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ABSTRACT

Variable Selection and Parameter Estimation using a Continuous and Differentiable
Approximation to the L0 Penalty Function

Douglas N. VanDerwerken
Department of Statistics, BYU

Master of Science

L0 penalized likelihood procedures like Mallows’ Cp, AIC, and BIC directly penalize
for the number of variables included in a regression model. This is a straightforward ap-
proach to the problem of overfitting, and these methods are now part of every statistician’s
repertoire. However, these procedures have been shown to sometimes result in unstable
parameter estimates as a result on the L0 penalty’s discontinuity at zero. One proposed
alternative, seamless-L0 (SELO), utilizes a continuous penalty function that mimics L0 and
allows for stable estimates. Like other similar methods (e.g. LASSO and SCAD), SELO
produces sparse solutions because the penalty function is non-differentiable at the origin.
Because these penalized likelihoods are singular (non-differentiable) at zero, there is no
closed-form solution for the extremum of the objective function. We propose a continuous
and everywhere-differentiable penalty function that can have arbitrarily steep slope in a
neighborhood near zero, thus mimicking the L0 penalty, but allowing for a nearly closed-
form solution for the β̂ vector. Because our function is not singular at zero, β̂ will have
no zero-valued components, although some will have been shrunk arbitrarily close thereto.
We employ a BIC-selected tuning parameter used in the shrinkage step to perform zero-
thresholding as well. We call the resulting vector of coefficients the ShrinkSet estimator. It
is comparable to SELO in terms of model performance (selecting the truly nonzero coeffi-
cients, overall MSE, etc.), but we believe it to be more intuitive and simpler to compute. We
provide strong evidence that the estimator enjoys favorable asymptotic properties, including
the oracle property.

Keywords: Penalized likelihood; variable selection; oracle property; large p, small n
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chapter 1

INTRODUCTION

L0 penalized likelihood procedures like Mallows’ Cp, AIC, and BIC directly penalize for the

number of variables included in a regression model. This is a straightforward approach to

the problem of overfitting, and these methods are now part of every statistician’s repertoire.

However, Breiman (1996) demonstrates that these procedures can result in unstable param-

eter estimates. According to Dicker (2010), this instability is the result of the L0 penalty’s

discontinuity at zero. In addition, L0 likelihood procedures are generally NP-hard. In order

to improve computational efficiency over other methods and alleviate the instability prob-

lems identified by Breiman (1996), Dicker (2010) recommends “continuous penalty functions

designed to mimic the L0 penalty” and proposes one such penalty called the seamless-L0

(SELO). We go one step further and propose a continuous and differentiable penalty func-

tion that can have arbitrarily steep slope in a neighborhood near zero, thus mimicking the

L0 penalty, but allowing for a nearly closed-form solution for the β̂ vector. The resulting

estimator is comparable to SELO in terms of model performance (selecting the truly nonzero

coefficients, overall MSE, etc.), but we believe it to be more intuitive and simpler to compute.

It has been shown (see Fan and Li (2001), Antoniadis and Fan (2001)) that a penalty

function cannot produce sparse solutions (solutions where many coefficients are estimated

to be zero) unless the penalty is singular at the origin. Because the proposed penalty

is differentiable at zero, it cannot produce sparse solutions on its own. However, due to

its arbitrarily steep slope in a neighborhood of the origin, the proposed penalty is able

to shrink estimates arbitrarily close to zero. We employ the same BIC-selected tuning

parameter to both shrink estimates towards zero and then threshold the shrunken estimates

to exactly zero. While our method at this point ceases to remain fully continuous, the
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amount of discontinuity is so small (because of the shrinkage step) that the major problems

with discontinuity identified by Breiman are averted. Importantly, the proposed estimator

appears to also enjoy asymptotic normality with the same asymptotic variance as the least

squares estimator. These properties (sparsity and asymptotic normality) comprise what Fan

and Li (2001) call the “oracle properties.” In other words, an oracle procedure performs as

well as if the set of truly nonzero coefficients were known in advance.

