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ABSTRACT

XPRIME-EM: Eliciting Expert Prior Information for Motif Exploration
Using the Expectation-Maximization Algorithm

Wei Zhou
Department of Statistics, BYU

Master of Science

Understanding the possible mechanisms of gene transcription regulation is a pri-
mary challenge for current molecular biologists. Identifying transcription factor binding
sites (TFBSs), also called DNA motifs, is an important step in understanding these mech-
anisms. Furthermore, many human diseases are attributed to mutations in TFBSs, which
makes identifying those DNA motifs significant for disease treatment. Uncertainty and vari-
ations in specific nucleotides of TFBSs present difficulties for DNA motif searching. In
this project, we present an algorithm, XPRIME-EM (Eliciting EXpert PRior Information
for Motif Exploration using the Expectation-Maximization Algorithm), which can discover
known and de novo (unknown) DNA motifs simultaneously from a collection of DNA se-
quences using a modified EM algorithm and describe the variation nature of DNA motifs
using position specific weight matrix (PWM). XPRIME improves the efficiency of locat-
ing and describing motifs by prevent the overlap of multiple motifs, a phenomenon termed a
phase shift, and generates stronger motifs by considering the correlations between nucleotides
at different positions within each motif. Moreover, a Bayesian formulation of the XPRIME
algorithm allows for the elicitation of prior information for motifs of interest from litera-
ture and experiments into motif searching. We are the first research team to incorporate
human genome-wide nucleosome occupancy information into the PWM based DNA motif
searching.

Keywords: DNA motif, modified EM algorithm, human nucleosome occupancy information
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chapter 1

INTRODUCTION

1.1 Basics of gene expression

All living things, such as plants, animals, bacteria, viruses and fungi, depend on their ge-

netic information for inheritance. Nucleic acids are large molecules that carry all genetic

information and there are two types of nucleic acids: the deoxyribonucleic acid (DNA) and

the ribonucleic acid (RNA). For all complex organisms, DNA is the molecule that carries

genetic information.

A gene is a segment of DNA and is defined as a fundamental heredity unit. The

genome is a complete copy of the entire set of genes in an organism. DNA consists of two

long polymer sequences, which are made up with four different molecules called nucleotides.

A base attaches to the phosphate with a sugar ring to form a nucleotide. There are four

different bases in DNA: A(Adenine), C(Cytosine), G(Guanine) and T(Thymine). DNA

consists of two complementary strands of nucleotides which bind together for a double helix.

In this structure, each individual type of nucleotide only interacts with one other type of

nucleotide in the other strand, that is, A only links to T, and C only links to G. This process

of linking to only one complementary base is called base-pairing.

Gene expression is the process that allows the inherited information in the genes to

direct the synthesis of functional gene products (primarily proteins). Transcription is the

first step of this process, in which DNA works as the template for creating RNA, followed

by the second step in the process called translation, where RNA works as the template for

protein synthesis. Not all genes are expressed all the time in any particular cell type, so

gene expression needs to be controlled for cells to adapt to different environments, damage,

diseases, etc. The mechanisms of transcription regulation control the timing of gene expres-
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sion occurrence and the amount of RNA and proteins to be synthesized. This regulation

may occur at different stages of the gene expression process.

1.2 Mechanisms of transcription

A transcription factor (TF) is a function protein that aids in regulating gene expression

at the transcription stage. TFs bind to specific DNA sequences to activate or inhibit the

recruitment of the RNA polymerase, which is the enzyme performing RNA transcription.

Transcription factor binding sites (TFBSs) are DNA sequence patterns (DNA motifs) where

TFs bind. TFBSs are relatively short DNA segments (5 to 20 base-pairs) and can be located

on either strand of the DNA. The binding motifs for one TF are usually highly conserved

within and across species, but many TFs are capable of binding to many slight variations in

specific nucleotides of the TFBS.

The majority of TFBSs occur in specific regions around the genes, usually called

either promoters or enhancers. Promoters can be found in both eukaryotic and prokaryotic

cells, while only eukaryotes have enhancers. Promoters are usually located upstream of genes

and close to transcription start sites (TSSs). Enhancers may be located either upstream or

downstream of genes and they are not necessarily close to TSSs.

Understanding the possible mechanisms of gene transcription regulation is a primary

challenge for current molecular biologists, and identifying TFBSs is an important step in

understanding these mechanisms. DNA motifs may be important signals of gene expression

regulation in cells’ response to condition changes.

Several laboratory techniques have been developed to find TFBSs, such as the elec-

trophoretic mobility shift assay (Hellman and Fried 2007) and the DNase footprinting assay

(Galas and Schmitz 1978), but they are laborious and inefficient for large scale studies.

Therefore, computational approaches are necessary for efficient identification of DNA motifs

given a set of sequences. Over the past decade, many computational methods have been

introduced and the algorithms that they use are described in detail in Section 2.
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1.3 Challenges in finding TFBSs

The highly variable nature of TFBSs presents difficulties for DNA motif searching, espe-

cially when only the direct frequency counts are used. A more sophisticated approach is to

utilize a position-specific weight matrix (PWM), a popular way to represent the variation of

nucleotides at each position of a DNA motif. A PWM is a 4 × n matrix, where the first

dimension (4) represents the four possible nucleotides A, C, G and T, and the second di-

mension (n) is determined by the length of the motif. Each element in a PWM, denoted pij,

is the frequency that the ith (row number) nucleotide occurs at the jth (column number)

position in the motif. Columns in a PWM are assumed to be independent of each other,

and elements in each column in the PWM should add up to one. Table 1.1 below shows

the PWM of the binding motif of the TF ETS1 according to information in the database

TRANSFAC (Wingender 2008).

Table 1.1: The PWM of the binding motif of the TF ETS1 according to information in the
database TRANSFAC (Wingender 2008).

Position 1 2 3 4 5 6 7 8
A 0.067 0.333 0.0 0.0 1.0 0.533 0.267 0.067
C 0.933 0.600 0.0 0.0 0.0 0.133 0.067 0.400
G 0.000 0.000 1.0 1.0 0.0 0.000 0.667 0.000
T 0.000 0.067 0.0 0.0 0.0 0.333 0.000 0.533

In addition to the PWM representation, a sequence logo can be used to graphically

represent a PWM. Figure 1.1 is the sequence logo corresponding to the TF ETS1 according to

the database TRANSFAC. For a DNA motif, each position of the sequence logo corresponds

to a column of the PWM. Within a position, the relative height of each nucleotide represents

its frequency pij in PWM. The relative height of each position to other positions represents

the importance of that position in the binding site. The R package seqLogo (Bembom 2007)

can be used to plot the sequence logo for a given PWM.
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Figure 1.1: Sequence logo for ETS1 according to the TRANSFAC batabase (Wingender 2008).

Identification of DNA motifs in eukaryotes is more difficult than in prokaryotes. In

eukaryotes, TFBSs are typically shorter. Motifs in enhancers can be quite variable and

located far away from TSSs (up to several kilobases) (van Helden et al. 1998)

1.4 DNA packaging and transcription

Each human cell contains approximately two meters of DNA. In order for these long DNA

molecules to fit in the limiting space of a cell nucleus, the DNA is tightly packaged around

protein complexes called nucleosomes. Approximately 146 base-pairs DNA are wrapped

around a histone octamer (eight proteins) to form a nucleosome. Nucleosomes are the basic

repeating structural units of chromatin. Chromatins coil around themselves to be more

condensed to form chromosomes. Figure 1.2 shows the basic structure of nucleosomes, in

which the core indicates the wrapped DNA and the linker is the unwrapped DNA (Kornberg

and Lorch 1999). One difficulty that is presented to researchers involved in DNA motif

searching is to find functional occurrences of DNA motifs, because in some cases not all

DNA motifs are bound by TFs in vivo. For example, it has been shown that functional

TFBSs are usually located in nucleosome depletion regions in Yeast genome in vivo (Lee

et al. 2004). In humans, the dynamic regulation of nucleosome positioning along the DNA
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plays important roles in gene expression regulation (Schones et al. 2008). Both in vitro and

in vivo packaging promoters in nucleosomes prevent the initiation of transcription (Knezetic

and Luse 1986) implying that histones, in general, are gene expression inhibitors. The

activation of human CD4+ T cells also induces the reorganization of nucleosomes (Schones

et al. 2008), therefore, the nucleosome positioning information may be valuable for detecting

functional DNA motifs in a given sequence set.

Figure 1.2: Schematic of Nucleosome Core Particle and Linker. Cores are the DNA wrapped
around a histone octamer and the linkers are the unwrapped DNA (Kornberg and Lorch 1999).

1.5 Project goals

The goal is to develop an algorithm to identify the DNA motifs in a set of unaligned DNA

sequences, that is to locate the starting positions of the DNAmotifs in sequences and describe

those motifs. We present an algorithm, XPRIME (Eliciting EXpert PRior Information

for Motif Exploration), which can discover known and de novo (unknown) DNA motifs

simultaneously from a collection of DNA sequences and describes DNA motifs using PWMs.

Previous work has defined the basic model for XPRIME (Poulsen 2009), although

we will revisit the model details in the following sections. Poulsen used Gibbs sampler to

estimate parameters in the model, which produced a posterior distribution of the PWMs.
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However, these posteriors were fairly symmetric and the computation is time-consuming on

the order of 10, 000 posterior draws.

In this report, we will describe an improved version of XPRIME over the Poulsen

approach. A modified expectation-maximization (EM) algorithm is utilized in XPRIME. The

observed data in the model are the given DNA sequences and the unobserved data are the

locations of motifs of interest. Elements of the PWMs for motifs of interest are parameters

to be updated. XPRIME uses the EM algorithm to update the parameters (PWMs) in the

model using DNA sequence data (observed data) while imputing or integrating over the

unknown motif locations (missing data). XPRIME improves the efficiency of locating and

describing shared motifs by not allowing multiple motifs to overlap each other, a phenomenon

termed a phase shift. Stronger motifs are expected to be generated by considering the

correlations between nucleotides at different positions within each motif in XPRIME. The

EM algorithm is a modified EM algorithm because some extra steps, such as phase shifting,

are added between the E-step and M-step.

Moreover, a Bayesian formulation of the XPRIME algorithm allows for the elicita-

tion of prior information for motifs of interest from literature and experiments into motif

searching, which increases the efficiency of motif searching and makes the motif searching

results more accurate. TRANSFAC is a database containing information of eukaryotic TF-

BSs (Wingender 2008). All pieces of information in TRANSFAC are obtained from available

literature as well as in vitro experiments (Wingender et al. 1996). Because TFs may act

differently in vitro from in vivo, the information from TRANSFAC of DNA motifs may be

not true for motifs identified from in vivo environments, but this kind of information serves

as the expert prior information of DNA motifs in XPRIME.

Databases, such as TRANSFAC and JASPAR (Sandelin et al. 2004), provide infor-

mation that is used by most methods as expert knowledge to fix parameters in DNA motif

searching. Besides these databases, more and more kinds of informative priors that improve

motif detection are being identified. For example, informative priors based on structural
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classes of TFs have been shown to improve the motif searching (Narlikar et al. 2006). The

same group also has shown that incorporating the nucleosome occupancy information in

yeast into motif discovery improves DNA motif discovery (Narlikar et al. 2007). Also, the

genome-wide nucleosome positioning data for human active CD4+ T cells are becoming

available (Valouev et al. 2011). Incorporating these nucleosome occupancy information may

improve the performance of XPRIME.

Compared to the Poulsen version of XPRIME, in which Gibbs sampling is used to

estimate parameters, the current XPRIME improves the efficiency of locating and describing

shared motifs by not allowing multiple motifs to overlap each other, a phenomenon termed a

phase shift. The improved XPRIME generates stronger motifs by considering the correlations

between nucleotides at different positions within each motif. Moreover, the EM algorithm

converges in 20-50 iterations and produces roughly the same results at up to a 550 fold

improvement in the computational time of the Gibbs sampling procedure.

7



chapter 2

LITERATURE REVIEW

The development and applications of algorithms for DNA motif finding have been motivated

by two challenges: first, how to represent the known TF binding sites so that the represen-

tations can be efficiently used in searching for new sequences, and second, given a batch of

sequences, how to identify known or de novo DNA motifs. In the past decade, many DNA

motif finding algorithms have been developed, and these methods can be classified into two

main groups based on their approaches that are used. The first group of methods consists

of word-based methods that primarily perform regular word enumeration, whereas the sec-

ond group of algorithms use probabilistic sequence models in which maximum-likelihood or

Bayesian inference is used to estimate parameters (e.g. PWM). As discussed in the previous

chapter, PWM is a popular way to represent DNA motifs in probabilistic approaches.

Word-based enumeration methods perform well when searching for short identical

motifs. However, variation is common in most of DNA motifs in complex organisms. Proba-

bilistic sequence models are more sensitive to variation due to their PWM parameterization,

and can also improve performance when searching for longer motifs (Das and Dai 2007).

2.1 Word-Based algorithms

van Helden et al. presented a simple and fast word-based method for identifying TFBSs

within a list of coregulated genes (van Helden et al. 1998). This method is based on detecting

over-represented oligonucleotides in the given coregulated sequences. At first, the expected

oligonucleotide frequency Fncb for each possible oligonucleotide (b) is observed through all

non-coding segments in the genome, e.g. 800bp upstream regions in the yeast genome. Then

the oligonucleotide-specific expected frequencies (Feb) are estimated by Feb = Fncb. If the

coregulated sequence set contains s sequences and the sequence lengths are denoted by Li,

8



for i from 1 to s, the total number of the possible occurrences of each oligonucleotide with

length w is T = 2 ×
∑s

i=1 (Li − w + 1). The constant 2 indicates that the occurrences are

counted in both DNA strands. The number of expected occurrences of each oligonucleotide

is calculated by multiplying the oligonucleotide-specific expected frequency with the total

number of possible occurrences, which is

E(occ[b]) = Feb× 2×
s∑
i=1

(Li − w + 1) = Feb× T (2.1)

The binomial formula is used to calculate the possibility that each oligonucleotide is

observed to occur no less than n times in the given coregulated sequence set:

P (occ[b] ≥ n) =
T∑
j=n

P (occ[b] = j) =
T∑
j=n

(
T

j

)
× (Feb)

j × (1− Feb)(T−j) (2.2)

The significance coefficient, sig = −log10[P (occ[b] ≥ n)×D], is used to detect the

true over-represented oligonucleotides. 1
D

is a threshold chosen depending on the length of

the oligonucleotides. For example, the criterion, sig ≥ 0, helps detect every oligonucleotide

with possibility that its occurrences are no less than n times in the coregulated sequences is

lower than 1
D
.

