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ABSTRACT 

APPLYING BAYESIAN ORDINAL REGRESSION TO ICAP  

MALADAPTIVE BEHAVIOR SUBSCALES 

 
 
 

Edward Paul Johnson 

Department of Statistics 

Master of Science 
 
 
 

 This paper develops a Bayesian ordinal regression model for the maladaptive 

subscales of the Inventory for Client and Agency Planning (ICAP).  Because the 

maladaptive behavior section of the ICAP contains ordinal data, current analysis 

strategies combine all the subscales into three indices, making the data more interval in 

nature.  Regular MANOVA tools are subsequently used to create a regression model for 

these indices.  This paper uses ordinal regression to analyze each original scale separately.  

The sample consists of applicants for aid from Utah’s Division of Services for Persons 

with Disabilities.  Each applicant fills out the Scales of Independent Behavior—Revised 

(SIB-R) portion of the ICAP that measures eight different maladaptive behaviors.  This 

project models the frequency and severity of each of these eight problem behaviors with 

separate ordinal regression models. Gender, ethnicity, primary disability, and mental 



 
 
 
 

retardation are used as explanatory variables to calculate the odds ratios for a higher 

maladaptive behavior score in each model.  This type of analysis provides a useful tool to 

any researcher using the ICAP to measure maladaptive behavior. 

Key words: latent variable, SIB-R, disabilities research, proportional odds model 
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1. INTRODUCTION 

1.1 Introduction to ICAP and SIB-R 

 Families that have the responsibility to care for individuals with disabilities often 

experience financial challenges associated with those handicaps.  These families can 

obtain governmental support; however, the demand for assistance often outstrips 

available funding.  Consequently, governmental agencies require a testing instrument that 

quantifies the degree of family need.  Governmental agencies use the results of these 

testing instruments to determine fund allocation.  One of the instruments in current use is 

the Inventory for Client and Agency Planning (ICAP) (Bruininks et al. 1986).  Utah, like 

many other states, uses the ICAP to allocate funding.   

Many researchers also use the ICAP to measure the effectiveness of disability 

programs (Thompson et al. 2002; Orsmond et al. 2003).  One part of the ICAP, the Scales 

of Independent Behavior—Revised (SIB-R), measures the overall behavior of the disabled 

individual.  A section of the SIB-R addresses the maladaptive behavior of the individual.  

An interviewer administers the SIB-R by asking a parent or caregiver scripted questions 

about the disabled dependent.  The scripted questions include complete instructions for 

the interviewer on how to elicit responses with minimal interviewer bias (Bruininks et al. 

1996).  The SIB-R measures the frequency and severity of eight different problem 

behaviors using Likert scales.  The frequency scales range from 0 to 5 while the severity 

scales range from 0 to 4. 

For example, the interviewer asks, “Does (name) injure his/her own body—for 

example, by hitting self, banging head, scratching, cutting or puncturing, biting, rubbing 

skin, pulling out hair, picking on skin, biting nails, or pinching self?”  This introduction 
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gives the parent or caregiver a thorough description of actions associated with the 

problem behavior.  After recording the response, the interviewer asks, “How often does 

this behavior occur?” and “How serious is the problem usually caused by this behavior?”  

The respondent then selects a frequency from the following scale: [0—Never, 1—Less 

than once a month, 2—One to 3 times a month, 3—One to 6 times a week, 4—One to 10 

times a day, or 5—One or more times an hour].  Note that the scale does not have 

consistent time interval, but does progress from least often to most often.  The respondent 

also selects a severity from the following scale: [0—Not serious, not a problem; 1—

Slightly serious, a mild problem; 2—Moderately serious, a moderate problem; 3—Very 

serious, a severe problem; or 4—Extremely serious, a critical problem] (Bruininks et al. 

1996).  The eight problem behaviors were named “Hurtful to Self,” “Hurtful to Others,” 

“Destructive to Property,” “Disruptive Behavior,” “Unusual or Repetitive Habits,” 

“Socially Offensive Behavior,” “Inattentive Behavior,” and “Uncooperative Behavior.”  

All eight problem behaviors have a corresponding question and procedure.   

At the end of the interview, the SIB-R has sixteen measurements (eight severity 

scores and eight frequency scores).  The SIB-R contains an algorithm to translate these 

sixteen measurements into three different indices: Internalized Maladaptive Behavior, 

Asocial Maladaptive Behavior, and Externalized Maladaptive Behavior.  The SIB-R also 

creates one grand total scale for an overall summary.  Orsmond (2003) and other 

researchers use these interval scales to identify effects using MANOVA.  The translation 

method combines the different scores for each maladaptive behavior into interval indices, 

so MANOVA is an appropriate test.  However, some researchers need to analyze the 

sixteen measurements directly, particularly if the treatment affects only one or two of the 
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problem behaviors.  Researchers also are interested in identifying which basic 

demographics are associated with each problem behavior.  Basic demographics included 

with the SIB-R are marital status, ethnicity, gender, and mental retardation level. 

1.2 Introduction to Ordinal Regression 

Ordinal regression allows researchers to directly measure demographic traits on a 

single maladaptive behavior scale regardless of continuity.  Ordinary least squares 

regression assumes a normally distributed response variable given the explanatory 

variables.  Applying ordinary least squares regression to Likert scales violates this 

assumption.  Ordinal regression solves this problem by including a continuous latent 

variable that translates into the observed ordinal scale.  Cutoff parameters divide the 

latent variable’s distribution into a discrete number of areas.  These areas correspond to 

the possible responses on the Likert scale.  The ability to implement ordinal regression 

techniques is important any time a Likert scale is used. 

Johnson (2003) completed a study using ordinal regression entitled “Duke 

Undergraduates Evaluate Teaching” (DUET).  The study isolated the effect of grades on 

teacher evaluations.  Teacher evaluations were done using multiple Likert scales which 

evaluated different aspects of teaching.  Johnson created a Bayesian hierarchical model 

with an experimental unit of each individual in each class.  He used ordinal regression 

because the teacher evaluations were not on a continuous scale.  He estimated cutoff 

values to place the continuous latent distribution onto the observable discrete response 

variable.  He found that a student who expected an A was three times more likely to rate 

a teacher higher on some items than a student who expected a B (Johnson 2003). 

  3 



This project adapts Johnson’s ordinal regression Bayesian hierarchal model to 

analyze maladaptive behavior scores.  Utah’s Division of Services for Persons with 

Disabilities provided the data for over 7,000 individuals.  Each respondent completed the 

SIB-R to qualify for government financial support for disabled persons.  This project 

examines the effect of gender, ethnicity, disability type, and marital status on each of the 

eight maladaptive behaviors and summarizes which characteristics are associated with 

higher maladaptive behavior scores. 
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2. LITERATURE REVIEW 

2.1 Development of Ordinal Regression 

 McCullagh (1980) developed a technique to analyze ordinal data called ordinal 

regression.  Many times a response variable is not measured on a continuous scale.  

When this is the case, it is not appropriate to use ordinary least squares regression with 

ordinal data.  McCullagh formulated a way to use regression techniques on a discrete 

response scale.  He modeled the mean of an unobservable continuous latent variable with 

a linear function of the explanatory variables.  McCullagh defined a latent variable to be a 

characteristic of the subject which is assumed to have a continuous distribution, but is not 

directly observable; however, the latent variable can be indirectly measured because 

when the characteristic increases, the probability of survival also increases. 

An animal living through winter exemplifies a literal example of this survival 

concept.  Other latent variables use the term “surviving” figuratively, such as a student 

surviving a class by receiving a passing grade.  In the first scenario, the characteristic is 

the hardiness of the animal.  Although not directly measurable, the animal’s hardiness 

relates to the probability that the animal will live through the winter.  If an animal has a 

high hardiness, then the probability of surviving through winter is quite good.  An animal 

with a low hardiness exhibits a low probability of surviving.  Likewise, the latent variable 

in the second scenario is the “level of preparedness.”  These latent variables exist 

regardless of the ability to measure them. 

McCullagh divided the scale of the latent variable into categories with discrete 

probabilities derived from the areas under the latent variable’s density curve.  Survival 

and death are the categories in the animal example.  The categories in the grade example 
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fall out naturally as A, B, C, D, and F.  McCullagh also formulated a more general 

ordinal regression model that did not assume the existence of a latent variable.  He 

created the distribution of the response variable using the cumulative distribution of the 

odds ratio.  McCullagh also demonstrated other properties of ordinal regression, such as 

the accuracy of least squares and maximum likelihood estimates. 

 The ordinal regression model has evolved over time.  Albert and Chib (1993) 

applied the Bayesian framework to the ordinal regression model after the development of 

Markov Chain Monte Carlo (MCMC) and Gibbs sampling and returned to the latent 

variable concept.  They compared Bayesian and maximum likelihood estimators and 

found that when the number of observations grew, the estimators converged in 

distribution.  Johnson (1996) used this model in the field of education for essay-rating by 

teacher assistants.  Bedrick et al. (1996) generalized this model by including informative 

prior distributions on the coefficients for the effects and on the cutoff values for the latent 

variable using a conditional means approach.  Ishwaran and Gatsonis (2000) then 

expanded the flexibility of the ordinal regression model by including a more complex 

correlation structure in the prior distribution of the latent variable. 

2.2 Johnson’s Bayesian Hierarchal Ordinal Regression Model 

Johnson (2003) wanted to find a way to measure the effect of grade inflation on 

teacher evaluations.  He believes that students rewarded professors who gave them better 

grades with a better evaluation.  Because professors want higher evaluations, which play 

an increasingly important role in determining tenure and salary, Johnson believes that 

professors realize they could achieve higher teacher evaluations by lowering their grading 

standards.  Johnson also believes that the resulting grade inflation undermines true 
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learning.  He collected data to study this phenomenon at Duke University in a study 

called Duke Undergraduates Evaluate Teaching (DUET). 

