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ABSTRACT

SEPARATE AND JOINT ANALYSIS OF LONGITUDINAL AND

SURVIVAL DATA

Deepthi Rajeev

Department of Statistics

Master of Science

Chemotherapy is a method used to treat cancer but it has a number of side-

effects. Research conducted by the Department of Chemical Engineering at BYU

involves a new method of administering chemotherapy using ultrasound waves and

water-soluble capsules. The goal is to reduce the side-effects by localizing the delivery

of the medication. As part of this research, a two-factor experiment was conducted

on rats to test if the water-soluble capsules and ultrasound waves by themselves have

an effect on tumor growth or patient survival.

Our project emphasizes the usage of Bayesian Hierarchical Models and Win-

BUGS to jointly model the survival data and the longitudinal data—mass. The

results of the joint analysis indicate that the use of ultrasound and water-soluble

microcapsules have no negative effect on survival. In fact, there appears to be a pos-

itive effect on the survival since the rats in the ultrasound-capsule group had higher

survival rates than the rats in other treatment groups. From these results, it does

appear that the new technology involving ultrasound waves and microcapsules is a

promising way to reduce the side-effects of chemotherapy.

It is strongly advocated that the formulation of a joint model for any longitudi-



nal and survival data be performed. For future work for the ultrasound-microcapsule

data it is recommended that joint modeling of the mass, tumor volume, and survival

data be conducted to obtain additional information.
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Chapter 1

INTRODUCTION

Chemotherapy is a method used to treat cancer; unfortunately, it has many

side-effects. Research conducted by the Department of Chemical Engineering at BYU

involves a new method of administering chemotherapy using ultrasound waves and

microcapsules (Pitt 2003) to reduce these side-effects by localizing the delivery of

the medication. As part of this research, a study was carried out to test if water-

soluble capsules and ultrasound waves had an effect on the growth of the tumors by

themselves. The study was a two-factor experiment conducted over 12 weeks using

rats that were induced with tumors in both legs. The anti-cancer drug was not a part

of the experiment and hence the rats were not given any chemotherapy.

The three main questions to be answered by the experiment are:

• Does the ultrasound affect the tumor growth, mass, or survival of the rat?

• Does the microcapsule affect the tumor growth, mass, or survival of the rat?

• Do the ultrasound and the microcapsule interact to affect the tumor growth,

mass, or survival of the rat?

The study was longitudinal (Verbeke and Molenberghs 2001) because mass and

tumor volume were collected on each rat over a period of time. It is very likely that

the measurements taken over time are not independent.

Mass, tumor volume, and the survival of the rats could be analyzed separately

using appropriate longitudinal and survival analysis methods (Cox 1972; Verbeke

and Molenberghs 2001). In general, this is a reasonable approach. Software packages

like SAS (SAS 2006) have procedures such as proc mixed and proc lifereg to model
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longitudinal data and survival data. However, if the longitudinal data are correlated

with survival, joint analysis may yield more information.

Recently, the joint analysis of both longitudinal and survival data has been pro-

posed (Tsiatis et al. 1995; Wulfsohn and Tsiatis 1997; Henderson et al. 2000; Bowman

and Manatunga 2005). The analysis of the data using a joint model instead of sep-

arate models will result in unbiased and more efficient estimates. Joint modeling is

accomplished using latent variables that link the longitudinal models and the survival

models together. Guo and Carlin (2004) demonstrated a Bayesian approach to the

joint modeling of one longitudinal model and one survival model using WinBUGS.

The purpose of this study is to conduct the separate analyses of mass, tumor

volume, and survival, and in addition, the joint analysis of mass and survival for the

ultrasound-microcapsule data. The work will extend that of Guo and Carlin (2004)

in that the longitudinal mass model in the ultrasound-microcapsule data involves a

first-order autocorrelation structure for weekly weights. Results for the separate and

joint analyses will be compared.
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Chapter 2

LITERATURE REVIEW

2.1 Micelles and Ultrasound in Chemotherapy

Cancer is a disease where cells multiply continuously because of mutations in

the DNA. Since cells produce DNA, these affected cells also produce DNA at a faster

rate than normal. Thus, drugs that hinder the production of DNA in turn affect the

cancer cells. However, since it has not been possible so far to determine a unique

feature that exists only in cancer cells, other cells that are healthy are also affected

by the drug. For instance, certain cells in the stomach lining and hair follicles also

multiply faster than the other cells and therefore, the anti-cancer drugs would disrupt

the DNA production in these cells too. This results in side-effects such as hair loss

or stomach problems for people under chemotherapy (DeVita 2001).

Research conducted by a group at the Department of Chemical Engineering at

BYU aims to determine whether localizing the effect of the anti-cancer drug would

result in a reduction of these side-effects (Pitt 2003). Water soluble plastics, called

micelles, made of polyethylene oxide and polypropylene oxide, are a self-assembled

collection of molecules. They possess an important property that renders them useful

for the purpose of this study—when introduced into water, they spontaneously form

tiny plastic spheres. Also, it has been found that an anti-cancer drug called doxoru-

bicin is averse to water. Hence, when both micelles and the drug are mixed in water

the drug seeks protection in the spheres.

Plastic spheres that act as a carrier for the drug are injected into the patient

and low-frequency ultrasound waves are applied at the tumor site. This results in the

bursting of the capsules and the drug is released in the affected area alone. However, it

is not known whether micelles and ultrasound waves by themselves or in combination
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with each other have an effect on the health and survival of the patient.

2.2 Mixed Models

A mixed model contains both fixed and random effects. For instance, the four

treatments (no ultrasound and no carrier, no ultrasound with a carrier, ultrasound and

no carrier, and ultrasound and carrier) in the ultrasound-microcapsule data constitute

a fixed factor, but the rats under consideration were randomly selected.

In general, a mixed model is of the form:

Y = Xβ + Zδ + ε,

where X is the matrix of known values of the fixed predictors, Z is the matrix of known

values of the random factors, β is the vector of unknown coefficients for the fixed

effects, δ is the vector of unknown random effects, and ε is the vector of errors (Littell

et al. 2005). In the standard mixed model, δ is distributed as a multivariate normal

with mean vector 0 and covariance matrix G and ε is distributed as a multivariate

normal with mean vector 0 and covariance matrix R. G and R are required to be

positive definite matrices because they represent variance-covariance matrices. In

many models, R = σ2I. The vectors δ and ε are usually assumed to be independent;

thus, the covariance matrix of Y is V = ZGZ ′ + R. Hence, Y is distributed as a

multivariate normal with mean vector, Xβ, and covariance matrix, V .

G, R, and V are functions of unknown parameters that can be estimated using

either the method of Maximum Likelihood (ML) or Restricted Maximum Likelihood

(REML). Once the estimate V̂ has been obtained, the estimate of β is given by

β̂ = (X ′V̂ −1X)−X ′V̂ −1Y and the approximate variance of β̂ is (X ′V̂ −1X)−.

The SAS procedure, proc mixed, is useful to analyze data when there are fixed

and random effects. The repeated statement in proc mixed defines the covariance

matrix, R, and the random statement in proc mixed defines the covariance matrix,

4



G (Littell et al. 2005; SAS 2006).

2.2.1 Longitudinal Data

Some experiments involve taking multiple measurements of a variable over a

period of time. These measurements are typically called longitudinal data or repeated

measurements. For instance, in the ultrasound-microcapsule data, mass and tumor

volume were measured weekly for each rat over a period of 12 weeks and hence are

longitudinal data. The basic model for a repeated measures design involves effects for

the experimental units, treatments, and time (Littell et al. 2005). The experimental

units are often assigned to different levels of a factor. Such a factor is called a

between-subjects factor. Similarly, since measurements are taken on an experimental

unit repeatedly over time, time is called a within-subjects factor.

