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ABSTRACT

Application of Convex Methods to Identification of Fuzzy Subpopulations

Ryan L. Eliason

Department of Statistics

Master of Science

In large observational studies, data are often highly multivariate with many discrete
and continuous variables measured on each observational unit. One often derives subpopu-
lations to facilitate analysis. Traditional approaches suggest modeling such subpopulations
with a compilation of interaction effects. However, when many interaction effects define each
subpopulation, it becomes easier to model membership in a subpopulation rather than nu-
merous interactions. In many cases, subjects are not complete members of a subpopulation
but rather partial members of multiple subpopulations. Grade of Membership scores pre-
serve the integrity of this partial membership. By generalizing an analytic chemistry concept
related to chromatography-mass spectrometry, we obtain a method that can identify latent
subpopulations and corresponding Grade of Membership scores for each observational unit.

Keywords: Grade of Membership scores, archetype, maximum entropy, fuzzy partitioning
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chapter 1

INTRODUCTION

In highly multivariate observational studies, one often facilitates analysis through classical

approaches, such as a compilation of interaction effects. The use of interactions comes from

experimental design where the factors can have antagonistic or synergistic effects that add to

the main effect factors. With a large number of covariates, it is often challenging to identify

which interaction effects are necessary to characterize the population. In addition, the

potentially high number of interaction effects often uses many degrees of freedom, which is a

luxury in a highly multivariate setting. Koch et al. (1977) propose an alternative approach

based on the idea of subpopulations. Based on the belief that subjects are not identically

distributed from a single distribution, but rather are from a larger mixture distribution,

subpopulations become valuable in partitioning the variance associated with a response

variable. Koch et al. (1977) claim the interactions between observed factor variables may well

be indicative of latent subpopulations and not simply the effect resembling an interaction

between two or more design variables. In this case, these latent subpopulations are not

apparent in the data but are only implicitly characterized by the patterns of response in

the observational variables. Interaction effects collectively characterize each subpopulation.

Thus, identifying latent subpopulations seems more appropriate than modeling numerous

interactions.

Traditionally, if observational units come from one of the particular subpopulations,

then a sample of such individuals is viewed as being from a mixture distribution comprised

of each subpopulation distribution. In this case, each individual is from one explicit sub-

population. The probabilities of the mixture represent the probability that an individual is

a member of each specific subpopulation. In many situations, subjects themselves can be
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considered mixtures of multiple subpopulations. Such individuals are only vague or fuzzy

members of each subpopulation. In this sense, each observational unit can often be viewed

as a composition distribution, having a set of coefficients denoting the strength of their

membership in each subpopulation.

As an example, consider an informed citizen voting in an election. They most likely

do not agree with one party on every issue. Instead, they might agree with one party on

40% of the issues and the other party on 60% of the issues. The key here is that the two

theoretical parties are fixed entities that most citizens do not perfectly agree with. Each

citizen agrees partially with both parties. A political survey would then identify the voter as

a partial member of each party. The survey might give a score to the citizen denoting their

placement on a spectrum relating the parties. One might refer to this value as a Grade of

Membership (GoM) score because it denotes the strength of membership that the subject

has in a particular subpopulation.

This situation is very similar to that of chemical analysis using, say chromatographic

separation coupled with mass spectrometry. Such analyses are common in analytic chemistry.

The technique characterizes the compounds that compose a chemical composition. Consider

that there exists a number of compounds contained in the chemical composition. When

analyzing such a composition, samples are taken over time. Only a few compounds are

represented at each particular time. This is done by using a technique referred to generally

as chromatography. Chromatography separates or partially separates compounds over time.

The sample observed at a particular time can be viewed as a stratified observation of the

chemical composition. The relative expression rate of compounds governing the sample

changes across time. In other words, the sample can be viewed as a composition of the pure

compounds. Each sample can be accounted for fully by the set of pure components. These

pure compounds are sometimes referred to as pure variables. Mass spectrometry tools can

identify discriminant scores that denote the relative presence of a particular pure variable
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for a particular sample. In the statistics field, these discriminant scores can be thought of

as GoM scores.

If we want to define GoM scores for our highly multivariate observational study,

we can obtain a new set of analysis tools based on the methods that have been used in

conjunction with chromatography-mass spectrometry. To illustrate this, consider each ob-

servational unit as being a fuzzy composition of subpopulations. The difference between the

chromatography-mass spectrometry approaches and the statistics analysis theory is that in

chemistry, all compounds which are used in a composition have already been characterized.

If a sample at a particular time is found to be 90% salt, then salt is certainly one of the

compounds that governs the composition. In statistics, however, we do not enter the analysis

knowing what the subpopulations are. Thus, we wish to determine the set of latent subpop-

ulations that best characterize the sample, and ultimately the population. In addition, we

want to know the strength of membership for each observational unit with regard to each

latent subpopulation. By generalizing the methods used in mass spectrometry analysis, we

can define subpopulations and corresponding GoM scores for each observational unit.

The information partition function (IPF), originally derived by Oliphant (2003) and

Engler (2002), is an alternative method to define subpopulations and create GoM scores for

a sample. The IPF can be derived based on the second law of thermodynamics (Cannon

2008). The fundamental assumption is that highly informative GoM scores can be obtained

by maximizing the entropy that exists in a system. The IPF is an iterative solution to obtain

GoM scores under this assumption. The IPF exhibits a great deal of variability due to the

algorithm’s initialization process. Our methodology stands alone, but it can also be used to

initialize the IPF.

1.1 Outline

We first give a background on the current relevant work. We then introduce a novel approach

to obtain GoM scores, founded on the chromatography-mass spectrometry process. We will
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outline this methodology in great detail. Then, using our methodology, we analyze an

Introdutory Statistics Course data set. Finally, we use cross-validation to show usefulness

of the GoM scores.
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chapter 2

LITERATURE REVIEW

2.1 Overview

In the following sections, we present brief backgrounds on Grade of Membership method-

ologies, gas chromatography-mass spectrometry techniques, interaction modeling, and the

information partition function.

2.2 Grade of Membership

When fitting a Grade of Membership model, we may view the vector of measurements on

each individual as responses to a questionnaire. For this we need to set up a framework

of variables and indexers to work with. Following Oliphant (2003), we define the following

variables and indexers:

i = index on observational units,

j = index on questions,

l = index on possible responses to question j,

k = index on pure variables,

yijl =


1 if observational unit i chose response l on question j

0 otherwise,

gik = Grade of Membership score for unit i with regard to pure variable k, and

λkjl = probability of response l on question j for pure type k.

5



With this framework, we find the estimates of the giks and λkjls that maximize the

joint likelihood, following Oliphant (2003), as

L =
∏
i

∏
j

∏
l

(∑
k

gikλkjl

)yijl

, (2.1)

where each of the giks and λkjls are nonnegative and sum to unity over k and l respectively.

A key issue in determining the maximum likelihood estimate of gik and λkjl in 2.1

is initiation of the algorithm. Since there is often a constant, c, such that gikc and c−1λkjl

satisfy the constraints on gik and λkjl, these parameters have an identifiability problem.

However, initial starting values can often resolve such a problem. In this case, the initial

starting values should be informed. The algorithm we develop provides informed initial

values for likelihood estimation.

