma
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.1996 0.1694 0.0864

(0.0071) (0.0081) (0.0055)

0.10
0.2072 0.1552 0.0778

(0.0055) (0.0043) (0.0039)

0.25
0.1768 0.154 0.0812

(0.0035) (0.0032) (0.0025)

0.50
0.153 0.1424 0.0779

(0.0021) (0.0019) (0.0018)

3

0.05
0.0692 0.0208 0.0015

(0.0056) (0.003) (0.0007)

0.10
0.0761 0.0208 0.0037

(0.0041) (0.0019) (0.001)

0.25
0.0741 0.0233 0.0022

(0.0021) (0.0015) (0.0004)

0.50
0.0681 0.0233 0.0028

(0.0013) (0.0008) (0.0004)

5

0.05
0.0216 0.002 0.0001

(0.0027) (0.0009) (0)

0.10
0.0176 0.0012 0

(0.0019) (0.0005) (0)

0.25
0.0147 0.0015 0.0001

(0.0009) (0.0003) (0.0001)

0.50
0.0151 0.0012 0

(0.0007) (0.0002) (0)
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Table 4.15: Scaled area differences for scenario 2 using the lognormal distribution

Lognormal
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.2182 0.1788 0.1007
(0.008) (0.009) (0.0059)

0.10
0.2245 0.1767 0.0933

(0.0058) (0.005) (0.004)

0.25
0.2032 0.1703 0.0949

(0.0031) (0.0042) (0.0028)

0.50
0.1786 0.1637 0.098

(0.0023) (0.0024) (0.0022)

3

0.05
0.0818 0.0258 0.0029

(0.0053) (0.0032) (0.001)

0.10
0.075 0.0269 0.0018

(0.0034) (0.0029) (0.0006)

0.25
0.0791 0.0258 0.0034

(0.0026) (0.0016) (0.0005)

0.50
0.079 0.0275 0.003

(0.0016) (0.001) (0.0004)

5

0.05
0.0201 0.0018 0.0001

(0.0028) (0.0008) (0)

0.10
0.0223 0.0018 0.0001

(0.0018) (0.0005) (0)

0.25
0.0182 0.0019 0.0001

(0.0012) (0.0004) (0.0001)

0.50
0.0182 0.002 0.0002
(0.001) (0.0003) (0.0001)
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Table 4.16: Scaled area differences for scenario 2 using the t-distribution

t

Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.0015 0.0118 0.065

(0.0014) (0.0032) (0.0071)

0.10
0.0021 0.0126 0.0505

(0.0009) (0.0021) (0.0053)

0.25
0.0025 0.0082 0.0401

(0.0005) (0.0013) (0.004)

0.50
0.0008 0.0049 0.0278

(0.0004) (0.0009) (0.0023)

3

0.05
0.0105 0.0286 0.0291

(0.0023) (0.0031) (0.0022)

0.10
0.0078 0.0259 0.0255

(0.0016) (0.002) (0.0013)

0.25
0.007 0.0208 0.0215

(0.0011) (0.0014) (0.0008)

0.50
0.0044 0.0127 0.0131

(0.0007) (0.0009) (0.0005)

5

0.05
0.0101 0.0079 0.0017

(0.0018) (0.0009) (0.0003)

0.10
0.0077 0.0069 0.0017

(0.0014) (0.0008) (0.0002)

0.25
0.0061 0.0066 0.0015

(0.0009) (0.0004) (0.0001)

0.50
0.0057 0.0053 0.0012

(0.0007) (0.0003) (0.0001)
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Table 4.17: Scaled area differences for scenario 3 using the gamma distribution

Gamma
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.1559 0 0

(0.0097) (0) (0)

0.10
0.1824 0 0

(0.0095) (0) (0)

0.25
0.1792 0 0

(0.0056) (0) (0)

0.50
0.1825 0 0

(0.0046) (0) (0)

3

0.05
0 0 0

(0) (0) (0)

0.10
0 0 0

(0) (0) (0)

0.25
0 0 0

(0) (0) (0)

0.50
0 0 0

(0) (0) (0)

5

0.05
0 0 0

(0) (0) (0)

0.10
0 0 0

(0) (0) (0)

0.25
0 0 0

(0) (0) (0)

0.50
0 0 0

(0) (0) (0)
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Table 4.18: Scaled area differences for scenario 3 using the lognormal distribution

