
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-06-18

A Naive, Robust and Stable State Estimate
Todd Gordon Remund
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Statistics and Probability Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Remund, Todd Gordon, "A Naive, Robust and Stable State Estimate" (2008). All Theses and Dissertations. 1424.
https://scholarsarchive.byu.edu/etd/1424

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1424?utm_source=scholarsarchive.byu.edu%2Fetd%2F1424&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A NAIVE, ROBUST, AND STABLE STATE ESTIMATE

by

Todd G. Remund

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Statistics

Brigham Young University

August 2008

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Todd G. Remund

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date H. Dennis Tolley, Chair

Date Scott D. Grimshaw

Date John S. Lawson

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Todd G.
Remund in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date H. Dennis Tolley
Chair, Graduate Committee

Accepted for the Department

Scott D. Grimshaw
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

A NAIVE, ROBUST, AND STABLE STATE ESTIMATE

Todd G. Remund

Department of Statistics

Master of Science

A naive approach to filtering for feedback control of dynamic systems that is

robust and stable is proposed. Simulations are run on the filters presented to investi-

gate the robustness properties of each filter. Each simulation with the comparison of

the filters is carried out using the usual mean squared error. The filters to be included

are the classic Kalman filter, Krein space Kalman, two adjustments to the Krein filter

with input modeling and a second uncertainty parameter, a newly developed filter

called the Naive filter, bias corrected Naive, exponentially weighted moving average

(EWMA) Naive, and bias corrected EWMA Naive filter.

ACKNOWLEDGEMENTS

I give thanks to my wife Kristin and my children, (Dallin, Jason, Ethan, Kalli,

and Julia), for putting up with a busy dad and husband. For always being there to

lighten my mental load and loving me. Dr. H. Dennis Tolley, my advisor, for having

an infinite amount of patience on my behalf. Despite the many snags and turns in

my studies and research he has always been a wise and gracious mentor to me. He

has supported me as a needy student and as a family man. My parents have given

me loads of support, help, and love in getting me through. I thank the department

for giving me the chance to get a Masters degree. I greatly appreciate all they have

done.

CONTENTS

CHAPTER

1 Introduction 1

1.1 The Idea of Robustness . 2

1.2 Robust Filters . 3

1.3 Kalman Type Filters . 4

1.4 Proposed Use of Markovian Representation 4

2 Literature Review 6

2.1 Recursive LS Type Filters . 12

2.1.1 Kalman Filter . 12

2.1.2 Krein Space Kalman Filter . 14

2.1.3 Minor Additions and Adjustments to the Krein Kalman . . . 18

2.2 Outliers . 19

3 Problem and Solution Description 21

3.1 The Problem of Poor Parameter Estimates 21

3.2 Use of the Markovian Representation 21

3.3 Different Degrees of Robustness . 22

3.3.1 High Level Robustness . 23

3.3.2 The Naive Filter . 24

4 Derivation of the Naive State Vector 28

4.1 Preliminaries . 29

4.2 Derivation . 30

4.3 General Form of the Naive Filter . 36

xi

4.4 Proof of the General Naive Filter . 38

4.5 Cases p > q and p < q . 41

5 Adjusted Naive Filters 43

6 MSE Simulation 45

7 Results 49

7.1 Overall Filter Comparison . 50

7.2 Filter Comparison by Trace Size . 52

7.3 Interaction Interpretation . 57

8 Conclusions 62

APPENDIX

A MSE Box Plots 67

A.1 Trace Size 12 . 67

A.2 Trace Size 52 . 94

B Computer Code 122

B.1 Matlab . 122

B.1.1 State Estimate Functions . 122

B.1.2 Simulation Code . 123

B.2 R Code . 127

xii

TABLES

Table

7.1 Comparison of the filter marginal mean MSE. 52

7.2 Comparison of the filter marginal mean MSE, (trace size of 12). . . . 54

7.3 Comparison of the filter marginal mean MSE, (trace size of 52). . . . 56

7.4 Greek letter assignment to factor variables. 57

7.5 Interactions for Classic Kalman and deviation. 58

7.6 Interactions for Krein Kalman3 and deviation. 59

7.7 Interactions for EWMA B. C. Naive and deviation. 59

xiii

FIGURES

Figure

2.1 Example of an on-target time series. 7

2.2 Example of an off-target time series. 8

7.1 MSE 95% confidence intervals for MSE values per filter. 51

7.2 MSE 95% confidence intervals for MSE values per filter. 51

7.3 MSE 95% confidence intervals per filter simulated trace of size 12. . . 53

7.4 MSE 95% confidence intervals per selected filters simulated trace of

size 12. 53

7.5 MSE 95% confidence intervals per filter simulated trace of size 52. . . 55

7.6 MSE 95% confidence intervals per selected filters simulated trace of

size 52. 55

7.7 Effect of the trace size on filter performance. 60

xiv

1. INTRODUCTION

In the modern world, we see change in almost every field of study. In the

arena of modeling and filtering, there is a move toward use of discrete filters rather

than the continuous analog filter. This move introduces the use of the digital state

space model or representation, where interest lies in estimating the state of a process.

Migration toward discrete filters is inspired by the greater versatility that they offer

in controlling processes.

In time series modeling, digital filters are used as tools for many applications.

In finance they give the general trend of a stock or currency exchange. Doctors rely

on filters to give them reliable readouts on an electrocardiogram, and patients trust

in the technology that aids in the diagnosis of health problems. Airplanes process

radar signals using digital filters to give safe passage through the atmosphere, and

routine adjustments are made to typical flight to smooth out the bumps in the air.

Fighter pilots find it easier to acquire enemy planes or drop a bomb on a pinpoint

target through use of time series filters.

Filters are important in process control to help forecast the effects of the current

measurements and any action taken to control the system. In fact, the filter is used

directly to find the control action to stabilize a process. As discussed previously, many

different disciplines use filters directly or indirectly. Much literature has been devoted

to this topic with many facets of expression. Engineers look at the control situation

differently than do mathematicians or statisticians, and there are many different ways

of writing down the models and filters in matrix form or as transforms. The focus

here is limited to linear Gaussian systems, where it is assumed that errors and white

process noise are distributed normally.

What exactly does a filter do, and what happens to it when outliers are present?

1

Mathematically, a filter is a multivariate representation that defines the state of the

system. Systems are represented as models that are the underlying schematics of

the filter. In the present consideration, systems or models are defined by the linear

relation of the current process value to previous process values using autoregressive

parameters as the coefficients. These coefficients are not known, but must be esti-

mated from the data. This type of estimator is directly connected to the data, so any

problems with these estimators affect the performance of the filter that may rely on

them. Hence filters are functions of estimators that can be removed from the data

by different degrees of removal. Herein lies the problem. Outliers may throw off the

performance of the initial or primary estimates in a filter. In this thesis, we examine

the Naive filter, which is thought to be robust to poor parameter estimates.

1.1 The Idea of Robustness

Robust estimators or statistics are those that estimate a true quantity with a

suitable level of resistance to anomalous events. As a demonstration of robustness

issues, the common mean is now shown to lack robustness. Consider the following

randomly generated data from a standard normal distribution given in the vector

below.

2

x =



0.5061

−1.0621

−0.6185

0.1229

0.6704

−1.4243

0.7412

0.5173

0.7783

−0.5474



(1.1)

The mean of this data vector is x̄ = −0.03161, which seems a reasonable ap-

proximation to the true mean of zero. If an outlier is injected into the data from

a different distribution, what would happen to this estimate of the true mean? We

add the value 12 and the mean becomes x̄ = 1.062173. This description can be made

more mathematical using the sensitivity curve defined by Maronna et al. (2006).

µ̂ (x1, x2, . . . , xn, xo)− µ̂ (x1, x2, . . . , xn) (1.2)

Here the effect of the outlier xo is measured using this sensitivity curve, where

we vary the value xo across the number line. If an estimator is robust, the difference

between the values given in equation (1.2) will be small for a wide range of xo values.

Non-robust estimators will have a small or non-existent range where this difference

is small. Hence, robustness is demonstrated in estimators when they exhibit small

differences from data without outliers to data containing outliers.

1.2 Robust Filters

This thesis examines the construction of a robust filter. Robust filters are

needed to process the many types of data that exhibit a wide range of outlier prob-

3

lems. Such problems in time series data can grossly confound filters. For this reason,

robustness is a must in the control world. Another circumstance that contributes

to this need is in the way the filter is used in control. An in-loop or real time use

of filters makes robustness a necessity. These processes are not watched by process

controllers and adjusted based on graphs and tables of numbers—they are designed

to control a process in a more fully automated fashion.

One example that illustrates this type of control is in the control of an inverted

pendulum, where a weight is positioned at the end of a rod with a swivel connecting

the rod to a cart. To keep the pendulum from falling, a good control algorithm is

needed. A robust filter is a key element in a control algorithm; it estimates what the

state of the system is and passes this information to the algorithm for control action

determination.

1.3 Kalman Type Filters

The Kalman filter is one approach that can be scrutinized for robustness and

used as a benchmark for the estimation of state. Based on the recursive least squares

estimator, it seems to inherit statistical properties that rank it average for dealing

with robustness issues. A filter is only as good as its underlying estimators, and

hence the Kalman filter is subject to these underlying estimates of autoregressive and

impulse response parameters.

1.4 Proposed Use of Markovian Representation

This thesis examines the derivation and empirical validation of the Naive filter

for control of dynamic systems. An in-depth derivation of the Naive filter and its use

in state estimation is given. Comparisons of different robust filters along with the

much used Kalman filter are used. The Naive filter itself is extremely susceptible to

measurement error and relies heavily on a method to remove this type of error.

4

The model itself is an interesting mixture of time series parts. The autoregres-

sive part of the model is not necessarily stationary, but can use meaningful input

adjustments to bring the process into control, or to a stationary state. In typical use,

state estimates are used in parallel with a controller such as the Linear Quadratic

Regulator (LQR), which gives a controlling input to force a process to point at a

target. The impulse response piece simply weights the inputs, whether they are just

exogenous inputs or controlling inputs. This is done in control to help dampen the

control inputs and keep the controller stable.

A state estimate is required when a process contains much measurement error.

The Kalman type filters need at least four different steps to estimate the state. Each

of these steps requires estimates of the process’s time series parameters. If these

estimates are poor, then the poor estimates are used at least four times by the filter

before the state is estimated. Akaike (1974) deals with a hypothetical state vector

he calls the Markovian representation that provides an idea for a state estimate that

uses the poor estimates only once. This has supported the idea to create a more

time series based estimate that uses the autoregressive structure in the estimate as

the primary source of the estimate. It will be shown to rival the most robust filters

considered. This estimate is especially useful in control, not just in estimation alone.

The Krein space Kalman filter is a very good filter if its robust functionality is

optimized. This thesis proposes two enhancements that greatly maximize the filter’s

ability to estimate state.

5

2. LITERATURE REVIEW

For simplicity, consider the model of the single input single output (SISO)

system given in (2.1) below, which models an autoregressive impulse response time

series ARIR(p,q). This specific time series model will be discussed in more detail

in the next section. An SISO system of this sort explains one value from a process

that could be defined by all past values in an autoregressive manner, as in Equation

(2.2), along with a linear combination of some exogenous inputs. The process error,

εn, is a quantity that also defines the next value coming from the process. One could

consider the multiple input multiple output (MIMO) system; however, its complexity

is unnecessary to discuss in this presentation.

zn + φ1zn−1 + φ2zn−2 + · · ·+ φpzn−p = (2.1)

θ1un−1 + θ2un−2 + · · ·+ θqun−q + εn

zn = −φ1zn−1 − φ2zn−2 − · · · − φpzn−p+ (2.2)

θ1un−1 + θ2un−2 + · · ·+ θqun−q + εn

This system is meant to model processes that are possibly out of control due to

parameter values in φi, i = 1, . . . , p, that are not in a region where stationarity holds,

where zn−i and un−h are scalars, for h = 1, 2, . . . , q. These scalars symbolize the data

and the exogenous inputs. In control applications, the impulse response (IR) part is a

special control action added to stabilize out of control tendencies of the autoregressive

(AR) part and to compensate for outside influences on the system. The ulimate

objective of controlling a process is to make it look like a normal autoregressive

process with no moving average. A target must be defined about which the random

process error will vary. We would like it to look like the following graph.

6

Figure 2.2 is a demonstration of an ARIR(2,2) with the same error values as the

previous AR(2) time series, only with “wild” exogenous inputs that drive the time

series process off target.

Figure 2.1: Example of an on-target time series.

To set the stage for the review of existing literature, similar notation as that

found in Franklin et al. (1998) will be used to define the variables. The following are

definitions of the system variables in Equations 2.3 and 2.4, which are defined in the

state space representation.

The vector xn is the state of the system, which contains our primary source

for examining what the real process values are, and yn is the measured values that

contain measurement error. Since there is measurement error in the system, the exact

observance of the process value, zn, is impossible; hence Equations 2.1 and 2.2 are

only theoretical relations that are never truly known. The following equations define

the state space model and the variables in the model:

xn = Axn−1 + Bun−1 + Gεn, (2.3)

7

Figure 2.2: Example of an off-target time series.

8

yn = Cxn + ηn. (2.4)

Define d = max(p, q) as the maximum of the two orders p and q ; n is the index used

for time,

• xn is d× 1,

• yn is 1× 1 (d× 1 for the Naive filter),

• εn ∼ N (0, Vε) is d× 1 and Vε = σ2
εI,

• ηn ∼ N (0, Vη) is 1× 1 (d× 1 for the Naive filter) and Vη = σ2
ηI,

• un is a scalar,

• A is d× d,

• B is d× 1,

• C is 1× d,

• G is d× d.

The matrix A defines the dynamics of the system. The structure of this matrix

is specific as defined by Maronna et al. (2006) and will work for the Kalman, Naive,

and other Robust filters. The special structure is

A =



φ1 1 0 · · · 0 0

φ2 0 1 0 0

...
. . .

...

φd−1 0 0 0 1

φd 0 0 · · · 0 0


. (2.5)

When we have a multiple input multiple output (MIMO) system, the A matrix is

block diagonal with the structure in Equation 2.5 above.

9

Matrix B contains weights, θ, of exogenous actions or inputs, whether control

or from independent random processes. The representation,

B =



θ1

θ2

...

θd


, (2.6)

describes in part how much these exogenous inputs alter the linear system. Notice

that the dimensions of this matrix, as well as the dimension of A, are not in terms

of q but of d, which is the maximum of p and q. The reasoning here is based on

whether there is a higher order for the autoregressive part of the system or for the

impulse response part; hence, if p is the maximum between p and q then matrix B

will be padded with zeros where we don’t have parameters, and vice versa for A when

q is greater than p. If this were an ARIR(4,2) model where there are only two IR

parameters estimated, the vector B in this case will be padded with two zeros to get

the appropriate dimension.

Matrix A coupled with the state vector defines how the dynamics change

through time. The state vector xn is relative to the Markovian representation defined

by Akaike (1974). This Markovian representation is related to the process values zn

in the following manner:

x̂n =



ẑn|n

ẑn+1|n

...

ẑn+d|n


. (2.7)

Here the predictions for the d-step state vector are estimated as

ẑn+i|n =
d−1∑
j=i

−Φjzn−j+(i−1) + Θjun−j+(i−1) and (2.8)

ẑn|n = zn, (2.9)

10

where the index i is now defined for i = 1, . . . , d. This structure has a kind of

diminishing representation as far as its use of the data and inputs. Akaike (1974)

reveals the somewhat obscure idea of the state of a system. The state gathers as

much information from the available data as possible. The Markovian representation

will be useful in examining use of all of this information. One thing to consider is

that the Kalman filter uses only a small portion of the information furnished by the

state, as seen in the C matrix. For the SISO Kalman filter the C matrix is

C =
(

1 0 · · · 0

)
. (2.10)

Only the first element is used based on Equation (2.4). It is possible to use this

additional information that is inherent to the state vector. The C matrix is set equal

to the identity matrix.

This Markovian representation does not account for any measurement error. At

this point, it must be recognized that the estimate of state given in Equations 2.8 and

2.9 is not obtainable in engineering applications. The measured values are actually

of the form

z∗
n = zn + ηn. (2.11)

This is necessary to realize because the use of the exact values zn is not possible, so

z∗n must be used instead.

To return to the description of the system variables in Equations 2.3 and 2.4,

we have matrix G which represents the system correlation and effectively structures

how the process error comes in to the state space model. The process error εn is a

Gaussian process of white noise.

The output vector yn is a scalar for the Kalman filter but is a d× 1 vector for

the Naive filter; notice Equation 2.4. The Kalman state vector uses yn as the new

data for an update. The Naive filter will use this same piece of information and will

also glean any possible information out of past values of the additional Markovian

11

terms found in (2.7).

Measurement error enters the system through ηn, which is a Gaussian process

that represents the measurement discrepancy for each process measured. The matrix

C relates what the state is and how we really measure it. The state can be directly

measured and would be modeled using C = I, the identity matrix after which the

measurement error is incorporated into the system.