2.3 Mass Spectrometry Characterization

The methodology described below is based on a chemistry technique presented by Grande

and Manne (1999). In determining the composition of a chemical sample, the relative

amounts of each compound in the sample is of primary interest. Therefore the problem

can be standardized as one in which the proportion of each compound present in a sample is

of interest. Grande and Manne (1999) develop an algorithm to create a simplex surrounding

the data with endpoints denoting pure compounds. This convex representation makes it

possible to methodically consider chemical compounds as an n-way mixture distribution.

The determination of composition follows two steps: the first is to separate the sample

into subsamples where each consists of one, or a few, of the compounds from the sample. The

method of choice entails chromatography (Giddings 1965). In this case, the different subsets

are separated vertically in time. Thus, the first compound is separated before the second.

The remaining compounds are separated in time order as well. The order of the separation

is based on a physical property called retention time. Unfortunately, the separation is rarely

crisp. In other words, pollution from the second and third compounds contaminate the first
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compound’s separation. In this case, the earliest samples of the first compound are more

pure. Toward the end of the time in which the first compound is separating, the second

and third get mixed into the sample. Similarly, with other compounds separated in time,

contamination from neighboring compounds enters the analysis.

The second step is to identify the molecules separated using mass spectrometry. This

step consists of scans of the sample over time and results in a highly multivariate response

profile from each scan. When contamination occurs, these scans will show response profiles

for a pure sample initially and then a less pure sample over time until the first compound is

removed and the second compound is brought into focus. Soon the second compound will

be brought into complete focus, denoting a second pure compound. The process continues

until a number of pure compounds have been identified. To visualize this process, consider

Figure 2.1. Figure 2.1 is suggestive of distinct pure compounds that govern the chemical

mixture.
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Figure 2.1: Response Profile Characterization. Ion ratio intensity changes across retention

time.

Separating across retention time, we can get an informative view of the process.

This separation is illustrated further in Figure 2.2. A particular snapshot, say retention

time equals 1.5, is the fingerprint of a particular pure compound. Other snapshots may

suggest a convolution between two or more pure compounds. As retention time increases,

the relative ion ratio composition changes dramatically. In fact, it actually moves from one

pure compound to another. Snapshots taken between pure compounds are thought of as

“polluted.” This means the they are some linear combination of multiple pure compounds.
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Figure 2.2: Full Data. By separating the ion ratios (m/z) across retention (elution) time,

we can see unique compositional elements of the mixture.

The approach presented by Grande and Manne (1999) is novel in that it considers

this ion ratio data in terms of a time series based on retention time within a simplex. By

normalizing the data, Grande and Manne (1999) consider the relative intensities of each ion

ratio at each retention time. This approach can be seen in Figure 2.3. Grande and Manne

(1999) plot the results of a principal components analysis on the normalized ion ratio data.

This plot illustrates that the profile of ion ratios has a particular pattern which is evident by

introducing retention time. When the composition sharply changes from one time to another,

the composition of ion ratios is sharply changing. This is evidence that the endpoints of the

simplex, where the sharp changes occur, are pure compounds which compose the mixture.

Samples taken at retention times between these pure compounds are referred to as polluted

or contaminated. They are linear combinations of the pure compounds with the weights
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denoting the relative similarity to each particular compound. In other words, they are a

composition of the pure compounds mixed together.
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Figure 2.3: Grande and Manne Approach. Samples 1, 5, and 9 are the pure compounds that

govern this particular chemical mixture.

2.4 Interaction Modeling

The most recent substantial advancements in the partitioning of interaction effects come

from work dating over 30 years ago. Cannon (2008) notes, in regard to classical analysis

of variance, that most major developments occurred no later than the 1970s. Interaction

modeling stems from the analysis of variance partitioning work by Mandel (1969). His

work points out that particular portions of the interaction signal are estimated best by the

eigenvalues of r′r, where r is the vector of residuals from the analysis of variance model.

Gollob (1968) suggests partitioning the interaction signal via principal components analysis.
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The higher order categorical interaction theory is based on work by Koch et al. (1977).

As mentioned above, Koch et al. (1977) claim that modeling membership in particular

subpopulations may have more merit than classical approaches. The classical approach to

dealing with subpopulations, as mentioned above, is to opt for a compilation of interaction

effects. Under this paradigm, each subject’s corresponding subpopulation membership may

be a replacement for the predictor variables that would typically be used.

2.5 IPF Background

The IPF is the product of compositional data analysis theory from many sources. Early work

by Tolley and Manton (1992) analyze properties of discrete Grade of Membership models

and develop the theoretical basis for the IPF. Later work by Engler (2002) and Oliphant

(2003) refine the IPF.

To define the IPF likelihood, Oliphant (2003) uses the same variables and indexers

as before, but changes the interpretation of λkjl: the LaGrange multiplier for constraint on

question j for pure type k. Note that λkjl is related to, but not equal to, the probability of

response l on question j for pure type k. With this framework, Oliphant (2003) gives the

joint likelihood as

L =
∏
i

∏
j

∏
l

exp

(
−
∑
k

gikλkjl

)yijl

, (2.2)

where giks meet the nonnegativity and unity constraints.

In addition, Oliphant (2003) maximizes the likelihood subject to the constraint that

∑
l

exp

(
−
∑
k

gikλkjl

)
= 1. (2.3)

The key to solving the likelihood for IPF modeling is getting reasonable starting

values. One application of the methodology presented here is to produce such initial starting

values.
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chapter 3

METHODS

Similar to determining the purity of a chemical sample, compositional data analysis only

focuses on relative amounts of measurements on a certain subpopulation. We can then stan-

dardize the interaction analysis as one in which the proportion of each subpopulation present

in a sample is of interest. Generalizing the algorithm by Grande and Manne (1999) allows

us to put the purest possible subpopulation subjects as endpoints of a simplex containing

the data. This makes it possible to consider subjects as coming from an n-way mixture dis-

tribution. We refer to extreme points in the polyhedral representation of the data as “pure

variables.”

In chemistry, the pure variables are easy to visualize as the true components that

comprised the mixture. This concept does not easily translate to a statistical mindset. In

statistics, the pure variables are hypothetical subjects composing endpoints for a simplex

that contains all or most of the data set subjects. Additionally, the hypothetical subjects

characterize a pure type. A pure type is a stereotype, similar to a subpopulation, which

characterizes subjects that are highly similar to a particular pure variable. Similarity is

measured by the strength of the corresponding GoM score. Examining the likely response

profiles of these subjects implicitly defines what a pure variable looks like. The algorithm

developed by Grande and Manne (1999) only allows existing data subjects to be chosen as

pure variables. In general, theory suggests that a subject not in the data set could best

summarize a pure selection of a subpopulation.

3.1 Algorithm Overview

The first step of the algorithm is to standardize measurements (which are potentially taken

from different spaces or scales). This will ensure that each measurement is given a compa-
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rable influence on the algorithm. Next, we project normalized subjects into a low number of

dimensions. In the lower dimensional space, the pure variables are determined methodically.

Once the pure variables are obtained, we find each subject to be a convex combination of

the pure variables. This new composition distribution can be taken as a consistent set of

initial giks to be used in the IPF.