1.1 Outline

We first give a thorough discussion of the relevant literature on penalized likelihood meth-

ods. We then introduce the proposed penalty function and present an iterative closed-form

solution for β̂. We approximate the finite-sample distribution of the estimator, and establish

(through heuristic argument and simulation) its asymptotic oracle properties. We present

the results of various simulations and comment on various other applications of this method,

including where n � p. We conclude by analyzing a medical data set and a data set used

in a discrimination lawsuit. Throughout, we compare our method to standards in the field.
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chapter 2

LITERATURE REVIEW

Let X be an n × p data matrix where rows 1, . . . , n represent observations and columns

1, . . . , p represent variables. If an estimate for the intercept is desired, a column of 1’s may

be appended to X. The vector y is of length n and represents the response associated

with each observation. It is typically assumed that y follows a normal distribution with

expectation Xβ and variance σ2I when errors are independent, or more generally Σ. The

maximum likelihood estimator for β is β̂ = (X′X)−1X′y. It is straightforward to show that

β̂ is distributed normally with mean β and variance (X′X)−1σ2. Thus, the ordinary least

squares (OLS) estimator β̂ is unbiased. Other advantages include that it has the minimum

variance of all unbiased estimators, that it is not computationally burdensome to calculate,

and that it is widely recognized and understood among other disciplines. In addition, it

is relatively easy to derive the OLS estimator’s finite-sample and asymptotic properties.

However, Hastie, Tibshirani, and Friedman (2009) point out two important drawbacks of β̂:

1. Prediction inaccuracy. Although β̂ has zero bias, its variance can be high relative to

biased estimators. Shrinking or setting some coefficients to zero can improve overall

mean square error and prediction accuracy.

2. Interpretation. When p is high, it can be difficult to understand all effects simultane-

ously. Sometimes it may be advantageous to lose a little accuracy in exchange for a

more parsimonious model.

The following methods are meant to improve upon β̂ in one or both of these areas.
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2.1 Subset selection

The idea of subset selection is to select the best subset (not necessarily proper) of the p

predictors of y in terms of some optimality criterion. The model chosen is the OLS estimator

fit on the X matrix of reduced dimensionality determined by those predictors which were

retained. Most optimality criteria directly penalize the number of terms in the model, thus

making use of the L0 penalty, and reward terms that are effective at reducing model error.

According to Dicker (2010), L0 penalties are of the form

pλ(βj) = λI{βj 6= 0},

where I is the indicator function. Examples of L0-based optimality criteria include Mallows’

Cp (Mallows 1973), AIC, (Akaike 1974), and BIC (Schwarz 1978). Breiman (1996) argues

that subset selection is unstable in that changing just one observation can drastically alter

the minimizer of the residual sum of squares. This is largely due to the all-or-nothing nature

of the L0 penalty. Less sophisticated methods such as choosing predictors so as to maximize

adjusted R2 or zero-thresholding coefficients with nonsignificant t-statistics are also meant

to reduce model size, but do not formally incorporate the L0 penalty.

2.2 Ridge regression

One of the first alternatives to ordinary least squares was ridge regression, which was de-

veloped by Hoerl and Kennard (1970) in order to deal with multicollinearity. The ridge

estimator is found by minimizing

Q(β) =
n∑
i=1

(
yi − x′iβ

)2

+ λ

p∑
j=1

β2
j

with respect to β. In essence, the solution β̂ minimizes the sum of squared residuals subject

to
p∑
j=1

β2
j ≤ f(λ),
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where f is a one-to-one function (Hastie et al. 2009). For λ > 0, Q(β) penalizes coefficients

based on their magnitude, where the amount of shrinkage is directly related to the choice of

λ. It is easily shown that

β̂ = (X′X + λI)−1X′y

minimizes Q(β). Hoerl and Kennard (1970) introduced a graphic known as the “ridge

trace” to help the user determine the optimal value for λ. An important aspect of the

ridge shrinkage is that, in general, no coefficients are shrunk to exactly zero. Because ridge

regression does not shrink coefficients to zero, it is not really a variable selection technique.

We discuss it because it was one of the first attempts to gain popularity using an objective

function other than the sum of squared residuals. The other procedures presented below all

perform shrinkage of some coefficients to zero.