A repeated measures model is a special case of the general mixed model. The

distinguishing feature of a repeated measures model is the specification of the covari-

ance structure of the repeated measures. In a repeated measures model, the R matrix

reflects the covariance structure, and is usually not σ2I. The measurements within

an experimental unit are usually not equally correlated because measurements taken

closer in time tend to be highly correlated compared to measurements taken further

apart in time. Hence, selecting the right covariance structure for the data is very

important.

There are various model-fitting criteria that can be used to ascertain a reason-

able covariance structure. The information criteria make use of the log likelihood of

the model and a penalty that is computed as a function of the number of parameters

in the model. For instance, the Akaike Information Criterion or AIC is computed as

AIC = 2k − 2ln(L), where k denotes the number of parameters in the model and

ln(L) is the log likelihood (Hirotuga 1974). The model with a smaller information

criterion value is preferred to a model with a larger information criterion value.
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2.3 Survival Analysis

Survival data are also called time to event data (Klein and Moeschberger 2003).

Generally, the data involve the time until some event occurs. The event could be the

death of the patient or the failure of the experimental unit. Time is an example of

survival analysis and event is an example of reliability analysis (Meeker and Escobar

1998).

Survival data almost always involve incomplete information and hence cannot be

analyzed using the basic modeling techniques. When an observation has incomplete

information, it is said to be a censored observation. There are three kinds of censor-

ing: right censoring, left censoring, and interval censoring (Klein and Moeschberger

2003). Observations that do not fail during the measurement or observation period

are said to be right- censored. This could happen if a patient survives through the

experiment and is still living when the experiment concludes. An observation is also

right-censored if a patient leaves the experiment for some reason not connected with

survival. Observations that are known to have failed before a certain time are called

left-censored. Interval censoring is a more general type of censoring. When an event

is known to have occurred within an interval of time, the observation is said to be

interval censored.

Formally, if T represents the failure time of an experimental unit, the survivor

function is defined as

S(t) = P (T > t),

where t ∈ (0,∞). The hazard function, defined as

λ(t) = lim
∆t→0+

P (t ≤ T < t + ∆t | T ≥ t)

∆t
,

specifies the unobserved instantaneous rate at which an event occurs for units surviv-

ing at time t. Thus, λ(t)∆t can be thought of as the probability that an individual

at risk will experience an event in time (t, t + ∆t). Although the hazard rate is not

6



observed, it controls the occurrence and timing of the event. The hazard function

fully specifies the survivor function because

λ(t) =
−dlogS(t)

dt
.

The Kaplan-Meier estimator or Product Limit Estimator provides a non-parametric

maximum likelihood estimate of the survivor function (Kaplan and Meier 1958). The

Kaplan-Meier estimate of S(t) is given as

ˆS(t) =
∏

ti<t

ni − di

ni

,

where ni corresponds to the number of observations at risk of failing just prior to

time ti; di denotes the number of failures at time ti.

Parametric regression models are commonly applied to survival data. The

Weibull distribution, a generalization of the exponential distribution, is very flexi-

ble and widely used. Its hazard function is

λ(t) = θγ(θt)γ−1,

where θ > 0, γ > 0. The hazard is monotonically increasing for γ > 1, monotonically

decreasing for γ < 1, and constant for γ = 1.

The SAS procedure, proc lifereg, can be used to fit parametric models to right,

left, or interval-censored data (SAS 2006). The model is assumed to be of the form

y = Xβ + σε,

where y is the vector of logs of the survival times. X represents the matrix of predictor

variables, β denotes the vector of unknown regression coefficients, ε is the vector

of errors assumed to come from a known distribution, and σ is an unknown scale

parameter. If survival times follow the Weibull distribution, the error distribution is

the extreme value distribution. When σ = 1, the Weibull distribution reduces to the

exponential distribution.
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Similarly, survival times, yi, are assumed to follow the Weibull distribution with

parameters γ and θi = eXiθ. Klein and Moeschberger (Klein and Moeschberger 2003)

specify the relationships between the two formulations of the model.

2.4 Bayesian Analysis

Bayesian statistics is considered to have evolved from a paper by Rev.Thomas

Bayes published posthumously by Price in 1763 (Bayes 1763). Unaware of this paper,

Laplace independently developed the Bayes Theorem and extended its results in 1774.

A translated version of the paper by Laplace was published by Stigler (1986). The

term Bayesian was first used by Fisher in a note attached to a paper published in

1950 (Fisher 1950).

Bayes’ rule is:

π(θ | y) =
f(y | θ)π(θ)

f(y)
,

where π(θ | y) is called the posterior distribution of the vector of parameters, θ, given

the data (Gelman et al. 2004). f(y | θ) is the sampling distribution or the likelihood.

π(θ) denotes the prior distribution of the unknown parameters. f(y) is the marginal

distribution of y, and from the law of total probability f(y) can be calculated as

f(y) =
∫

f(y | θ) π(θ) dθ . f(y) is also called the normalizing constant. In his paper,

Bayes demonstrated the use of a uniform prior for a binomial likelihood (Bayes 1763).

Bayesian statistics involves the use of probability as a measure of uncertainty.

The unknown parameters are not considered to be fixed but rather random in nature;

hence, the parameters themselves have a distribution. If the posterior distribution

belongs to the same family of distributions as the prior distribution, then the prior is

said to be conjugate. Since the posterior distribution incorporates information from

the data, it will often be less varied and more peaked than the prior distribution.

Therefore, as the sample size increases, the effect of the prior distribution on the

posterior distrbution decreases. In cases where the prior distribution is difficult to

8



obtain, vague, flat or noninformative priors can be used.

Bayesian inference can usually be carried out by taking random draws from

the posterior distribution of the model parameters (Gelman et al. 2004). Before the

advent of computers, this was very difficult to implement. As a result, Bayesian statis-

tics was not very practical in the 18th and 19th centuries. With the rediscovery in

the statistical literature of Markov Chain Monte Carlo (MCMC) simulation methods

such as Metropolis-Hastings and Gibbs sampling in the middle of the 20th century, it

became possible to draw samples from the posterior distribution. The term, Monte

Carlo refers to the simulation part of the algorithm. The technique involves the draw-

ing of samples sequentially, with the distribution of the sampled draws dependent on

the previous value drawn. These draws form a Markov chain.

The Metropolis-Hastings algorithm is used to generate a sequence of samples

from any probability distribution p(x), requiring that the density can be calculated at

x (Metropolis et al. 1953; Hastings 1970). The Gibbs sampler developed by Geman

and Geman can be considered a special case of the Metropolis-Hastings algorithm

(Geman and Geman 1984). The algorithm is useful when the joint distribution is not

explicitly known but the conditional distribution of each parameter is known. An

initial starting point for the parameters is required and the algorithm involves a set

of iterative steps. At each iteration, a parameter is sampled from the conditional

distribution of all other parameters at their current value. After each iteration, the

value of the parameter is updated conditional on the current values of the other

parameters.

A specialized software package called WinBUGS implements the Bayesian anal-

ysis of complex statistical models using MCMC methods (Spiegelhalter et al. 2003).

WinBUGS uses Gibbs sampling when the priors are conjugate. When the priors

are non-conjugate, WinBUGS uses Adaptive Rejection sampling. Adaptive Rejection

sampling is a variation of Rejection sampling, a method that uses an envelope func-
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tion when it is difficult to sample from the actual posterior distribution. Adaptive

Rejection sampling makes use of a “squeezing function” and an envelope function that

together form lower and upper bounds to the density function. It has been shown

that as sampling proceeds, the squeezing function and the envelope function converge

to the density function (Gilks and Wild 1992). This useful technique is applied to

Bayesian models with non-conjugacy.

