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ABSTRACT

TEMPORALLY CORRELATED DIRICHLET PROCESSES IN POLLUTION

RECEPTOR MODELING

Matthew J. Heaton

Department of Statistics

Master of Science

Understanding the effect of human-induced pollution on the environment is an

important precursor to promoting public health and environmental stability. One

aspect of understanding pollution is understanding pollution sources. Various meth-

ods have been used and developed to understand pollution sources and the amount

of pollution those sources emit. Multivariate receptor modeling seeks to estimate

pollution source profiles and pollution emissions from concentrations of pollutants

such as particulate matter (PM) in the air. Previous approaches to multivariate

receptor modeling make the following two key assumptions: (1) PM measurements

are independent and (2) source profiles are constant through time. Notwithstanding

these assumptions, the existence of temporal correlation among PM measurements

and time-varying source profiles is commonly accepted. In this thesis an approach

to multivariate receptor modeling is developed in which the temporal structure of

PM measurements is accounted for by modeling source profiles as a time-dependent

Dirichlet process. The Dirichlet process (DP) pollution model developed herein is

evaluated using several simulated data sets. In the presence of time-varying source



profiles, the DP model more accurately estimates source profiles and source contribu-

tions than other multivariate receptor model approaches. Additionally, when source

profiles are constant through time, the DP model outperforms other pollution receptor

models by more accurately estimating source profiles and source contributions.
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1. THE PROBLEM OF POLLUTION SOURCE APPORTIONMENT

1.1 Pollution Source Apportionment

In response to an increase in health concerns arising from ambient air parti-

cles, the Unites States Environmental Protection Agency (USEPA) established the

“supersites” program. As part of this program, sites were established throughout the

United States (Atlanta, St. Louis, etc.) to measure concentrations of various chem-

ical species in the air. Pollution Source Apportionment (PSA) derives information

regarding pollution sources from ambient air pollution data. Pollution source ap-

portionment has two main goals: (1) acquire information regarding pollution sources

through estimating pollution source profiles, and (2) estimate the contribution of each

source to measured ambient air pollution.

Identifying pollution sources is the first step and goal of PSA. The major con-

tributors to pollution can be identified by a unique pollution source profile. Let the

p-vector, λk = (λ1k, λ2k, . . . , λPk)
′, be the pollution source profile for the kth pollution

source. Each λpk ∈ λk represents the proportion of chemical p in pollution emitted

from source k. Hence,
∑P

p=1 λpk = 1 if all chemical species emitted from source k are

included in the pollution model, otherwise
∑P

p=1 λpk < 1. By obtaining estimates of

the vector λk, pollution sources can be identified by matching the chemical makeup

of pollution emitted from the given source to the estimated source profile.

After major pollution sources have been identified, PSA seeks to estimate the

contribution of that source to ambient air pollution. Let fkt represent the contribution

of the kth source to ambient air pollution at time t as measured from the pollution

receptor site. If fkt exceeds the USEPA’s legal limit, then the kth pollution source

can be assessed fines or other penalties for emitting too much pollution. Additionally,

tracking changes in fkt leads to an understanding of the amount of pollution being
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emitted by the regulatory bodies through time. Thus, obtaining accurate estimates of

fkt is important in regulating pollution emissions. If pollution emissions can be reg-

ulated, then health risks to the environment and the human population surrounding

pollution sources can be minimized. In these aspects, PSA is an important problem

to environmental stability and human health.

1.2 Pollution Sampling Methods

Data used in PSA are concentrations (in micrograms per cubic meter) of various

chemical species in ambient air. The supersites established as part of the USEPA’s

supersites program are rich sources of measured chemical concentrations in ambient

air. Chemicals are measured over different time periods, D; integration times, H;

and frequencies, R. While D can remain constant for all chemical species, H and

R vary from chemical to chemical. Typically, D ∈ {30 Days, . . . , 2 Years}, H ∈
{5 minutes, . . . , 24 hours}, and R ∈ {Continuous, Semi-continuous, 1 in 6 days}.

For example, consider measuring a single chemical over an integration time of

H = 1 hour and frequency R = continuous during some time period D. On day t ∈ D,

the chemical is allowed to accumulate on a filter continuously (R = Continuous) over

H = 1 hour intervals. At the end of each interval of length H, the weight of the

chemical on the filter is measured and reported. This process is continued for all

t ∈ D. For chemicals measured at a frequency of R = semi-continuous, measurements

are taken over a fraction of the integration time. For the St. Louis data set used

throughout this thesis D = 640 Days, H = 1 Hour, and R = Continuous.

Because chemical concentrations are measured over consecutive hours and days,

measurements are temporally correlated. Therefore, proper statistical modeling of

chemical concentrations needs to account for this correlation.
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1.3 The Basic PSA Model

The basic PSA model, first introduced by Winchester and Nifong (1971) and

Miller et al. (1972), is

ypt =
K∑

k=1

λpkfkt + ept; p = 1, . . . , P t = 1, . . . , N, (1.1)

where ypt is the concentration of the pth chemical species in ambient air measured

at time t, λpk is the proportion of the pth chemical from the kth source, fkt is the

contribution of the kth source to the atmospheric pollution at time t, ept is the model

error of the pth chemical at time t, K is the number of pollution sources, N is the

total number of time periods, and P is the total number of chemical species. Writing

Equation 1.1 in matrix notation yields

yt
P×1

= Λ
P×K

ft
K×1

+ et
P×1

, t = 1, . . . , N, (1.2)

where yt is the vector of P chemical species measured at time t, Λ is the matrix of

K pollution source profiles, and ft = (f1t, . . . , fKt)
′. Expanding Equation 1.1 to take

into account all N time periods, Equation 1.2 becomes

Y
P×N

= Λ
P×K

F
K×N

+ E
P×N

, (1.3)

where Y is the matrix of P chemical species measured over N time periods, Λ is

the matrix of pollution source profiles for the K different sources, F is the matrix

of source contributions at each of the N time periods, and E is the matrix of model

errors. The goal of PSA is to estimate Λ and F and hence acquire information about

pollution sources as discussed in Section 1.1.

Assumptions implied by the basic model proposed in Equation 1.3 are summa-

rized by Christensen and Gunst (2004) as the following:

(1) Each source profile is constant through time (Λt = Λ for t = 1, . . . , N).
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(2) Chemical species are additive.

(3) All influential sources are accounted for in the model.

(4) K is fixed through all time periods.

While methods which account for violations of these assumptions have been de-

veloped, most PSA research has been focused on the sensitivity of various methods to

violations of these assumptions (see Christensen and Gunst 2004). This thesis relaxes

the assumption that source profiles are constant over time (Assumption 1). The goal

of this thesis is to develop a model that allows source profiles to vary through time.

Mathematically speaking, Λt 6= Λ for all t. Relaxing this assumption makes intuitive

sense in that pollution sources will vary the relative amount of chemicals emitted

across time. For example, auto exhaust emissions vary in chemical composition from

day to day depending on the number of diesel trucks versus regular gasoline cars

being driven on a given day. Diesel truck emissions have a different chemical makeup

than gasoline vehicles. For these reasons, the source profile for auto emissions will

vary through time.

1.4 Difficulties in Pollution Source Apportionment

While the model proposed in Equation 1.3 is basic, the problem of pollution

source apportionment is quite complex. One particular problem is determining the

number of sources (K) to include in the model. If too many sources are included

in the model then the model over-fits the data. Additionally, including too many

sources in the model can lead to model identifiability problems. If too few sources are

included then some potentially important sources might have been overlooked. To

add to the difficulty in selecting K, the number of sources may not even be constant

over time due to factory closures and openings. Park et al. (1999) discusses various

methods for choosing the number of sources to include in the model. Lopes (2000)
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outlines a Bayesian approach to selecting the number of pollution sources through

the use of a reversible jump Markov chain Monte Carlo (MCMC) algorithm. The

problem of choosing the number of sources will not be addressed in this thesis.

Another potential problem in PSA is the temporal correlation present in the

chemical concentration vectors y1, . . . ,yN . This correlation could arise from associ-

ation among source contributions f1, . . . , fN or Λ being non-constant and correlated

over time, or both. Ignoring temporal correlation can lead to invalid standard errors

and goodness-of-fit tests (see Christensen and Sain 2002). In spite of this, most PSA

research has been done assuming chemical concentrations are uncorrelated. Some

research has been done, however, that attempts to model the correlation structure

present in the chemical concentrations (see Park et al. 2001).

One final difficulty in estimating source contributions is that estimates of Λ

and F are subject to non-negativity constraints. Negative source contributions and

negative source profiles have no meaning in PSA models. Positivity constraints are

difficult to accomodate using traditional estimation methods such as weighted least

squares (WLS) where negative contribution estimates are possible. Additionally,

source profiles (columns of Λ) need to sum to no more than 1. A few methods that

incorporate positivity constraints on Λ and F are discussed in Chapter 2.

1.5 A Bayesian Approach to PSA through Dynamic Linear Models

Temporal correlation and positivity constraints will be addressed directly through

an explicit Bayesian formulation of the PSA model in Equation 1.3. While estima-

tion could be done using frequentist methods, Bayesian methods provide a framework

which makes estimation of parameters subject to model constraints straightforward.

In addition, Bayesian methods allow for the distributions of each of the unknown

parameters to be estimated, thus providing more knowledge than a simple point es-

timate. Uncertainty in estimation can be accounted for through the use of prior

5



distributions on parameter values. For these reasons, a Bayesian approach to pollu-

tion modeling is favorable to frequentist approaches.

Specifically, this thesis proposes the use of a dynamic linear model (DLM) to

account for time-varying source profiles. As described in West and Harrison (1997),

DLMs are a standard approach to modeling time-varying parameters from a Bayesian

perspective. A DLM is expressed through three equations: (1) observation equation,

(2) system equation, and (3) initial knowledge equation. The observation equation

states the model that is believed to be observed. The observation equation can

also be thought of as the likelihood function of the observed random variable. The

system equation states how the researcher believes model parameters are evolving

over time. Finally, the initial knowledge equation represents the a priori knowledge

of the researcher about the observed process at state zero.

As a simple example, West and Harrison (1997) write the first-order polynomial

DLM as having the observation equation,

Yt ∼ N[µt, Vt], (1.4)

where µt follows the system equation,

µt ∼ N[µt−1,Wt], (1.5)

with initial information at time 0,

(µ0|D0) ∼ N[m0, C0], (1.6)

where Yt represents a Gaussian process defined over time, µt is the mean of Yt and

evolves over time as a random walk, Vt is the observational error of Yt, and Wt is

the evolution error. In the initial information equation, D0 represents all available

information known at time 0. In this thesis, the above model is adapted to be more

complex by allowing µt = Λtft.

6



Chapter 2 discusses some of the previous work in pollution source apportion-

ment. Chapter 3 discusses the research methods to be employed in this thesis, includ-

ing model selection and description. Prior distributions, model estimation, and results

are discussed in Chapter 4. Finally, conclusions and future research opportunities are

discussed in Chapter 5.
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2. APPROACHES TO POLLUTION SOURCE APPORTIONMENT

2.1 Introduction

Recall that the basic PSA model introduced in Chapter 1 is

Y
P×N

= Λ
P×K

F
K×N

+ E
P×N

, (2.1)

where Y is a matrix of P chemical species measured at N time periods, Λ is the

matrix of pollution source profiles for K different sources, F is the matrix of source

contributions at each of N time periods, and E is the matrix of model errors. Past

approaches to PSA can be classified according to how much prior information a re-

searcher has about Λ. Chemical mass balance (CMB) modeling assumes that each

λpk ∈ Λ is fixed and known to within some measurement error upk. Multivariate re-

ceptor modeling assumes that Λ is unknown and needs to be estimated in addition to

F. Figure 2.1 shows the continuum of approaches used in PSA based upon available

prior information.