Johnson applied Bayesian ordinal regression in his DUET study, specifying the 

experience of a student in a class to be his latent variable.  This experience ranged from 

extremely negative to extremely positive.  If a student had an extremely positive 

experience in the class, then the teacher rating would be higher.  Johnson used a logistic 

density function for the likelihood of the latent variable (Johnson 2002, 1999).  The 

general form of the logistic distribution with a location parameter μ and a scale parameter 

σ is 

[ ]2/)(

/)(
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σμ
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 Random effects for the course and the student allowed the location parameter μ of 

the latent variable z to vary for each student in each course.  The fixed grade effect 

enabled the model to measure the relative amount of grade inflation.  Ten categories of 

expected grades (D/F, C-, C, C+, B-, B, B+, A-, A, and A+) spanned the sample space.  

Johnson used X to represent the matrix containing K indicator variables, where K 

represented the number of possible expected grade categories. He used W to represent the 

matrix containing J (the number of possible courses) indicator variables.  This 

formulation created the following equation for the latent variable: 

ijl

I

i

J

j
ijl

K

k
klijl euwxz +′+′= ∑∑∑

= == 1 11
β ,                                        (2.2) 

where zijl denotes the latent variable for student i in course j on item l.  The fixed effect, 

βkl, measures how the student’s grade affected item l on the evaluation.  The random 

course effect, uijl, varied for every student i in course j for item l of the evaluation.  These 
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column vectors of parameters are multiplied by the respective row vectors found in the X 

and W matrices.  These row vectors (x′ and w′) are the indicator variables that stem from 

zijl.  The error variable, eijl, was assumed to be distributed logistically with parameters 

μe=0 and σe=1. 

 Johnson used this model to analyze data gathered before and after grade 

distribution.  The fixed effects in the first analysis represent the effect of the expected 

grade.  The fixed effects in the second analysis represent the effect of the actual grade 

received.  The random effects remained the same across both models because the course 

and students remained constant.  Johnson estimated cutoff values, r, for each rating, 

which translated the latent variable into the ordinal scale of the response variable y.  He 

scaled the latent variable and addressed identifiability problems by fixing three cutoff 

values (r0 = -∞ , r1 = 0, and r5 = ∞ ).  If the latent variable value lay between rm-1 and rm, 

then the response value was m.   

Figure 2.1 shows the density of a potential latent variable with location parameter 

of 1 and a spread parameter of 1.  Johnson’s latent variable distribution translated into 

multinomial probabilities with pijlm denoting the probability that student i rated course j 

on item l with value m.  The area of the latent variable curve between the two cutoff 

values equals pijlm.  The probability distribution in Figure 2.1 shows all possible values of 

the latent variable.  If the latent variable resides between rm-1 and rm, then the student 

gave a rating of m.  The probability of a rating with value m is equal to the probability of 

generating a latent variable between rm-1 and rm or the integral of the distribution from 

rm-1 to rm.  Substituting  for the mean and 1 for the scale parameter 

derives equation 2.3 from equation 2.1: 

∑∑∑
= ==

′+′
I

i
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ijl
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Figure 2.1: Distribution of the Latent Variable.  This distribution of the latent variable is 
divided into five intervals.  The vertical lines r1 to r4 represent the cutoff parameters that 
separate the different possible responses.  The areas p1 to p5 correspond to the 
probability of an observed rating of 0, 1, 2, 3, or 4, respectively. 
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Because the observed responses were mutually exclusive and discrete, the 

likelihood formed a multinomial distribution with probabilities pijlm: 
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= = = =

=∝
I

i

J

j

L

l m

myI
ijlm

ijlppyL
1 1 1

5

1

)()|( .                                  (2.4) 

The indicator variable allowed only one rating by a student on a course for an item.  

When student i in course j gave rating m on item l of the teacher evaluation, pijlm appears 

in the likelihood equation.  Johnson did not need to calculate the normalizing constants of 
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the multinomial distribution to simulate from the posterior distribution, so they do not 

appear in equation 2.4.   

 Substituting pijlm from equation 2.3 into equation 2.4 yields  
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The limits  and  were included because only the pijlm that corresponds with the 

observed rating appears in the likelihood.  Note that μijl is the mean of the latent variable 

for student i in course j on item l, as modeled above in equation 2.3.  Equation 2.5 takes a 

lot of computation time to integrate the probability density function.  The CDF of the 

logistic density function (F) decreased this time by removing the need to integrate the 

density function.  The integral from ryijl-1 to ryijl equals the difference of the CDFs.  The 

likelihood equation, expressed in terms of the effects and cutoff values with the CDF is 

1−yr
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This formulation of the likelihood excludes the latent variable (zijkl); however, the 

estimated mean of the latent variable, , does affect the likelihood.  

The observed ratings only affected the likelihood through the cutoff parameters. 
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Then, to make interpretation of the parameters easier, Johnson used θm to 

represent the probability that y ranked in a category below m.  This formulation yielded 
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The odds ratio then became           .  Johnson reported his results in 

terms of the proportional odds ratio calculated by 
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where θm1 is the probability that an individual with characteristic 1 rates category m or 

below, θm2 is the probability that an individual with characteristic 1 rates category m or 

below, rm is the cutoff parameter for category m, μ1 is the mean of the latent variable for 

an individual with characteristic 1, and μ2 is the mean of the latent variable for an 

individual with characteristic 2. 

Because 2121 ββ −=− uu

21 ββ −e

 for individuals who only differ in one characteristic, 

this equation reduces to .  Note that the subscript m does not appear in the reduced 

form of this equation.  This model implies that the proportional odds ratio remains 

constant for every category of the response variable.  For example, the probability that a 

student who received an A in course j rates item l higher than a student in the same 

course who received a B is reduced to ) .  This probability applies across all rating 

values. 

( BAe ββ −

2.3 Possible Prior Distributions for a Bayesian Ordinal Regression Model 

Johnson (2002, 2003) did not explicitly state his priors on the course effects, 

grade effects, or cutoff values in the DUET study; he probably used improper priors 

based on the simplified computations.  However, Johnson did discuss potential prior 

distributions in Ordinal Data Modeling (1999).  He first discussed the Jeffery’s priors for 

the effects and the cutoff values.  These improper priors do not have a distribution.  

However, the cutoff values were constrained so that rm-1 < rm.  The effects (β and u) 
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allowed values from negative infinity to positive infinity.  The cutoff values, r, were 

assumed to be independent of the effects. 

Johnson also discussed informative priors.  He did not recommend direct 

specification of the joint prior on (β,u,r) because of the indirect effect of these parameters 

on the probability of each response category, which demonstrates the difficulty of 

describing the effects of these parameters individually.  He concluded that a combination 

of the parameters developed by Bedrick, Christensen, and Johnson (1996) is easier to 

specify because the combination has a more measurable meaning.  They specified the 

cumulative prior probabilities θ with a beta density function, and then used the beta 

density function to bound the probability between 0 and 1 and to allow more flexibility.  

The parameters of the beta density function also had unique meanings.  The researchers 

decided how many data points their prior was worth. If they did not have much 

knowledge about the subject, then their prior estimate had less weight compared to the 

data, while if they were confident about the prior distribution, they increased the weight 

of the prior.  The prior distribution was weighted α + κ data points.  The α parameter 

corresponded to the number of α + κ data points in category m or below.  Thus, κ 

represented the number of α + κ data points above category m. They created one prior 

cumulative distribution for each of the m categories, given by 

∏
=

−− −∝
M

m
m

mm

1

11 )1()( κα θθθπ .                                            (2.9) 

 Using change of variable techniques, they reparameterized the prior into terms of 

the cutoff values and effects by substituting equation 2.7 for θm in equation 2.9 and 

multiplying by the Jacobian.  The combined prior distribution resulted in 
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      (2.10) 

Because this prior results in a complicated posterior distribution with no closed form, the 

uninformative priors are more commonly used. 

2.4 MCMC and Cowles’ Hybrid Metropolis-Hastings Algorithm 

The posterior distribution is not a known distribution, so MCMC methods must be 

used to simulate from this distribution.  These chains were first used in physics to 

generate simulations from integrals that could not be solved analytically (Metropolis et al. 

1953).  W. K. Hastings (1970) first used this technique to create a random draw from a 

posterior distribution.  He simulated candidate values for the posterior using a symmetric 

function.  Then he compared the ratio of the likelihood evaluated at the previous iteration 

to the candidate values.  If the likelihood ratio was greater than 1, the candidate values 

were accepted in this iteration; otherwise, the candidate values were accepted with the 

probability of the likelihood ratio.  Hastings showed that this process formed a stationary 

state equivalent to the posterior distribution.   

Hastings (1970) also applied this method to multidimensional models.  In this 

instance, he considered one parameter at a time and treated all other parameters as 

constants.  Any parameters that could be separated from this parameter as a multiplicative 

factor canceled in the numerator and denominator of the likelihood ratio.  The resulting 

equation is called a complete conditional.  He simulated draws from the complete 

conditionals sequentially.  The later complete conditionals used the results of the 

previous complete conditionals.  Once a new value was generated for each complete 
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conditional, he started the next iteration.  Although the posterior distribution could not be 

analytically solved, he showed that this algorithm converged to the steady state found in 

the posterior distribution.  This process was later named the Metropolis-Hastings 

algorithm. 

In ordinal regression, the complete conditionals have closed-form solutions when 

using the improper priors.  Johnson showed that the complete conditionals of the ordinal 

regression for the latent variables had independent, truncated logistic distributions (1999).  

Furthermore, he explained that the complete conditional for each cutoff parameter was 

uniformly distributed between the two adjoining cutoff parameters.  Johnson noted the 

small size of these complete conditionals when there are a large number of observations 

in adjacent categories.  This small size inhibited the movement of the cutoff parameters.  

He suggested a hybrid of the Metropolis-Hastings algorithm developed by Cowles to 

calculate the joint conditional distribution of the cutoff parameters and the latent 

variables (1996).  Cowles used the following equation to calculate the joint conditional 

distribution: 

),|(),,|(),|,( βπβπβπ yrryZyrZ = .                           (2.11) 

The first part of the right hand side of the equation, ),,|( βπ ryZ

|(

, represents the 

complete conditional of the latent variable previously discussed.  The latent variables 

were simulated from this distribution and accepted with the same probability as the cutoff 

parameters.  The second part of the right hand side of the equation, ),βπ yr , was the 

likelihood with the latent variable integrated out, as found in equation 2.6.  The cutoff 

parameters moved more and converged sooner when the latent variables and cutoff 

parameters were updated together.  Cowles decreased the logistic model’s “burn time,” or 
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the number of iterations until the posterior distribution was reached, from over 1000 

iterations to 400 iterations. 