This method requires calibration of the uneven oligonucleotide representation in the

genome with a set of reference sequences, for example, all of the non-coding regions in the

genome. It is efficient in identifying the known and unknown motifs that are over-represented

in a set of coregulated sequences. However, it has shortcomings: its range of detection is

limited to relatively short motifs, no variations are allowed within an oligonucleotide, and

it is difficult to detect the spaced dyad motifs. The last shortcoming was overcome by van

Helden et al. in the improved version of the algorithm (van Helden et al. 2000).

With development of advanced sequencing technologies, genome-wide mRNA expres-

sion data for several organisms are becoming available. In 2000, Bussemaker et al. proposed

a Probabilistic Segmentation Model for detecting TFBSs (Bussemaker et al. 2000). Com-

pared to the model developed by van Helden et al. in 1998, this model does not require any

separate set of reference data to define probabilities, and it considers DNA sequences as an
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unknown language with four letters (A, C, G and T). As a dictionary-based sequence model,

it decomposes DNA sequence into the most probable “dictionary” of motifs or words. The

words are oligonucleotides with various lengths and each word α has an associated possi-

bility pα. These probabilities are normalized and the sum of them is equal to one. Given

a DNA sequence S, building a dictionary from S starts from detecting the frequencies of

individual letters and over-represented pairs. Each possible pair (α, β) can be tested for

over-representation using a Z-score.

Zαβ =
〈Nαβ〉 −Navpαpβ√

Navpαpβ
, (2.3)

where 〈Nαβ〉 is the predicted value of Navpαpβ in the model, and Nav = L/〈l〉 is the average

number of words in a partition, with 〈l〉 =
∑

α lαpα. Pairs with Z-scores above a specific

threshold will be added to the dictionary, after which their associated probabilities are

calculated using the maximum-likelihood procedure. The longer fragments will be tested

and added in the same way. That is to say, a dictionary will be built by beginning with the

four bases and ending when no pairs with Z-scores above the threshold can be found.

The word-based algorithms developed by Tompa in 1999 addressed the problem

that no variations are allowed within an oligonucleotide in previous word-based algorithms

(Tompa 1999). This approach considers the absolute number of occurrences of the motif and

the distribution of the background genome. Later in 2000, Shiha and Tompa incorporated

the transition matrix for an order m Markov chain that is constructed from the entire se-

quence set by assuming that the occurrences of a motif are not independent, but depend on

previous occurrences (Sinha and Tompa 2000). This model also uses a Z-score to measure

the statistical significance for each motif. Given a set of random DNA sequences X and a

motif s, let the random variable be the number of occurrences of the motif s in X and let

E(Xs) and σ(Xs) be its mean and standard deviation. The Z-score of s is represented as

Zs =
Ns − E(Xs)

σ(Xs)
. (2.4)

10



2.2 PWM updating methods

Lawrence and Reilly applied the expectation maximization (EM) method on the identifi-

cation of protein motifs, which can also be applied for DNA motifs (Lawrence and Reilly

1990). The unknown locations of the motif in a given set of sequences are treated as the

missing data by the EM algorithm. pik represents the probability that the shared motif

starts at position k in sequence i, given the input of a set of N unaligned sequences and

the width of the shared motif, W . fmj refers to the probability that the nucleotide is m

(m ∈ M = {A,C,G, T}) at position j in the shared motif (1 ≤ j ≤ W ) and is the element

in row m and column j of the PWM matrix for the motif (m ∈ M = {A,C,G, T} is cor-

responding to row 1, 2, 3, 4). Let L be the length of sequences (all sequences are assumed

to be of the same length) and qm be the frequency of the nucleotide m at all positions of

the sequences other than the regions of the motif. The log of the likelihood function of the

model given the sequences is

log(likelihood) = N
W∑
j=1

∑
m∈M

fmjlog(fmj) +N(L− J)
∑
m∈M

qmlog(qm). (2.5)

The EM algorithm starts with an estimate of f generated randomly or specified by

the user, and then alternatively estimates f and pik until f changes very little from iteration

to iteration. In the E step, the expectation of the log of the likelihood and the distribution

of pik are estimated given the current estimates of f , and in the M step, f is estimated by

maximizing the expectation of the log of the likelihood.

This algorithm has several limitations: how to choose a starting value for f and pik is

not demonstrated clearly, the assumption that each sequence contains exactly one motif may

not be appropriate for all of the sequences and may bring inaccuracy to the characterization

of the motif. Furthermore, only one shared motif can be found each time.

The algorithm Multiple EM for Motif Elicitation (MEME), developed by Bailey and

Elkan, is an extension of the EM algorithm (Bailey and Elkan 1993). MEME has overcome

the limitations of the original EM algorithm. First, the EM algorithm is not guaranteed
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to converge in the global maximum because of the random choice of the starting point. To

solve this problem, MEME uses all subsequences of the given motif length W in the input

sequences as starting points to make sure that the actual occurrences of the shared motif are

always used as a staring point and make the EM converge to the global optimum. Second,

MEME allows each sequence to have zero, one or several appearances of the shared motif by

letting the user set the number of occurrences of motifs. Third, by probabilistically erasing

appearances of a motif after they are found and continuing the searching for another shared

motif, MEME is able to find more than one shared motif each time.

Both EM and MEME are two component mixture (TCM) models. Let N be the

number of sequences in the given sequence set, L be the length of each sequence (all sequences

are assumed to be of the same length), W be the width of the motif, Xi = {Xi,k}Lk=1

represent all nucleotides in sequence i, and Xi,k ∈ {A,C,G, T} denote the nucleotide at

position k of sequence i. The observed data are represented by N i.i.d. random variables

{X1, . . . , XN}. Each position in a motif of interest (or, equivalently, each column in the

PWM) is assumed to have an independent multinomial distribution. Zi,j is an indicator

variable to indicate if the motif starts at the jth position in the sequence Xi. λ is the

probability of Zi,j = 1. θ0 represents the parameters of the motif model, and θ1 represents the

parameters of the background model. X̃i,j represents the subsequence of width W starting

at position j in sequence Xi. TCM models assume that all X̃i,j are independent with each

other. Although the overlapping X̃i,j do not seem to follow this independent assumption,

Bembom et al. showed that the results with and without this assumption in MEME are

comparable (Bembom et al. 2007). Under the independent assumption, the likelihood of the

subsequence X̃i,j conditional on the variable Zi,j is given by

Pr(X̃i,j|Zi,j = 1, θ1) =
W∏
k=1

4∏
j=1

θ
I(Xi,j+k−1=j)
kj (2.6)

Pr(X̃i,j|Zi,j = 0, θ0) =
W∏
k=1

4∏
j=1

θ
I(Xi,j+k−1=j)
0j . (2.7)
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In 1994, Bailey and Elkan introduced an advanced version of MEME (MEME+),

which is also a TCMmodel and uses the EM algorithm to estimate the number of occurrences

of motifs and update the parameters for the model (Bailey and Elkan 1994). The MEME+

model has two components: one component is for the motif and the other component is for

the background noise. Users do not need to know in advance how many times the motif

occurs in the sequences in MEME+. Let X = (X1, X2, . . . , Xn) denote the input set of n

sequences, where each sequence has length L. W refers the width of the motif of interest,

and m = L−W + 1 is the number of possible starting positions for a motif with length W

in each sequence. Zi,j is an indicator variable to indicate whether or not the motif starts at

the jth position in the sequence Xi. Let λ denote the probability of Zi,j = 1. θ0 represents

the PWM of the motif of interest, θ1 represents the background PWM. The log of the joint

likelihood for the model in MEME+ is given below,

Log(likelihood) = LogPr(X,Z|θ, λ)

=
n∑
i=1

m∑
j=1

[(1− Zi,j)LogPr(Xi,j|θ0)

+ Zi,jLogPr(Xi,j|θ1) + (1− Zi,j)Log(1− λ)

+ Zi,jLogλ].

(2.8)

The input required by MEME+ consists of a set of sequences (X) and a number

specifying the width of the motifs of interest (W ). MEME+ returns a model of each motif

and a threshold t. t is calculated as log(1−λ
λ

) for each motif. t and the model for each found

motif can be used as a Bayes-optimal classifier for searching for occurrences of the motif in

other sets of sequences.

With the recent technological innovation, CHIP-chip (chromatin immunoprecipita-

tion coupled with microarray analysis), researchers are able to identify regions of a given

genome that contain specific TFBSs. These results are valuable for detecting DNA motifs for

transcription factors. DNA regions with high CHIP-chip scores are more likely to contain the

motifs of interest. Based on the TCM models, Shim and Keles in 2008 introduced a condi-
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tional TCM model, called CTCM, by incorporating the CHIP-chip information in the DNA

motif searching (Shim and Keles 2008). Let T = (T1, . . . , TN), where Ti = (Ti,1, . . . , Ti,L),

denote the CHIP-chip scores for each base pair in each sequence of the input sequence set.

They assume that X̃i,j⊥Ti,j|Zi,j, that is, the sequence data are independent of the CHIP-

chip data conditional on the motif occurrence and location random variables. The model is

written as

Pr(X̃i,j|Ti,j,Θ) =
1∑
z=0

Pr(X̃i,j|Zi,j = z, θ0, θ1)Pr(Zi,j = z|Ti,j, θf ), (2.9)

where θf is the parameters of the conditional distribution of Z given T . Three alternative

models are considered to model the Pr(Zi,j = z|Ti,j, θf ): the beta prior on λ, the logistic

regression model, and the piecewise constant model.

One EM approach to align a set of DNA sequences for detecting the shared DNA

motif is in the form of hidden Markov Models (HMM) (Baldi et al. 1994). This approach

allows a gap between any two nucleotides in DNA sequences. A set of N DNA sequences can

be seen as a set of different utterances of the same word that are generated by a common

underlying HMM with a left-right architecture (motif). This HMM model is defined by a set

of states S (main state, delete state and insert state), an alphabet of four letters (A, C, G,

T), a probability transition matrix T = (tij) and a probability emission matrix E = (eiα).

When a system is in state i, it has a probability tij to move to state j and a probability eiα to

emit symbol α. In the case of DNA motif searching, the main and insert states always emit

a letter of the alphabet, while the delete states are mute. The linear main states make up

the backbone of the HMM model. This approach needs a set of training sequences to modify

the parameters iteratively using the product of the likelihood of the sequences. For each

sequence, the corresponding most probable path is computed through iterations. Aligning

these paths using the maximum likelihood estimator identifies new motifs.

Another important probabilistic method Gibbs sampling, a Markov Chain Monte

Carlo (MCMC) approach, has been used in several motif searching algorithms. As in the

EM method, Gibbs sampling at each step only depend on the results of the previous step.
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Also, in contrast to the selection of next step in the EM method, the way to select the next

step in Gibbs sampling is based on random sampling and it is not deterministic (Das and

Dai 2007).

In 1993, Lawerence et al. developed a new algorithm for local multiple alignment

to search for shared motifs in multiple protein or nucleic acids sequences (Lawrence et al.

1993). This algorithm utilizes a Gibbs sampling strategy and does not require any prior

information on the motifs of interest. It is called the “site sampler” for its assumption that

every sequence at least contains one instance of a motif (Das and Dai 2007). Gibbs sampler

is able to search for several motifs simultaneously. Following is an example of searching

for one motif at one time. Given a set of N sequences S1, S2, . . . , SN , this algorithm finds

an optimized local alignment model for these N sequences in N -linear time. Within each

sequence, the algorithm searches for mutually similar segments of specified width. Two data

structures are used: one uses the PWM to describe the motif, where the element in PWM

qi,j (i is from 1 toW and j is A, C, G, T) represents the frequency of nucleotide j at position

i. Also, “background frequencies” pj (j is A, C, G, T) represent the analogous probability

that the nucleotide j occurs in the site where the motif does not occur. The objective is to

identify the most probable motif, with which the alignment is located to maximize the ratio

of the corresponding motif probability to background probability.

This algorithm starts with randomly choosing a starting sequence out of the N se-

quences (assuming that sequence z is chosen) and then iteratively proceeds. Each iteration

consists of two steps. First, a predictive update step is conducted, in which the qi,j in PWM

and “background frequencies” pj are calculated based on all sequences excluding z. Second,

a sampling step is conducted where every possible subsequence x with width W in sequence

z is considered as a possible motif. For each x, let Qx denote the probability to generate

x based on qi,j from last step and let Px denote the probability to generate x based on the

pj from last step. The weight Ax = Qx/Px is assigned to each x and within these weighted

segments, another position az is then randomly chosen. Basically, this algorithm selects a
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set of positions ak, for k from 1 to N , in the set of sequences such that the product of the

corresponding set of Ax is maximized. Equivalently, the sum of the log of Ax is maximized,

which is denoted as F . F is given by

F =
W∑
i=1

∑
j=A,C,G,T

ci,jlog
qi,j
pj
, (2.10)

where ci,j represents the count of nucleotide j at each position i in the N − 1 sequences (all

sequences excluding the sequence z). One defect of this algorithm may be that it may fall

into a non-optimal local maximization when randomly chosen positions happen to be near

each other in different iterations. In order to solve this problem, a “phase shift” step may be

inserted after every maximization step. Moreover, instead of requiring the input of a specific

motif width, a superior criterion which is based on the incomplete-data log-probability ratio

may be used to choose motif width.