Lognormal
Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.035 0 0

(0.0058) (0) (0)

0.10
0.0392 0 0

(0.0053) (0.0001) (0)

0.25
0.0378 0 0

(0.0034) (0.0001) (0)

0.50
0.0435 0 0

(0.0027) (0) (0)

3

0.05
0 0 0.0001

(0) (0) (0)

0.10
0 0 0

(0) (0) (0)

0.25
0 0 0

(0) (0) (0)

0.50
0 0 0

(0) (0) (0)

5

0.05
0 0 0

(0) (0) (0)

0.10
0 0 0

(0) (0) (0)

0.25
0 0 0

(0) (0) (0)

0.50
0 0 0

(0) (0) (0)
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Table 4.19: Scaled area differences for scenario 3 using the t-distribution

t

Distance π1 High Variance Medium Variance Low Variance

1

0.05
0.0691 0.1104 0.1308

(0.0067) (0.0064) (0.007)

0.10
0.0679 0.1032 0.1339

(0.0038) (0.0046) (0.0045)

0.25
0.0527 0.0823 0.1016

(0.0024) (0.0026) (0.0036)

0.50
0.0319 0.0463 0.0599

(0.0018) (0.0022) (0.0023)

3

0.05
0.0084 0.0162 0.0177

(0.0018) (0.002) (0.0014)

0.10
0.0107 0.013 0.0159

(0.0012) (0.0013) (0.0009)

0.25
0.0073 0.0119 0.0111

(0.0007) (0.0007) (0.0007)

0.50
0.0038 0.0064 0.0068

(0.0004) (0.0004) (0.0005)

5

0.05
0.0026 0.0014 0.0012

(0.0007) (0.0007) (0.0003)

0.10
0.0009 0.0013 0.0005

(0.0007) (0.0003) (0.0001)

0.25
0.0021 0.0013 0.0006

(0.0003) (0.0002) (0.0001)

0.50
0.0013 0.0012 0.0005

(0.0002) (0.0002) (0.0001)
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Table 4.20: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 1 using the gamma distribution, with their standard errors,
based on 50 repeated simulations.

Gamma
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
37.54 7.22 31.06 9.28 23.36 10.82
(0.4) (0.324) (0.447) (0.395) (0.347) (0.428)

0.10
69.5 14.56 56.92 18.14 41.72 20.24

(0.502) (0.398) (0.565) (0.561) (0.571) (0.53)

0.25
99.7 37.16 94.18 44.7 76.42 48.88

(0.082) (0.773) (0.394) (0.793) (0.633) (0.668)

0.50
100 70.26 99.84 80.06 95.56 84.1
(0) (0.778) (0.066) (0.824) (0.239) (0.579)

3

0.05
32 28.76 37.9 34.02 43.3 40.02

(0.456) (0.537) (0.362) (0.416) (0.33) (0.418)

0.10
58.68 54.98 67.14 62.94 76.4 72.44

(0.669) (0.708) (0.615) (0.635) (0.469) (0.485)

0.25
98.18 97.9 99.1 98.92 99.48 99.48

(0.213) (0.222) (0.132) (0.13) (0.1) (0.1)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

5

0.05
46.52 44.78 49.28 48.74 49.94 49.84

(0.264) (0.299) (0.118) (0.156) (0.034) (0.052)

0.10
85.86 83.62 93.7 92.14 96.92 96.32

(0.366) (0.41) (0.225) (0.345) (0.187) (0.207)

0.25
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)
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Table 4.21: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 1 using the lognormal distribution, with their standard
errors, based on 50 repeated simulations.

Lognormal
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
21.76 7.12 18.12 7.26 15.1 7.4

(0.403) (0.336) (0.543) (0.343) (0.461) (0.326)

0.10
40.24 15.2 33.02 16.24 29.08 15.68

(0.551) (0.42) (0.523) (0.48) (0.491) (0.506)

0.25
70.68 36.32 63.44 39.52 57.02 42.56

(0.559) (0.637) (0.555) (0.689) (0.806) (0.703)

0.50
90.02 69.06 86.84 73.68 82.52 74.96

(0.362) (0.715) (0.532) (0.677) (0.599) (0.685)

3

0.05
34.36 30.28 39.06 34.82 44.68 40.98

(0.409) (0.454) (0.416) (0.457) (0.283) (0.302)

