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ABSTRACT

Using an Experimental Mixture Design to Identify Experimental Regions
with High Probability of Creating a Homogeneous

Monolithic Column Capable of Flow

Charles C. Willden
Department of Statistics, BYU

Master of Science

Graduate students in the Brigham Young University Chemistry Department are
working to develop a filtering device that can be used to separate substances into their con-
stituent parts. The device consists of a monomer and water mixture that is polymerized into
a monolith inside of a capillary. The ideal monolith is completely solid with interconnected
pores that are small enough to cause the constituent parts to pass through the capillary
at different rates, effectively separating the substance. Although the end objective is to
minimize pore sizes, it is necessary to first identify an experimental region where any com-
bination of input variables will consistently yield homogeneous monoliths capable of flow.
To accomplish this task, an experimental mixture design is used to model the relationship
between the variables related to the creation of the monolith and the probability of creating
an acceptable polymer.

The results of the mixture design suggest that, inside of the constrained experimental
region, mixtures with higher proportions of monomer and surfactant, low amounts of initiator
and salt, and DEGDA as the monomer have the highest probability of producing a workable
monolith. Confirmatory experiments are needed before future experimentation to minimize
pore sizes is performed using the refined constrained experimental region determined by the
results of this analysis.

Keywords: optimal design, unreplicated split-plot, generalized linear models, column chro-
matography
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chapter 1

INTRODUCTION

The identification of unknown chemical compounds is an important task carried out everyday

by a wide range of professionals, and can even be a matter of life or death. For example,

a hazardous material crew might be able to save many lives if it is able to quickly identify

a highly-toxic substance so that the victims can be given the correct treatment before they

are beyond help. Many methods have been developed to identify unknown compounds, such

as spectroscopy methods, X-ray crystallography, and mass spectrometry; however, these

methods work best when the substance being studied consists of a single compound. For

this reason, it is often helpful to separate a mixture of compounds into its constituent parts,

and then perform the aforementioned identification methods on the separated compounds.

The process of separating mixtures of compounds is called chromatography, and there

exists a plethora of methods to perform this task with a wide range of sophistication and

required skill. Flash column chromatography, for example, uses a glass tube, called a column

or capillary, filled with silica gel particles or a porous monolith. The column is attached to

a pressure source and the mixture is pushed through the column. As the mixture passes

through, the individual compounds travel at different rates, separating the mixture on the

other end of the column (Harwood et al. 1999). The efficiency of separation can be increased

by using smaller silica beads or monoliths with smaller pores, but these often require greater

amounts of pressure to push the substance through the column. Within the last twenty years,

ultra high performance liquid chromatography (UHPLC) has become the gold standard for

commercially available chromatography techniques, but with very expensive equipment that

provides the ultra high pressure. Columns used in UHPLC are often packed with silica

beads less than two microns in size. A group from the Brigham Young University (BYU)
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Department of Chemistry has been working to achieve the same level of performance using

monolithic columns without the requirement of ultra high pressure (P. Aggarwal, personal

communication, February, 28, 2012).

1.1 Proposed Column Chromatograph

The group of chemists at BYU led by Dr. Milton Lee have been working towards creating

monolithic column that will ideally have a pore size and skeleton thickness of a single micron.

Theoretically, such a device would be capable of achieving the same efficiency as other

UHPLC techniques but with lower pressure.

The expectation is that future experimentation can optimize the polymer such that

it has the smallest pore size that this process is capable of creating. This, however, is

complicated by two problems: First, the process does not always create a polymer that

is completely solid, which we will call a “homogeneous” monolith. Second, the pores are

not always interconnected, meaning the compound to be separated will not flow through

the column. In order to design an experiment to find the conditions to create a monolith

with minimal pore size, we would first need to know what process settings will consistently

produce homogenous polymers capable of flow.

1.2 Mixture Design

An experimental design is created to understand how the variables related to the creation of

the polymer, such as mixture ingredient proportions and polymerization temperature, effect

the probability of creating a homogenous polymer capable of flow. Designing experiments

to study mixtures requires special considerations because of the dependent nature of pro-

portions. Increasing the proportion of one ingredient necessarily decreases the proportion

of one or more of the other ingredients. Mixture designs are a special class of designs that

properly account for the dependencies of the proportions and model how a response variable

is effected by the joint blending properties of the mixture components (Cornell 2002).
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The design in this study was created to model how the blending properties of three

mixture variables and the levels of several other process variables effect the probability of

creating an acceptable monolith, meaning homogenous and capable of flow. The mixture

variables consisted of water, a monomer, and a surfactant. In this study, two different

monomers are included, but only one is used in a single mixture. The first monomer is

diethylene glycol diacrylate (DEGDA), which is the preferred monomer of the researchers

because it is compatible with biological samples, or biocompatible (P. Aggarwal, personal

communication, February, 28, 2012). Ethylene glycol dimethacrylate (EGDmA) is the other

monomer used in the study, and the surfactant is polyethylene oxide co-polypropylene oxide

co-polyethylene oxide (EPE 4400).

As previously mentioned, the effects of several process variables are of interest. Some

ingredients in the mixture are not classified as mixture components because their addition to

the mixture does not change the total volume. These ingredients include calcium chloride,

which is an organic salt, and potassium persulfate, which is an initiator. The non-ingredient

process variables are mixing time measured in minutes, heat in degrees celsius used in the

hot water bath used to polymerize the mixture, and a factor variable indicating whether the

DEGDA or EGDmA is used in the mixture.

The results of this analysis are analyzed using logistic regression. This statistical

technique makes it possible to model the relationship between probabilities and explanatory

variables using a link function. This technique is discussed in greater detail in the Chapter 3.

Once a model for the probability of producing a homogenous monolith capable of flow

is obtained using logistic regression, the model is used to draw contour plots over a triangular

region called a simplex, whose coordinates denote the proportions of each mixture ingredient.

These contour lines indicate a level of predicted probability of creating an acceptable polymer

given the proportions of mixture components and process variable settings. Using these

contour plots, regions of high probability in the simplex can be identified. These regions,

if confirmed to be of high probability by a confirmatory experiment, can then be used as

3



constraints on the experimental region for future experimentation designed to minimize pore

size.

The remainder of this document contains a literature review and a thorough expla-

nation the methods of experimental design and analysis. The literature reviewed in the

following chapter is from academic journals and textbooks related to recent work in column

chromatography and the use of mixture designs in a variety of circumstances. Chapter 3 ex-

plains the type of monolith chromatography columns being developed, and then discusses the

mixture design, model-fitting techniques, and visualization methods used to obtain results.
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chapter 2

LITERATURE REVIEW

This chapter reviews several items of literature related to recent work in developments in

column chromatography and landmark statistical papers and textbook material that give

the theoretical basis for the methods used in this study.

2.1 Current State of Column Chromatography

Chromatography is a family of techniques used to separate mixtures of chemical compounds.

The work in this paper deals with a specific class of chromatography techniques called

‘column chromatography,’ in which the mixture of compounds called the mobile phase is

moved through a tube occupied by a filtering structure called the stationary phase. The

different compounds in the mobile phase have varying affinity for the stationary phase, which

causes the mobile phase to separate into its constituent compounds as it moves through the

column (Tunç et al. 2010; Aggarwal et al. 2011).

As column chromatography has evolved, two types of stationary phases have become

dominant. Columns packed with tiny beads, most often silica gel particles, are called particle

packed columns, and the mobile phase separates as it maneuvers through the tiny spaces

between the particulates. Figure 2.1 contains an SEM micrograph of a particle packed

column. The other common type of stationary phase is constructed of a single skeletal

structure called a monolith. Monolithic columns are most often silica-based, or created

using an organic polymer (Aggarwal et al. 2011).

Several parameters common to both types of stationary phase govern the performance

of the column. Smaller pore sizes achieve higher separation efficiency, but have a negative

effect on the permeability of the column. Permeability controls how quickly the mobile phase

passes through the column. An ideal column would offer both high permeability and high

5



Figure 2.1: SEM micrographs of a particle packed column on the left and a monolithic column
on the right. The particles in the packed column are 1 μm in size, which is commonly used in
UHPLC. The micrograph on the right shows a column produced in one of the experimental
runs of this study. This particular emulsion has a ‘foam’ morphology, which is preferred for
this application, but the pore sizes are too large for UHPLC.

efficiency; however, these two qualities are inversely related and often require a compromise.

Morphology is a parameter that describes the form of the stationary phase, and different

morphologies are ideal for different applications (Aggarwal et al. 2011).

In the 1990s, particle packed columns and monolithic columns seemed to be on even

footing with each other. However, with the advent of UHPLC using particles smaller than

2 μm and ultra high pressure pumps have placed monolithic columns slightly out of fa-

vor. Since then, many have labored to advance monolithic column technology to the same

performance level as UHPLC devices (P. Aggarwal, personal communication, February, 28,

2012).

These efforts to put monolithic columns back on par with particle packed columns

are done with good reason. According to Tunç et al. (2010), monolithic columns offer several

advantages over its counterpart, the primary advantage being a diminished trade-off between

efficiency and permeability with the more open pore structures monoliths are capable of

creating. Theoretically, UHPLC efficiency can be achieved using lower pressures available

with much more affordable equipment. Also, particle packed columns require retaining frits
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to hold the particles in place. This creates inhomogeneity in the separation media, which is

not a problem associated with monolithic columns. Finally, monolithic columns offer control

over the morphology of the stationary phase, which can be optimized to increase flow velocity

and efficiency.

However, the variables that govern morphology and pore structure in organic poly-

mer monoliths are not very well understood. Porras et al. (2008) state that “there is no

general theory for predicting the microemulsion structure in a particular system of oil, wa-

ter, and surfactant. However, there are rules and phenomenological parameters that enable

a microemulsion with a particular desired structure to be prepared.” For clarification, mi-

croemulsions refer to pore sizes measured on the micron scale. The work here is preliminary

to further experimentation designed to accurately model the relationship between those pa-

rameters and the pore structure of the monoliths.

For now, the objective is to understand what set of operating conditions and pro-

portions of water, oil, and surfactant will consistently yield homogeneous monoliths with

open pore structures. Hopefully, it is an early step towards the creation of a biocompatible

UHPLC monolithic column that will be an inexpensive yet powerful tool in a wide variety

of applications.