2.1 Recursive LS Type Filters

2.1.1 Kalman Filter

In this section, Kalman filtering will first be presented as an estimate to get the

fundamentals of the filter down. Then the prediction form of the Kalman filter will

be presented.

The Kalman filter is founded on least squares estimation (see Digital Control

of Dynamic Systems Franklin et al. (1998)). The recursive least squares estimator

presented by Franklin is given, along with the derivation from the ordinary form for

linear regression. This estimator is the precursor to the Kalman filter. The Kalman

filter is a recursive type estimator that has a possible problem with robustness because

it has four updates every time there is a new piece of data obtained (Franklin et al.

1998). There are two time updates and two measurement updates. If there is a

problem estimating the parameters in matrices A and B, then this error in estimation

is compounded all four times we use them.

These updates are presented below in a sequential manner. These estimators

are now denoted using different notation to designate the estimators’ dependence on

past or present data; that is, n|n− 1 or n|n, respectively.

Pn|n−1 = APn−1|n−1A
T + GVεG

T (2.12)

Pn|n =
(
P −1

n|n−1 + CT V −1
η C

)−1
(2.13)

12

x̂n|n−1 = Ax̂n−1|n−1 + Bun−1 (2.14)

Ln = Pn|nCT V −1
η (2.15)

x̂n|n = x̂n|n−1 + Ln

(
yn − Cx̂n|n−1

)
(2.16)

The first of these updates, Equation (2.14), is the time update for the state

estimator in the Kalman filter. It utilizes the dynamics of the system and the control

action weights found in matrices A and B. Again, the subscript denotes an estimate

of the state of the system for time step n given the data {y1, . . . , yn}. In dynamic

control it is important to predict the future state from this estimate so that a control

action can be found to apply next time step.

The estimate of the current state based on past data has the covariance matrix

Pn|n−1, which is needed in the measurement update for the state estimator. This is a

time update only for the covariance. In effect, it is a prediction of the covariance for

the next time step. Measurement updating starts with the covariance matrix Pn|n,

which is the covariance matrix for the state measurement update in Equation 4.2. In

this update the difference between the predicted ŷn = Cx̂n|n−1 and the measured

values in the true vector are used to adjust for the error in the time update prediction

of the state.

In Equation 4.2, there is an estimation gain matrix Ln that varies with time.

Since prediction is the desired goal, the gain matrix will now be thought of as a

predictive gain matrix in the following fashion:

LP,n = ALn. (2.17)

The previous equations were presented in a manner that gave the order of

the use of the equations for Kalman estimation. In the equations below, there is a

presentation of the order the equations need to be done for a prediction of state as in

Franklin et al. (1998).

LP,n = APn|n−1C
T V −1

η (2.18)

13

x̂n+1|n = Ax̂n|n−1 + Bun + LP,n

(
yn − Cx̂n|n−1

)
(2.19)

Pn|n =
(
P −1

n|n−1 + CT V −1
η C

)−1
(2.20)

Pn+1|n = APn|nAT + GVεG
T (2.21)

Notice that the time update for the state has been incorporated into the mea-

surement equation. The first computation invoked is the prediction of the state, and

then the covariance matrices are computed last in preparation for the next step in

time.

2.1.2 Krein Space Kalman Filter

The Krein space is an indefinite inner product space. In Hassibi et al. (1996a)

the author explains that linear estimation in Krein space is “richer than that of the

conventional Hilbert space.” A Hilbert space is designed to find the minimum of a

quadratic cost function using projection methods. However, the Krein space, using

a projection, is designed to make the quadratic forms stationary as stated in Lee

et al. (2004). Lee makes it apparent that the the Kalman filter will offer a “state

estimation strategy” instead of an actual minimum point. As will be detailed in this

section, certain conditions must exist for this strategy for robust estimation in the

Krein space to work. For more information on these topics, consult the cited articles.

The strategy here is not a plug and chug method. It requires the knowledge

or at least the estimation of the uncertainty. There are a number of solutions that

are admissible in the Krein space, and one must concentrate on finding one of them

to achieve the linear estimation available through use of this space with projections.

The end result of the quadratic cost function is not a minimum point, but a closed

set of possible solutions. In Equation 2.31 we see the description of the solutions.

As the build up of this filter unfolds, notice that the approach in this thesis will be

involved with finding solutions on the boundary of these sets.

Lee et al. (2004) investigates the use of the Krein space Kalman filter for state

14

estimation. The purpose is to find a Kalman type filter that is robust to poor parame-

ter estimates in the transition matrix A. This accounting of the inability of matrix A

to estimate parameters is thought of as uncertainty in the system. We will represent

this uncertainty for each of the parameters as δφi
for uncertainty in φi, and δθj

for

the uncertainty in θj, where i = 1, . . . , p and j = 1, . . . , q, with p and q being the

order of the system. This requires the ability to estimate uncertainty. In the paper by

the above authors they consider the uncertainties as known quantities for the sake of

demonstrating the effectiveness of the filter to handle poor parameter estimates. In

this document a modification of this approach will be taken—that of representing our

knowledge of the uncertainties as coming from a sampling distribution. The values

of δφi
and δθj

will be jittered with random noise to simulate the inability to perfectly

estimate uncertainty.

A study of simple projections along with Hilbert spaces followed by Krein space

estimation with respect to quadratic terms will reveal the philosophy behind this

method. There is a condition that must be met to prove that the estimation is indeed

part of the Krein space estimation. As explained below, the uncertainties begin with

the following state and measurement equations. As a side note, the exogenous input

term from the true state, that is Bun, is actually in the error term ζn+1. This will

be derived below.

xn+1 = A2xn + G1∆δ1Kxn + Gζn+1 (2.22)

yn = Cxn + ηn (2.23)

Lee et al. (2004) set the uncertainty equal to a term sn = Kxn; later this term will

be very important in choosing the values that go inside the matrices in (2.22) above.

The above state equation can be derived from the state equation found in

(2.3). This equation contains all the same information as that found in (2.22). Con-

sider the transition matrix A∆. This matrix has inherent uncertainty and as such,

15

A∆ = A + ∆, where the following relations hold,

∆ =

 −δ1 0

−δ2 0

 (2.24)

=

 −δ1 0

0 0

+

 0 0

−δ2 0

 (2.25)

= ∆1 + ∆2. (2.26)

The Krein space Kalman filter does not account for the exogenous inputs in the model,

so for the uncertainty state space model the exogenous part sinks into the process

error term.

xn+1 = A∆xn + Bun + Gεn+1

= (A∆2 + ∆1) xn + G (G−1Bun + εn+1)

= A∆2xn + G1∆δ1Kxn + Gζn+1

Here the value is denoted for the new process error.

ζn+1 = G−1Bun + εn+1 (2.27)

In the above derivation it is sufficient but not necessary for the following equalities

to exist for the filter defined to be in the Krein space, heuristically speaking.

∆1 = G1∆δ1K (2.28)

G1 =

 1

0

 (2.29)

K =
(
δ1 0

)
(2.30)

There is a condition that must be met in order for the filter to be part of the Krein

space. First we set ξn = ∆δ1Kxn.

N∑
n=0

‖ξn‖2 ≤
N∑
n=0

‖sn‖2 (2.31)

16

The vectors in (2.31) are parts of the <1 space. Taking the vector norm of a vector

in this space is simply the absolute value, and the matrix ∆δ1 proves to be the only

term that distinguishes ξn from sn.

ξn = ∆δ1Kxn = Kxn = sn if |∆δ1| = 1 (2.32)

By setting ∆δ1 = −1, the condition is met. This value for ∆δ1 establishes (2.28)

and gives the boundary solution as well.

The estimator is as follows (Lee et al. 2004), given the notation expressed above

in (2.28 - 2.30) and that found in the beginning of this chapter.

x̂n+1|n = A∆x̂n|n−1 + Ln

 yn − Cx̂n|n−1

−Kx̂n|n−1

 (2.33)

Ln = A∆Pn|n−1C̃
T V −1

ηδ
(2.34)

Vηδ
= C̃Pn|n−1C̃

T + Ṽη (2.35)

Ṽη =

 Vη 0

0 −I

 (2.36)

VεK
=

 I 0

0 Vε

 (2.37)

C̃ =

 C

K

 (2.38)

Pn+1|n = A∆Pn|nAT
∆ + GKVεK

GT
K (2.39)

GK =
(

G1 G

)
(2.40)

Pn|n = Pn|n−1 − Pn|n−1C̃
T V −1

ηδ
C̃Pn|n−1. (2.41)

It can be noticed in the equations above that this has the general form of the Kalman

filter state estimate. However, it has many changes to accommodate the uncertainty

adjustments.

17

2.1.3 Minor Additions and Adjustments to the Krein Kalman

The information in this section is not necessarily a review of literature, but

rather an extension to it. The applications created here are extensions to what has

been done in the paper written by Lee et al. (2004). It seems many authors have put

much consideration on strictly autoregressive processes without as much consideration

on exogenous inputs. The additional information presented here is included in this

chapter in order to keep it with the original description of the Krein space Kalman

filter.

The Krein space Kalman filter does not have any terms that account for the

exogenous inputs as does the classic Kalman filter. This would be a very simple ad-

justment that may prove to be useful for increasing robustness. Another shortcoming

of this filter is that it does not adjust for possible uncertainty in the second parameter

in an ARIR(2,2) system. To add an adjustment for the second uncertainty parameter,

it is necessary to change the selected matrices as follows:

K = −∆, (2.42)

G1 = I, and (2.43)

∆δ = −I. (2.44)

The matrix ∆δ is the counterpart of ∆δ1 in the previous section. Then, to adjust to

account for the exogenous inputs, Bun is simply added to Equation (2.45).

x̂n+1|n = A∆x̂n|n−1 + Bun + Ln

 yn − Cx̂n|n−1

−Kx̂n|n−1

 (2.45)

If one does the math to check the condition in (2.31) in the previous section,

the condition will again result in an equality, thus satisfying the condition. Note

the reason below, which is in parallel to that satisfying the condition in the previous

section.

‖∆δ‖ = | − 1|‖I‖ (2.46)

18

The matrix norm of the identity matrix equals one; hence the inequality of the

condition (2.31) is once again met just as in the original Krein space Kalman filter

setup in the last section, only for an increased space. In the end, there will be three

versions of the Krein space Kalman filter to compare against the derived filter of this

thesis. These three are the original Krein space Kalman filter, the Fully Modeled

Krein space Kalman filter, and the Fully Modeled Autoregressively Adjusted Krein

space Kalman filter. The last two are abbreviated as the F.M. Krein space Kalman

filter and the F.M.A.A. Krein space Kalman filter respectively.

The first filter, the F.M. filter, is termed the Fully Modeled Krein space Kalman

filter because it models all parts of control applications—the autoregressive and im-

pulse response parts. The F.M.A.A. Krein space Kalman filter performs the full

modeling as well as adjusting for the second uncertainty parameter. It has the addi-

tional name Autoregressively Adjusted because all the uncertainty with respect to all

the autoregressive parameters is taken into account.

2.2 Outliers

Certain types of outliers, such as those discussed in Robust Statistics (Maronna

et al. 2006), are of importance in examining the effective robustness of the Kalman

filter. These are isolated outliers, level shift outliers, and patch outliers. They can

be presented in many different ways. For instance, we can see them brought into

the system through the measurement error; these are called additive outliers (AO).

AOs are usually isolated outliers, especially in the case we are considering where the

measurement error is iid. These AOs are always possible in the process; that is, at

every time step we have an AO. The variance of the measurement error is expected

to be much larger than the process error variance, σ2
η >> σ2

ε . However, if we get one

that is abnormally large it will cause problems.

Patch outliers can be exhibited in the additive form as well. Patch outliers

19

occur happen when there is a small run of outliers in a row. One form of these are

doublets that cancel each other out.

Replacement outliers (RO) can lead to new avenues for filters, such as regime

switching filters, where we have data from many different distributions in the same

system. A Markov model can be employed to switch between various models with

unique parameters. Hence, we build robustness into the filter by modeling all these

different ROs with an assortment of models if we have reason to believe there are

such outliers present. This requires the assumption that these unique regimes are

reasonably regular in their expression over time. The robustness that a filter of this

form would inherit appears to be phenomenal.

Outliers can also come from the process error. In this case they are referred

to as innovation outliers, where we see a propagation of the outlier down through

the process. That is, the effect of the innovation outlier will die out after a certain

number of time steps. This is a direct result of the autoregressive nature of this time

series. One method of modeling a process error is with a mixture distribution for the

process error, such as (1− ω)N (0, σ2
ε0) + ωN (0, σ2

ε1), where ω is small.

20

3. PROBLEM AND SOLUTION DESCRIPTION

3.1 The Problem of Poor Parameter Estimates

In control of dynamic systems, it is of the utmost importance to correctly

estimate the state of the system. If the state is poorly estimated, the control may be

poor as well. Commonly used filters that estimate the state of the process have been

shown mathematically to be lacking in robustness and to provide poor information

in determination of the control action at times (Doyle 1978).

3.2 Use of the Markovian Representation

To solve the problem of poor state estimation, a naive robust filter will be

derived in full and evaluated to show its robustness properties in comparison to other

robust filters and the classic Kalman filter. This Naive filter is expected to have

some sensitivity to measurement error. For this reason, this Naive filter will be

preceded by a smoother as a pre-filter. To evaluate the filter, one needs to simulate a

system and add measurement error to it, then compare what the known truth is with

the estimated state using the filter. If the estimated state matches perfectly with

the simulated system, excluding the measurement error, then the filter has perfectly

modeled the system. In this situation it is hoped that a filter can portray the correct

state information to a controller in order to keep it on target. In many applications

the target is zero. In Figure (2.2) an in-control system is demonstrated.

To set the stage for this treatment of the Naive filter, the idea of robustness is

expanded upon in a more defined manner, separating the robustness problems into

three distinct arenas. This discussion is based on personal adaptations of the current

problem inspired by the literature review. The following topics have resulted from

21

study of the literature reviewed and represent simple developments to support the

ideas in this thesis.

3.3 Different Degrees of Robustness

In this section, the phrase, removal from data, is a term that describes the

dependence of an estimator on the data. Consider the filter as an estimator. It is

a function of not only the data, but of other estimators. There are many things to

consider to reach the ultimate goal of controlling a process. The first objective is to

find the order of the autoregressive time series, or in other words, to find the number

of meaningful parameters necessary to parametrize the model.

Next, the parameters themselves need to be estimated from the data. The value

of these estimates depends on how many parameters were fit, which is a direct result

of finding the order of the time series. The estimate of the parameters is a function

of the data and the order.

For simplicity, consider the difference in the estimated mean and variance of a

random variable.

x̄ (x) =

∑n
i=1 xi
n

and (3.1)

σ̂2 (x, x̄) =

∑n
i=1 (xi − x̄)2

n− 1
. (3.2)

As common knowledge dictates, the variance is a function of the data and the mean,

where the mean is only a function of the data. The variance has a higher level of

removal from the data.

The presentations in the literature review show that there are many levels of

estimates that are more or less removed from the data. Removal from the data is

represented in this sequence: the base parameters φs and θs are estimated from the

data directly, and filters are not only functions of the data but of the parameters φ and

θ. Hence, the filter is more removed from the data because more of the information

22

used by the filter is derived from these parameters. If the parameters are poorly

estimated the effect will be expressed in the performance of the filter that is removed

from the data using these parameters.

Having discussed removal from data, it is noted here that the focus is on a

higher level of removal from the data. As presented earlier, there are those estimates

that, like the mean, are directly related to the data. Others are functions of more

than just the data, but of many parameters. The robustness, or lack thereof, will

play in to the ability of the overall control of the process. If the variance is a poor

estimate of dispersion of the data, then it is more than likely poor because of the

mean, which is very inadequate when outliers are present. The filter that is sought

here is robust not only to the data, but to poor estimators.

Heuristically speaking, the effect of outliers will cause an underestimation of the

autoregressive parameters because the outliers will be far from the rest of the data.

These points will cause the estimate of the autocorrelation, which is a component

of the autocovariance, to be smaller. Underspecification of the model could occur,

and hence bias increases and variance decreases. The ARIR parameter estimates

themselves will also suffer in like manner and the effect will flow down through the

different stages of the controller.

3.3.1 High Level Robustness

In the controller there are terminable estimates that are the final steps before

the control action is found. Estimators that are the furthest removed from the data

will suffer high level robustness problems. They are based on functions of low level

estimators as well as the original data. These estimators are much more complex in

structure and computation, so more error is inherent.

A filter can also have a certain level of immunity to this through pure math-

ematical structure. The Naive filter is thought to have a more natural robustness

23

property, although it is not apparent at this point which robustness benefits it has.

Since the Kalman filter is derived from the recursive least squares estimator, it should

inherit all the properties that are found in the normal least squares estimator, which

is not particularly robust.

3.3.2 The Naive Filter

The Naive filter is similar to the robust state vector discussed in the section on

the Markovian Representation. The Naive filter is suspected to have a pure natural

structure that handles both outlier data coming in to the filter and poor estimates of

the system parameters without the rudimentary adjustments.