0.10
61.92 57.5 69.04 64.1 77.44 72.84

(0.548) (0.566) (0.405) (0.461) (0.487) (0.546)

0.25
97.54 97.22 98.94 98.86 98.98 98.92

(0.277) (0.297) (0.123) (0.121) (0.158) (0.1710)

0.50
100 100 100 100 99.96 99.96
(0) (0) (0) (0) (0.028) (0.028)

5

0.05
48.38 46.8 49.8 49.42 50 50

(0.189) (0.249) (0.064) (0.103) (0) (0)

0.10
89.58 87.14 94.72 93.28 97.5 96.96

(0.304) (0.348) (0.239) (0.277) (0.141) (0.156)

0.25
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)
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Table 4.22: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 1 using the t-distribution, with their standard errors, based
on 50 repeated simulations.

t

High Variance Medium Variance Low Variance
Distance π1 True Estimated True Estimated True Estimated

1

0.05
21.78 20.2 18.9 15.16 17.14 13.06

(0.457) (0.417) (0.456) (0.443) (0.381) (0.349)

0.10
41.98 39.02 33.86 28.66 33.78 26.98

(0.643) (0.603) (0.642) (0.603) (0.54) (0.502)

0.25
82.84 81.44 65.34 60.7 64.28 58.76

(0.627) (0.647) (0.596) (0.652) (0.559) (0.651)

0.50
99.6 99.58 89.48 88.86 88.86 87.4

(0.09) (0.091) (0.47) (0.477) (0.37) (0.408)

3

0.05
42.72 41.74 44.82 42.86 45.3 43.24

(0.365) (0.355) (0.257) (0.349) (0.258) (0.3)

0.10
78.64 76.66 80.64 77.52 81.56 78.18

(0.464) (0.439) (0.413) (0.44) (0.415) (0.405)

0.25
99.78 99.76 99.78 99.72 99.46 99.4

(0.072) (0.073) (0.059) (0.07) (0.096) (0.103)

0.50
100 100 99.92 99.92 99.98 99.98
(0) (0) (0.039) (0.039) (0.02) (0.02)

5

0.05
47.48 47.32 49.48 49.34 49.94 49.82

(0.196) (0.226) (0.096) (0.12) (0.034) (0.055)

0.10
92.4 91.88 96.92 96.32 97.38 96.98

(0.306) (0.306) (0.169) (0.175) (0.164) (0.168)

0.25
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)
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Table 4.23: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 2 using the gamma distribution, with their standard errors,
based on 50 repeated simulations.

Gamma
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
32.36 22.28 27.5 19.76 22.58 18.66

(0.373) (0.388) (0.46) (0.45) (0.518) (0.439)

0.10
60.2 41.74 49.58 36.96 38.88 32.9

(0.525) (0.613) (0.631) (0.618) (0.515) (0.511)

0.25
94.78 76.88 84.86 69.26 70.22 60.42

(0.322) (0.668) (0.513) (0.697) (0.654) (0.621)

0.50
100 94.46 98.02 89.16 90.38 83.08
(0) (0.292) (0.217) (0.42) (0.456) (0.581)

3

0.05
37.3 33.98 38.24 37.36 40.58 40.5

(0.465) (0.506) (0.364) (0.395) (0.314) (0.315)

0.10
67.96 62.6 66.28 64.9 68.9 68.62

(0.459) (0.496) (0.492) (0.52) (0.573) (0.573)

0.25
96.8 94.6 94.2 93.3 91.72 91.54

(0.239) (0.359) (0.325) (0.336) (0.447) (0.438)

0.50
99.72 99.14 98.66 98.56 97.32 97.16

(0.076) (0.134) (0.155) (0.165) (0.147) (0.141)

5

0.05
44.48 43.5 47.1 47.02 49.28 49.28

(0.271) (0.261) (0.214) (0.226) (0.121) (0.121)

0.10
79.24 77.94 84.06 83.98 88.24 88.24

(0.426) (0.439) (0.396) (0.397) (0.334) (0.334)

0.25
99.2 99.14 98.98 99 99.02 99

(0.121) (0.128) (0.147) (0.146) (0.132) (0.14)

0.50
99.9 99.88 99.62 99.62 99.66 99.66

(0.052) (0.055) (0.075) (0.075) (0.079) (0.079)
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Table 4.24: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 2 using the lognormal distribution, with their standard
errors, based on 50 repeated simulations.