The complete conditional of the effect parameters was not in closed form with the 

logistic distribution:   

∏
=

′−
N

n
nn xZfyrZ

1

)(),,|( βαβπ .                                          (2.12) 

A simple Metropolis-Hastings step was used in this case.  The effects were estimated by 

alternating between Cowles’ algorithm, used for the cutoff parameters and the latent 

variable, and the simple Metropolis-Hastings step, used for the effect parameters.  The 

resulting distribution was the posterior distribution of the parameters. 

 The Jeffery’s priors must be used because an informative prior breaks down the 

hybrid Metropolis-Hastings algorithm.  The key issue of the inability of Cowles’ 

algorithm to accommodate improper priors is that the latent variable cannot be integrated 

out of the prior.  The latent variable can be integrated out of the likelihood (see equation 

2.6); however, the latent variable’s informative prior distribution cannot be integrated out.  

Without the ability to integrate out the latent variable from the informed prior, the second 

part of Cowles’ hybrid equation ( ),|( βπ yr , see equation 2.11) cannot be computed.  

Instead of using Cowles’ algorithm, the cutoff parameters and latent variables would each 

need to have their own Metropolis-Hastings algorithm.  Cowles (1996) showed that these 

Metropolis-Hastings steps would slow down computation time and the convergence rate.  

This project will assume the improper prior to use the hybrid Metropolis-Hastings 

algorithm. 
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3. METHODOLOGY 

3.1 Formulation of the Bayesian Ordinal Regression Model 

 The data from the ICAP survey was analyzed using ordinal regression techniques.  

The ICAP model resembles Johnson’s grade model, but does not have a random effect 

for each individual, simplifying the model.  The ICAP model includes more fixed effects 

than the grade model.  The analysis model examines the affect that gender, disability, 

mental retardation level, ethnicity, and marital status have on maladaptive behavior.  

Because the ICAP provides 13 categories for disability, for subjects with multiple 

disabilities the primary disability is used in the analysis.  Utah’s Department for 

Disability Services provided a large sample of 7,772 people for this dataset. The analysis 

only uses 7,687 of these applicants because 85 subjects have missing data in the relevant 

explanatory variables. 

The design matrix consists of 7,687 rows and 28 columns (one for the intercept, 

one for gender, twelve for disability, five for mental retardation level, five for ethnicity, 

and four for levels of marital status).  The ordinal regression model uses the effects model 

rather than the cell means model by including an intercept.  In this model, β0 represents a 

white male with a primary disability of mental retardation, a mild mental retardation level, 

and a marital status of never married.  This parameterization minimizes the error of the 

intercept because it contains the maximum sample size.  Tables 3.1–3.5 contain the 

observed frequency distributions of the explanatory variables.   

Table 3.1: Frequency of Categories of Gender 
 

Gender Frequency 
Male 4357
Female 3330
Total 7687
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Table 3.2: Frequency of Categories of Disability 

Disability Frequency 
None 17 
Autism 508 
Blindness 27 
Brain damage 515 
Cerebral palsy 504 
Chemical dependency 8 
Deafness 20 
Epilepsy 138 
Mental retardation 4788 
Physical health requiring a nurse 58 
Mental illness 97 
Situational mental health problems 43 
Other 964 
Total 7687 

 

Table 3.3: Frequency of Categories of Mental Ability 

Mental Level Frequency 
Not mentally retarded 628 
Mild 2626 
Moderate 1243 
Severe 775 
Profound 871 
Unknown 1544 
Total 7687 

 

Table 3.4: Frequency of Categories of Ethnicity 

Ethnicity Frequency 
White 7114 
Black 74 
Oriental 81 
Native American 131 
Hispanic 228 
Other 59 
Total 7687 
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Table 3.5: Frequency of Categories of Marital Status 

Marital Status Frequency 
Never married 7245 
Married 198 
Separated 32 
Divorced 191 
Widow or widower 21 
Total 7687 

 

The parameters of interest are denoted by β.  For example, β1 represents the odds 

ratio of a female having a higher score than a male.  The response variables come from 

the SIB-R section of the ICAP.  The SIB-R uses a Likert scale from 0 to 4 for severity 

and 0 to 5 for frequency.  Because the cutoff value to distinguish 0 and 1 is fixed at 0, 

only three cutoff parameters are estimated for the five categories in the severity model.  

The frequency model estimates four cutoff parameters for the six categories.  Finally, 

each model has a vector of latent variables with the same length as the response (7,687). 

3.2 Simulation from the Complete Conditional Distributions 

Improper priors are assumed, so the hybrid Metropolis-Hastings algorithm 

developed by Cowles can be used.  Cowles’ algorithm generates values for the effect 

parameters from the joint distribution of the latent variables and the cutoff parameters.  

This algorithm will speed up convergence and allow the cutoff parameters to move more 

freely (Cowles 1996).  A more thorough description of this algorithm is included below. 

First, the parameters are initialized to starting values.  All the effect parameters 

and latent variables were initialized to 1.  For this project, the cutoff parameters were 

initialized to 1, 2, and 3 respectively.  Following initialization, the Metropolis-Hastings 

algorithm generates candidate values from a normal distribution with the mean of the old 

parameter value and standard deviation of the candidate sigma.  Each cutoff parameter, rm, 
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is truncated from rm-1 to  rm+1.  These new cutoff parameters are accepted with the 

following probability: 
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where F is the cumulative density function of the logistic distribution, σc is the standard 

deviation of the distribution of the candidate value, N is the number of observations in the 

data, M is the number of possible ratings,  is the observed rating for the nth observation, 

 is the row of indicator variables corresponding to the nth observation, β is the column 

of fixed effect parameters from the previous iteration, is the candidate value for the 

upper cutoff parameter for observation ,  is the candidate value for the lower 

cutoff parameter for observation , is the value from the previous iteration for the 

upper cutoff parameter for observation ,  is the value from the previous iteration 

for the lower cutoff parameter for observation , is the candidate value for the mth 

cutoff parameter, and  is the value from the previous iteration for the mth cutoff 

parameter.  The first half of the equation comes from the complete conditional of the 

latent variable’s joint distribution.  The second half comes from the distribution of cutoff 

parameters given the effect parameters shown in equation 2.11. 
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If the candidate values for the cutoff parameters are accepted, new values for the 

latent variables need to be generated.  However, if the values for the cutoff parameters 

are not accepted, the latent variables do not change for the next iteration.  Values for the 

latent variable are drawn from the complete conditional 

),()(),,|( 1 nn yynn rrIxfyrz −′= ββπ ,                                (3.2) 
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where zn is the latent variable for the nth observation, f is the pdf of the logistic 

distribution, and I is the indicator function used to truncate the logistic distribution. 

Finally, the fixed effects are updated with a Metropolis-Hastings step.  The 

candidate values are drawn from a multivariate normal distribution with the mean of the 

fixed effects from the last iteration and variance of (X′X)-1.  The acceptance probability 

for the candidate values of the fixed effects is the ratio of two likelihoods, 
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where C is the vector of the candidate values for the fixed effects. 

The expected length to convergence is 500 iterations (Cowles 1996). A burn of 

2,000 iterations was used in this project.  Ten thousand draws were generated from the 

complete conditional distribution of each parameter.  The mixing plots were checked for 

convergence and for coverage of the posterior distribution.  The expected effects of the 

explanatory variables were evaluated by creating credible intervals for the parameters of 

interest.  These intervals give a range of reasonable values for the odds ratios of the 

effects on maladaptive behavior scores.  For example, if the credibility interval for the 

difference between the single (never married) coefficient and the married coefficient does 

not include 1, then the odds ratio is considered statistically significant.  With these 

intervals, conclusions were drawn about the effect of different demographics on the 

frequency and severity of maladaptive behavior among disabled individuals. 
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4. RESULTS 

4.1 Validity of the Frequency Models 

 Mixing plots are used to examine convergence of MCMC samples.  Selected 

representative mixing plots are included in this chapter.  The “Hurtful to Self” problem 

behavior is used to illustrate the analysis method used for all the problem behaviors.  The 

raw data is plotted to allow comparison to the statistical models.  Every model contains 

significant fixed effects even with the high variation among individual disabled children.  

The significant parameters are generally consistent across multiple problem behaviors. 

An example of the mixing plots for the “Hurtful to Self” problem behavior of the 

estimated cutoff parameters and the intercept for the frequency are found in Figures 4.1–

4.2.  These plots are illustrative of mixing in all the models. 

 

Figure 4.1: Mixing Plot for the Intercept.  This plot shows the simulated values of the 
intercept while the iterations increase.  The simulated values appear to have converged to 
the posterior distribution of the intercept by 2,000 iterations. 
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Figure 4.2: Mixing Plots for the Cutoff Parameters.  These plots show the simulated 
values of the cutoff parameters while the iterations increase.  The simulated values appear 
to have converged to the appropriate distribution by 2,000 iterations. 
 
 

The mixing plot of the samples from the posterior of the gender parameter is 

shown in Figure 4.3.  Gender is not significant in the “Hurtful to Self” model because the 

credible interval of the odds ratio includes 1 (Figure 4.4).  The marginal frequency 

distributions of the raw data for the two genders show that the counts are virtually 

identical at each level (Figure 4.5). 

The mixing plot for autism is shown in Figure 4.6.  The autism parameter is an 

example of a significant odds ratio.  Because this odds ratio is greater than 1, those with 

autism are at a significantly higher risk for frequent “Hurtful to Self” behavior (Figure 

4.7). 

An example of lower risk is the cerebral palsy parameter.  The mixing plot is 

shown in Figure 4.8.  Figure 4.9 shows the odds ratio centered around .6, so a child with 
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cerebral palsy has a significantly lower risk of “Hurtful to Self” behavior.  A plot of the 

raw data is found in Figure 4.10, in which autism has a lower frequency of zero ratings 

and a higher frequency of high ratings.  Cerebral palsy has a lower frequency of high 

ratings and a higher frequency of low ratings. 

 

 

 

 

 
Figure 4.3: Mixing Plot for the Gender Parameter.  This plot shows the simulated values 
of the log difference in the odds ratio while the iterations increase. 
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Figure 4.4: Posterior Distribution of the Odds Ratio of Men to Women.  This plot shows 
the posterior distribution of the parameter measuring the effect of gender. 
 