2.3 LASSO

LASSO, which stands for “least absolute shrinkage and selection operator,” was proposed

by Tibshirani (1996) as an alternative to subset selection and ridge regression that retains

the good features of both. Minimizing

Q(β) =
n∑
i=1

(
yi − x′iβ

)2

+ λ

p∑
j=1

|βj|

for a fixed value of λ with respect to β yields the LASSO estimate β̂. This is equivalent to

minimizing the sum of squared residuals subject to

p∑
j=1

|βj| ≤ t,

where t ≥ 0 (or λ) is a tuning parameter that can be chosen by cross-validation, generalized

cross-validation, or “an analytical unbiased estimate of risk” (Tibshirani 1996). As in the

ridge case, increasing the tuning parameter leads to increased shrinkage. Unlike before, no

truly closed-form solution exists, though the iterative ridge regression algorithm

β̂
(k+1)

= (X′X + λW)−1X′y,
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where W is a diagonal p × p matrix with diagonal elements |β̂(k)|−1, generally guarantees

convergence to the minimum of Q(β). Tibshirani (1996) offers several other algorithms for

finding β̂, but these were supplanted by the more efficient least angular regression (LARS)

algorithm in 2004 (Efron, Hastie, Johnstone, and Tibshirani 2004).

2.4 Bridge regression

Developed by Frank and Friedman (1993), bridge regression encompasses a large class of esti-

mators, of which subset selection, ridge, and LASSO are special cases. The bridge estimator

is found by minimizing:

Q(β) =
n∑
i=1

(
yi − x′iβ

)2

+ λ

p∑
j=1

|βj|γ

with respect to β where λ > 0 (as before) determines the strength of the penalty and γ > 0 is

an additional meta parameter that “controls the degree of preference for the true coefficient

vector β to align with the original variable axis directions in the predictor space” (Frank

and Friedman 1993). This is equivalent to minimizing the sum of squared residuals subject

to
p∑
j=1

|βj|γ ≤ t

for some t, a function of λ. According to Fu (1998), Frank and Friedman (1993) did not

solve for the estimator of bridge regression for an arbitrary γ > 0, but they did recommend

optimizing the γ parameter. Fan and Li (2001) explain that the bridge regression solution

is only continuous for γ ≥ 1, but does not threshold (produce sparse solutions) when γ > 1.

Thus, only when γ = 1 (which is the LASSO penalty) is the solution continuous and sparse;

but then the solution is biased by a constant λ.

2.5 SCAD

The SCAD or “smoothly clipped absolute deviation” penalty was proposed by Fan and Li

(2001) in their seminal paper Variable Selection via Nonconcave Penalized Likelihood and
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its Oracle Properties. The SCAD penalty is best defined in terms of its first derivative,

p′λ(β) = λ

{
I{β ≤ λ}+

(aλ− β)+
(a− 1)λ

I{β > λ}
}
,

where I is the indicator function. An important improvement of SCAD over LASSO is that

large values of β are penalized less than small values of β. Also, unlike traditional variable

selection procedures, the SCAD estimator’s sampling properties can be precisely established.

For example, Fan and Li (2001) demonstrated that as n increases, the SCAD procedure

selects the true set of nonzero coefficients with probability tending to one. In addition,

the SCAD estimator exhibits asymptotic normality with mean β and variance (X′X)−1σ2,

the variance with the true submodel known. These two properties — consistency in variable

selection (sometimes called “sparsity”) and asymptotic normality with the minimum possible

variance of an unbiased estimator — constitute the “oracle” properties. In other words, an

oracle procedure performs as well asymptotically as if the set of truly nonzero coefficients

were known in advance. Asymptotic oracle properties have become the gold standard in the

penalized likelihood literature. Finally, Fan and Li (2001) show that the SCAD penalty can

be effectively implemented in robust linear and generalized linear models.