This is a filter that is similar in mathematics to what was proposed by Akaike

(1974) in the Markovian representation. It portrays the idea of gathering as much

information as possible to estimate the state of the process. Here the estimator

attempts to predict into the future as far as the data will allow, given the order of

the system. The representation is

x̂n+1|n =


ẑn+1|n

ẑn+2|n

ẑn+3|n

 . (3.3)

The form of this filter is given here for a simple ARIR(2,2) case. It is very much

like the structure of the autoregressive moving average ARMA(2,2) but has distinct

differences in the underlying mathematics. The Naive state vector is defined for the

simple autoregressive impulse response of order (2,2). This vector is used in the state

equation (2.3) as the estimate of the previous state and is then used in the state

equation to predict what the state will be next time step.

x̂n+1|n =

 −φ2z
∗
n − φ3z

∗
n−1 + θ2un + θ3un−1

−φ3z
∗
n + θ3un

 (3.4)

24

This equation is defined in this manner for use in real-world applications, to be

able to take the raw data and the control inputs and calculate the necessary state

estimate as defined in the Naive filter (3.4). The matrices Tz and Tu are designed

with the structure found in Equations 3.6 and 3.7 to create the structure found in

the vector equation, (3.4), and can be thought of as the generating function of the

state vector for use in the state equation, (2.3). The generating function is

x̂n|n = Tzz
∗
n + Tuun, (3.5)

where z∗
n =

(
z∗n z∗n−1 . . . z∗n−d

)T
, with z∗n = zn + ηn, is the data vector which

has memory of d data observations and un =
(

0 un−1 . . . un−d

)T
is set up the

same with the first element as zero and the current control action un added into the

estimate in the state equation.

Here is a description of the structure of both Tz and Tu (remember that d =

max (p, q)).

Tz =



1 0 · · · 0 0

0 −φ1 · · · −φd−1 −φd

0 −φ2 · · · −φd 0

...
. . .

...

0 −φd−1 · · · 0 0

0 −φd · · · 0 0



(3.6)

Tz =



0 0 · · · 0 0

0 θ1 · · · θd−1 θd

0 θ2 · · · θd 0

...
. . .

...

0 θd−1 · · · 0 0

0 θd · · · 0 0



(3.7)

25

Now it is necessary to address the two forms of the actual estimator and show

where the vector in Equation 3.5 is used.

For the two-step Naive estimator, the first step is to take the data that is stored

in the vector zn and the past control inputs un and form the state vector needed in

the state equation using Equation 3.5, which will perform in this case as the state

estimator. The second step is to take the state vector and use it in the state equation

to get the Naive estimate of state.

x̂n+1|n = Ax̂n|n + Bun (3.8)

= A
(
Tzz

∗
n + Tuun

)
+ Bun (3.9)

This filter may be resistant to higher level robustness problems because of its

pure time series setup. If there are parameter estimates that are poor due to lower

level robustness problems, we only use them twice in the filter so we don’t have as

intense a recurring problem inside of one time step. The Kalman filter uses the A

matrix at each successive step, compounding any error in its estimation. The Naive

filter is very simple and is set up as the explicit structure defined in any filter. The

setup of the equation implies this type of structure:

xn+1 = Axn + Bun + Gεn+1. (3.10)

Here xn+1 is the state of the system at time n+ 1 estimated from the state at time

n. It seems that this state estimate should have good properties due to such a simple

yet direct connection to the theoretics of the system. The mathematical system is

defined as

zn+1 = −φ1zn − · · · − φpzn−p + θ1un + · · ·+ θquq + εn+1. (3.11)

Because the estimate is set up with the same structure as the mathematical

model, the estimate should be very good; however, notice that when the observation

is used directly it shows a possible weakness to measurement error. We shall see in

26

the simulations how this comes in to play in the actual evaluation. As said previously,

the exponentially weigthted moving average (EWMA) will be an option to clean up

much of the measurement error to boost the performance of the filter.

z∗n+1 = −φ1 (zn + ηn)−· · ·−φp (zn−p + ηn−p)+ θ1un+ · · ·+ θquq + εn+1 +ηn+1 (3.12)

Because the observations are used directly, the measurement error has direct

impact on the filter. As seen in (3.12), the measurement error saturates the process.

Each time step the measurement error is present. This process error is a stochastic

process that has a variance of roughly an order of magnitude larger than the typical

process error variance. This really throws off some filters, especially those that do

not have a method of smoothing out this measurement error. Earlier the Kalman

filter was shown to adjust for measurement error and initial conditions, and specific

focus was placed on Equation (4.2). This is an interesting property; the Kalman filter

contains somewhat of an outlier cleaner. Since the measurement error is an additive

outlier, the Kalman filter has some robustness properties to measurement error. The

Naive filter does not have such an adjustment and could possibly suffer from this.

The EWMA discussed previously would be a wonderful candidate to add to

the Naive filter. One would need to find the smoothing parameter for this smoothing

operator first. One other possible way of making the Naive filter robust could be a

bias correction. The bias of the Naive filter is simple. In the following equation, this

bias is seen to be a function of the bias of the the time series parameters. This reveals

a possible avenue for finding a bias correction. Bias is equivalent in this case to the

generic uncertainty spoken of in Lee et al. (2004). Which has been derived in this

case for the Naive filter and is shown in (3.13).

ˆBias (x̂n+1) =

(
− ˆBias

(
φ̂1

)
zn − ˆBias

(
φ̂2

)
zn−1 + ˆBias

(
θ̂1
)
un + ˆBias

(
θ̂2
)
un−1

− ˆBias
(
φ̂2

)
zn + ˆBias

(
θ̂2
)
un

)
(3.13)

This bias, along with the EWMA, will be applied to the Naive state estimate,

to enhance the performance of the Naive filter.

27

4. DERIVATION OF THE NAIVE STATE VECTOR

Some processes represent only an autoregressive component, some a moving

average, and there are many that exhibit a combination of the two. Processes with

a combination, denoted as ARMA (autoregressive moving average), are of interest

here. The only difference in the model dealt with here is that there is no moving

average part but an exogenous input, termed the impulse response (IR). An outside

force or influence adds an impulse to the system, which lasts in the system in memory

described by the IR coefficients. If the autoregressive part were unstable or nonsta-

tionary, this model could be used to represent controlling inputs into the system to

compensate. As mentioned, another possibility is that there are outside influences

that affect the system independent of the process. We call these situations a dynamic

system.

We will now give a description of a dynamic system in a two-step theoretical

representation. The first step is a time equation that represents how the system is

affected by time with the previous values of the exogenous inputs and states

xn = Axn−1 + Bun−1 + Gεn. (4.1)

Here the matrix A describes the dynamics of the system, B is a matrix that de-

scribes the weights of the exogenous inputs, and G represents the system correlation.

These matrices were described in more detail earlier in the literature review. The

second step is a measurement equation for the dynamic system based on the current

state of the system and the measurement error

yn = Cxn + ηn. (4.2)

The dynamic system has been defined as an autoregressive impulse response of order

28

(2,2) as follows:

zn + φ1zn−1 + φ2zn−2 = θ1un−1 + θ2un−2 + εn. (4.3)

The inputs u stabilize the system if it is out of control. This has a linear filter

describing the state of the system at time n as follows:

xn =

 zn

−φ2zn−1 + θ2un−1

 (4.4)

A =

 −φ1 1

−φ2 0

 (4.5)

B =

 θ1

θ2

 . (4.6)

Given the above representation, we can predict xn given xn−1. But what is

the general form for the matrices A and B? Also, what is the general form for the

Naive filter? These questions are answered in the next few sections.

4.1 Preliminaries

We will derive the filter by solving for a generic A matrix and state vector.

While deriving this filter, we will also establish the anchor of the proof of the general

form. Hence we will now derive the relation for the (3,3) filter. We start by defining

generic A and xn−1 matrices

A =


A1

A2

A3

 =


a1 b1 c1

a2 b2 c2

a3 b3 c3



B =


B1

B2

B3

 =


θ1

θ2

θ3

 .

29

Also, a generic state vectors for time steps n and n-1 are represented as

xn =


xn,1

xn,2

xn,3



xn−1 =


zn−1

δ1zn−2 + δ2zn−3 + ω1un−2 + ω2un−3

η1zn−2 + η2zn−3 + β1un−2 + β2un−3

 .

4.2 Derivation

We will now evaluate through the expression for the filter, which is

xn = Axn−1 + Bun−1. (4.7)

The first element of the left side of this equation is

xn,1 = −φ1zn−1 − φ2zn−2 − φ3zn−3 + θ1un−1 + θ2un−2 + θ3un−3. (4.8)

The first element of the right side of the equation is A1xn−1 + B1un−1 and is

evaluated as

a1zn−1 +

b1δ1zn−2 + b1δ2zn−3 + b1ω1un−2 + b1ω2un−3 +

c1η1zn−2 + c1η2zn−3 + c1β1un−2 + c1β2un−3 +

θ1un−1.

Now we can rearrange the above expressions to reflect equalities to (4.8) by doing a

little algebra.

zn−1:

a1zn−1 = −φ1zn−1 ⇒ a1 = −φ1 (4.9)

30

zn−2:

(b1δ1 + c1η1) zn−2 = −φ2zn−2 ⇒ b1δ1 + c1η1 = −φ2 (4.10)

zn−3:

(b1δ2 + c1η2) zn−3 = −φ3zn−3 ⇒ b1δ2 + c1η2 = −φ3 (4.11)

un−2:

(b1ω1 + c1β1)un−2 = θ2un−2 ⇒ b1ω1 + c1β1 = θ2 (4.12)

un−3:

(b1ω2 + c1β2)un−3 = θ3un−3 ⇒ b1ω2 + c1β2 = θ3 (4.13)

Now we move on to the next set of equations to solve this system. The next value we

will consider from the state vector is xn,2.

xn,2 = δ1zn−1 + δ2zn−2 + ω1un−1 + ω2un−2 (4.14)

The second element of the right side of equation (4.7) is A2xn−1 + B2un−1 and is

evaluated as

a2zn−1 +

b2δ1zn−2 + b2δ2zn−3 + b2ω1un−2 + b2ω2un−3 +

c2η1zn−2 + c2η2zn−3 + c2β1un−2 + c2β2un−3 +

θ2un−1.

Again rearranging these terms to resemble those in (4.14), we have

zn−1:

a2zn−1 = δ1zn−1 ⇒ a2 = δ1 (4.15)

zn−2:

(b2δ1 + c2η1) zn−2 = δ2zn−2 ⇒ b2δ1 + c2η1 = δ2 (4.16)

31

zn−3:

(b2δ2 + c2η2) zn−3 = 0 ⇒ b2δ2 + c2η2 = 0 (4.17)

un−1:

θ2un−1 = ω1un−1 ⇒ θ2 = ω1 (4.18)

un−2:

(b2ω1 + c2β1)un−2 = ω2un−2 ⇒ b2ω1 + c2β1 = ω2 (4.19)

un−3:

(b2ω2 + c2β2)un−3 = 0 ⇒ b2ω2 + c2β2 = 0 (4.20)

Here is the final set of equations we need from (4.7) expressed as A3xn−1 + B3un−1.

These are compared to the equation (4.21) below.

a3zn−1 +

b3δ1zn−2 + b3δ2zn−3 + b3ω1un−2 + b3ω2un−3 +

c3η1zn−2 + c3η2zn−3 + c3β1un−2 + c3β2un−3 +

θ3un−1

xn,3 = η1zn−1 + η2zn−2 + β1un−1 + β2un−2 (4.21)

Rearrangement of the equation gives us the last set of equations needed to solve the

(3,3) autoregressive impulse response dynamic system.

zn−1:

a3zn−1 = η1zn−1 ⇒ a3 = η1 (4.22)

zn−2:

(b3δ1 + c3η1) zn−2 = η2zn−2 ⇒ b3δ1 + c3η1 = η2 (4.23)

32

zn−3:

(b3δ2 + c3η2) zn−3 = 0 ⇒ b3δ2 + c3η2 = 0 (4.24)

un−1:

θ3un−1 = β1un−1 ⇒ θ3 = β1 (4.25)

un−2:

(b3ω1 + c3β1)un−2 = β2un−2 ⇒ b3ω1 + c3β1 = β2 (4.26)

un−3:

(b3ω2 + c3β2)un−3 = 0 ⇒ b3ω2 + c3β2 = 0 (4.27)

The next step is to put all of these expressions into a solution for each one of

the parameters. We know by (4.18) and (4.25) that the following expression indicates

what b1 and c1 are. Using (4.12) we find that b1 = 1 and c1 = 0 since

b1ω1 + c1β1 = b1θ2 + c1θ3 = θ2.

With (4.13) we can show that ω2 = θ3 = β1 by

b1ω2 + c1β2 = (1)ω2 + (0)β2 = θ3.

Since a2 = δ1 and a3 = η1, (4.10) gives us

b1δ1 + c1η1 = (1)a2 + (0)a3 = −φ2

a2 = δ1 = −φ2.

For δ2 we can use (4.11) to find a chain of equalities to show a3 = −φ3.

b1δ2 + c1η2 = (1)δ2 + (0)η2 = −φ3

⇒ δ2 = −φ3.

33

Now we must find what b2 and c2 are. To do this we use (4.17) and note that

δ2 = −φ3 as previously shown.

b2δ2 + c2η2 = b2(−φ3) + c2η2 = 0

⇒ b2 = 0

By (4.19) we find that c2 = 1 since β1 = ω2.

b2ω1 + c2β1 = b2ω1 + c2ω2 = ω2

⇒ c2 = 1

⇒ η2 = 0

We get η2 from the equalities found before this, specifically from (4.19). Also, by

(4.20) we know that β2 = 0 since c2 = 1 and b2 = 0.

b2ω2 + c2β2 = 0

We now find that a3 = −φ3 by (4.16).

b2δ1 + c2η1 = (0)δ1 + (1)η1 = δ2

η1 = δ2 = a3

and

η1 = −φ3

Finally, b3 = c3 = 0 using the relation (4.23) and using the fact that δ1 6= 0 and

β1 6= 0 along with η2 = 0.

b3δ1 + c3η1 = η2 (4.28)

Having solved for all of the unknowns in this dynamic system, we can see the

form of the matrices and vectors for the (2,2) and (3,3) cases. The setup for the (3,3)

34

case of the Naive filter to estimate zn is

A =


−φ1 1 0

−φ2 0 1

−φ3 0 0

 (4.29)

xn−1 =


zn−1

−φ2zn−2 − φ3zn−3 + θ2un−2 + θ3un−3

−φ3zn−2 + θ3un−2

 . (4.30)

Validation of this solution can be found by showing that xn = Axn−1 + Bun−1 + Gεn

equates to the proper form.

xn = Axn−1 + Bun−1 + Gεn

=


−φ1 1 0

−φ2 0 1

−φ3 0 0




zn−1

−φ2zn−2 − φ3zn−3 + θ2un−2 + θ3un−3

−φ3zn−2 + θ3un−2



+


θ1

θ2

θ3

un−1 +


1 0 0

0 0 0

0 0 0




εn

εn−1

εn−2



=


−φ1zn−1 − φ2zn−2 − φ3zn−3 + θ1un−1 + θ2un−2 + θ3un−3 + εn

−φ2zn−1 − φ3zn−2 + θ2un−1 + θ3un−2

−φ3zn−1 + θ3un−1



=


zn

−φ2zn−1 − φ3zn−2 + θ2un−1 + θ3un−2

−φ3zn−1 + θ3un−1

 = xn (4.31)

35

This shows the form of the (3,3) filter and validates that the solution is correct. Now

we will check the (4,4) case.

xn =



−φ1 1 0 0

−φ2 0 1 0

−φ3 0 0 1

−φ4 0 0 0




zn−1

−φ2zn−2 − φ3zn−3 − φ4zn−4 + θ2un−2 + θ3un−3 + θ4un−4

−φ3zn−2 − φ4zn−3 + θ3un−2 + θ4un−3

−φ4zn−2 + θ4un−2



+



θ1

θ2

θ3

θ4


un−1 +



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





εn

εn−1

εn−2

εn−3



=


−φ1zn−1 − φ2zn−2 − φ3zn−3 − φ4zn−4 + θ1un−1 + θ2un−2 + θ3un−3 + θ4un−4 + εn

−φ2zn−1 − φ3zn−2 − φ4zn−3 + θ2un−1 + θ3un−2 + θ4un−3

−φ3zn−1 − φ4zn−2 + θ3un−1 + θ4un−2

−φ4zn−1 + θ4un−1



=


zn

−φ2zn−1 − φ3zn−2 − φ4zn−3 + θ2un−1 + θ3un−2 + θ4un−3

−φ3zn−1 − φ4zn−2 + θ3un−1 + θ4un−2

−φ4zn−1 + θ4un−1

 (4.32)

This shows that we can generalize the form as a (p,q) autoregressive impulse response

Naive filter.