2.5 Joint modeling of Longitudinal Data and Survival Data

Experiments often generate both longitudinal data and survival data. There are

many methods to analyze the data separately (Cox 1972; Verbeke and Molenberghs

2001). However, when longitudinal data are correlated with survival data, fitting

separate models for each kind of data may not give complete information. Over recent

years, there has been considerable interest in the joint modeling of longitudinal data

and survival data.

In one approach, a two-stage modeling process was developed that dealt with

survival as a function of a covariate measured repeatedly. In the first stage, the co-

variate is modeled using growth curve models with random effects (Laird and Ware

1982). In the second stage, the modeled value is substituted into the partial likeli-

hood for the Cox model with time-dependent covariates and the partial likelihood is

maximized. The purpose is to reduce the bias of the parameter estimates in the Cox

model (Tsiatis et al. 1995). However, this procedure has a main drawback—while

modeling the covariate process, survival information is not used.

To overcome this drawback, Wulfsohn and Tsiatis (Wulfsohn and Tsiatis 1997)

developed a method that maximized the joint likelihood from both the covariate

process and survival data simultaneously. That is, the parameters that describe the

covariate process and the parameters that describe the risk of failure as a function of

the covariate process are estimated at the same time. This results in the use of survival
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information to get the estimates of the true covariate at any time. They use the Cox

model for the hazard of failure and assume that the true covariate value is given by

the growth model. The E-M algorithm is used to estimate the parameters of interest

(Dempster et al. 1977). In the E-step, the expected log-likelihood of the complete

data conditional on the observed data and the current estimate of the parameters

is computed. In the M-step, new parameter estimates are computed by maximizing

the expected log-likelihood. The algorithm involves iteration between these two steps

until the parameter estimates converge.

Henderson et al. (2000) proposed the use of an unobserved or latent bivariate

Gaussian process, W (t) = [W1(t), W2(t)], to link longitudinal data and survival data

in a clinical trial of schizophrenia patients. The longitudinal response variable was

a measure of the psychiatric disorder and the event was drop-out due to inadequate

response. They assumed that the longitudinal and event processes were conditionally

independent given W (t) and covariates. The correlation between W1(t) and W2(t)

describes the association between the longitudinal data and survival data. It was

assumed that W1(t) and W2(t) could be specified as a linear random effects model.

Model adequacy was checked by comparing simulated data and observed data. The

results showed good agreement, but the proposed method provided a complicated

solution to the problem.

Guo and Carlin (2004) developed a Bayesian implementation of the method used

by Henderson et al. (2000). They claimed that this approach was more straightfor-

ward to execute using the software WinBugs. Clinical data collected on 467 HIV-

infected patients were used to demonstrate the Bayesian version of the joint modeling

of longitudinal and survival data. The study was conducted to evaluate the safety

and efficiency of two drugs in treating patients who were intolerant of AZT therapy.

The longitudinal response variable was CD4 count and the event was death. The

authors used non-informative prior distributions because they wanted to compare the
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results of the joint analysis obtained using WinBugs and the SAS procedure proc

nlmixed. As in Henderson et al. (2000), the association between the longitudinal

model and the survival model was accomplished using a latent zero-mean bivariate

Gaussian process. The results provide strong evidence that there is an association

between the longitudinal model and the survival model. Additionally, the results of

the joint model contradict the results of the two separate models. The further devel-

opment and application of joint models for longitudinal and survival data is an area

of much current interest (Elashoff, R. and Li, G. and Li, N. 2006; Wang, J. L. and

Ding, J. 2006).
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Chapter 3

METHODOLOGY

3.1 The Experiment

To determine the effects of the ultrasound and the carrier separately and in

combination an experiment was conducted without the anticancer drug. The experi-

ment consisted of four treatment groups: no ultrasound and no carrier, no ultrasound

with carrier, ultrasound and no carrier, ultrasound and carrier. There were 30 rats of

similar age in the study, each rat being an experimental unit. Two rats died within

the first week, so they were excluded from the analysis. All the rats had a tumor

in both the left leg and the right leg. One leg was randomly chosen to receive the

treatment and the other leg was untreated. Sham ultrasound was applied to the cho-

sen leg if the treatment level was “no ultrasound”. All of the rats were injected with

either the carier or saline. The rats were of both genders and were randomly assigned

to the four treatment groups. Each treatment group consisted of six to eight rats.

The carriers and the water soluble capsules used in the experiment were from a single

batch so that the variation between the carriers would be at a minimum.

The treatments were applied once a week for six weeks. The volume of the

tumors and the mass of the rats were measured for 12 consecutive weeks. Not all

rats survived until the end of the experiment. The number of days until death was

recorded for those rats that did not survive. Those rats that survived were euthanized

at the end of the experiment.

As part of the preliminary analysis, mass, treated tumor volume, and untreated

tumor volume for the four treatments were plotted against week (Figures 3.1, 3.2, and

3.3) for each rat. Kaplan-Meier survival curves were generated for each treatment for

male and female rats (Figure 3.4).
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Figure 3.1: Mass profiles over time
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Figure 3.2: Treated tumor volume profiles over time
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Individual rats have characteristic weights that vary over time (Figure 3.1).

The apparent groupings in rat mass correspond exactly to gender, with female rats

being significantly smaller than male rats. Also, most of the rats seem to have a

tendency to lose weight shortly before death. Another obvious feature of Figure 3.1

is the apparent weight loss for every rat during week 7. This may be attributable to

a student or instrument calibration effect.

There is a clear linear trend in tumor volume for both treated and untreated

tumors (Figures 3.2, 3.3). Also, both treated and untreated tumor volume for most

rats seem to be increasing in a roughly parallel manner for all four treatments.

It appears that survival depends on the gender of the rat and the treatment

applied (Figure 3.4); female rats seem to have a better survival rate than male rats

and rats in the treatment with both the ultrasound and the carrier seem to have a

better survival rate than rats in the other three treatments groups.

3.2 Separate Analyses using SAS

Separate longitudinal models and survival models were fitted using the SAS

procedures— proc mixed and proc lifereg (SAS 2006).

Several longitudinal models for mass were considered and compared using AIC.

The final model had random intercepts for rats and a first-order autocorrelation

structure for weekly weights. Fixed predictor variables included treatments, week,

treatment-by-week interactions, treated leg (left or right), gender, and an indicator

variable for week 7. Code for SAS procedure proc mixed is included in Appendix

A(i).

Tumor volumes for both treated and untreated legs were analyzed jointly.

Again, several longitudinal models for tumor volume were considered and compared

using AIC. The final model had random intercepts and slopes among rats and be-

tween the legs of the same rat. Fixed predictor variables included treatments, week,
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Figure 3.3: Untreated tumor volume profiles over time

Figure 3.4: Survival profiles for female (left) and male (right) rats
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treatment-by-week interactions, treated leg (indicator variable to denote if the left

or right leg was treated), gender, and leg (indicator variable to denote if the leg was

treated or untreated). Code for this model is included in Appendix A(ii).

The survival data was modeled using the SAS procedure proc lifereg (SAS

2006). The response variable was days to death and the explanatory variables were

treatment and gender. The code is found in Appendix A(iii).

3.3 Separate Analyses using WinBUGS

WinBUGS is a software package that is used for hierarchical Bayesian analysis

of statistical models (Spiegelhalter et al. 2003). Similar separate models were used

for mass, tumor volume and survival as in the SAS analyses.