2.6 Adaptive LASSO

LASSO was designed to retain the good features of subset selection (sparsity), and ridge

regression (continuity at zero, which leads to stable estimates). This it does, but at the cost

of producing asymptotically biased estimates because the penalty function is unbounded for

large βj. In addition, Zou (2006) proves that in nontrivial instances LASSO is inconsistent.

That is, in some cases it does not select, even asymptotically, the true set of nonzero coef-

ficients with probability tending to one. Therefore, LASSO was shown to not possess the

oracle properties. To remedy this problem, Zou (2006) proposes a weighted LASSO which

minimizes

Q(β) =
n∑
i=1

(
yi − x′iβ

)2

+ λ

p∑
j=1

wj|βj|.
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Zou (2006) suggests using ŵj = 1/|βj|γ, and calls the resulting estimator the adpative

LASSO. Optimal values of γ and λ can be found using two-dimensional cross-validation. The

minimum of Q(β) can be found efficiently using the LARS (Efron et al. 2004) algorithm since

the penalty function is convex. Importantly, for fixed p, as n increases, the adaptive LASSO

selects the true set of nonzero coefficients with probability tending to one. In addition,

the adaptive LASSO estimate exhibits asymptotic normality with mean β and variance

(X′X)−1σ2. Adaptive LASSO theory and methodology have been extended to generalized

linear models, where the oracle properties also hold.

2.7 SELO

The SELO or “seamless-L0” penalty was designed to mimic the L0 penalty without the jump

discontinuity. Proposed by Dicker (2010),

pSELO(βj, λ, τ) =
λ

log(2)
log

(
|βj|
|βj|+ τ

+ 1

)
utlizes a tuning parameter τ in addition to the λ parameter common in most penalized

likelihood procedures. When τ is small, pSELO(βj, λ, τ) ≈ λI{βj 6= 0}, yet because the

penalty is continuous, the L0 penalty’s inherent instability problems identified by Breiman

(1996) are mitigated. A recommended implementation fixes τ = 0.01, then maximizes the

penalized likelihood by a coordinate descent algorithm for a collection of λs, selecting the

optimal λ in terms of minimal BIC (Dicker 2010). (The LARS algorithm (Efron et al.

2004) could not be employed for optimization, because the SELO penalty is non-convex.)

Dicker (2010) shows through various simulations that in finite samples the SELO procedure

is superior to existing methods in terms of proportion of the time that the correct model

is selected, MSE, and model error (defined as (β̂ − β)′Σ(β̂ − β)). We shall use the same

simulation setup and criteria as Dicker (2010) to examine the finite-sample performance of

our estimator. Asymptotically, the SELO estimator enjoys the oracle properties described

by Fan and Li (2001).
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2.8 Other methods

The foregoing list is by no means exhaustive. It does, however, represent the most common

variable selection techniques based on penalized likelihood. Other variable selection methods

include the nonnegative garrote (Breiman 1995), the Dantzig selector (Candès and Tao 2007),

nonparametric methods (Doksum, Tang, and Tsui 2008), Bayesian methods (Mitchell and

Beauchamp 1988), the elastic net (Zou and Hastie 2005), neural networks (Wikel and Dow

1993), and random forests used for determining variable importance (Breiman 2001). In

addition, several authors have extended results for specific penalty functions to a broader

class of functions (see, for example, Fessler (1996), Antoniadis and Fan (2001), Fan and Li

(2001), or Antoniadis, Gijbels, and Nikolova (2009)).
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chapter 3

METHODS

3.1 Proposed penalty function

The penalty function that we propose is of the form:

p(βk) = λ

(
1− exp

(
− β2

k

δ2
))
.

By way of illustration, for λ = 1 and fixed δ, the penalty p(βk) is essentially unity for all βk

that deviate more than 3δ from zero. For βk near zero, the penalty function is essentially

zero. This penalty is similar to the SELO penalty (Fig. 1), and can be made arbitrarily

similar to the L0 penalty by setting δ ≈ 0 (Fig. 2).

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Penalty Functions

ββj

pe
na

lty
(ββ

j)

PROPOSED
SELO
L1

L0

Figure 3.1: SELO: λ = 1, τ = 0.01; L1, L0 : λ = 1; PROPOSED: λ = 1, δ = .05
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In fact, it can be easily shown that the limit of p(βk) as δ2 → 0 is the L0 penalty. We state

this result as Theorem 1.