 
 

 
 

Figure 4.5: Graph of Responses to “Hurtful to Self” by Gender.  This line graph shows 
the frequency of ‘Hurtful to Self’ behavior in the raw data.  Males and Females show 
approximately equal percentages in all levels of the frequency scale 
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Figure 4.6: Mixing Plot for an Autism Parameter.  This plot shows the simulated values 
of the log difference in the odds ratio while the iterations increase.   

 
Figure 4.7: Posterior Distribution of the Odds Ratio of Autism to Mental Retardation.  
This distribution shows that Autistic applicants have a higher risk for frequent “Hurtful to 
Self” behavior. 
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Figure 4.8: Mixing Plot for a Cerebral Palsy Parameter.  This plot shows the simulated 
values of the log difference in the odds ratio while the iterations increase.   
 
 

 
Figure 4.9: Posterior Distribution of the Odds Ratio of Cerebral Palsy to Mental 
Retardation.  This distribution shows that cerebral palsy applicants have a lower risk for 
frequent “Hurtful to Self” behavior. 
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Figure 4.10: Graph of Responses to “Hurtful to Self” by Disability.  This line graph 
shows the frequency of “Hurtful to Self” behavior in the raw data.  Autism shows higher 
percentages in the frequency scale at 3, 4, and 5.  Cerebral Palsy shows higher 
percentages in the 0 rating and lower percentages at the 3, 4, and 5 levels. 
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4.2 Validity of the Severity Models 

The severity models are also illustrated using the “Hurtful to Self” problem 

behavior.  Mixing plots for the intercept and the cutoff parameters are shown in Figures 

4.11 and 4.12.  The severity models have one less cutoff parameter than the frequency 

models because the scale of the severity ratings ends at 4 instead of 5.   

 

Figure 4.11: Mixing Plot for the Intercept.  This plot shows the simulated values of the 
intercept while the iterations increase.  The simulated values appear to have converged to 
the posterior distribution of the intercept by 2,000 iterations. 
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Figure 4.12: Mixing Plots for the Cutoff Parameters.  These plots show the simulated 
values of the cutoff parameters while the iterations increase.  The simulated values appear 
to have converged to the posterior by 2,000 iterations 
 

The mixing plot for the gender parameter is shown in Figure 4.13.  Again, gender 

is not significant in the “Hurtful to Self” model because the posterior distribution of the 

odds ratio includes 1 (Figure 4.14).  The frequency distribution of the raw data is shown 

in Figure 4.15.   
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Figure 4.13: Mixing Plot for the Gender Parameter.  This plot shows the simulated values 
of the log difference in the odds ratio while the iterations increase. 

 
Figure 4.14: Posterior Distribution of the Odds Ratio of Men to Women.  This plot shows 
the posterior distribution of the parameter measuring effect of gender. 
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Figure 4.15: Graph of Responses to Hurtful to Self by Gender.  This line graph shows the 
severity of “Hurtful to Self” behavior in the raw data.  Males and females show 
approximately equal percentages in all levels of the severity scale. 
 

The autism parameter shows a higher risk of severe “Hurtful to Self” behavior.  

The mixing plot is shown in Figure 4.16.  Figure 4.17 shows that the odds ratio for autism 

to mental retardation is centered around 3.5, and is significantly higher than 1. 

The mixing plot for cerebral palsy is shown in Figure 4.18.  This parameter’s odds 

ratio is centered around .5 and also differs significantly from 1. The raw data are shown 

in Figure 4.20.  In this figure, autism has a lower frequency of zero rating and a higher 

frequency of high ratings.  Cerebral palsy has a lower frequency of high ratings and a 

higher frequency of low ratings. 
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Figure 4.16: Mixing Plot for an Autism Parameter.  This plot shows the simulated values 
of the log difference in the odds ratio while the iterations increase.   

 
Figure 4.17: Posterior Distribution of the Odds Ratio of Autism to Mental Retardation.  
This distribution shows that autistic applicants have a higher risk of severe “Hurtful to 
Self” behavior than those suffering from mental retardation. 
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Figure 4.18: Mixing Plot for a Cerebral Palsy Parameter.  This plot shows the simulated 
values of the log difference in the odds ratio while the iterations increase.   

 
Figure 4.19: Posterior Distribution of the Odds Ratio of Cerebral Palsy to Mental 
Retardation.  This distribution shows that Cerebral Palsy applicants have a lower risk of 
severe “Hurtful to Self” behavior than those suffering from mental retardation. 
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Figure 4.20: Graph of the Responses to Hurtful to Self by Disability.  This line graph 
shows the severity of “Hurtful to Self” behavior in the raw data.  Autism shows higher 
percents in the severity scale at 3, 4, and 5.  Cerebral Palsy shows higher percents in the 0 
rating and lower percents at the 3, 4, and 5 levels. 
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4.3 Results of the Bayesian Ordinal Regression Models 

The results for the rest of the models and parameters are found in Tables 4.1 and 

4.2.  The lower limits greater than 1 are highlighted in orange to indicate that the odds 

ratio is significantly greater than 1.  The upper limits less than 1 are highlighted in green 

to indicate that the odds ratio is significantly less than 1.  A few interesting trends are 

discussed below. 

First, disability type seems to be an important factor in the risk for frequent and 

severe problem behaviors.  Those with autism exhibited the most risk for frequent and 

severe maladaptive behavior in all categories except frequency of “Hurtful to Self.”  In 

this category those with profound mental retardation had a higher credible interval than 

those with autism, but the credible intervals still overlapped.  Those with cerebral palsy 

exhibited significantly lower risk for frequent and severe maladaptive behavior across all 

problem behaviors.   The applicants with physical disabilities requiring care by a nurse 

had a lower risk of frequent and severe maladaptive scores in all but five of the credible 

intervals.  Blind people had only had one significant credible interval; they displayed 

more risk for frequent “Unusual and Repetitive Habits” than those with a primary 

diagnosis of mental retardation.  Those with brain injury had a lower risk of severe and 

frequent “Uncooperative Behavior.”  The applicants with a primary diagnosis of chemical 

dependency only had one significant interval, severity of “Hurtful to Others.”  Those with 

no primary disability had only one significant credible interval, a lower risk of “Unusual 

or Repetitive Habits” than those with mental retardation.  The applicants with epilepsy 

had a greater risk for severe “Hurtful to Others” and “Destructive to Property” behaviors.  

Applicants with epilepsy also had a greater risk of frequent “Hurtful to Others.”  Lastly, 
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those with a primary diagnosis of severe mental illness (such as schizophrenia) or with 

situational mental illness (such as anxiety and depression) had greater risk for frequent 

and severe problem behaviors.  The significant credible intervals in the frequency models 

for severe mental disability are for “Destructive to Property,” “Unusual or Repetitive 

Habits,” “Socially Offensive Behavior,” “Inattentive Behavior,” and “Uncooperative 

Behavior.”  All problem behaviors in the severity models had significant credible 

intervals for severe mental disability.  The situational mental illness parameters in the 

frequency models had significant credible intervals for “Destructive to Property,” 

“Inattentive Behavior,” and “Uncooperative Behavior.”  The severity parameters for 

situational mental illness had four significant credible intervals: “Hurtful to Self,” 

“Disruptive Behavior,” “Inattentive Behavior,” and “Uncooperative Behavior.” 

The second important characteristic is retardation level.  In general, while an 

applicant’s IQ score lowered, their maladaptive behavior scores increased.  Those with 

severe or profound retardation had significantly greater risk for high frequency ratings in 

all eight problem behaviors.  Interestingly enough, only a few severity ratings are 

significantly higher than mild retardation.  The three significant intervals with a lower 

limit above 1.05 were “Hurtful to Self,” “Hurtful to Others,” and “Inattentive Behavior.”  

The applicants with moderate retardation had significant credible intervals in the same 

three areas.  Those with no mental retardation level had significantly lower risk of 

frequent and severe problem behaviors, the most significant being the severity of 

“Uncooperative Behavior.” 

 The third most significant characteristic of the model is marital status.  Those 

applicants who are currently married had the lowest maladaptive behavior scores 
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(significant credible intervals in frequency and severity of all problem behaviors except 

“Inattentive Behavior”).  Those who are widowed also exhibited lower risk for 

maladaptive behavior in several areas, including “Destructive to Property,” “Socially 

Offensive Behavior,” and “Uncooperative Behavior.”  They also had a significant 

credible interval for the frequency of “Unusual or Repetitive Habits.”  Those who are 

married but separated had no significant credible intervals.  The divorced applicants also 

had a lower risk of problem behavior in multiple areas, including the severity of “Hurtful 

to Others,” and “Destructive to Property,” and the frequency of “Hurtful to Others,” 

“Destructive to Property,” and “Unusual or Repetitive Habits.”  They also had one 

significantly higher credible interval in the severity of “Inattentive Behavior.”  Overall, 

the applicants with the most severe and frequent problem behaviors were never married 

at any time. 

Gender and Ethnicity also played a role in the maladaptive behavior scales.  

Females had significantly lower credible intervals for the frequency and severity of 

almost all problem behaviors.  The frequency and severity of “Hurtful to Self” were not 

significant. Also, the frequency of “Disruptive Behavior” was not significant.  Native 

Americans were at greater risk for severe and frequent “Uncooperative Behavior.” 