In this chapter, CMB modeling is reviewed in Section 2.2, and multivariate

receptor modeling is reviewed in Section 2.3. The Bayesian framework of PSA is

introduced in Section 2.4 and past approaches to PSA using Bayesian methods are

discussed in Section 2.5. Other approaches to PSA are discussed in Section 2.6.

2.2 Chemical Mass Balance Modeling

Chemical mass balance modeling assumes that Λ is fixed and known to within

some measurement error upk. Therefore, in CMB, only F needs to be estimated.

Perhaps the simplest of all CMB models is weighted least squares (WLS). The appli-

cation of WLS to CMB models was first introduced by Friedlander (1973). Weighted

least squares requires assumptions about Equation 2.1 in addition to the previously

8



Figure 2.1: Pollution Source Apportionment Continuum (Christensen et al. 2006)
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stated assumptions in Section 1.3. The necessary assumptions are as follows:

(5) Model errors, ept, are normal, independent, and identically distributed with

variance-covariance matrix Σ for all p, t.

(6) The variance of the model errors, var(ept) = σ2
pt, is known for all p, t.

(7) The source profile matrix Λ is known and fixed with no measurement error

(upk = 0 for all p, k).

(8) The number of sources does not exceed the number of chemical species.

Under the above assumptions, the best linear unbiased estimate of the source

contribution matrix F is

F̂WLS = (Λ′Σ−1Λ)−1Λ′Σ−1Y, (2.2)

where Λ is the known source profile matrix, Σ is the variance-covariance matrix

of model errors, and Y is the chemical concentrations matrix. While the use of

WLS is practical, the assumptions required for its use rarely hold in practice. For

example, violation of Assumption 7 results in the WLS model being susceptible to bias

because measurement error is introduced into the source profile matrix (Christensen

and Gunst 2004). Additionally, Christensen and Gunst (2004) note that the use of

standard errors based on the formula var(F̂WLS) = (Λ′Σ−1Λ)−1 “are in general too

small in receptor modeling studies because of the existence of source profile error.”

An alternative approach to WLS in estimating F is to use the effective variance

(EV) solution. Effective variance was originally proposed by Watson et al. (1984)

and has been implemented in various software programs, including the software used

by the USEPA in CMB analysis (Coulter 2000). Effective variance differs from WLS

in that it takes into account the measurement uncertainties associated with Λ and

ypt in order to estimate the optimal weight in an iteratively reweighted least squares

algorithm.
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Let upk be the measurement error for λpk, let vpt be the measurement error for

ypt, and let qpt be the model error for ypt. Under these assumptions ept = vpt +qpt. Let

F̃m and Σ̃m denote the estimate of F and Σ at the mth iteration of the EV algorithm.

At the mth iteration, F̃m is updated via

F̃m =

[
Λ′

{
Σ̃m−1

}−1

Λ

]−1

Λ′
{
Σ̃m−1

}−1

Y,

and Σ̃m is updated via

Σ̃m = diag

(
σ2

vpt +
K∑

k=1

σ2
upk

(
f̃m

kt

)2
)

,

where σ2
vpt is the variance of the measurement error of ypt and σ2

upk is the variance of

the measurement error of λpk. After convergence, the final estimates of F and Σ are

denoted by F̂EV and Σ̂EV , respectively.

The method of moments (MoM) solution also employs an iterative algorithm

which converges to estimates of source contributions. Let ft denote the tth column of

F, f̃m
t denote the estimate of ft at the mth iteration, and σ̃m

eepp denote the estimate of

the pth diagonal element of Σ at the mth iteration of the MoM algorithm. At each

iteration, the MoM algorithm updates ft through

f̃m
t =

[
P∑

p=1

σ̃m−1
eepp

(
ΛpΛ

′
p −Σup

)
]−1 [

P∑
p=1

σ̃m−1
eepp (Λpypt −Σuvp)

]
,

and

σ̃m
eepp = σ2

vp + σ2
q +

K∑

k=1

σ2
upk

(
f̃m

kt

)2

, ∀ p,

where σ2
vp and σ2

upk are defined as above, Λp is the pth row of Λ, ypt is the pth element

of yt, Σup is the variance-covariance matrix of the measurement error for the pth

chemical species across the K sources, Σuvp is the covariance matrix of upk with vpt,

and σ2
q is the variance of model errors.

Christensen and Gunst (2004) compare and contrast the four above methods

using a variety of data sets generated under different circumstances. They propose

11



“using the simple WLS estimator for estimation because it is computationally stable

and thus yields better average absolute error for scenarios in which the magnitude of

source profile errors and measurement errors are large.” The EV solution is shown to

be equally reasonable to WLS in most cases. They also show that the MoM solution

performs poorly when large coefficients of variation are present.

2.3 Multivariate Receptor Modeling

Unlike CMB models, multivariate receptor models assume Λ is unknown and

needs to be estimated in addition to F. Exploratory factor analysis (EFA) is one of

the earliest multivariate receptor models used in PSA. EFA exploits the correlation

between each of the chemical species by factoring the sample variance-covariance

matrix (S) into a matrix of source profiles (factor loadings) and source contributions

(factors). In EFA, if S is the covariance matrix of yt, then Λ is estimated by CD
1
2

the matrices C and D are the spectral decomposition matrices of S = CDC′. An

estimate of F can be obtained using WLS, as discussed in Section 2.2.

The main problem with EFA methods in multivariate receptor modeling is

the non-uniqueness of source profile estimates. In EFA, the estimated source profile

matrix can be multiplied by any orthogonal matrix to obtain different estimates of the

source profile and source contribution matrices. For this reason, many statisticians

argue that EFA methods are too subjective to the discretion of the researcher. Henry

(1987) goes so far as to argue that “factor analysis attempts to get more information

out of the data than is really there.” In addition, EFA does not account for positivity

constraints on λpk and fkt as well as the constraint that source profiles sum to no

more than one.

Positive matrix factorization (see Paatero and Tapper 1994) and Unmix (see

Henry 1997) provide good alternatives to the rather subjective procedure of EFA.

Both positive matrix factorization (PMF) and Unmix seek to obtain nonnegative
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source profile estimates using minimization. In PMF, various settings and algorithms

can be used to solve for source profiles and source contributions. The properties of

PMF under these settings and algorithms are discussed in Lingwall (2006). Because

PMF is currently the most commonly used multivariate receptor model, the DLM

proposed in this thesis is compared to PMF.

As noted by Christensen et al. (2006), neither PMF nor Unmix can guarantee

a uniquely identified solution without additional constraints on the source profiles.

Confirmatory factor analysis (CFA) applies these additional constraints to the tradi-

tional factor model by fixing J > K rows of Λ to produce unique estimates of the

source profile matrix.

Recent research on multivariate receptor models has been focused on developing

an iterated confirmatory factor analysis (ICFA) solution. ICFA reflects both CFA

and EFA through application of varying degrees of constraints to each λpkt ∈ Λ

(Christensen et al. 2006). ICFA obtains an initial estimate of the source profile matrix

Λ by incorporating a priori information in the source profiles. Source profiles with

no prior information are estimated using traditional factor analysis methods. At each

iteration, q > K randomly chosen rows of the source profile matrix are constrained

to be constant, thus guaranteeing a unique solution. The remaining p − q rows are

“updated” and the chi-square goodness-of-fit statistic is recalculated. After several

iterations, the goodness-of-fit statistic is minimized and the source profiles are scaled

to sum to one. Source contributions are then estimated using a linear model where

the contribution estimates are constrained to be greater than zero. ICFA methods

are discussed in detail in Christensen et al. (2006).

2.4 The Framework of the Bayesian Approach to PSA

Bayesian methods are unique and powerful tools that are useful in solving pollu-

tion source apportionment problems. The basis of all Bayesian methods is specifying
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prior distributions for each unknown model parameter. The joint posterior distribu-

tion of all model parameters can then be solved for through the application of Bayes’

Theorem.

In terms of Equation 2.1, let Θ = {Λ,F}. Bayes’ Theorem states that the

probability density function of Θ, given a series of observations Y = [y1, . . . ,yN],

denoted as π(Θ|Y), is given by

π(Θ|Y) =
p(Θ,Y)∫

Θ
p(Θ,Y)dΘ

(2.3)

=
f(Y|Θ)π(Θ)∫

Θ
f(Y|Θ)π(Θ)dΘ

, (2.4)

where π(Θ) denotes the joint prior probability density function and f(Y|Θ) denotes

the likelihood function. If each λpk ∈ Λ and fkt ∈ F are assumed a priori independent,

then Equation 2.4 can be rewritten as

π(Θ|Y) =

f(Y|Θ)
N∏

t=1

P∏
p=1

K∏

k=1

π(λpk)π(fkt)

∫
Θ

f(Y|Θ)π(Θ)dΘ
.

Using Bayesian terminology, π(Θ|Y) is called the posterior distribution and each

π(λpk) and π(fkt) are called prior distributions because they represent a researcher’s

a priori knowledge of the unknown parameter.

The difficult aspect of Bayesian statistics is calculating the posterior distribu-

tion when the form of the distribution is unknown. In particular, calculating the

normalizing constant, c =
∫

Θ
f(Y|Θ)π(Θ)dΘ, is cumbersome because of the involve-

ment of an R = (P×K)+(K×N) dimensional integral. One solution to this problem

is to obtain draws from the normalized posterior distribution instead of attempting to

calculate the normalizing constant c and to use these draws to do posterior analysis.

The most common simulation method is called Markov chain Monte Carlo (MCMC)

simulation.
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2.4.1 Markov Chain Monte Carlo Methods

The general idea of Markov chain Monte Carlo (MCMC) methods is to establish

a Markov chain that has a stationary distribution equal to the distribution of interest.

A Markov chain has a stationary distribution if the chain is ergodic. The “trick” of

MCMC methods is to construct an ergodic Markov chain such that the limiting

distribution is the distribution of interest.

The Gibbs sampler is a Markov chain algorithm that, in the limit, produces

draws from the joint posterior distribution of all model parameters. Once again, let

Θ = {Λ,F} and let θi denote the ith parameter in Θ. The Gibbs algorithm to obtain

draws from π(Θ|Y) requires the following steps:

(1) Set starting values for all θi ∈ Θ. Collectively, call these starting values Θ0.

(2) Set b = 1.

(3) For i = 1, . . . , R, where R is the dimensionality of Θ, draw from [θi] =

f(θi|θb
1, . . . , θ

b
i−1, θ

b−1
i+1 , . . . , θb−1

R ,Y). The distribution [θi] is referred to as the

complete conditional distribution of θi.

(4) Let Θb = {θb
1, . . . , θ

b
R}, the draws obtained in step 3.

(5) Repeat steps 3-4 for b = 2, . . . , I, where I is the number of iterations for the

Gibbs algorithm.