Theorem 1.

lim
δ2→0

pλ(βk) = λI{βk 6= 0},

where I is the indicator function.

Proof: Suppose βk 6= 0. Then limδ2→0

β2
k

δ2
=∞. Since limx→∞ e

−x = 0, we have limδ2→0 pλ(βk) =

λ. Now suppose βk = 0. By L’Hopital’s rule, we have limδ2→0
β2
k

δ2
= 0. So limδ2→0 pλ(βk) =

λ(1− e0) = 0.
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Figure 3.2: L0 : λ = 1; PROPOSED: λ = 1 and δ varies. The limit of the proposed penalty

function as δ goes to zero is L0.
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We note that in their paper on categorizing classes of penalized likelihood penal-

ties, Antoniadis et al. (2009) refer to a slightly different form of p(βk) as an example of

a penalty function that is smooth at zero and non-convex. In addition, several papers on

image processing have cited this penalty function (sometimes called the Leclerc penalty) in

connection with shrinkage methods (e.g. Nikolova (2005), Corepetti, Heitz, Arroyo, Mémin,

and Santa-Cruz (2006)). However, at the time of this writing, no attempt has been made in

the literature either to propose a method for obtaining an optimal value of δ, or to use this

penalty as the first step of a variable selection procedure, or to compare the associated sparse

estimator to established methods in terms of finite-sample or asymptotic performance, as

we do here.

3.2 Iterative closed-form solution for our estimator

An important distinction between this penalty function and those of LASSO, SELO, and

other variable selection methods is that it is everywhere-differentiable. This allows for an

essentially closed-form solution for β̂, which is obtained by minimizing

Q(β) =
n∑
i=1

(
yi − x′iβ

)2

+ λ

p∑
j=1

(
1− exp

(
−
β2
j

δ2
))
.

with respect to β. This simultaneously shrinks the near-zero entries of the β vector towards

zero and gives accurate estimates for the truly nonzero βs. Note that the first component

of Q(β) is the residual sum of squares and the second is the penalty function with some

user-specified constant λ. Heuristically, the penalty term forces coefficients that are not

contributing to the reduction of squared error to decrease in magnitude. We proceed with

the analytical solution for the minimum of Q(β).

For fixed λ, δ, and p = ncol(X), let

f(β) = λp− λ
(
exp
(
− β2

1

δ2
)

+ . . .+ exp
(
−
β2
p

δ2
))
.

Then

∂f(β)

∂β
=

[
2β1

λ

δ2
exp
(
− β2

1

δ2
)

. . . 2βp
λ

δ2
exp
(
−
β2
p

δ2
)]T

.
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Now define the p× p weight matrix W in terms of some known estimate of β (e.g., the OLS

estimator) called β̃:

W = diag

([
λ

δ2
exp
(
− β̃2

1

δ2
)

. . .
λ

δ2
exp
(
−
β̃2
p

δ2
)])

.

With W known, we can differentiate Q(β) with respect to β,

∂Q(β)

∂β
= −2X′y + 2(X′X)β + 2Wβ,

yielding the closed-form solution β̂ = (X′X + W)−1X′y for known initial β̃.

Now, recall that W was estimated using β̃. In order to account for this, we repeat

the calculation of W using our new estimate β̂ and then solve for β̂ again. This is repeated

until sufficient convergence is achieved. This process is analogous to what Fan and Li (2001)

call “iterative ridge regression.” Our studies indicated that fewer than five or six iterations

were usually satisfactory (as compared to at least ten iterations for SCAD – see Fan and

Li (2001)), but if one prefers a more exact criterion for convergence, the process can be

continued until the sum of absolute deviations between successive estimators is less than a

user-specified ε, that is, until
p∑
j=1

|β̂(k)
j − β̂

(k+1)
j | < ε.

As we show below, the one-step estimator, for which there is an exact closed-form solution,

behaves well asymptotically.