Lognormal
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
37.32 27.08 33.3 25.44 30.14 26.04

(0.405) (0.43) (0.498) (0.522) (0.446) (0.51)

0.10
68.22 50.24 61.24 49 53.84 47.82

(0.458) (0.528) (0.526) (0.46) (0.498) (0.507)

0.25
98.06 88.46 92.54 82.54 85.14 78.72

(0.238) (0.452) (0.416) (0.648) (0.467) (0.521)

0.50
100 97.8 99.52 95.68 96.92 93.38
(0) (0.202) (0.096) (0.241) (0.226) (0.342)

3

0.05
41.2 37.42 43.24 42.16 45.42 45.32

(0.383) (0.39) (0.328) (0.344) (0.289) (0.293)

0.10
75.58 70.32 75.92 74.16 79.46 79.34

(0.372) (0.437) (0.446) (0.494) (0.405) (0.4)

0.25
98.74 97.82 97.98 97.74 97.26 96.94

(0.136) (0.209) (0.15) (0.159) (0.242) (0.259)

0.50
99.82 99.5 99.44 99.2 99.18 99.04

(0.068) (0.096) (0.086) (0.131) (0.13) (0.134)

5

0.05
46.86 45.92 48.86 48.78 49.88 49.88

(0.254) (0.271) (0.14) (0.152) (0.046) (0.046)

0.10
86.4 84.8 89.58 89.54 93.4 93.38

(0.305) (0.318) (0.309) (0.309) (0.306) (0.305)

0.25
99.7 99.58 99.18 99.16 99.4 99.44

(0.087) (0.091) (0.156) (0.155) (0.118) (0.118)

0.50
99.9 99.9 99.88 99.78 99.96 99.82

(0.052) (0.052) (0.046) (0.072) (0.028) (0.055)
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Table 4.25: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 2 using the t-distribution, with their standard errors, based
on 50 repeated simulations.

t

High Variance Medium Variance Low Variance
Distance π1 True Estimated True Estimated True Estimated

1

0.05
27.9 28 23.04 22.34 20.12 16.98

(0.443) (0.455) (0.438) (0.479) (0.484) (0.388)

0.10
52.24 51.86 43.52 42.52 36.64 32.14

(0.624) (0.619) (0.49) (0.567) (0.526) (0.569)

0.25
93.64 93.58 82.38 81.16 71.64 67.24

(0.439) (0.415) (0.611) (0.528) (0.555) (0.631)

0.50
99.96 99.96 98.06 97.9 93.52 92.62

(0.028) (0.028) (0.203) (0.214) (0.353) (0.415)

3

0.05
36.18 35.52 38.16 36.42 42.3 39.9

(0.407) (0.45) (0.426) (0.389) (0.351) (0.43)

0.10
67.64 66.14 72.02 69.24 77.14 73.9

(0.632) (0.64) (0.517) (0.445) (0.434) (0.455)

0.25
99.84 99.86 99.76 99.74 99.54 99.52

(0.052) (0.05) (0.067) (0.069) (0.096) (0.096)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

5

0.05
44.28 43.48 47.84 47.02 49.58 49.28

(0.287) (0.293) (0.165) (0.213) (0.095) (0.134)

0.10
84.86 83.56 90.98 89.26 95.88 94.82

(0.394) (0.46) (0.318) (0.383) (0.221) (0.237)

0.25
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)
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Table 4.26: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 3 using the gamma distribution, with their standard errors,
based on 50 repeated simulations.

Gamma
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
16.48 13.28 14.84 14.84 15.06 15.06
(0.47) (0.495) (0.396) (0.396) (0.474) (0.474)

0.10
31.16 26.32 28.32 28.32 27.84 27.84

(0.534) (0.623) (0.567) (0.567) (0.608) (0.608)

0.25
66.12 57.6 59.66 59.66 56.48 56.48

(0.696) (0.71) (0.702) (0.702) (0.583) (0.583)

0.50
90.96 86.62 85.36 85.36 81.02 81.02

(0.506) (0.554) (0.612) (0.612) (0.503) (0.503)

3

0.05
30.12 30.12 35.74 35.74 40.34 40.34

(0.459) (0.459) (0.421) (0.421) (0.387) (0.387)

0.10
56.02 56.02 62.82 62.82 66.48 66.48

(0.609) (0.609) (0.527) (0.527) (0.562) (0.562)