2.2 Statistical Literature Related to Design & Analysis Methods

The completion of this project requires an eclectic combination of statistical tools. This

section discusses the theoretical foundation for the techniques used to plan the experiments

and analyze the results. It begins with an explanation of experimental designs for mixtures;

followed by a discussion of optimal designs, generalized linear models, model selection using

stepwise algorithms, and diagnostic methods.
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Mixture Designs

Experimentation with mixtures, such as the water-in-oil mixture used to create organic

polymer monoliths in column chromatography, cannot be performed using traditional design

methods. To do so would make statistical inference from the design impossible because

increasing the amount of one ingredient necessarily decreases the proportion of the other

ingredients to the total mixture. This means that any observed effect from increasing one

ingredient is confounded with the effect of diluting the others.

Also, as Lawson (2010, p. 443) explains, “The characteristics of a product that is

composed of a mixture of components is usually a function of the proportion of each com-

ponent in the mixture and not the total amount present.” Therefore, it makes more sense

to use proportions as the explanatory variables in place of total amounts of each mixture

component.

Designs for mixtures accommodate the interdependencies of the proportions by re-

stricting the experimental region. In the case of a three factor experiment, which is the

case for this study, the experimental region is generally represented graphically as a cube. If

we take the same region to represent three mixture components, the three axes of the cube

span from zero to one and represent the proportion of each factor in the total mixture. The

vertex of the cube with coordinate (1,1,1) would hypothetically denote a mixture of 100%

component 1, 100% component 2, and 100% component 3. Of course, that is impossible. To

restrict the space to only include coordinates that make sense, a constraint is imposed that

the coordinates must sum to one. In the three factor example, this results in an equilateral

triangular region, which is illustrated graphically in Figure 2.2.

scheffé model The constraint that the proportions sum to one not only modifies the

experimental region, but also the linear model that represents the relationship between the

proportions of the mixture components and the response. A three-factor factorial experiment

can be represented with the model y = β0 + β1x1 + β2x2 + β3x3 + ε, where there are three
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X1 = 1.0

X2 = 1.0

X3 = 1.00.0

Component 1

Component 2

Component 3

Figure 2.2: The figure on the left shows how the triangular region is derived from the
experimental region of a three factor factorial design. The constrained triangular region,
called a ‘simplex’, is used to plot points using a triangular coordinate system. Any coordinate
inside the simplex represents a valid mixture, meaning the elements of the coordinate sum
to one. Each vertex represents a mixture consisting entirely of the corresponding mixture
component.

main effect terms and an intercept. However, the constraint that
∑

xi = 1 makes one of the

xis redundant since it can be derived from the proportions of the other two. This problem

will cause the X matrix to be rank deficient and the least squares solution to be nonunique.

Scheffé (1958) introduced an alternative polynomial regression model to accommodate

this problem by removing the intercept term. For a three-component mixture design, the

first order Scheffé model is

η = β1x1 + β2x2 + β3x3, (2.1)

where βi is interpreted as the response for mixture consisting entirely of component i. Re-

sponse levels at points off of the vertices are then weighted averages of the response levels

on the vertices of the simplex. This is often referred to as the linear blending of the mixture.

Extending the model to include interaction effects allows for curvature in the response

surface and (2.1) becomes

η = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3. (2.2)
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The interpretation of these interactions is a natural extension of the interpretation of the

main effect terms. According to Scheffé (1958, p. 347), excess response η accounted for by

the interactions over the linear blending is often called the ‘synergism’ of the mixture. If the

response levels decrease on account of the interaction effects, it is called the ‘antogonism’.

Although it is possible to include cubic and higher order terms, the total number of

terms in the model increases rapidly, and these models would require many experiments to

estimate. It is common practice to limit the degree of polynomial terms in the model due

to constraints on time and resources for experimentation.

adding process variables Often times, characteristics of products created from mix-

tures are also affected by variables related to the process, or process variables, such as mixing

time, temperature, and pressure. The effects of process variables can be estimated simulta-

neously with the mixture effects and incorporated into the Scheffé model. This is done by

first defining a model for mixture components, η(x) = f(x), and a model for the process

variables, ηpv(z) = g(z). A combined model is obtained by the cross-product of the two

models, η(x, z) = (f(x))× (g(z)) (Kowalski et al. 2000).

With Kowalski’s model, the problem associated with number of terms with higher-

order polynomials is compounded when crossing the mixture variable model with the process

variable model. If the number of terms in η(x) is a and the number of terms in ηpv(z) is b,

then the number of terms in the combined model will be a × b. It is easy to see how the

number of terms can quickly get out of hand if an experimenter attempts to model too many

factors in the same design.

mixture designs with constraints Another common technique with mixture designs,

and designs in general, is to incorporate constraints when only a subregion of the experi-

mental region is of interest. In mixture designs, the experimental region has already been

constrained to a simplex by
∑

xi = 1, but it is sometimes clear that certain areas of the sim-
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plex would create unusable mixtures that should be avoided in the design. Using constraints

allows more resources to be directed to the region of interest for a more precise model.

When consistent lower bounds are placed on the proportions of mixture components,

the constrained region reduces to a smaller simplex inside of the original simplex. For

convenience, component proportions can be transformed to the scale of the smaller simplex,

which are called pseudo-components. If li is the lower bound for component i, then the ith

pseudo-component is

x′
i =

xi − li

1−∑k
i=1 li

, (2.3)

where k is the number of mixture components (Lawson 2010, pp. 461–462).

Pseudo-components are especially useful for plotting the response surface on the con-

strained region. When contour lines on the full simplex are hard to distinguish or interpret,

pseudo-components create a “zoomed-in” view of the surface over the constrained region.

This capability will be incorporated into the ‘mixplot’ function in the next version of the

mixexp package in R (the current version at the time of this writing is 0.5-1).

The addition of upper constraints makes the selection of design points more difficult.

The intersections of the constraints for each component can create a wide variety of irregular

shapes. McLean and Anderson (1966) introduced the Extreme Vertices Design (EVD) for

this situation, which generates design points from the extreme vertices, edge centroids, and

facet centroids of the constrained region. In designs with many components, the number of

extreme vertices can greatly outnumber the terms in the Scheffé models. For this situation,

Snee and Marquardt (1974) introduced the XVERT algorithm, which can select a subset

of design points from a candidate list consisting of extreme vertices and centroids that

minimizes the trace of (X’X)−1, which is called an A-optimal design. Optimal designs are

discussed in greater detail in a later section of this chapter.
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mixture designs in split-plot arrangements One of the greatest challenges of ex-

perimental design is working around time and budgetary constraints. Split-plot designs relax

the requirement to run the experiments in a completely randomized order in order to reduce

the total amount of time required to perform the entire list of runs, or to make the execution

less tedious. For example, in a design where oven temperature is a factor, it can take a long

time for an oven to reach the correct temperature for the next run in the design. If runs are

performed in blocks with a constant oven temperature, it would be possible to finish the list

of runs much faster.

However, sacrificing complete randomization comes at a cost. Easy-to-vary factors

are randomized within blocks called whole-plots in which the hard-to-vary factors are held

constant. The levels of the hard-to-vary factors are randomized across the different whole-

plots. In this two-stage randomization scheme, the hard-to-vary factors have a different

experimental unit than the easy-to-vary factors. This requires an additional error term

associated with the hard-to-vary factors. The result is a more complex model and less

statistical power to detect the effects for hard-to-vary factors compared to the easy-to-vary

factors (Lawson 2010, pp. 301-302). Many times, the potential savings in time and resources

for this type of design outweigh these costs.

In the context of mixture designs, it is often convenient to create a large batch of

a single mixture to be used for several runs of the design. Mixture designs in split-plot

arrangements are called split-plot mixture process variable (SPMPV) designs (Lawson 2010,

p. 484). In SPMPV designs, usually any variable that is part of the process to create the

mixture is considered a hard-to-vary factor.

An example of this type of study can be found in Kowalski et al. (2002). The authors

compare and contrast three methods for fitting models to this type of data using a simulation

study followed by an example with real data: The first was ordinary least squares, which

was included to benchmark the performance of the other two models. The second model

was mixed model approach with a compound symmetric covariance structure to model the
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correlation of observations within whole-plots. The final model was called the “pure error

method,” which performed relatively equal to the second model with no apparent advantage.

Both methods estimate the subplot error variance, but require at least partial replication

within whole-plots, which is not always possible under time and budgetary constraints.

d-optimal designs The final step in planning the design is to actually generate the

design points. Referring back to the discussion on mixture designs with upper and lower

bounds on the mixture variables, a candidate-free algorithm already exists in JMP to gen-

erate D-optimal designs for irregularly shaped constrained experimental regions. This is the

algorithm used to generate the design for this study. Both D-optimality in general and the

algorithm proposed by Jones and Goos are discussed here.

D-optimal designs choose the set of design points that maximizes the determinant of

the information matrix X’X, or more generally X’V−1X, where V is the variance of the

response vector, y. This is equivalent to minimizing the determinant of (X’V−1X)−1, which

simultaneous minimizes the generalized variance of β̂. The generalized variance is an overall

measure of variance computed from the determinant of a covariance matrix (Atkinson and

Donev 1992, pp. 42, 116-117). In summary, this an approach to choosing the design points

that will provide the most precise estimates of the regression coefficients.

The algorithm proposed by Jones and Goos (2007) was designed to be a swiss-army-

knife approach to generating D-optimal designs. With the growing popularity of the D-

optimal criterion, experimenters have tried to find ways to generate D-optimal designs in

the presence of complicating factors common to experimental design such as split-plot ar-

rangements, mixture components, and high-dimensional constrained regions that yield an

enormous list of candidate design points. Finding the D-optimal subset of such a large can-

didate set can be computationally very expensive. Jones and Goos’ algorithm employs a

candidate-free approach that can accommodate any of the previously mentioned complicat-

ing factors and is integrated into the Custom Design feature in JMP.

13



In summary, methods exist for mixture designs to overcome any of the challenges

common to traditional designs; however, the presence of mixtures components does add a

layer of complexity to any design. The literature summarized in this section provides a

sturdy foundation for the design of this experiment, and the following sections explain the

tools used in the analysis of the results.

Generalized Linear Models

Generalized linear models are a class of models that employ the use of link functions to fit

linear models to response variables with nonnormal likelihoods in the exponential family of

distributions. Nelder and Wedderburn (1972) introduced this class of models and specified a

procedure based on iterative weighted least squares to obtain maximum likelihood estimates

of the regression coefficients.

A generalized linear model consists of three parts:

1. A random component which consists of a response variable y, which is a vector of

independent observations from a distribution in the natural exponential family. All

distributions in this family can be factored into the form

f(yi, θi) = a(θi)b(yi)exp[w(θi)t(yi)], (2.4)

where w(θi) is the canonical parameter, and t(yi) is the sufficient statistic.