One difference between our process and those employed by adaptive LASSO and

SCAD is that the proposed penalty function and its derivatives can be exactly calculated at

the previous estimate of β̂ while the other methods rely on a local quadratic approximation

(LQA) of their penalty function and derivatives. Recall that a penalty function cannot

produce sparse solutions unless the penalty is singular at the origin (Antoniadis and Fan

2001). Thus, after implementing LQA, the approximate penalty functions can no longer

produce sparse solutions. Fan and Li (2001) admit that for SCAD, near-zero values for βk

must be set to be exactly zero at each iteration of the algorithm for minimizing the objective
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function in order to “significantly reduce the computational burden.” Zou (2006) cites Fan

and Li’s LQA method when introducing adaptive LASSO, but fails to mention the implicit

zero-thresholding step. However, Zou and Li (2008), the (co-)authors of the adaptive LASSO

and SCAD papers, respectively, jointly wrote an article on one-step penalized likelihood

estimators, in which they are explicit about the fact that the zero-thresholding inherent in

LQA requires an additional tuning parameter (Zou and Li 2008).

Our method, on the other hand, can calculate the exact values of the penalty func-

tion and its derivatives at the previous estimate of β̂, because it is already everywhere-

differentiable. Because it is not singular at zero, it too must employ a zero-thresholding

tuning parameter. Recall that the proposed penalty is a function of λ and δ. These param-

eters must either be specified by the user or selected in terms of some optimality criterion.

The same tuning parameter δ can serve not only as an argument for the penalty function,

but also as a zero-thresholding cutoff to be used after our estimator converges to the mini-

mum of Q(β). Finding the minimum of Q(β) shrinks unimportant coefficients close to zero,

and then these coefficients can be set to be exactly zero, as in SCAD or adaptive LASSO.

We call it the ShrinkSet estimator to reflect this two-step process and because its function

as a variable selection technique is to reduce the dimensionality of our predictor space. The

method for choosing optimal values of λ and δ will be explained in more detail hereinafter.

3.3 Standard error formula

Letting A denote the set of indices corresponding to nonzero components of β̂, and for a fixed

matrix W, the vector β̂A is a linear combination of y. Thus, the exact variance-covariance

of β̂A, given W, is σ2(X′AXA+ WA,A)−1X′AXA(X′AXA+ WA,A)−1. Therefore, we estimate

the variance using the most recent estimate of W, called Ŵ:

V̂ ar
[
β̂A

]
= V̂ ar

[
β̂A|Ŵ

]
= σ̂2(X′AXA + ŴA,A)−1X′AXA(X′AXA + ŴA,A)−1,

where σ̂2 = V̂ ar [y] =
(y −XAβ̂A)′(y −XAβ̂A)

(n− |A|)
and |A| denotes the cardinality of A. This

corresponds nicely with the standard error estimates for adaptive LASSO, SCAD, and SELO

15



obtained using a sandwich formula (see, for example, Tibshirani (1996)). Note that the limit

of V̂ ar
[
β̂A

]
as WA,A approaches the zero matrix is σ̂2(X′AXA)−1.

3.4 Selection of λ

The user specifies λ based on the perceived danger of overfitting. We would hope that a low

λ value would result in many nonzero β̂ks and that a high λ value would allow only the most

extreme nonzero β̂ks, as in LASSO. Because the ShrinkSet penalty is differentiable at zero,

however, it cannot shrink estimates to exactly zero, and so regardless of λ, the minimizer

of Q(β) retains all p coefficients. A reasonable surrogate, then, for the number of nonzero

parameters in the model, is

df(λ) = tr

(
X(X′X + W(λ))−1X

)
,

which is monotone decreasing in λ (Hastie et al. 2009). If λ = 0, then df(λ) = p, and

the minimizer of Q(β) is the OLS estimator. Note that this corresponds nicely to the

interpretation of λ in the LASSO and ridge regression cases. Our studies suggest that after

zero-thresholding (discussed below), the resulting estimates β̂(λ) are similar across large

ranges of λ. Throughout this paper we use λ = 50, 000.