Table 4.1: Credible Intervals for the Parameters in the Frequency Models 

  Credible Interval on Frequency of Problem Behavior 

    Hurtful 
to Self 

Hurtful to 
Others 

Destructive 
to Property 

Disruptive 
Behavior 

Unusual 
or 

Repetitive 
Habits 

Socially 
Offensive 
Behavior 

Inattentive 
Behavior 

Uncooper-
ative 

Behavior 
Demographic Parameter LL UL LL UL LL UL LL UL LL UL LL UL LL UL LL UL 

Gender Female 0.9 1.1 0.7 0.8 0.6 0.7 0.9 1.0 0.8 1.0 0.7 0.9 0.8 1.0 0.8 0.9 

Ethnicity 

Black 0.6 1.6 0.6 1.3 0.4 1.2 0.6 1.4 0.7 1.7 0.4 1.1 0.6 1.6 0.6 1.4 
Asian 0.6 1.5 0.9 1.9 0.9 2.1 0.8 1.6 0.7 1.7 0.6 1.3 0.7 1.7 0.6 1.5 
Native American 0.7 1.5 0.9 1.9 0.9 1.8 0.7 1.2 0.6 1.0 0.6 1.2 0.6 1.2 1.0 1.9 
Other Ethnicity 0.7 1.9 0.4 1.2 0.6 1.6 0.6 1.4 0.9 2.2 0.9 2.2 0.9 2.6 0.7 1.8 
Hispanic 0.7 1.2 0.7 1.3 0.6 1.2 0.6 1.1 0.8 1.3 0.6 1.0 0.7 1.2 0.6 1.1 

Marital 
Status 

Married 0.5 0.9 0.5 0.9 0.4 0.7 0.5 0.8 0.5 0.8 0.5 0.9 0.7 1.1 0.4 0.7 
Separated 0.5 1.7 0.3 1.3 0.3 1.8 0.5 1.6 0.7 2.2 0.8 2.5 0.6 1.9 0.4 1.7 
Divorced 0.6 1.2 0.3 0.7 0.5 0.9 0.7 1.1 0.5 0.9 0.8 1.4 0.9 1.6 0.7 1.3 
Widowed 0.1 1.2 0.1 1.3 0.0 0.5 0.3 1.2 0.1 0.8 0.2 0.8 0.4 1.7 0.1 0.9 

Primary 
Disability 

Autism 2.5 3.6 3.7 5.2 3.3 4.7 3.1 4.2 3.9 5.6 2.5 3.4 4.7 6.7 4.0 5.7 
Blind 0.7 3.5 0.8 3.4 0.3 1.9 0.9 4.0 1.2 4.5 0.9 3.6 0.5 1.8 0.5 1.8 
Brain 0.8 1.1 0.9 1.2 0.7 1.1 0.8 1.1 0.7 1.0 0.7 1.0 0.7 1.1 0.7 1.0 
Cerebral 0.5 0.7 0.4 0.6 0.3 0.5 0.4 0.6 0.4 0.6 0.3 0.4 0.3 0.5 0.3 0.4 
Chemical 0.3 4.5 0.9 10.9 0.4 4.4 0.5 8.7 0.2 2.3 0.3 4.8 0.1 1.8 0.2 2.3 
Deafness 0.3 2.3 0.6 3.2 0.2 1.9 0.3 1.5 0.3 1.9 0.3 1.7 0.2 1.4 0.3 1.8 
Epilepsy 0.8 1.7 1.3 2.5 0.9 1.8 1.0 1.8 0.6 1.2 0.8 1.4 0.8 1.6 0.9 1.7 
None 0.1 1.1 0.4 2.5 0.3 2.4 0.2 1.4 0.2 1.3 0.2 1.3 0.3 1.8 0.3 1.8 
Physical 0.4 1.3 0.4 1.1 0.1 0.4 0.2 0.8 0.3 0.8 0.2 0.7 0.2 0.6 0.3 0.8 
Mental 0.9 2.0 0.9 2.0 1.2 2.5 0.9 1.9 1.3 2.8 1.2 2.5 1.7 3.2 1.2 2.4 
Situational 0.8 2.6 0.9 2.8 1.1 3.2 1.0 2.8 0.6 2.0 0.7 2.0 1.0 2.9 1.1 3.3 
Other Disability 0.9 1.2 0.8 1.1 0.8 1.1 0.7 1.0 0.9 1.3 0.6 0.8 0.7 0.9 0.8 1.1 

Mental 
Retardation 

Level 

None 0.7 1.1 0.7 1.0 0.7 1.0 0.8 1.1 0.7 1.0 0.8 1.1 0.9 1.3 0.7 1.0 
Moderate 1.0 1.3 1.1 1.5 0.9 1.2 1.0 1.2 1.3 1.6 1.0 1.2 0.9 1.1 1.0 1.3 
Severe 1.6 2.1 1.5 2.1 1.2 1.6 1.1 1.5 1.7 2.2 1.1 1.5 1.1 1.4 1.2 1.6 
Profound 2.8 3.7 1.7 2.3 1.2 1.6 1.1 1.4 2.8 3.7 1.0 1.3 1.5 1.9 1.1 1.5 
Unknown 1.0 1.4 1.3 1.7 0.9 1.2 0.8 1.0 1.0 1.3 0.5 0.6 0.6 0.8 0.8 1.0 
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Table 4.2:  Credible Intervals for the Parameters in the Severity Models 

  Credible Interval on Severity of Problem Behavior 

    Hurtful 
to Self 

Hurtful to 
Others 

Destructive 
to Property 

Disruptive 
Behavior 

Unusual 
or 

Repetitive 
Habits 

Socially 
Offensive 
Behavior 

Inattentive 
Behavior 

Uncooper-
ative 

Behavior 
Demographic Parameter LL UL LL UL LL UL LL UL LL UL LL UL LL UL LL UL 

Gender Female 0.9 1.1 0.6 0.8 0.5 0.7 0.8 1.0 0.8 0.9 0.7 0.8 0.8 1.0 0.7 0.9 

Ethnicity 

Black 0.6 1.7 0.5 1.5 0.5 1.4 0.6 1.3 0.4 1.0 0.4 1.2 0.6 1.5 0.5 1.2 
Asian 0.6 1.7 0.7 1.6 0.8 1.9 0.8 1.7 0.6 1.4 0.4 1.1 0.7 1.5 0.6 1.4 
Native American 0.6 1.2 0.8 1.7 0.8 1.6 0.8 1.6 0.6 1.2 0.8 1.5 0.7 1.5 1.1 2.1 
Other Ethnicity 0.6 1.6 0.5 1.6 0.7 1.6 0.6 1.6 0.7 1.7 0.8 1.9 0.7 2.0 0.7 1.7 
Hispanic 0.7 1.2 0.7 1.3 0.6 1.0 0.6 1.1 0.8 1.3 0.6 1.0 0.7 1.2 0.7 1.2 

Marital 
Status 

Married 0.5 0.9 0.5 0.9 0.3 0.6 0.5 0.9 0.4 0.7 0.5 0.9 0.8 1.3 0.4 0.7 
Separated 0.6 2.5 0.5 2.3 0.2 1.4 0.7 2.3 0.6 2.4 0.8 2.8 0.8 2.9 0.7 2.3 
Divorced 0.7 1.3 0.4 0.9 0.5 1.0 0.8 1.3 0.6 1.0 0.9 1.6 1.2 1.9 1.0 1.6 
Widowed 0.1 1.2 0.1 1.2 0.0 0.5 0.2 1.1 0.2 1.3 0.1 0.8 0.4 2.5 0.2 0.9 

Primary 
Disability 

Autism 2.8 4.1 2.9 4.2 3.0 4.3 2.8 3.9 3.7 5.4 2.3 3.4 3.9 5.6 2.8 4.3 
Blind 0.9 3.7 0.6 2.6 0.3 1.5 1.0 3.8 1.0 4.4 0.6 2.1 0.5 1.9 0.4 1.7 
Brain 0.7 1.1 0.8 1.3 0.8 1.1 0.8 1.1 0.7 1.0 0.7 1.1 0.7 1.1 0.7 1.0 
Cerebral 0.4 0.6 0.4 0.6 0.3 0.5 0.4 0.5 0.3 0.5 0.2 0.3 0.3 0.5 0.2 0.4 
Chemical 0.5 8.4 1.4 18.4 0.3 4.7 0.9 11.5 0.3 5.4 0.4 6.9 0.2 2.7 0.3 5.2 
Deafness 0.3 2.2 0.5 3.0 0.3 2.1 0.3 1.7 0.4 1.9 0.3 1.8 0.2 1.0 0.3 1.9 
Epilepsy 0.8 1.6 1.2 2.3 1.0 1.8 1.0 1.8 0.6 1.1 0.7 1.4 0.8 1.6 0.8 1.5 
None 0.1 1.4 0.4 3.0 0.3 3.3 0.3 1.8 0.0 0.6 0.2 1.8 0.3 2.1 0.3 2.5 
Physical 0.4 1.4 0.3 1.1 0.1 0.5 0.3 1.0 0.3 0.9 0.2 0.7 0.2 0.6 0.3 0.9 
Mental 1.1 2.6 1.2 2.6 1.6 3.2 1.2 2.5 1.5 3.0 1.3 2.7 1.8 3.6 1.4 3.0 
Situational 1.5 4.6 0.8 3.0 0.9 3.4 1.4 4.1 0.6 1.8 0.8 2.6 1.7 5.4 1.2 4.1 
Other Disability 0.9 1.2 0.8 1.0 0.7 1.1 0.6 0.9 0.8 1.1 0.6 0.9 0.7 0.9 0.7 0.9 

Mental 
Retardation 

Level 

None 0.8 1.1 0.6 1.0 0.6 1.0 0.7 1.0 0.7 1.0 0.7 1.1 0.9 1.2 0.6 0.9 
Moderate 1.0 1.4 1.0 1.3 0.9 1.2 0.8 1.0 1.0 1.3 0.9 1.1 0.7 1.0 0.9 1.2 
Severe 1.5 2.1 1.4 2.0 1.1 1.5 1.0 1.3 1.3 1.7 1.0 1.3 0.8 1.1 1.0 1.4 
Profound 2.5 3.2 1.4 1.8 1.0 1.4 0.8 1.1 1.8 2.3 0.8 1.1 1.0 1.3 0.8 1.1 
Unknown 0.9 1.2 0.9 1.3 0.7 1.0 0.6 0.8 0.8 1.1 0.4 0.6 0.5 0.7 0.6 0.7 
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5. CONCLUSIONS 

This project demonstrates the viability of the ordinal regression model.  

Developing an ordinal regression model for the Maladaptive Behavior Subscales in the 

ICAP for each problem behavior individually has many advantages.  The results of the 

models make intrinsic sense, and interpretation from the models is readily explained 

because the relationships are explained in terms of odds ratios.  The model can also 

borrow strength from categories containing more data to remedy data deficiencies, and 

allows the researcher to focus on one behavior rather than combining scales to form 

indices where normality might be reasonably be assumed.  For example, if a researcher 

thought the treatment imposed only affected the “Destructive to Property” behavior, then 

a model could be built for that behavior alone without adding the other behaviors to the 

model. 