3.2 Preliminaries

We use the following notation:

N is the number of subjects.

M is the number of measurements taken on each subject.

D is a matrix of the data with subjects as columns.

Sm is the standard deviation of the mth measurement across the N subjects.

Dm is the mth row vector of D.

Xm is the mth row vector of X.

Xm is Dm

Sm
.

X is the standardized matrix of the data with rows Xm.

p is a normalization column vector of length M .

K is the rank of the simplex we will construct where K < M . This implicitly assumes

that a simplicial subspace exists such that the barycentric coordinates are the coefficients

of the convex representation of the composition. This barycentric representation is designed

to explain most of the variability of the observed M dimensional data vectors, Xn.

3.3 Supervised Variable Selection

We have the option to use supervised variable selection before starting algorithm. If we

exercise this option, then only the selected variables will be used in the algorithm. In addition

to this option, we can also incorporate supervision through our normalization process which

we describe in the next section. In order to select a supervised option, we require a set of
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training data where the true state of each composition sample is known. This state can be

considered as a response variable.

One supervised variable selection approach is to use the classic decision tree algo-

rithm developed by Breiman et al. (1984). This is a good approach in situations where

measurements have nonlinear effects and interactions exist between measurements. The

general approach of growing a Breiman tree is to recursively split the sample based on a sin-

gle covariate that separates the average response of the resulting subsamples. The problem

with fitting a tree, however, is that it often overfits the particular sample (Breiman 2001).

To remove the bias, we have selected to use Random Forests (Breiman 2001). Ran-

dom Forests provide a theoretically unbiased variable selection methodology because criteria

are aggregated over a bootstrap generated ensemble of trees. This ensemble will not “overfit”

a particular sample. Our approach is to select the variables which are used in ξ% or more

of the bootstrap generated trees. Note here that ξ is a tuning parameter which could be set

to, say 50%.

3.4 Normalization

To normalize a data set, we divide each entry by the dot product of that column vector and

a normalizing vector p. The normalized data set, Y, is given column-wise by

Yn =
Xn

p · Xn

, (3.1)

where Yn is the nth column of Y, Xn is the nth column of X, and p is the normalization

vector.

Cluster Based Singular Vectors

The choice of a proper normalization vector is vital because a slight change in p results in

more weight on a certain measurement. A common selection for p is the first column of the

14



U matrix, found from a singular value decomposition of X (Grande and Manne 1999). The

singular value decomposition is formed as X = UDV′, with U and V orthonormal and D

as a diagonal matrix with singular values dk ≥ 0.

We have found that a more stable approach is to use the singular value decomposition

of a centroid dataset based on X. An algorithm to determine a clustered normalization vector

is given below.

(1) Using a supervised or unsupervised clustering algorithm, create clustered subject groups

(approximately 1 cluster for each 10 subjects).

(2) Find the singular value decomposition on the matrix of centroids (cluster means) instead

of the original X.

We denote the cluster based U, from step 2, as C and the normalization vector as C1, the

first column of C.

3.5 Barycentric Coordinates

Since we are interested in determining GoM scores, which are closely related to discriminant

scores, empty dimensions in Y may corrupt the integrity of discrimination. In other words,

our GoM scores are less informative if based on empty dimensions. To correct for this possi-

bility, we give the option of a data reduction, resulting in α values which denote Barycentric

coordinates relative to a simplex surrounding the data. Determining the α values can be

viewed as an intermediate step to obtaining the GoM scores. Define r as an arbitrary passed

parameter denoting the number of dimensions that the data can fill completely. r should

be set greater than K. To defend this, assume that the data can adequately fill only r

dimensions. Then, it would be a poor assumption to conclude that more than r subpopula-

tions exist because the data has no more than r significant pieces of information that could

possibly discriminate subpopulations.

The α values are given by
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α = T′Y, (3.2)

where T denotes the second through rth columns of C.

If the process is to be completely automated, then r can be set as K plus 3. As

will be discussed in the next section, the number of pure variables, K, can be latently

estimated through the Broken-Stick method. Setting r as K plus 3 allows for the perhaps

valuable information from the singular vectors below the Broken-Stick cut line to still have

an influence on the GoM scores.

3.6 Pure Variables

Defining the number of Pure Variables

A simplex is defined by endpoints. Following the spirit of the chemistry concepts discussed

previously, we consider these endpoints as being pure variables or archetypes. The number

of pure variables, K, can be estimated using the Broken-Stick method (Jackson 1993).

Randomly generated data would yield correlation matrices whose squared singular values

would follow a Broken-Stick distribution. Thus, we can compare our observed squared

singular values, based on the variable correlation matrix, to the Broken-Stick distribution in

order to estimate the number of values that are significantly higher than those which random

data would yield. The Broken-Stick expected values are given by

Ei =

q∑
k=i

1

k
, (3.3)

where q is the number of measurements taken on each subject. These expected values,

given in a vector as E, can be compared to the observed squared singular values in order

to determine a reasonable number of pure types. We estimate the optimal number of pure
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variables to be the number of positive entries in the row vector d2 − E, where d is a vector

of the singular values from the singular value decomposition on X. To illustrate this point,

consider Figure 3.1. In Figure 3.1, we observe a crossing point between observed squared

singular values, from the Ionosphere data which we discuss below, and the values that would

have been observed if data were randomly generated in an uncorrelated fashion. It is worth

noting that the sum of the observed squared singular values equals the sum of the expected

values. Thus, there is a guaranteed solution for any nontrivial data.
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Figure 3.1: Broken-Stick Method. The observed squared singular values are higher than the

expected values until component six. This implies that five is a reasonable value of K.

Weights

In α space, distance from one subject to another subject can be viewed as a discriminant

score denoting how similar the two subjects are. However, typical Euclidean distance is
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inappropriate because the α space is created from a number of singular vectors which do

not have equal singular values. To correct for this, any distance metric needs to incorporate

weights given by the singular values. To form a set of weights, we create the row vector w

given by

wi =
di∑r
i=1 di

, (3.4)

where di is the ith diagonal entry of the singular value matrix previously obtained from the

data.

Pure Variable 1

An optimal point for the first pure archetype is one far away from the center of the α’s, the

origin. To determine the first pure variable, find the subject index k1 that corresponds to

the largest wα2 entry, where α2 denotes squaring each entry in α. The first pure variable

is given by λ1 = αk1 .

Pure Variable 2

The second pure variable is the point farthest away from the first pure variable. To determine

which point this is, we create a transformed α space: α(2). This is following notational

conventions developed by Grande and Manne (1999). Note that (2) denotes α space 2 and

not α2. To create α(2), center α about the first pure variable and find the distances of the

other α points from it. α(2) is given by

α(2) = α−αk1j, (3.5)

where j is an N length row vector with 1 in each entry.
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The second pure variable, λk2 , is the column of α corresponding to the largest entry

of the vector w(α(2))2. Note that λk2 was determined in a space different from λk1 . The

index, k2, was determined in α(2) space, but λk2 is a column vector of α, not α(2). The pure

variables are of ultimate use in the original space, α, but we use them temporarily in the

uninterpreted space as a means to obtain future pure variables.