4.3 General Form of the Naive Filter

Now we can use some notation to generalize the notation of this filter, and note

that whether p = q, p > q, or p < q, we can still use the same general form. We start

36

with the special case, p = q. The general form is given as

A =



−φ1 1 0 · · · 0

−φ2 0 1 0

...
. . .

...

−φp−1 0 0 1

−φp 0 0 · · · 0


p×p

(4.33)

=
[

Φ I0

]
. (4.34)

Above in (4.34) we are creating some notation that will be helpful in the deriva-

tion of this special case of the Naive filter. We denote I0 as a (p−1)× (p−1) identity

with a zero p− 1 dimension row vector appended to the bottom as such.

I0 =

 I(p−1)×(p−1)

01×(p−1)


The state vector has some interesting structure dealing with index shifts in

summations. This vector will also have a definition of special notation to make the

derivation more tractable. We start with a general definition for the jth element of

xn. Note that this defines the value zn as well, since in theory a summation of all

the p previous z values and inputs make up this new measure with the addition of

the process error for this step.

xn =


p∑
i=j

−φizn−i+(j−1) + θiun−i+(j−1)


j

(4.35)

=



zn∑p
i=2−φizn−i+1 + θiun−i+1∑p
i=3−φizn−i+2 + θiun−i+2∑p
i=4−φizn−i+3 + θiun−i+3

...∑p
i=p−1−φizn−i+(p−2) + θiun−i+(p−2)∑p
i=p−φizn−i+(p−1) + θiun−i+(p−1)


p×1

37

=

 zn

sn

 (4.36)

The notation in (4.36) is defined as the first element of the state vector, zn, and

the rest of the values which are made up of previous values of the process. The vector

sn represents all of the summations in (4.35), basically the elements 2 through p of

xn. So, the dimension of sn is (p− 1)× 1.

For the remainder of the definition we have

B =
(
θ1 θ2 · · · θp−1 θp

)T
p×1

(4.37)

un−1 = (un−1)1×1 (4.38)

G =



1 0 · · · 0 0

0 0 0 0

...
. . .

...

0 0 0 0

0 0 · · · 0 0


p×p

(4.39)

εn =
(
εn εn−1 · · · εn−p+1 εn−p

)T
p×1

. (4.40)

4.4 Proof of the General Naive Filter

The general form of the Naive filter has been proposed but we don’t know for

sure if it truly gives the correct form for any number p = q. Because of this, we will

use a simple direct proof to show that this filter will give us the desired state for any

p. It has already been shown what the state should be for the nth case now to show

that it is the same for the (n+ 1)th case.

Assume now that the filter for the nth case is of the form

xn = Axn−1 + Bun−1 + Gεn

and described in detail in (4.35) above. This is what the form is for this case, but for

38

the (n+ 1)th case we would expect to see the following:

xn =



zn∑p
i=2−φizn−i+1 + θiun−i+1∑p
i=3−φizn−i+2 + θiun−i+2∑p
i=4−φizn−i+3 + θiun−i+3

...∑p
i=p−1−φizn−i+(p−2) + θiun−i+(p−2)∑p
i=p−φizn−i+(p−1) + θiun−i+(p−1)



. (4.41)

Next it is necessary to show what the form is for the next case, n + 1. We use

the relation xn+1 = Axn + Bun + Gεn+1 to show this. Here we already have the

expression for xn and assume it is true. Having done this, is xn+1 of the same form?

It will now be shown that indeed it is. To give a clear view of what is going on, we

will use the notation introduced previously in (4.34) and (4.36).

xn+1 = Axn + Bun + Gεn+1 = Φzn + I0sn + Bun + Gεn+1 (4.42)

=



−φ1zn

−φ2zn
...

−φp−1zn

−φpzn


+



1 0 · · · 0 0

0 1 0 0

...
. . .

...

0 0 0 1

0 0 · · · 0 0





∑p

i=2
−φizn−i+1 + θiun−i+1∑p

i=3
−φizn−i+2 + θiun−i+2∑p

i=4
−φizn−i+3 + θiun−i+3

...∑p

i=p−1
−φizn−i+(p−2) + θiun−i+(p−2)∑p

i=p
−φizn−i+(p−1) + θiun−i+(p−1)



+



θ1un

θ2un
...

θp−1un

θpun


+



1 0 · · · 0 0

0 0 0 0

...
. . .

...

0 0 0 0

0 0 · · · 0 0





εn+1

εn
...

εn−p+2

εn−p+1



39

=



−φ1zn

−φ2zn
...

−φp−1zn

−φpzn


+



∑p
i=2−φizn−i+1 + θiun−i+1∑p
i=3−φizn−i+2 + θiun−i+2∑p
i=4−φizn−i+3 + θiun−i+3

...∑p
i=p−1−φizn−i+(p−2) + θiun−i+(p−2)∑p
i=p−φizn−i+(p−1) + θiun−i+(p−1)

0



+



θ1un

θ2un
...

θp−1un

θpun


+



εn+1

0

...

0

0



=



−φ1zn − φ2zn−1 − · · · − φpzn−p+1 + θ2un−1 + · · · + θpun−p+1

−φ2zn − φ3zn−1 − · · · − φpzn−p+2 + θ3un−1 + · · · + θpun−p+2

..

.

−φp−1zn − φpzn−1 + θpun−1

−φpzn



+



θ1un

θ2un
...

θp−1un

θpun


+



εn+1

0

...

0

0



=



−φ1zn − φ2zn−1 − · · · − φpzn−p+1 + θ1un + θ2un−1 + · · · + θpun−p+1 + εn+1

−φ2zn − φ3zn−1 − · · · − φpzn−p+2 + θ2un + θ3un−1 + · · · + θpun−p+2

...

−φp−1zn − φpzn−1 + θp−1un + θpun−1

−φpzn + θpun



40

=



zn+1∑p
i=2−φizn−i+2 + θiun−i+2∑p
i=3−φizn−i+3 + θiun−i+3∑p
i=4−φizn−i+4 + θiun−i+4

...∑p
i=p−1−φizn−i+(p−1) + θiun−i+(p−1)∑p

i=p−φizn−i+(p) + θiun−i+(p)


= xn+1

This state vector for the (n+1)th case is the same as that found in (4.35), with

the only difference being the change in the indices. We now know that the relation

we have seen previously in (4.33-4.40) is true for any n. QED

4.5 Cases p > q and p < q

This section shows how the filter is used when p 6= q. In this case we just

set some of the parameters equal to zero. We will consider the first case, a dynamic

system of (4,2) order. Hence there are four autoregressive parameters and two impulse

response parameters. The A matrix and the vector B are defined in the following

way after the general form

A =



−φ1 1 0 0

−φ2 0 1 0

−φ3 0 0 1

−φ4 0 0 0



B =



θ1

θ2

0

0


.

41

We end up with a state vector that looks exactly the same, except that when we sum

across some of the indices for the θs we just sum with these equated to zero. Thus,

after evaluating xn = Axn−1 + Bun−1 + Gεn, the state vector looks like this,

xn =



−φ1zn−1 − φ2zn−2 − φ3zn−3 − φ4zn−4 + θ1un−1 + θ2un−2 + εn

−φ2zn−1 − φ3zn−2 − φ4zn−3 + θ2un−1

−φ3zn−1 − φ4zn−2

−φ4zn−1


.

The form of the state vector for the (n−1)th time step looks just the same. We

just set those specific parameters equal to zero if the order of the system dictates.

Now if we have a (2,4) system we will get matrices as follows:

A =



−φ1 1 0 0

−φ2 0 1 0

0 0 0 1

0 0 0 0



B =



θ1

θ2

θ3

θ4


where

xn−1 =



−φ1zn−2 − φ2zn−3 + θ1un−2 + θ2un−3 + θ3un−4 + θ4un−5 + εn−1

−φ2zn−1 + θ2un−2 + θ3un−3 + θ4un−4

θ3un−2 + θ4un−3

θ4un−2



42

5. ADJUSTED NAIVE FILTERS

The Naive filter itself is very susceptible to measurement error. A smoother of

some sort is necessary to clear the effectual mud and allow the Naive filter to perform

properly. In Chapter 3 there was a description of the bias of the Naive filter. This

bias can be taken into account by correcting the Naive filter with the negative of the

bias.

This correction takes the same form as the Naive filter. It is applied after the

Naive filter has passed over the data. Given the estimate of state, x̂n+1, the correction

is applied as

x̂n+1,BC = Abiasx̂n+1 + Bbiasun, (5.1)

where

Abias =

 ˆBias
(
φ̂1

)
1

ˆBias
(
φ̂2

)
0

 , (5.2)

Bbias =

 ˆBias
(
θ̂1

)
ˆBias

(
θ̂2

)
 . (5.3)

Basically, this correction is for the bias in the parameter estimate as seen in the

equations. Bias here is the deviation of the parameter estimate from its true value.

Another adjustment can be used to make the biggest difference in the performance of

the Naive filter. The exponentially weighted moving average (EWMA) provides an

excellent way of removing some of the measurement error from the measured value

yn. This smoother is established on an infinite linear relationship, but can be boiled

down to a recursive equation. A smoothing parameter, λs, is chosen to start the

process. The last estimated value from the EWMA is recorded for use in the next

recursion.

ẑn = λsyn + (1− λs) ẑn−1 (5.4)

43

It is important to use the previous smoothed value of the EWMA estimate,

not the previously estimated value from the Naive filter, because this does not work.

This value is then fed into the Naive filter for estimation of state. The Bias Corrected

EWMA Naive filter smoothes the next measured value with the EWMA, then the

smoothed value is fed into the filter. After the estimate is complete in the Naive filter,

the bias correction is made.

44

6. MSE SIMULATION

The goal in this thesis is to simulate a time series process with measurement

error and try to estimate the state of the process in the presence of outliers and poor

parameter estimates. Some of the filters considered have the ability to take knowledge

of the uncertainties along with estimates of those parameters to robustly estimate the

state of the process. As shown below, the time series process that will be used is an

ARIR(2,2).

zn = −φ1zn−1 − φ2zn−2 + θ1un−1 + θ2un−2 + εn (6.1)

yn = zn + ηn (6.2)

The length of the trace or process that will be simulated will be done with two

lengths, one at 12 and the other at 52. This is to inject an outlier in the process at

times 10 and 50 and allow the filters two additional time steps to see the performance

as the outlier passes out of the system. The state estimate is used normally in

combination with a controller such as the LQR. Then the un would be control inputs to

stabilize a system in a dynamic feedback loop. In this thesis the un will be considered

as random exogenous inputs, essentially the reverse of control inputs. Following are

definitions of all the stochastic components of the time series process.

εn ∼ N
(
0, σ2

ε

)
ηn ∼ N

(
0, σ2

η

)
un ∼ N

(
0, σ2

u

)
a10 ∼ N

(
0, 52σ2

u

)
a50 ∼ N

(
0, 52σ2

u

)
z−1 ∼ N

(
0, σ2

pre

)
45

z0 ∼ N
(
0, σ2

pre

)
ψ ∼ N

(
0, σ2

ψ

)
In this array of stochastic parameters, certain of them are specific to this sim-

ulation. The random variables a10 and a50 are random outliers that come from a

Gaussian with standard deviation five times greater than that of the exogenous input

standard deviations. They are added in as denoted in the subscript two time steps

before the end of the trace. For the trace of length 12 the outlier will be added into

the input stream at time 10, and likewise for the trace of length 52. To start the

simulation, instead of padding the beginning of the process with two zeros to feed

into the process equations (6.1 & 6.2), some small white noise is put in for values z−1

and z0.

As stated previously, some of the filters require an uncertain knowledge of the

deviation of the parameter estimates from their true value. To model this uncer-

tainty, ψ is used as this perturbation of the knowledge of the deviations. In the state

equations given previously in the literature review, such as equation (2.3), the ma-

trices A and B are used directly. To simulate poor estimation of the parameters in

these matrices, deviations are added to them. The deviations are δφ1 , δφ2 , δθ1 , δθ2 , one

set for each parameter. They take on values {−0.5, 0, 0.5}, for which the simulated

parameter estimate is set for investigative purposes as φ̂ = φ+ δφ.

The filters that account for uncertainty in the parameter estimates will require

the perturbations on the deviations. Exact knowledge of the uncertainty would as-

sume we know what δ is for each parameter. To simulate an estimation procedure for

the deviations, we let δ̂ = δ + ψ. This mimics taking the deviations from sampling

distributions. In this case, the deviation from knowledge is set as a stochastic value

that is randomly generated in ψ as given above in the definition of all stochastic

values. The model parameters and standard deviations for the simulations are given

below.

46

φ1 = −0.95

φ2 = 0.6

θ1 = 0.6

θ2 = 0.9

σε = 1

ση = 10

σu = 3

σpre = 0.1

σψ = 0.3

When the trace for either trace size, 12 or 52, is generated using all these values

and the equations above, the filters are used to estimate the state zn using yn. Let

the variable f (yn) be a generic filter representing any of the filters compared in this

thesis. After this estimate is found using a filter, the MSE is computed using the

following equation.

MSEf =
1

N − 1

N∑
n=1

(f (yn)− zn)
2 (6.3)

In this equation N represents the trace size, either 12 or 52. Each deviation

combination is used 100 times—that is, a combination of the deviations, δs, is used

repetitively for 100 iterations. This is to generate the distribution of the MSEs for

each combination. These distributions are saved on a CD placed in the back of this

thesis. The presentation of these MSE distributions using box plots can also be found

on the CD, as well as in appendix A.

By taking these MSEs and defining factor variables with three levels to represent

the different deviations, eight levels to represent the filter type, and two levels to

47

represent the size of the trace, we can model the effects of the deviations, filter type,

and size of the trace on the value of MSE. An ANOVA model using a coding scheme

of choice can be used to find the best model and to describe its properties.

48

7. RESULTS

Before fitting a model or looking at any analysis on the filters, it is important

to realize that comparison of the filters overall and by trace size are the two most

important considerations. The investigation into how the uncertainty affects the

performance positively or negatively is of much less importance since there is no way

of controlling or knowing exactly how inaccurate the estimate of uncertainty is at any

given instance or situation. It is only meaningful to choose a filter knowing that it

may be robust to a certain type of uncertainty, or to multiple types. If it is a good

filter in a more general sense, it is due to a greater number of positive properties that

work against uncertainty in parameter estimates. Investigation into the uncertainty

effects will only be for the purpose of defining why the filter turned out to be ranked

high in robustness.

The deviations range across three levels, {−0.5, 0, 0.5}. There are eight filter

types, listed in order and with abbreviated names for plotting. They are

1. (K1) Krein space Kalman filter

2. (K2) Krein space Kalman filter with IR part added

3. (K3) Krein space Kalman filter with IR part and a second uncertainty pa-

rameter adjustment

4. (K4) Classical Kalman filter

5. (N) Naive filter

6. (NBC) Bias Corrected Naive filter

7. (NE) EWMA Naive filter

49

8. (NEBC) Bias Corrected EWMA Naive filter

As mentioned previously, there are only two sizes for the simulated traces, 12 and 52.

The model that will be fit for the cell means model is

yhijk`mn = µhijk`m + εhijk`mn. (7.1)

The cell means model provides what is needed to test any hypothesis of interest

here. The questions to answer are

1. Which filter is best?

2. How do the best three rank?

Using the cell means model and the biglm() function, the estimates of the cell

means will provide a straightforward way of estimating and comparing the different

filter behavior. The behavior is exhibited using the marginal means µ....`. for ` =

1, . . . , 8. In Table 7.1 and Figure 7.1 there is no question as to whether the different

filters are distinct as far as their performance. This enables the general ranking of the

filters from best to poorest in estimating the state of the process across all situations

presented by the deviations to the parameter estimates.

In this table, the designations of Krein Kalman2 and Krein Kalman3 repre-

sent the adjustments made to the Krein space Kalman filter presented by Lee et al.

(2004). The first is the filter with the exogenous input adjustment, the second has

the exogenous input and an additional accounting of the uncertainty parameter.

7.1 Overall Filter Comparison

These comparisons are enhanced by a graphical comparison in Figure 7.1. The

four best filters by overall MSE are the Krein Kalman2, Krein Kalman3, EWMA

Naive, and the EWMA B. C. Naive (B. C. stands for bias corrected). To enhance

this comparison, these four filters will be shown in a graph together without the other

50

Figure 7.1: MSE 95% confidence intervals for MSE values per filter.

Figure 7.2: MSE 95% confidence intervals for MSE values per filter.

51

MSE 95% CI
Filter Lower Estimate Upper

K1 Krein Kalman 70.731 70.986 71.242
K2 Krein Kalman2 31.569 31.824 32.079
K3 Krein Kalman3 24.427 24.682 24.937
K4 Classic Kalman 98.892 99.148 99.403
N Naive 168.825 169.080 169.335

NBC B. C. Naive 145.966 146.221 146.476
NE EWMA Naive 31.313 31.568 31.824

NEBC EWMA B. C. Naive 28.011 28.267 28.522

Table 7.1: Comparison of the filter marginal mean MSE.

filters in Figure 7.2. In the graphs, it appears there could be no significant difference

between the NE and K2 filters. A test of hypothesis confirms this. The individual

tests of these differences provides a p-value of 0.1646 on this difference. It was decided

upon to compare NE with K2, NE with NEBC, and NEBC with K3 because these

comparisons seem to offer the smallest distance to one another. All but the first

comparison prove to differ with p-values of 0. The top three filters consist of K3 as

the best overall filter, NEBC as the second best filter, and NE and K2 as third best.