2. A systematic component that is the linear combination of explanatory variables used

to predict the response variable and has the form

ηi =

p∑
j=1

βjxij. (2.5)

3. A link function which connects the linear component of the model to the random

component by ηi = g(μi). Link functions are functions of the parameters related to

the mean of yi in the random component.
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The canonical parameter w(θi) can always be used as a link function and is called the

canonical link. In the case of bernoulli or binomial data, w(pi) = ln( pi
1−pi

), which is the logit

link in logistic regression (Agresti 2002, p. 117). Using the logit link, the linear component

models the log-odds of the event recorded in the binomial or bernoulli response variable.

The log-odds can then be converted back to probability of a “success” given the explanatory

variable by using the inverse of the logit transform, which is

pi =
exp(

∑p
j=1 βjxij)

1 + exp(
∑p

j=1 βjxij)
. (2.6)

However, there are alternative link functions for logistic regression that are consid-

ered in this study. The probit link relates the linear component to the random component

using the inverse of the cumulative distribution function of the standard normal distribution

Φ−1(pi). Often times, the resulting model using the probit link is nearly indistinguishable

from the same model fit using the logit link. Finally, there is the complementary-log-log link,

abbreviated cloglog, which is g(pi) = log[−log(1− pi)]. The advantage of the cloglog link is

that it does not have to be symmetric about the point where p̂i = 0.50, but it is rarely used

in practice compared to the probit and logit links (Agresti 2002, pp. 245–250). Choosing the

appropriate link function is usually a matter of personal judgment or comparing the models

using some information criterion such as AIC or BIC.

Model Selection

In many situations, it is not known which explanatory variables are actually related to the

response variable. Unless it is known beforehand which terms in the model are significant, it

is almost always necessary to eliminate the terms that do not significantly contribute to the

model. Statisticians consider themselves to be scientists, and when competing hypotheses

of varying complexity explain the same phenomenon equally well, Occam’s razor demands

that we assume the simplest hypothesis. There are also many consequences to over-fitting

a model, such as poor, overconfident prediction performance and possibly economic costs of
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tracking more explanatory variables than necessary. Simplifying a model in experimental

design can greatly reduce the number of experimental runs needed in future experimentation.

At the same time, under-fitting yields biased estimates of the regression coefficients. Finding

a good balance between model parsimony and model fit is a difficult but pervasive problem

in statistical model building. In the last half-century, there has been a lot of work done in

the field of model selection.

Hocking (1976) published a landmark paper on the subject and discussed a wide-

variety of techniques for model selection. In this paper, Hocking introduced stepwise meth-

ods, which either add or delete variables one at a time based on some criterion chosen by the

analyst. Stepwise methods encompass two methods which are both variations on the same

idea: forward selection (FS) and backward elimination (BE).

The FS method begins with no variables in the model and adds one variable at a time

until some stopping criteria is met. In the paper, Hocking suggests adding the variable with

largest single degree of freedom F-ratio among the remaining eligible variables. This is done

iteratively until no remaining eligible variable has a higher F-ratio than some predetermined

stopping value Fin.

BE does something similar, except it begins with all terms in the model and iteratively

deletes the term in the model that has the lowest F-ratio until all of the remaining terms

have an F-ratio larger than some predetermined stopping value Fout (Hocking 1976, p. 8).

Since stepwise methods were first introduced, they have been adapted to use many

different selection criteria, such as R2, R2
adj, AIC, BIC, SBIC, Mallow’s Cp, and PRESS.

PROC LOGISTIC in SAS software has an option to use a FS or BE algorithm for model

selection by using the SELECTION= option in the MODEL statement. By default, this

procedure uses the Wald χ2 statistic as the criteria for including and eliminating terms

from the model. The user can specify a significance level such as 0.01 or 0.10 using the

SLENTRY= option, which is used as the stopping criterion for the selection algorithm (SAS

Institute 2010, pp. 3943–3944).
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Model Fit Diagnostics

Once a model has been selected, it should be examined for goodness-of-fit, violations of

assumptions, and influential points. Goodness-of-fit for logistic regression models can be

examined using a generalization of ANOVA, which is the analysis of deviance introduced by

Nelder and Wedderburn (1972, pp. 375–376). Goodness-of-fit is tested using the deviance

statistic D, which is

D = −2[�(y;x,β)− �(y;y)], (2.7)

where �(y;x,β) is the log-likelihood for the fitted model, and �(y;y) is the log-likelihood

for the saturated model. D is a likelihood ratio test statistic, which asymptotically follows a

χ2
n−p distribution under regularity conditions, where n is the number of observations in the

data and p is the number of terms in the fitted model.

Another tool to evaluate the model fit using deviance is the residual deviance statistic

ΔD. Residual deviance is simply the difference in the deviance of the fitted model with the

deviance of the intercept-only, or null, model. ΔD also has a χ2 asymptotic distribution

with p− 1 degrees of freedom.

When these tests indicate a poor fit, the cause can often be identified graphically

through residual plots. However, traditional residuals of the from generalized linear models

of the form ŷ− y are not always helpful. An alternative residual is the Pearson residuals, ei,

where

ei =
yi − μ̂i[
V̂ (Yi)

]1/2 . (2.8)

Pearson residuals originate from Pearson’s χ2 statistic for contingency tables, which is equal

to the sum of squared Pearson residuals (Agresti 2002, p. 142).

Finally, the model should be checked for data points that have disproportional influ-

ence on the estimated regression coefficients. DFBETAS measures the absolute difference in

coefficient estimates when each observation is temporarily removed from the model. Both
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Pearson residual plots, and DFBETA plots are available as an option with ODS graphics

output from PROC LOGISTIC in SAS software (SAS Institute 2010, p. 3996).

When fitting a model, being thoughtful about every aspect in the process is critical.

Careful model selection and inspection can save the analyst a lot of pain and embarrassment,

and it is worth taking the time and effort to be thorough. The next chapter discusses how

each of these considerations are implemented into this study.
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chapter 3

METHODS

This chapter provides the details for each step in the process of planning and creating the

design, executing the experiments, and analyzing the results using the methods described in

the literature review. The first section explores the variables used in the process, and the

following sections discuss the design created in JMP, fitting the logistic regression model in

SAS, and visualizing the response surfaces using R.

3.1 Explanatory and Response Variables

The chemists in this work already spent years studying monolithic columns for chromatog-

raphy in literature and in practice, so their expert knowledge makes the identification of

potential explanatory factors very easy. They also provided constraints on the experimental

region and specified any time and budgetary constraints. All of these considerations are

integrated into the design. This section clarifies what are the response and explanatory

variables in this study, the constraints, and why a split-plot design is used.

Response Variables

The ultimate goal of this research is to discover a way to make UHPLC-capable devices

from monolithic columns. However, it is not very well understood at this time what settings

of the proposed process will create a homogeneous monolith with an open pore structure.

Analytically, it would be difficult to make inference from a design to study pore sizes if a large

number of experimental runs yielded unusable columns, whether they be inhomogeneous

or homogeneous with closed pores. For this reason, the researchers first need to know
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what blends of the mixtures and what process-variable settings will consistently produce a

workable monolithic column.

Initially, the two response variables specified were two binary responses: whether or

not the monolith was homogeneous, and whether or not the monolith had an open pore

structure. For simplification of the analysis, the two response variables are combined so

that the response is still binary, but a “success” is determined to be a monolith that is both

homogeneous and capable of flow. As previously discussed, binary responses can be modeled

using logistic regression.

Explanatory Variables

The covariates in the logistic regression model are used to model the probability of creating

a homogeneous monolith capable of flow. The researchers determined that this probability

was most likely a function of three mixture variables and five process variables, which are

detailed in the following paragraphs.

mixture variables The emulsion used to create the monolith is a mixture of a porogen,

a monomer, and a surfactant. The monomer and porogen are two immiscible fluids, and

the surfactant is a chemical agent that reduces the surface tension of the two fluids. The

monomer is what eventually becomes the solid structure of the monolith, and the water

droplets in the mixture are replaced during the polymerization process by pores. The idea

is to create a mixture where the porogen is well dispersed throughout the monomer in tiny

droplets.

Four different mixture component chemicals are actually used in this study. The

researchers want to study two different monomers, DEGDA and EDGmA. Only one of these

chemicals is used at a time for an individual mixture, but the identity of the monomer is

indicated using factor variable (this variable is classified as a process variable and is explained

later). The porogen component used throughout this study is water, and the surfactant used

is EPE 4400.
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process variables Five process variables are included in this study. These are initiator,

organic salt, mixing time, heating temperature, and an indicator variable specifying which

monomer is used in the mixture. Initiator is a substance that initiates a chemical reaction,

such as polymerization in this case. The initiator in this study is potassium persulfate.

The organic salt, calcium chloride, works in conjunction with the surfactant to stabilize the

emulsion. Even though the initiator and organic salt are ingredients in the mixture, they do

not change the volume of the mixture, and therefore are not considered mixture components.

A magnetic mixer mixes the ingredients between 45 and 75 minutes. The capillary

columns filled with the mixture were then polymerized using a hot-water bath set to a

temperature between 55 ◦ and 65 ◦C.

Constraints

In order to prevent the design from exploring areas of the experimental region that are not of

interest, constraints were imposed on the proportions of the mixture components and on the

levels of all of the process variables except the indicator variable for which monomer is used.

The constraints on the mixture variables are specified below, followed by the constraints on

the process variables.

mixture variables The researchers determined the constraints on the mixture compo-

nents based on literature and experience, but are still somewhat arbitrary. Table 3.1 contains

the constraints on the proportions of the mixture components. Water is constrained to be a

very large proportion of the mixture. A graphical depiction of the constrained region on a

simplex is shown in Figure 3.1.

process variables The constraints on the process variables are displayed in Table 3.2.

It should be noted here that the salt and initiator are both in terms of proportions of the

amount of a mixture components.
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Table 3.1: Constraints on the mixture components.

Bounds on Proportions
Variable Lower Upper
Porogen 0.70 0.86

Monomer 0.10 0.25
Surfactant 0.02 0.05
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Figure 3.1: This figure is a graphical representation of the constrained experimental region.
The dashed lines on the simplex indicate a constraint. The constrained region appears to
be a trapezoid shape on a very small region of the simplex. The plot on the left shows what
region looks like zoomed-in using pseudo-components.

Split-plot Design

The equipment used for this study belongs to a laboratory shared by multiple students

and faculty, therefore the availability of the lab equipment is limited. It was decided that

a maximum of two mixture formulations could be created and four total runs could be

performed in a single day. This constraint required the use of a split-plot arrangement

where two whole-plot blocks could be performed on a daily basis. Each whole-plot uses a

single mixture formulation, and two columns filled by that mixture are polymerized at two

different temperatures in the hot-water bath. Since all of the factors except temperature are

part of the process to create the mixture, these are all classified as hard-to-vary factors. For
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Table 3.2: Constraints on the mixture components.