Pure Variable 3

The third pure variable is the column of α which is orthogonally farthest away from the first

two pure variables. To obtain this variable, we Gram-Schmidt orthogonalize α(2) to the first

2 pure variables. The projection matrix, M, for the orthogonalization is defined as

M = I −
α

(2)
k2
α

(2)
k2

′

α
(2)
k2

′
α

(2)
k2

, (3.6)

where I is an identity matrix.

α(3) is given by

α(3) = Mα(2). (3.7)

λk3 is the column of α corresponding to the largest entry of the vector w(α(3))2.

Pure Variable l

To obtain the lth pure variable, we Gram-Schmidt orthogonalize α(l−1) to the set of pure

variables that have currently been defined. The projection matrix, M, is defined as

M = I −
α

(l−1)
kl−1

α
(l−1)
kl−1

′

α
(l−1)
kl−1

′
α

(l−1)
kl−1

. (3.8)
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α(l) is given by

α(l) = Mα(l−1). (3.9)

λkl is the column of α corresponding to the largest entry of the vector w(α(l))2.

3.7 GoM Scores

The GoM scores are the α values solved as a linear combination of the pure variables.

We can use linear algebra to solve for the partitioned GoM matrix, G. Define Λ as

a matrix of the first K − 1 pure variables, as columns, centered by the Kth pure variable.

Note that these pure variables are in the original α space. Λ is given by

Λ =

[
(λ1 − λK) · · · (λK−1 − λK)

]
. (3.10)

The GoM scores are given by the partitioned formulation

G =

 Λ−1(α− λKj)

j − qΛ−1(α− λKj)

 (3.11)

where Λ−1 denotes the Moore-Penrose generalized inverse of Λ and q is a row vector of 1s

with length r. By the method of partitioning defined above, the GoM scores for each subject

sum to 1. We prove this as Theorem 1.

Theorem 1: Let H be a matrix with arbitrary entries, r rows, and n columns. Define

the partitioned matrix, A, as

20



A =

 H

j − qH


where j is a row vector of length n with 1 in each entry and q is a row vector of length r

with 1 in each entry.

Then, every column in A sums to 1.

Theorem 1 Proof : Since A has r + 1 rows by construction, we can left multiply it

by t, an r + 1 length row vector with 1 in each entry, to obtain the column sums. Since

tA = t

 H

j − qH

 = qH + 1(j − qH) = j,

each column of A sums to 1, regardless of the H elements.

Note that if a particular point is contained in the simplex, it’s GoM scores will be non-

negative. The Grande and Manne (1999) algorithm does not guarantee that all points will

be contained in the resulting pure variable simplex. A simplex that does not contain all data

set points is referred to as “affine.” This means some GoM scores would be negative. The-

oretically, a GoM score can not be negative because that would imply that the subject was

more than completely orthogonal to a particular subpopulation. The next section describes

our approach to reconcile this issue.

3.8 Extending Pure Variables

A convex combination is a representation of the data in which no points lie outside the sim-

plex. Such a simplex can contain points on a corner, edge, or face, but no points are outside.

Using the algorithm developed by Dr. David Wright of the BYU Mathematics Department,

see Appendix B, we extend the pure variables such that the resulting simplex contains all
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points as a convex combination. Since Wright’s algorithm guarantees a containing simplex,

no GoM scores will be negative.

Assume subject e has at least one negative GoM score. As previously described, we

would refer to GoM scores for such a subject as being an affine combination of the uncentered

pure variable set,

Q =

[
λ1 · · · λK

]
. (3.12)

Equivalently,

e =
m∑
i=1

sivi +
n∑

j=1

tjwj, (3.13)

where vi are the columns of Q corresponding to nonnegative GoM scores, wj are the columns

of Q corresponding to negative GoM scores, si ≥ 0, and tj < 0. In other words, si are the

nonnegative GoM scores and tj are the negative GoM scores.

Define a column vector as

v′i =

(
m∑
j=1

sj

)
vi +

n∑
j=1

tjwj. (3.14)

Dr. Wright shows, as given in Appendix B, that

Q′ =

[
v1
′ · · · vm

′ w1 · · ·wn

]
(3.15)

represents a convex simplex for subject e. Our application is to apply this algorithm in

sequence on each affine subject. Thus, the resulting GoM scores will be nonnegative and

sum to unity.
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3.9 New Observations

When a new observation is observed, GoM scores can typically be obtained using 3.1 – 3.11.

A complication arises, however, when the subject lies outside of simplex because their GoM

scores will not meet the nonnegativity constraints. As mentioned before, this is a major

issue theoretically because subjects can not have negative subpopulation membership. We

assume that the simplex is fixed and we wish to parametrize the new subject’s GoM scores

with respect to it. To correct the issue, we project these subjects onto the previously

determined simplex. We can accomplish this task using least squares regression. Consider

a particular combination of pure variables. This combination defines an edge, face, etc. in

α space, depending on the number of pure variables in the combination. We can obtain the

α coordinates of the orthogonal projection for a newly observed subject, αnew, through the

algorithm outlined below.

Consider a possible subset of pure variables, L ⊂ Q, with p nonrepeated elements of

Q. Then, the corresponding candidate projection is given by

β = (V′V)
−1

V′(αnew − L1), (3.16)

where

V =

[
(L2 − L1) · · · (Lp − L1)

]
. (3.17)

This algorithm will produce a number of candidate projections for each subject.

The selected projection is the one with the minimum euclidean distance between the new

subject’s original (affine) GoM scores and the candidate projection. Note that simplex

endpoints, the pure variables themselves, should also be considered as possible projections.

Once the optimal projection is selected, GoM scores can be obtained by 3.11.
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Back transforming GoM scores into α coordinates

If one had a set of GoM scores for which he or she wanted to know the corresponding α

coordinates, then he or she could apply some matrix algebra to obtain the corresponding α

coordinates. Recall that solving for the GoM scores is done in partitions. The first partition,

G1, is the only one necessary for this process. The desired α coordinates are given by

α = ΛG1 + λKj. (3.18)

To see logic in this formula, consider the right side of 3.18 in parts. The first term

multiplies the centered pure variables by the corresponding GoM scores (not including the

last GoM score). This gives us the location of the point in an α space centered around the

last pure variable. To correct for the centering, we add λK to the space via term 2. While

this transformation is not used in our algorithm, it may be useful in future research.
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chapter 4

ANALYSIS

4.1 Introductory Statistics Course Analysis

Introduction

In order to predict Statistics 221 student success, as measured by final grade in the course,

data were gathered on 488 students in the Winter 2009 semester. These students were given

a survey at the beginning of the semester which included 58 questions regarding “math

anxiety” and 44 questions regarding “learning style.” In addition, typical “on file” data such

as gender, age, ACT math score, and high school GPA were available for each student.

The primary interest was to predict success in the course based on latently charac-

terized subgroups. Such information would be useful in either discriminating admittance to

the course, encouraging further prerequisites, or catering review sessions to different sub-

groups. Subjects self selected themselves, in order to receive extra credit in the course, and

are certainly not a fully randomized representation of the courses student body. However,

if preliminary results can be found with these data, then a stronger study could be imple-

mented in future semesters. The data were obtained from BYU Statistics Department CSRs.