7.2 Filter Comparison by Trace Size

The same rankings can be made for the filters by looking at the estimates and

confidence intervals by trace size.

Notice that with the smaller trace size, Figure 7.3, the Kalman filter becomes

equal with the regular Krein Kalman filter. The dotted black lines in Figure 7.3

show the movement of each marginal mean for filter from the overall marginal mean,

µ....`., to the marginal mean accounting for trace size, µ....`1, where the subscript 1

indicates it is a mean for a trace size of 12. It is interesting to note that the Classic

Kalman, Naive, and Bias Corrected Naive filters actually drop in MSE mean value

52

Figure 7.3: MSE 95% confidence intervals per filter simulated trace of size 12.

Figure 7.4: MSE 95% confidence intervals per selected filters simulated trace of size
12.

53

MSE 95% CI
Filter Lower Estimate Upper

K1 Krein Kalman 89.167 89.528 89.889
K2 Krein Kalman2 33.770 34.131 34.492
K3 Krein Kalman3 27.669 28.030 28.391
K4 Classic Kalman 89.129 89.490 89.851
N Naive 163.610 163.970 164.331

NBC B. C. Naive 141.458 141.819 142.180
NE EWMA Naive 35.320 35.681 36.041

NEBC EWMA B. C. Naive 30.835 31.196 31.560

Table 7.2: Comparison of the filter marginal mean MSE, (trace size of 12).

for the smaller trace size. The Kalman filter has an MSE value less than the overall

value calculated over both trace sizes. The Krein space Kalman filter has an increase

in MSE. This indicates a good property in the Classic Kalman filter; despite the

large MSE value, it has a downward trend in MSE, making it essentially equal in

performance with the Krein Kalman filter.

In Figure 7.4 the four highest ranked filters increase in MSE with a smaller

trace size. They have separated somewhat in MSE value as well, the dotted black

line recording the change in overall marginal filter MSE values, µ....`., to the trace size

and filter marginal mean, µ....`2, for the trace of size 52. An individual test indicates

they are all different, with the largest p-value of 2.688×10−9. The confidence intervals

agree with the hypotheses.

Ranking in this case breaks the tie between NE and K2. The MSE values

have increased by breaking the comparisons by trace size. These four filter types

have a tendency to have lower MSE in general, but their best performance is after

the trace/signal has proceeded beyond this level into the infinite time horizon. The

EWMA recursion that enhances the Naive filter is founded on an infinite time horizon

principle and may explain some of the reason the two Naive filters lack slightly when

the time index is close to the start time.

54

Figure 7.5: MSE 95% confidence intervals per filter simulated trace of size 52.

Figure 7.6: MSE 95% confidence intervals per selected filters simulated trace of size
52.

55

MSE 95% CI
Filter Lower Estimate Upper

K1 Krein Kalman 52.084 52.445 52.805
K2 Krein Kalman2 29.157 29.518 29.878
K3 Krein Kalman3 20.973 21.334 21.695
K4 Classic Kalman 108.444 108.805 109.166
N Naive 173.829 174.190 174.551

NBC B. C. Naive 150.262 150.623 150.983
NE EWMA Naive 27.095 27.456 27.817

NEBC EWMA B. C. Naive 24.977 25.338 25.698

Table 7.3: Comparison of the filter marginal mean MSE, (trace size of 52).

Now with the larger trace, there is an opposite effect. The Krein and Classic

Kalman filters differ in performance. The Krein filter begins to approach peak per-

formance; the Classic Kalman filter converges on its normal performance. The other

filters seem to follow in this performance convergence. Those that decreased in MSE

for a trace size of 12 are increasing for a trace size of 52, and vice versa.

The top two filters remain in first and second place, and the NE and K2 filters

switch places. Just by looking at the confidence intervals it is very apparent that all

four are very distinct. It can be deduced that for very short time traces when one

expects the prediction interval to be very short, the third and fourth best alternatives

are K2 and NE, respectively. When the case is the long term, or at least longer than

around 52 samplings in time, the rank of these two filters reverses.

When considering the Krein space Kalman filter with exogenous input adjust-

ment and secondary uncertainty enhancement and the Bias Corrected EWMA Naive

filter, the clear winner is the enhanced Krein filter. This provides a nice property,

that both are quite consistent under different conditions. The most inconsistent filter

when trace size increases is the regular Krein space Kalman filter. In the graphs in

this section, specifically Figures 7.3 and 7.5, it is quite obvious that the MSE values

for this filter cover a far greater range than do any of the other filters, especially

56

in comparison to the four best filters. It ranges from 89.528 for a trace of size 12

to 52.445 for a trace of 52 points. This is a larger range than all the other filters

compared.

7.3 Interaction Interpretation

For thinking in terms of interactions, the following variable assignment will be

used.

Variable Effect Indexing

δφ1 αh h=1, 2, 3
δφ2 βi i=1, 2, 3
δθ1 ϑj j=1, 2, 3
δθ2 γk k=1, 2, 3

Filter Type λ` `=1, . . . , 8
Trace Size τm m=1, 2

Table 7.4: Greek letter assignment to factor variables.

The interactions will be thought of as a test to compare two differences. In

Equation 7.2 the effect of the filter index three, the Krein Kalman3 filter, is con-

trasted against the effect when one level of another factor variable is considered, say

the first level of α. We call it the interaction. The overall effect of a factor level will be

tested to be equal to the same level, only with another factor variable level expressed

simultaneously. This is like looking at the overall effect of a particular filter on MSE,

the filter type being the factor level of interest, and comparing it for a particular

level of deviation say δφ1 = −0.5. For the given example, the comparison would be

as follows:

(αλ)13 = (µ...... − µ....3.)− (µ1..... − µ1...3.) . (7.2)

The only difference in the left difference and right difference is in the expression of

the first level of the first factor variable, instead of a sum across the three levels of

57

the first factor variables as in the first term.

This reveals if having a certain type of uncertainty present affects the perfor-

mance, and if so, how. These comparisons and estimates will only be made for the

two best filters, the Bias Corrected EWMA Naive and the Krein space Kalman filter

with the exogenous input adjustment and the incorporation of the second uncertainty

parameter. These comparisons reveal some information as to why a particular filter is

good and how the filter handles different types of uncertainty in parameter estimates.

The Classic Kalman filter will be used as a benchmark. In Table 7.5 the interactions

of the Kalman filter are presented.

Variable Lower 95% Estimate Upper 95%

(αλ)14 52.7472 53.1301 53.5129
(αλ)24 81.8951 82.2779 82.6608
(αλ)34 87.6063 87.9891 88.3720
(βλ)14 78.2776 78.6605 79.0433
(βλ)24 82.3463 82.7291 83.1119
(βλ)34 61.6248 62.0076 62.3904
(ϑλ)14 77.1614 77.5442 77.9271
(ϑλ)24 77.8081 78.1909 78.5737
(ϑλ)34 67.2792 67.6620 68.0449
(γλ)14 74.4411 74.8240 75.2068
(γλ)24 76.8793 77.2621 77.6449
(γλ)34 70.9283 71.3111 71.6939

Table 7.5: Interactions for Classic Kalman and deviation.

The values in Tables 7.6 and 7.7 make apparent that the top two filters here

serve to reduce the MSE when in comparison to the Classic Kalman filter. All the

values of the classic Kalman filter are of far greater magnitude. One may think it

necessary that these two optimal filters have all negative values in these interactions to

be truly beneficial. This is not the case with these interactions because the estimates

above are two-way interactions that only consider the two factors of filter type and

deviation type. The hidden information here is the trace size. In the interpretation

58

Variable Lower 95% Estimate Upper 95%

(αλ)13 -21.4633 -21.3356 -21.2080
(αλ)23 7.6846 7.8122 7.9398
(αλ)33 13.3958 13.5234 13.6510
(βλ)13 4.0671 4.1947 4.3224
(βλ)23 8.1358 8.2634 8.3910
(βλ)33 -12.5857 -12.4581 -12.3305
(ϑλ)13 2.9509 3.0785 3.2061
(ϑλ)23 3.5975 3.7252 3.8528
(ϑλ)33 -6.9313 -6.8037 -6.6761
(γλ)13 0.2306 0.3583 0.4859
(γλ)23 2.6688 2.7964 2.9240
(γλ)33 -3.2822 -3.1546 -3.0270

Table 7.6: Interactions for Krein Kalman3 and deviation.

Variable Lower 95% Estimate Upper 95%

(αλ)18 -18.1337 -17.7509 -17.3680
(αλ)28 11.0142 11.3970 11.7798
(αλ)38 16.7254 17.1082 17.4910
(βλ)18 7.3967 7.7795 8.1624
(βλ)28 11.4653 11.8482 12.2310
(βλ)38 -9.2562 -8.8734 -8.4905
(ϑλ)18 6.2805 6.6633 7.0461
(ϑλ)28 6.9271 7.3099 7.6928
(ϑλ)38 -3.6017 -3.2189 -2.8361
(γλ)18 3.5602 3.9430 4.3259
(γλ)28 5.9983 6.3812 6.7640
(γλ)38 0.0473 0.4301 0.8130

Table 7.7: Interactions for EWMA B. C. Naive and deviation.

59

Figure 7.7: Effect of the trace size on filter performance.

60

of these numbers it is necessary to refer back to the plots and tables of the previous

section, specifically Figures 7.4 and 7.6. For the small trace the MSEs are of larger

value for the two best filters, (K3 and NEBC), and for the larger trace size the MSEs

are smaller. This considered along with the numbers in Tables 7.6 and 7.7 show

that the decrease for a trace of size 52 is smaller than the increase for a trace of size

12 in MSE, putting the interaction effect in a slightly positive magnitude for some

interactions and a slightly negative magnitude for others. Figure 7.7 is of interest in

these regards.

Both filters have a very good reduction in MSE value for a -0.5 deviation in the

first AR parameter. However, the Naive type filter has a smaller magnitude effect

on MSE. In fact, all of the values of the interactions of the Naive type filter are of

smaller magnitude than the Krein Kalman filter. Both filters have large magnitude

reductions for the deviations for δφ1 = −0.5, δφ2 = 0.5, δθ1 = 0.5, and δθ2 = 0.5. The

Krein Kalman filter has an additional small effect for δθ2 = 0.5. In comparison to

the Classic Kalman filter, both of these filters have much reduced values for all these

interactions.

61

8. CONCLUSIONS

The best two filters out of the eight considered are ranked as follows:

1. Krein space Kalman filter with exogenous input modeling and additional

uncertainty adjustment for uncertainty δφ2

2. Exponentially weighted moving average, bias corrected, Naive filter

Robustness from uncertainty in the model parameter estimates is particularly

magnified against the following uncertainties: δφ1 = −0.5, δφ2 = 0.5, δθ1 = 0.5,

and δθ2 = 0.5. The other uncertainties are far reduced in comparison to the Classic

Kalman filter, which is used widely for a state estimate in dynamic feedback control.

These top two filters have similar characteristics of robustness to the deviations listed

in the previous paragraph, although the Naive has a smaller magnitude robustness

with respect to these deviations.

In the previous section it was noted that the Krein space Kalman filter that

was presented by Lee et al. (2004) had the widest range of contribution to MSE when

comparing a trace of size 12 to size 52. This indicates that although it can be a filter

with reasonable robustness level, it suffers most from a lack of consistency. This filter

is actually matched by the Classic Kalman filter for a small amount of data. It seems

apparent that the adjustments that are expressed in the other two versions of the

Krein filter truly improve its performance.

It was also very interesting to see that the Krein Kalman filter with the im-

pulse response modeling capability and the EWMA Naive filter are very similar in

performance. When there is a small amount of data, the Kalman type filter outdoes

the Naive. When there are at least 52 observations to go on, the tide turns and the

EWMA Naive wins out. This version of the Naive filter is very appealing in this

62

presentation because it requires no knowledge whatsoever of the uncertainty. This

performance makes this filter stand out among all the filters because of this simplicity.

The next best filter that does not account for uncertainty is the Classic Kalman filter,

and is not remotely comparable to this filter. An overall conclusion in this respect is

that the EWMA Naive filter is truly remarkable and very applicable.

In general, it depends on the ability to model the uncertainty to determine

which filter to choose among the top four. These deviations could be estimated using

bias. One would need to estimate the bias of the parameters. Future research may

lead to an attempt to specify the distribution, and specifically the dispersion of this

estimate of bias. If this dispersion leads to a conclusion that deems the knowledge

of uncertainty as a shot in the dark so to speak, the EWMA Naive filter may be the

best option.

63

64

BIBLIOGRAPHY

Akaike, H. (1974), “Markovian Representation of Stochastic Processes, and Its Ap-

plication to the Analysis of Autoregressive Moving Average Processes,” Annals of

the Institute of Statistical Mathematics, 26, 363–387.

Box, G. and Luceno, A. (1997), Statistical Control By Monitoring and Feedback Ad-

justment, John Wiley & Sons.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis

Forecasting and Control, Prentice Hall, 3rd ed.

Brockwell, P. J. and Davis, R. A. (2002), Introduction to Time Series and Forecasting,

Springer, 2nd ed.

Doyle, J. C. (1978), “Guaranteed Margins for LQG Regulators,” IEEE Transactions

on Automatic Control, AC-23, 756–757.

Durbin, J. (1960), “The Fitting of Time-Series Models,” Review of the International

Statistical Institute, 28, 233–244.

Franklin, G. F., Powell, J. D., and Workman, M. L. (1998), Digital Control of Dy-

namic Systems, Addison-Wesley, 3rd ed.

Gomez, V. and Maravall, A. (1994), “Estimation, Prediction, and Interpolation for

Nonstationary Series With the Kalman Filter,” Journal of the American Statistical

Association, 89, 611–624.

Hassibi, B., Sayed, A. H., and Kailath, T. (1996a), “Linear Estimation in Krein

Spaces-Part I: Theory,” IEEE Transactions on Automatic Control, 41, 18–33.

— (1996b), “Linear Estimation in Krein Spaces-Part II: Applications,” IEEE Trans-

actions on Automatic Control, 41, 34–49.

65

Lee, T. H., Ra, W. S., Yoon, T. S., and Park, J. B. (2004), “Robust Kalman Filtering

via Krein Space Estimation,” IEE Proceedings-Control Theory and Applications,

151, 59–63.

Maronna, R. A., Martin, R. D., and Yohai, V. J. (2006), Robust Statistics, John Wiley

& Sons.

Masreliez, C. J. (1975), “Approximate Non-Gaussian Filtering With Linear State

and Observation Relations,” IEEE Transactions on Automatic Control, AC-20,

107–110.

Pandit, S. M. (1991), Modal and Spectrum Analysis: Data Dependent Systems in

State Space, John Wiley & Sons.

Pandit, S. M. and Wu, S.-M. (1983), Time Series and System Analysis with Applica-

tions, John Wiley & Sons.

Petersen, I. R. and Savkin, A. V. (1999), Robust Kalman Filtering for Signals and

Systems with Large Uncertainties, Bierkhauser.

Rencher, A. C. (2000), Linear Models in Statistics, John Wiley & Sons.

Shumway, R. H. and Stoffer, D. S. (2006), Time Series Analysis and Its Applications

With R Examples, Springer, 2nd ed.

66

A. MSE BOX PLOTS

A.1 Trace Size 12

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

A.2 Trace Size 52

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

B. COMPUTER CODE

B.1 Matlab

B.1.1 State Estimate Functions

Krein Space Kalman Filter

function [xn, Pn] = state_krein(xo, yn, Po_krein, Ad, C, K, Veta, Veps, G1, G2)

[r1, c1] = size(G1);

Ct = [C; K];

[aa, tt] = size(Veta);

[r2, c2] = size(C);

VEps_e = [eye(c1) zeros(c1,r1); zeros(r1,c1) Veps];

Vetat = [Veta zeros(aa,r2); zeros(r2,aa) eye(r2)];

VEta_e = Ct*Po_krein*Ct’ + Vetat;

G = [G1 G2];

L = Ad*Po_krein*Ct’*inv(VEta_e);

yk = [(yn - C*xo); (-K*xo)];

xn = Ad*xo + L*yk;

Pnn = Po_krein - Po_krein*Ct’*inv(VEta_e)*Ct*Po_krein;

Pn = Ad*Pnn*Ad’ + G*VEps_e*G’;

return;

Adjusted Krein Space Kalman Filter

function [xn, Pn] = state_krein_IR(xo, yn, Po_krein, Ad, C, K, Veta, Veps, G1, G2, un, Bd)

[r1, c1] = size(G1);

Ct = [C; K];

[aa, tt] = size(Veta);

[r2, c2] = size(K);

VEps_e = [[eye(c1) zeros(c1,r1)]; ...