0.25
90.68 90.68 91.28 91.28 90.22 90.24

(0.365) (0.365) (0.364) (0.364) (0.398) (0.4)

0.50
98.48 98.48 98.08 98.08 97.2 97.22

(0.177) (0.177) (0.223) (0.223) (0.216) (0.216)

5

0.05
44.52 44.52 48.64 48.64 49.86 49.86

(0.342) (0.342) (0.151) (0.151) (0.057) (0.057)

0.10
77.76 77.76 84.04 84.04 89.36 89.36

(0.392) (0.392) (0.352) (0.352) (0.31) (0.31)

0.25
98.32 98.32 98.4 98.4 98.56 98.56

(0.172) (0.172) (0.185) (0.185) (0.167) (0.167)

0.50
99.82 99.82 99.68 99.68 99.46 99.44

(0.062) (0.062) (0.083) (0.083) (0.104) (0.104)
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Table 4.27: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 3 using the lognormal distribution, with their standard
errors, based on 50 repeated simulations.

Lognormal
High Variance Medium Variance Low Variance

Distance π1 True Estimated True Estimated True Estimated

1

0.05
17.8 17.6 18.8 18.8 20.68 20.68

(0.529) (0.558) (0.537) (0.537) (0.459) (0.459)

0.10
32.26 31.72 34.4 34.4 38.24 38.24

(0.587) (0.586) (0.629) (0.629) (0.622) (0.622)

0.25
65.02 64.06 68.02 68.02 69.94 69.94

(0.631) (0.6) (0.771) (0.771) (0.731) (0.731)

0.50
90.56 90.3 91.08 91.08 89.76 89.76

(0.359) (0.368) (0.396) (0.396) (0.365) (0.365)

3

0.05
39.16 39.16 44.54 44.54 47.52 47.52

(0.372) (0.372) (0.303) (0.303) (0.216) (0.216)

0.10
68.12 68.12 73.66 73.66 80.06 80.06

(0.504) (0.504) (0.439) (0.439) (0.448) (0.448)

0.25
94.94 94.94 95.86 95.86 95.82 95.84

(0.339) (0.339) (0.262) (0.262) (0.25) (0.25)

0.50
99.16 99.16 98.88 98.88 98.82 98.86

(0.126) (0.126) (0.123) (0.123) (0.148) (0.148)

5

0.05
48.9 48.9 49.88 49.88 50 50

(0.155) (0.155) (0.055) (0.055) (0) (0)

0.10
87.58 87.58 91.68 91.68 94.82 94.82

(0.413) (0.413) (0.264) (0.264) (0.31) (0.31)

0.25
99.24 99.24 99.2 99.18 99.38 99.38

(0.136) (0.136) (0.148) (0.153) (0.11) (0.117)

0.50
99.94 99.94 99.82 99.84 99.88 99.84

(0.034) (0.034) (0.068) (0.066) (0.055) (0.052)
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Table 4.28: True positives out of the top 100 observations for the true and estimated
ODP functions in scenario 3 using the t-distribution, with their standard errors, based
on 50 repeated simulations.

t

High Variance Medium Variance Low Variance
Distance π1 True Estimated True Estimated True Estimated

1

0.05
23.14 20.92 18.16 14.26 17.8 14.06

(0.474) (0.417) (0.435) (0.445) (0.361) (0.384)

0.10
42.14 39.1 35.08 28.94 33.56 26.84

(0.607) (0.595) (0.642) (0.577) (0.525) (0.586)

0.25
80.38 79.46 64.86 60.2 63.2 57.44

(0.565) (0.542) (0.703) (0.75) (0.775) (0.726)

0.50
99.5 99.48 89.12 88.02 86.54 85.68

(0.115) (0.119) (0.439) (0.386) (0.468) (0.485)

3

0.05
43.58 42.26 44.52 42.32 45.52 43.04

(0.283) (0.307) (0.331) (0.373) (0.292) (0.356)

0.10
79.14 77.32 80.28 77.42 81.42 78.48

(0.469) (0.52) (0.457) (0.496) (0.424) (0.436)

0.25
99.78 99.78 99.48 99.48 99.3 99.24

(0.072) (0.072) (0.091) (0.091) (0.115) (0.123)

0.50
100 100 100 100 99.98 99.98
(0) (0) (0) (0) (0.02) (0.02)