A full detail of the data is given in Appendix A.

Features of the Data

The collection of covariates comes from three sources: the “math anxiety” survey, the “learn-

ing style” survey, and the “on file” material. A separate introduction to each source is

necessary.
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The 58 question “math anxiety” survey measured both students experiences with

past math courses and feeling towards the math discipline in general. Students gave an

ordinal rating ranging from strongly disagree to strongly agree for the majority of questions.

Although a small number of additional questions were given which profiled each student’s

math/stat coursework history, most questions were straightforward opinion questions such

as:

(a) Math and statistics are the same.

(b) Statistics conclusions are rarely presented in everyday life.

(c) Statistics involves massive computations.

The 44 question “learning style” survey measured student learning techniques. All

binary responses, questions included:

(a) I understand something better after I

try it out.

think it through.

(b) Once I understand

all the parts, I understand the whole thing.

the whole thing, I see how the parts fit.

(c) When I get directions to a new place, I prefer

a map.

written instructions.

A number of “on file” variables were available. Due to distributional skewness, Age

and high school GPA were dichotomized into 2 quantile factor levels each. Verification of
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these findings is given via variable histograms in Figure 4.1 and Figure 4.2. Both histograms

illustrate the heavy skewness in each respective distribution.
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Figure 4.1: Reasoning for dichotomizing Age. The distribution of Age is skewed right. To

prevent high aged persons from overly influencing the data, we dichotomize age.
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High School GPA
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Figure 4.2: Reasoning for dichotomizing High School GPA. The distribution of GPA is

skewed left. To prevent abnormally poor students from overly influencing the data, we

dichotomize GPA.

High school GPA and math ACT had 77 and 80 missing entries respectively. These

subjects are likely from a different population compared to the fully observed subjects. To

account for this, additional indicator variables denoting missing values for each of these co-

variates were added. This methodology works better for factor variables than for continuous

covariates. To account for this, math ACT was quantile dichotomized much like the process

discussed above for high school GPA and age. No other covariates had missing values. Of

all respondents, 63% were female. As is typical for STAT 221 students, the average number

of years at BYU was 2.6.
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Exploratory Analysis

Using the outlined methodology, we now analyze latent fuzzy subpopulations of the data.

We selected to use the supervised options of the algorithm when analyzing the data. The

supervised variable, which can be thought of as a response variable, was final grade in the

course. Note that we have not utilized the IPF yet. We give the Broken-Stick plot to

illustrate a weakness of the method. Note that although most analyzers would select around

K = 9 for this data, the method selects 23. We performed this analysis using 9 pure types

(denoted in dark red), although the choice is somewhat arbitrary.
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Figure 4.3: Broken-Stick Method Weakness.

A particular subject is defined as a heavy member of a particular pure type, say w,

if their GoM w score lies 2 standard deviations above the mean GoM w score. The choice

of 2 standard deviations is arbitrary and should be considered a tuning parameter for this
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analysis. Note that using another reasonable approach would be to use GoM w > a constant

as an indicator of heavy membership. The problem with this approach in many cases is that

the average GoM score changes drastically for different values of w.

By searching for similarities between the heavy members of each respective pure type,

we generate a stereotype chart, given as Table 4.1. To create this chart we found the mean

values of each measurements across heavy member groups of each pure type. Then when

comparing the mean values of each measurement across pure types, we selected the variables

where there was the largest discrepancy amongst pure types. The values are in percentage

units. Note the comparison to the overall sample averages.

Table 4.1: Introductory Statistics Student Stereotypes.

Pure Type Grade AC3 Q52(i) Q52(j) L11 L12 L23 L25 L26 L37 L43 L44

1 74 100 100 43 21

2 92 25 25 75 25 50

3 80 73 73 87 87 80 33 40

4 73 29 65

5 81 89 58 26

6 86 33 78 78 56 100 67

7 70 82 64 9 36

8 77 31 92

9 79 47 37

Overall 80 22 61 67 41 20 62 53 47 50 17 27

We detail the Table 4.1 selected questions in Table 4.2.
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Table 4.2: Key Questions Separating Stereotypes: Selected Question Detail.

Measurement Question

AC3 Did not take Math ACT?

Q52(i) Concerned about math formulas?

Q52(j) Afraid that he or she won’t understand material?

L11 Prefers text over pictures?

L12 Big picture easier than details?

L23 Written instructions over map?

L25 Think it through before trying it?

L26 Prefer creative writing over clarity?

L37 Considers themself reserved?

L43 Has trouble picturing details of a place?

L44 Tries to make ties between concepts?

To illustrate the implicit interaction substance that the GoM variables posses, con-

sider Figure 4.4.
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Figure 4.4: Implicit Interaction Structure. The students colored red are those with high

Math ACT scores, high high school GPAs, and L37.

Coloring a couple of the GoM variables by a 3 way interaction reveals that the GoM

variables themselves include interaction substance. The students colored red are those with

high Math ACT scores, high high school GPAs, and L37. These students averaged a final

grade of 92.0%, as compared to the class average of 79.9%. One might conclude that this

region of the GoM space is filled with reserved students with strong academic backgrounds.

The GoM scores may be more valuable than the interaction classification by itself because

they preserve the integrity of discrimination intensity. This may suggest that our initial hy-

pothesis was correct: the GoM space is more valuable than the collection interaction effects.

We say this because the interaction variable is a binary piece of information, but the GoM

space is continuous. For illustration, it may be the case that the farther down a subject’s

GoM 6 and GoM 7 scores are, the more similar they are to the stereotype described. In other
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words, the grade of their membership may give more information about their similarity to

the particular subpopulation. This concept has the potential to be extremely valuable in

prediction improvement.

Prediction Models

To show the value of the GoM scores in grade prediction, consider Table 4.3 and Table 4.4.

Table 4.3 gives a model summary for a typical regression approach. To decide which co-

variates to include in the typical regression model, we utilized stepwise AIC selection. In

Table 4.3, effects are given in the order they were selected. The multiple R2 for the typical

regression model was .220 on 10 degrees of freedom. Our GoM regression approach is to

use a few main effects along with the GoM variables as covariates. We remove one of the

GoM variables to prevent collinearity due to the GoM sum to unity constraint. The main

effect was AC2, which indicated if the student was in the top third of Math ACT scores.

The multiple R2 for the GoM regression model was .180 on 10 degrees of freedom. Table 4.4

gives a model summary our GoM regression approach.
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Table 4.3: Typical Regression Model. Effects are given in the order they were selected.

Estimate Std. Error T score P-value

(Intercept) 69.00 3.39 20.34 0.00

AC2 7.42 1.75 4.24 0.00

Q48 2.30 0.59 3.89 0.00

Q2 2.13 0.68 3.13 0.00

L25 4.41 1.42 3.10 0.00

Q47 -1.49 0.54 -2.77 0.01

L31 -3.91 1.63 -2.41 0.02

L22 -4.61 1.57 -2.93 0.00

L17 -3.72 1.41 -2.65 0.01

L10 3.29 1.46 2.26 0.02

Table 4.4: GoM Regression Model. Note that one main effect, AC3, was selected.