3.5 Selection of δ

Dicker (2010) cites several papers establishing the superiority of BIC tuning parameter

selection over GCV and AIC. Our simulations confirmed that in general BIC was a better

surrogate for MSE (prediction error) than was AIC or GCV. Following Dicker (2010), we

select the tuning parameter δ (for a fixed λ) so as to minimize

BIC(β̂) = log

[
(y −Xβ)′(y −Xβ)

(n− d)

]
+
d× log(n)

n
,

where d is the number of variables (nonzero coefficients) in the model.

Recall that everywhere-differentiable functions do not set any coefficients to exactly

zero. To produce sparse solutions using the ShrinkSet penalty, it is therefore necessary to
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employ a zero-thresholding function, which sets all components (of a vector-valued estimator)

to zero that do not exceed some threshold. A convenient choice for this threshold is δ. Thus

δ serves as a tuning parameter for the iterative ridge regression, which shrinks unimportant

βk towards zero, and as a zero-thresholding cutoff to be applied after said shrinkage. It turns

out that this thresholding after shrinkage is an important feature of our proposed variable

selection method. That the maximum penalized likelihood estimator (or its computationally

superior one-step surrogate) shrinks certain βk towards zero before employing the zero-

thresholding makes it superior to simply setting different sets of OLS coefficients to zero and

selecting the estimator with minimum BIC (see simulation studies section). This is equivalent

to running the ShrinkSet algorithm using λ = 0. The discontinuity discouraged by Breiman

(1996) is not so pronounced for relatively large λs, because the estimates are esentially

zero before they were set to be exactly zero. Also, unlike SCAD and adaptive LASSO, it

is not necessary to specify an additional tuning parameter, which can be computationally

burdensome.

In order to find the optimal δ, it was necessary to search over a dense grid of possible

values. The nature of the penalty function is such that δ ∈
(
0, max(|β̃|)

)
, but usually closer

to 0. We therefore begin our search over the range [ε, max(|β̃|)] for some user-specifed

ε > 0. A reasonable choice in many applications is ε = 0.005, or ε =
1

2
min(|β̃|). At each of

30 equally spaced δ values on this interval (endpoints included in the 30 values), we employ

the shrinking step by iteratively calculating β̂ = (X′X+W(δ))−1X′y until convergence. We

then employ the zero-thresholding step by setting all β̂k < δ equal to zero. We calculate

BIC for each zero-thresholded β̂ and find the δ associated with the minimum of the 30 BIC

values. Call this value δmin, and the δ values directly left and right of δmin call δL and

δR. We then narrow the search grid to [δL, δR] and calculate the thresholded estimate and

associated BIC at 30 equally spaced δ values in this range, including the endpoints. We

select as our optimal δ the value in the finer grid corresponding to the minimum BIC. We

found this approach to be more precise and more efficient than a dense search of the original
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range [ε, max(|β̃|)]. This is due to the relatively smooth, convex nature of the BIC curve

over this range. BIC(δ) will often have the same value for several values of δ in a small

range. This is because different choices for δ result in the same model. In these cases, we

select the smallest δ associated with the minimum BIC.

This procedure is one possible method for searching over a reasonably dense range of

δ values, but it can be easily adapted if the user desires more (or less) precision. For example,

in the p� n simulation studies, we elected to do a one-stage search over 30 equally spaced δ

values on
[
0.005,

1

4
max(|β̃|)

]
in order to save computation time. We found that regardless

of the setting the resulting estimator was largely invariant to the denseness of the δ-grid,

and the two-stage method described above was suitable for most applications.

3.6 Oracle properties

First recommended by Fan and Li (2001), procedures with the oracle properties have since

become the gold standard in the field of variable selection. The oracle properties are:

1. the procedure selects the truly nonzero βs and excludes the truly zero βs with proba-

bility tending to one as n increases, and

2. the nonzero components of the estimator are asymptotically normal about the true

nonzero β components with variance equal to the variance using OLS on the true

submodel.