One important note is that in the successive sampling of [θi], the most recently drawn

value of θi′ is used to draw from [θi]. The Gibbs algorithm ensures that as I → ∞,

each Θb is a draw from π(Θ|Y).

The form of [θi] in the above Gibbs algorithm is often unknown and hence

cannot be drawn from directly. The Metropolis and Metropolis-Hastings algorithms

are Markov chain algorithms that, in the limit, produce draws from [θi]. A full

mathematical explanation of the Metropolis-Hastings algorithm is provided in Chib
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and Greenberg (1995) but only the steps of the algorithm itself are discussed here.

Consider the single parameter fkt ∈ F from the PSA model in Equation 2.1. The

Metropolis-Hastings steps to generate draws from [fkt] are the following:

(1) Set a starting value for f
(0)
kt .

(2) Set i = 1.

(3) Generate a proposal value, Xi, from a candidate distribution q(f
(i−1)
kt , Xi).

(4) Calculate α(Xi, f
(i−1)
kt ) =

g(Xi)q(Xi,f
(i−1)
kt )

g(f
(i−1)
kt )q(f

(i−1)
kt ,Xi)

where g(·) is the non-normalized

posterior density function for fkt; q(Xi, f
(i−1)
kt ) is the candidate distribution

evaluated at f
(i−1)
kt ; and q(f

(i−1)
kt , Xi) is the candidate distribution evaluated

at Xi.

(5) If u < α(Xi, f
(i−1)
kt ) then set f

(i)
kt = Xi; otherwise, set f

(i)
kt = f

(i−1)
kt where u is

a random variable distributed uniformly on the unit interval.

(6) Repeat steps 2 - 5 for i = 2, . . . , I where I is the desired number of iterations.

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm

where the candidate distribution is symmetric. Mathematically, in the Metropolis

algorithm q(Xi, f
(i−1)
kt ) = q(f

(i−1)
kt , Xi) so the fraction α(Xi, f

(i−1)
kt ) reduces to g(Xi)

g
�
f
(i−1)
kt

�
and simplifies the acceptance probability. Typically, a normal distribution is used in

implementing the Metropolis algorithm. For more information on the Metropolis and

Metropolis-Hastings algorithm see Gelman et al. (2004).

The first B < I iterations of the algorithm are called “burn.” During the

burn-in time, the algorithm converges to the correct stationary distribution. These

burn-in iterations are important to keep track of to check convergence and mixing of

the algorithm but are typically not included in the final posterior analysis.

One challenge of both the Metropolis and Metropolis-Hastings algorithms is de-

termining the proper standard deviation, σc, for the candidate distribution described
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in step 3. If σc is too small then the algorithm is not able to adequately explore

the space of the posterior distribution. On the other hand, if σc is too large the

algorithm does not effectively explore the space of the posterior distribution. Both

of these problems are manifest through the number of iterations a value is kept. If

the value obtained at the previous iteration is kept too often, then σc is too large.

If the algorithm repeatedly keeps the proposal value, σc is too small. Both of these

problems can often be solved by adjusting σc.

2.5 Bayesian Approaches to PSA

As previously mentioned, Bayesian methods are powerful tools in PSA. One

example is found in Lingwall (2006) where each element of Λ and each element of F

were assumed to follow a lognormal distribution. The above prior specifications for

Λ and F are logical because the lognormal priors restrict all estimates to be positive.

The joint posterior distribution for each source profile and each element of the source

contribution matrix were calculated using MCMC techniques.

A very notable example that has particular application to the purpose of this

thesis is found in Park et al. (2001). Park et al. proposes the use of an AR(1) model

to represent the correlation in f1, . . . , fN . Specifically, Park et al. propose a DLM

with observation equation

yt = Λft + ηt + et, et ∼ NP (0,Σ),

where ft and ηt evolve through time according to the system equations

ft = ξ + (ft−1 − ξ)γ + ut , ut ∼ NK(0,U),

ηt = ηt−1φ + νt , νt ∼ NP (0,V),

where ξ is the mean of the multivariate AR(1) process for ft and ηt is the variability

of yt correlated in time which is also assumed to follow a multivariate AR(1) process
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with mean 0. Park et al. uses a “block at a time” Metropolis-Hastings algorithm to

sequentially update the parameter vector Θ = {Λ,F,ξ,γ,φ,Σ,η}.
Current research in Bayesian approaches to PSA include the use of the Dirichlet

distribution as a prior distribution for each pollution source profile, λk. The Dirichlet

distribution1 is a multivariate distribution that restricts all source profiles to be

non-negative and sum to 1. For this reason, the Dirichlet distribution is logical to

use as a prior distribution for source profiles. This thesis expands the use of the

Dirichlet distribution as a prior distribution by specifying Dirichlet process priors for

each source profile.

2.6 Other Approaches to PSA

Many other approaches to PSA exist and are currently being researched. One

area that shows promise is the use of a process convolution model to portray the

spatial and temporal structure in the day-to-day air samples measured from a location.

As described in Calder (2003), a factor analytic model can be convolved with a spatial

temporal process according to the observation equation

Yt
Q×P

= K
Q×M

Xt
M×K

Λ′
K×P

+ ν
Q×P

,

where Xt evolves according to the system equation

Xt = B(Xt−1), (2.5)

where Yt represents the concentration of the P species at time t measured at Q

different locations, B(·) is some function of past values of Xt, and ν is the error

matrix. In context of the problem being addressed here, Q = 1 and t = 1, . . . , N .

The process convolution approach has the ability to express temporal correlation

through the system equation in Equation 2.5. This approach is still in an early

research phase.

1 For information about the Dirichlet distribution, see Appendix A.
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3. FORMULATING THE DIRICHLET PROCESS MODEL

3.1 Introduction

The majority of previous research in PSA has assumed independence among

each observation vector y1, . . . ,yN , and many methods developed for PSA are based

upon this assumption. However, the existence of temporal correlation among observa-

tions y1, . . . ,yN is commonly ignored in data analytic treatments of PSA. As discussed

in Chapter 2, failing to include the correlation structure in the PSA model can lead

to incorrect statistical inference. In this chapter, a multivariate receptor model that

seeks to incorporate the correlation among observations is proposed. Such a model

should more accurately reflect true source profile behavior as well as incorporate the

true temporal structure of species concentrations.

Section 3.2 discusses the temporal correlation present in pollution source appor-

tionment problems. The Dirchlet process (DP) model for incorporating this temporal

correlation is proposed and discussed in Section 3.3. Model estimation is discussed

in Section 3.4 and model evaluation methods are discussed in Section 3.5.

3.2 Temporal Correlation

Because data are collected over consecutive time periods, a certain amount of

temporal correlation exists in air pollution data. The main question is where this

correlation is to be modeled. Figure 3.1 shows the autocorrelation functions (ACF)

for a few chemical species using data collected from the St. Louis supersite.

As illustrated in Figure 3.1, different chemical species exhibit different degrees

of autocorrelation. Also, some chemical species, such as tin (Sn), do not seem to

exhibit any autocorrelation. In general, a day-to-day correlation seems to exist with
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most chemical species. Observations closer in time seem to be more highly correlated

than observations farther apart in time.

Part of the temporal correlation that exists in Y may be attributed to the fact

that Λ is not constant and correlated through time. To investigate the behavior of

Λ through time, a subset of the St. Louis data set containing measurements on eight

chemical species over 640 days was divided into 32 separate data sets of 20 days

each. Positive matrix factorization was used to estimate the four-source PSA model

of Equation 1.3 for each of the 32 data sets. Figure 3.2 shows how each of the eight

chemicals observed change through time for the winter secondary source profile. The

dashed line in each graph is the mean composition for the respective element. Figure

3.3 shows the ACF plots of the same winter secondary source profile estimates (Λ̂)

obtained using PMF.

As Figure 3.3 displays, Λ̂ shows varying degrees of autocorrelation across species.

In general, the chemicals that make up the majority of the source profile exhibit more

autocorrelation than those chemicals that do not constitute the majority of the source

profile. For example, Figure 3.2 shows that the chemicals OC, EC, and NO consti-

tute the majority of emissions from the winter secondary source. These chemicals

also show the greatest degree of autocorrelation, as shown in Figure 3.3. Based on

the PMF estimates from the 32 separate data sets, representing the autocorrelation

in Λ̂ as more than an AR(1) process is not justified.

Estimates of source contributions across the 32 data sets showed that F also

exhibits decreasing autocorrelation in time. As previously mentioned, Park et al.

(2001) models this temporal structure as an AR(1) process. For the purposes of this

thesis, the temporal structure of F is ignored and emphasis is placed on modeling the

temporal structure of Λ.
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Figure 3.1: ACF plots of Y for the St. Louis Data. Most chemical species exhibit
decreasing correlation with time. Some species, however, have little autocorrelation.
In general, observations closer in time are more highly correlated than observations
farther apart in time.
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Figure 3.2: PMF estimate of the winter secondary source profile through time. The
dashed line is the mean composition averaged over the 32 data sets. Chemicals
prevalent in the winter secondary source show larger fluctuations than those chemicals
that are not as prevalent.
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Figure 3.3: ACF plots of the winter secondary source profile. The majority of auto-
correlation occurs in chemicals that are prevalent in the winter secondary source.
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3.3 The Dirichlet Process Model

In order to incorporate temporal correlation in a PSA model, Equation 1.2 is

rewritten in a Dynamic Linear Model (DLM) context. The observation equation is

taken to be

yt ∼ LN[Λtft, wpt] t = 1, . . . , N, (3.1)

where each column of Λt, denoted by λkt, follow the system equation

λkt ∼ DIR[gkλk(t−1)] k = 1, . . . , K t = 1, . . . , N, (3.2)

and the initial information at time 0 is given by

λk0 ∼ DIR[mk] k = 1, . . . , K, and (3.3)

fkt ∼ LN[akt, bkt] k = 1, . . . , K t = 1, . . . N. (3.4)

First, the observation equation (Equation 3.1) states that the concentration of

each chemical measured at time t, ypt, is assumed to follow a lognormal distribution

with mean Λptft and coefficient of variation (CV) wpt, where Λpt is the pth row of

Λt. The lognormal distribution1 is both logical and mathematically satisfying as a

likelihood for concentrations because each ypt is constrained to be greater than zero.

The use of the lognormal distribution for ypt is also consistent with air pollution data.

Figure 3.4 displays box plots of 10 randomly selected chemicals from the St. Louis

data set. As shown in from Figure 3.4, large positive chemical concentrations are pos-

sible. The lognormal distribution accounts for this heavily right-skewed distributional

behavior.

Second, the system equation (Equation 3.2) states that each source profile, λkt,

is assumed to follow a Dirichlet2 distribution. The Dirichlet distribution is appro-

priate because it naturally applies the proper constraints to each element of λkt by

1 For notation of the log-normal distribution, see Appendix A.
2 For notation of the Dirichlet distribution, see Appendix A.
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Figure 3.4: Box plots of concentrations for 10 randomly selected chemicals from the
St. Louis data set. Chemical species concentrations can exhibit heavily right-skewed
distributional behavior.
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allowing 0 < λpkt < 1 and
∑P

p=1 λpkt = 1. The use of the Dirichlet distribution as

a process prior for λkt is superior to previous modeling approaches which make the

simplifying and dubious assumption that each λpkt ∈ λkt are mutually independent.

The Dirichlet distribution maintains the correct dependence structure as well as the

correct constraints for λpkt.