Modeling the first-order autocorrelation structure in WinBUGS is slightly more

complicated than modeling it in SAS. WinBUGS uses the inverse of the variance-

covariance matrix, called the precision matrix. To deal with this problem, we obtained

τ , the inverse of the first-order auto-regressive variance-covariance matrix. τ is

σ−2

1−ρ2

σ−2 (−ρ)
1−ρ2 0 . . . . . . . . . 0

σ−2 (−ρ)
1−ρ2

σ−2 (1+ρ2)
1−ρ2

σ−2 (−ρ)
1−ρ2 0 . . . . . . 0

0 σ−2 (−ρ)
1−ρ2

σ−2 (1+ρ2)
1−ρ2

σ−2 (−ρ)
1−ρ2 0 . . . 0

0 0 σ−2 (−ρ)
1−ρ2

σ−2 (1+ρ2)
1−ρ2

σ−2 (−ρ)
1−ρ2 0 . . .

0 0 0 . . . . . . . . . . . .

...
...

...
...

...
...

...

0
...

...
...

...
. . . σ−2

1−ρ2

where σ2 is the variance and ρ is the autocorrelation coefficient.

A vague normal prior for the mean of the intercepts and a vague gamma prior

for the precision of the intercepts were used. All of the regression coefficients were

also assigned vague normal priors. ρ was considered to be uniformly distributed with

18



parameters 1 and -1. σ−2 was assigned a vague gamma prior. The WinBUGS code

for the mass model is included in Appendix B(i).

Because, the initial mass of the rats ranged from about 150 grams to 350 grams

(Figure 3.1), our use of a normal prior with a standard deviation of 10000 is non-

informative. Moreover, the results were similar when the model was analyzed with

different priors. It can be concluded that the priors used are indeed vague.

To specify a similar model for tumor volume to that used in SAS using Win-

BUGS, we assumed independence among rats and independence between legs within

individual rats. We specified random intercepts and slopes for rats and legs within

rats. The means of the intercepts for each rat and leg within each rat were assigned

vague normal priors and the precisions of the intercepts were assigned vague gamma

priors. Similarly, the means of the slopes for each rat and leg within each rat were

given vague normal priors and the precisions of the slopes were given vague gamma

priors. The fixed predictors were the same as those included in the SAS model and

their corresponding regression coefficients were assigned vague normal priors. The

WinBUGS code is included in Appendix B(ii).

The survival model that was analyzed using the SAS procedure proc lifereg

was fitted using WinBUGS. The response variable, days to death was drawn from

a Weibull distribution. The predictors were treatment and gender. The regression

coefficients were assigned vague normal priors. The code can be found in Appendix

B(iii).

The results of the models described above and a comparison of the SAS and

WinBUGS results will be discussed in the Results chapter.

3.4 Joint Analysis of Longitudinal Mass Data and Survival Data using WinBUGS

This section describes the joint modeling of the mass model and the survival

model. The two models were linked together using a latent variable, Ui, that denotes
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the random effects for the mass model that are specific to each rat (i = 1 to 28).

In particular, Ui denotes the deviations of the intercept for each rat from an overall

intercept. Because the mean of the deviations is zero, we specified a zero-mean normal

distribution for Ui with the precision drawn from a vague gamma prior distribution.

We then computed

Wi = δ Ui

as a frailty term in the survival model. This links the mass model to the survival

model. The parameter δ measures the association between the submodels. The code

can be found in Appendix B(iv).
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Chapter 4

RESULTS

4.1 Longitudinal Results using SAS and WinBUGS

Table 4.1 displays the SAS and WinBUGS results of the mass model. The

WinBUGS results are based on a burn-in of the first 400,000 samples of a total of

1,000,000 samples drawn from the posterior distribution. A study of the trace and

density plots of the posterior distributions of the coefficients indicate that the results

are accurate and the MCMC algorithm converged. The plots of the coefficients of

treatment-by-week interaction and gender are included in Appendix C. The time

series plots based on 500 samples indicate reasonable mixing and are also included in

Appendix C. The results indicate that there is no treatment effect or treatment-by-

week interaction effect but there is definitely a gender effect. Week 7 is also significant.

The estimate of the first-order autocorrelation in the WinBUGS model is reasonably

close to the estimate obtained using SAS. As seen in Table 4.1, the coefficients of all

the other parameters of the model in SAS using proc mixed and WinBUGS are also

reasonably close.

The results of the tumor volume model from SAS and WinBUGS are shown in

Table 4.2. The WinBUGS results are calculated after a burn-in of the first 400,000

samples from a total of 1,000,000 samples drawn from the posterior distribution. The

plots of the coefficients of treatment-by-week interaction and week are included in

Appendix D. The results show that there is a significant effect of week and there

is also a significant difference between the left tumor and the right tumor. The

WinBUGS results are extremely close to the SAS results with the exception of the

estimate of week. Both the estimates indicate a significant effect of week.
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SAS WinBUGS
Parameter Estimate Standard Error Posterior Mean Posterior Std. Dev.
Intercept 161.95 11.23 158.30 13.48
Gender 106.58 7.73 106.60 8.36

Leg (left-right) 2.66 7.29 2.82 7.90
Treatment 2 0.46 13.42 0.46 14.97
Treatment 3 -7.90 13.16 -7.46 14.67
Treatment 4 25.68 13.36 25.98 14.89

Time 1.90 1.02 2.03 1.21
Treatment 2 * Time -0.70 1.42 -0.86 1.68
Treatment 3 * Time 1.41 1.36 1.33 1.60
Treatment 4 * Time 1.33 1.35 1.24 1.59

Week 7 -20.41 1.21 -20.46 1.63
ρ 0.94 0.03 0.88 0.03

Table 4.1: Mass model results using SAS and WinBUGS.

SAS WinBUGS
Parameter Estimate Standard Error Posterior Mean Posterior Std. Dev.
Intercept -1.51 0.27 -1.18 0.17
Gender 0.24 0.24 0.24 0.24

Leg (left-right) 0.63 0.22 0.63 0.22
Leg (treated-untreated) -0.14 0.14 -0.14 0.15

Treatment 2 -0.05 0.33 -0.04 0.32
Treatment 3 0.08 0.32 0.08 0.32
Treatment 4 0.12 0.33 0.11 0.32

Week 0.33 0.03 0.17 0.01
Treatment 2 * Week 0.03 0.04 0.03 0.04
Treatment 3 * Week 0.07 0.04 0.07 0.04
Treatment 4 * Week 0.01 0.04 0.01 0.04

Table 4.2: Tumor volume model results using SAS and WinBUGS.
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SAS WinBUGS
Parameter Estimate Standard Error Posterior Mean Posterior Std. Dev.
Intercept 4.20 0.01 4.22 0.08
Gender 0.16 0.02 0.15 0.09

Treatment 2 0.03 0.02 0.01 0.10
Treatment 3 -0.03 0.02 -0.03 0.10
Treatment 4 0.29 0.03 0.32 0.15

Table 4.3: Survival model results using SAS and WinBUGS.

4.2 Survival Results

This section describes the SAS and WinBUGS results of survival data. The

model in WinBUGS is analyzed using a burn-in of 400,000 samples from a total of

1,00,0000 draws from the posterior distributions of the parameter coefficients. Table

4.3 describes the results of SAS procedure proc lifereg and WinBUGS. Table 4.4

describes the median survival time with respect to treatment and gender.

Due to different parametrization in SAS and WinBUGS, the estimates obtained

in WinBUGS were converted to be consistent with the estimates obtained in SAS. This

was done by multiplying the WinBUGS coefficients by the negative of the inverse of

the Weibull shape parameter. The trace and density plots of the coefficients indicate

that the MCMC algorithm converged (Appendix E). The results indicate that rats in

the treatment with ultrasound and the carrier have a better survival rate than rats in

the other three treatments groups. Also, both the SAS and WinBUGS results indicate

SAS WinBUGS
Median Female Male Female Male

no ultrasound, no carrier 74.38 63.06 74.77 64.26
no ultrasound, carrier 77.10 65.37 75.63 64.97
ultrasound, no carrier 72.27 61.27 72.41 62.37

ultrasound, carrier 99.45 84.31 103.40 88.71

Table 4.4: Median Survival times using SAS and WinBUGS.
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that the ultrasound and carrier treatment have a significant effect on survival.