Bounds
Variable Unit Lower Upper
Initiator Proportion of monomer 0.002 0.10
Salt Proportion of porogen 0.001 0.02
Mix Time Minutes 45 75
Temperature Degrees Celsius 55 65

example, we cannot change the amount of salt or change which monomer is used without

having to create an entire new batch. Temperature is the only easy-to-vary factor.

One complication with this design is that there is no replication inside of the whole-

plots. The result is that the subplot variance σ2
ε is not estimable. Section 3.4 explains how

this problem is overcome.

3.2 Model Specification

Using the model formulation specified by Kowalski et al. (2000), separate models for the

mixture components and the process variables are fit.

The model for the mixture variables η(x) is the quadratic Scheffé model of the form

η(X) = βpxp + βmxm + βsxs + βp×mxpxm + βp×sxpxs + βm×sxmxs, (3.1)

where subscripts p denotes porogen, m denotes monomer, and s denotes surfactant.

For the process variable model, ηpv(z), is just a simple main effects model with six

terms of the form

ηpv(Z) = α0 + αinitzinit + αsaltzsalt + αmixzmix + αtempztemp + αmon2zmon2, (3.2)

where subscripts init denotes initiatior, salt denotes salt, mix denotes mix time, temp

denotes temperature, and mon2 denotes the indicator variable that EGDmA is used in the

mixture instead of DEGDA.
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With six terms in η(X) and six terms in η(Z), the combined Kowalski model would

have 36 terms. To reduce the number of experiments required, the model is simplified by

removing the interaction terms between process variable main effects and mixture variable

interactions from the model. The result is that it is only possible to estimate the effects

of the process variables on the linear blending of the mixture components, and not on the

quadratic blending. The resulting model is

η(X,Z) = γ0
1xp + γ0

2xm + γ0
3xs + γ0

4xpxm + γ0
5xpxs + γ0

6xmxs (3.3)

+ γ1
11zinitxp + γ1

12zinitxm + γ1
13zinitxs + γ2

21zsaltxp + γ2
22zsaltxm + γ2

23zsaltxs

+ γ3
31zmixxp + γ3

32zmixxm + γ3
33zmixxs + γ4

41zmon2xp + γ4
42zmon2xm + γ4

43zmon2xs

+ γ4
51ztempxp + γ4

52ztempxm + γ4
53ztempxs, (3.4)

which has a total of 21 terms.

3.3 JMP
�

Custom Design Tool

The Custom Design feature in JMP available from the DOE menu is used to generate a D-

optimal set of design points based on the model. Generating the design required specifying

a response, factors, constraints, and model terms.

Two responses are specified so that the researcher carrying out the experiments can

record separately whether or not the monolith is homogeneous and if it has open pores.

Nothing is entered into the fields for lower and upper limits or importances.

In entering the factors, porogen, monomer, and surfactant are specified as hard-to-

vary mixture variables; salt, initiator and mix time are specified as continuous hard-to-

change variables; temperature is specified as continuous and easy-to-change; and finally the

factor variable “Mon1or2” is specified as a categorical hard-to-change variable. The factor

constraints previously discussed are entered in as lower and upper bounds for each of the

variables. Another constraint was placed on surfactant to ensure that it was never outside

the range of 20% to 50% of monomer.
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Figure 3.2: The simplex on the left shows the location of the design points on the full simplex.
The simplex on the right shows the design points on the simplex using pseudo-components.
Several runs were performed on the same point on the simplex, but with different process
variable settings; therefore, several points are super-imposed on other points.

The terms from the model previously specified are then input into the ‘Model’ section.

It was determined that 33 whole-plot blocks could be completed in a little over two weeks

for a total of 66 runs. Figure 3.2 shows the location of the design points on the simplex. A

JMP script that recreates the design is also available in Appendix A. After the design points

are generated in randomized order, they are output in a spread-sheet. The list of runs is

then provided one of the researchers with instructions to perform the experiments in the

given order.

3.4 Analysis Methods

After the experiments are completed, fitting and visualizing the estimated response surface

are the next steps. A discussion of how the model is fit and visualized using SAS software

and R concludes the chapter.
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Logistic Regression Models

The lack of replication within whole-plots makes it impossible to estimate the subplot error

variance term σ2
ε , which is necessary to fit a mixed model. In more typical situations with

straightforward models, this problem can be overcome by fitting a model with whole-plot

effects only, and a model with subplot effects only with a factor variable indicating which

whole-plot the observation belongs to. After independently determining which effects are

significant in each model, the terms corresponding to the significant effects, except for the

whole-plot factor variable, are pooled into a combined model. Mimicking this approach,

the effect for temperature modeled by the subplot model will not be consistent with the

Kowalski model, where process variables are only present in the model through interactions

with mixture variables.

In an effort to maintain the framework of the Kowalski model, the modeling procedure

illustrated in Figure 3.3 was created for this study. The idea is to heuristically assess whether

or not the whole-plot error variance is negligible and all the terms can be estimated together

as if the data are independent.

Model 1 is the subplot model that only includes only a temperature effect and fac-

tor variable for whole-plot. Model 2 is the model with all terms in the model, including

temperature-by-mixture-component interactions, estimated as if the data are independent.

If both models agree that temperature is significant, there is evidence that the whole-plot

error term is negligible and Model 2 is used. The model for this scenario is the original

model specified in (3.3). If neither model has significant temperature effects, temperature

is ignored, and modeling becomes straightforward with only whole-plot effects still present

and the model for this scenario is (3.5).
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Model 1: Temperature 
and whole-plot factor 

only

Use Model 2 as is 
(whole-plot error 

negligible)

Add temperature 
effect from Model 1 to 

other whole-plot 
model as β1(x-60)

Fit all terms except 
temperature as usual 
(all remaining terms 

are whole-plot terms)

Model 2: Combined 
model ignoring whole 

plot error term

Are temperature 
effects significant?

Model 1 Yes
Model 2 Yes

Model 1 Yes
Model 2 No

Model 1 No
Model 2 No

Figure 3.3: This decision tree shows how any temperature effect will be handled in the
final stage of model fitting. Ultimately, it is the role of the subplot model to decide if
temperature will appear in the model in any form. A fourth scenario, “Model 1 No Model 2
Yes”, is excluded from the chart. This scenario is very unlikely since Model 1 should be far
more powerful to detect any temperature effect than Model 2.

η(x, z) = γ0
1xp + γ0

2xm + γ0
3xs + γ0

4xpxm + γ0
5xpxs + γ0

6xmxs (3.5)

+ γ1
11zinitxp + γ1

12zinitxm + γ1
13zinitxs

+ γ2
21zsaltxp + γ2

22zsaltxm + γ2
23zsaltxs

+ γ3
31zmixxp + γ3

32zmixxm + γ3
33zmixxs

+ γ4
41zmon2xp + γ4

42zmon2xm + γ4
43zmon2xs

If Model 1 has a significant temperature effect but Model 2 does not, then there is

evidence that the whole-plot error term is not negligible. In this case, the temperature effect

is combined with a model of whole-plot effects by adding the coefficient for temperature

estimated by Model 1 multiplied by a centered value for temperature. The reason for the

centered temperature value is that the prediction from the whole plot model represents a

prediction averaged across the two levels of temperature, 55 ◦ and 65 ◦C. The temperature
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effect in this scenario is unique from the other process variable effects because changing the

level temperature results in a simple raising or lowering of the entire response surface instead

of altering the blending properties of the mixture components. The model for this scenario

is (3.6)

η(x, z) = γ0
1xp + γ0

2xm + γ0
3xs + γ0

4xpxm + γ0
5xpxs + γ0

6xmxs (3.6)

+ γ1
11zinitxp + γ1

12zinitxm + γ1
13zinitxs

+ γ2
21zsaltxp + γ2

22zsaltxm + γ2
23zsaltxs

+ γ3
31zmixxp + γ3

32zmixxm + γ3
33zmixxs

+ γ4
41zmon2xp + γ4

42zmon2xm + γ4
43zmon2xs

+ βtemp(ztemp − 60)

The model is fit using PROC LOGISTIC in SAS. All of the terms specified in (3.3)

are included in the MODEL statement and the NOINT option is used to prevent fitting an

intercept. Model selection is performed using forward selection with a stopping criterion

α = 0.20 for the Wald statistics. This stopping criterion was chosen to have smaller type

II error rate than using α = 0.05 because the cost of falsely determining an effect to be

non-significant now could be very costly in future experimentation when that factor is no

longer considered. All of the effects involving only mixture components are forced in the

model using the START= option.

This same procedure is performed three times using each of the previously discussed

link functions and comparing the fits using AIC. The logit link function is preferred by

default since it is the canonical link and fairly easy to interpret. If there is a large disparity

in AIC favoring one of the other two link functions over the logit link, then that link function

is used instead.
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After the final model is selected, assumptions are checked using diagnostic plots.

Pearson’s residual plots are examined for dependence, non-linearity, heteroscedasticity, and

non-normality. The DFBETAS plots reveal any influential points.

A common problem with logistic models is complete separation or quasi-complete

separation. This simply means that one or more of the predictor variables is able to perfectly

predict the response, creating a situation where the maximum likelihood solution is not

unique. Fortunately, this problem is easily overcome using the FIRTH option in the model

statement, a new feature appearing in SAS 9.2 (SAS Institute 2012). This option makes it

possible to get converged estimates of the coefficients and Wald χ2 tests in the presence of

separation problems.

Mixture Plot

Once all assumptions seem to be satisfied, the fitted surface can be visualized using con-

tour plots over the simplex. The ‘mixplot’ function in the mixexp package in R (Lawson

2011) is modified to handle user-supplied prediction equations, plot mixture component con-

straints, and have an option to plot using pseudo-components. The code for this version of

the function, mixplot2, is provided in Appendix C. Conclusions about which areas of the

experimental region can be made by viewing these plots conditional on the levels of process

variables.
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chapter 4

RESULTS

The design points and results appear in the tables contained in Appendix D. This chapter

examines the fitted model, model diagnostics, and the estimated surface plots.

4.1 Model Fit

The first step of fitting the model is to decide whether or not temperature, the single subplot

effect, should be included in either form discussed in the previous chapter. Following this

step, several link functions are compared using AIC. Finally, the coefficients of the model fit

with the chosen link function are examined.