 The credible intervals also have a more direct application to individual cases.  

These intervals do not describe the odds ratio on average, but rather the odds ratio for a 

single individual.  Because the regression model is additive, all the characteristics of an 

individual can be analyzed together.  A researcher can easily find the odds ratio for an 

unmarried, Asian female with autism and moderate retardation level in comparison to a 

married, white male with cerebral palsy and profound retardation level.  This can be 

accomplished by finding the corresponding coefficients and adding them together.  

Furthermore, the result would not be just a point estimate, but a distribution of the odds 

ratio, which displays the shape and spread. 

 Before any conclusions can be drawn from this model it is important to note the 

population and quality of the data.  The data are not from a random selection of people in 
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the United States or even in Utah.  These results can only apply to the subpopulation of 

applicants for aid from Utah’s Division of Services for Persons with Disabilities.  

Furthermore, respondents had a motivation to rate the individual higher on both the 

frequency scale and the severity scale because the Maladaptive Behavior scores are one 

factor in determining aid.  This factor could introduce non-sampling bias that cannot be 

predicted or eliminated with the current data.  Thus, all the conclusions of the model have 

an assumption of response bias.  Still, some significant effects are definitely indicated by 

the model, as discussed in Chapter 4. 

 This model also opens possibilities for improvements.  First, the sixteen models 

could be combined into one model with added parameters for the correlation between 

each variable.  This combination would allow the credible intervals to ecome credible 

regions to account for dependency among the response variables.  Also, interaction terms 

could be added into the model to allow greater flexibility in the modeling.  An example 

of an interaction term that could be added is the gender and marital status interaction, 

which would allow the effect of marital status on the response variables to change 

according to gender.  A Bayesian factor could be calculated to find a way to judge the 

significance of model terms and to enhance model selection. 

A limitation of the current model is that improper priors are needed to have a 

reasonable computation time.  Informative priors could be added to the model, but then 

Cowles’ hybrid of the Metropolis-Hastings algorithm would not function.  Computation 

time would increase because the regular Metropolis-Hastings algorithm has a much 

slower convergence rate.  Still, this model may function like a springboard to help 

researchers devise additional tools to accommodate their data analyses. 
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A. COMPUTER CODE 

#The following is my R code used to obtain draws from the posterior distribution of the frequency 
parameters# 
#Each of the eight models had the same code except the X matrix used Freq* where * was the 
problem behavior# 
 
#This code reads in the data# 
library(MASS) 
data<-read.csv("F:/dataint.csv") 
data$ID<-as.factor(data$ID) 
data$GENDER<-as.factor(data$GENDER) 
data$RACE<-as.factor(data$RACE) 
data$MAR<-as.factor(data$MAR) 
data$DIS<-as.factor(data$DIS) 
data$MENT<-as.factor(data$MENT) 
 
#This code initializes variables and functions# 
burn<-0 
length<-20 
#The following lines initialize the cutoff parameter vector# 
cut0<-matrix(-9999,(length+burn),1) 
cut1<-matrix(0,(length+burn),1) 
cut2<-matrix(1,(length+burn),1) 
cut3<-matrix(2,(length+burn),1) 
cut4<-matrix(3,(length+burn),1) 
cut5<-matrix(4,(length+burn),1) 
cut6<-matrix(9999,(length+burn),1) 
cut<-cbind(cut0,cut1,cut2,cut3,cut4,cut5,cut6) 
#This code initializes the candidate vector for the next simulation.# 
candcut<-cut[1,] 
This code initializes the latent variable# 
latent<-matrix(1,1,nrow(data))#substitute (length+burn) in for 1 to output latent variables 
#The following lines initialize the beta vector # 
beta<-matrix(1,(length+burn),28) 
#Initializes the candidate vector for the next simulation.# 
candbeta<-beta[1,] 
#Initializes the mixing parameter for the cutoff values# 
mixcutsig<-numeric() 
mixcutsig[1]<-.015 
mixcutsig[2]<-.015 
mixcutsig[3]<-.015 
mixcutsig[4]<-.015 
#Initializes the mixing parameter for the beta vector# 
mixbetasig<-.45 
#Initializes the pdf of the logistic function (f in all equations)# 
logis<-function(x,mean){exp(-(x-mean))/(1+exp(-(x-mean)))^2} 
#Initializes the cdf of the logistic function (F in all equations) 
clogis<-function(x,mean){1/(1+exp(-(x-mean)))} 
#Initializes the part of the acceptance ratio for one cutoff parameter (seen in the second half of 
equation 12)# 
cpratio1<-function(r){(clogis((cut[int,(r+2)]-cut[int,(r+1)])/mixcutsig[r-1],0)-clogis((candcut[r]-
cut[int,(r+1)])/mixcutsig[r-1],0))/(clogis((candcut[(r+2)]-candcut[(r+1)])/mixcutsig[r-1],0)-
clogis((cut[int,(r)]-candcut[(r+1)])/mixcutsig[r-1],0))} 
#initializes the acceptance ratio for the latent variable and cutoff parameters combined.# 
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ratio<-numeric() 
#initializes the acceptance ratio for the beta vector# 
bratio<-numeric() 
 
#create design matrix (effects model because intercept included)# 
X<-model.matrix(FREQ1~GENDER+RACE+MAR+DIS+MENT,data) 
 
#This starts writing iterations# 
#I output 19 simulations 700 times to come up with the burn of 2,000 plus the 10,000 and some 
extras# 
for (rep in 1:700){ 
#Starts calculation iterations# 
for(int in 2:(length+burn)){ 
 
#Updates cutoffs and latent variables# 
cut[int,3]<-cut[(int-1),3] 
#Makes sure that the while loop is not bypassed# 
candcut[3]<-cut[int,4] 
#Simulates a candidate cutoff value from a truncated normal distribution with the upper limit being 
the cutoff parameter one higher and the lower limit being the cutoff parameter one lower.# 
while(round(abs(candcut[3]-(cut[(int-1),4]+cut[int,2])/2),6)>=round((cut[(int-1),4]-cut[int,2])/2,6)){ 
candcut[3]<-rnorm(1,cut[(int-1),3],mixcutsig[1]) 
} 
 
cut[int,4]<-cut[(int-1),4] 
candcut[4]<-cut[int,5] 
while(round(abs(candcut[4]-(cut[(int-1),5]+cut[int,3])/2),6)>=round((cut[(int-1),5]-cut[int,3])/2,6)){ 
candcut[4]<-rnorm(1,cut[(int-1),4],mixcutsig[2]) 
} 
 
cut[int,5]<-cut[(int-1),5] 
candcut[5]<-cut[int,4] 
while(round(candcut[5],6)<=round(cut[int,4],6)){ 
candcut[5]<-rnorm(1,cut[(int-1),5],mixcutsig[3]) 
} 
 
cut[int,6]<-cut[(int-1),6] 
candcut[6]<-cut[int,5] 
while(round(candcut[6],6)<=round(cut[int,5],6)){ 
candcut[6]<-rnorm(1,cut[(int-1),6],mixcutsig[4]) 
} 
 
#Calculate acceptance ratio# 
#Calculates the second half of the acceptance ratio found in equation 12 using the function 
defined above called cpratio1# 
#Calculates the first half of the acceptance ratio found in equation 12# 
ratio[int]<-cpratio1(2)*cpratio1(3)*cpratio1(4)*cpratio1(5) 
for (i in 1:nrow(data)){ 
if(data$FREQ2[i]>0){ 
ratio[int]<-ratio[int]*(clogis(candcut[(data$FREQ2[i]+2)],X[i,]%*%beta[(int-1),])-
clogis(candcut[(data$FREQ2[i]+1)],X[i,]%*%beta[(int-
1),]))/(clogis(cut[int,(data$FREQ2[i]+2)],X[i,]%*%beta[(int-1),])-
clogis(cut[int,(data$FREQ2[i]+1)],X[i,]%*%beta[(int-1),])) 
} 
} 
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#Replaces the new candidate values for the cutoff parameters with probability of the acceptance 
ratio# 
test<-runif(1,0,1) 
#Generate from a uniform [0,1] distribution to accept with the correct probability# 
if(test<ratio[int]) { 
cut[int,]<-candcut 
#Replaces the new latent variables with the candidates simulated from the truncated logistic 
distribution# 
for (i in 1:nrow(data)){ 
 latent[1,i]<-rlogis(1,t(X[i,])%*%t(t(beta[(int-1),])),1) #replace latent[int,i] for latent[1,i] to 
graph latenat variables# 
 while(abs(latent[1,i]-
(cut[int,(data$FREQ2[i]+2)]+cut[int,(data$FREQ2[i]+1)])/2)>=(cut[int,(data$FREQ2[i]+2)]-
cut[int,(data$FREQ2[i]+1)])/2){ 
  latent[1,i]<-rlogis(1,t(X[i,])%*%t(t(beta[(int-1),])),1) 
 } 
} 
} 
 
#This code draws candidate fixed effect parameters# 
#Replaces the new betas if the candidate betas are not accepted# 
beta[int,]<-beta[(int-1),] 
#Generates new candidate betas from a multivariate normal distribution# 
candbeta<-mvrnorm(n=1,beta[(int-1),],mixbetasig*solve(t(X)%*%X)) 
 
#Uses equation 14 to calculate acceptance ratio# 
bratio[int]<-1 
for (i in 1:nrow(data)){ 
bratio[int]<-
bratio[int]*logis(latent[1,i],t(X[i,])%*%t(t(candbeta)))/logis(latent[1,i],t(X[i,])%*%t(t(beta[int,]))) 
} 
#Replaces the new betas with candidate betas with probability of the acceptance ratio# 
test<-runif(1,0,1) 
if(test<bratio[int]) { 
beta[int,]<-candbeta 
} 
} 
 