Furthermore, according to Equation 3.2 λkt evolves as a Dirichlet process where

the value of λkt depends only on λk(t−1). For this reason the model proposed in Equa-

tions 3.1-3.4 is referred to collectively as the Dirichlet process (DP) model. This dy-

namic model specification is consistent with the time series DLM (TSDLM) described

in West and Harrison (1997) where G = gkI. In this process, gk affects the variance

of the Dirichlet process. To illustrate the effect of gk, consider a single chemical λpkt

from the source profile λkt. Under the specified model in Equation 3.2, the expected

value of λpkt is λpk(t−1), with variance λpk(t−1)(1 − λpk(t−1))/(gk + 1). Therefore, as

the value of gk increases, the variance of the Dirichlet process decreases. Figure 3.5

displays how various levels of gk effect the OC level of the winter secondary source

profile shown in Figure 3.2.

The above proposed DP model makes the assumption that each element of λkt

exhibits the same degree of smoothness in the Dirichlet process. As noted in Section

3.2, each λpkt ∈ λkt exhibits different degrees of autocorrelation. A model that allows

for the differences in autocorrelation among each λpkt is discussed in Section 5.2.

Finally, the initial information equation states that at time 0, λk0 follows a

Dirichlet distribution with parameter vector mk. The initial information equation

acts as a prior specification for λk0 where mk is determined by the researcher based

upon a priori information.

Additionally, the initial information equation states that each fkt ∈ F is as-

sumed to be distributed lognormally with expectation akt and CV bkt. Source contri-

butions could be allowed to follow some sort of time-dependent structure; however,
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Figure 3.5: Affect of gk on the OC level of the winter secondary source profile of
Figure 3.2. The solid line is the value of OC estimated using PMF on each of the 32
data sets. The dashed line is the value of OC simulated according to Equation 3.2.
As gk increases the variance of the process decreases.
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for the purposes of this thesis, no correlation structure is assumed and the focus is

placed on modeling the time structure of the source profiles. Despite this fact, the

lognormal distribution is once again mathematically satisfying as a distribution for

source contributions because each element is constrained to be non-negative.

The entire set of parameters in the above model is Θ = {g1, . . . , gK ,Λ1, . . . ,

ΛN, f11, . . . , fKN}. The dimensionality of Θ = K + (P × K × N) + (K × N). For

example, Lingwall (2006) simulates data sets with K = 5, P = 23, N = 788. Applying

the above model to these data sets, the dimensionality of Θ = 5+(23×5×788)+(5×
788) = 94, 565. Because the dimensionality of Θ increases quickly as N increases,

data sets applied to the above model will have a relatively small N .

3.4 Estimation Method

Due to the high-dimensionality of Θ and the number of constraints imposed

on the model, MCMC simulation is an attractive approach to parameter estimation.

Given the series of observations y1, . . . ,yN, the distribution of interest in MCMC

simulation is the joint posterior distribution π(Θ|y1, . . . ,yN) of all model parameters.

The full posterior distribution is calculated via Bayes’ Theorem as

π(Θ|y1, . . . ,yN) ∝ f(y1, . . . ,yN|Θ)π(Θ), (3.5)

where f(y1, . . . ,yN|Θ) is the likelihood function and π(Θ) is the joint prior distri-

bution of all model parameters.

As displayed in Equation 3.1, each chemical species is assumed to be distributed

lognormal with mean Λptft and CV wpt. Therefore, the likelihood for the P chemical

species at all N time periods is

f(y1, . . . ,yN|Θ) ∝
N∏

t=1

P∏
p=1

1

ypt

exp

{
−(ln(ypt)− ln(Λptft) + 1

2
ln(w2

pt + 1))2

2 ln(w2
pt + 1)

}
. (3.6)

For this thesis, gk and F are assumed a priori independent for all k and t. However,

Λt is independent of F but dependent on Λt−1 and gk. Under these assumptions, the
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full joint prior distribution is

π(Θ) =
N∏

t=1

K∏

k=1

π(λkt|λk(t−1), gk)π(fkt)π(gk), (3.7)

where each gk are assumed independent and follow a normal distribution.

The MCMC simulation will contain the following steps to sample from the full

posterior distribution:

(1) Update g1, . . . , gK .

(2) Update Λ1, . . . ,ΛN by sequentially updating λ1,1, . . . , λK,N .

(3) Update f1,1, . . . , fK,N .

To update each fkt and gk, a Metropolis algorithm will be used with proposals gener-

ated from a normal candidate distribution. For Λt, a Metropolis-Hastings algorithm

will be used. For the MCMC algorithm, a total of I = 50, 000 iterations will be used,

with the first B = 10, 000 being used as the burn-in phase.

3.5 Model Evaluation Methods

To evaluate the performace of the DP model, the parameter estimates will

be compared to parameter estimates using PMF. Because PMF is currently the most

commonly used approach to multivariate receptor modeling, the performance of PMF

provides a good benchmark from which to evaluate the DP model. Comparison

methods between the DP model and PMF are outlined below.

3.5.1 Simulating Data Sets

The above model will be evaluated based on various simulated data sets with

P = 44, K = 9 and N = 50. Thus, the total number of model parameters estimated

is 9 + (9× 44× 50) + (9× 50) = 20, 259 for each simulated data set.
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To generate the chemical weights, ypt will be drawn from a lognormal distribu-

tion with mean Λptft and CV wpt where wpt ∈ {.2, .8}. To do so, values of Λt will be

generated as draws from a Dirichlet distribution with gk ∈ {100, 250}.
In order to specify values of λk0 in generating Λt, PMF was performed on the

data obtained from the St. Louis supersite. Table 3.1 displays the PMF estimate of

λpkt in each of the nine source profiles. These source profile estimates will be used

as the values of λk0 and the subsequent values of λkt will be generated according to

Equation 3.2. Using the output of PMF to indicate values for λk0 is preferable to

personally specifying λk0 because PMF estimates will be more realistic. Values for

fkt ∈ F will also be obtained from the same PMF output used to obtain values of

λk0.

Each of the generated values of Λt, as well as the specified values for gk and

F, will be treated as the known parameter values. Estimates of these parameters

obtained from MCMC simulation will be compared to the “true” values to evaluate

model fit as discussed in Section 3.5.2. A 22 factorial design will be used with 15 data

sets being generated at each specification of gk and wpt.

In addition to evaluating the performance of the DP model under time varying-

profiles, evaluating the performance of the DP model when λkt = λk for all t is also of

interest. For this reason, 15 data sets will be simulated using the values of λk0 given

in Table 3.1 as the constant source profile matrix for each of wpt ∈ {.2, .8}. Both

the DP model and PMF will be applied to these 30 data sets and the performance of

each method will be compared using the same criterion as outlined in Section 3.5.2.

Table 3.2 summarizes how each data set will be simulated.
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Table 3.1: Values of Λ0 used in simulating data sets.

Chemical Source Source Source Source Source Source Source Source Source
Name 1 2 3 4 5 6 7 8 9
Na 0.015 0.014 0.032 0.002 0.007 0.018 0.007 0.020 0.003
Mg 0.002 0.004 0.005 0.001 0.015 0.016 0.012 0.011 0.014
Al < .001 0.001 < .001 0.002 0.085 0.002 0.021 0.003 0.008
Si < .001 < .001 0.009 0.011 0.253 0.003 0.002 0.002 0.022
Ph < .001 < .001 < .001 < .001 < .001 0.002 < .001 0.075 < .001
S 0.249 0.025 0.020 0.038 0.131 0.020 0.183 0.017 0.031
Cl < .001 0.003 < .001 0.001 < .001 0.049 0.013 0.003 0.047
K 0.001 0.003 0.003 0.001 0.020 0.008 0.494 0.006 0.009
Ca < .001 < .001 0.046 0.007 0.032 0.017 0.002 0.007 0.032
Ti < .001 < .001 < .001 < .001 0.005 < .001 < .001 0.001 0.001
V < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 0.001
Cr < .001 < .001 < .001 < .001 < .001 < .001 < .001 0.001 < .001
Mn < .001 < .001 < .001 0.003 < .001 0.001 < .001 0.001 0.001
Fe 0.001 < .001 0.006 0.125 0.026 0.014 0.004 0.009 0.012
Co < .001 < .001 < .001 0.001 < .001 < .001 < .001 < .001 < .001
Ni < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Cu < .001 < .001 < .001 < .001 < .001 < .001 0.005 0.156 0.004
Zn 0.001 < .001 < .001 < .001 0.001 0.133 0.003 0.011 0.019
Ga < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
As < .001 < .001 < .001 < .001 < .001 0.001 < .001 0.002 0.001
Se < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Br < .001 < .001 0.001 < .001 < .001 < .001 < .001 0.001 < .001
Rb < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Sr < .001 < .001 < .001 < .001 < .001 < .001 0.009 < .001 < .001
Y < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Zr < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Mo < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Pd < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Ag < .001 < .001 < .001 < .001 < .001 < .001 < .001 0.001 0.001
Cd < .001 < .001 < .001 < .001 < .001 0.001 < .001 < .001 0.007
In < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Sn < .001 < .001 < .001 < .001 < .001 0.001 < .001 0.002 0.004
Sb < .001 < .001 < .001 0.001 < .001 < .001 0.001 0.001 0.002
Ba < .001 0.001 < .001 0.013 < .001 < .001 0.040 0.001 0.001
La < .001 < .001 0.001 0.001 0.002 0.003 < .001 0.002 0.002
Au < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Hg < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Tl < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 0.002
Pb < .001 < .001 < .001 < .001 0.001 < .001 0.003 0.004 0.133
U < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001

OC 0.142 0.167 0.675 0.452 0.132 0.609 0.127 0.591 0.302
EC 0.004 0.040 0.168 0.219 0.002 0.088 0.020 0.026 0.255
SO 0.561 0.057 0.030 0.116 0.269 0.006 0.042 0.046 0.070
NO 0.023 0.682 0.001 0.006 0.017 0.005 0.010 0.001 0.012
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Table 3.2: Specifications for simulating each data set.

Data Set gk wpt

1-15 100 .2
16-30 100 .8
31-45 250 .2
46-60 250 .8
61-75 ∞ .2
76-90 ∞ .8

3.5.2 Model Comparison Criterion

Median absolute error (MAE) will be used to compare the estimates of Λt and

F to estimates obtained using PMF. Median absolute error for Λt is calculated as

MAEΛ =
P∑

p=1

|λpkt − λ̂pkt|, (3.8)

where λpkt is the “true” value of λpkt and λ̂pkt is the median of the 40,000 post-burn-in

draws from the posterior distribution obtained using MCMC. Median absolute error

will be similarly calculated for F as

MAEF =
N∑

t=1

|fkt − f̂kt|, (3.9)

where fkt is the “true” value of fkt and f̂kt is the median of the 40,000 post-burn-

in draws from the posterior distribution. MAE is obviously strictly positive where

smaller values indicate good performance and large values indicate poor performance.
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4. EVALUATION OF THE DIRCHLET PROCESS MODEL

4.1 Introduction

As discussed in Chapter 3, a Dirichlet Process (DP) DLM is proposed to account

for time-varying source profiles in the basic pollution source apportionment model.