[zeros(r1,c1) Veps]];

Vetat = [[Veta zeros(aa,r2)]; ...

[zeros(r2,aa) eye(r2)]];

VEta_e = Ct*Po_krein*Ct’ + Vetat;

G = [G1 G2];

L = Ad*Po_krein*Ct’*inv(VEta_e);

yk = [(yn - C*xo); (-K*xo)];

xn = Ad*xo + Bd*un + L*yk;

Pnn = Po_krein - Po_krein*Ct’*inv(VEta_e)*Ct*Po_krein;

Pn = Ad*Pnn*Ad’ + G*VEps_e*G’;

return;

Classic Kalman Filter

function [xx, P_new] = State_Kalman(A, B, G, old_x, P_old, u, C, y, V_eps, V_eta)

Ln = A*P_old*C’*inv(V_eta);

xx = A*old_x + B*u + Ln*(y - C*old_x);

P = A*P_old*A’ + G*V_eps*G’;

%P_new = pinv(pinv(M) + C’*inv(V_eta)*C);

P_new = P - P*C’*inv(C*P*C’ + V_eta)*C*P;

return;

122

Naive Filter

function [state] = State_Naive(u, z, Tu, Tz, Ad, Bd)

xx = Tz*z + Tu*u;

state = Ad*xx + Bd*u(1);

return;

Bias Corrected Naive Filter

function [stateBC] = State_NaiveBC(u, z, Tu, Tz, Ad, Bd, Adelt, Bdelt, Tz_del, Tu_del)

xx = Tz*z + Tu*u;

xxb = Tz_del*z + Tu_del*u;

stateB = Ad*xx + Bd*u(1);

Bias = Adelt*xxb + Bdelt*u(1);

stateBC = stateB - Bias;

return;

EWMA Naive Filter

function [state, znew] = State_NaiveE(u, z, zold, Tu, Tz, Ad, Bd, lambda)

znew = ewma(z, zold, lambda);

xx = Tz*znew + Tu*u;

state = Ad*xx + Bd*u(1);

return;

Bias Corrected EWMA Naive Filter

function [stateBC, znew] = State_NaiveEBC(u, z, zold, Tu, Tz, Ad, Bd, Adelt, Bdelt, Tz_del, Tu_del, lambda)

znew = ewma(z, zold, lambda);

xx = Tz*znew + Tu*u;

xxB = Tz_del*znew + Tu_del*u;

stateB = Ad*xx + Bd*u(1);

Bias = Adelt*xxB + Bdelt*u(1);

stateBC = stateB - Bias;

return;

EWMA

function [new, lam] = ewma(zn, old, lam)% phi, theta)

new = lam * zn + (1 - lam) * old;

return;

B.1.2 Simulation Code
Overall Simulation

% Call file names in for the 81 different files.

filen = textread(’C:\My Files\Thesis\Filenames\FilenamesMSE52noP.txt’, ’%q’);

% The next piece creates the indexing matrix to index the MSE file names in

% correspondence with the MSE values created.

Filen = zeros(3,3,3,3);

L = 0;

123

for k = 1:3

for m = 1:3

for g = 1:3

for b = 1:3

L = L + 1;

Filen(g,b,m,k) = L;

end

end

end

end

% This demonstrates that the indexing works.

for b = 1:3

for g = 1:3

for m = 1:3

for k = 1:3

filen(Filen(m,k,g,b))

end

end

end

end

% Here is the code for the overall simulation control program, which utilizes base_sim as the

% workhorse function. Then each matrix is written out to a file.

% For a trace of length 52.

reps = 100;

delta = [-0.5 0 0.5];

MSE = zeros(reps, 8);

for b = 1:3

for g = 1:3

for m = 1:3

for k = 1:3

for j = 1:reps

MSE(j,:) = base_sim(52, 50, -0.95, 0.6, 0.6, 0.9, delta(b), delta(g), delta(m),

delta(k), 1, 10, 3, 0.00001, 3)’;

end

fid = fopen(char(filen(Filen(m,k,g,b))),’w’);

fprintf(fid, ’%15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f\n’, MSE);

fclose(fid);

end

end

end

end

% For a trace of length 12.

filen = textread(’C:\My Files\Thesis\Filenames\FilenamesMSE12noP.txt’, ’%q’);

reps = 100;

delta = [-0.5 0 0.5];

MSE = zeros(reps, 8);

for b = 1:3

for g = 1:3

for m = 1:3

for k = 1:3

for j = 1:reps

MSE(j,:) = base_sim(12, 10, -0.95, 0.6, 0.6, 0.9, delta(b), delta(g), delta(m), delta(k),

1, 10, 3, 0.00001, 3)’;

end

fid = fopen(char(filen(Filen(m,k,g,b))),’w’);

fprintf(fid, ’%15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f\n’, MSE);

fclose(fid);

end

end

end

end

124

Workhorse Function

function [mse] = base_sim(n, ind, phi1, phi2, tht1, tht2, dp1, dp2, dt1, dt2, sde, sdn, sdu,

lambda, outlr, plot)

Po_krein = eye(2);

Po_krein2 = eye(2);

Po_krein3 = eye(2);

Po_kalm = eye(2);

Ad = [[-(phi1+dp1) 1]; ...

[-(phi2+dp2) 0]];

Bd = [(tht1+dt1); (tht2+dt2)];

C = [1 0];

sdptb = 0.3;

ptb_phi1 = sdptb*randn(1,1);

ptb_phi2 = sdptb*randn(1,1);

ptb_tht1 = sdptb*randn(1,1);

ptb_tht2 = sdptb*randn(1,1);

Adelt = [[-(dp1+ptb_phi1) 1]; ...

[-(dp2+ptb_phi2) 0]];

Bdelt = [(dt1+ptb_tht1); (dt2+ptb_tht2)];

K = [(dp1+ptb_phi1) 0];

K2 = [[(dp1+ptb_phi1) 0]; ...

[(dp2+ptb_phi2) 0]];

Veta = sdn^2*eye(1);

Veps = sde^2*eye(2);

G1 = [1; 0];

G1_2 = eye(2);

G2 =[1 0; 0 0];

eps = sde*randn((n+2), 1);

eta = sdn*randn((n+2), 1);

u = sdu*randn((n+2), 1);

z = zeros((n+2), 1);

z(1:2) = 0.1*randn(2,1);

y = zeros((n+2), 1);

krein_z = zeros(2, (n+2));

krein2_z = zeros(2, (n+2));

krein3_z = zeros(2, (n+2));

kalman_z = zeros(2, (n+2));

naive_z = zeros(2, (n+2));

naiveBC_z = zeros(2, (n+2));

naiveEBC_z = zeros(2, (n+2));

naiveE_z = zeros(2, (n+2));

Tz = [[1 0]; ...

[0 -(phi2+dp2)]];

Tu = [[0 0]; ...

[0 (tht2+dt2)]];

Tz_del = [[1 0]; ...

[0 -1*(dp2 + ptb_phi2)]];

Tu_del = [[0 0]; ...

[0 (dt2 + ptb_tht2)]];

outliere = 0;

outliern = 0;

outlieru = 0;

if outlr == 1

outliere = 5*sde*randn(1,1);

end

if outlr == 2

outliern = 5*sdn*randn(1,1);

end

125

if outlr == 3

outlieru = 5*sdu*randn(1,1);

end

if outlr == 4

outliere = 5*sde*randn(1,1);

outlieru = 5*sdu*randn(1,1);

end

if outlr == 5

outliern = 5*sdn*randn(1,1);

outlieru = 5*sdu*randn(1,1);

end

inde = ceil(rand(n));

indn = ceil(rand(n));

eps(inde+2) = eps(inde+2) + outliere;

eta(indn+2) = eps(indn+2) + outliern;

u(ind+2) = u(ind+2) + outlieru;

for j = 3:(n+2)

z(j) = -phi1*z(j-1) - phi2*z(j-2) + tht1*u(j-1) + tht2*u(j-2) + eps(j);

y(j) = z(j) + eta(j);

end

clean1 = [0; 0];

clean2 = [0; 0];

for j = 3:(n+2)

[krein_z(:,j), Po_krein] = state_krein(krein_z(:,(j-1)), y(j-1), Po_krein,

Ad, C, K, Veta, Veps, G1, G2);

[krein2_z(:,j), Po_krein2] = state_krein_IR(krein2_z(:,(j-1)), y(j-1),

Po_krein2, Ad, C, K, Veta, Veps, G1, G2, u(j-1), Bd);

[krein3_z(:,j), Po_krein3] = state_krein_IR(krein3_z(:,(j-1)), y(j-1),

Po_krein3, Ad, C, K2, Veta, Veps, G1_2, G2, u(j-1), Bd);

[kalman_z(:,j), Po_kalm] = State_Kalman(Ad, Bd, G2, kalman_z(:,(j-1)),

Po_kalm, u(j-1), C, y(j-1), Veps, Veta);

index = -(j-1):-(j-2);

naive_z(:,j) = State_Naive(u(-1*index), y(-1*index), Tu, Tz, Ad, Bd);

[naiveE_z(:,j), clean1] = State_NaiveE(u(-1*index), y(-1*index), clean1,

Tu, Tz, Ad, Bd, lambda);

[naiveEBC_z(:,j), clean2] = State_NaiveEBC(u(-1*index), y(-1*index), clean2,

Tu, Tz, Ad, Bd, Adelt, Bdelt, Tz_del, Tu_del, lambda);

naiveBC_z(:,j) = State_NaiveBC(u(-1*index), y(-1*index), Tu, Tz, Ad, Bd,

Adelt, Bdelt, Tz_del, Tu_del);

end

indices = 1:n + 2;

z = z(indices);

y = y(indices);

krein_z = krein_z(:,indices);

krein2_z = krein2_z(:,indices);

krein3_z = krein3_z(:,indices);

kalman_z = kalman_z(:,indices);

naive_z = naive_z(:,indices);

naiveBC_z = naiveBC_z(:,indices);

naiveE_z = naiveE_z(:,indices);

naiveEBC_z = naiveEBC_z(:,indices);

krein_ss = sum((krein_z(1,:)’ - z).^2) / (n-1);

krein2_ss = sum((krein2_z(1,:)’ - z).^2) / (n-1);

krein3_ss = sum((krein3_z(1,:)’ - z).^2) / (n-1);

kalm_ss = sum((kalman_z(1,:)’ - z).^2) / (n-1);

naive_ss = sum((naive_z(1,:)’ - z).^2) / (n-1);

naiveBC_ss = sum((naiveBC_z(1,:)’ - z).^2) / (n-1);

naiveE_ss = sum((naiveE_z(1,:)’ - z).^2) / (n-1);

naiveEBC_ss = sum((naiveEBC_z(1,:)’ - z).^2) / (n-1);

mse = [krein_ss; krein2_ss; krein3_ss; kalm_ss; naive_ss;

naiveBC_ss; naiveE_ss; naiveEBC_ss];

return;

126

B.2 R Code

filenames52 <- scan(’C:/My Files/Thesis/Filenames/FilenamesMSE52noP2.txt’,

what=character())

len <- length(filenames52)

delta <- c(’-0.5’, ’0’, ’+0.5’)

Delta <- matrix(NA, nrow=len, ncol=4)

L <- 0

for(i in 1:3)

{for(j in 1:3)

{for(k in 1:3)

{for(m in 1:3)

{

L <- L + 1

Delta[L,] <- c(i,j,k,m)

}}}}

filenameplot <- scan(’C:/My Files/Thesis/Filenames/FilenamesPlots52two.txt’,

what=character())

for(i in 1:len)

{

trellis.par.set(box.umbrella = list(lty = 1))

A = as.numeric(delta[Delta[i,1]])

B = as.numeric(delta[Delta[i,2]])

C = as.numeric(delta[Delta[i,3]])

D = as.numeric(delta[Delta[i,4]])

data <- scan(filenames52[i], quiet=TRUE)

data <- matrix(data, ncol=8)

grp <- c(’K1’,’K2’,’K3’,’K4’,’N’,’NBC’,’NE’,’NEBC’)

grp <- as.factor(rep(grp, each=100))

png(file=filenameplot[i], width=600, height=480)

print(

bwplot(c(data)~grp, ylab=’MSE’, pch=19,

par.settings = list(plot.symbol = list(pch = "+")),

main=eval(substitute(expression(paste(’ ’, delta[phi[1]],

" = ", tval, ’ | ’,

delta[phi[2]], ’ = ’, tval2, ’ | ’,

delta[theta[1]], ’ = ’, tval3, ’ | ’,

delta[theta[2]], ’ = ’, tval4,)),

list(tval=A, tval2=B, tval3=C, tval4=D))))

)

dev.print(file=filenameplot[i], device=png, width=600, height=480)

dev.off()

}

filenames12 <- scan(’C:/My Files/Thesis/Filenames/FilenamesMSE12noP2.txt’,

what=character())

len <- length(filenames12)

delta <- c(’-0.5’, ’0’, ’+0.5’)

Delta <- matrix(NA, nrow=len, ncol=4)

L <- 0

for(i in 1:3)

{for(j in 1:3)

{for(k in 1:3)

{for(m in 1:3)

{

L <- L + 1

Delta[L,] <- c(i,j,k,m)

}}}}

filenameplot <- scan(’C:/My Files/Thesis/Filenames/FilenamesPlots12two.txt’,

what=character())

for(i in 1:len)

{

trellis.par.set(box.umbrella = list(lty = 1))

A = as.numeric(delta[Delta[i,1]])

B = as.numeric(delta[Delta[i,2]])

C = as.numeric(delta[Delta[i,3]])

D = as.numeric(delta[Delta[i,4]])

data <- scan(filenames12[i], quiet=TRUE)

127

data <- matrix(data, ncol=8)

grp <- c(’K1’,’K2’,’K3’,’K4’,’N’,’NBC’,’NE’,’NEBC’)

grp <- as.factor(rep(grp, each=100))

png(file=filenameplot[i], width=600, height=480)

print(

bwplot(c(data)~grp, ylab=’MSE’, pch=19,

par.settings = list(plot.symbol = list(pch = "+")),

main=eval(substitute(expression(paste(’ ’, delta[phi[1]],

" = ", tval, ’ | ’,

delta[phi[2]], ’ = ’, tval2, ’ | ’,

delta[theta[1]], ’ = ’, tval3, ’ | ’,

delta[theta[2]], ’ = ’, tval4,)),

list(tval=A, tval2=B, tval3=C, tval4=D))))

)

dev.print(file=filenameplot[i], device=png, width=600, height=480)

dev.off()

}

Compile data for GLM usage.

comb <- matrix(NA, nrow=(81*8), ncol=5)

L <- 0

for(i in 1:3)

{for(j in 1:3)

{for(k in 1:3)

{for(l in 1:3)

{for(m in 1:8)

{

L <- L + 1

comb[L,] <- c(i, j, k, l, m)

}}}}}

filenames52 <- scan(’C:/My Files/Thesis/Filenames/FilenamesMSE52noP2.txt’,

what=character())

len <- length(filenames52)

data52 <- matrix(NA, nrow=len*100*8, ncol=6)

ind <- list()

for(i in 1:len)

{

print(i)

mx <- 100*8*i

ind1 <- 8*i

mn <- mx - 100*8

ind2 <- ind1-8

ind[[i]] <- (mn+1):mx

dat <- scan(filenames52[i], quiet=TRUE)

dat <- c(matrix(dat, ncol=8))

Comb <- matrix(rep(comb[(ind2+1):ind1,], each=100), nrow=8*100)

data52[ind[[i]],1] <- dat

data52[ind[[i]],2:6] <- Comb

}

filenames12 <- scan(’C:/My Files/Thesis/Filenames/FilenamesMSE12noP2.txt’,

what=character())

len <- length(filenames12)

data12 <- matrix(NA, nrow=len*100*8, ncol=6)

ind <- list()

for(i in 1:len)

{

print(i)

mx <- 100*8*i

ind1 <- 8*i

mn <- mx - 100*8

ind2 <- ind1-8

128

ind[[i]] <- (mn+1):mx

dat <- scan(filenames12[i], quiet=TRUE)

dat <- c(matrix(dat, ncol=8))

Comb <- matrix(rep(comb[(ind2+1):ind1,], each=100), nrow=8*100)

data12[ind[[i]],1] <- dat

data12[ind[[i]],2:6] <- Comb

}

NR <- nrow(data52)

Data <- cbind(rbind(data12, data52), rep(c(1,2), each=NR))

The following function creates the essence matrix for use with converting

from the reference cell coding to cell means. It can really be used for

other reasons as well, pre-multiplying the essence matrix from model.matrix

by the coefficients will produce cell means for any coding scheme for model

fit. It is also useful for just viewing the X or design matrix to see what

the fit is doing and should be compatible with most linear fit functions in R.

essence.X <- function(fit)

{

X <- model.matrix(fit)

nc <- ncol(X)

X <- unique(apply(X, 1, function(x) paste(x, collapse=’:’)))

matrix(as.numeric(unlist(strsplit(X, split=’:’))), ncol=nc, byrow=TRUE)

}

y <- Data[,1]

pd1 <- as.factor(Data[,2])

pd2 <- as.factor(Data[,3])

td1 <- as.factor(Data[,4])

td2 <- as.factor(Data[,5])

flt <- as.factor(Data[,6])

ssz <- as.factor(Data[,7])

Fit a Generalized Linear Model with main effects and first order interactions.