Estimate Std. Error T score P-value

(Intercept) 75.28 17.96 4.19 0.00

AC3 6.81 1.93 3.52 0.00

GoM1 -50.73 28.28 -1.79 0.07

GoM2 108.49 25.47 4.26 0.00

GoM3 -7.60 36.15 -0.21 0.83

GoM4 -20.57 39.39 -0.52 0.60

GoM5 17.61 19.58 0.90 0.37

GoM6 -7.10 29.84 -0.24 0.81

GoM7 -47.94 30.29 -1.58 0.11

GoM8 12.05 22.79 0.53 0.60
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The reason that the GoM approach did not work as well as the typical approach is

that the GoM space is highly nonlinear in nature. As a more appropriate model choice,

consider the Breiman tree models proposed in Figure 4.5 and Figure 4.6. We constrained

the models in this section to have 10 ending nodes so that they would be comparable to the

regression type models. A typical Breiman tree is given as Figure 4.5. This model yielded a

.278 multiple R2 on 10 degrees of freedom. A GoM Breiman tree model is given as Figure 4.6.

Similar to the GoM regression model, this model included AC3 and the GoM variables in

the decision algorithm. This model yielded a multiple R2 of .288, higher than the typical

approach.

Since the GoM space is a data reduction of the original space, it would initially

seem inconceivable that it would have more predictive value than the original data space.

However, there is one important consideration: interactions are clearly defined and easier to

manage in the GoM space by construction. We note that the GoM variables often act as

compilation effects and are, for that reason, more powerful in determining splits than the

original measurements.
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|MACT2< 0.5

Q34>=3.5

Q36>=3.5

L29>=0.5

Q8< 3.5 L41< 0.5

L35>=0.5

Q6>=2.5

Q21>=6.5

41.96 72.79
52.23 72.2

76.9

82.93 77.32 84.56

70.22 90.17

Figure 4.5: Typical Breiman Tree.
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|Q5< 0.5

GoM2< 0.0618

GoM9>=0.08834 GoM2< 0.1187

GoM6< 0.235

GoM1>=0.1243

GoM7>=0.1739

GoM8< 0.1194

GoM5>=0.1188

58.89 73.61

61.28

52.94 74.74

77.48

85.85

83.07

68.13 90.12

Figure 4.6: GoM Breiman Tree.

Extension to the IPF

Continuing the previous analysis, we introduce IPF GoM scores into the comparison. Using

the GoM scores of our algorithm, we initialize the IPF. A scatter plot matrix of the IPF

GoM structure is given as Figure 4.7. A particular snapshot of the GoM space, to illustrate

the multidimensional correlation, is given as Figure 4.8.

Keep in mind that a GoM space contains information about the relationship between

measurements with regard to latent fuzzy subpopulations. The nonlinear structure of this

particular relationship is strong evidence that crisp subpopulation membership is not suffi-

cient to capture the true underlying signal of the measurements. For this reason, an Analysis

of Variance model on strict subpopulation membership is in reality a poor approximation

to a model that appropriately utilizes the GoM space. In other words, the nonlinear rela-
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tionship is evidence that a GoM space carries more information than strict subpopulation

membership could provide.
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Figure 4.7: IPF GoM Scatter plot Matrix.
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Figure 4.8: IPF GoM Snapshot.

Using the resulting IPF GoM scores and the same model methodology used before, we

create two models: An regression model and a tree model. A summary of the IPF regression

model is given in Table 4.5. The corresponding multiple R2 was .178 on 10 degrees of

freedom, which is about the same as the previous figures. The IPF tree model is given in

Figure 4.9. This model’s multiple R2 was .271, which is also about the same as the previous

figures. One substantial benefit of the IPF is the structure can be fit to a stochastic model.
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Table 4.5: IPF GoM Regression Model Summary.

Estimate Std. Error T score P-value
(Intercept) 268.51 358.37 0.75 0.45

AC3 6.86 1.83 3.75 0.00
GoM1 -185.22 346.87 -0.53 0.59
GoM2 -70.10 288.33 -0.24 0.81
GoM3 2271.34 1540.00 1.47 0.14
GoM4 4089.09 2677.31 1.53 0.13
GoM5 -250.99 399.48 -0.63 0.53
GoM6 -4.88 219.45 -0.02 0.98
GoM7 -143.82 222.63 -0.65 0.52
GoM8 0.22 226.45 0.00 1.00

|GoM1>=0.2622

GoM4>=0.0007828

GoM7>=0.03988

GoM2>=0.04636

GoM8>=0.008825

GoM2< 0.01312

GoM9< 0.02285

Q5< 0.5

GoM4>=0.003085

60.4

42.82 73.12

75.8 62.74 80.81

77.65 70.6 83.97

90.68

Figure 4.9: IPF GoM Tree.

4.2 Comparison to Other Methods

To validate our methodology, we will compare our results to that of Zarndt (1995). Zarndt

(1995) compared a wide range of modeling algorithms using 10-fold cross-validation across
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a high number of data sets. After introducing a few of his data sets, we will compare our

results to his.

Brief Data Introductions

ionosphere The Johns Hopkins University Ionosphere database was obtained from the

UCI Machine Learning Repository. At each of 351 distinct Ionosphere coordinates, 16 an-

tennas (2 readings each) were used to measure overall Ionosphere substance. The location

was separately rated as good or bad with good denoting a reasonable amount of substance

present. The goal was to build a model which could correctly classify locations as good or

bad based on the 32 readings. The data were obtained at

http://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/

cleveland heart health Cleveland heart health data was obtained from the Cleve-

land Clinic Foundation, via the UCI Machine Learning Repository. Twelve discriminatory

attributes were taken on each of 297 subjects in order to predict the multilevel categorical

response variable. The response was strength of heart disease, measured ordinally from 0

to 4 with 0 denoting no evidence of disease and 4 representing heavy symptoms of disease.

The data were obtained at

http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/

musk Data were obtained on 476 molecules in order to classify the molecule as musky or

not musky. The Musk scent is created from the chemical compound Muscon and is valuable

in making various perfumes. In order to predict whether a particular molecule was musky,

166 distance measurements were taken. The data were obtained from UCI Machine Learning

at

http://archive.ics.uci.edu/ml/machine-learning-databases/musk/
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Comparison Results

To validate our methodology, we develop a Breiman decision tree using the GoM scores

along with a small number of main effects. As a goal for further research, we point note that

a stochastic model fit to the GoM space directly is the superior way to make predictions.

However, that is beyond the breath of this work.

Since cross validation results fluctuate due to the random subsampling process, we

must adjust our results to be comparable with Zarndt (1995). With our random subsamples,

we apply one of the algorithms that Zarndt analyzed. The difference between our result and

the Zarndt result can be considered as an additive bias between studies. We will refer to

our bias correct result as “Corrected GoM.” The results are given in Table 4.6. Keep in

mind that these results are found using the default settings in our algorithm (no tuning).

We would probably obtain marginally better results by changing where supervision is done

or how many clusters to use. “Corrected GoM” is competitive in each case and is the best

algorithm for the Ionosphere data. The number of main effects used is given in parenthesis

by the data set name.