The observation equation for the DP model is

yt ∼ LN[Λtft,wt] t = 1, . . . , N, (4.1)

where the columns of Λt, denoted by λkt, evolve through time according to the system

equation

λkt ∼ DIR[gkλk(t−1)] k = 1, . . . , K, t = 1, . . . , N, (4.2)

and the initial information at time 0 is given by

λk0 ∼ DIR[mk] k = 1, . . . , K, and (4.3)

fkt ∼ LN[akt, bkt] k = 1, . . . , K t = 1, . . . N, (4.4)

where yt is the vector of P chemical species measured at time t, λkt is the source

profile vector for the kth source at time t, and fkt is the kth source contribution at

time t.

Parameter estimation for the above Dirichlet process (DP) model presented in

Equations 4.1-4.4 was done using successive sampling MCMC methods. Section 4.2

discusses the prior and complete conditional distributions for each model parameter.

Section 4.3 discusses the details of the MCMC algorithm used for parameter estima-

tion and Section 4.4 discusses the results of the MCMC algorithm for the simulated

data sets using the criterion described in Section 3.5.2.
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4.2 Prior and Complete Conditional Distributions

Let Θ denote the parameter space for the DP model. Use of successive sampling

MCMC methods requires the specification of prior distributions and calculation of the

complete conditional distributions, denoted by [θi], for all θi ∈ Θ. In order to sample

from the complete joint posterior density function π(Θ|Y), successive samples need

to be taken from each complete conditional distribution.

The complete conditional distribution for a given parameter (or parameter vec-

tor), θi ∈ Θ, is defined to be

[θi] = p(θi|Θ−i,Y) ∝ f(Y|Θ)π(θi), (4.5)

where Θ−i denotes all parameters in Θ not including θi, Y represents the matrix

of PM measurements, f(Y|Θ) is the likelihood function, and π(θi) is the joint prior

distribution for the parameter vector θi. Prior and complete conditional distributions

need to be specified for all θi ∈ Θ.

Equation 4.4 states that the prior distribution for all fkt ∈ F is lognormal with

mean akt and CV bkt. Each fkt ∈ F is assumed a priori independent and therefore

the complete conditional for each fkt can be written as

[fkt] ∝ f(y1, . . . ,yN |Θ)π(fkt),

where f(y1, . . . ,yN|Θ) is given in Equation 3.6 and

π(fkt) ∝ 1

fkt

exp

{
−(ln(fkt)− ln(akt) + 1

2
ln(b2

kt + 1))2

2 ln(b2
kt + 1)

}
.

Source contribution behavior is such that large contributions are possible. Prior speci-

fications of akt and bkt for all fkt need to allow for these potentially large contributions.

According to Phalen (2002), source contributions cannot exceed 65 on any given day

and may not exceed 15 as a yearly average. Allowing akt = 20 and bkt = 1 for all

fkt ∈ F allows for large contributions, while the majority of the probability mass is
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less than 10. This prior specification for all fkt ∈ F is consistent with the information

provided in Phalen (2002).

The prior distribution for λkt, as stated in Equation 4.2, is Dirichlet and depen-

dent upon λk(t−1) and gk. Additionally, the prior distribution for λk(t+1) is dependent

upon λkt. Therefore, the complete conditional distribution for λkt must also include

part of the prior distribution for λk,t+1. Under these conditions

[λkt] ∝ f(y1 . . . ,yN |Θ)
Γ(gk)∏P

p=1 Γ(gkλpkt)

P∏
p=1

λ
gkλpk(t−1)

pkt λ
gkλpkt

pk(t+1).

Allowing λkt to follow a Dirichlet process through time poses a small problem in

implementing the MCMC algorithm to update λk1 and λk50. Under this prior specifi-

cation, the complete conditional distributions for λk1 and λk50 are not fully specified

because λk0 and λk51 are unknown and will not be estimated in the MCMC algorithm.

The solution to this problem is discussed in detail in Section 4.3.

The variable gk is known as a hyperparameter and is not a parameter result-

ing from the likelihood function f(y1, . . . ,yN|Θ). Rather, gk arises from the prior

specification of λkt. Therefore, the complete conditional distribution for gk is

[gk] ∝
N∏

t=1

π(λkt|gk)π(gk), (4.6)

where π(λkt|gk) represents the Dirichlet density function and π(gk) represents the

prior distribution for gk. For simplicity, gk is assumed to follow a normal distribution

with mean 150 and variance 2500 for all k. The use of the normal distribution as a

prior distribution for gk is logical in that the normal distribution has density on the

interval (-∞,∞) and thus allows the data, not the prior distribution, to dictate the

estimate of gk.

4.3 Details of the MCMC Algorithm

For computational efficiency and speed in updating all 20,259 parameters, the

MCMC algorithm was coded using MATLAB. At each iteration of the MCMC al-
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gorithm, all gk and fkt are updated individually using a Metropolis step and each

profile vector λkt is updated using Metropolis-Hastings. Approximately 8 hours of

computation time was required to run 50,000 MCMC iterations for each data set,

requiring 8× 60 = 720 hours = 30 days of computation time.

4.3.1 Dealing with Tuning Parameters

As noted in Section 2.4.1, one difficulty in using Metropolis or Metropolis-

Hastings steps is the choice of standard deviation, σc, for the candidate distributions.

Due to the large dimensionality of the proposed model, manually altering each pro-

posal distribution would be very time consuming. The MCMC algorithm keeps track

of the number of draws accepted or rejected and updates the scale of the candi-

date distribution accordingly. For example, if less than 20% of the proposals from

Metropolis-Hastings were being accepted, the algorithm would decrease the spread of

the candidate distribution by a fixed amount. The spread of the candidate distribu-

tion is updated during the burn-in period but held constant otherwise.

4.3.2 Updating λk1 and λk50

As previously mentioned, one difficulty of the MCMC algorithm is updating

λk1 and λk50. The complete conditional distribution for λk1 requires that λk0 be

known or estimated. Similarly, the complete conditional for λk50 requires that λk51

be known or estimated.

To solve this problem for λk1, several approaches can be taken. For the simu-

lated data sets described in Section 3.5.1, the value of the source profile λk0 is known.

A rather naive solution to this problem would be to fix λk0 at the known parameter

value. As can be seen from the first row in Figure 4.1, this approach allows λk1 to be

estimated accurately. However, using the known value of λk0 is not the best approach

because λk0 is typically not known and using the known value would underestimate
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the uncertainty about the value of λk1. An alternative approach would be to fix every

element of λk0 at 1/P to give equal weight to each element, thus accurately portray-

ing prior knowledge about λk0. However, when every element of λk0 is fixed at 1/P ,

the MCMC is restricted in its estimate of λkt for t near 0 to compensate for the fixed

value of λk0. This restriction in estimation of λkt for t near 0 is demonstrated by the

left-tail behavior in the second row of Figure 4.1. The approach used in this thesis

is to draw λk0 from a Dirichlet distribution with parameter vector α = c/P , where

c is a known fixed constant. This approach accurately reflects the uncertainty about

λk0 while avoiding the left-tail behavior present when each element of λk0 is fixed at

1/P . Figure 4.1 shows a time plot of a single source profile estimate under each of

the three above approaches.

The solution to the problem in updating λk50 is similar to that of the solution

in updating λk1. Because the prior distribution for λk51 is defined by gk and λk50, a

draw from the prior distribution for λk51 using the current value of gk and λk50 will

be used in calculating the acceptance probability for λk50 in the MCMC algorithm.

4.3.3 Assessing Convergence

Figures 4.2 and 4.3 show successive draws of fkt and gk as obtained during

the MCMC algorithm. Both of these plots support the hypothesis that the MCMC

algorithm obtained convergence due to the random scatter of succesive draws. Ad-

ditionally, Figures 4.2 and 4.3 show that the algorithm achieved proper acceptance

ratios.

Figure 4.4 displays successive draws for the primary elements of λkt as obtained

from MCMC sampling methods. As is shown in Figure 4.4, for these large elements of

λkt, the MCMC algorithm seems to have converged with acceptable mixing properties.

The slight lack of mixing shown by Figure 4.4 in contrast to the proper mixing

properties shown in Figures 4.2 and 4.3 arises due to the correlation structure among
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Figure 4.1: Comparison of approaches to the problem of updating λk1 when λk0 is
unknown. The solid line is the true value of λkt and the solid line with inserted “D”
is the DP model estimate. Using the true value of λk0 (first row) underestimates
the uncertainty associated with λk1. Fixing each element of λk0 at 1/P (second
row) results in undesirable left-tail behavior. Drawing λk0 from Dir[c/P ] accurately
quantifies the uncertainty about λk0 while maintaining good tail behavior.
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Figure 4.2: Successive draws of fkt as obtained by MCMC sampling methods. The
random scatter of successive draws supports the hypothesis that the MCMC algorithm
achieved convergence.
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Figure 4.3: Successive draws of gk as obtained by MCMC sampling methods. The
random scatter of successive draws supports the hypothesis that the MCMC algorithm
achieved convergence.

40



the elements of λkt. Because each λpkt ∈ λkt is correlated, the mixing achieved in

λpkt is less than that achieved in fkt, where each fkt ∈ F is independent.

Figure 4.5 displays successive draws of those λpkt that do not make up the

majority of λkt. The mixing achieved by the MCMC algorithm for those elements of

λkt which are relatively small is even less than the mixing achieved for the primary

elements of λkt. This is due to a slight deficiency in the DP model. Recall that in the

DP model, each λpkt is constrained to be greater than zero. If λpkt were allowed to be

zero through a multivariate point mass mixture prior (to be discussed in Section 5.2),

then the mixing would improve because the algorithm could let λpkt = 0 rather than

settling for values of λpkt near zero. However, due to the small practical importance

of the secondary elements of λkt, the lack of mixing presents no practical problems.

4.4 Discussion

In this section, the performance of the DP model is compared to PMF based

on the previously discussed simulated data sets.

4.4.1 Model Performance in the Presence of Time Varying Profiles

Figure 4.6 displays a plot of a single λpkt ∈ λkt over time for gk ∈ {100, 250} and

wpt ∈ {.2, .8}. The first column of plots in Figure 4.8 contrasts MAEΛ using the DP

model to using PMF. As shown in Figure 4.6, the Dirichlet process model consistently

outperforms PMF in estimating λkt despite the value of gk and wpt. This performance

is due to the fact that the Dirichlet process model provides a smoothed estimate of

the λkt process while PMF provides merely a single point estimate across all time

periods. Thus, the DP model is not only more flexible than PMF in estimating λkt,

but more accurate than PMF in estimating source profiles which vary over time.