#options(contrasts=c(’contr.treatment’,’contr.sum’)) # Doesn’t work, (too little memory to do effects in model).

The R default contr.treatment, which is used here for ’ordered’, since we have ordered data by factor in

the model. This default uses the first level of factors as the reference cell.

gc()

options(contrasts=c(’contr.treatment’,’contr.treatment’))

fit <- lm(y ~ pd1 + pd2 + td1 + td2 + flt + ssz +

pd1:pd2 + pd1:td1 + pd1:td2 + pd1:flt + pd1:ssz +

pd2:td1 + pd2:td2 + pd2:flt + pd2:ssz +

td1:td2 + td1:flt + td2:ssz +

td2:flt + td2:ssz +

flt:ssz)

gc()

parse the data and do a biglm

library(biglm)

options(contrasts=c(’contr.sum’,’contr.sum’))

#options(contrasts=c(’contr.treatment’,’contr.treatment’))

indx <- seq(1, 129600, by=100)

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

129

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

ff <- y ~ a + b + c + d + e + f +

a:b + a:c + a:d + a:e + a:f +

b:c + b:d + b:e + b:f +

c:d + c:e + c:f +

d:e + d:f +

e:f

bigfit <- biglm(ff,Data2)

for(i in 2:99)

{

print(i)

indx <- seq(1, 129600, by=100) + i

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

bigfit <- update(bigfit,Data2)

}

options(contrasts=c(’contr.sum’,’contr.sum’))

#options(contrasts=c(’contr.treatment’,’contr.treatment’))

indx <- seq(1, 129600, by=100)

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

ff2 <- y ~ a:b:c:d:e:f - 1

bigfitcm <- biglm(ff2,Data2)

for(i in 2:99)

{

print(i)

indx <- seq(1, 129600, by=100) + i

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

130

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

bigfitcm <- update(bigfitcm,Data2)

}

smry <- summary(fit)

infer <- smry$fstatistic

pval <- 1 - pf(infer[1], infer[2], infer[3])

This anova() for reference cell should produce the exact same output

as the effects coding anova.

anvfit <- anova(fit)

smryeffects <- summary(bigfit)

smrycm <- summary(bigfitcm)

datinfer <- smryeffects$mat

pltdat <- datinfer[,1:3]

pval <- datinfer[,5]

mx <- max(pltdat[,3])

mn <- min(pltdat[,2])

nrp <- nrow(pltdat)

plot(pltdat[2,2], nrp, pch=’(’, col=’blue’, xlim=c(mn, mx), cex=1,

ylim=c(0, (nrp+20)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Parameter Effect On MSE’, main=’95% Confidence Intervals’)

alph <- 0.05

for(i in 2:nrp)

{

if(i <= 17 & pval[i] < alph)

{

Col <- ’blue’

cex1 <- 0.75

}

if(i <= 17 & pval[i] >= alph)

{

Col <- ’red’

cex1 <- 1.25

}

if(i > 17 & pval[i] < alph)

{

Col <- ’purple’

cex1 <- 0.75

}

if(i > 17 & pval[i] >= alph)

{

Col <- ’red’

cex1 <- 1.25

}

points(pltdat[i,2], nrp-i, pch=’(’, col=Col, cex=cex1)

points(pltdat[i,3], nrp-i, pch=’)’, col=Col, cex=cex1)

}

abline(h=nrp-17.5, lty=2)

mtext(side=2, at=(nrp+20-15), text=’Main Effects’, col=’blue’, line=1)

mtext(side=2, at=(nrp-17.5)/2, text=’2-Way Interactions’,

col=’purple’, line=1)

axis(1, pretty(c(mn, mx)), pretty(c(mn, mx)))

abline(v=0, lty=3)

box()

legend(’bottomright’, c(expression(paste(H[o], ’ Both’)),

expression(paste(H[a], ’ Main Effect’)),

expression(paste(H[a], ’ Interaction’))), col=c(’red’,’blue’,’purple’),

131

pch=c(19,19,19), bty=’n’)

cfcm <- as.numeric(smrycm$mat[,1])

matflte <- diag(1,8)

matflt1 <- c(1,-1,0,0,0,0,0,0)

matflt2 <- c(1,0,-1,0,0,0,0,0)

matflt3 <- c(1,0,0,-1,0,0,0,0)

matflt4 <- c(1,0,0,0,-1,0,0,0)

matflt5 <- c(1,0,0,0,0,-1,0,0)

matflt6 <- c(1,0,0,0,0,0,-1,0)

matflt7 <- c(1,0,0,0,0,0,0,-1)

matflt <- rbind(matflt1,matflt2,matflt3,matflt4,matflt5,matflt6,matflt7)

contr.flt <- t(c(1,1)) %x% matflt %x% t(rep(1, 81))/(3^4*2)

contr.flte <- t(c(1,1)) %x% matflte %x% t(rep(1, 81))/(3^4*2)

X <- model.matrix(bigfitcm)

estfltcont <- contr.flt %*% as.matrix(cfcm)

estflt <- contr.flte %*% as.matrix(cfcm)

contr.ssz <- c(1,-1) %x% rep(1,3^4*8)/(3^4*8)

inter.ssz <- matrix(NA, 7, 1296)

n <- 129600

p <- 3^4*8*2

dendf <- (p*(n-1))

sigsq <- smrycmobjqr$ss/dendf

for(i in 1:7)

{

inter.ssz[i,] <- t(as.matrix(contr.flt[i,]) * as.matrix(contr.ssz))

}

tt <- numeric(7)

ptt <- numeric(7)

rr <- qr(inter.ssz)$rank

CC.int <- inter.ssz

est.int <- CC.int%*%cfcm

F.int <- (t(CC.int%*%cfcm)%*%solve(CC.int%*%solve(t(X)%*%X)%*%t(CC.int))%*%CC.int%*%cfcm/rr)/sigsq

pv.int <- 1-pf(F.int, rr, dendf)

low.int <- numeric(7)

up.int <- numeric(7)

Fstat.int <- qf(1-0.05, rr, dendf)

for(i in 1:7)

{

tval <- qt(1-0.05/2, dendf)

low.int[i] <- est.int[i] - sqrt(sigsq*t(c(CC.int[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.int[i,]))*tval

up.int[i] <- est.int[i] + sqrt(sigsq*t(c(CC.int[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.int[i,]))*tval

tt[i] <- est.int[i] / sqrt(sigsq*t(c(CC.int[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.int[i,]))

ptt[i] <- 1-pt(abs(tt[i]), dendf)

}

cc113 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(1,0,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc123 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,1,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc133 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,0,1)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc213 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(1,0,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc223 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,1,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc233 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,0,1)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc313 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(1,0,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc323 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,1,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc333 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,0,1)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

132

cc413 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(1,0,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc423 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,1,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc433 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,0,1)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,1,0,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

CC1.3 <- rbind(cc113,cc123,cc133)

CC2.3 <- rbind(cc213,cc223,cc233)

CC3.3 <- rbind(cc313,cc323,cc333)

CC4.3 <- rbind(cc413,cc423,cc433)

int1.3 <- CC1.3%*%cfcm

int2.3 <- CC2.3%*%cfcm

int3.3 <- CC3.3%*%cfcm

int4.3 <- CC4.3%*%cfcm

tt.3 <- numeric(12)

ptt.3 <- numeric(12)

rr1.3 <- qr(CC1.3)$rank

F1.3 <- (t(CC1.3%*%cfcm)%*%solve(CC1.3%*%solve(t(X)%*%X)%*%t(CC1.3))%*%CC1.3%*%cfcm/rr1.3)/sigsq

pv1.3 <- 1-pf(F1.3, rr1.3, dendf)

rr2.3 <- qr(CC2.3)$rank

F2.3 <- (t(CC2.3%*%cfcm)%*%solve(CC2.3%*%solve(t(X)%*%X)%*%t(CC2.3))%*%CC2.3%*%cfcm/rr2.3)/sigsq

pv2.3 <- 1-pf(F2.3, rr2.3, dendf)

rr3.3 <- qr(CC3.3)$rank

F3.3 <- (t(CC3.3%*%cfcm)%*%solve(CC3.3%*%solve(t(X)%*%X)%*%t(CC3.3))%*%CC3.3%*%cfcm/rr3.3)/sigsq

pv3.3 <- 1-pf(F3.3, rr3.3, dendf)

rr4.3 <- qr(CC4.3)$rank

F4.3 <- (t(CC4.3%*%cfcm)%*%solve(CC4.3%*%solve(t(X)%*%X)%*%t(CC4.3))%*%CC4.3%*%cfcm/rr4.3)/sigsq

pv4.3 <- 1-pf(F4.3, rr4.3, dendf)

low.int.3 <- numeric(12)

up.int.3 <- numeric(12)

CC.3 <- rbind(CC1.3,CC2.3,CC3.3,CC4.3)

int.3 <- c(int1.3,int2.3,int3.3,int4.3)

for(i in 1:12)

{

tval <- qt(1-0.05/2, dendf)

low.int.3[i] <- int.3[i] - sqrt(sigsq*t(c(CC.3[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.3[i,]))*tval

up.int.3[i] <- int.3[i] + sqrt(sigsq*t(c(CC.3[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.3[i,]))*tval

tt.3[i] <- int.3[i] / sqrt(sigsq*t(c(CC.3[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.3[i,]))

ptt.3[i] <- 1-pt(abs(tt.3[i]), dendf)

}

cc118 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(1,0,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc128 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,1,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc138 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,0,1)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc218 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(1,0,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc228 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,1,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc238 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,0,1)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc318 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(1,0,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc328 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,1,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc338 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,0,1)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc418 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(1,0,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc428 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,1,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

cc438 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,0,1)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,0,0,0,0,1)%x%rep(1, 3^4)/(3^4*2))

133

CC1.8 <- rbind(cc118,cc128,cc138)

CC2.8 <- rbind(cc218,cc228,cc238)

CC3.8 <- rbind(cc318,cc328,cc338)

CC4.8 <- rbind(cc418,cc428,cc438)

int1.8 <- CC1.8%*%cfcm

int2.8 <- CC2.8%*%cfcm

int3.8 <- CC3.8%*%cfcm

int4.8 <- CC4.8%*%cfcm

tt.8 <- numeric(12)

ptt.8 <- numeric(12)

rr1.8 <- qr(CC1.8)$rank

F1.8 <- (t(CC1.8%*%cfcm)%*%solve(CC1.8%*%solve(t(X)%*%X)%*%t(CC1.8))%*%CC1.8%*%cfcm/rr1.8)/sigsq

pv1.8 <- 1-pf(F1.8, rr1.8, dendf)

rr2.8 <- qr(CC2.8)$rank

F2.8 <- (t(CC2.8%*%cfcm)%*%solve(CC2.8%*%solve(t(X)%*%X)%*%t(CC2.8))%*%CC2.8%*%cfcm/rr2.8)/sigsq

pv2.8 <- 1-pf(F2.8, rr2.8, dendf)

rr3.8 <- qr(CC3.8)$rank

F3.8 <- (t(CC3.8%*%cfcm)%*%solve(CC3.8%*%solve(t(X)%*%X)%*%t(CC3.8))%*%CC3.8%*%cfcm/rr3.8)/sigsq

pv3.8 <- 1-pf(F3.8, rr3.8, dendf)

rr4.8 <- qr(CC4.8)$rank

F4.8 <- (t(CC4.8%*%cfcm)%*%solve(CC4.8%*%solve(t(X)%*%X)%*%t(CC4.8))%*%CC4.8%*%cfcm/rr4.8)/sigsq

pv4.8 <- 1-pf(F4.8, rr4.8, dendf)

low.int.8 <- numeric(12)

up.int.8 <- numeric(12)

CC.8 <- rbind(CC1.8,CC2.8,CC3.8,CC4.8)

int.8 <- c(int1.8,int2.8,int3.8,int4.8)

for(i in 1:12)

{

tval <- qt(1-0.05/2, dendf)

low.int.8[i] <- int.8[i] - sqrt(sigsq*t(c(CC.8[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.8[i,]))*tval

up.int.8[i] <- int.8[i] + sqrt(sigsq*t(c(CC.8[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.8[i,]))*tval

tt.8[i] <- int.8[i] / sqrt(sigsq*t(c(CC.8[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.8[i,]))

ptt.8[i] <- 1-pt(abs(tt.8[i]), dendf)

}

cc114 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(1,0,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc124 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,1,0)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc134 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^3*8*2)%x%c(0,0,1)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc214 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(1,0,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc224 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,1,0)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc234 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3^2*8*2)%x%c(0,0,1)%x%rep(1,3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc314 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(1,0,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc324 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,1,0)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc334 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 3*8*2)%x%c(0,0,1)%x%rep(1,3^2)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc414 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(1,0,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc424 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,1,0)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

cc434 <- (rep(1, 1296)/1296 - contr.flte[3,]) - (rep(1, 8*2)%x%c(0,0,1)%x%rep(1,3^3)/(3^3*8*2) -

c(1,1)%x%c(0,0,0,1,0,0,0,0)%x%rep(1, 3^4)/(3^4*2))

CC1.4 <- rbind(cc114,cc124,cc134)

CC2.4 <- rbind(cc214,cc224,cc234)

CC3.4 <- rbind(cc314,cc324,cc334)

CC4.4 <- rbind(cc414,cc424,cc434)

int1.4 <- CC1.4%*%cfcm

134

int2.4 <- CC2.4%*%cfcm

int3.4 <- CC3.4%*%cfcm

int4.4 <- CC4.4%*%cfcm

tt.4 <- numeric(12)

ptt.4 <- numeric(12)

rr1.4 <- qr(CC1.4)$rank

F1.4 <- (t(CC1.4%*%cfcm)%*%solve(CC1.4%*%solve(t(X)%*%X)%*%t(CC1.4))%*%CC1.4%*%cfcm/rr1.4)/sigsq

pv1.4 <- 1-pf(F1.4, rr1.4, dendf)

rr2.4 <- qr(CC2.4)$rank

F2.4 <- (t(CC2.4%*%cfcm)%*%solve(CC2.4%*%solve(t(X)%*%X)%*%t(CC2.4))%*%CC2.4%*%cfcm/rr2.4)/sigsq

pv2.4 <- 1-pf(F2.4, rr2.4, dendf)

rr3.4 <- qr(CC3.4)$rank

F3.4 <- (t(CC3.4%*%cfcm)%*%solve(CC3.4%*%solve(t(X)%*%X)%*%t(CC3.4))%*%CC3.4%*%cfcm/rr3.4)/sigsq

pv3.4 <- 1-pf(F3.4, rr3.4, dendf)

rr4.4 <- qr(CC4.4)$rank

F4.4 <- (t(CC4.4%*%cfcm)%*%solve(CC4.4%*%solve(t(X)%*%X)%*%t(CC4.4))%*%CC4.4%*%cfcm/rr4.4)/sigsq

pv4.4 <- 1-pf(F4.4, rr4.4, dendf)

low.int.4 <- numeric(12)

up.int.4 <- numeric(12)

CC.4 <- rbind(CC1.4,CC2.4,CC3.4,CC4.4)

int.4 <- c(int1.4,int2.4,int3.4,int4.4)

for(i in 1:12)

{

tval <- qt(1-0.05/2, dendf)

low.int.4[i] <- int.4[i] - sqrt(sigsq*t(c(CC.4[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.4[i,]))*tval

up.int.4[i] <- int.4[i] + sqrt(sigsq*t(c(CC.4[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.4[i,]))*tval

tt.4[i] <- int.4[i] / sqrt(sigsq*t(c(CC.4[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.4[i,]))

ptt.4[i] <- 1-pt(abs(tt.4[i]), dendf)

}

contr.flt12 <- t(c(1,0)) %x% matflt %x% t(rep(1, 81))/(3^4)

contr.flte12 <- t(c(1,0)) %x% matflte %x% t(rep(1, 81))/(3^4)

contr.flt52 <- t(c(0,1)) %x% matflt %x% t(rep(1, 81))/(3^4)

contr.flte52 <- t(c(0,1)) %x% matflte %x% t(rep(1, 81))/(3^4)

estfltcont12 <- contr.flt12 %*% as.matrix(cfcm)

estflt12 <- contr.flte12 %*% as.matrix(cfcm)

estfltcont52 <- contr.flt52 %*% as.matrix(cfcm)

estflt52 <- contr.flte52 %*% as.matrix(cfcm)

m <- qr(matflt)$rank

me <- qr(matflte)$rank

n <- 129600

p <- 3^4*8*2

dendf <- (p*(n-1))

sigsq <- smrycmobjqr$ss/dendf

General test of contrasts

CC <- contr.flt

F <- (t(CC%*%cfcm)%*%solve(CC%*%solve(t(X)%*%X)%*%t(CC))%*%CC%*%cfcm/m)/sigsq

pv <- 1-pf(F, m, dendf)