4.3 Goodness of Fit

Goodness of fit was carried out for the non-Bayesian models. The results of

the separate models in SAS and WinBUGS were very similar, so it is reasonable to

assume that the goodness of fit evaluation of the SAS models would apply to the

Bayesian models.

A residual plot represents the difference between the observed response variable

and the predicted value. The residual plot (Figure 4.1) for the mass model was

constructed and from the plot it appears that there are no odd trends. In general, the

points seem to be fluctuating randomly around zero. In addition, the predicted values

for mass were plotted against the observed values (Figure 4.2). For the most part,

there appears to be a linear relationship between the predicted and observed values.

The fit of the survival model was checked using the Cox-Snell residual plot(Klein

and Moeschberger 2003) (Figure 4.3). This method involves the estimation of the

cumulative hazard function for a Weibull distribution and the Cox-Snell residuals.

For the most part, the plot indicates a reasonable fit.
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Figure 4.1: Residual plot for Mass model. Treatment 1: no ultrasound, no carrier,
Treatment 2: no ultrasound, carrier, Treatment 3: ultrasound, no carrier, Treatment
4: ultrasound, carrier
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Figure 4.2: Predicted plot for Mass model. Treatment 1: no ultrasound, no carrier,
Treatment 2: no ultrasound, carrier, Treatment 3: ultrasound, no carrier, Treatment
4: ultrasound, carrier

Figure 4.3: Cox-Snell Residual plot for Survival model
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4.4 Joint Results

This section describes the WinBUGS results of the joint analysis of mass and

survival data. The analysis is based on a burn-in of the first 100,000 samples from

a total of 350,000 samples drawn from the posterior distribution. Table 4.5 displays

the WinBUGS results of the joint model and the two separate models. A study of

the trace and density plots of the posterior distributions of the coefficients (Appendix

F) indicate that the results are accurate and MCMC algorithm converged. The time

series plots based on 500 samples indicate reasonable mixing. As seen in Table 4.5,

the estimates of the parameters of the separate models are similar to those of the

joint model.

In the separate analysis, the median survival times for the rats in the treatment

with the ultrasound and the carrier were much higher than the median survival times

for the rats in the other treatments. This is possibly because the rats in this treatment

group were larger than the rats in the other three treatment groups. The joint model

was fitted in the hope that this difference between the treatments in the survival

model would decrease once the mass of the rats was taken into account. The median

survival times from both the separate and the joint models are displayed in Table

4.6. The treatment with the ultrasound and the carrier continues to have the highest

median survival time.

The rats in the ulrasound, no carrier group had the lowest median survival time

in the separate model. In the joint model, the rats in the no ultrasound, carrier group

have the lowest median survival time. This is true for both male and female rats.

The estimated coefficient δ, which measures the association between mass and the

survival of the rat, is negative but not significant. Since the results of the joint model

were very close to the results of the separate model, no further goodness of fit was

conducted. Again, because the analyses of these models with different priors resulted

in similar estimates for the parameters, we think the priors used are indeed vague.
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Separate Analysis Joint Analysis
Parameter Posterior Posterior Posterior Posterior

Mean Std. Dev Mean Std. Dev.
Mass Submodel Mass Submodel

Intercept 158.30 13.48 158.60 13.35
Gender 106.60 8.36 106.70 8.20

Leg (left-right) 2.82 7.90 2.72 7.77
Treatment 2 0.46 14.97 0.46 14.95
Treatment 3 -7.46 14.67 -7.49 14.62
Treatment 4 25.98 14.89 26.01 14.88

Time 2.03 1.21 2.01 1.23
Treatment 2 * Time -0.86 1.68 -0.87 1.71
Treatment 3 * Time 1.33 1.60 1.35 1.63
Treatment 4 * Time 1.24 1.59 1.25 1.61

Week 7 -20.46 1.63 -20.43 1.62
ρ 0.88 0.03 0.89 0.02

Survival Submodel Survival Submodel
Intercept 4.22 0.08 4.22 0.11
Gender 0.15 0.09 0.04 0.12

Treatment 2 0.01 0.10 -0.08 0.15
Treatment 3 -0.03 0.10 -0.01 0.15
Treatment 4 0.32 0.15 0.32 0.18

δ - - -796.5 893.5

Table 4.5: Separate and Joint Analysis of Mass and Survival Submodels using Win-
BUGS.

Separate Analysis Joint Analysis
Median Female Male Female Male

no ultrasound, no carrier 74.77 64.26 70.84 67.91
no ultrasound, carrier 75.63 64.97 64.67 62.14
ultrasound, no carrier 72.41 62.37 69.44 66.87

ultrasound, carrier 103.40 88.71 97.87 93.76

Table 4.6: Median Survival times for Separate and Joint Models.

28



Chapter 5

CONCLUSION

The results of the joint model demonstrate that the use of the ultrasound and

the carrier do not have any negative effects on the survival of the rats. In fact, the

rats who were in the treatment with the ultrasound and the carrier survived longer

than the rats in the other three treatment groups. The joint model was conducted in

the hope that the adjustment for the effect of mass on survival would account for the

increased survival in the ultrasound, carrier group. It was expected that the mean

survival times of all the rats would be similar in the joint model; however, this was

not the case.

Once the separate models were formulated using WinBUGS, the joint modeling

was accomplished fairly easily. However, formulating the separate models in Win-

BUGS to match the SAS results was quite a task. Accomodating the autocorrelation

structure of the weekly weights was diffcult in WinBUGS. Moreover, due to differ-

ent parametrization of the Weibull distribution used in WinBUGS and SAS, it was

necessary to convert the WinBUGS results to be more consistent with the SAS re-

sults. Nevertheless, we agree with Guo and Carlin that conducting a joint analysis for

longitudinal and survival data is highly recommended and fairly easy to implement.

A method called the Bayesian χ2 test for goodness of fit for Bayesian models

was recently proposed by Johnson (2004). This method is considered better than

the posterior predictive method to test the fit of a model. The diagnostic used in

the Bayesian χ2 test for goodness of fit is related to the classical χ2 goodness of fit

statistic. It requires the allocation of observations to bins according to the value of

each observation’s conditional distribution function, conditional on a single parameter

value sampled from the posterior distribution. The implementation of this method
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to the ultrasound-microcapsule data is highly recommended. It will be an extension

of the work of Johnson since the ultrasound-microcapsule data is multivariate.

The results of this experiment indicate that this new technology involving ul-

trasound waves and microcapsules is a promising way to reduce the side-effects of

chemotherapy. We recommend that the joint modeling of the mass model, tumor vol-

ume model, and the survival model should be performed to obtain a clearer picture

of the effect of the ultrasound and the microcapsules.
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Appendix A

SAS CODE

options ls=90 formdlim="#";

/*Importing the first Excel file*/

PROC IMPORT DATAFILE="c:\deepthi\project\rats1a.xls"

OUT=rats1 REPLACE;

RANGE="A3:J332";

GETNAMES=yes;

run;

/*Sorting the dataset*/

proc sort data=rats1;

by rat_name;

run;

/*Importing the second Excel file*/

PROC IMPORT DATAFILE="c:\deepthi\project\rats2a.xls"

OUT=rats2 REPLACE;

RANGE="B2:H33";

GETNAMES=yes;

run;

/*Sorting the dataset*/

proc sort data=rats2;
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by rat_name;

run;

/*Merging the two datasets by ratname*/

data mergeddata;

merge rats1 rats2;

by rat_name;

drop F6;

run;

proc sort data=mergeddata;

by treatment sex rat_name;

run;