#Outputs the next 19 simulations for the parameters# 
write(t(beta[2:(dim(beta)[1]),]),file="C:/Documents and Settings/Paul 
Johnson/Desktop/freqbeta1.txt",ncol=28,append=TRUE) 
write(t(cut[2:(dim(beta)[1]),]),file="C:/Documents and Settings/Paul 
Johnson/Desktop/freqcut1.txt",ncol=7,append=TRUE) 
#Stores the last simulation to generate new simulations# 
beta[1,]<-beta[int,] 
cut[1,]<-cut[int,] 
} 
#The following is my R code used to obtain draws from the posterior distribution of the severity 
parameters# 
#Each of the eight models had the same code except the X matrix used Freq* where * was the 
problem behavior# 
 
#This code reads in the data# 
library(MASS) 
data<-read.csv("F:/dataint.csv") 
data$ID<-as.factor(data$ID) 
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data$GENDER<-as.factor(data$GENDER) 
data$RACE<-as.factor(data$RACE) 
data$MAR<-as.factor(data$MAR) 
data$DIS<-as.factor(data$DIS) 
data$MENT<-as.factor(data$MENT) 
 
#This code initializes variables and functions# 
burn<-0 
length<-20 
#The following lines initialize the cutoff parameter vector# 
cut0<-matrix(-9999,(length+burn),1) 
cut1<-matrix(0,(length+burn),1) 
cut2<-matrix(1,(length+burn),1) 
cut3<-matrix(2,(length+burn),1) 
cut4<-matrix(3,(length+burn),1) 
cut5<-matrix(9999,(length+burn),1) 
cut<-cbind(cut0,cut1,cut2,cut3,cut4,cut5) 
#This code initializes the candidate vector for the next simulation.# 
candcut<-cut[1,] 
#This code initializes the latent variable# 
latent<-matrix(1,1,nrow(data)) 
#The following lines initialize the beta vector # 
beta<-matrix(1,(length+burn),28) 
#Initializes the candidate vector for the next simulation.# 
candbeta<-beta[1,] 
#Initializes the mixing parameter for the cutoff values# 
mixcutsig<-numeric() 
mixcutsig[1]<-.015 
mixcutsig[2]<-.015 
mixcutsig[3]<-.015 
#Initializes the mixing parameter for the beta vector# 
mixbetasig<-.45 
#Initializes the pdf of the logistic function (f in all equations)# 
logis<-function(x,mean){exp(-(x-mean))/(1+exp(-(x-mean)))^2} 
#Initializes the cdf of the logistic function (F in all equations) 
clogis<-function(x,mean){1/(1+exp(-(x-mean)))} 
#Initializes the part of the acceptance ratio for one cutoff parameter (seen in the second half of 
equation 12)# 
cpratio1<-function(r){(clogis((cut[int,(r+2)]-cut[int,(r+1)])/mixcutsig[r-1],0)-clogis((candcut[r]-
cut[int,(r+1)])/mixcutsig[r-1],0))/(clogis((candcut[(r+2)]-candcut[(r+1)])/mixcutsig[r-1],0)-
clogis((cut[int,(r)]-candcut[(r+1)])/mixcutsig[r-1],0))} 
#initializes the acceptance ratio for the latent variable and cutoff parameters combined.# 
ratio<-numeric() 
#initializes the acceptance ratio for the beta vector# 
bratio<-numeric() 
#create design matrix (effects model because intercept included)# 
X<-model.matrix(SEVER1~GENDER+RACE+MAR+DIS+MENT,data) 
#This starts writing iterations# 
#I output 19 simulations 700 times to come up with the burn of 2,000 plus the 10,000 and some 
extras# 
for (rep in 1:700){ 
#Starts calculation iterations# 
for(int in 2:(length+burn)){ 
 
#Updates cutoffs and latent variables# 
#Makes sure that the while loop is not bypassed# 
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cut[int,3]<-cut[(int-1),3] 
#Simulates a candidate cutoff value from a truncated normal distribution with the upper limit being 
the cutoff parameter one higher and the lower limit being the cutoff parameter one lower.# 
candcut[3]<-cut[int,4] 
while(round(abs(candcut[3]-(cut[(int-1),4]+cut[int,2])/2),6)>=round((cut[(int-1),4]-cut[int,2])/2,6)){ 
 candcut[3]<-rnorm(1,cut[(int-1),3],mixcutsig[1]) 
} 
 
cut[int,4]<-cut[(int-1),4] 
candcut[4]<-cut[int,5] 
while(round(abs(candcut[4]-(cut[(int-1),5]+cut[int,3])/2),6)>=round((cut[(int-1),5]-cut[int,3])/2,6)){ 
 candcut[4]<-rnorm(1,cut[(int-1),4],mixcutsig[2]) 
} 
 
cut[int,5]<-cut[(int-1),5] 
candcut[5]<-cut[int,4] 
while(round(candcut[5],6)<=round(cut[int,4],6)){ 
 candcut[5]<-rnorm(1,cut[(int-1),5],mixcutsig[3]) 
} 
 
#Calculate acceptance ratio# 
#Calculates the second half of the acceptance ratio found in equation 12 using the function 
defined above called cpratio1# 
ratio[int]<-cpratio1(2)*cpratio1(3)*cpratio1(4) 
#Calculates the first half of the acceptance ratio found in equation 12# 
for (i in 1:nrow(data)){ 
 if(data$SEVER1[i]>0){ 
 ratio[int]<-ratio[int]*(clogis(candcut[(data$SEVER1[i]+2)],X[i,]%*%beta[(int-1),])-
clogis(candcut[(data$SEVER1[i]+1)],X[i,]%*%beta[(int-
1),]))/(clogis(cut[int,(data$SEVER1[i]+2)],X[i,]%*%beta[(int-1),])-
clogis(cut[int,(data$SEVER1[i]+1)],X[i,]%*%beta[(int-1),])) 
 } 
} 
 
#Replaces the new candidate values for the cutoff parameters with probability of the acceptance 
ratio# 
#Generate from a uniform [0,1] distribution to accept with the correct probability# 
test<-runif(1,0,1) 
if(test<ratio[int]) { 
#Replaces the new candidate values for the cutoff parameters with probability of the acceptance 
ratio# 
cut[int,]<-candcut 
#Replaces the new latent variables with the candidates simulated from the truncated logistic 
distribution# 
for (i in 1:nrow(data)){ 
 latent[1,i]<-rlogis(1,t(X[i,])%*%t(t(beta[(int-1),])),1) #replace latent[int,i] for latent[1,i] to 
graph latenat variables# 
 while(abs(latent[1,i]-
(cut[int,(data$SEVER1[i]+2)]+cut[int,(data$SEVER1[i]+1)])/2)>=(cut[int,(data$SEVER1[i]+2)]-
cut[int,(data$SEVER1[i]+1)])/2){ 
  latent[1,i]<-rlogis(1,t(X[i,])%*%t(t(beta[(int-1),])),1) 
 } 
} 
} 
 
#Replaces the new betas if the candidate betas are not accepted# 
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beta[int,]<-beta[(int-1),] 
#Generates new candidate betas from a multivariate normal distribution# 
candbeta<-mvrnorm(n=1,beta[(int-1),],mixbetasig*solve(t(X)%*%X)) 
#Uses equation 14 to calculate acceptance ratio# 
bratio[int]<-1 
for (i in 1:nrow(data)){ 
bratio[int]<-
bratio[int]*logis(latent[1,i],t(X[i,])%*%t(t(candbeta)))/logis(latent[1,i],t(X[i,])%*%t(t(beta[int,]))) } 
#Replaces the new betas with candidate betas with probability of the acceptance ratio# 
test<-runif(1,0,1) 
if(test<bratio[int]) { 
beta[int,]<-candbeta 
} 
} 
#Outputs the next 19 simulations for the parameters# 
write(t(beta[2:(dim(beta)[1]),]),file="C:/Documents and 
Settings/localuser/Desktop/severbeta1b.txt",ncol=28,append=TRUE) 
write(t(cut[2:(dim(beta)[1]),]),file="C:/Documents and 
Settings/localuser/Desktop/severcut1b.txt",ncol=6,append=TRUE) 
#Stores the last simulation to generate new simulations# 
beta[1,]<-beta[int,] 
cut[1,]<-cut[int,] 
} 
#This is the R code used for my plots and credible intervals# 
#Read in the data This was done for each model seperately# 
data<-read.table("f:\\severbeta1.txt") 
cut<-read.table("f:\\severcut1.txt") 
#Take out the burn# 
data<-data[2001:12000,] 
cut<-cut[2001:12000,] 
nrow(data) 
 
#Plots the mixing plots (9 at a time)# 
par(mfrow=c(3,3)) 
plot(data[,1],type="l") 
title(expression(paste("Mixing Plot for Beta 0"))) 
plot(data[,2],type="l") 
title(expression(paste("Mixing Plot for Beta 1 (Gender)"))) 
plot(data[,3],type="l") 
title(expression(paste("Mixing Plot for Beta 2"))) 
plot(data[,4],type="l") 
title(expression(paste("Mixing Plot for Beta 3"))) 
plot(data[,5],type="l") 
title(expression(paste("Mixing Plot for Beta 4 (NA-White)"))) 
plot(data[,6],type="l") 
title(expression(paste("Mixing Plot for Beta 5"))) 
plot(data[,7],type="l") 
title(expression(paste("Mixing Plot for Beta 6"))) 
plot(data[,8],type="l") 
title(expression(paste("Mixing Plot for Beta 7"))) 
plot(data[,9],type="l") 
title(expression(paste("Mixing Plot for Beta 8 (Married-Never Married)"))) 
 
par(mfrow=c(3,3)) 
plot(data[,10],type="l") 
title(expression(paste("Mixing Plot for Beta 9"))) 
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plot(data[,11],type="l") 
title(expression(paste("Mixing Plot for Beta 10"))) 
plot(data[,12],type="l") 
title(expression(paste("Mixing Plot for Beta 11 (Austism-Retardation)"))) 
plot(data[,13],type="l") 
title(expression(paste("Mixing Plot for Beta 12"))) 
plot(data[,14],type="l") 
title(expression(paste("Mixing Plot for Beta 13"))) 
plot(data[,15],type="l") 
title(expression(paste("Mixing Plot for Beta 14 (Cerebral Palsy-Retardation)"))) 
plot(data[,16],type="l") 
title(expression(paste("Mixing Plot for Beta 15"))) 
plot(data[,17],type="l") 
title(expression(paste("Mixing Plot for Beta 16"))) 
plot(data[,18],type="l") 
title(expression(paste("Mixing Plot for Beta 17"))) 
 