The statistical background of the Gibbs sampling strategy in motif searching has been

well presented by Liu et al. in 1995. Given a set of N DNA sequences with length L, the

goal is to identify the most probable motif with widthW and the alignment pattern. Firstly,

it is assumed that each sequence contains a single copy of the motif. The motif segments

with length W from input sequence are assumed to be independent observations from a

product-multinomial model (called a motif). This model describes nucleotide frequencies for

each position j within the motif and consists of 4×W parameters denoted by Θ = {θi,j}, for

each i representing A, C, G, T and j from 1 to W . The background parameters θi,0 describe

the nucleotide frequencies in the non-motif region.

Let random vectors Rn = (rn1, . . . , rnW ), for n =1, . . ., N , where the rnj is the

corresponding random variable for the observation at the jth position within the motif

region in the nth sequence. The likelihood function can then be written as

π(R1, · · · , RN |Θ) ∝
W∏
j=1

θ
h(Rj)
j , (2.11)

where h(Rj) is the sufficient statistic of θj for all j. It is known that the conjugate prior

for a product multinomial distribution is a product Dirichlet distribution. Thus, if the prior
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distribution of Θ is a product Dirichlet distribution PD(B), the posterior distribution of Θ

will be PD(B +H), where H = (h(R.1, . . . , R.W )).

In order to identify the alignment pattens (i.e., the positions of motif copies in each

input sequence), the starting positions for the motif copies are incorporated as missing data

in the model. Let {A} = {(n, an + j − 1) : n = 1, . . . , N, j = 1, . . . ,W} denote the set of

indices occupies by the copies of the motif in input sequences and let {A}c denote the set of

indices not occupied by the copies of the motif in the input sequences. The complete-data

likelihood can be written as

π(R1, · · · , RN , A|Θ) ∝ θ
h(R{A}c)
0

W∏
j=1

θ
h(RA(j))

j . (2.12)

Based on this model, the parameter vectors θ0 and θ are integrated out to obtain a

predictive update under the Gibbs sampler. Some modifications can be made for allowing

multiple copies of a motif within each input sequence and for searching for multiple motifs

in each run of the algorithm.

By choosing the Gibbs sampling strategy as the starting point, Roth et al. developed

an algorithm to discover the recurring motifs in unaligned sequences, called “AlignACE”,

short for Aligns Nucleic Acid Conserved Elements (Roth et al. 1998). A motif is defined as

the characteristic base-frequency patterns of the most information-rich columns of a set of

aligned sites in this algorithm. A series of motifs that are overrepresented in the input set

of DNA sequences is returned in the form of weight matrices. An alignment score for each

resulting motif, which is a measure of “goodness” of sequence alignment, is then calculated

using Berg and von Hippel. A threshold is set for this score and motifs with scores exceeding

the threshold are considered. In order to measure the fraction of ORFs (Open Reading

Frames) in the genome with matching upstream sites, an occurrence score is calculated for

each resulting motif. Motifs with a score lower than 1% are selected. This criterion ensures

that motifs occur infrequently among upstream regions.

Compared with the Gibbs sampling strategy, AlignACE is different in several aspects

(Das and Dai 2007). First, AlignACE uses the fixed base frequencies for background re-
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gions according to the source genome. Second, AlignACE searches for motifs in both DNA

strands. Third, In AlignACE, multiple motifs are found one by one by masking iteratively,

not simultaneously. Finally, MAP (maximum a priori log-likelihood) is used in AlignACE

to measure the degree of the over-represented motifs. The shortcoming of MAP is that

it cannot distinguish between the true over-represented motifs from some motifs occurring

ubiquitously in a genome, such as A-rich motifs in yeast.

BioProspector is a DNA motif searching method also using the Gibbs sampling strat-

egy and makes several improvements (Liu et al. 2001). Since in some cases in DNA, a

particular nucleotide may affect the presence of the nucleotide in its neighboring positions,

BioProspector uses zero to third-order Markov background models to score segments. For ex-

ample, from a third-order Markov background model, the probability of generating segment

ATGTA is calculated as:

P 3
ATCTA = P (A)× P (T |previous base is A)P (G|previous bases are AT )×

P (T |previous 3 bases are ATG)× P (A|previous 2 bases are TGT )

(2.13)

Parameters of the third-order Markov background model are either given by the user

or estimated from a specific sequence file. Moreover, BioProspector considers the cases

in which simultaneous and proximal binding of two transcription factors or binding of a

homodimer may be required in the transcription initiation. Two probability matrices may be

used to capture two blocks with their gap range specified. In this way, BioProspector is able

to search for spaced dyad motifs and palindromic motifs. To score a motif, BioProspector

uses the following formula:

MotifScore = #seg × exp[
∑

all positions

∑
all nucleotides

qi,j × log(qi,j/pj)]/W, (2.14)

where the definitions of qi,j, pj and W are the same as those in the original Gibbs sampling

strategy above. The statistical significance of the motif score is estimated by Monte Carlo

simulations.

The original Gibbs sampling strategy assumes that each sequence in the input set

of sequences contains a single copy of the motif and only allows for sequences to contain
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more than zero copies or multiple copies of the motif. BioProspector solves this problem by

using two score thresholds, a high threshold TH and a low threshold TL, when sampling new

alignments. All the non-overlapping segments of a sequence with scores higher than TH are

added to the motif, and all the non-overlapping segments of a sequence with scores lower

than TL are removed. Segments with scores between TL and TH are chosen with probability

proportional to Ax−TL, where Ax = Qx/Px, Qx and Px are defined as in the original Gibbs

sampling strategy. This criterion can help the program converge more quickly.

Motif Discovery Scan (MDscan) is another computational method developed by Liu

et al. to search for DNA motifs (Liu et al. 2002). MDscan combines the advantages of word

enumeration and PWM updating approaches and incorporates the chromatin immunopre-

cipitation array (CHIP-array) ranking information to make searches faster and increase the

success rates. CHIP-array experiments can help select probable protein-DNA interaction

loci within 1-2 kilobase resolution. Each TF binding DNA fragment selected by CHIP-array

is enriched in the experiment, and the ones having high CHIP-array enrichment are more

likely to represent multiple DNA motifs. Given a set of DNA sequences selected by CHIP-

array experiments, they are listed by their enrichment from highest to lowest. The goal is

to find DNA motifs of width W . At first, MDscan uses a word-enumeration strategy to

search for oligomers of width W (W-mers) that are abundant in the top sequences (top 3-20

sequences) with at least m base pairs matching the candidate motif, where m is specified by

the user. If this step can generate a reasonable range of the total number of motif elements,

MDscan then will use a Bayesian scoring function to evaluate and refine the PWM:

xm
W
×
[ W∑
i=1

T∑
j=A

pi,jLog(pij)−
1

xm

∑
all segments

Log(p0(s))− Log(
expected based

site
)
]
, (2.15)

where xm is the number of m-matches aligned in the motif. pij is the frequency of nucleotide

j at position i of the PWM, and p0(s) is the probability of generating them-matches from the

third-order Markov background model. If the expected number of sites in the top sequences
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is not known, the scoring function will be

Log(xm)

W
×
[ W∑
i=1

T∑
j=A

pi,jLog(pij)−
1

xm

∑
all segments

Log(p0(s))
]
. (2.16)

The top 10-50 candidate motifs with the highest scores are used by MDscan to update

the PWM iteratively. Compared to the original word enumeration approaches, MDscan

brings flexibility of base substitutions in PWM. MDscan also performs better than several

PWM updating approaches when dealing with large datasets by increasing the running speed

and avoiding serious local-maximum problems.

MDscan is based on the assumption that in response to a given biological condition,

the effect of a TFBS is strongest among genes with the most dramatic increase or decrease in

mRNA expression. An alternative approach to discover DNA motifs named Motif Regressor

is also based on this assumption (Conlon et al. 2003). Motif Regressor uses MDscan to find

motifs from the most induced and repressed genes, and then verifies each candidate motif

by associating each gene’s upstream sequence motif-matching score with its downstream

expression measure. Let Smg denote the score for the matching of the upstream sequence of

gene g and a motif m and let Yg denote the log-expression value of gene g. For each motif

reported from MDscan, a simple linear regression model is fit:

Yg = α + βmSmg + εg, (2.17)

where εg is the error term for gene g. A non-zero βm suggests that motif m is correlated with

the gene expression of gene g. Motif candidates with an insignificant βm are then removed.

For remaining motif candidates, each βm is retained and used to fit a multiple regression

model performed by the stepwise regression:

Yg = α +
M∑
m=1

βmSmg + εg. (2.18)

The stepwise regression starts with the intercept term, at each step adds the motif that

gives the largest reduction in residual error and ends when no motif can be added with a

significant coefficient.
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Several algorithms have been developed to identify the cis-regulatory modules (CRMs)

based on the existing DNA motif searching algorithms. CRMs refer to a combination of tran-

scription factors with corresponding binding sites forming homotypic or heterotypic clusters.

Most eukaryotic genes are regulated by CRMs. EMCMODULE is a method for inferring the

CRM responsible for a set of co-regulated genes by using a Hidden Markov Model(Gupta

and Liu 2005). EMCMODULE starts with a set of motifs found by existing algorithms and

databases and then selects motifs that are like members of CRMs and updates the parameters

iteratively. By assuming that there are K motifs in the module of interest, EMCMODULE

models the dependencies of these motifs on each other by a K ×K transition matrix, V . A

truncated geometric distribution, dij, is used to model the distance between the K motifs.

A hidden Markov model is used to represent the CRM of interest. The evolutionary Monte

Carlo (EMC) method is employed to screen the motif candidates and a forward-backward

recursion method is performed to locate the motifs.
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chapter 3

METHODS

3.1 Previously developed model

We assume that we are given a set of S DNA sequences. Let Xs denote the sth sequence, for

s from 1 to S and let Ls denote the length of the sth sequence. Xn = {Xn,s}Ls
n=1 represents

all nucleotides in sequence s and Xn,s ∈ {A,C,G, T} denotes the nucleotide at position n of

sequence s. The observed data are i.i.d random variables X1, . . . , XS. The number of motifs

of interest m and the width of motifs W are specified by the user. It is assumed that all

motifs are of the same length.

Motifs are represented by PWMs. Recall that a PWM is a 4 ×W matrix. Every

element in PWM pij is the frequency that jth (column number) position in the motif is

the ith (row number) nucleotide. Columns in PWM are assumed to be independent to

each other, and the elements in each column should sum to one. Following Lawerence et

al. (Lawrence et al. 1993), we assume that each position in a motif has a multinomial

distribution with k = 4. Assuming that the positions on the PWM are independent of each

other, the joint distribution of the positions follow a product multinomial distribution. The

remaining positions or sequences not occupied by motifs called background sequences. The

background can also be seen as a randomly generated motif with length W .

For each segment of length W , called a W -mer, the likelihood score is written as a

product multinomial distribution. Let Xn,s denote the subsequence of width W starting at

position n in sequence Xs, where n is from 1 to Ls −W + 1. Let ∆d, for d from 1 to m+ 1,

be a indicator variable, where ∆d = 1 denotes that the W -mer belongs to the dth motif and

∆d = 0 denotes that the W -mer does not belong to the dth motif. Each W-mer can only

belong to one motif, that is, only one ∆ can be equal to one.
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The likelihood score for the W -mer Xn,s given Xn,s belongs to the dth motif can be

written as

fd(Xn,s) = f(Xn,s|∆d = 1)score =
W∏
i=1

∏
j∈{A,C,G,T}

p
I(X(n+i−1),s=j)

dij , (3.1)

where pdij represents the (i, j) element of the PWM for the dth motif.

For the likelihood function of all W -mers in the given DNA sequences {Xn,s}, the

parameters can be represented by

Θ = ([pdij], r1, . . . , rm+1), (3.2)

where [pdij] represents the PWM for the motif d and rd, for d from 1 to m + 1, represents

the ratio of the number of W -mers that belong to motif d to the total number of all W -

mers,
∑m+1

i=1 ri = 1. W -mers in the data set may have overlaps. For example, one W -mer

and the preceding W -mer have W − 1 nucleotides overlapping. We may assume all W -mer

are independent to each other, because Bembom et al. showed that the motif searching

results in MEME (Bailey and Elkan 1994) with and without the independence assumption

are comparable (Bembom et al. 2007).

All W -mers in the given DNA sequences {Xn,s} are the observed data while the

unknown motif locations {∆d,n,s} are the unobserved hidden data. Let z = ({Xn,s}, {∆d,n,s})

represent the complete data. With the assumption that all W -mer are independent to each

other, the complete data likelihood can be written as the products of the likelihood score

for all W -mer:

L(Θ|z) = Pr(z|Θ) =
S∏
s=1

Ls+W−1∏
n=1

m+1∏
d=1

C(Xn,s)[rdfd(Xn,s)]
∆d,n,s . (3.3)

Priors

For a class of likelihood functions π(x|Θ), if the prior distribution π(Θ) is in the same

family as the posterior distribution π(Θ|x), the prior distribution π(Θ) is the conjugate

prior for the likelihood function family. The Dirichlet distribution, which is an extension
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of the beta distribution, is the conjugate prior for the multinomial distribution, and follows

that the product Dirichlet distribution is the conjugate prior for the product multinomial

distribution. According to Bayes Theorem, the posterior distribution, π(Θ|x), is proportional

to the product of the prior distribution and the the likelihood of the data. More specifically,

π(Θ|x) ∝ π(Θ)π(x|Θ). (3.4)

As (3.1) shows, the fd(Xn,s) (d is from 1 to m) is the product multinomial distribution, so

using a product Dirichlet distribution as the prior distribution for fd(Xn,s) (d is from 1 to

m) results in a product Dirichlet posterior distribution.