Table 4.6: Zarndt Model Comparison.

Data Corrected GoM Zarndt Average Zarndt Best Proportion Beat

Ionosphere (3) 92.3 87.5 92.0 16/16

Cleveland (0) 50.7 52.7 58.1 5/16

Musk (3) 80.3 79.3 83.4 4/9

4.3 Comparison to Breiman model for 10 Datasets

To give a feeling for the proportion of times that our GoM approach beats a typical Breiman

et al. (1984) tree model, consider Table 4.7. The GoM approach performs better than the

Breiman model in 5 of 10 cases. The first two data sets use the cross validation sum of

squared errors metric (smaller is better). The remaining sets of data use the cross validation
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correct classification rate (bigger is better). The number of main effects used in the GoM

approach is given in parenthesis next to the data name. This number was set arbitrarily

based on an initial Breiman model.

Table 4.7: Ten Dataset Breiman Comparison.

Data GoM Approach Typical Breiman

Intro. Stat (1) 15396 17187

SAGE (1) 7888 7756

Iono (0) 0.89 0.86

Heart (0) 0.56 0.56

Musk (3) 0.71 0.76

Glass (0) 0.43 0.45

Wine (3) 0.94 0.92

Sonar (3) 0.71 0.70

Robot (3) 0.96 0.98

Mushroom (0) 0.99 0.99
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chapter 5

CONCLUSIONS AND FURTHER RESEARCH

We have introduced a new powerful way to create GoM scores for large multivariate obser-

vational studies. We have shown that these GoM scores summarize interaction effects and

have predictive value. In some cases, our GoM method outperforms a traditional Breiman

tree model. In the case of the Ionosphere data, the GoM approach performed better than

all other 16 methods compared by Zarndt (1995).

The next tool to develop is a stochastic prediction model fit to the GoM space. This

model would likely use a transformed version of the GoM space, say the GoM odds ratios.

Further work could be done in dealing with outliers. Outliers are often selected as pure

variables with the current algorithm since they are very far away from the bulk of the data.

In some cases, it might be better to project outliers onto an affine simplex around the bulk

of the data before determining the pure variables. This might increase stability and heavy

membership in corresponding pure types.
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appendix a

INTRODUCTORY STATISTICS COURSE DATA DETAIL

The 221 Dataset was based on information from the winter 2009 semester. Two pre-semester

surveys were combined with students academic history to predict 221 final grades. The

continuous response variable used was the stat 221 final grade percentage given for each

student.

A.1 Questionnaire

The questionnaire was designed to identify student attitudes about mathematics. There

were 58 questions.

In questions 1-10, students were given a prompt to rate the statement as Strongly

Disagree, Disagree, Undecided, Agree, or Strongly Agree.

In questions 11-45, students were given a prompt to rate the statment on a sclae of 1 to

7 with 7 representing strongly agree and 1 representing strongly disagree. In questions 46-48,

students were given a prompt to rate the statment on a sclae of 1 to 7 with 7 representing high

and 1 representing low. Questions 49-56 are detailed individually. The survey is included

below.

1. It wouldn’t bother me at all to take more math courses.

2. I have usually been at ease during math tests.

3. I have usually been at ease in math courses

4. I usually don’t worry about my ability to solve math problems.

5. I almost never get uptight while taking math tests.
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6. I get really uptight during math tests.

7. I get a sinking feeling when I think of trying hard math problems.

8. My mind goes blank and I am unable to think clearly when working mathematics.

9. Mathematics makes me feel uncomfortable and nervous.

10. Mathematics makes me feel uneasy and confused.

11. I will like statistics.

12. I will feel insecure when I have to do statistics problems.

13. Statistics is nothing like math.

14. I will have trouble understanding statistics because of how I think.

15. Statistics formulas are easy to understand.

16. Statistics is math.

17. I have no idea of what’s going on in mathematics.

18. Statistics is worthless.

19. Statistics and math are completely different.

20. Statistics is a complicated subject.

21. Statistics should be a required part of my professional training.

22. Statistical skills will make me more employable.

23. I will have no idea of what’s going on in statistics.

24. Statistics is not useful to the typical professional.

25. I will get frustrated going over statistics tests in class.
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26. Math and statistics are very similar.

27. Statistical thinking is not applicable in my life outside my job.

28. I use statistics in my everyday life.

29. I will be under stress during statistics class.

30. I will enjoy taking statistics courses.

31. Statistics conclusions are rarely presented in everyday life.

32. Statistics is a subject quickly learned by most people.

33. Learning statistics requires a great deal of discipline.

34. I will have no application for statistics in my profession.

35. I will make a lot of math errors in statistics.

36. I am scared by statistics.

37. Math and statistics are the same.

38. Statistics involves massive computations.

39. I can learn statistics.

40. I will understand statistics equations.

41. Statistics is irrelevant in my life.

42. Statistics is highly technical.

43. I will find it difficult to understand statistics concepts.

44. Most people have to learn a new way of thinking to do statistics.

45. Math and statistics are only slightly related.
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46. How good at mathematics are you?

47. How much computer experience have you had?

48. How confident are you that you can master introductory statistics material?

49. What is the most recent mathematics course you have completed?

(a) High school algebra

(b) High school calculus

(c) College algebra

(d) College calculus

(e) Other

50. Please choose one and only one response from the following list. If you have taken more

than one Statistics class before this semester please choose the response from items B

through E that corresponds to the most recent class you have taken.

(a) I have not taken a Statistics class before.

(b) I took a Statistics class in high school.

(c) I took 221 here at BYU or some other place and am repeating the class.

(d) I took a Statistics class other than 221 here at BYU.

(e) I took a Statistics class at another college/university before I came to BYU.

51. Are you anxious or nervous regarding this class?

(a) Yes

(b) No

If you answered YES to question 51 please answer question 52 and identify the reasons

which most closely reflect the basis for your concern. Answer Agree or Disagree.
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52. (a) I really don’t know what to expect.

(b) Previous experience with Statistics was not positive.

(c) I am always a bit nervous at the beginning of a new course.

(d) I am worried about the grade I will get.

(e) I am concerned about the workload in the class.

(f) I do not do very well in math.

(g) It has been a long time since I have taken any math class.

(h) I do not do very well with story problems in math.

(i) I am concerned about complex formulas that might be in the class.

(j) I am afraid I won’t understand the material.

(k) I have heard it is a very hard class.

(l) I am anxious because I am excited to learn the material in the class.

(m) I have heard a lot of horror stories about the class.

(n) I am concerned that I might not get my questions answered because of the class size.

The following six questions (53-58) cover concepts taught in Statistics 221. Please answer

them as best you can. If you don’t know the correct answer, select the last option.

53. What is the best reason for obtaining a random sample when you want to estimate a

population parameter?

(a) It is the cheapest method.

(b) It results in the most representative estimate.

(c) It results in the estimate with the smallest standard deviation.

(d) It is the easiest method.

(e) I am unable to answer this question with reasonable certainty.
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54. Which research method is most likely to support a causal relationship between two vari-

ables?

(a) A sample survey based on a simple random sample.

(b) An observational study based on a carefully selected large random sample.

(c) A comparative experiment implementing principles of randomization and replication.