Table 4.1 compares the five-number summaries of MAEΛ for the DP model and

for PMF. When gk = 250 the DP model provides accurate estimates of the underlying
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Figure 4.4: Successive draws of the primary elements of λkt. The slight lack of mixing
shown here could be due to the high correlation between each λpkt ∈ λkt.
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Figure 4.5: Successive draws of smaller elements of λkt. The lack of mixing is due to
the constraint that λpkt > 0.
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Figure 4.6: Time plot of one element of a source profile, λkt, across values of gk and
wpt. The rows correspond to (gk, wpt) = (100, .2), (100, .8), (250,. 2), (250, .8),
respectively. The solid line is the true value of λpkt, the line marked by “D” is the
DP estimate, and the line marked with “P” is the PMF estimate. In all cases, the
DP model more accurately estimates the underlying Dirichlet process.
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Table 4.1: Comparison of five-number summary of MAEΛ when source profiles are
time-variant.

gk CV Model Min Q1 M Q3 Max

100 0.2
DP Model .01 .21 .41 .62 1.48

PMF .10 .57 1.08 1.66 1.93

100 0.8
DP Model .03 .32 .66 .95 1.69

PMF .15 .77 .97 1.81 2.00

250 0.2
DP Model .02 .23 .38 .61 1.30

PMF .11 .60 1.01 1.42 1.92

250 0.8
DP Model .04 .26 .45 .77 1.34

PMF .22 .66 1.11 1.52 1.95

process, regardless of the level of wpt with a median MAEΛ of 0.39 when wpt = .2

and 0.45 when wpt = .8. However, when gk = 100 and wpt = .8, the DP model, while

providing better estimates of λkt than PMF, does not approximate the underlying

process to the same accuracy as in the other values of gk and wpt. The median MAEΛ

for gk = 100 and wpt = .8 is 0.66, compared to 0.41 when wpt is reduced to 0.2.

MAEΛ increases as the amount of variability in λkt and ypt increases. Addition-

ally, MAEΛ is consistently higher for PMF than the DP model as shown in Figure 4.8.

This is most likely due to the flexibility of the DP model in estimating time-varying

profiles. PMF settles with a time-constant estimate of λkt, which results in a higher

MAEΛ.

The performance of the DP model as compared to PMF in estimating source

contributions is dependent on the variation present in the PM measurements. Figure

4.7 displays a time plot of source contributions with the median of the posterior

draws of the DP model and the PMF contribution estimates. The second column of

Figure 4.8 compares MAEF from the DP model to MAEF from PMF. Five-number

summaries of MAEF for both models is shown in Table 4.2.

When the variation in the PM measurements is small (wpt = .2), the median

MAEF under the Dirichlet process model is 3.66 with an inter-quartile range of (2.65,
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Figure 4.7: Time plot of source contributions fkt. The rows correspond to (gk, wpt) =
(100, .2), (100, .8), (250, .2), (250, .8), respectively. The solid line is the true value of
fkt, the line marked by “D” is the DP model estimate, and the line marked by “P” is
the PMF estimate. When wpt = 0.2 (first and third rows), the DP model outperforms
PMF. The DP model and PMF perform similarly when wpt = 0.8 (second and fourth
rows).
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Figure 4.8: MAE density plots for the DP model and PMF for various levels of gk

and wpt. The rows correspond to (gk, wpt) = (100, .2), (100, .8), (250, .2), and (250,
.8), respectively. The DP model has lower MAEF when wpt = .2; however, when
wpt = 0.8, MAEF under the DP model and PMF is comparable.
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Table 4.2: Comparison of five-number summary of MAEF when source profiles are
time-variant.

gk CV Model Min Q1 M Q3 Max

100 .2
DP Model .69 2.65 3.66 5.34 11.00

PMF 1.87 5.07 9.32 12.75 26.67

100 .8
DP Model 3.74 7.42 13.49 20.90 44.24

PMF 2.27 7.51 11.68 18.00 39.24

250 .2
DP Model 1.51 3.52 5.71 6.87 10.52

PMF 2.60 7.65 10.06 10.58 45.76

250 .8
DP Model 3.44 8.16 15.28 21.88 41.14

PMF 3.04 7.25 11.31 18.39 46.01
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5.34), compared to the larger median MAEF of 9.32 with an inter-quartile range of

(5.07, 12.75) under PMF. Thus, the Dirichlet process model outperforms the PMF

estimate in the presence of low variability among PM measurements. However, when

the variance of PM measurements is large (wpt = .8), the median MAEF is 13.49

with an interquartile range of (7.42, 20.90) under the DP model, compared to a

median MAEF of 11.68 and interquartile range (7.51, 18.00) under PMF. Thus, in

the presence of larger variation among PM measurements the Dirichlet process model

performs comparably to PMF.

4.4.2 Model Performance in the Presence of Time-Constant Profiles

As shown in the previous section, the DP model provided better estimates of

λkt when λkt was allowed to vary through time. Additionally, the DP model had

lower MAEF than PMF in the presence of small variation among PM measurements.

In this section, the performance of the DP model is compared to PMF in the presence

of constant source profiles.

Figure 4.9 displays a time plot of two different constant source profile elements

when wpt = .2 (first row) and wpt = .8 (second row). Figure 4.9 also displays the

DP model and PMF estimates of the constant source profile element. Five-number

summary comparisons of MAEΛ in the presence of constant source profiles are shown

in Table 4.3. In the case of constant source profiles, the DP model has lower MAEΛ

than PMF with a median MAEΛ of 0.10, compared to the median MAEΛ under PMF

of 0.28 when wpt = .2. When wpt = .8, the DP model had a median MAEΛ of 0.11

compared to a median MAEΛ of 1.41 under PMF. Similar to the case where source

profiles vary through time, the DP model outperforms PMF in estimating source

profiles. Given that a key assumption of PMF is that source profiles are constant

through time, one would assume a priori that PMF would perform at least as well

as the DP model; this is, however, not the case. The DP model is flexible enough to
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Table 4.3: Comparison of five-number summary of MAEΛ when source profiles are
time-invariant.

gk CV Model Min Q1 M Q3 Max

Constant .2
DP Model .04 .06 .10 .15 .21

PMF .08 .14 .28 .37 1.22

Constant .8
DP Model .05 .09 .11 .15 .16

PMF .35 .57 .83 .97 1.14

incorporate the case where source profiles are constant through time.

A comparison of the DP model and PMF estimates of fkt is displayed in Figure

4.10 and Table 4.4. Figure 4.10 displays a time plot of two source contributions with

the DP model and PMF estimates overlaid. Table 4.4 compares the five-number

summaries of MAEF in the presence of constant source profiles. Despite the value

of wpt, the DP model estimates source contributions better than PMF when source

profiles are constant through time. The median MAEF for the DP model is 2.15 when

wpt = .2, compared to a median MAEF of 3.00 when using PMF. Additionally, when

wpt = .8 the median MAEF for the DP model is 9.53, compared to 16.83 for PMF.

Thus, in both cases, the DP model more accurately estimates fkt.

The density plots of MAEΛ and MAEF when λkt is held constant are shown

in Figure 4.11. As mentioned above, the DP model surpasses PMF in accuracy of

parameter estimates when the assumption of constant source profiles holds.

4.4.3 Estimation of the Precision Parameter gk

Now consider examining how the DP model estimates the precision parameter

gk when λkt 6= λk for all t and when λkt = λk for all t. The estimate of the parameter

gk represents the model’s understanding of the smoothness of the underlying Dirichlet

process for λkt. The higher the estimate, the smoother the process.

Figure 4.12 displays marginal density estimates of gk for two different sources
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Figure 4.9: Time plot of two source profile elements. The solid line is the true value
of the source profile, the “D” line is the DP model estimate and the “P” line is the
PMF estimate. The DP model correctly, and more accurately than PMF, estimates
λp,t when wpt = .2 (first row) and wpt = .8.

Table 4.4: Comparison of five-number summary of MAEF when source profiles are
time-invariant.

gk CV Model Min Q1 M Q3 Max

Constant .2
DP Model .41 1.14 2.15 3.29 7.55

PMF .80 1.70 2.44 3.41 7.01

Constant .8
DP Model 2.91 6.81 9.53 14.18 46.36

PMF 1.97 5.79 10.83 16.09 44.21
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Figure 4.10: Time plot of fkt under constant source profiles. The unmarked solid line
is the true value of fkt, the solid line marked “D” is the DP model estimate and the
solid line marked “P” is the PMF estimate. For wpt = .2 (first row) and wpt = .8
(second row), the DP model outperforms PMF.
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Figure 4.11: Comparison of MAE under constant source profiles when wpt = .2 (first
row) and wpt = .8 (second row). Under both levels of wpt, the DP model has lower
MAE than PMF.
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when the true value of gk = 100 (first row), when the true value of gk = 250 (second

row), and when λkt is constant for all t (third row). When gk ∈ {100, 250}, the DP

model largely overestimates the value of gk. Averaged across all sources, the posterior

mean of gk is approximately 2000, regardless of the value of gk, with an average

MAEg of 1890. These large estimates of gk suggest that MCMC methods estimate

the underlying process to be much smoother than the true underlying process. This

large overestimation of gk is of little concern, however, due to the fact that the DP

model still estimates λkt and fkt well.

When the source profiles are constant over time, the DP model estimates gk to

be approximately 1,000,000 (see the third row of Figure 4.12). This large estimate

of gk arises from the fact that the underlying process is flat and hence very smooth.

Thus, when λkt is constant for all t, the DP model correctly estimates a large value

of gk.
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Figure 4.12: Density estimates of gk across two sources. The rows of plots correspond
to gk = 100, gk = 250, and time constant profiles respectively. When gk ∈ {100, 250}
the DP model largely overestimates the smoothness of the underlying process. How-
ever, when profiles are held constant, the DP model correctly estimates a large value
of gk.
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5. FUTURE RESEARCH

In this chapter, a few possible areas for future work regarding PSA and the DP

model are presented here for the reader’s information.

5.1 Incorporating the temporal structure in F

As discussed in Chapter 3, not only does Λt exhibit temporal correlation, but

elements of F also exhibit temporal correlation. For the purposes of this thesis,

the temporal correlation in F was ignored and emphasis was placed on estimating

the Dirichlet process involving λkt. However, a complete air pollution model would

also incorporate the temporal correlation in F. Park et al. (2001) proposed using

a multivariate auto-regressive (AR) model to account for the correlation among fkt.

A possible extension of the DP model would include fkt in the system equation of

the DLM and unify the methods outlined in this thesis as well as those methods

developed by Park et al. (2001) in proposing a model that accounts for both sources

of temporal correlation.

5.2 Point mass mixture priors for λkt

Not all pollution sources emit all P chemical species in the pollution model.

Identifying which elements of the source profile are 0 is desirable in that the source

profile would then better represent the pollution being emitted from the given pollu-

tion source. From a modeling perspective, this can be represented by allowing some

λpkt = 0. While the DP model does not directly allow for λpkt = 0, the DP model does

allow elements of λkt to be very small. Extending the DP model to allow λpkt = 0

can be done by using a point mass mixture prior on each element λkt. If each element

of λkt were allowed to be independent, then a point mass mixture prior on λpkt could
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be of the form

π(λpkt) =





c if λpkt = 0

(1− c)× LN[a, b] if λpkt > 0,

(5.1)

where c is a known and specified constant. The use of the lognormal distribution in

this example is somewhat mathematically satisfying in that each λpkt > 0 but does

not restrict λpkt < 1. Additionally, Model 5.1 does not accurately apply the constraint

∑P
p=1 λpkt = 1.

Allowing λpkt = 0 becomes much more complex when independence of λpkt is

not assumed. If λpkt is not independent, a multivariate point mass mixture prior for

λkt would have to be specified to allow some elements of λkt = 0 and the remaining

elements of λkt to follow the Dirichlet distribution. Specifying a point mass mixture

prior distribution for the vector λkt is difficult because the density of the Dirichlet

distribution depends on the number of non-zero elements of λkt.