In order to search for de novo motifs in the given sequences, a PWM prior will

be generated from a random product Dirichlet distribution. When searching for motifs

with known PWMs, the PWM priors incorporate expert information of the motifs, (e.g.,

information from the Databases, such as TRANSFAC and JASPAR (Sandelin et al. 2004)).

The parameters {ri}, for i from 1 to m+ 1, represent the proportions of the numbers

ofW -mers DNA that belong to each motif to the total number of allW -mers in the data set,

and
∑m+1

i=1 ri = 1. By this definition, the distribution of {ri} can be a multinomial distri-

bution. Therefore, a Dirichlet prior for {ri} is chosen for the multinomial distribution. The

parameters for the Dirichlet prior are chosen by the user. If the user has expert knowledge

about the parameters, the parameters can be set to reflect the information. By default, the

parameters are set such that r1 = r2 = . . . = rm+1.

Gibbs sampling

Gibbs sampling was used by Poulsen to update all of the parameters in the model (Poulsen

2009). We call this program XPRIME-GIBBS in this project. The complete posterior

distribution are proportional to the product of the complete likelihood function and the

priors:

π(Θ|x) ∝ L(Θ|z)π(r)
m+1∏
d=1

π({pdij}) (3.5)
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The complete conditional posterior distribution of the PWM for the dth motif can

be expressed as

[{pdij}|∆d,n,s] =
S∏
s=1

Ls+W−1∏
n=1

[fd(Xn,s)]
∆d,n,sπ({pdij}), (3.6)

where if the prior π({pdij}) follows the product Dirichlet distribution with parameters {αDij},

the complete conditional posterior [{pdij}|∆d,n,s] will the product Dirichlet distribution with

parameters
∑S

s=1

∑Ls+W−1
n=1 ∆d,n,sI(X(n+i−1),s = j) + {αDij}.

The complete conditional posterior distribution of r can be expressed as

[r|{∆d,n,s}] =
S∏
s=1

Ls+W−1∏
n=1

m+1∏
d=1

[rdfd(Xn,s)]
∆d,n,sπ(r), (3.7)

where if the prior π(r) follows the product Dirichlet distribution with parameters {αd},

the complete conditional posterior [r|{∆d,n,s}] are the product Dirichlet distribution with

parameters
∑S

s=1

∑Ls+W−1
n=1 ∆d,n,s + {αd}.

Notice that the complete conditional posterior distributions depend on the unknown

motif locations {∆d,n,s}. {∆d,n,s} are assumed to follow the multinomial distribution with

parameters p∆ ∝ {ri} × f(Xn,s). The Gibbs sampling procedure has the followings steps:

(1) Draw ∆s from a multinomial distribution with parameters p∆ ∝ {ri} × f(Xn,s).

(2) Draw r from a Dirichlet distribution with parameters
∑S

s=1

∑Ls+W−1
n=1 ∆d,n,s + {αd}

(3) Draw {pdij} from a Dirichlet distribution with parameters
∑S

s=1

∑Ls+W−1
n=1 ∆d,n,sI(X(n+i−1),s =

j) + {αDij}

(4) Repeat 1 through 3 steps for N iterations, where N denotes the number of iterations set

by the user.
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3.2 EM algorithm

The expectation maximization (EM) algorithm is a general method for updating the param-

eters of a model when there are missing values for unobserved random variables. In this

report, the EM algorithm is used to update the parameters (PWM) in the model using all

W -mers in the given DNA sequences {Xn,s} (observed data) while imputing or integrating

over the unknown motif locations {∆d,n,s} (unobserved hidden data). z = ({Xn,s}, {∆d,n,s})

is the complete data. The formal optimization problem is, given a fixed {Xn,s}, to find the

value of Θ which maximizes the marginal probability

Pr({Xn,s}|Θ) =
∑

∆d,n,s

Pr({Xn,s}, {∆d,n,s}|Θ) =
∑

∆d,n,s

Pr(z|Θ) (3.8)

The EM algorithm maximizes Pr({Xn,s}|Θ) with respect to Θ by iteratively com-

puting a sequence {Θp} which converges to a optimal value Θ̂. In the pth iteration, in the

expectation E step, the expected value of {∆d,n,s} given {Xn,s} and {Θp} is calculated:

{∆̂d,n,s} = E({∆d,n,s}|{Xn,s}, {Θp}) (3.9)

Take a single W -mer Xn,s as an example,

∆̂d,n,s = E(∆d,n,s|Xn,s,Θp)

= 1× Pr(∆d,n,s = 1|Xn,s,Θp)

(3.10)

Then in the maximization M step, the {∆̂d,n,s} is used to improve the estimate of Θ, and

Θp+1 is chosen to maximize the joint probability of {Xn,s} and {∆̂d,n,s}:

{Θ|Pr({Xn,s}, {∆̂d,n,s}|Θ)is maximized} (3.11)

This step is to maximize the posterior distribution of fd(Xn,s) (d is from 1 to m), which is

a product Dirichlet distribution.

The EM algorithm in XPRIME has the following steps:

(1)In the pth iteration, for p = 1, Θ(1) = ([pdij]
(1), r

(1)
1 , . . . , r

(1)
m+1), where [pdij]

(1) are

drawn from a product Dirichlet distribution with parameters specified by the user and by
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default the parameters are (1, 1, . . . , 1)︸ ︷︷ ︸
4×n

. By default, {ri} are set to be r1 = r2 = . . . = rm+1.

In the pth iteration, for p > 1, Θ(p) is calculated from the previous iteration.

(2)∆̂d,n,s is calculated as (3.10) shows given Xn,s and Θ(p), where we assume ∆d,n,s

has a multinomial distribution with parameter p∆ ∝ {ri} × f(Xn,s).

(3) Θ(p+1) is the maximum likelihood estimator (MLE) which maximizes its posterior

distribution given the ˆ∆d,n,s and {Xn,s}. It is known that the posterior distribution of Θ is

a product Dirichlet distribution, thus, it is easier to get the MLE.

Iterations end when the difference of Θs from two preceding iterations is small enough.

3.3 Modified EM algorithm

The EM algorithm described above is modified and used in XPRIME. Some extra steps are

added between the E step and M step. First, in order to avoid that the starting positions

of different motifs of interest are located too close to each other in a sequence, the “Phase

Shift” function is used to make sure that only one motif is located within a small region

of a sequence. Second, within a motif, “correlation” between two different positions is

incorporated to the calculation of the likelihood scores for W -mers. In this way, the with-

in motif dependence for the TFBSs are considered in the motif searching. For a single

DNA motif, the strong motif form will be stronger and the less frequent motif form will be

attenuated or even removed. Furthermore, valuable prior information can be incorporated

into motif searching, such as the nucleosome positioning data for given sequences.

Below is the pseudo-code description of XPRIME with the modified EM algorithm,

and the distinct motifs are searched in parallel.

•Input :

dataset of S sequences

NMOTIF (number of motifs of interest to be searched for)

W (width of motifs of interests to be searched for)
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PWMs (prior PWMs for motifs of interest and the motif for background)

ITERS (number of iterations to run XPRIME)

•Algorithm : All S sequences are combined to be one big sequence and are read in as a matrix.

for iteraction=1 to ITERS {

E step

Phase Shift

Likelihood scores for each W-mer is scaled by the correlation factors and/or nu-

cleosome positioning scores.

M step

}

3.4 Algorithm implementation

Search Both DNA Strands

XPRIME can search for TFBSs on both DNA strands. More specifically, according to the

manner of the base-pairing, “CCTA” is the reverse complement of “GGAT”. If a TF binds

to “GGAT” on one strand, it can also bind to “CCTA” on the same strand, because binding

to “CCTA” on the strand means it binds to “GGAT” on the other strand. So “CCTA”

is also considered when “GGAT” is the TFBS of interest. XPRIME created the PWM

corresponding to the reverse complement when given a PWM. For example, if the following

PWM for ETS1 is given,

Table 3.1: The PWM of the binding motif of the TF ETS1.

Position 1 2 3 4 5 6 7 8
A 0.067 0.333 0.0 0.0 1.0 0.533 0.267 0.067
C 0.933 0.600 0.0 0.0 0.0 0.133 0.067 0.400
G 0.000 0.000 1.0 1.0 0.0 0.000 0.667 0.000
T 0.000 0.067 0.0 0.0 0.0 0.333 0.000 0.533

the reverse complement will be

28



Table 3.2: The PWM of the binding motif of the reverse complement TF ETS1.

Position 1 2 3 4 5 6 7 8
A 0.533 0.000 0.333 0.0 0.0 0.0 0.067 0.000
C 0.000 0.667 0.000 0.0 1.0 1.0 0.000 0.000
G 0.400 0.067 0.133 0.0 0.0 0.0 0.600 0.933
T 0.067 0.267 0.533 1.0 0.0 0.0 0.333 0.067

Both the motif corresponding to the given PWM and the one corresponding to the reverse

complement PWM are searched in the given data set, and they will be counted as the same

motif.

Phase Shift

Most eukaryotic genes are not regulated by a single TF but by multiple TFs that bind to

distinct TFBSs, which are called cis-regulatory modules (CRMs) (Gupta and Liu 2005).

These TFs regulate the transcription of the gene in combination. For multiple motifs or

multiple copies of a motif found in DNA sequences, they can not be too “overlapping” to

each other. Thus, after the starting positions of a motif are located by expectation in the E

step of XPRIME, we need to make sure that in the region around the motif, no more than

one motif is found. The likelihood scores for all of the W -mers associated with all motifs

are calculated following (3.1), and then the “Phase Shift” function is used to check all of the

likelihood scores within a DNA region and to turn the all of the likelihood scores other than

the highest score to be zero. The width of “Phase Shifted” DNA is specified by the user.

By default, the “Phase Shifted” width is W . The “Phase Shifted” function only applies to

the likelihood scores of W -mers given the W -mers belong to the motifs of interest not the

background motifs.

Table 3.3 shows an example to illustrate the the procedure of “Phase Shift”. The

first column shows a region of a DNA sequence and given this sequence, three motifs plus

one background motif with W = 4 are going to be searched by XPRIME. Each nucleotide

represents a starting position of a 4-mer. For example, the first score on the left top is
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0.00533, which is the likelihood score for the 4-mer “ACGG” starting with “A”, given the

4-mer belongs to the motif 1. The dot circle in the first table contains the first three 4-mers

and in the second table it can be seen that only the highest score is left with other scores

turned to be zero. And then Phase Shift continues to check the next three 4-mers in the

same manner.

Although“Phase Shift” function may help to improve the efficiency of XPRIME to

search for motifs with less noise, the way that “Phase Shift” works is biased. If a score in

the last row in a W bp frame is kept and then a score in the first row in the proceeding W

bp frame is kept, two motifs that are left still overlap each other with W − 1 nucleotides.

It is thought that for W bp motifs, if they overlap, it is better for them to overlap at no

more than [W/2] nucleotides. In the case of the example in Table 3.3, the possibility that

there are still motifs left by “Phase Shift” overlapping with each other at 2 nucleotides is

1
4
× 1

4
= 1

16
, which is relatively small. And in reality, TFBSs are usually 5bp to 20bp, so the

error probabilities of “Phase Shift” are even smaller when running with real datasets.
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Table 3.3: “Phase Shift” the likelihood scores ofW -mers to avoid that motifs are overlapping
too much with each other.

PPPPPPPPPSP
Motif 1 2 3 background

A 0.00533 0.000 0.0033 0.0331
C 0.010 0.00667 0.0025 0.0212
G 0.0040 0.0067 0.0023 0.0010
G 0.067 0.0267 0.0052 0.042
T 0.0017 0.0267 0.0052 0.032
T 0.0027 0.0137 0.0031 0.01
A 0.003 0.267 0.0022 0.01
T 0.067 0.0267 0.0052 0.042
C 0.0017 0.0267 0.0033 0.032
A 0.0027 0.267 0.0031 0.01
T 0.003 0.267 0.0022 0.01

PPPPPPPPPSP
Motif 1 2 3 background

A 0 0 0 0
C 0 0 0 0
G 0 0 0 0
G 0.067 0 0 0
T 0.0017 0.0267 0.0052 0.032
T 0.0027 0.0137 0.0031 0.01
A 0.003 0.267 0.0022 0.01
T 0.067 0.0267 0.0052 0.042
C 0.0017 0.0267 0.0033 0.032
A 0.0027 0.267 0.0031 0.01
T 0.003 0.267 0.0022 0.01

PPPPPPPPPSP
Motif 1 2 3 background

A 0 0 0 0
C 0 0 0 0
G 0 0 0 0
G 0.067 0 0 0
T 0 0 0 0
T 0 0 0 0
A 0 0.267 0 0
T 0 0 0 0
C 0.0017 0.0267 0.0033 0.032
A 0.0027 0.267 0.0031 0.01
T 0.003 0.267 0.0022 0.01
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Scaling the Likelihood Score for Each W-mer by the Motif Correlation Factor

PWMs and the corresponding sequence logos are popularly used by DNA motif searching

methods to represent the found motifs in the input sequence sets. This way to represent

resulted motifs has a limitation. Here we use an example to describe this limitation. Suppose

that Figure 3.1 shows the sequence logo for the found motif and there are four different copy

forms for this motif, which shows in Figure 3.2. If the four forms spread in the given sequences

evenly, which means the proportion of the number of each form to the total number of the

motif is 1
4
, it can be found that the combination “AG” at the position 5 and 6 is twice as

frequent as the "AT" and "CT", which probably indicates given “A” at the position 5, it is

more likely to find “G” and “T” than “A” and “C” at the position 6. Neither the sequence

logo nor PWM can present structure.
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Figure 3.1: SeqLogo for the posterior motif.