/*Calculating volume*/

data merge2;

set mergeddata;

if leg_US = ’L’ then do;

lcmt1=left1cm;

lcmt2=left2cm;

rcmu1=right1cm;

rcmu2=right2cm;

end;

if lcmt1<lcmt2 then do;

tvolume=(lcmt1*lcmt1*lcmt2)/2;
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tlogv=log(tvolume);

end;

if lcmt1>lcmt2 then do;

tvolume=(lcmt2*lcmt2*lcmt1)/2;

tlogv=log(tvolume);end;

if rcmu1<rcmu2 then do;

uvolume=(rcmu1*rcmu1*rcmu2)/2;

ulogv=log(uvolume);

end;

if rcmu1>rcmu2 then do;

uvolume=(rcmu2*rcmu2*rcmu1)/2;

ulogv=log(uvolume);

end;

if leg_US = ’R’ then do;

lcmu1=left1cm;

lcmu2=left2cm;

rcmt1=right1cm;

rcmt2=right2cm;

end;

if lcmu1<lcmu2 then do;

uvolume=(lcmu1*lcmu1*lcmu2)/2;

ulogv=log(uvolume);

end;
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if lcmu1>lcmu2 then do;

uvolume=(lcmu2*lcmu2*lcmu1)/2;

ulogv=log(uvolume);

end;

if rcmt1<rcmt2 then do;

tvolume=(rcmt1*rcmt1*rcmt2)/2;

tlogv=log(tvolume);

end;

if rcmt1>rcmt2 then do;

tvolume=(rcmt2*rcmt2*rcmt1)/2;

tlogv=log(tvolume);

end;

run;

proc sort data=merge2;

by treatment rat_name tmtweek;

run;

data merge4;

set merge2;

leg=1; /*treated=1*/

logv=tlogv;

output;
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leg=0; /*untreated=0*/

logv=ulogv;

output;

data merge28;

set merge4;

if (rat_name=’H02’) or (rat_name=’H32’);

then delete;

run;
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(i). Mass model

data merge5;

set merge28;

week7=(tmtweek=7);

run;

proc mixed data=merge5 covtest;

class treatment rat_name leg_US;

model ratmass=sex leg_US treatment week7 tmtweek

treatment*tmtweek /ddfm=kenwardroger solution;

random rat_name;

repeated/subject=rat_name type=AR(1);

run;
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ii). Tumor Volume model

proc mixed data=merge28 covtest;

class sex leg_US leg treatment rat_name;

model logv=sex leg_US leg treatment tmtweek

treatment*tmtweek/ddfm=kenwardroger solution;

random intercept tmtweek/subject=rat_name type=vc;

random intercept tmtweek/subject=leg(rat_name) type=vc;

run;
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(iii). Survival model

proc lifereg data=merge28;

class treatment sex;

model days_to_death*status(0)=treatment sex/dist=weibull;

run;
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Appendix B

WINBUGS CODE

(i). Mass

model

{

c1<-(isigmasq)/(1-pow(rho,2))

c2<-(isigmasq)*(1+pow(rho,2))/(1-pow(rho,2))

c3<-isigmasq*(-rho)/(1-pow(rho,2))

for (i in 1:M)

{

for (j in 1:M)

{

a1[i,j]<-step(1-i)*step(1-j)

b1[i,j]<-step(i-M)*step(j-M)

c1a[i,j]<-step(i-j)*step(j-i)

c1b[i,j]<-(1 - step(1-i)*step(1-j))

c1c[i,j]<-(1 - step(i-M)*step(j-M))

d1a[i,j]<-step(1-i+j)*step(1-j+i)

d1b[i,j]<-(1-step(i-j))*step(j-i)

e1a[i,j]<-step(1-j+i)*step(1-i+j)
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e1b[i,j]<-(1-step(j-i))*step(i-j)

a[i,j]<-a1[i,j]*c1

b[i,j]<-b1[i,j]*c1

c[i,j]<-c1a[i,j]*c1b[i,j]*c1c[i,j]*c2

d[i,j]<-d1a[i,j]*d1b[i,j]*c3

e[i,j]<-e1a[i,j]*e1b[i,j]*c3

tau[i,j]<- a[i,j]+b[i,j]+c[i,j]+d[i,j]+e[i,j]

}

}

for(k in 1 : N)

{

rmass[k,1:M]~dmnorm(mu[k,1:M],tau[1:M,1:M])

for (l in 1:M)

{

mu[k, l] <- b0[k] + beta.c1*tmt2[k]+ beta.c2*tmt3[k] +

beta.c3*tmt4[k]+ 0*tmt1[k]+beta.c5*legtr[k]

+beta.c6*sex[k] +beta.c7*time1[l] +

beta.c8*tmt2[k]*time1[l] + beta.c9*tmt3[k]*time1[l]

+ beta.c10*tmt4[k]*time1[l] + beta.c11 *week7[l]

}

b0[k] ~ dnorm(beta.c0,beta.tau0)

}

44



beta.c0 ~ dnorm(0.0,1.0E-8)

beta.c1 ~ dnorm(0.0,1.0E-8)

beta.c2 ~ dnorm(0.0,1.0E-8)

beta.c3 ~ dnorm(0.0,1.0E-8)

beta.c5 ~ dnorm(0.0,1.0E-8)

beta.c6 ~ dnorm(0.0,1.0E-8)

beta.c7 ~ dnorm(0.0,1.0E-8)

beta.c8 ~ dnorm(0.0,1.0E-8)

beta.c9 ~ dnorm(0.0,1.0E-8)

beta.c10 ~ dnorm(0.0,1.0E-8)

beta.c11 ~ dnorm(0.0,1.0E-8)

beta.tau0 ~ dgamma(0.0001,0.0001)

sigmatau0 <- 1/beta.tau0

rho ~ dunif(-1,1)

isigmasq ~ dgamma(0.0001,0.0001)

intercept <- beta.c0

treatment2 <- beta.c1

treatment3 <- beta.c2

treatment4 <- beta.c3

leg_left_right <- beta.c5

gender <- beta.c6

time <- beta.c7
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week_7 <- beta.c11

treatment2_time <- beta.c8

treatment3_time <- beta.c9

treatment4_time <- beta.c10

AR1 <- rho

}

# Data

list(time1=c(1,2,3,4,5,6,7,8,9,10,11,12), M=12, N=28,

rmass=structure(.Data=c(

.

.

.

.

.

.

.

.

),

.Dim=c(28,12)),

tmt1= c(0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,

0,0,0,0,0,1,1,0,0,1,0),

tmt2= c(0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,
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0,0,1,1,1,0,0,0,1,0,0),

tmt3= c(1,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,0,

0,0,0,0,0,0,0,1,0,0,0),

tmt4= c(0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,

1,1,0,0,0,0,0,0,0,0,1),

legtr= c(1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0,

0,0,0,0,0,0,1,0,0,0,0,0),

week7= c(0,0,0,0,0,0,1,0,0,0,0,0),

sex= c(1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,

1,1,1,1,1,1,1,1,0,0,0))