Examination of Temperature Effects

Temperature is only included in the model in any form if the subplot model determines that

it is significant. In this case, the subplot model fit using PROC LOGISTIC produces an error

due to a quasi-complete separation. The culprit in this case is several levels of the factor

variable denoting which whole-plot. Using the FIRTH option in the MODEL statement, the

estimate for the temperature effect converges to 0.0646 with standard error 0.064. The Wald

χ2 statistic is 1.0169 with one degree of freedom and a corresponding p-value 0.3133. Based

on this result, temperature effects are excluded from the model, and all remaining terms are

whole-plot effects as described by (3.5).

Comparison of Link Functions

In order to determine an appropriate link function for the final model, the logit, probit, and

cloglog link functions are compared using AIC and interpretability of parameter estimates.
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Forward-selection is used for all three models starting with the model specified in (3.5). This

shows if the link function specification alters the subset of terms chosen by stepwise selection

algorithm. In this case, the same subset of terms chosen for the model is consistent across

all link functions, so that is not a problem. Table 4.1 shows the AIC corresponding to each

link function. AIC prefers the cloglog link function, but the disparity between the logit and

cloglog link appears to be small. The logit link is chosen since it has superior interpretation

and an AIC only slightly worse than the cloglog link.

Table 4.1: AIC values for each link function.

Link Function AIC
Logit 77.983
Probit 78.436
Cloglog 76.578

Parameter Estimates

Using the logit link, the model selection procedure reduces the full model down to the linear

blending terms, the quadratic blending terms, and interactions for initiator, salt, and ‘mon2’

with the linear blending terms. Table 4.2 displays the estimated model coefficients.

The negative coefficients on the quadratic blending terms suggest that the surface

dips toward the middle as a result of antagonism between all of the mixture components.

Initiator, salt, and mon2 all interact with two of the mixture components. The fact that each

of those process variables interacts positively with one mixture component and negatively

with another makes it difficult to assess which levels of those process variables is optimal for

producing workable monoliths with high probability.

31



Table 4.2: Table of regression coefficient estimates.

Parameter DF Estimate Standard Error Wald χ2 Pr > χ2

Porogen 1 1.0996 12.8468 0.0073 0.9318
Monomer 1 221.7 372.8 0.3537 0.5520
Surfactant 1 5040.0 5758.3 0.7661 0.3814
Porogen*Monomer 1 -245.7 438.6 0.3138 0.5754
Porogen*Surfactant 1 -5267.6 6076.4 0.7515 0.3860
Monomer*Surfactant 1 -6148.0 7535.3 0.6657 0.4146
Monomer*Initiator 1 -2628.7 1438.9 3.3375 0.0677
Surfactant*Initiator 1 11192.7 5272.9 4.5059 0.0338
Porogen*Salt 1 800.3 304.0 6.9317 0.0085
Surfactant*Salt 1 -17525.3 6161.1 8.0913 0.0044
Monomer*Mon2 1 -39.6059 13.6094 8.4692 0.0036
Surfactant*Mon2 1 105.1 37.3340 7.9233 0.0049

4.2 Model Diagnostics

The appropriateness of the model is examined using a variety of diagnostic tools. This

section discusses the use of the Pearson residual plot, DFBETA plots, and an analysis of

deviance.

Pearson Residuals

The plot of the Pearson residuals diagnose a poor fit by the presence of outliers and patterns

due to dependence over time or nonlinearity. The plot in Figure 4.1 shows that observation

28 may be an outlier. If that point is also influential, it should also stand out in the

DFBETAS plots If that is the case, observation 28 would be deleted. However, at this point,

no corrective action seems warranted.

Influence

The next diagnostic tool, DFBETAS plots, is used to assess influence. With a moderately

small data set with many parameters, it is expected that some points will be moderately in-

32



Figure 4.1: The Pearson residual plot does not seem to suggest that there are any problems
with nonlinearity or dependence. Observation 28 seems to stand out and may be an outlier.

fluential. However, observation 1 seems to have high influence on the Porogen×Surfactant

and Monomer×Surfactant interactions, as seen in Figure 4.2. This observation comes from

the upper left-hand corner area of the constrained region, which is an area populated by sev-

eral design points. Therefore, it is not immediately clear what makes this point so influential.

The result for this observation is that two out of two trials had homogeneous monoliths with

open pores, which means that this corner area may have lower probability in reality than

what is predicted by this model. This region may be checked for accuracy using confirmatory

experiments.

Also, Observation 28, a potential outlier, was of particular concern that it may also

be influential, but did not stand out as being highly influential for any of the terms in the

model.

Analysis of Deviance

An analysis of deviance provides a goodness-of-fit diagnostic. The deviance statistic for this

model is 40.1198 with 21 degrees of freedom. The test has a p-value of 0.0072, which leads
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Figure 4.2: DFBETAS plots for selected terms with concerning amounts of influence present.
DFBETAS plots help assess if any individual points are extraordinarily influential on the
coefficient estimates of the model. In these plots, observation 1 seems to be disproportion-
ately influential on the coefficient estimates corresponding to the Porogen×Surfactant and
Monomer × Surfactant interaction effects.

to the conclusion that the model performs significantly worse than a saturated model. Also,

the data are overdispersed for this model. The overdispersion parameter using the deviance

method is 1.9105.

Comparing to the intercept only model, ΔD = 19.653 with 12 degrees of freedom.

This model has a marginally significant p-value of 0.0743. Therefore, the model seems to

perform better than the intercept-only model, but not as well as the saturated model.

In conclusion, some of the diagnostic tools do suggest that the model can be po-

tentially misleading. There is a possible outlier, influential points, and the model does not

compare very well to a saturated model. However, these are not severe enough to warrant

any action until confirmatory experiments suggest that model does not perform well.

4.3 Surface Plots

Finally, the surface plots are created using the ‘mixplot’ function in R. Figure 4.3 contains

a selected surface plots intended to illustrate the effects of each process variable. Based on

these plots, it can be concluded that increasing levels of salt or initiator tend to increase
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the area of low probability regions inside the constrained region. Using EGDmA instead of

DEGDA in the mixture has a similar effect.
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Figure 4.3: Selected surface plots for various combinations of process variable settings. The
color gradient from red to light yellow corresponds to low to high probability. Each row is
designed to illustrate the effect of increasing the level of one process variable while holding all
others constant. The top row illustrates the effect of increasing salt, the middle row illustrates
increasing initiator, and the bottom row illustrates the effect of changing monomers from
DEGDA to EGDmA.
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Another troubling feature of this plot is that, in general, the areas of highest prob-

ability for the surface are either outside the constrained region (which is an extrapolation),

or in the area of the constrained region where the fewest experiments were performed. Due

to both of these observations, it is highly recommended that confirmatory experiments be

carried out to validate the models in these potentially promising areas.

At this point, it is difficult to recommend new constraints for further experimentation

to minimize pore sizes. The areas of the highest probability are also the areas that inspires the

least amount of confidence based on the location of design points and the tight constraints.

Conclusions based on these results are discussed in more detail in the following chapter.
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chapter 5

CONCLUSIONS

Even though there is some indication that the fitted model may not be very trustworthy,

there are many encouraging conclusions that can be made from the model. Temperature

and mix time are likely important factors in determining the pore size of monoliths created

with this process. Since there is little to no evidence suggesting that either variable has a

significant effect on the probability of producing a workable monolith, these variables will

be less constrained in future experimentation to minimize pore sizes. On the other hand,

the model suggests that initiator should be fixed at its lowest setting.

There is strong evidence that DEGDA is superior to EGDmA in producing homo-

geneous monoliths capable of flow. Fortunately, DEGDA is the preferred monomer in this

study because it is biocompatible. EGDmA can be excluded entirely from future experi-

mentation.

The surface plots that have the largest areas of high probability are the plots that

hold initiator constant at its minimum level and use DEGDA. Figure 5.1 demonstrates that

increasing the level of salt seems to increase the area of high probability along the back of

the region.

Also, if the model is accurate beyond the upper bound on surfactant used in this

study, then the points with higher proportions of surfactant provide a large area of high

probability to study in future experimentation. In addition, most of that same area would

have high probability regardless of process variable settings. The accuracy of the model in

these regions will be assessed in confirmatory experiments.
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Figure 5.1: Surface plots holding initiator and mon2 constant. The amount of salt increases
from left to right.

These future studies are discussed in the following sections, as well as a critical review

of the methods used in this study. These sections are included to provide a framework for

future studies that build upon the work done here.

5.1 Review of Methods

The purpose of this section is discuss any perceived shortcomings of this study. These are

identified for the benefit of those who carry on this work in the future. Recommended

changes to constraints, design generation, and experimental procedures are suggested.

Constraints

One of the interesting results of the fitted model is that it predicts an area of very high

probability in regions with higher surfactant than what is permitted in this study. Porras

et al. (2008) suggest higher amounts of surfactant are necessary for desirable emulsions. In

hindsight, the proportion of surfactant is likely over-constrained. It is recommended that

the bounds on surfactant be extended to 0.12 for future studies.

In the mean time, confirmatory experimental runs can explore this area to see if the

extrapolated predictions in this area are accurate. If predictions are accurate, this region

38



probably represents the largest region of high probability that future experimentation to

optimize pore sizes can explore.

Design Generation

The mixture plots showing the design points in Figure 3.2 show that the algorithm in JMP

for generating D-optimal design point seems to have largely ignored the lower area of the

constrained design region. No reason for this phenomenon is offered, but in an effort to find

an answer, a new design was created using the same inputs except for removing the split-plot

arrangement. As Figure 5.2 illustrates, the new design placed all 66 runs in mostly the same

areas as the design used in this study, so the split-plot arrangement is not causing this issue.
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Figure 5.2: Design points generated without the split-plot structure are plotted on the left,
and the design points used in this study are plotted on the right.

Unfortunately, the design points were not plotted until after the experiments had been

completed. Otherwise, points in that lower region may have been added manually for better

coverage. For future experimentation, it is recommended to plot the design points before

moving forward with running the experiments. Also, D-optimal designs can be generating

using the XVERT algorithm in SAS ADX or with the ‘Xvert’ function in the mixexp package

39



in R. XVERT designs for the mixture components can be crossed with a separate design for

the process variables, and the D-optimal subset of those points can be identified using the

‘optFederov’ function in the AlgDesign package in R.

Experimental Procedures

The experimental design in this study specifies filling only two columns with the same

mixture in a whole plot, and to test one column at the low and high levels of temperature.

This was specified under the impression that any additional runs inside a whole plot would

take too much time. However, it was later learned that it would have been relatively easy to

perform two or more runs at each temperature in a whole-plot, eliminating the problem of

not being able to estimate the subplot error and increasing the total amount of data gathered

from the study.

5.2 Future Work

This work is only an initial step toward the potential creation of the UHPLC-capable mono-

lith column. The next steps are to validate the model estimated in this study through

confirmatory experiments, model monolith morphology, and finally to design a study to

minimize pore sizes.