Figure 3.2: Four W -mers belong to the found motif and they spread in the sequences evenly.
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In some cases, researchers would like to identify stronger motifs and the forms with

the combination "AG" needs to be weighted more than the ones with combinations "AT" and

"CT". The “correlation factor” can be used. First, all of theW -mers that have non-zero like-

lihood scores given the motif of interest are collected and different nucleotide combinations at

any two different positions within the motif are considered. There are (1+2+ . . .+(W −1))

sets of two different positions and for each two positions, there are 16 different nucleotide

combinations: “AA”, “AC”, “AG”,“AT”,“CA”,“CC”, “CG”,“CT”, “GA”,“GC”, "“GG”,

“GT”, “TA”,“TC”, “TG” and “TT”.

At first, (1 + 2 + . . . + (W − 1))4 × 4 matrices are generated. Table 3.4 shows an

example of a matrix for position 2 and 3. The column names are nucleotides at position

3 and the row names are nucleotides at position 2. For example, for "“AA” at position 2

and 3, we pick up all collected W -mers that have “AA” at position 2 and 3 and get the

sum of the likelihood scores of these W -mers, which is 13.067. This number is the (1, 1)

in the matrix for position 2 and 3. Elements are the sum of likelihood scores calculated as

described above.

Table 3.4: The matrix for position 2 and position 3.

Position 2&3 A C G T
A 13.067 17.333 11.533 10.267
C 12.933 14.600 8.067 9.400
G 15.000 12.000 12.667 11.533
T 16.000 9.067 7.333 12.634

Secondly, each matrix is normalized by dividing elements by the sum of all elements

in the matrix. And all matrices have the same mean and then they are ranked by their

variance. A matrix with higher variance represents two positions where the frequencies of

different nucleotide combinations are very different. T matrices with highest variances are

picked up. If W is odd, T = (W − 1)/2 and if W is even, T = W/2. When picking out the

T matrices, we need to make sure that two different pairs are not allowed to have common

positions
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Finally, the T matrices are used to scale the likelihood scores of all W-mers with non-

zero scores given the motif after E step before M step in every iteration in XPRIME. The

likelihood score of each W -mer is multiplied by T numbers extracted from the T matrices.

The T numbers correspond to the combinations of nucleotides of the W-mer at the positions

of T matrices. For a W -mer with “AC” at its position 2 and 3, its likelihood score is then

multiplied by 11.533.

Therefore, more frequent motif forms are more weighted and less frequent motif forms

are less weighted. The rescaling enables the user to get stronger motifs and understate the

other less frequent W -mers.

Incorporating the nucleosome positioning scores for the input sequences in XPRIME

Recall that in the Introduction nucleosome positioning regulating transcription and the

presence of nucleosomes inhibiting the binding of TF to the DNA region was discussed.

Valouev et al., have published the genome-wide nucleosome positioning data for human active

CD4+ T cells, which contain 342 million reads from high-throughput SOLiD sequencing

(Valouev et al. 2011). GNUMAP (Genomic Next-generation Universal MAPper) may be

used to map these reads to any human sequences(Clement et al. 2010). We have mapped

these reads to the ETS1 bound sequences, which were obtained from the Graves lab. From

the mapping result, the numbers of reads, which were mapped to ETS1 bound regions,

have been counted. These counted numbers are plotted against the relative position of the

reads to the ETS1 bound regions (-550bp to 550bp). That is to say, in the plots in Figure

3.3, x-axis represents the relative positions of nucleosome reads to the ETS1 bound regions

(distances from the regions) and y-axis represents the counts of those reads. It could be

seen that around both enhancer and promoter ETS1 motif regions, the nucleosome counts

are low, and the nucleosome counts increases with the distance from the motifs increasing .

By using the FASTQ sequence file, the improved XPRIME is able to incorporate the

nucleosome positioning scores into the motif searching under the assumption that it is more
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Figure 3.3: Nucleosome positioning around the ETS1 motifs

possible that TFBSs appear in the nucleosome free regions than in the nucleosome occupied

regions.

The FASTA sequence file format is the most popular input format for DNA motif

searching tools, including XPRIME. Each sequence in FASTA file contains two lines, the

first line starts with “>” and is the title line and the second line provides the DNA sequence

line. The FASTQ file format emerges with the development of DNA sequencing technolo-

gies, which now is a common format for data exchange between results from different DNA

sequencing methods. FASTQ file is an extension of FASTA file and it stores a numerical

sequencing quality score for each nucleotide in a sequence.

Figure 3.4 presents a sequence extracted from a FASTQ file (Cock et al. 2010). Each

sequence in FASTQ files contains four lines: the first line begins with a “@” title line, which

is a free format field with no length limit to provide the ID, length or other other comments

about the sequence. The second line is the sequence line. The third line starts with a “+”.

Usually this line just repeats the information in the first line and is also a free format filed.

The last line is the quality line and stores sequencing quality score per base of the sequence

with ASCII printable characters.
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Figure 3.4: A sequence in a FASTQ file (Cock et al. 2010).

ASCII is the abbreviation for American Standard Code for Information Interchange,

which is based on the ordering of English alphabets and is used to represent the sequencing

quality scores. A single character in ASCII is simpler than a double digit number and it

is more space efficient than digits. Since ASCII 32 is the space character, which is not so

human readable, ASCII 33 to 126 are usually used to represent sequencing quality scores

0 to 93. People usually call these numerical scores PHRED quality scores, since PHRED

software firstly reads DNA sequencing trace files and assigns this numerical scores to each

base. PHRED quality scores eventually can represent the estimated probability of sequencing

error Pe for each nucleotide in a sequence by the equation below,

QPHRED = −10× log10(Pe) (3.12)

There are three variants that use ASCII to represent the sequencing quality scores

in FASTQ file. They are used by three different DNA sequencing groups: “fastq-sanger”

used by Sanger institute, “fastq-solexa” introduced by Solexa. Inc and “fastq-illumina”

used by Iluumina. In “fastq-sanger”, the PHRED scores 0 to 93 are represented as 33 to 126

by ACSII and the scores in “fastq-sanger” minus 33 equal the PHRED scores. In “fastq-

illumina” the PHRED scores 0 to 62 are represented as 64 to 126 by ACSII and the scores

in “fastq-illumina” minus 64 equal the PHRED scores. Thus, “fastq-sanger” includes larger

range of PHRED scores than “fastq-illumina”. “fastq-solexa” has its own conversion way to

convert its ASCII scores to PHRED scores : QPHRED = −10× log10(10QSOLEXA//10 + 1) and

it uses ASCII 59 to 126 to represent the PHRED scores −5 to 62.

The FASTQ sequence file is used to incorporate the nucleosome positioning data

into the motif searching. The nucleosome count at each position of the given sequences is
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proportionally rescaled to be between 33 and 126 and then can be used as QNUCLEO as in

(3.10), which is analogous to (3.9), and Pn is analogously defined as the estimated possibility

of nucleosome-free.

QNUCLEO = −10× log10(Pn) (3.13)

We assume that it is more likely that motifs of interest are located and found in

the sequence regions with lower nucleosome positioning counts (higher Pn) and the back-

ground motif is located and found in sequence regions with higher nucleosome positioning

counts (lower Pn). In order to incorporate the nucleosome positioning information in motif

searching, the likelihood score for a W -mer is multiplied by a factor that can reflect the

possibility of finding motifs in the W -mer. For the motifs of interest, the factor is calculated

as
∏W

i=1
Pni

1−Pni
and for the background motif, the factor is calculated as

∏W
i=1

1−Pni

Pni
, where

Pni is the estimated possibility of nucleosome-free for the nucleotide at ith position within

the W -mer. We do not use the
∏W

i=1 Pni or
∏W

i=1(1−Pni) because in this way factor may be

very small to make the likelihood score very low and bring inaccuracy in computation.

Therefore, the likelihood score for theW -mer Xn,s given Xn,s belongs to the dth motif

with the nucleosome positioning data incorporated can be rescaled as

f(Xn,s|∆d = 1)score =


∏W

i=1[
∏

j∈{A,C,G,T} p
I(X(n+i−1),s=j)

dij Pni/(1− Pni)] if 1 ≤ d ≤ m∏W
i=1[
∏

j∈{A,C,G,T} p
I(X(n+i−1),s=j)

dij (1− Pni)/Pni] if d = m+ 1

3.5 Simulation study

In this study, DNA sequences will be generated at random according to the nucleotide ratio

A : C : G : T = 1 : 1 : 1 : 1. Each sequence set contains 100 sequences and each sequence is

550bp. The nucleosome occupancy scores will be assigned to all positions of those sequences.

Three DNA motifs of 8bp in length from TRANSFAC (Wingender 2008), called ETS, TAL

and FTZ will be planted at random in these simulated sequences (with replacement). The
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overwritten of the planted motifs will be avoided. The sequence logos for these motifs are

shown in Figure 3.5, 3.6, and 3.7. The TAL motifs will be only planted at random in the

nucleosome occupied regions. The FTZ motifs will be only planted in the nucleosome free

regions. And the ETS motifs will be planted randomly over the entire sequence regions.

Following are details of this study.

1. Motif planting. The different numbers of occurrences of each motif will be chosen.

Table 3.5 shows seven different combinations of motif occurrences that will be utilized in

the simulated sequence set. 100 times of occurrences would be the medium-level occurrence,

which suggests that on average each sequence contains one occurrence of the motif of interest.

200 times of occurrences would be the high-level occurrence and 50 times of occurrences

would be the low-level occurrence. Because XPRIME is able to search for both DNA strands,

all occurrences will be planted in the same orientation.

Table 3.5: Seven different combinations of motif occurrences.
ETS TAL FTZ

1 100 200 100
2 100 100 100
3 100 50 100
4 100 100 50
5 100 100 200
6 200 100 100
7 50 100 100

2. Programs running. XPRIME using EM algorithm (called XPRIME-EM), XPRIME using

Gibbs Sampling procedure (Poulsen 2009), which is called XPRIME-GIBBS, and MEME

(Bailey and Elkan 1994) will be run with the seven different sequence sets described above.

The length of the motif of interest will be set to be 8bp. This process will be repeated five

times to obtain five samples. We will randomly generate the DNA sequences each time.

3. Performance comparing. To evaluate the performance of the motif searching programs,

the precision of each program for each motif of interest will be measured, which is defined

as tp
tp+fp

(Bailey and Elkan 1994). tp is the number of the corrected classified positives (“true
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positives”), which is the number of positions where occurrences of the known and reported

motifs overlap. fp is the number of the non-occurrences classified as occurrences (“false

positives”), which is the number of positions where occurrences of the reported motifs do

not overlap with the known motifs (Sinha and Tompa 2003). The sensitivity of each program

for each motif of interest will also be measured, which is defined as tp
tp+fn

(Chen et al. 2007).

fn is the number of the occurrences classified as non-occurrences (“false negatives”), which

is the number of positions where the known motifs do not overlap with the occurrences of the

reported motifs (Sinha and Tompa 2003). For each program, the precision and sensitivity

will be reported for each motif and the overall precision for all motifs will be reported as

well.

All of the approaches described above are expected to have high precision and sensi-

tivity for the ETS motif regardless of occurrence levels are. XPRIME-EM with nucleosome

positioning score incorporation is expected to has lower precision and sensitivity than the

other two programs for the TAL motif. When the TAL motif has low occurrence level,

XPRIME-EM with nucleosome positioning score incorporation is expected to fail to identify

this motif because it is only planted in the nucleosome occupied regions. When the FTZ

motif has low occurrence level, we expect that XPRIME-EM with nucleosome positioning

score incorporation may have higher precision and sensitivity than the other programs. To

statistically compare the precision rates and sensitivity of different programs, the Hotelling’s

T 2 test will be used.

The Hotelling’s T 2 test is a multivariate test to compare two vectors of means. As-

sume there are n1 observations for treatment 1: X = (Xi1, Xi2, . . . , Xik), i = 1, . . . , n1 and

n2 observations for treatment 2: Y = (Yi1, Yi2, . . . , Yik), i = 1, . . . , n2, where each treat-

ment has k response variables. The vectors of sample means are X̄ = (X̄1, X̄2, . . . , X̄k) and

Ȳ = (Ȳ1, Ȳ2, . . . , Ȳk) (Higgins 2003).

Let C be the k × k matrix of pooled covariance. The uvth element in C matrix Cuv

can be calculated as Cuv = (n1−1)CXuv+(n2−1)CY uv

n1+n2−2
, where CXuv and CY uv are the covariance
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between the uth and the vth response variables on treatment 1 and treatment 2 respectively.

CXuv =
∑n1

1 (Xiu−X̄u)(Xiv−X̄v)

n1−1
and CY uv is calculated in the analogous way.

The Hotelling’s T 2 test statistic is defined as T 2 = n1n2

n1+n2
(X̄ − Ȳ )′C−1(X̄ − Ȳ ). Let

µXj be the population mean for the jth response variable in treatment 1 and µY j be the

population mean for the jth response variable in treatment 2. The null hypothesis in this

test is H0 : µXj = µY j, j = 1, . . . , k and the alternative hypothesis is H1 : µXj 6= µY j, for

at lease one j, j = 1, . . . , k. Under the null hypothesis, F = n1+n2−k−1
(n1+n2−2)k

T 2 follows an F

distribution with degrees of freedom k and n1 + n2 − k − 1.

In this project, a pairwise Hotelling’s T 2 test has been chosen to test if any two of the

three programs have the same means of precision rates. Each program could be looked as a

treatment. The seven combinations of motif occurrences could be seven response variables.

Each treatment has five observation vectors corresponding to five samples of simulation data

sets. In this case, k = 7 and n1 = n2 = 5. The Hotelling’s T 2 test requires the assumption

that all observations from each treatment are independent and randomly sampled from a

multivariate normal population N(µt,Σt), where t indicates treatments. We can not assure

that the assumption of multivariate normality is met due to the small sample size, so the

permutation version of the Hotelling’s T 2 test has been used, in which the multivariate

observation vectors are permuted between treatments (Higgins 2003). The steps below are

followed:

1. Calculate the F statistics for the original observations Fobs.

2. For the two treatment with 5 observation vectors each, obtain 10000 random

sample of permutations and calculate the F statistics.

3. Obtain the p value as p = number of F≥Fobs

10000
.