# Initial values

list(

b0=c(200,200,200,200,200,200,200,200,200,200,

200,200,200,200,200,200,200,200,200,200,200,

200,200,200,200,200,200,200),

beta.c0=160,beta.c1=3,beta.c2=-6,beta.c3=26,

beta.c5=-4,beta.c6=107, beta.c7=1.9,beta.c8=

-0.8,beta.c9=1.3, beta.c10=1.2,beta.c11=-20,

isigmasq=1,beta.tau0=1,rho=0.9)
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(ii). Tumor Volume

model

{

mualpha ~ dnorm(0.0,1.0E-8)

mubeta~dnorm(0.0,1.0E-8)

taualpha ~ dgamma(0.0001,0.0001)

taudel ~ dgamma(0.0001,0.0001)

taugam ~ dgamma(0.0001,0.0001)

tau ~ dgamma(0.0001,0.0001)

taubeta ~ dgamma(0.0001,0.0001)

beta.c1 ~ dnorm(0.0,1.0E-8)

beta.c2 ~ dnorm(0.0,1.0E-8)

beta.c3 ~ dnorm(0.0,1.0E-8)

beta.c5 ~ dnorm(0.0,1.0E-8)

beta.c6 ~ dnorm(0.0,1.0E-8)

beta.c7 ~ dnorm(0.0,1.0E-8)

beta.c8 ~ dnorm(0.0,1.0E-8)

beta.c9 ~ dnorm(0.0,1.0E-8)

beta.c10 ~ dnorm(0.0,1.0E-8)

sig<-1/tau

sigalpha<-1/taualpha
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sigbeta<- 1/taubeta

for(i in 1 : N)

{

alpha[i]~dnorm(mualpha,taualpha)

beta[i]~dnorm(mubeta,taubeta)

for (k in 1:L)

{

del[i,k]~dnorm(alpha[i],taudel)

gam[i,k]~dnorm(beta[i],taugam)

for (j in 1:M)

{

logv[i,j,k]~dnorm(mu[i,j,k],tau)

mu[i,j,k] <- alpha[i] + del[i,k]+beta[i]*time[j]+

gam[i,k]*time[j]+ beta.c1*tmt2[i]+ beta.c2*tmt3[i]

+ beta.c3*tmt4[i]+ 0*tmt1[i]+ beta.c5*legtr[i]+

beta.c6*sex[i]+beta.c7*leg[k] +

beta.c8 * tmt2[i] * time[j] +

beta.c9 * tmt3[i] * time[j] +

beta.c10 * tmt4[i] * time[j]

}

}

}
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treatment2 <-beta.c1

treatment3 <- beta.c2

treatment4 <- beta.c3

leg_treated_untreated <-beta.c7

leg_left_right <- beta.c5

gender <- beta.c6

treatment2_time <- beta.c8

treatment3_time <-beta.c9

treatment4_time <- beta.c10

}

# Data

list(time=c(1,2,3,4,5,6,7,8,9,10,11,12), M=12,

N=28,L=2, logv=structure(.Data=c(

.

.

.

.

.

.

.Dim=c(28,12,2)),

tmt1=c(0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,

0,0,1,1,0,0,1,0),
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tmt2=c(0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,

1,1,0,0,0,1,0,0),

tmt3=c(1,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0),

tmt4=c(0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,

0,0,0,0,0,0,0,1),

legtr= c(1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,

0,0,0,1,0,0,0,0,0),

sex=c(1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,

1,1,1,1,1,0,0,0),

leg=c(0,1))

# Initial Values

list(alpha=c(0.1,0.12,0.13,0.14,0.15,0.16,0.17,0.18,

0.19,0.015, 0.215,0.315,0.415,0.515,0.615,0.715,

0.815,0.151,0.152,

0.153,0.154,0.155,0.156,0.157,0.185,0.915,0.4315,0.2315),

beta=c(0.21,0.22,0.23,0.24,0.25,0.26,0.27,0.28,0.29,0.12,

0.122,0.1232,0.1342,0.132,0.142,0.152,0.162,0.172,0.182,

0.192,0.212,0.222,0.232,0.242,0.252,0.262,0.272,0.282),

del=structure(.Data=c(0.1,0.12,0.13,0.14,0.15,0.16,

0.17,0.18,0.19,0.015,0.215,0.315,0.415,0.515,

0.615,0.715,0.815,
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0.151,0.152,0.153,0.154,0.155,0.156,0.157,0.185,0.915,

0.4315,0.2315,0.1215,0.6715,0.1,0.12,0.13,0.14,0.15,0.16,

0.17,0.18,0.19,0.015,0.215,0.315,0.415,0.515,0.615,0.715,

0.815,0.151,0.152,0.153,0.154,0.155,0.156,0.157,

0.185,0.915), .Dim=c(28,2)),

gam=structure(.Data=c(0.1,0.12,0.13,0.14,

0.15,0.16,0.17,0.18,

0.19,0.015,0.215,0.315,0.415,0.515,0.615,

0.715,0.815,0.151,

0.152,0.153,0.154,0.155,0.156,0.157,0.185,

0.915,0.4315,0.2315,

0.1215,0.6715,0.1,0.12,0.13,0.14,0.15,0.16,

0.17,0.18,0.19,0.015,

0.215,0.315,0.415,0.515,0.615,0.715,0.815,

0.151,0.152,0.153,

0.154,0.155,0.156,0.157,0.185,0.915),

.Dim=c(28,2)),

beta.c1=-0.05,beta.c2=0.07,beta.c3=0.11,beta.c5=-0.6,

beta.c6=-0.2,mubeta=0.33,taubeta=1,mualpha=-1.5,

taualpha=5,taugam=1,beta.c7=-0.15,beta.c8=0.02,

beta.c9=0.07,beta.c10=0.006,taubeta=262,taudel=5,

taugam=300,tau=6)
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(iii). Survival

model

{

for (i in 1:N)

{

surt [i] ~ dweib(p,mut [i]) I(surt.cen[i] , )

log(mut [i] ) <- beta2.c1+

beta2.c3 * tmt2[i] + beta2.c4 * tmt3[i] +

beta2.c5 * tmt4[i] +

beta2.c7*genderfem[i]

}

scale<- -(1/p)

intercept<- scale * beta2.c1

treatment2<- scale * (beta2.c3)

treatment3<- scale * (beta2.c4)

treatment4<- scale * (beta2.c5)

gender<- scale * (beta2.c7)

c2a<-beta2.c1+beta2.c3

median2male<-pow(log(2) * exp(-c2a),1/p)
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c2b<-beta2.c1+beta2.c3+beta2.c7

median2female<-pow(log(2) * exp(-c2b),1/p)

c3a<-beta2.c1+beta2.c4

median3male<-pow(log(2) * exp(-c3a),1/p)

c3b<-beta2.c1+beta2.c4+beta2.c7

median3female<-pow(log(2) * exp(-c3b),1/p)

c4a<-beta2.c1+beta2.c5

median4male<-pow(log(2) * exp(-c4a),1/p)

c4b<-beta2.c1+beta2.c5+beta2.c7

median4female<-pow(log(2) * exp(-c4b),1/p)

c100a<-beta2.c1

median100male<-pow(log(2) * exp(-c100a),1/p)

c100b<-beta2.c1+beta2.c7

median100female<-pow(log(2) * exp(-c100b),1/p)

p ~ dgamma(0.0001,0.0001)

beta2.c1 ~ dnorm(0,1.0E-8)

beta2.c3 ~ dnorm(0,1.0E-8)

beta2.c4 ~ dnorm(0,1.0E-8)

beta2.c5 ~ dnorm(0,1.0E-8)

beta2.c7 ~ dnorm(0,1.0E-8)

}
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#data

list(N=28,surt=c(

.

.

.

.

),

surt.cen=c(

.

.

.

.