Confirmatory Experiments

Confirmatory experiments for model validation are already underway. Ten design points

have been selected from areas of low predicted probability and high predicted probability,

including points with greater amounts of surfactant than allowed in this study.

The performance of the model will be evaluated by comparing the predicted and

observed response, and by calculating the observed misclassification rate.
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Studying Morphology

Studying the morphology of the monoliths had not been discussed initially. However, the

chemist who carried out the experiments also recorded the morphology of every homogeneous

monolith. A foam morphology is preferred, and so a similar analysis can be performed using a

new binary response variable where homogenous monoliths with foam morphology and open

pores is considered a success. The same analysis methods used in this study is recommended.

Minimizing Pore Sizes

Designing an experiment to minimize the pore sizes is the final and most important stage of

this work. The purpose of these preliminary steps is to provide constraints for this design

so that most, if not all, of the experimental runs will produce workable polymers so that a

pore size measurement can be taken at each experimental run.

At the very least, the study to minimize pore sizes should provide an idea of the

minimal pore size this process is capable of producing, and what process settings of the

polymerization process will achieve that minimum.

In summary, the reality of time and budget constraints often means that the ideal

experimental design is not an option. However, as this study shows, designs that accom-

modate compromises can still provide helpful information. Confirmatory experiments will

dictate what recommendations are finally given for constraints used in future experiments;

however, in the mean time, the results that have already been obtained provide a good idea

about which process variables have a significant effect on the probability of producing ho-

mogenous monoliths capable of flow. The fitted model also provides rough understanding of

the blending properties of the mixture components.
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appendix a

JMP� SCRIPT

DOE(

Custom Design,

{Add Response( Maximize, "Solid", ., ., . ),

Add Response( Maximize, "Flow", ., ., . ),

Add Factor( Mixture, 0.7, 0.86, "Porogen", 1 ),

Add Factor( Mixture, 0.095, 0.25, "Monomer", 1 ),

Add Factor( Mixture, 0.02, 0.05, "Surfactant", 1 ),

Add Factor( Continuous, 0.2, 10, "Initiator", 1 ),

Add Factor( Continuous, 0.1, 2, "Salt", 1 ),

Add Factor( Continuous, 45, 75, "Mix Time", 1 ),

Add Factor( Continuous, 55, 65, "Heat", 0 ),

Add Factor( Categorical, {"L1", "L2"}, "Mon1or2", 1 ), Set Random Seed( 309862 ),

Number of Starts( 1 ), Add Constraint(

[0 -0.5 1 0 0 0 0 0, 0 0.2 -1 0 0 0 0 0]

), Add Term( {1, 1} ), Add Term( {2, 1} ), Add Term( {3, 1} ),

Add Term( {1, 1}, {2, 1} ), Add Term( {1, 1}, {3, 1} ),

Add Term( {2, 1}, {3, 1} ), Add Term( {1, 1}, {2, 1}, {3, 1} ),

Add Term( {1, 1}, {2, 1} ), Add Term( {1, 1}, {3, 1} ),

Add Term( {2, 1}, {3, 1} ), Add Term( {1, 1}, {4, 1} ),

Add Term( {1, 1}, {5, 1} ), Add Term( {1, 1}, {6, 1} ),

Add Term( {1, 1}, {7, 1} ), Add Term( {1, 1}, {8, 1} ),

Add Term( {2, 1}, {4, 1} ), Add Term( {2, 1}, {5, 1} ),

Add Term( {2, 1}, {6, 1} ), Add Term( {2, 1}, {7, 1} ),

Add Term( {2, 1}, {8, 1} ), Add Term( {3, 1}, {4, 1} ),

Add Term( {3, 1}, {5, 1} ), Add Term( {3, 1}, {6, 1} ),

Add Term( {3, 1}, {7, 1} ), Add Term( {3, 1}, {8, 1} ),

Add Term( {4, 1}, {5, 1} ), Add Term( {4, 1}, {6, 1} ),

Add Term( {4, 1}, {7, 1} ), Add Term( {4, 1}, {8, 1} ),

Add Term( {5, 1}, {6, 1} ), Add Term( {5, 1}, {7, 1} ),

Add Term( {5, 1}, {8, 1} ), Add Term( {6, 1}, {7, 1} ),

Add Term( {6, 1}, {8, 1} ), Add Term( {7, 1}, {8, 1} ), Add Term( {4, 2} ),

Add Term( {5, 2} ), Add Term( {6, 2} ), Add Alias Term( {1, 1}, {2, 1} ),

Add Alias Term( {1, 1}, {3, 1} ), Add Alias Term( {1, 1}, {4, 1} ),

Add Alias Term( {1, 1}, {5, 1} ), Add Alias Term( {1, 1}, {6, 1} ),

Add Alias Term( {1, 1}, {7, 1} ), Add Alias Term( {2, 1}, {3, 1} ),

Add Alias Term( {2, 1}, {4, 1} ), Add Alias Term( {2, 1}, {5, 1} ),

Add Alias Term( {2, 1}, {6, 1} ), Add Alias Term( {2, 1}, {7, 1} ),

Add Alias Term( {3, 1}, {4, 1} ), Add Alias Term( {3, 1}, {5, 1} ),

Add Alias Term( {3, 1}, {6, 1} ), Add Alias Term( {3, 1}, {7, 1} ),

Add Alias Term( {4, 1}, {5, 1} ), Add Alias Term( {4, 1}, {6, 1} ),

Add Alias Term( {4, 1}, {7, 1} ), Add Alias Term( {5, 1}, {6, 1} ),

Add Alias Term( {5, 1}, {7, 1} ), Add Alias Term( {6, 1}, {7, 1} ),

Add Alias Term( {1, 1}, {8, 1} ), Add Alias Term( {2, 1}, {8, 1} ),
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Add Alias Term( {3, 1}, {8, 1} ), Add Alias Term( {4, 1}, {8, 1} ),

Add Alias Term( {5, 1}, {8, 1} ), Add Alias Term( {6, 1}, {8, 1} ),

Add Alias Term( {7, 1}, {8, 1} ), Set Sample Size( 66 ), Set N Whole Plots( 33 ),

Make Design, Make Table}

);
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appendix b

SAS� CODE

PROC IMPORT OUT= SASUSER.Phase1

DATAFILE= "C:\Users\Cameron\Dropbox\MastersProject\Data\Results_Phase_1_clean2.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC LOGISTIC DATA=SASUSER.PHASE1;

CLASS WHOLEPLOTS;

MODEL COMBINED(DESC)= WHOLEPLOTS HEAT/firth;

RUN;

PROC GLIMMIX DATA=SASUSER.PHASE1;

CLASS WHOLEPLOTS;

MODEL COMBINED(DESC)=HEAT / S DIST=BIN;

RANDOM WHOLEPLOTS;

RUN;

PROC LOGISTIC DATA=SASUSER.PHASE1;

CLASS IS_MON_1;

MODEL COMBINED(DESC)=POROGEN MONOMER SURFACTANT

POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*POROGEN INITIATOR*MONOMER INITIATOR*SURFACTANT

SALT*POROGEN SALT*MONOMER SALT*SURFACTANT

MIX_TIME*POROGEN MIX_TIME*MONOMER MIX_TIME*SURFACTANT

IS_MON_1*POROGEN IS_MON_1*MONOMER IS_MON_1*SURFACTANT

HEAT*POROGEN HEAT*MONOMER HEAT*SURFACTANT/NOINT SCALE=P

SELECTION=FORWARD START=6 SLENTRY=0.2;

RUN;

/*USES FORWARD STEPWISE STARTING AFTER PURE MIXTURE EFFECTS WITH ALPHA=0.20*/

/*Compare Logit link to probit and cloglog*/

PROC LOGISTIC DATA=SASUSER.PHASE1_WP DESC;

CLASS IS_MON_1;

MODEL R/N=POROGEN MONOMER SURFACTANT POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*POROGEN INITIATOR*MONOMER INITIATOR*SURFACTANT

SALT*POROGEN SALT*MONOMER SALT*SURFACTANT MIX_TIME*POROGEN MIX_TIME*MONOMER MIX_TIME*SURFACTANT

IS_MON_1*POROGEN IS_MON_1*MONOMER IS_MON_1*SURFACTANT /NOINT LINK=PROBIT

SELECTION=FORWARD START=6 SLENTRY=0.2;

RUN;

PROC LOGISTIC DATA=SASUSER.PHASE1_WP DESC;

CLASS IS_MON_1;

MODEL R/N=POROGEN MONOMER SURFACTANT POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*POROGEN INITIATOR*MONOMER INITIATOR*SURFACTANT

47



SALT*POROGEN SALT*MONOMER SALT*SURFACTANT MIX_TIME*POROGEN MIX_TIME*MONOMER MIX_TIME*SURFACTANT

IS_MON_1*POROGEN IS_MON_1*MONOMER IS_MON_1*SURFACTANT /NOINT LINK=CLOGLOG

SELECTION=FORWARD START=6 SLENTRY=0.2;

RUN;

ODS LISTING CLOSE;

ODS LATEX GPATH=’C:\Users\Cameron\Dropbox\MastersProject\Plots\DiagPlots’;

ods graphics on;

PROC LOGISTIC DATA=SASUSER.PHASE1_WP DESC PLOTS=INFLUENCE(UNPACK);

CLASS IS_MON_1;

MODEL R/N=POROGEN MONOMER SURFACTANT POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*MONOMER INITIATOR*SURFACTANT SALT*POROGEN SALT*SURFACTANT

IS_MON_1*MONOMER IS_MON_1*SURFACTANT /NOINT SCALE=D;

ODS SELECT WHERE = (lowcase(_label_) ? ’pearson’) GlobalTests GoodnessOfFit;

RUN;

ODS LATEX CLOSE;

ODS LISTING;

ODS LISTING CLOSE;

ODS PDF FILE=’C:\Users\Cameron\Dropbox\MastersProject\Plots\Deviance.pdf’;

ods graphics on;

PROC LOGISTIC DATA=SASUSER.PHASE1_WP DESC;

CLASS IS_MON_1;

MODEL R/N=POROGEN MONOMER SURFACTANT POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*MONOMER INITIATOR*SURFACTANT SALT*POROGEN SALT*SURFACTANT

IS_MON_1*MONOMER IS_MON_1*SURFACTANT /NOINT SCALE=D;

RUN;

ODS PDF CLOSE;

ODS LISTING;

ODS LISTING CLOSE;

ODS LATEX GPATH=’C:\Users\Cameron\Dropbox\MastersProject\Plots\DiagPlots’;

ods graphics on;

PROC LOGISTIC DATA=SASUSER.PHASE1_WP DESC PLOTS=DFBETAS(UNPACK);

CLASS IS_MON_1;

MODEL R/N=POROGEN MONOMER SURFACTANT POROGEN*MONOMER POROGEN*SURFACTANT MONOMER*SURFACTANT

INITIATOR*MONOMER INITIATOR*SURFACTANT SALT*POROGEN SALT*SURFACTANT

IS_MON_1*MONOMER IS_MON_1*SURFACTANT /NOINT SCALE=D;

ODS SELECT WHERE = (lowcase(_label_) ? ’porogensurfactant’)

WHERE = (lowcase(_label_) ? ’monomersurfactant’);

RUN;

ODS LATEX CLOSE;

ODS LISTING;
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appendix c

R CODE

C.1 Mixture Plot Function

MixturePlot2 = function(x=NULL,y=NULL,z=NULL,w=NULL,des=NULL,

res=400,lims=c(rep(0,6)),color.palette = heat.colors,

constrts=FALSE,contrs=TRUE,n.breaks=10,levels=NULL,

cols=FALSE, despts=TRUE, mod=NA,x3lab="Fraction X3",

x2lab="Fraction X2", x1lab="Fraction X1",

corner.labs = c("X3", "X2", "X1"),

colorkey=list(dx=0.04,x0=0.95,y0=0.45,y1=0.90,add=TRUE,mode="all"),

pseudo=FALSE,user.func=NULL,...)