3.6 Real data set study

XPRIME-EM, XPRIME-GIBBS (Poulsen 2009) and MEME (Bailey and Elkan 1994) will

be run using two real sequence sets. These sequences arise from ChIP-chip experiments in
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active human CD4+ T cells performed by Barbara Graves Lab at University of Utah. One

set contains 100 DNA sequences in which ETS1 TFs occupy the redundant promoters and

the other one contains 100 DNA sequences in which ETS1 TFs occupy the specific enhancers.

ETS1 is a member of the transcription factor family ETS. It is known that ETS1 TF plays

a role in activating T cells and may function in skin cancer development (Torlakovic et al.

2004).

ETS1 TFs that bind to redundant promoters share common consensus binding sites

with other members in ETS family, while ETS1 TFs that bind to specific enhancers are

associated with distinct binding sequences (Hollenhorst et al. 2009). Besides the ETS1

TFBSs, we will allow 2 different de novoDNAmotifs in the two sequence sets, whose presence

may contribute to the different functions of ETS1TFs when they bind to enhancers and

promoters.

Since the real motif occupancy positions are not known, it is impossible to calculate

the precision and sensitivity in this case. The reported ETS1 motif and de novo motifs

obtained by the three DNA motif searching programs will be compared with their occurrence

times and their conservativity, which may be seen by the height of the nucleotide at each

position of the motif seqlogos. The higher the nucleotide is , the more conservative it is.
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Figure 3.5: SeqLogo for ETS DNA motif from TRANSFAC (Wingender 2008).
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Figure 3.6: SeqLogo for TAL DNA motif from TRANSFAC (Wingender 2008).
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Figure 3.7: SeqLogo for FTZ DNA motif from TRANSFAC (Wingender 2008).
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chapter 4

RESULTS

To compare the performance of XPRIME-EM with XPRIME-GIBBS (Poulsen 2009) and

MEME (Bailey and Elkan 1994), we analyzed the simulated data sets and the real biological

data sets as described in the Methods section. In the simulated data sets, motifs are planted

into the DNA sequences with seven different combinations of occurrences as Table 3.5 shows.

4.1 Effects of the motif correlation factor scaling in the modified EM

algorithm

In the XPRIME-EM program, one of the proposed steps that we use to modify the EM

algorithm is to scale the likelihood score for each W -mer by the motif correlation factor

between the E-step and M step. After running XPRIME-EM on the simulated data sets, we

have found that although XPRIME-EM with this step always generates very strong motifs as

we expect, those motifs are always wrong and do not exist in the given DNA sequences. This

results in the zero precision rate and zero sensitivity. Scaling the likelihood score for each

W -mer by the motif correlation factor may lead to bias in the likelihood score for W -mers

and lead the EM algorithm to converge to wrong stationary points. Therefore, we decided

to exclude the “ scaling the likelihood scores for eachW -mer by the motif correlation factor”

step in the XPRIME-EM program.

4.2 Performance evaluation on simulated data sets for de novo motifs

discovery

We ran the XPRIME-EM, XPRIME-GIBBS and MEME on the simulated sequence sets.

Random Dirichlet priors for motif PWMs are given in XPRIME-EM and XPRIME-GIBBS
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for de novo or unknown motifs discovery. All of the three programs seek to identify three

different motifs in each of the given sequence set.

Precision Rates

We are interested in the effects of incorporating the nucleosome positioning scores on DNA

motif searching, so we ran the XPRIME-EM with and without nucleosome positioning scores

incorporation to compare their precision rates. After running 10000 iterations with burn-in

size 1000, XPRIME-GIBBS could not find any motif in all given DNA sequence sets. All

elements of the posterior means PWMs are around 0.25. Therefore, the precision rates and

sensitivity of XPRIME-GIBBS for de novo motifs discovery will not be reported.

Table 4.1 shows the precision rates of XPRIME-EM with and without nucleosome

positioning scores incorporation and MEME for de novo motifs discovery. The first rows

are for motif ETS, FTZ and TAL respectively. The last three rows are the overall precision

rates for the three programs. Each entry in the table represents the average precision rate

over five samples, each of which contains 100 DNA sequences with 550bp length.

Table 4.1: Precision rates of XPRIME-EM with and without nucleosome positioning scores
incorporation and MEME for de novo motifs discovery.

Motif
``````````````̀Programs

Data sets 121 111 151 115 112 211 511

ETS
XPRIME-EM w/o nucleo 0.77 0.77 0.80 0.76 0.86 0.90 0.52
XPRIME-EM w/ nucleo 0.61 0.63 0.58 0.32 0.33 0.89 0.26

MEME 0.93 0.94 0.91 0.94 0.74 0.95 0.71

FTZ
XPRIME-EM w/o nucleo 0.80 0.57 0.09 0.54 0.36 0.67 0.58
XPRIME-EM w/ nucleo 0.66 0.44 0.05 0.39 0.14 0.16 0.24

MEME 0.96 0.94 0.89 0.95 0.75 0.94 0.96

TAL
XPRIME-EM w/o nucleo 0.81 0.87 0.85 0.26 0.94 0.79 0.62
XPRIME-EM w/ nucleo 0.79 0.78 0.82 0.57 0.87 0.68 0.77

MEME 0.95 0.94 0.91 0.91 0.97 0.95 0.94

Overall
XPRIME-EM w/o nucleo 0.80 0.74 0.68 0.57 0.78 0.81 0.58
XPRIME-EM w/ nucleo 0.68 0.62 0.57 0.40 0.55 0.65 0.46

MEME 0.95 0.94 0.91 0.94 0.86 0.95 0.90
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Table 4.2 presents the Fobs value and the associated p value for each permutation

Hotelling’s T 2 test. For the motif ETS, the test results indicate that the three programs

have the same mean precision rates at α = 0.05 level for all motif occurrence combinations.

For the motif FTZ, The significant p values 0.02 and 0.03 suggests that MEME has sig-

nificantly different mean precision rates than XPRIME-EM with and without nucleosome

positioning scores incorporation for at least one motif occurrence combination respectively,

while XPRIME-EM with and without nucleosome positioning scores incorporation have the

same mean precision rates for all motif occurrence combinations. For the motif TAL, MEME

has significantly different mean precision rates than XPRIME-EM with nucleosome posi-

tioning scores incorporation and marginally significantly different mean precision rates than

XPRIME-EM without nucleosome positioning scores incorporation for at least one motif

occurrence combination.

Table 4.2: The permutation Hotelling’s T 2 test results on the mean precision rates of every
two programs for each motif.

Fobs p value

ETS
MEME vs. XPRIME-EM w/o nucleo 5.78 0.06

XPRIME-EM w/ nucleo vs. w/o nucleo 0.96 0.54
MEME vs. XPRIME-EM w/ nucleo 4.04 0.16

FTZ
MEME vs. XPRIME-EM w/o nucleo 91.90 0.02

XPRIME-EM w/ nucleo vs. w/o nucleo 0.59 0.73
MEME vs. XPRIME-EM w/ nucleo 70.94 0.03

TAL
MEME vs. XPRIME-EM w/o nucleo 12.99 0.04

XPRIME-EM w/ nucleo vs. w/o nucleo 5.56 0.11
MEME vs. XPRIME-EM w/ nucleo 14.54 0.07

For each of the three permutation Hotelling’s T 2 tests with significant p values, the

permutation two-sample t-test has been performed for each individual response variable.

Table 4.3 presents the tobs values and the associated p values based on 10000 random sample

of permutations.

All tobs values are positive and all p values are significant in this table, indicating that

for motif FTZ, the mean precision rates of MEME are significantly higher than XPRIME-EM
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Table 4.3: The permutation two-sample t-test results on the mean precision rates for each
individual motif occurrence combination.

121 111 151 115 112 211 511

FTZ MEME vs. XPRIME-EM w/o nucleo tobs 7.58 4.31 9.06 5.24 1.61 7.22 4.36
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.01

FTZ MEME vs. XPRIME-EM w/ nucleo tobs 1.79 3.71 15.22 3.49 2.66 4.96 4.83
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TAL MEME vs. XPRIME-EM w/o nucleo tobs 2.90 1.99 1.15 3.88 2.52 3.75 1.93
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.01

with and without nucleosome positioning scores incorporation for all combinations of motif

occurrences. For motif TAL, the mean precision rates of MEME are significantly higher than

XPRIME-EM without nucleosome positioning scores incorporation for all combinations of

motif occurrences. Therefore, in the level of precision rates, MEME performance on the

simulated data set is nearly optimal and incorporating the nucleosome positioning scores

does not significantly improve XPRIME-EM’s performance.
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Sensitivity

Table 4.4 shows the sensitivity of XPRIME-EM with and without nucleosome positioning

scores incorporation and MEME for unknown motifs discovery. The first rows are for motif

ETS, FTZ and TAL respectively. The last three rows are the overall sensitivity for the three

programs. Each entry in the table represents the average sensitivity over five samples, each

of which contains 100 DNA sequences with 550bp length. We expected that when the level

of FTZ is low, XPRIME-EM with nucleosome positioning scores incorporation may fail to

identify it because this motif is only planted in the nucleosome occupied region. As we can

see in the table, the FTZ motif has been barely identified in the sequence set with motif oc-

currence combination 151 by XPRIME-EM with nucleosome positioning scores incorporation

and the sensitivity is 0.02, which is lowest among all motif occurrence combinations.

Table 4.4: Sensitivity of XPRIME-EM with and without nucleosome positioning scores
incorporation and MEME for unknown motifs discovery.

Motifs
``````````````̀Programs

Data sets 121 111 151 115 112 211 511

ETS
XPRIME-EM w/o nucleo 0.63 0.61 0.66 0.63 0.72 0.85 0.50
XPRIME-EM w/ nucleo 0.50 0.50 0.48 0.32 0.31 0.75 0.11

MEME 0.70 0.69 0.67 0.70 0.58 0.71 0.53

FTZ
XPRIME-EM w/o nucleo 0.64 0.30 0.03 0.24 0.17 0.40 0.14
XPRIME-EM w/ nucleo 0.43 0.22 0.02 0.19 0.05 0.20 0.05

MEME 0.94 0.89 0.83 0.85 0.71 0.83 0.75

TAL
XPRIME-EM w/o nucleo 0.71 0.83 0.75 0.25 0.86 0.50 0.48
XPRIME-EM w/ nucleo 0.98 0.99 0.97 0.91 1.00 0.68 0.94

MEME 0.96 0.97 0.98 0.92 0.98 0.95 0.97

Average
XPRIME-EM w/o nucleo 0.65 0.58 0.57 0.40 0.66 0.65 0.35
XPRIME-EM w/ nucleo 0.58 0.57 0.59 0.39 0.59 0.60 0.42

MEME 0.89 0.85 0.83 0.80 0.81 0.80 0.79

Table 4.5 presents the Fobs statistics and the associated p values for the permutation

Hotelling’s T 2 tests on the mean sensitivity of every two programs for each motif.

For the motif ETS, the test results indicate that MEME has significantly different

mean sensitivity than XPRIME-EM without nucleosome positioning scores incorporation
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for at least one motif occurrence combination. For the motif FTZ, The significant p values

0 suggests that MEME has significantly different mean sensitivity than XPRIME-EM with

and without nucleosome positioning scores incorporation, respectively, for at least one motif

occurrence combination, while XPRIME-EM with and without nucleosome positioning scores

incorporation have the same mean precision rates for all motif occurrence combinations.

For the motif TAL, XPRIME-EM without nucleosome positioning scores incorporation has

significantly different mean sensitivity than XPRIME-EM with nucleosome positioning scores

incorporation and MEME, respectively, for at least one motif occurrence combination, while

XPRIME-EM with nucleosome positioning scores incorporation and MEME have the same

mean sensitivity for all motif occurrence combinations.

Table 4.5: The permutation Hotelling’s T 2 test results on the mean sensitivity of every two
programs for each motif.

Fobs p value

ETS
MEME vs. XPRIME-EM w/o nucleo 24.17 0.01

XPRIME-EM w/ nucleo vs. w/o nucleo 0.96 0.54
MEME vs. XPRIME-EM w/ nucleo 3.61 0.18

FTZ
MEME vs. XPRIME-EM w/o nucleo 127.43 0.00

XPRIME-EM w/ nucleo vs. w/o nucleo 2.62 0.20
MEME vs. XPRIME-EM w/ nucleo 1936.93 0.00

TAL
MEME vs. XPRIME-EM w/o nucleo 382.49 0.00

XPRIME-EM w/ nucleo vs. w/o nucleo 2447.13 0.00
MEME vs. XPRIME-EM w/ nucleo 1.26 0.52

For each of the permutation Hotelling’s T 2 tests with significant p values in Table 4.5,

the permutation two-sample t-test has been performed for each individual response variable.

Table 4.6 presents the tobs statistics and the associated p value based on 10000 random

sample of permutations.

All tobs values are positive and all p values are significant in this table except for the

motif occurrence combinations 112, 211 and 511 for the motif ETS. The results indicate

that for the motif ETS, MEME has significantly higher mean sensitivity than XPRIME-EM

without nucleosome positioning scores incorporation for the motif occurrence combinations
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Table 4.6: The permutation two-sample t-test results on the mean sensitivity for each indi-
vidual motif occurrence combination.

121 111 151 115 112 211 511

ETS MEME vs. XPRIME-EM w/o nucleo tobs 0.89 0.95 0.19 0.90 -0.92 -3.68 0.13
p value 0.00 0.00 0.00 0.00 1.00 1.00 0.42

FTZ MEME vs. XPRIME-EM w/o nucleo tobs 6.82 5.11 16.81 7.04 2.72 3.88 11.80
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTZ MEME vs. XPRIME-EM w/ nucleo tobs 3.33 5.46 18.61 5.76 3.49 3.08 16.08
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TAL MEME vs. XPRIME-EM w/o nucleo tobs 2.30 1.38 1.75 4.06 10.70 9.11 3.82
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TAL XPRIME-EM w/ vs. w/o nucleo tobs 2.43 1.56 1.70 3.84 14.43 1.41 3.54
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

121, 111, 151 and 115 and the two programs have the same mean sensitivity for the motif

occurrence combinations 112, 211 and 511. For motif FTZ, the mean sensitivity of MEME

are significantly higher than XPRIME-EM with and without nucleosome positioning scores

incorporation for all combinations of motif occurrences. For motif TAL, the mean sensitivity

of MEME and XPRIME-EM with nucleosome positioning scores incorporation are signifi-

cantly higher than XPRIME-EM without nucleosome positioning scores incorporation for

all combinations of motif occurrences.