5

0.05
47.32 47 49.52 49.28 49.72 49.64
(0.22) (0.219) (0.096) (0.114) (0.076) (0.085)

0.10
92.08 91.54 96.56 95.92 97.28 96.82

(0.321) (0.327) (0.214) (0.225) (0.194) (0.193)

0.25
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)

0.50
100 100 100 100 100 100
(0) (0) (0) (0) (0) (0)
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Table 4.29: True Positive Rate and False Positive Rate for scenario 1 using the gamma
distribution

Gamma
High Variance Medium Variance Low Variance

Distance π1 Value TPR FPR TPR FPR TPR FPR

1

0.05

True 0.751 0.066 0.621 0.073 0.467 0.081
(0.008) (0.00042) (0.009) (0.00047) (0.007) (0.00037)

Est 0.144 0.098 0.186 0.095 0.216 0.094
(0.006) (0.00034) (0.008) (0.00042) (0.009) (0.00045)

0.10

True 0.695 0.034 0.569 0.048 0.417 0.065
(0.005) (0.00056) (0.006) (0.00063) (0.006) (0.00063)

Est 0.146 0.095 0.181 0.091 0.202 0.089
0.004) (0.00044) (0.006) (0.00062) (0.005) (0.00059)

0.25

True 0.399 0 0.377 0.008 0.306 0.031
(0) (0.00011) (0.002) (0.00052) (0.003) (0.00084)

Est 0.149 0.08 0.179 0.074 0.196 0.068
(0.003) (0.00103) (0.003) (0.00106) (0.003) (0.00089)

0.50

True 0.2 0 0.2 0 0.191 0.009
(0) (0) (0) (0.00013) (0) (0.00048)

Est 0.141 0.059 0.16 0.04 0.168 0.032
(0.002) (0.00156) (0.002) (0.00165) (0.001) (0.00116)

3

0.05

True 0.64 0.072 0.758 0.065 0.866 0.06
(0.009) (0.00048) (0.007) (0.00038) (0.007) (0.00035)

Est 0.575 0.075 0.68 0.069 0.8 0.063
(0.011) (0.00057) (0.008) (0.00044) (0.008) (0.00044)

0.10

True 0.587 0.046 0.671 0.037 0.764 0.026
(0.007) (0.00074) (0.006) (0.00068) (0.005) (0.00052)

Est 0.55 0.05 0.629 0.041 0.724 0.031
(0.007) (0.00079) (0.006) (0.00071) (0.005) (0.00054)

0.25

True 0.393 0.002 0.396 0.001 0.398 0.001
(0.001) (0.00028) (0.001) (0.00018) (0) (0.00013)

Est 0.392 0.003 0.396 0.001 0.398 0.001
(0.001) (0.0003) (0.001) (0.00017) (0) (0.00013)

0.50

True 0.2 0 0.2 0 0.2 0
(0) (0) (0) (0) (0) (0)

Est 0.2 0 0.2 0 0.2 0
(0) (0) (0) (0) (0) (0)

5

0.05

True 0.93 0.056 0.986 0.053 0.999 0.053
(0.005) (0.00028) (0.002) (0.00012) (0.001) (0.00004)

Est 0.896 0.058 0.975 0.05 0.997 0.053
(0.006) (0.00031) (0.003) (0.00016) (0.001) (0.00006)

0.10

True 0.859 0.016 0.937 0.007 0.969 0.003
(0.004) (0.00041) 0.002) (0.00025) (0.002) (0.00021)

Est 0.836 0.018 0.921 0.009 0.963 0.004
(0.004) (0.00046) (0.003) (0.00038) (0.002) (0.00023)

0.25

True 0.4 0 0.4 0 0.4 0
(0) (0) (0) (0) (0) (0)

Est 0.4 0 0.4 0 0.4 0
(0) (0) (0) (0) (0) (0)

0.50

True 0.2 0 0.2 0 0.2 0
(0) (0) (0) (0) (0) (0)

Est 0.2 0 0.2 0 0.2 0
(0) (0) (0) (0) (0) (0)
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5. CONCLUSIONS

Determining the importance of the normality assumption when estimating the ODP

with nonnormal observations is crucial to the widespread applicability of the ODP

as a method for determining significance. Additionally, situations in which the es-

timated ODP fails to adequately represent the information in the true ODP should

be identified in order to make recommendations about the use of the ODP estima-

tion method. The results of the previous chapter can be summarized with plots of

the scaled area differences for the gamma, lognormal, and t-distributions shown in