{

##############################################

#Argument list

# des design matrix with known points (data frame)

# x, y, z locations for known points

# w values at x,y,z locations

# res number of color blocks between 0 and 1 of x

# lims vector of lower and upper constraints for x1,x2,x3

# constrts if TRUE constraints found in lims will be added to the graph

# contrs if TRUE contour lines will be added to the graph

# n.breaks number of breaks between levels (used for contours if ’levels’ not specified)

# levels takes a list of contour levels (e.g. levels=c(1,3,5,10) will draw contours at those heights)

# cols if TRUE regions between contour lines will be colored

# despts if TRUE plots the design points in data frame des or vectors x, y, z

# color.palette is the color palette to use.

# mod is an indicator for the model 1=linear, 2=quadratic, 3=special cubic, NA=user specified function

# in user.func

# x3lab label for the x3 axis

# x2lab label for the x2 axis

# x1lab label for the x1 axis

# corner.labs labels for x3, x2 and x1 vertices

# colorkey list with locations of the color key

# psuedo if TRUE uses psuedo components to zoom in on constrained region. Will create the smallest

# equilateral triangle that still contains the whole constrained region.

# user.func is a function supplied by the user that takes as arguments a dataframe called ’grid’

# containing columns ’x’, ’y’, and ’z’ and returns a predicted ’w’ for each row in ’grid’.

# ... additional arguments for user.func besides ’grid’

if (is.null(des)){

if (is.null(x))

stop("There must be a data frame containing the design, or vectors of known points")
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} else {

x<-des$x3

y<-des$x2

z<-des$x1

w<-des$y

}

#Depends on the following libraries

library(lattice)

library(grid)

######################

## Creation of Grid ##

######################

trian <- expand.grid(base=seq(0,1,l=res), high=seq(0,sin(pi/3), l=res))#87

trian <- subset(trian, (base*sin(pi/3)*2)>high)

trian <- subset(trian, ((1-base)*sin(pi/3)*2)>high)

new2 <- data.frame(z=trian$high*2/sqrt(3))

new2$x <- trian$base-trian$high/sqrt(3)

new2$y <- 1 - new2$x-new2$z

if(pseudo){

l.bnds <- lims[seq(1,5,by=2)]

sum.bnds <- sum(l.bnds)

new2$x <- l.bnds[3]+(1-sum.bnds)*new2$x

new2$y <- l.bnds[2]+(1-sum.bnds)*new2$y

new2$z <- l.bnds[1]+(1-sum.bnds)*new2$z

x.pseudo <- (x-l.bnds[3])/(1-sum.bnds)

y.pseudo <- (y-l.bnds[2])/(1-sum.bnds)

z.pseudo <- (z-l.bnds[1])/(1-sum.bnds)

}

if(is.na(mod)==FALSE){

## Fit the data to a model

if (mod==1) {

## This is the Scheffe Linear model

fm1 = lm(w~x+y+z-1)

}

if (mod==2) {

## This is the Scheffe Quadratic model

fm1 = lm(w~x+y+z+x*y+x*z+y*z-1)

}

if (mod==3) {

## This is the Scheffe Special Cubic Model

fm1 = lm(w~x+y+z+x*y+x*z+y*z+x*y*z-1)

}

}

## Create a new dataset using the model

if (is.na(mod)==TRUE){

if(is.null(user.func)==TRUE){

stop("There must be a model specified or a user supplied function for predictions on the simplex")

}else{

trian$w=user.func(grid=new2,...) #add ... to argument when creating the function
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}

}else{

trian$w = predict(fm1, newdata=data.frame(new2))

}

## Function for laying out barycentric coordinates

grade.trellis <- function(from=0.2, to=0.8, step=0.2, col=1, lty=3, lwd=.5){

if (constrts) {

#Constraints on x1

f1<-lims[1]

t1<-lims[2]

s1=t1-f1

x1 <- seq(f1, t1, s1)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x2, y2, 1-x2, y2, col=col, lty=2, lwd=2.0)

#Constraints on x2 (note backwards f2-1-upper, t2=1-lower

f2<-1-lims[4]

t2<-1-lims[3]

s2<-t2-f2

x1 <- seq(f2, t2, s2)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x1, 0, x2, y2, col=col, lty=2, lwd=2.0)

#Constraints on x3

f3<-lims[5]

t3<-lims[6]

s3<-t3-f3

x1 <- seq(f3, t3, s3)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x1, 0, x3, y3, col=col, lty=2, lwd=2.0)

}

#Grid lines

x1 <- seq(from, to, step)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x1, 0, x2, y2, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x1, 0, label=x1, pos=1)

panel.segments(x1, 0, x3, y3, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x2, y2, label=rev(x1), pos=2)

panel.segments(x2, y2, 1-x2, y2, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x3, y3, label=rev(x1), pos=4)

}
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grade.trellis.pseudo <- function(from=0.2, to=0.8, step=0.2, col=1, lty=3, lwd=.5){

#Constraints on x1

x1 <- (lims[2]-l.bnds[1])/(1-sum.bnds)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x2, y2, 1-x2, y2, col=col, lty=2, lwd=2.0)

#Constraints on x2 (note backwards f2-1-upper, t2=1-lower

x1 <- 1-(lims[4]-l.bnds[2])/(1-sum.bnds)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x1, 0, x2, y2, col=col, lty=2, lwd=2.0)

#Constraints on x3

f3<-lims[5]

t3<-lims[6]

s3<-t3-f3

x1 <- (lims[6]-l.bnds[3])/(1-sum.bnds)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

panel.segments(x1, 0, x3, y3, col=col, lty=2, lwd=2.0)

#Grid lines

x1 <- seq(from, to, step)

x2 <- x1/2

y2 <- x1*sqrt(3)/2

x3 <- (1-x1)*0.5+x1

y3 <- sqrt(3)/2-x1*sqrt(3)/2

labx1 <- l.bnds[3]+(1-sum.bnds)*x1

labx2 <- l.bnds[2]+(1-sum.bnds)*x1

labx3 <- l.bnds[1]+(1-sum.bnds)*x1

panel.segments(x1, 0, x2, y2, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x1, 0, label=labx1, pos=1)

panel.segments(x1, 0, x3, y3, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x2, y2, label=rev(labx2), pos=2)

panel.segments(x2, y2, 1-x2, y2, col="darkgrey", lty=lty, lwd=lwd)

panel.text(x3, y3, label=rev(labx3), pos=4)

}

## Perform the actual plotting

if(is.null(levels)){

p <- levelplot(w~base*high, trian, aspect="iso", xlim=c(-0.1,1.1), ylim=c(-0.1,0.96),

x3lab=NULL, x2lab=NULL, contour=contrs, cuts=n.breaks, labels=TRUE, pretty=TRUE, region=cols,

col.regions = color.palette(n=n.breaks+1), cex.lab=1.3,

par.settings=list(axis.line=list(col=NA), axis.text=list(col=NA)),

panel=function(..., at=pretty(trian$w,n=11), contour=TRUE, labels=pretty(trian$w,n=11)){

panel.levelplot(..., at=pretty(trian$w,n=11), contour=TRUE,

labels= pretty(trian$w,n=11),

lty=2, lwd=0.5, col=1)}

)
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}else{

p <- levelplot(w~base*high, trian, aspect="iso", at=levels, xlim=c(-0.1,1.1), ylim=c(-0.1,0.96),

x3lab=NULL, x2lab=NULL, contour=contrs, labels=TRUE, pretty=TRUE, region=cols,

col.regions = color.palette(n=n.breaks+1), cex.lab=1.3,

par.settings=list(axis.line=list(col=NA), axis.text=list(col=NA)),

panel=function(..., at=pretty(trian$w,n=11), contour=TRUE, labels=pretty(trian$w,n=11)){

panel.levelplot(..., at=pretty(trian$w,n=11), contour=TRUE,

labels=pretty(trian$w,n=11),

lty=2, lwd=0.5, col=1)}

)

}

##labels and legend

grid.newpage()

pushViewport(viewport(xscale = p$x.limits, yscale = p$y.limits))

do.call(panel.levelplot, trellis.panelArgs(p, 1))

## update the trellis panel

#trellis.focus("panel", 1, 1, highlight=TRUE)

panel.segments(c(0,0,0.5), c(0,0,sqrt(3)/2), c(1,1/2,1), c(0,sqrt(3)/2,0),lwd=2)

if(pseudo){

grade.trellis.pseudo()

}else{

grade.trellis()

}

panel.text(0, 0, label=corner.labs[2], pos=2)

panel.text(1/2, sqrt(3)/2, label=corner.labs[3], pos=3)

# This point is x1 vertex

#panel.points(1/2,sqrt(3)/2,col="black",cex=1.4,pch=19)

panel.text(1, 0, label=corner.labs[1], pos=4)

panel.text(.5,-.075,x3lab)

panel.text(.18,.5,x2lab,srt=60)

panel.text(.82,.5,x1lab, srt=-60)

if (despts) {

if(pseudo){

# Plot the design points

# using the transformation x=z*sqrt(3)/4+x+.065*z, y=z*sqrt(3)/2

xpts<-(z.pseudo*sqrt(3)/4)+.065*z.pseudo+x.pseudo

ypts<-z.pseudo*sqrt(3)/2

panel.points(xpts,ypts,pch=19,cex=1.4,col="black")