CCe <- contr.flte

Fe <- (t(CCe%*%cfcm)%*%solve(CCe%*%solve(t(X)%*%X)%*%t(CCe))%*%CCe%*%cfcm/me)/sigsq

pve <- 1-pf(Fe, me, dendf)

CC12 <- contr.flt12

CCe12 <- contr.flte12

CC52 <- contr.flt52

CCe52 <- contr.flte52

up <- numeric(8)

low <- numeric(8)

tt <- numeric(8)

ptt <- numeric(8)

for(i in 1:8)

{

tval <- qt(1-0.05/2, dendf)

135

low[i] <- estflt[i] - sqrt(sigsq*t(c(CCe[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe[i,]))*tval

up[i] <- estflt[i] + sqrt(sigsq*t(c(CCe[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe[i,]))*tval

tt[i] <- estflt[i] / sqrt(sigsq*t(c(CCe[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe[i,]))

ptt[i] <- 1-pt(abs(tt[i]), dendf)

}

mx <- max(up)

mn <- min(low)

nrp <- nrow(estflt)

plot(estflt[1,1], nrp, pch=’(’, col=’blue’, xlim=c(0, mx), cex=1,

ylim=c(0, (nrp)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low, nrp:1, pch=’(’, col=’blue’, cex=1)

points(estflt, nrp:1, pch=’+’, col=’red’, cex=0.75)

points(up, nrp:1, pch=’)’, col=’blue’, cex=1)

axis(side=2, nrp:1, c(’K1’,’K2’,’K3’,’K4’,’N’,’NBC’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(0, mx), n=8), pretty(c(0, mx), n=8))

abline(v=pretty(c(0, mx), n=8), lty=3, col=’lightgrey’)

box()

mx <- max(up[c(2,3,7,8)])

mn <- min(low[c(2,3,7,8)])

plot(estflt[1,1], (nrp-4), pch=’(’, col=’blue’, xlim=c(mn, mx), cex=1,

ylim=c(0, (nrp-4+1)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt[c(2,3,7,8)], (nrp-4):1, pch=’+’, col=’red’, cex=1.25)

points(up[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’blue’, cex=1.25)

axis(side=2, (nrp-4):1, c(’K2’,’K3’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(mn, mx), n=6), pretty(c(mn, mx), n=6))

abline(v=pretty(c(mn, mx), n=8), lty=3, col=’lightgrey’)

box()

CC2v7 <- contr.flt[1,] - contr.flt[6,]

CC7v8 <- contr.flt[6,] - contr.flt[7,]

CC3v8 <- contr.flt[2,] - contr.flt[7,]

CC28 <- rbind(CC2v7,CC7v8,CC3v8)

Fe2 <- (t(CC28%*%cfcm)%*%solve(CC28%*%solve(t(X)%*%X)%*%t(CC28))%*%CC28%*%cfcm/qr(CC28)$rank)/sigsq

r <- qr(CC28)$rank

pve2 <- 1-pf(Fe2, r, dendf)

tte2 <- numeric(3)

TTe2 <- numeric(3)

ptte2 <- numeric(3)

for(i in 1:3)

{

tte2[i] <- t(c(CC28[i,]))%*%cfcm / sqrt(sigsq*t(c(CC28[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC28[i,]))

ptte2[i] <- 2*(1-pt(abs(tte2[i]), dendf))

TTe2[i] <- qt(1-0.05/(2*r), dendf)

}

up12 <- numeric(8)

low12 <- numeric(8)

tt12 <- numeric(8)

ptt12 <- numeric(8)

for(i in 1:8)

{

tval <- qt(1-0.05/2, dendf)

low12[i] <- estflt12[i] - sqrt(sigsq*t(c(CCe12[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe12[i,]))*tval

up12[i] <- estflt12[i] + sqrt(sigsq*t(c(CCe12[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe12[i,]))*tval

tt12[i] <- estflt12[i] / sqrt(sigsq*t(c(CCe12[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe12[i,]))

ptt12[i] <- 1-pt(abs(tt12[i]), dendf)

}

mx <- max(up12)

mn <- min(low12)

nrp <- nrow(estflt12)

136

plot(estflt12[1,1], nrp, pch=’(’, col=’blue’, xlim=c(0, mx), cex=1,

ylim=c(0, (nrp)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low12, nrp:1, pch=’(’, col=’blue’, cex=1.25)

points(estflt12, nrp:1, pch=’+’, col=’red’, cex=1)

points(up12, nrp:1, pch=’)’, col=’blue’, cex=1.25)

for(i in 1:nrp) lines(cbind(estflt,estflt12)[i,], cbind(nrp:1,nrp:1)[i,], lty=2)

axis(side=2, nrp:1, c(’K1’,’K2’,’K3’,’K4’,’N’,’NBC’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(0, mx), n=8), pretty(c(0, mx), n=8))

abline(v=pretty(c(0, mx), n=8), lty=3, col=’lightgrey’)

box()

mx <- max(up12[c(2,3,7,8)])

mn <- min(low[c(2,3,7,8)])

plot(estflt12[1,1], (nrp-4), pch=’(’, col=’blue’, xlim=c(mn, mx), cex=1,

ylim=c(0, (nrp-4+1)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low12[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt12[c(2,3,7,8)], (nrp-4):1, pch=’+’, col=’red’, cex=1.25)

points(up12[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’blue’, cex=1.25)

for(i in 1:(nrp-4)) lines(cbind(estflt[c(2,3,7,8)],estflt12[c(2,3,7,8)])[i,],

cbind((nrp-4):1,(nrp-4):1)[i,], lty=2)

axis(side=2, (nrp-4):1, c(’K2’,’K3’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(mn, mx), n=6), pretty(c(mn, mx), n=6))

abline(v=pretty(c(mn, mx), n=8), lty=3, col=’lightgrey’)

box()

CC2v712 <- contr.flt12[1,] - contr.flt12[6,]

CC7v812 <- contr.flt12[6,] - contr.flt12[7,]

CC3v812 <- contr.flt12[2,] - contr.flt12[7,]

CC2812 <- rbind(CC2v712,CC7v812,CC3v812)

Fe212 <- (t(CC2812%*%cfcm)%*%solve(CC2812%*%solve(t(X)%*%X)%*%t(CC2812))%*%CC2812%*%cfcm/qr(CC2812)$rank)/sigsq

r <- qr(CC2812)$rank

pve212 <- 1-pf(Fe212, r, dendf)

tte212 <- numeric(3)

TTe212 <- numeric(3)

ptte212 <- numeric(3)

for(i in 1:3)

{

tte212[i] <- t(c(CC2812[i,]))%*%cfcm / sqrt(sigsq*t(c(CC2812[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC2812[i,]))

ptte212[i] <- 2*(1-pt(abs(tte212[i]), dendf))

TTe212[i] <- qt(1-0.05/(2*r), dendf)

}

up52 <- numeric(8)

low52 <- numeric(8)

tt52 <- numeric(8)

ptt52 <- numeric(8)

for(i in 1:8)

{

tval <- qt(1-0.05/2, dendf)

low52[i] <- estflt52[i] - sqrt(sigsq*t(c(CCe52[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe52[i,]))*tval

up52[i] <- estflt52[i] + sqrt(sigsq*t(c(CCe52[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe52[i,]))*tval

tt52[i] <- estflt52[i] / sqrt(sigsq*t(c(CCe52[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe52[i,]))

ptt52[i] <- 1-pt(abs(tt52[i]), dendf)

}

mx <- max(up52)

mn <- min(low52)

nrp <- nrow(estflt12)

plot(estflt52[1,1], nrp, pch=’(’, col=’blue’, xlim=c(0, mx), cex=1,

ylim=c(0, (nrp)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low52, nrp:1, pch=’(’, col=’blue’, cex=1.25)

points(estflt52, nrp:1, pch=’+’, col=’red’, cex=1)

points(up52, nrp:1, pch=’)’, col=’blue’, cex=1.25)

for(i in 1:nrp) lines(cbind(estflt,estflt52)[i,], cbind(nrp:1,nrp:1)[i,], lty=2)

137

axis(side=2, nrp:1, c(’K1’,’K2’,’K3’,’K4’,’N’,’NBC’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(0, mx), n=8), pretty(c(0, mx), n=8))

abline(v=pretty(c(0, mx), n=8), lty=3, col=’lightgrey’)

box()

mx <- max(up[c(2,3,7,8)])

mn <- min(low52[c(2,3,7,8)])

plot(estflt52[1,1], (nrp-4), pch=’(’, col=’blue’, xlim=c(mn, mx), cex=1,

ylim=c(0, (nrp-4+1)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

points(low52[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt52[c(2,3,7,8)], (nrp-4):1, pch=’+’, col=’red’, cex=1.25)

points(up52[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’blue’, cex=1.25)

for(i in 1:(nrp-4)) lines(cbind(estflt[c(2,3,7,8)],estflt52[c(2,3,7,8)])[i,],

cbind((nrp-4):1,(nrp-4):1)[i,], lty=2)

axis(side=2, (nrp-4):1, c(’K2’,’K3’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(mn, mx), n=6), pretty(c(mn, mx), n=6))

abline(v=pretty(c(mn, mx), n=8), lty=3, col=’lightgrey’)

box()

mx <- max(up12[c(2,3,7,8)])

mn <- min(low52[c(2,3,7,8)])

plot(estflt52[1,1], (nrp-4), pch=’(’, col=’blue’, xlim=c(mn, mx), cex=1,

ylim=c(0, (nrp-4+1)), type=’n’, axes=FALSE, ylab=’’,

xlab=’Filter MSE’)

#points(low[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt[c(2,3,7,8)], (nrp-4):1, pch=’|’, col=’blue’, cex=1.5)

#points(up[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’black’, cex=1.25)

#points(low12[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt12[c(2,3,7,8)], (nrp-4):1, pch=’+’, col=’red’, cex=2)

#points(up12[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’blue’, cex=1.25)

#points(low52[c(2,3,7,8)], (nrp-4):1, pch=’(’, col=’blue’, cex=1.25)

points(estflt52[c(2,3,7,8)], (nrp-4):1, pch=’*’, col=’green’, cex=2)

#points(up52[c(2,3,7,8)], (nrp-4):1, pch=’)’, col=’blue’, cex=1.25)

for(i in 1:(nrp-4)) lines(cbind(estflt[c(2,3,7,8)],estflt12[c(2,3,7,8)])[i,],

cbind((nrp-4):1,(nrp-4):1)[i,], lty=2, col=’black’)

for(i in 1:(nrp-4)) lines(cbind(estflt[c(2,3,7,8)],estflt52[c(2,3,7,8)])[i,],

cbind((nrp-4):1,(nrp-4):1)[i,], lty=2, col=’black’)

axis(side=2, (nrp-4):1, c(’K2’,’K3’,’NE’,’NEBC’), las=2)

axis(1, pretty(c(mn, mx), n=6), pretty(c(mn, mx), n=6))

abline(v=pretty(c(mn, mx), n=8), lty=3, col=’lightgrey’)

legend(’topleft’, c(’Trace of 12’,’Overall’,’Trace of 52’), pch=c(’+’,’|’,’*’),

col=c(’red’,’blue’,’green’), bty=’n’)

box()

CC2v752 <- contr.flt52[1,] - contr.flt52[6,]

CC7v852 <- contr.flt52[6,] - contr.flt52[7,]

CC3v852 <- contr.flt52[2,] - contr.flt52[7,]

CC2852 <- rbind(CC2v752,CC7v852,CC3v852)

Fe252 <- (t(CC2852%*%cfcm)%*%solve(CC2852%*%solve(t(X)%*%X)%*%t(CC2852))%*%CC2852%*%cfcm/qr(CC2852)$rank)/sigsq

r <- qr(CC2852)$rank

pve252 <- 1-pf(Fe252, r, dendf)

tte252 <- numeric(3)

TTe252 <- numeric(3)

ptte252 <- numeric(3)

for(i in 1:3)

{

tte252[i] <- t(c(CC2852[i,]))%*%cfcm / sqrt(sigsq*t(c(CC2852[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC2852[i,]))

ptte252[i] <- 2*(1-pt(abs(tte252[i]), dendf))

TTe252[i] <- qt(1-0.05/(2*r), dendf)

}

cc.lam2 <- matrix(c(1, -1, 0, 1, 0, -1), nrow=2, byrow=TRUE)

138

CC.lam2 <- t(rep(1, 8*2)) %x% cc.lam2 %x% t(rep(1,3^3))

cce.lam2 <- diag(1, 3)

plam2 <- 3^3 * 8 * 2

CCe.lam2 <- t(rep(1, 8*2)) %x% cce.lam2 %x% t(rep(1,3^3)) / plam2

estlam2 <- CCe.lam2%*%cfcm

lowlam <- numeric(3)

uplam <- numeric(3)

for(i in 1:3)

{

tval <- qt(1-0.05/2, dendf)

lowlam[i] <- estlam2[i] - sqrt(sigsq*t(c(CCe.lam2[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe.lam2[i,]))*tval

uplam[i] <- estlam2[i] + sqrt(sigsq*t(c(CCe.lam2[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CCe.lam2[i,]))*tval

}

MSE <- t(smryeffects$mat[1,])

Fcc.lam2 <- (t(CC.lam2%*%cfcm)%*%solve(CC.lam2%*%solve(t(X)%*%X)%*%t(CC.lam2))%*%CC.lam2%*%cfcm/qr(CC.lam2)$rank)/sigsq

r <- qr(CC.lam2)$rank

pcc <- 1-pf(Fcc.lam2, r, dendf)

ttcc <- numeric(2)

TTcc <- numeric(2)

pttcc <- numeric(2)

for(i in 1:2)

{

ttcc[i] <- t(c(CC.lam2[i,]))%*%cfcm / sqrt(sigsq*t(c(CC.lam2[i,]))%*%solve(t(X)%*%X)%*%as.matrix(CC.lam2[i,]))

pttcc[i] <- 2*(1-pt(abs(ttcc[i]), dendf))

TTcc[i] <- qt(1-0.05/(2*r), dendf)

}

To validate biglm does the same thing as lm.

options(contrasts=c(’contr.sum’,’contr.sum’))

indx <- seq(1, 129600, by=100)

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

ff <- y ~ a + b + a:b

bigfit2 <- biglm(ff,Data2)

for(i in 2:99)

{

indx <- seq(1, 129600, by=100) + i

data2 <- Data[indx,]

y <- data2[,1]

a <- as.factor(data2[,2])

b <- as.factor(data2[,3])

c <- as.factor(data2[,4])

d <- as.factor(data2[,5])

e <- as.factor(data2[,6])

f <- as.factor(data2[,7])

Data2 <- as.data.frame(cbind(y, a, b, c, d, e, f))

Data2$a <- as.factor(Data2$a)

139

Data2$b <- as.factor(Data2$b)

Data2$c <- as.factor(Data2$c)

Data2$d <- as.factor(Data2$d)

Data2$e <- as.factor(Data2$e)

Data2$f <- as.factor(Data2$f)

bigfit2 <- update(bigfit2,Data2)

}

y <- Data[,1]

fit2 <- lm(y ~ pd1*pd2)

140

	Brigham Young University
	BYU ScholarsArchive
	2008-06-18

	A Naive, Robust and Stable State Estimate
	Todd Gordon Remund
	BYU ScholarsArchive Citation

	1 INTRODUCTION
	1.1 The Idea of Robustness
	1.2 Robust Filters
	1.3 Kalman Type Filters
	1.4 Proposed Use of Markovian Representation

	2 LITERATURE REVIEW
	2.1 Recursive LS Type Filters
	2.1.1 Kalman Filter
	2.1.2 Krein Space Kalman Filter
	2.1.3 Minor Additions and Adjustments to the Krein Kalman

	2.2 Outliers

	3 PROBLEM AND SOLUTION DESCRIPTION
	3.1 The Problem of Poor Parameter Estimates
	3.2 Use of the Markovian Representation
	3.3 Different Degrees of Robustness
	3.3.1 High Level Robustness
	3.3.2 The Naive Filter

	4 DERIVATION OF THE NAIVE STATE VECTOR
	4.1 Preliminaries
	4.2 Derivation
	4.3 General Form of the Naive Filter
	4.4 Proof of the General Naive Filter
	4.5 Cases p > q and p < q

	5 ADJUSTED NAIVE FILTERS
	6 MSE SIMULATIONS
	7 RESULTS
	7.1 Overall Filter Comparison
	7.2 Filter Comparison by Trace Size
	7.3 Interaction Interpretation

	8 CONCLUSIONS
	APPENDIX A
	A.1 Trace Size 12
	A.2 Trace Size 52

	APPENDIX B
	B.1 Matlab
	B.1.1 State Estimate Functions
	B.1.2 Simulation Code

	B.2 R Code