Figures 5.1, 5.2 and 5.3, respectively. There are three general trends that can be

observed from these figures and the results in the previous chapter. First, the estima-

tion of the ODP improves as π1 increases. This observation is plausible because more

strength is borrowed between alternative observations as the proportion of alternative

observations grows. Second, estimation of the ODP improves as distance between the

centers of the null and alternative distributions increases. Because this method aims

to identify significant observations, it is easier to accomplish this goal when the un-

derlying distributions are more distinct. Third, the ODP is better estimated when

the variance of the alternative distribution is smaller. Alternative observations which

fall in a tighter cluster are easier to distinguish from null data.

As shown in this simulation study, differences between the true and estimated

ODP are not problematic for all simulations when the null and alternative distribu-

tions are at least 3 null standard deviations apart. Alternative distributions with

low variance are preferable to high variance, and a larger value of π1 for a given

distance between distributions corresponds to better ODP estimation. Comparing

Figures 5.1, 5.2, and 5.3, it is readily apparent that potential problems exist when

this estimation method is used for skewed alternative observations which are a small

distance away from the null distribution.
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Figure 5.1: Scaled area differences for the gamma distribution. Each plot displays π1

vs. scaled area difference. The trendlines within the plot represent the three different
variance levels for the alternative distribution—high variance, shown in red; medium
variance, shown in blue; and low variance, shown in green—with standard error bars
for each point.

5.1 Recommendations

Based on the results of the simulation study performed, the proposed ODP esti-

mation method should not be used on data which have skewed alternative observations

when the distance between expectations is one null standard deviation. Estimation

is considered satisfactory for all observed situations with the t-distribution, and, sur-

prisingly, for most simulations in which both the null and alternative distributions

are nonnormal.
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Figure 5.2: Scaled area differences for the lognormal distribution. Each plot displays
π1 vs. scaled area difference. The trendlines within the plot represent the three
different variance levels for the alternative distribution—high variance, shown in red;
medium variance, shown in blue; and low variance, shown in green—with standard
error bars for each point.

5.2 Future Research

Future exploration of ODP methodology could exist on two levels—performing

additional simulations and adjusting the current estimation methodology. With re-

gards to simulation extensions, there are three general areas of exploration: factor

settings, assumptions, and methods.

Factor settings refers to the levels of factors chosen for this set of simulations.

That is, the values of π1 or the number of null standard deviations separating the
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Figure 5.3: Scaled area differences for the t-distribution. Each plot displays π1 vs.
scaled area difference. The trendlines within the plot represent the three different
variance levels for the alternative distribution—high variance, shown in red; medium
variance, shown in blue; and low variance, shown in green—with standard error bars
for each point.

null and alternative distributions could be specified differently from those settings

used here. Similarly, the resulting nonnormal parameterizations or even the distribu-

tional families themselves could be modified to explore the behavior of other types of

nonnormal data in the context of the ODP.

The simulations in this study were run with the requirement that all null dis-

tributions have unit variance. This assumption was imposed to establish a degree of

comparability across scenarios and nonnormal distributions. If this requirement were
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relaxed, or if the null variance were held constant at some other value, a greater range

of possibilities could be observed and the performance of the estimated ODP could

be evaluated.

The methods used in the construction and estimation of the ODP are consistent

with the information in Storey (2005); however, as discussed in the previous chapter,

the methodology for incorporating nonnormal null distributions into scenarios 2 and

3 had to be inferred from general theoretical information. In the estimation of the

ODP in those scenarios, a standard normal density was placed in the denominator of

the score statistic for all simulations. Various other methods exist for estimating the

ODP, and this simulation study may be conducted using one of those methods instead

of the method used here. Also, the observations were generated by two distributions,

one null and one alternative, but could also reasonably consist of mixture distributions

instead. Another methodological variation that could be used to evaluate the ODP

estimation would be to transform the nonnormal observations (using Box-Cox or other

means) to appear more normally distributed before performing the simulations.

Finally, the results of this simulation study may be used to develop a new ODP

estimation method. Because the major ODP estimation difficulties occurred with

skewed alternative observations, this new estimation method should adapt to acco-

modate nonnormal data, perhaps by replacing the normal densities with estimated

nonnormal densities.
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