Therefore, in the level of sensitivity, MEME performance on the simulated data set

is nearly optimal. However, for identifying motifs that only locate in the nucleosome free

region, incorporating the nucleosome positioning scores significantly improves XPRIME-

EM’s performance and the improved performance of XPRIME-EM is comparable to MEME’s

performance.

4.3 Performance comparison for known motifs discovery

In order to compare the EM algorithm and the Gibbs Sampling algorithm on the known motif

searching, we have also run the XPRIME-EM without nucleosome positioning information

incorporation and XPRIME-GIBBS on the simulated sequence sets with the PWMs for

motifs given as the prior PWMs. Table 4.7 shows the precision rates of XPRIME-EM
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without nucleosome positioning scores incorporation and XPRIME-GIBBS for known motifs

discovery. The first rows are for motif ETS, FTZ and TAL respectively. The last three rows

are the overall precision rates for the two programs. Each entry in the table represents the

average precision rate over five samples, each of which contains 100 DNA sequences with

550bp length.

Table 4.7: Precision rates of XPRIME-EM without nucleosome positioning scores incorpo-
ration and XPRIME-GIBBS for known motifs discovery.

Motifs
``````````````̀Programs

Data sets 121 111 151 115 112 211 511

ETS XPRIME-GIBBS 0.04 0.07 0.07 0.02 0.05 0.08 0.01
XPRIME-EM w/o nucleo 0.75 0.76 0.75 0.75 0.76 0.85 0.60

FTZ XPRIME-GIBBS 0.51 0.44 0.43 0.45 0.36 0.57 0.44
XPRIME-EM w/o nucleo 0.96 0.91 0.85 0.92 0.92 0.92 0.92

TAL
XPRIME-GIBBS 0.59 0.83 0.56 0.57 0.73 0.52 0.66

XPRIME-EM w/o nucleo 0.89 0.89 0.89 0.81 0.94 0.89 0.89

Overall
XPRIME-GIBBS 0.41 0.45 0.34 0.30 0.47 0.31 0.44

XPRIME-EM w/o nucleo 0.89 0.85 0.83 0.83 0.89 0.88 0.85

Table 4.8 presents the Fobs statistic and the associated p value for each of the per-

mutation Hotelling’s T 2 tests. The significant p values at α = 0.05 level indicate that

XPRIME-EM without nucleosome positioning scores incorporation and XPRIME-GIBBS

have significantly different precision rates for at least one motif occurrence, respectively, for

all three motifs.

Table 4.8: The permutation Hotelling’s T 2 test results on the mean precision rates of the
two programs for each motif.

Fobs p value
ETS 1807.76 0.00
FTZ 1401.48 0.00
TAL 779.30 0.01

For each of the three permutation Hotelling’s T 2 tests, the permutation two-sample

t-test has been performed for each individual response variable. Table 4.9 presents the tobs

statistics and the associated p value based on 10000 random sample of permutations. All p
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values are significant in this table and all observed t statistics are positive, indicating that for

all three motifs and all motif occurrence combinations, XPRIME-EM without nucleosome

positioning scores incorporation has significantly higher mean precision rates than XPRIME-

GIBBS.

Table 4.9: The permutation two-sample t-test results on the mean precision rates for each
individual motif occurance combination.

121 111 151 115 112 211 511

ETS tobs 29.14 21.82 22.19 106.72 29.23 19.02 96.47
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTZ tobs 30.26 4.06 2.59 4.06 21.02 2.60 4.29
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.01

TAL tobs 22.08 0.83 4.12 2.39 29.64 23.13 4.19
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Table 4.10 shows the sensitivity of XPRIME-EM without nucleosome positioning

scores incorporation and XPRIME-GIBBS for known motifs discovery. The first rows are

for motif ETS, FTZ and TAL respectively. The last three rows are the overall sensitivity

for the three programs. Each entry in the table represents the average sensitivity over five

samples, each of which contains 100 DNA sequences with 550bp length. From the table, it

can be seen that the sensitivity of both programs are fairly high and around 100 percent.

Table 4.10: Sensitivity of XPRIME-EM without nucleosome positioning scores incorporation
and XPRIME-GIBBS for known motifs discovery.

Motifs
``````````````̀Programs

Data sets 121 111 151 115 112 211 511

ETS XPRIME-GIBBS 0.99 0.94 0.86 0.93 0.99 0.98 0.97
XPRIME-EM w/o nucleo 0.99 1.00 1.00 1.00 1.00 1.00 1.00

FTZ XPRIME-GIBBS 1.00 0.98 0.98 0.99 0.99 1.00 0.99
XPRIME-EM w/o nucleo 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TAL
XPRIME-GIBBS 0.97 0.99 0.98 0.99 0.99 0.99 0.99

XPRIME-EM w/o nucleo 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Overall
XPRIME-GIBBS 0.99 0.97 0.93 0.96 0.99 0.99 0.98

XPRIME-EM w/o nucleo 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.11 presents the Fobs statistics and the associated p value for each permuta-

tion Hotelling’s T 2 test. All p values from the three tests are not significant at α = 0.05

level, suggesting that XPRIME-EM without nucleosome positioning scores incorporation

and XPRIME-GIBBS have the same sensitivity for the known motif discovery for all motif

occurrence combinations.

Table 4.11: The permutation Hotelling’s T 2 test results on the mean sensitivity of the two
programs for each motif.

Fobs p value
ETS 20.96 0.09
FTZ –3.29e+14 0.99
TAL 4.24 0.09

Therefore, for the known motif discovery, XPRIME-EM without nucleosome position-

ing scores incorporation and XPRIME-GIBBS have the same mean sensitivity and XPRIME-

EM without nucleosome positioning scores incorporation has significantly higher precision

rates than XPRIME-GIBBS.

4.4 Motifs discovery on real biological data sets

In order to evaluate the performance of XPRIME-EM with and without nucleosome po-

sitioning scores incorporation, XPRIME-GIBBS and MEME on real biological data, these

approaches were assessed using two sequence sets: one set contains 100 DNA sequences in

which ETS1 TFs occupy the redundant promoters and the other one contains 100 DNA

sequences in which ETS1 TFs occupy the specific enhancers. Each sequence in these two

data sets are 550bps. Since GGA are known as the most conservative part in the ETS1 mo-

tifs, the prior PWM shown in Table 4.12 was utilized for the ETS1 motif in XPRIME-EM

with and without nucleosome positioning scores incorporation and XPRIME-GIBBS. Two

random Dirichlet priors are given for the two de novo motif searching. The GGA is located

in position 3, 4 and 5 and in other positions, the nonsense priors are given.
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Table 4.12: The prior PWM for the ETS1 motif.

Position 1 2 3 4 5 6 7 8
A 0.25 0.25 0.00 0.00 1.00 0.25 0.25 0.25
C 0.25 0.25 0.00 0.00 0.00 0.25 0.25 0.25
G 0.25 0.25 1.00 1.00 0.00 0.25 0.25 0.25
T 0.25 0.25 0.00 0.00 0.00 0.25 0.25 0.25

Figure 4.1 presents the motifs identified by the four programs on the sequence sets in

which ETS1 TFs occupy the specific enhancers. The first column is for XPRIME-EM without

nucleosome positioning scores incorporation, the second column is for XPRIME-EM with

nucleosome positioning scores incorporation, the third column is for XPRIME-GIBBS, and

the fourth column is for MEME. Table 4.13 shows the occurrences times of motifs that are

corresponding the ones in Figure 4.1.

Table 4.13: Numbers of occurrences of motifs that are identified by the programs on the
sequence sets in which ETS1 TFs occupy the specific enhancers.

XPRIME-EM w/o nucleo XPRIME-EM w/ nucleo XPRIME-GIBBS MEME
motif 1 228 151 3600 79
motif 2 90 87 10080 80
motif 3 308 296 39974 102

As we can see, XPRIME-GIBBS’s performance in identifying unknown motifs is poor;

in identifying known motifs the posterior PWM is dominated by the prior PWM in XPRIME-

GIBBS. All the other three programs have identified the ETS1 TFs with TGGGA in it (the

first and the third motifs in the results of XPRIME-EM without nucleosome positioning

scores incorporation, the first motif in the results of XPRIME-EM with nucleosome posi-

tioning scores incorporation, and the third motif in the results of MEME). In the motifs

identified by XPRIME-EM without nucleosome positioning scores incorporation, the first

and the third represent similar motifs, but the first is for stronger GGA and the third is

for the weaker GGA. After incorporating the nucleosome positioning scores, the motif that

was associated with the weaker GGA was removed and the motif that was associated with

the stronger GGA was even more conservative. Besides the ETS1 motif, the first motif that
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Figure 4.1: Identified motifs by the four programs on the sequence sets in which ETS1 TFs
occupy the specific enhancers. The first column is for XPRIME-EM without nucleosome
positioning scores incorporation, the second column is for XPRIME-EM with nucleosome
positioning scores incorporation, the third column is for XPRIME-GIBBS, and the fourth
column is for MEME.

MEME has found was relatively conservative and may be meaningful for ETS1 functioning

when ETS occupy the specific enhancers.

Figure 4.2 presents the motifs identified by the four programs on the sequence sets

in which ETS1 TFs occupy the redundant promoters. The first column is for XPRIME-EM

without nucleosome positioning scores incorporation, the second column is for XPRIME-EM

with nucleosome positioning scores incorporation, the third column is for XPRIME-GIBBS,

and the fourth column is for MEME. Table 4.14 shows the numbers of occurrences of motifs

that are corresponding the ones in Figure 4.2. XPRIME-GIBBS fails to identify both known
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and unknown motifs. Both XPRIME-EM with and without nucleosome positioning scores

incorporation has identified the ETS1 motif with conservative GGA (the first motifs), while

the third motif in MEME results includes GGA in the middle but also contains GGC. The

third motif identified by XPRIME-EM without nucleosome positioning scores incorporation

is less conservative after incorporating nucleosome positioning scores, which may suggest

that this motif tends to locate in the nucleosome occupied region and may relate to the

function ETS1 motifs when ETS1 TFs occupy to the redundant promoters.

Figure 4.2: Identified motifs by the four programs on the sequence sets in which ETS1 TFs
occupy the redundant promoters. The first column is for XPRIME-EM without nucleosome
positioning scores incorporation, the second column is for XPRIME-EM with nucleosome
positioning scores incorporation, the third column is for XPRIME-GIBBS, and the fourth
column is for MEME.
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Table 4.14: Numbers of occurrences of motifs that are identified by the programs on the
sequence sets in which ETS1 TFs occupy the redundant promoters.

XPRIME-EM w/o nucleo XPRIME-EM w/ nucleo XPRIME-GIBBS MEME
motif 1 186 100 3643 232
motif 2 117 86 23380 87
motif 3 767 900 26633 70
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chapter 5

CONCLUSION

We have developed a DNAmotif searching program using a modified expectation-maximization

algorithm (XPRIME-EM). Like XPRIME-GIBBS (Poulsen 2009), our method allows to in-

corporate the expert prior information for motif PWMs, which makes it superior to other

motif searching methods. In addition, XPRIME-EM also allows for the incorporation of nu-

cleosome positioning scores in motif searching. The users are able to decide whether or not

incorporating the nucleosome positioning scores into the motif searching by using a FASTQ

or FASTA sequence file.

XPRIME-EM is superior to XPRIME-GIBBS by not allowing the overlapping of

different motifs by the Phase Shift step. The performance of XPRIME-EM is better than

the performance of the XPRIME-GIBBS for identifying de novo motifs in both simulated

data sets and real biological data sets. For identifying known motifs, XPRIME-EM has

higher mean precision rates than XPRIME-GIBBS and the two programs have the same

mean sensitivity, which is around 100 percent.

For identifying de novo motifs, compared to MEME, before incorporating the nu-

cleosome positioning score, XPRIME has lower mean precision rates and mean sensitivity

than MEME. However, after incorporating the nucleosome positioning score, XPRIME-EM’s

mean sensitivity for identifying motifs that locate only in the nucleosome free region is as

high as MEME’s. If we could improve the performance of XPRIME-EM without the nucleo-

some positioning score incorporation, after the nucleosome positioning scores incorporation,

the performance of XPRIME-EM for identifying motifs that locate only in the nucleosome

free region may will be even better than MEME.
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Computationally, XPRIME-GIBBS takes close to 24 hours to run in parallel over a

node with 8 cores with 10,000 iterations on a set of 100 550bp long simulated sequences for

identifying 3 motifs. XPRIME-EM takes close to 15 minutes to run on the same sequences

in parallel over a node with a 8 quad-core with 25 iterations. Through the web server

http : //meme.sdsc.edu/meme/cgi − bin/meme.cgi, MEME takes close to 18 minutes to

run.

In search for motifs in the real biological data sets (i.e. DNA sequences containing

ETS1 motifs), analysis by XPRIME-EM and MEME resulted in some interesting new motifs.

Users are encouraged to search for denovo motifs in given sequence sets both by MEME and

XPRIME-EM with nucleosome positioning score incorporation; results from both programs

can be valuable.