(d) A correlational study that measures two variables on a large random sample of people

of the same age, gender, and socioeconomic status.

(e) A matched pairs experiment using twins who were hand picked by the researcher to

participate.

(f) I am unable to answer this question with reasonable certainty.

55. What is the purpose of a confidence interval for a population mean?

(a) To provide confidence in our sample mean.

(b) To give a range of plausible values for the population mean.

(c) To show how close our sample mean is to the population mean.

(d) To determine if the population mean takes on a particular value.

(e) I am unable to answer this question with reasonable certainty.

56. A social scientist did a study on gender and attitudes toward gun control, found a p-

value of 0.042, and concluded there was a relationship. Which of the following represents

a practical interpretation of the study?

(a) 4.2% of the respondents were in favor of gun control.

(b) One’s attitude towards gun control is associated with one’s gender.

(c) The difference between males and females who favored gun control was 4.2%.

(d) One’s attitude towards gun control is not associated with one’s gender.

53



(e) I am unable to answer this question with reasonable certainty.

57. When a result is ’statistically significant’ this means that the result...

(a) has a very small probability of occurring by chance.

(b) is important enough that most people would believe it.

(c) is important enough to make a meaningful contribution to its subject area.

(d) has a very large probability of occurring by chance.

(e) I am unable to answer this question with reasonable certainty.

58. A newspaper report claims a margin of error of 4% when reporting the percentage of

people in favor of a tax refund. Which of the following is the best explanation and

interpretation of what margin of error is?

(a) A number that comes from the sampling distribution and tells us how close we are

to the truth.

(b) A number that tells how much error can be expected because of chance variation.

(c) It is the population standard deviation divided by the square root of the sample size.

(d) A number that tells us how far our sample size is from what it ought to be.

(e) I am unable to answer this question with reasonable certainty.

A.2 Learning Style Survey

The dichotomous 44-question learning style survey gauged students learning techniques. The

survey was given as follows:

1. I understand something better after I

(a) try it out.

(b) think it through.
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2. I would rather be considered

(a) realistic.

(b) innovative.

3. When I think about what I did yesterday, I am most likely to get

(a) a picture.

(b) words.

4. I tend to

(a) understand details of a subject but may be fuzzy about its overall structure.

(b) understand the overall structure but may be fuzzy about details.

5. When I am learning something new, it helps me to

(a) talk about it.

(b) think about it.

6. If I were a teacher, I would rather teach a course

(a) that deals with facts and real life situations.

(b) that deals with ideas and theories.

7. I prefer to get new information in

(a) pictures, diagrams, graphs, or maps.

(b) written directions or verbal information.

8. Once I understand

(a) all the parts, I understand the whole thing.

(b) the whole thing, I see how the parts fit.
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9. In a study group working on difficult material, I am more likely to

(a) jump in and contribute ideas.

(b) sit back and listen.

10. I find it easier

(a) to learn facts.

(b) to learn concepts.

11. In a book with lots of pictures and charts, I am likely to

(a) look over the pictures and charts carefully.

(b) focus on the written text.

12. When I solve math problems

(a) I usually work my way to the solutions one step at a time.

(b) I often see the solutions but then have to struggle to figure out the steps to get to

them.

13. In classes I have taken

(a) I have usually gotten to know many of the students.

(b) I have rarely gotten to know many of the students.

14. In reading nonfiction, I prefer

(a) something that teaches me new facts or tells me how to do something.

(b) something that gives me new ideas to think about.

15. I like teachers

(a) who put a lot of diagrams on the board.

56



(b) who spend a lot of time explaining.

16. When I’m analyzing a story or novel

(a) I think of the incidents and try to put them together to figure out the themes.

(b) I just know what the themes are when I finish reading and then I have to go back

and find the incidents that demonstrate them.

17. When I start a homework problem, I am more likely to

(a) start working on the solution immediately.

(b) try to fully understand the problem first.

18. I prefer the idea of

(a) certainty.

(b) theory.

19. I remember best

(a) what I see.

(b) what I hear.

20. It is more important to me that an instructor

(a) lay out the material in clear sequential steps.

(b) give me an overall picture and relate the material to other subjects.

21. I prefer to study

(a) in a study group.

(b) alone.

22. I am more likely to be considered
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(a) careful about the details of my work.

(b) creative about how to do my work.

23. When I get directions to a new place, I prefer

(a) a map.

(b) written instructions.

24. I learn

(a) at a fairly regular pace. If I study hard, I’ll “get it.”

(b) in fits and starts. I’ll be totally confused and then suddenly it all “clicks.”

25. I would rather first

(a) try things out.

(b) think about how I’m going to do it.

26. When I am reading for enjoyment, I like writers to

(a) clearly say what they mean.

(b) say things in creative, interesting ways.

27. When I see a diagram or sketch in class, I am most likely to remember

(a) the picture.

(b) what the instructor said about it.

28. When considering a body of information, I am more likely to

(a) focus on details and miss the big picture.

(b) try to understand the big picture before getting into the details.

29. I more easily remember
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(a) something I have done.

(b) something I have thought a lot about.

30. When I have to perform a task, I prefer to

(a) master one way of doing it.

(b) come up with new ways of doing it.

31. When someone is showing me data, I prefer

(a) charts or graphs.

(b) text summarizing the results.

32. When writing a paper, I am more likely to

(a) work on (think about or write) the beginning of the paper and progress forward.

(b) work on (think about or write) different parts of the paper and then order them.

33. When I have to work on a group project, I first want to

(a) have “group brainstorming” where everyone contributes ideas.

(b) brainstorm individually and then come together as a group to compare ideas.

34. I consider it higher praise to call someone

(a) sensible.

(b) imaginative.

35. When I meet people at a party, I am more likely to remember

(a) what they looked like.

(b) what they said about themselves.

36. When I am learning a new subject, I prefer to
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(a) stay focused on that subject, learning as much about it as I can.

(b) try to make connections between that subject and related subjects.

37. I am more likely to be considered

(a) outgoing.

(b) reserved.

38. I prefer courses that emphasize

(a) concrete material (facts, data).

(b) abstract material (concepts, theories).

39. For entertainment, I would rather

(a) watch television.

(b) read a book.

40. Some teachers start their lectures with an outline of what they will cover. Such outlines

are

(a) somewhat helpful to me.

(b) very helpful to me.

41. The idea of doing homework in groups, with one grade for the entire group,

(a) appeals to me.

(b) does not appeal to me.

42. When I am doing long calculations,

(a) I tend to repeat all my steps and check my work carefully.

(b) I find checking my work tiresome and have to force myself to do it.
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43. I tend to picture places I have been

(a) easily and fairly accurately.

(b) with difficulty and without much detail.

44. When solving problems in a group, I would be more likely to

(a) think of the steps in the solution process.

(b) think of possible consequences or applications of the solution in a wide range of areas.

A.3 Academic history Detail

The department has access to certain variables peratining to student academic history that

were pooled into the data. These variables include:

1. High School GPA

2. Math ACT

3. Class Standing

4. Gender

5. Age
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appendix b

WRIGHT EXTENSION

Dr. David Wright, of the Brigham Young University Mathematics Department, developed

the following theorem and proof.
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