}else{

xpts<-(z*sqrt(3)/4)+.065*z+x

ypts<-z*sqrt(3)/2

panel.points(xpts,ypts,pch=19,cex=1.4,col="black")

}

}

ck.x=colorkey$x0

ck.y.b=colorkey$y0 #.45

ck.y.t=colorkey$y1 #.90

ck.y = seq(ck.y.b,ck.y.t,len=n.breaks+2)

d.x = colorkey$dx

d.y = diff(ck.y[1:2])

}

#Function over
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C.2 User-defined Function with Final Model

mymod=function(grid,init=’low’,salt=’low’,mon=1,logodds=FALSE){

x=grid$x #surf

y=grid$y #mon

z=grid$z #por

if(init==’low’){

intr=0.002*y

}

if(init==’med’){

intr=0.05*y

}

if(init==’high’){

intr=0.1*y

}

if(salt==’low’){

slt=0.001*z

}

if(salt==’med’){

slt=0.0105*z

}

if(salt==’high’){

slt=0.02*z

}

w2=1.0996*z+221.7*y+5040*x-245.7*z*y-5267.6*z*x-

6148*x*y-2628.7*intr*y + 11192.7*intr*x + 39.6059*(1-mon)*y -

105.1*(1-mon)*x + 800.3*slt*z - 17525.3*slt*x

w=(1/(1+exp(-w2)))

if(logodds==TRUE){

return(w2)

}else{

return(w)

}

}

C.3 Code to Create All Mixture Plots

setwd("/Users/cameronwillden/Dropbox/MastersProject")

data=read.csv("Data/Results_Phase_1_clean2.csv")

z=data$Porogen

y=data$Monomer

x=data$Surfactant

w=data$Combined

levels=c(’low’,’med’,’high’)

for(i in 1:2){

for(j in 1:3){

for(k in 1:3){
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pdf(paste(’Plots/MixPlots/Mon’,i,’I_’,j,’S_’,k,’.pdf’,sep=""),6,6)

MixturePlot2(x,y,z,user.func=mymod,lims=c(.7,.86,0.095,0.25,0.02,0.05),

constrts=TRUE,pseudo=TRUE,cols=T, despts=FALSE,x1lab="Fraction of Porogen (X1)",

x2lab="Fraction of Monomer (X2)",x3lab="Fraction of Surfactant (X3)",

levels=c(-1,0,0.1,0.25,0.5,0.8,0.975,0.999,1.001),

init=levels[j],salt=levels[k],mon=i)

grid::grid.text(paste("Initiator = ’",levels[j],"’"), x=unit(0.1, "npc"),

y=unit(0.86, "npc"),just=’left’)

grid::grid.text(paste("Salt = ’",levels[k],"’"), x=unit(0.1, "npc"),y=unit(0.78, "npc"),just=’left’)

grid::grid.text(paste("Monomer = ",i), x=unit(0.1, "npc"), y=unit(0.70, "npc"),just=’left’)

dev.off()

}

}

}

###Show Constraints Points

pdf("ConstraintsPseudo.pdf",7,7)

MixturePlot2(x,y,z,n.breaks=0,user.func=mymod,lims=c(.7,.86,0.095,0.25,0.02,0.05),

constrts=TRUE,pseudo=TRUE,cols=F,levels=c(-1,2),despts=F,x1lab="Fraction of Porogen (X1)",

x2lab="Fraction of Monomer (X2)",x3lab="Fraction of Surfactant (X3)",

init=levels[1],mon=1)

dev.off()

pdf("Constraints.pdf",7,7)

MixturePlot2(x,y,z,n.breaks=0,user.func=mymod,lims=c(.7,.86,0.095,0.25,0.02,0.05),

constrts=TRUE,pseudo=FALSE,cols=F,levels=c(-1,2),despts=F,x1lab="Fraction of Porogen (X1)",

x2lab="Fraction of Monomer (X2)",x3lab="Fraction of Surfactant (X3)",

init=levels[1],mon=1)

dev.off()

###Show Design Points

pdf("DesPointsPseudo.pdf",7,7)

MixturePlot2(x,y,z,n.breaks=0,user.func=mymod,lims=c(.7,.86,0.095,0.25,0.02,0.05),

constrts=TRUE,pseudo=TRUE,cols=F,levels=c(-1,2),despts=T,x1lab="Fraction of Porogen (X1)",

x2lab="Fraction of Monomer (X2)",x3lab="Fraction of Surfactant (X3)",

init=levels[1],mon=1)

dev.off()

pdf("DesPoints.pdf",7,7)

MixturePlot2(x,y,z,n.breaks=0,user.func=mymod,lims=c(.7,.86,0.095,0.25,0.02,0.05),

constrts=TRUE,pseudo=FALSE,cols=F,levels=c(-1,2),despts=T,x1lab="Fraction of Porogen (X1)",

x2lab="Fraction of Monomer (X2)",x3lab="Fraction of Surfactant (X3)",

init=levels[1],mon=1)

dev.off()
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appendix d

DESIGN POINTS AND RESULTS

Run Whole Plot Porogen Monomer Surfactant Initiator Salt Mix Time Heat Is.Mon.1 Combined
1 1 0.86 0.10 0.04 0.01 0.00 45 65 0 1
2 1 0.86 0.10 0.04 0.01 0.00 45 55 0 1
3 2 0.82 0.13 0.05 0.00 0.00 75 65 0 1
4 2 0.82 0.13 0.05 0.00 0.00 75 55 0 0
5 3 0.86 0.12 0.02 0.00 0.00 75 65 1 1
6 3 0.86 0.12 0.02 0.00 0.00 75 55 1 1
7 4 0.86 0.12 0.02 0.01 0.02 75 65 1 1
8 4 0.86 0.12 0.02 0.01 0.02 75 55 1 1
9 5 0.81 0.16 0.03 0.00 0.02 75 55 0 0

10 5 0.81 0.16 0.03 0.00 0.02 75 65 0 0
11 6 0.86 0.10 0.05 0.01 0.02 45 55 1 0
12 6 0.86 0.10 0.05 0.01 0.02 45 65 1 0
13 7 0.71 0.24 0.05 0.02 0.00 75 55 0 0
14 7 0.71 0.24 0.05 0.02 0.00 75 65 0 0
15 8 0.85 0.13 0.03 0.00 0.02 45 55 1 1
16 8 0.85 0.13 0.03 0.00 0.02 45 65 1 1
17 9 0.86 0.10 0.05 0.01 0.00 75 55 1 1
18 9 0.86 0.10 0.05 0.01 0.00 75 65 1 1
19 10 0.82 0.15 0.03 0.00 0.00 45 55 0 0
20 10 0.82 0.15 0.03 0.00 0.00 45 65 0 0
21 11 0.86 0.10 0.04 0.00 0.02 75 65 0 1
22 11 0.86 0.10 0.04 0.00 0.02 75 55 0 0
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Run Whole Plot Porogen Monomer Surfactant Initiator Salt Mix Time Heat Is.Mon.1 Combined
23 12 0.83 0.12 0.05 0.01 0.00 45 55 1 1
24 12 0.83 0.12 0.05 0.01 0.00 45 65 1 1
25 13 0.84 0.11 0.05 0.01 0.01 75 55 0 0
26 13 0.84 0.11 0.05 0.01 0.01 75 65 0 1
27 14 0.86 0.10 0.05 0.00 0.00 60 55 0 0
28 14 0.86 0.10 0.05 0.00 0.00 60 65 0 0
29 15 0.85 0.10 0.05 0.01 0.02 60 55 0 1
30 15 0.85 0.10 0.05 0.01 0.02 60 65 0 0
31 16 0.80 0.16 0.03 0.02 0.00 45 55 0 0
32 16 0.80 0.16 0.03 0.02 0.00 45 65 0 0
33 17 0.85 0.10 0.05 0.00 0.01 45 55 1 0
34 17 0.85 0.10 0.05 0.00 0.01 45 65 1 0
35 18 0.83 0.12 0.05 0.00 0.02 75 65 1 0
36 18 0.83 0.12 0.05 0.00 0.02 75 55 1 0
37 19 0.86 0.12 0.02 0.00 0.02 45 65 0 0
38 19 0.86 0.12 0.02 0.00 0.02 45 55 0 0
39 20 0.86 0.12 0.02 0.01 0.00 75 55 0 0
40 20 0.86 0.12 0.02 0.01 0.00 75 65 0 0
41 21 0.86 0.12 0.02 0.01 0.00 45 65 1 0
42 21 0.86 0.12 0.02 0.01 0.00 45 55 1 0
43 22 0.86 0.12 0.02 0.00 0.01 75 65 0 0
44 22 0.86 0.12 0.02 0.00 0.01 75 55 0 0

57



Run Whole Plot Porogen Monomer Surfactant Initiator Salt Mix Time Heat Is.Mon.1 Combined
45 23 0.79 0.17 0.03 0.00 0.00 75 55 1 1
46 23 0.79 0.17 0.03 0.00 0.00 75 65 1 1
47 24 0.86 0.10 0.04 0.00 0.00 45 55 1 0
48 24 0.86 0.10 0.04 0.00 0.00 45 65 1 0
49 25 0.84 0.11 0.05 0.01 0.00 45 65 0 1
50 25 0.84 0.11 0.05 0.01 0.00 45 55 0 1
51 26 0.77 0.20 0.04 0.02 0.02 75 65 1 1
52 26 0.77 0.20 0.04 0.02 0.02 75 55 1 1
53 27 0.85 0.10 0.05 0.01 0.02 75 65 0 0
54 27 0.85 0.10 0.05 0.01 0.02 75 55 0 0
55 28 0.82 0.13 0.05 0.00 0.02 45 55 0 0
56 28 0.82 0.13 0.05 0.00 0.02 45 65 0 1
57 29 0.85 0.13 0.03 0.01 0.02 45 55 0 0
58 29 0.85 0.13 0.03 0.01 0.02 45 65 0 0
59 30 0.86 0.12 0.02 0.01 0.02 75 65 0 1
60 30 0.86 0.12 0.02 0.01 0.02 75 55 0 1
61 31 0.82 0.15 0.03 0.01 0.00 75 65 1 0
62 31 0.82 0.15 0.03 0.01 0.00 75 55 1 0
63 32 0.77 0.18 0.05 0.00 0.02 45 55 1 0
64 32 0.77 0.18 0.05 0.00 0.02 45 65 1 0
65 33 0.86 0.11 0.03 0.01 0.01 60 65 1 0
66 33 0.86 0.11 0.03 0.01 0.01 60 55 1 0

58