Future research will focus on improve the precision and the sensitivity of XPRIME-

EM. More specifically, we will work on a way in which scaling the likelihood scores by motif

correlation factors does not affect the convergence of the EM algorithm. We expect that

after the performance of XPRIME-EM without nucleosome positioning scores incorporation

is improved, the performance of XPRIME-EM with nucleosome positioning scores incorpo-

ration on identifying motifs locating in nucleosome free regions will offer improvements over

MEME.
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appendix a

CODE OF THE XPRIME-EM ALGORITHM

rm(list=ls())

t1=proc.time()

Xprime2=function(seqs,nmotif=5,cnum=9,len=NULL,pmotif=NULL,background=NULL,

it=2,par=NULL,r.prior=NULL,fastq=FALSE){

if (!is.null(pmotif)){len=ncol(pmotif[[1]])}

# choose random motifs if not enough in pmotif

if (length(pmotif)<nmotif){

set.seed(0)

for (i in 1:(nmotif-length(pmotif))){

tmp=NULL

for (j in 1:len){

tmp=cbind(tmp,sample(1:4,4))

}

pmotif[[length(pmotif)+1]]=tmp/9

}

}

### choose random background

if (is.null(background)){background=sample(c(TRUE,FALSE),

length(pmotif),replace=TRUE)}

if (length(pmotif)>nmotif){nmotif=length(pmotif)}
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cat("Searching for", nmotif, "motifs\n")

if (is.null(r.prior)){r.prior=rep(1,nmotif)}

if (!is.null(par)){

library(snow)

c1= makeCluster(par)

#clusterEvalQ(c1, dyn.load("scoreSeq.so"))

cat("Using", par, "processors in parallel\n")

lapply1=function(l,f,...){parLapply(c1,l,f,...)}

apply1=function(x,d,f,...){parApply(c1,x,d,f,...)}

}else{

lapply1=function(l,f,...){lapply(l,f,...)}

apply1=function(x,d,f,...){apply(x,d,f,...)}}

## Read in sequences

if(!fastq){tmp=read.fasta(seqs)}else{tmp=read.fastq(seqs)}

title=tmp$title

sequence=tmp$sequence

qual=tmp$qual

seq=unlist(lapply1(sequence,strsplit,NULL),recursive=F)

if (fastq){qual=lapply1(qual,qseqToqual)}

amb=NULL

for (i in 1:length(seq)){

if (any(seq[[i]]=="N")){amb=c(amb,i)}

}
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if (length(amb)>0){

cat("Deleted", length(amb), "sequences because they are ambiguous.\n")

seq=seq[-amb]

qual=qual[-amb]

}

seqMats=lapply1(seq,seqMat)

print(length(seqMats))

print(length(qual))

if(fastq){for (i in 1:length(qual)){

seqMats[[i]]=rbind(seqMats[[i]],qual[[i]])}}

short=which(unlist(lapply1(seq, length))<=len)

if (length(short)>0){

cat("Deleted", length(short), "sequences because they are too short.\n")

seqMats=seqMats[-short]

}

seqLens=unlist(lapply1(seqMats,ncol))

cat("Found",length(seqMats),"sequences for motif searching.\n")

##### EM Algorithm ####

cat("Starting EM algorithm\n")

r=rep(1/nmotif,nmotif)

scoresf=scoresrc=matrix(0,nrow=sum(seqLens)-length(seqMats)*
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(len-1),ncol=nmotif)

tmpMotif=pmotif

##############################

seqMatsc=seqMats

seqMatsb=seqMats

for(y in 1:length(seqMatsb)){

seqMatsb[[y]][5,]=0.5

}

#print(seqMatsb[[1]])

for (i in 1:it){

cat("iteration:",i,"\n")

if(i<=10){seqMats=seqMatsc}else{seqMats=seqMatsb}

#E-step

for (j in 1:nmotif){

scoresf[,j]=unlist(lapply1(seqMats,scoreFunction,tmpMotif[[j]],

back=background[j]))

scoresrc[,j]=unlist(lapply1(seqMats,scoreFunctionrc,tmpMotif[[j]],

back=background[j]))

}

zi=t(apply(cbind(scoresf,scoresrc),1,ziFunction,rep(r,2)))

zi[,1:7]=phase.shift(zi[,1:7])

zi[,8:14]=phase.shift(zi[,8:14])
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if(i==it){

zi=apply1(as.matrix(zi), 2, remv)

}

#M step

zishort=zi[,1:nmotif]+zi[,nmotif+(1:nmotif)]

r=(apply(zishort,2,sum)+r.prior)/(sum(zishort)+sum(r.prior))

tmpMotif=pmotif

tmpMotifF=apply1(as.matrix(zi[,1:nmotif]),2,motifMaxF,seqMats,

seqLens,len)

tmpMotifRc=apply1(as.matrix(zi[,nmotif+(1:nmotif)]),2,motifMaxRc,

seqMats,seqLens,len)

for (j in 1:nmotif){

tmpMotif[[j]]=tmpMotif[[j]]+matrix(tmpMotifF[,j],4)+matrix(tmpMotifRc[,j],4)

tmpMotif[[j]]=tmpMotif[[j]]/sum(tmpMotif[[j]][,1])

}

#print(tmpMotif)

}

if (!is.null(par)){stopCluster(c1)}

zilist=list();index=0

#zi[,5]=phase.shift(zi[,5])
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for (i in 1:length(seqMats)){zilist[[i]]=zi[index+(1:(seqLens[i]-len+1)),

1:nmotif]+zi[index

+(1:(seqLens[i]-len+1)),nmotif+(1:nmotif)];index=index

+seqLens[i]-len+1}

Z=NULL

for(i in 1:length(seqMats)){

Z=rbind(Z, zilist[[i]], matrix(0, nrow=7, ncol=ncol(zilist[[i]])))

}

Loc=NULL

for(i in 1:ncol(Z)){

Loc[[i]]=which(Z[,i]!=0)

}

S=NULL

for(i in 1:length(Loc)){

S[[i]]=Z[Loc[[i]], i]

}

return(list(file=seqs,seqNames=title,seqLengths=seqLens,

sequences=sequence,

seqs=seq,seqMats=seqMats,motifProbs=zilist,

background=background,motProps=r,

prior.motif=pmotif,posterior.motif=tmpMotif, Loc=Loc, S=S))

}

seqMat=function(DNAseq){
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if (length(DNAseq)<1){return(NULL)}

tmp=list("A"=c(1,0,0,0),"C"=c(0,1,0,0),"G"=c(0,0,1,0),

"T"=c(0,0,0,1),"N"=c(0,0,0,0))

matrix(unlist(tmp[DNAseq]),nrow=4)

}

scoreFunction=function(seq, PWM, back=FALSE){

if(nrow(seq)==5){q=seq[5,];seq=seq[1:4,]}else{q=rep(.5,ncol(seq))}

if(back){q=1-q}

scores=NULL

for (i in 1:(ncol(seq)-ncol(PWM)+1)){

scores=c(scores, prod(q[i:(i+ncol(PWM)-1)]/(1-q[i:(i+ncol(PWM)-1)]))

*prod(diag(t(PWM)

%*%seq[,i:(i+ncol(PWM)-1)])))

}

scores}

scoreFunctionrc=function(seq, PWM, back=FALSE){

if(nrow(seq)==5){q=seq[5,];seq=seq[1:4,]}else{q=rep(.5,ncol(seq))}

if(back){q=1-q}

scores=NULL

for (i in 1:(ncol(seq)-ncol(PWM)+1)){

scores=c(scores, prod(q[ncol(seq):1][i:(i+ncol(PWM)-1)]/(1-q[ncol(seq):1]

[i:(i+ncol(PWM)-1)]))

*prod(diag(t(PWM)%*%seq[4:1,ncol(seq):1][,i:(i+ncol(PWM)-1)])))

}
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scores[length(scores):1]

}

phase.shift=function(g){

b=7

m=g[,(-1:-4)]

i=b+1

while(i<=(nrow(m)-b)){

if(m[i,1]==max(m[(i-b):(i+b),])){

# print((m[(i-b):(i+b),]))

# print("no1")

a=m[i,1]

m[(i-b):(i+b),]=0

m[i,1]=a

i=i+b+1

}else if (m[i,2]==max(m[(i-b):(i+b),])){

a=m[i,2]

m[(i-b):(i+b),]=0

m[i,2]=a

i=i+b+1

# print("no2")

}else if (m[i,3]==max(m[(i-b):(i+b),])){

a=m[i,3]

m[(i-b):(i+b),]=0

m[i,3]=a

i=i+b+1

# print("no3")
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}

else{

i=i+1

# print("ok")

}

# cat("i is", i,"\n")

}

#}

for(j in 1:nrow(m)){

if(sum(m[j,]!=0)!=1){

m[j,]=0

}

}

return(cbind(g[,1:4],m))

}

read.fasta=function(seqs){

cat(’Reading FASTA file:’,seqs,"\n")

dna<-readLines(seqs)

print(dna)

n<-length(dna)

sequence<-NULL

title<-NULL

for(i in 1:n){

if(strsplit(dna[i],NULL)[[1]][1]==’>’){

sequence<-c(sequence,’’)
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title<-c(title,dna[i])

}else{sequence[length(sequence)]=paste(sequence[length(sequence)],

dna[i],sep=’’)}

}

return(list("sequence"=sequence,"title"=title,qual=NULL))

}

read.fastq=function(seqs){

cat(’Reading FASTQ file:’,seqs,"\n")

dna<-readLines(seqs)

n<-length(dna)

sequence<-NULL

title<-NULL

qual <- NULL

for(i in 1:n){

if(strsplit(dna[i],NULL)[[1]][1]==’@’ | strsplit(dna[i],NULL)[[1]][1]==’+’){

if(strsplit(dna[i],NULL)[[1]][1]==’@’){

title<-c(title,dna[i])

sequence<-c(sequence,’’)

seqqual=’s’

}else{

qual=c(qual,’’)

seqqual=’q’

}

}else{

if(seqqual=="s"){

sequence[length(sequence)]=paste(sequence[length(sequence)],
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dna[i],sep=’’)

}else{

qual[length(qual)]=paste(qual[length(qual)],dna[i],sep=’’)

}

}

}

return(list(sequence=sequence,title=title,qual=qual))

}

ziFunction=function(scores,r){

(r*scores)/sum(r*scores)

}

motifMaxF=function(zi,seqMats,seqLens,len){

tmpMotif=matrix(0,4,len)

for (k in 1:len){

index=0

for (m in 1:length(seqMats)){

tmpMotif[,k]=tmpMotif[,k]+apply(matrix(zi[index+

(1:(seqLens[m]-len+1))],4,seqLens[m]-len+1,

byrow=T)*seqMats[[m]][1:4,k:(k+seqLens[m]-len)],1,sum)

#tmpMotif[,k]=tmpMotif[,k]+apply(matrix(zi[index+

(1:(seqLens[m]-len+1))],4,seqLens[m]-len+1,

byrow=T)*seqMats[[m]][4:1,seqLens[m]:1]

[,k:(k+seqLens[m]-len)],1,sum)
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index=index+seqLens[m]-len+1

}

}

tmpMotif

}

motifMaxRc=function(zi,seqMats,seqLens,len){

zi=zi[length(zi):1]

tmpMotif=matrix(0,4,len)

for (k in 1:len){

index=0

for (m in length(seqMats):1){

tmpMotif[,k]=tmpMotif[,k]+apply(matrix(zi[index+

(1:(seqLens[m]-len+1))],4,seqLens[m]-len+1,byrow=T)

*seqMats[[m]][4:1,seqLens[m]:1][,k:(k+seqLens[m]-len)],1,sum)

index=index+seqLens[m]-len+1

}

}

tmpMotif

}

remv=function(x){

x[which(x<0.5)]=0

return(x)

}
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require(R.oo)

library(R.oo)

qseqToqual=function(q){

require(R.oo)

sangerQchr<-q

sangerQnum<-charToInt(unlist(strsplit(sangerQchr,split=NULL)))

PHREDQ<-sangerQnum-31

p<-10^((-PHREDQ)/10)

p

}

library(MCMCpack)

set.seed(1)

backPWM1=t(rdirichlet(8,c(1,1,1,1)))

backPWM2=t(rdirichlet(8,c(1,1,1,1)))

backPWM3=t(rdirichlet(8,c(1,1,1,1)))

backPWM4=t(rdirichlet(8,c(1,1,1,1)))

backPWM5=t(rdirichlet(8,c(1,1,1,1)))

backPWM6=t(rdirichlet(8,c(1,1,1,1)))

backPWM7=t(rdirichlet(8,c(1,1,1,1)))

cnum=8

setwd("/fslhome/wzhou/compute/Thesis/XPRIME2")

library(seqLogo)
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file=’seqfastq115b.txt’

pmotifs=list(backPWM1,backPWM2,backPWM3,backPWM4,

backPWM5,backPWM6,backPWM7)

n=length(pmotifs)

l=length(pmotifs)-4

b1=rep(TRUE,times=4)

b2=rep(FALSE,times=l)

backgrounds=c(b1,b2)

result=Xprime2(file,nmotif=n,pmotif=pmotifs,

background=backgrounds,par=8,it=25,fastq=TRUE)

LOC=result$Loc

save(LOC, file="Loc_EMq_115b.txt")

S=result$S

save(S, file="S_EMq_115b.txt")

Post=result$posterior.motif

save(Post, file="Post_EMq_115b.txt")

print(result)

PWMconvert=function(m){

for(i in 1:ncol(m)){

m[,i]=m[,i]/sum(m[,i])

}

return(m)

}

pdf(file="fastqposter_EM_115b.pdf", onefile=TRUE)

seqLogo(PWMconvert(result$posterior.motif[[5]]))

seqLogo(PWMconvert(result$posterior.motif[[6]]))
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seqLogo(PWMconvert(result$posterior.motif[[7]]))

dev.off()

pdf(file="fastqprior_EM_115b.pdf", onefile=TRUE)

seqLogo(PWMconvert(result$prior.motif[[5]]))

seqLogo(PWMconvert(result$prior.motif[[6]]))

seqLogo(PWMconvert(result$prior.motif[[7]]))

dev.off()
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