5.3 Controlling for different levels of correlation between elements of λkt

For this thesis, each λpkt ∈ λkt was assumed to exhibit the same amount of

temporal correlation. This temporal correlation was represented by the smoothness

parameter gk in Equation 6.3. However, as shown in Section 3.2, the amount of

temporal correlation in λpkt related to how prevalent the chemical species was in

the corresponding pollution source profile (see Figure 3.3). These varying degrees of

temporal correlation can be accounted for in the DP model by altering the system

equation to be

λkt ∼ DIR[Gkλk(t−1)] k = 1, . . . , K t = 1, . . . , N, (5.2)

where Gk = diag(g1k, g2k, . . . , gPk), a diagonal matrix of smoothness parameters.

Each gpk ∈ Gk represents how closely tied λpkt is to λpk(t−1).
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5.4 Reverse Jump MCMC to estimate the number of sources

For this thesis, the number of pollution sources was assumed to be known. Most

often, this is not a legitimate assumption. In fact, the number of pollution sources

may not be constant for all t. Reverse jump MCMC (RJMCMC) is a technique

that allows a Markov chain to jump between model spaces while ensuring that the

reversibility condition is met. This reversibility is constructed by specifying map

functions that map model parameters between the two model spaces. The use of

RJMCMC could be applied to estimating the number of sources in the pollution

model. Ideally, RJMCMC would be used to allow for different time periods to have

a different number of pollution sources.
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6. CONCLUSIONS

Pollution source apportionment (PSA) is the practice of deriving information

about pollution sources from measurements of particulate matter (PM) to help regu-

late pollution emissions from these pollution sources. The basic PSA model is written

as

Y
P×N

= Λ
P×K

F
K×N

+ E
P×N

, (6.1)

where Y is a matrix of measurements on P chemical species measured over N time

periods, Λ is the matrix of pollution source profiles, and each λpk ∈ Λ represents the

proportion of chemical p in the chemical makeup of pollution emitted from source

k, F is the matrix of pollution source contributions, and E is the error term matrix.

The kth column of Λ is referred to as the kth pollution source profile and is denoted

as λk.

Several of the assumptions made by Model 6.1 are nonrepresentative of air

pollution data. Two such assumptions are (1) PM measurements are independent

and (2) Λ is time-invariant. Therefore, this thesis proposes a dynamic linear model

(DLM) with observation equation

yt ∼ LN[Λtft, wpt], p = 1, . . . , P t = 1, . . . , N, (6.2)

where each λkt follows the system equation given by

λkt ∼ DIR[gkλk(t−1)] k = 1, . . . , K t = 1, . . . , N, (6.3)

and the time 0 initial information is given by

λk,0 ∼ DIR[mk] k = 1, . . . , K, and (6.4)

fkt ∼ LN[akt, bkt] k = 1, . . . , K t = 1, . . . N, (6.5)
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to account for these inadequacies. Models 6.2-6.5 relax the assumptions of indepen-

dence and constant source profiles by allowing profile vectors (λkt) to vary through

time according to a Dirchlet process. Hence, Models 6.2-6.5 are collectively referred

to as the Dirichlet process (DP) model. Allowing λkt to follow a Dirichlet process

is satisfying in that the Dirichlet distribution accurately applies the constraint that

∑P
p=1 λpkt = 1. Additionally, specifying each fkt ∈ F to have a lognormal distribution

is also logical in that each fkt is constrained to be greater than 0.

In Chapter 4, the effectiveness of the DP model was evaluated based on several

simulated data sets where the data sets were simulated under different degrees of

variability. In the presence of time-varying source profiles the DP model was superior

to PMF in estimating λkt. Additionally, when the variation among the PM mea-

surements was small (wpt = .2), the DP model more accurately estimated elements

of F than PMF. PMF and the DP model performed similarly in estimating source

contributions when the variation among PM measurements was large (see Figure 4.8).

The DP model was also compared to PMF when the assumption of constant

source profiles was true. In this case, the DP model was found to be superior to PMF

in estimating both Λt and F, regardless of the amount of variability present among

PM measurements. This discovery is somewhat alarming in that a key assumption of

PMF is that source profiles are constant through time. The DP model makes no such

assumption and yet outperforms PMF in estimating Λ and F when this assumption

holds true.

For the reasons stated above, the DP model is found to be a more flexible model

than the basic PSA model in that the DP model has less assumptions required for its

use and yet still produces desirable results. The DP model also has the added benefit

of making probability statements about model parameters because the DP model is

estimated using Bayesian MCMC methods.
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A. DISTRIBUTION NOTATION

A.1 The Lognormal Distribution

A random variable X follows a lognormal distribution if the logarithm of the

random variable is distributed normally with mean µ and variance σ2. The probability

density function of X is

p(X|µ, σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 , (A.1)

where µ and σ are the mean and standard deviation of the variable’s logarithm,

respectively.

The expected value and variance of a lognormally distributed random variable

are

E[X] = eµ+σ2

2 , (A.2)

and

V AR[X] = (eσ2 − 1)e2µ+σ2

. (A.3)

Throughout this thesis, the notation LN [µ∗, ν] is used to represent the log-

normal distribution with mean µ∗ and coefficient of variation (CV) ν. Setting µ∗ =

E[X] and ν =

√
V AR[X]

E[X]
, µ and σ2 can be solved for in terms of µ∗ and ν. Doing so

yields

µ = ln(µ∗)− 1

2
ln(ν2 + 1), (A.4)

and

σ2 = ln(ν2 + 1). (A.5)

A.2 The Dirichlet Distribution

The Dirichlet distribution is the multivariate generalization of the univariate

beta distribution. The Dirichlet distribution is parameterized by a K-dimensional
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vector α such that αi > 0 for all αi ∈ α. If a K-vector X is Dirichlet-distributed,

then X has the probability density function

p(X|α) =

Γ

(
K∑

i=1

αi

)

K∏
i=1

Γ(αi)

K∏
i=1

Xαi−1
i , (A.6)

where
∑K

i=1 Xi = 1 and Γ(·) is the gamma function. Because the Dirichlet distribution

is the multivariate generalization of the beta distribution, the marginal distribution of

each Xi ∈ X is distributed as a beta distribution with parameters αi and β = (α0−αi),

where α0 =
∑K

i=1 αi.

The univariate expected value and variance of a Dirichlet-distributed variable

is,

E[Xi] =
αi

α0

(A.7)

and

V AR[Xi] =
αi(α0 − αi)

α2
0(α0 + 1)

. (A.8)

The notation DIR[α] is used throughout this thesis to denote a Dirichlet distributed

random variable with parameter vector α.

A K-dimensional Dirichlet-distributed random variable can be generated with

the following steps:

(1) For i ∈ {1, . . . , K}, generate Yi ∼ Gamma[shape = αi, scale = 1].

(2) Calculate V =
K∑

i=1

Yi.

(3) Set xi = Yi

V
.

The random variable, x = {x1, . . . , xK} is then Dirichlet-distributed with parameter

vector α = {α1, . . . , αK}.
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B. MATLAB CODE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Main MATLAB Code for Running MCMC to Estimate Time Varying Profiles%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Specify How Many Species, Days, Sources, Length, Burn are desired

NumSpecies = 44;

NumSources = 9;

NumDays = 50;

NumIter = 50000;

Burn = 40000;

allgg = [100];

allcv = [.2];

begsets = [16];

endsets = [16];

totloops = size(begsets);

totloops = totloops(2);

for hhh = 1:totloops

startset = begsets(hhh);

endset = endsets(hhh);

gg = allgg(hhh);

CVY = allcv(hhh);

cvout = 100*CVY;

for dd = startset:endset

tic

Current_Project = [’Currently Running MCMC for G=’ int2str(gg) ’

CV=’ int2str(cvout) ’ Set=’ int2str(dd)]

%%Specify The File Names that contain the data, starting values,

%and Lambda_0

data = [’../SimulatedDataSets/SimData’ int2str(gg) int2str(cvout)

int2str(dd) ’.txt’];

SV_Lambda = [’../SimulationParameters/LambdaT’ int2str(gg) ’.txt’];

SV_F = ’../SimulationParameters/Contributions.txt’;
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SV_G = [’../SimulationParameters/g’ int2str(gg) ’.txt’];

Time0 = ’../SimulationParameters/Profiles.txt’;

File_Cand_Sig_G = ’../SimulationParameters/CandSigG.txt’;

File_Cand_Sig_F = ’../SimulationParameters/CandSigF.txt’;

File_Cand_Sig_L = [’../SimulationParameters/Cand_Sig_L_One_’ int2str(gg) ’.txt’];

%%Set Prior Values for F and G

F_mean = 20;

F_cv = 1;

G_mean = 175;

G_var = 75^2;

%%Get Original Candidate Sigmas for G, F, and Lambda

Cand_Sig_G = dlmread(File_Cand_Sig_G);

Cand_Sig_G = Cand_Sig_G(1:NumSources,:);

Cand_Sig_F = dlmread(File_Cand_Sig_F);

Cand_Sig_F = Cand_Sig_F(1:NumDays,1:NumSources)’;

tempL = dlmread(File_Cand_Sig_L);

Cand_Sig_L = zeros(NumSpecies,NumSources,NumDays);

splits = 1:NumSpecies:((NumSpecies*NumSources)+1);

for t = 1:NumDays

for k = 1:(size(splits,2)-1)

Cand_Sig_L(:,k,t) = tempL(splits(:,k):(splits(:,k+1)-1),t);

end

end clear File_Cand_Sig_G File_Cand_Sig_F File_Cand_Sig_L;

%%Create Matrices to keep track of Acceptance Rates

Accept_Rate_G = zeros(NumSources,1);

Accept_Rate_F = zeros(NumSources,NumDays);

Accept_Rate_L = zeros(NumSources,NumDays);

Rate_Counter = 0;

Total_L = Accept_Rate_L;

Total_G = Accept_Rate_G;

Total_F = Accept_Rate_F;

%%Read in the NumSpecies by NumDays Matrix of Chemical Concentrations

Y = dlmread(data);

Y = Y(1:NumSpecies,1:NumDays);

clear data;

%%Read in the NumSpecies by NumSources Time 0 Profile Matrix
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Lambda_0 = dlmread(Time0);

clear Time0;

%%Initialize Parameter Matrices

Lambda_1 = zeros(NumSpecies,NumSources,NumIter-Burn);

%%Repeat for Lambda_2 through Lambda_50%%

Ghold = zeros(NumSources,NumIter-Burn);

Fhold = zeros(NumSources,NumDays,NumIter-Burn);

wpthold = zeros(NumIter-Burn,1);

%%Read in the Starting Values for F and Lambda_t

temp = dlmread(SV_Lambda);

splits =

1:NumSpecies:((NumSpecies*NumSources)+1);

Lambda_t =

zeros(NumSpecies,NumSources,NumDays);

for t = 1:NumDays

for k = 1:(size(splits,2)-1)

Lambda_t(:,k,t) = temp(splits(:,k):(splits(:,k+1)-1),t);

end

end

trueL = Lambda_t;

tempF = dlmread(SV_F);

F = tempF(1:NumDays,1:NumSources)’;

trueF = F;

tempG = dlmread(SV_G);

G = tempG(:,1);

wpt = CVY;

clear tempF tempG SV_F SV_G SV_Lambda temp t k;

for ii = 2:NumIter

%%Increment Rate_Counter to adjust Candidate Sigmas

Rate_Counter = Rate_Counter+1;

for kk=1:NumSources

new = normrnd(G(kk,:),Cand_Sig_G(kk,:));

if new > 0

u = unifrnd(0,1,1,1);
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alpha = likelambda(Lambda_t(:,kk,:),new,Lambda_0(:,kk)) + prior_g(new,G_mean,G_var) ...