),

genderfem=c( 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,

0,0,0,0,0,0,1,1,1),

tmt2=c( 0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,

0,0,0,1,0,0),

tmt3=c( 1,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,0,

0,0,1,0,0,0),

tmt4=c( 0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,

0,0,0,0,0,1))

# initial values
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list(beta2.c1=0,beta2.c3=0,beta2.c4=0,

beta2.c5=0,p=4.8,beta2.c7=0)
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(iv). Joint Model

model

{

c1<-(isigmasq)/(1-pow(rho,2))

c2<-(isigmasq)*(1+pow(rho,2))/(1-pow(rho,2))

c3<-isigmasq*(-rho)/(1-pow(rho,2))

for (i in 1:M)

{

for (j in 1:M)

{

a1[i,j]<-step(1-i)*step(1-j)

b1[i,j]<-step(i-M)*step(j-M)

c1a[i,j]<-step(i-j)*step(j-i)

c1b[i,j]<-(1 - step(1-i)*step(1-j))

c1c[i,j]<-(1 - step(i-M)*step(j-M))

d1a[i,j]<-step(1-i+j)*step(1-j+i)

d1b[i,j]<-(1-step(i-j))*step(j-i)

e1a[i,j]<-step(1-j+i)*step(1-i+j)

e1b[i,j]<-(1-step(j-i))*step(i-j)

a[i,j]<-a1[i,j]*c1

b[i,j]<-b1[i,j]*c1
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c[i,j]<-c1a[i,j]*c1b[i,j]*c1c[i,j]*c2

d[i,j]<-d1a[i,j]*d1b[i,j]*c3

e[i,j]<-e1a[i,j]*e1b[i,j]*c3

tau[i,j]<- a[i,j]+b[i,j]+c[i,j]+d[i,j]+e[i,j]

}

}

for(k in 1 : N)

{

rmass[k,1:M]~dmnorm(mu[k,1:M],tau[1:M,1:M])

for (q in 1:M)

{

mu[k, q] <- b0 + beta.c1*tmt2[k]+ beta.c2*tmt3[k] +

beta.c3*tmt4[k]+ 0*tmt1[k]+beta.c5*legtr[k]

+beta.c6*sex[k] +beta.c7*time1[q] +

beta.c8*tmt2[k]*time1[q] + beta.c9*tmt3[k]*time1[q]

+ beta.c10*tmt4[k]*time1[q] + beta.c11 *week7[q] +U[k]

}

surt[k] ~ dweib(p,mut [k]) I(surt.cen[k] , )

log(mut [k] ) <- beta2.c1+ 0*tmt1[k]+

beta2.c3 * tmt2[k] + beta2.c4 * tmt3[k] +

beta2.c5 * tmt4[k] +

beta2.c7*genderfem[k] + r1*U[k]
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U[k] ~ dnorm(0,tauU0)

}

b0 ~ dnorm(0.0,1.0E-8)

tauU0 ~ dgamma(0.0001,0.0001)

r1 ~ dnorm(0.0,1.0E-8)

beta.c1 ~ dnorm(0.0,1.0E-8)

beta.c2 ~ dnorm(0.0,1.0E-8)

beta.c3 ~ dnorm(0.0,1.0E-8)

beta.c5 ~ dnorm(0.0,1.0E-8)

beta.c6 ~ dnorm(0.0,1.0E-8)

beta.c7 ~ dnorm(0.0,1.0E-8)

beta.c8 ~ dnorm(0.0,1.0E-8)

beta.c9 ~ dnorm(0.0,1.0E-8)

beta.c10 ~ dnorm(0.0,1.0E-8)

beta.c11 ~ dnorm(0.0,1.0E-8)

rho~dunif(-1,1)

isigmasq~dgamma(0.0001,0.0001)

intercept_mass<- b0

treatment2_mass<- beta.c1

treatment3_mass<- beta.c2

treatment4_mass<- beta.c3
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leg_left_right <- beta.c5

gender_mass <- beta.c6

time<- beta.c7

week_7 <- beta.c11

treatment2_time<- beta.c8

treatment3_time<- beta.c9

treatment4_time<- beta.c10

AR1<- rho

scale<- -(1/p)

intercept_survival<- scale * beta2.c1

treatment2_survival<- scale * (beta2.c3)

treatment3_survival<- scale * (beta2.c4)

treatment4_survival<- scale * (beta2.c5)

gender_survival<- scale * (beta2.c7)

c2a<-beta2.c1+beta2.c3

median2male<-pow(log(2) * exp(-c2a),1/p)

c2b<-beta2.c1+beta2.c3+beta2.c7

median2female<-pow(log(2) * exp(-c2b),1/p)

c3a<-beta2.c1+beta2.c4

median3male<-pow(log(2) * exp(-c3a),1/p)

c3b<-beta2.c1+beta2.c4+beta2.c7

median3female<-pow(log(2) * exp(-c3b),1/p)
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c4a<-beta2.c1+beta2.c5

median4male<-pow(log(2) * exp(-c4a),1/p)

c4b<-beta2.c1+beta2.c5+beta2.c7

median4female<-pow(log(2) * exp(-c4b),1/p)

c100a<-beta2.c1

median100male<-pow(log(2) * exp(-c100a),1/p)

c100b<-beta2.c1+beta2.c7

median100female<-pow(log(2) * exp(-c100b),1/p)

p ~ dgamma(0.0001,0.0001)

beta2.c1 ~ dnorm(0,1.0E-8)

beta2.c3 ~ dnorm(0,1.0E-8)

beta2.c4 ~ dnorm(0,1.0E-8)

beta2.c5 ~ dnorm(0,1.0E-8)

beta2.c7 ~ dnorm(0,1.0E-8)

}

# data

list(time1=c(1,2,3,4,5,6,7,8,9,10,11,12), M=12, N=28,

rmass=structure(.Data=c(

.

.

.

.
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.Dim=c(28,12)),

tmt1= c( 0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,

0,0,1,1,0,0,1,0),

tmt2= c( 0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,

1,1,0,0,0,1,0,0),

tmt3= c( 1,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0),

tmt4= c( 0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,

0,0,0,0,0,0,0,1),

legtr= c( 1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,

0,0,0,1,0,0,0,0,0),

week7= c(0,0,0,0,0,0,1,0,0,0,0,0),

sex= c( 1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,

1,1,1,1,1,0,0,0),

surt=c(

.

.

.

.

),

surt.cen=c(

.

.
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.

.

),

genderfem=c( 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,

0,0,0,0,0,0,0,1,1,1))

# Initial Values

list(

b0=160,beta.c1=0.43,beta.c2=-8,beta.c3=26,beta.c5=3,

beta.c6=107, beta.c7=1.9,beta.c8=-0.7,beta.c9=1.4,

beta.c10=1.3,beta.c11=-20,

isigmasq=1,rho=0.9,

beta2.c1=22,beta2.c3=0,beta2.c4=0,

beta2.c5=0,p=4.8,beta2.c7=0,

tauU0=1, r1=0)

63



Appendix C

MASS GRAPHS

Figure C.1: Posterior Distributions for selected coefficients in Mass model
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Figure C.2: Time series plots for selected coefficients in Mass model
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Figure C.3: Plots to demonstrate mixing for selected coefficients in Mass model
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Appendix D

TUMOR VOLUME GRAPHS

Figure D.1: Posterior Distributions for selected coefficients in Tumor volume model
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Figure D.2: Time Series plots for selected coefficients in Tumor volume model
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Figure D.3: Plots to demonstrate mixing for selected coefficients in Tumor volume
model
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Appendix E

SURVIVAL GRAPHS

Figure E.1: Posterior Distributions for selected coefficients in Survival model
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Figure E.2: Time Series plots for selected coefficients in Survival model
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Figure E.3: Plots to demonstrate mixing for selected coefficients in Survival model
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Appendix F

JOINT MODEL GRAPHS

Figure F.1: Posterior Distributions for selected coefficients of the Mass Submodel in
the Joint Model
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Figure F.2: Time Series plots for selected coefficients of the Mass Submodel in the
Joint Model
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Figure F.3: Plots to demonstrate mixing for selected coefficients of the Mass Submodel
in the Joint Model
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Figure F.4: Posterior Distributions for selected coefficients of the Survival Submodel
in the Joint Model
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Figure F.5: Time Series plots for selected coefficients of the Survival Submodel in the
Joint Model
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Figure F.6: Plots to demonstrate mixing for selected coefficients of the Survival Sub-
model in the Joint Model
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