par(mfrow=c(3,3)) 
plot(data[,19],type="l") 
title(expression(paste("Mixing Plot for Beta 18"))) 
plot(data[,20],type="l") 
title(expression(paste("Mixing Plot for Beta 19"))) 
plot(data[,21],type="l") 
title(expression(paste("Mixing Plot for Beta 20"))) 
plot(data[,22],type="l") 
title(expression(paste("Mixing Plot for Beta 21"))) 
plot(data[,23],type="l") 
title(expression(paste("Mixing Plot for Beta 22"))) 
plot(data[,24],type="l") 
title(expression(paste("Mixing Plot for Beta 23"))) 
plot(data[,25],type="l") 
title(expression(paste("Mixing Plot for Beta 24"))) 
plot(data[,26],type="l") 
title(expression(paste("Mixing Plot for Beta 25 (Profound-Mild Retardation)"))) 
plot(data[,27],type="l") 
title(expression(paste("Mixing Plot for Beta 26"))) 
 
par(mfrow=c(2,2)) 
plot(data[,28],type="l") 
title(expression(paste("Mixing Plot for Beta 27"))) 
plot(cut[,3],type="l") 
title(expression(paste("Mixing Plot for Cut 1"))) 
plot(cut[,4],type="l") 
title(expression(paste("Mixing Plot for Cut 2"))) 
plot(cut[,5],type="l") 
title(expression(paste("Mixing Plot for Cut 3"))) 
#These lines were used only for frequency models# 
plot(cut[,6],type="l") 
title(expression(paste("Mixing Plot for Cut 4"))) 
 
 
#This code creates 95% credible intervals# 
BUCL<-numeric() 
BLCL<-numeric() 
#Graph men vs. women# 
var<-sort(data[,2]) 
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BLCL[1]<-exp(var[round(.025*length(var),0)]) 
BUCL[1]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Women vs. Men") 
abline(v=1,col="blue") 
abline(v=BLCL[1],col="black") 
abline(v=BUCL[1],col="black") 
mean(exp(var)) 
#Graph black vs. white# 
var<-sort(data[,3]) 
BLCL[2]<-exp(var[round(.025*length(var),0)]) 
BUCL[2]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Black vs. White") 
abline(v=1,col="blue") 
abline(v=BLCL[2],col="black") 
abline(v=BUCL[2],col="black") 
 
#Graph Asian vs. white# 
var<-sort(data[,4]) 
BLCL[3]<-exp(var[round(.025*length(var),0)]) 
BUCL[3]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Asian vs. White") 
abline(v=1,col="blue") 
abline(v=BLCL[3],col="black") 
abline(v=BUCL[3],col="black") 
 
#Graph native american vs. white# 
var<-sort(data[,5]) 
BLCL[4]<-exp(var[round(.025*length(var),0)]) 
BUCL[4]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Native American vs. White") 
abline(v=1,col="blue") 
abline(v=BLCL[4],col="black") 
abline(v=BUCL[4],col="black") 
 
#Graph other vs. white# 
var<-sort(data[,6]) 
BLCL[5]<-exp(var[round(.025*length(var),0)]) 
BUCL[5]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Other vs. White") 
abline(v=1,col="blue") 
abline(v=BLCL[5],col="black") 
abline(v=BUCL[5],col="black") 
 
#Graph hispanic vs. white# 
var<-sort(data[,7]) 
BLCL[6]<-exp(var[round(.025*length(var),0)]) 
BUCL[6]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Hispanic vs. White") 
abline(v=1,col="blue") 
abline(v=BLCL[6],col="black") 
abline(v=BUCL[6],col="black") 
 
#Graphs married vs. never married# 
var<-sort(data[,8]) 
BLCL[7]<-exp(var[round(.025*length(var),0)]) 
BUCL[7]<-exp(var[round(.975*length(var),0)]) 
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plot(density(exp(var)),main="Distribution of Odds Ratio for Married vs. Never Married") 
abline(v=1,col="blue") 
abline(v=BLCL[7],col="black") 
abline(v=BUCL[7],col="black") 
 
#Graphs separated vs. never married# 
var<-sort(data[,9]) 
BLCL[8]<-exp(var[round(.025*length(var),0)]) 
BUCL[8]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Separated vs. Never Married") 
abline(v=1,col="blue") 
abline(v=BLCL[8],col="black") 
abline(v=BUCL[8],col="black") 
 
#Graphs divorced vs. never married# 
var<-sort(data[,10]) 
BLCL[9]<-exp(var[round(.025*length(var),0)]) 
BUCL[9]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Divorced vs. Never Married") 
abline(v=1,col="blue") 
abline(v=BLCL[9],col="black") 
abline(v=BUCL[9],col="black") 
 
#Graphs widowed vs. never married# 
var<-sort(data[,11]) 
BLCL[10]<-exp(var[round(.025*length(var),0)]) 
BUCL[10]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Widow(er) vs. Never Married") 
abline(v=1,col="blue") 
abline(v=BLCL[10],col="black") 
abline(v=BUCL[10],col="black") 
 
#Graphs autism vs. mental retardation# 
var<-sort(data[,12]) 
BLCL[11]<-exp(var[round(.025*length(var),0)]) 
BUCL[11]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Autism vs. Mental Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[11],col="black") 
abline(v=BUCL[11],col="black") 
 
#Graphs blind vs. mental retardation# 
var<-sort(data[,13]) 
BLCL[12]<-exp(var[round(.025*length(var),0)]) 
BUCL[12]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Blind vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[12],col="black") 
abline(v=BUCL[12],col="black") 
 
#Graphs brain vs. retardation# 
var<-sort(data[,14]) 
BLCL[13]<-exp(var[round(.025*length(var),0)]) 
BUCL[13]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Brain Damage vs. Retardation") 
abline(v=1,col="blue") 
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abline(v=BLCL[13],col="black") 
abline(v=BUCL[13],col="black") 
 
#Graphs cerebral vs. retardation# 
var<-sort(data[,15]) 
BLCL[14]<-exp(var[round(.025*length(var),0)]) 
BUCL[14]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Cerebral Palsy vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[14],col="black") 
abline(v=BUCL[14],col="black") 
 
#Graphs chemical vs. retardation# 
var<-sort(data[,16]) 
BLCL[15]<-exp(var[round(.025*length(var),0)]) 
BUCL[15]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Chemical Dependency vs. 
Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[15],col="black") 
abline(v=BUCL[15],col="black") 
 
#Graphs deafness vs. retardation# 
var<-sort(data[,17]) 
BLCL[16]<-exp(var[round(.025*length(var),0)]) 
BUCL[16]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Deafness vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[16],col="black") 
abline(v=BUCL[16],col="black") 
 
#Graphs Epilepsy vs. retardation# 
var<-sort(data[,18]) 
BLCL[17]<-exp(var[round(.025*length(var),0)]) 
BUCL[17]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Epilepsy vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[17],col="black") 
abline(v=BUCL[17],col="black") 
 
#Graphs None vs. retardation# 
var<-sort(data[,19]) 
BLCL[18]<-exp(var[round(.025*length(var),0)]) 
BUCL[18]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Retardation vs. None") 
abline(v=1,col="blue") 
abline(v=BLCL[18],col="black") 
abline(v=BUCL[18],col="black") 
 
#Graphs physical vs. retardation# 
var<-sort(data[,20]) 
BLCL[19]<-exp(var[round(.025*length(var),0)]) 
BUCL[19]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Retardation vs. Physical Health 
Problems") 
abline(v=1,col="blue") 
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abline(v=BLCL[19],col="black") 
abline(v=BUCL[19],col="black") 
 
#Graphs mental vs. retardation# 
var<-sort(data[,21]) 
BLCL[20]<-exp(var[round(.025*length(var),0)]) 
BUCL[20]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Mental Illness vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[20],col="black") 
abline(v=BUCL[20],col="black") 
 
#Graphs situational vs. retardation# 
var<-sort(data[,22]) 
BLCL[21]<-exp(var[round(.025*length(var),0)]) 
BUCL[21]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Situational Mental Illness vs. 
Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[21],col="black") 
abline(v=BUCL[21],col="black") 
 
#Graphs other vs. retardation# 
var<-sort(data[,23]) 
BLCL[22]<-exp(var[round(.025*length(var),0)]) 
BUCL[22]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Other Disability vs. Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[22],col="black") 
abline(v=BUCL[22],col="black") 
 
#Graphs none vs. mild# 
var<-sort(data[,24]) 
BLCL[23]<-exp(var[round(.025*length(var),0)]) 
BUCL[23]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for None vs. Mild Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[23],col="black") 
abline(v=BUCL[23],col="black") 
 
#Graphs moderate vs. mild# 
var<-sort(data[,25]) 
BLCL[24]<-exp(var[round(.025*length(var),0)]) 
BUCL[24]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Moderate Retardation vs. Mild 
Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[24],col="black") 
abline(v=BUCL[24],col="black") 
 
#Graphs severe vs. mild# 
var<-sort(data[,26]) 
BLCL[25]<-exp(var[round(.025*length(var),0)]) 
BUCL[25]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Severe Retardation vs. Mild 
Retardation") 
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abline(v=1,col="blue") 
abline(v=BLCL[25],col="black") 
abline(v=BUCL[25],col="black") 
 
#Graphs profound vs. mild# 
var<-sort(data[,27]) 
BLCL[26]<-exp(var[round(.025*length(var),0)]) 
BUCL[26]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Profound Retardation vs. Mild 
Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[26],col="black") 
abline(v=BUCL[26],col="black") 
 
#Graphs unknown vs. mild# 
var<-sort(data[,28]) 
BLCL[27]<-exp(var[round(.025*length(var),0)]) 
BUCL[27]<-exp(var[round(.975*length(var),0)]) 
plot(density(exp(var)),main="Distribution of Odds Ratio for Unknown Retardation vs. Mild 
Retardation") 
abline(v=1,col="blue") 
abline(v=BLCL[27],col="black") 
abline(v=BUCL[27],col="black") 
#Outputs credible intervals# 
out<-cbind(BLCL,BUCL) 
write(t(out),file="F:/Paul's stuff/school/Thesis/CIfreq8.txt",ncol=2,append=FALSE) 
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