- likelambda(Lambda_t(:,kk,:),G(kk,:),Lambda_0(:,kk)) - prior_g(G(kk,:),G_mean,G_var);

if log(u) < alpha

G(kk,:) = new;

Accept_Rate_G(kk,1) = Accept_Rate_G(kk,1)+1;

end

end

clear new u alpha accept_g;

end

update_Lambda_t = Lambda_t;

%Update Lambda_2 through Lambda_N-1

for jj = 2:(NumDays-1)

for kk=1:NumSources

old = update_Lambda_t(:,kk,jj);

new = normrnd(old,Cand_Sig_L(:,kk,jj));

new = new/sum(new);

if min(new>0) == 1

newmat = update_Lambda_t(:,:,jj);

newmat(:,kk) = new;

u = unifrnd(0,1,1,1);

alpha = likey(Y(:,jj),newmat,F(:,jj),wpt) ...

+ prior_lambda(update_Lambda_t(:,kk,jj-1),new,update_Lambda_t(:,kk,jj+1),G(kk,:))...

- likey(Y(:,jj),update_Lambda_t(:,:,jj),F(:,jj),wpt) ...

- prior_lambda(update_Lambda_t(:,kk,jj-1),update_Lambda_t(:,kk,jj),...

update_Lambda_t(:,kk,jj+1),G(kk,:));

if log(u) < alpha

update_Lambda_t(:,kk,jj) = new;

Accept_Rate_L(kk,jj) = Accept_Rate_L(kk,jj) + 1;

end

end

end

end

%Update Lambda_1

for kk=1:NumSources

old = update_Lambda_t(:,kk,1);

new = normrnd(old,Cand_Sig_L(:,kk,1));

new = new/sum(new);

if min(new>0) == 1

newmat = update_Lambda_t(:,:,1);
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newmat(:,kk) = new;

u = unifrnd(0,1,1,1);

t0 = rdirich(G(kk,:)*update_Lambda_t(:,kk,1));

alpha = likey(Y(:,1),newmat,F(:,1),wpt) ...

+ prior_lambda(Lambda_0(:,kk),new,update_Lambda_t(:,kk,2),G(kk,:))...

- likey(Y(:,1),update_Lambda_t(:,:,1),F(:,1),wpt) ...

- prior_lambda(Lambda_0(:,kk),update_Lambda_t(:,kk,1),...

update_Lambda_t(:,kk,2),G(kk,:));

if log(u) < alpha

update_Lambda_t(:,kk,1) = new;

Accept_Rate_L(kk,1) = Accept_Rate_L(kk,1) + 1;

end

end

end

%Update Lambda_NumDays

for kk=1:NumSources

old = update_Lambda_t(:,kk,NumDays);

new = normrnd(old,Cand_Sig_L(:,kk,NumDays));

new = new/sum(new);

if min(new>0) == 1

newmat = update_Lambda_t(:,:,NumDays);

newmat(:,kk) = new;

u = unifrnd(0,1,1,1);

t51 = rdirich(G(kk,:)*update_Lambda_t(:,kk,NumDays));

alpha = likey(Y(:,NumDays),newmat,F(:,NumDays),wpt) ...

+ prior_lambda(update_Lambda_t(:,kk,NumDays-1),new,t51,G(kk,:))...

- likey(Y(:,NumDays),update_Lambda_t(:,:,NumDays),F(:,NumDays),wpt) ...

- prior_lambda(update_Lambda_t(:,kk,NumDays-1),...

update_Lambda_t(:,kk,NumDays),t51,G(kk,:));

if log(u) < alpha

update_Lambda_t(:,kk,NumDays) = new;

Accept_Rate_L(kk,NumDays) = Accept_Rate_L(kk,NumDays) + 1;

end

end

end

Lambda_t = update_Lambda_t;

update = F;

for jj=1:NumDays

for kk=1:NumSources
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old = update(kk,jj);

new = normrnd(old,Cand_Sig_F(kk,jj));

if new>0

update(kk,jj) = new;

u = unifrnd(0,1,1,1);

alpha = like_f(Y(:,jj),Lambda_t(:,:,jj),update(:,jj),wpt) + prior_f(new,F_mean,F_cv) ...

- like_f(Y(:,jj),Lambda_t(:,:,jj),F(:,jj),wpt) - prior_f(old,F_mean,F_cv);

update(kk,jj) = old;

if log(u) < alpha

update(kk,jj) = new;

Accept_Rate_F(kk,jj) = Accept_Rate_F(kk,jj) + 1;

end

end

end

end

F(:,:) = update;

%%Update wpt

wptnew = normrnd(wpt,.05);

if wptnew > 0

likewptold = 0;

likewptnew = 0;

for tt=1:NumDays

likewptold = like_f(Y(:,tt),Lambda_t(:,:,tt),F(:,tt),wpt)+likewptold;

likewptnew = like_f(Y(:,tt),Lambda_t(:,:,tt),F(:,tt),wptnew)+likewptnew;

end

alpha = likewptnew + log(wptnew) - wptnew/CVY - likewptold -...

log(wpt) + wpt/CVY;

u = unifrnd(0,1,1,1);

if log(u) < alpha

wpt = wptnew;

end

end

%%Tweak the Candidate Sigmas if Acceptance Ratios are Bad

if Rate_Counter == 10

Total_L = Total_L + Accept_Rate_L;

Total_F = Total_F + Accept_Rate_F;

Total_G = Total_G + Accept_Rate_G;

Cand_Sig_G(Accept_Rate_G >= 6) = Cand_Sig_G(Accept_Rate_G >= 6)*1.1;

Cand_Sig_G(Accept_Rate_G <= 2) = Cand_Sig_G(Accept_Rate_G <= 2)*.9;
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Cand_Sig_F(Accept_Rate_F >= 6) = Cand_Sig_F(Accept_Rate_F >= 6)*1.1;

Cand_Sig_F(Accept_Rate_F <= 2) = Cand_Sig_F(Accept_Rate_F <= 2)*.9;

for i=1:NumDays

Cand_Sig_L(:,Accept_Rate_L(:,i) >= 6,i) = Cand_Sig_L(:,Accept_Rate_L(:,i) >= 6,i)*1.1;

Cand_Sig_L(:,Accept_Rate_L(:,i) <= 2,i) = Cand_Sig_L(:,Accept_Rate_L(:,i) <= 2,i)*.9;

end

Accept_Rate_G = zeros(NumSources,1);

Accept_Rate_F = zeros(NumSources,NumDays);

Accept_Rate_L = zeros(NumSources,NumDays);

Rate_Counter = 0;

end

if ii > Burn

%Set Lambda_t to new values of each Lambda Matrix

Lambda_1(:,:,ii-Burn) = Lambda_t(:,:,1);

%%Repeat for Lambda_2 through Lambda_50%%

Fhold(:,:,ii-Burn) = F;

Ghold(:,ii-Burn) = G;

wpthold(ii-Burn,:) = wpt;

end

end %End MCMC

%%Initialize Matrices to Hold Percentiles

Lambda_1_pct = zeros(NumSpecies,NumSources,101);

%%Repeat for Lambda_2_pct through Lambda_50_pct%%

%%For the Lambda Parameters, Keep Only the Quantiles

for jj=1:NumSpecies

for kk=1:NumSources

Lambda_1_pct(jj,kk,:) = quantile(Lambda_1(jj,kk,:),0:.01:1,3);

%%Repeat for Lambda_2_pct through Lambda_50_pct%%

end

end

clear Lambda_1 Lambda_2 Lambda_3 Lambda_4 Lambda_5 Lambda_6 Lambda_7 Lambda_8;

clear Lambda_17 Lambda_16 Lambda_15 Lambda_14 Lambda_13 Lambda_12 Lambda_11 Lambda_10 Lambda_9;

clear Lambda_18 Lambda_19 Lambda_20 Lambda_21 Lambda_22 Lambda_23 Lambda_24 Lambda_25 Lambda_26;
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clear Lambda_35 Lambda_34 Lambda_33 Lambda_32 Lambda_31 Lambda_30 Lambda_29 Lambda_28 Lambda_27;

clear Lambda_36 Lambda_37 Lambda_38 Lambda_39 Lambda_40 Lambda_41 Lambda_42 Lambda_43 Lambda_44;

clear Lambda_50 Lambda_49 Lambda_48 Lambda_47 Lambda_46 Lambda_45;

%%Output the Draws to A file

lamfile = [’./Output/G’ int2str(gg) ’CV’ int2str(cvout) ’/Set’ int2str(dd) ’/Profiles/’];

dlmwrite([lamfile ’Lambda1.dat’],Lambda_1_pct,’precision’,’%.7f’);

%%Repeat Write out for Lambda2.dat through Lambda_50.dat%%

MAEF = zeros(1,NumDays);

for kk=1:NumDays

ffile = [’./Output/G’ int2str(gg) ’CV’ int2str(cvout) ’/Set’ int2str(dd)...

’/Contributions/f’ int2str(kk) ’.dat’];

temppct = zeros(NumSources,101);

temp = Fhold(:,kk,:);

for pp=1:NumSources

temppct(pp,:) = quantile(temp(pp,:,:),0:.01:1);

end

dlmwrite(ffile,temppct,’precision’,’%.4f’);

MAEF(:,kk) = sum(abs(temppct(:,51)-trueF(:,kk)));

clear temp;

end

temp = Ghold’;

dlmwrite([’./Output/G’ int2str(gg) ’CV’ int2str(cvout) ’/Set’ int2str(dd)...

’/G/g.dat’],temp,’precision’,’%.1f’);

dlmwrite([’./Output/G’ ...

int2str(gg) ’CV’ int2str(cvout) ’/Set’ int2str(dd) ’/wpt/wpt.dat’],wpthold,’precision’,’%.3f’);

%%Calculate MAE_Lambda by day

MAE1 = sum(abs(Lambda_1_pct(:,:,51)-trueL(:,:,1)));

%%Repeat for MAE2 through MAE50%%

TotMAE = [MAE1;MAE2;MAE3;MAE4;MAE5;MAE6;MAE7;MAE8;MAE9;MAE10;

MAE11;MAE12;MAE13;MAE14;MAE15;MAE16;MAE17;MAE18;MAE19;MAE20;

MAE21;MAE22;MAE23;MAE24;MAE25;MAE26;MAE27;MAE28;MAE29;MAE30;

MAE31;MAE32;MAE33;MAE34;MAE35;MAE36;MAE37;MAE38;MAE39;MAE40;

MAE41;MAE42;MAE43;MAE44;MAE45;MAE46;MAE47;MAE48;MAE49; ...

MAE50];

dlmwrite([’./Output/G’ int2str(gg) ’CV’ int2str(cvout) ...

’/MAE/ProfileMAE.dat’],TotMAE,’-append’,’precision’,’%.2f’);

dlmwrite([’./Output/G’ int2str(gg) ’CV’ int2str(cvout) ...

72



’/MAE/FMAE.dat’],MAEF,’-append’,’precision’,’%.2f’);

[’Completed’]

toc

end %End Do Loop Over Data Sets

end %End Do Loop Across Levels
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