More formally, let A denote the set of indices corresponding to truly nonzero components of

β, and let β̂ be an estimator exhibiting the oracle properties. Then:

1. P (β̂A 6= 0) −→ 1 and P (β̂Ac = 0) −→ 1 as n increases, and

2. β̂A
d−→ N

(
βA, (X

′
AXA)−1σ2

)
.
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Let z(β̂, t) be a thresholding function that sets all components of β̂ smaller than t in

(absolute value) to zero. That is, let

z(β̂, t) =


β̂k if |β̂k| ≥ t,

0 if |β̂k| < t.

Theorem 2.

For any threshold t such that 0 < t < min
(
|βA|

)
, there exists a pair (δ, λ) such that

z(β̂(δ, λ, β̃), t) selects the truly nonzero βs and excludes the truly zero-valued βs with prob-

ability tending to one. That is, there exists a pair such that:

lim
n→∞

P

(
max

(
|β̂

(1)

Ac |
)
< t < min

(
|β̂

(1)

A |
))

= 1.

Proof: Let t be such that 0 < t < min
(
|βA|

)
. Let i be the index corresponding to

max
(
|β̃Ac|

)
and let j be the index corresponding to min

(
|β̃A|

)
. Consider the quotient

λ

δ2
exp(−β̃2

j /δ
2)

λ

δ2
exp(−β̃2

i /δ
2)

= exp

(
β̃2
i − β̃2

j

δ2

)
.

Note that:

lim
n→∞

P

(
lim
δ2→0

exp

(
β̃2
i − β̃2

j

δ2

)
=∞

)
= 1,

because β̃ is consistent which implies that the numerator of the exponent is asymptotically

positive in probability. However, for fixed λ,

lim
n→∞

P

(
lim
δ2→0

λ

δ2
exp(−β̃2

j /δ
2) = 0

)
= 1

and

lim
n→∞

P

(
lim
δ2→0

λ

δ2
exp(−β̃2

i /δ
2) = 0

)
= 1,

so

lim
n→∞

P

(
lim
δ2→0

W(δ, λ, β̃) = [0]

)
= 1.
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Instead of W = [0] (yielding β̂ = (X′X + W)−1X′y = β̃ and consequently no shrinkage),

we would prefer W to have high values on diagonal elements corresponding to zero-valued

β components, and near-zero values on diagonal elements corresponding to nonzero β com-

ponents. Note that in the ideal (but impossible) scenario, we would have:

Wp×p =



w1,1 0 · · · 0

0 w2,2 · · · 0

...
...

. . .
...

0 0 · · · wp,p


,

where wA,A = 0 and wAc,Ac =∞. This would yield the solution

β̂ =


β̃j if j ∈ A,

0 if j ∈ Ac,

which has the oracle properties. We show that min(WA,A) can be arbitrarily high in prob-

ability, while max(WAc,Ac) can be arbitrarily small (close to zero) in probability.

Choose M large enough and ε > 0 small enough that

β̂ = (X′X + W)−1X′y ≈


β̃j if j ∈ A,

0 if j ∈ Ac

for

Wp×p =



w1,1 0 · · · 0

0 w2,2 · · · 0

...
...

. . .
...

0 0 · · · wp,p


,

where max(wA,A) < ε and min(wAc,Ac) > M . Fix ε∗ > 0. From above, it is possible to

choose an n large enough and a δ2 small enough that

P

(
exp
( β̃2

i − β̃2
j

δ2
)
>
M

ε

)
> 1− ε∗.
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For these values of n and δ2, we shall define λ =
M + 1

1

δ2
exp(−β̃2

j /δ
2)

. Note that

λ

δ2
exp(−β̃2

j /δ
2)

λ

δ2
exp(−β̃2

i /δ
2)

= exp

(
β̃2
i − β̃2

j

δ2

)
>
M

ε

(with arbitrarily high probability), while
λ

δ2
exp(−β̃2

j /δ
2) > M , and

λ

δ2
exp(−β̃2

i /δ
2) < ε

(again, with arbitrarily high probability). Therefore,

β̂ = (X′X + W)−1X′y ≈


β̃j if j ∈ A,

0 if j ∈ Ac

and the approximation can be as exact as desired (with arbitrarily high probability). More

specifically, the approximation can be exact enough that for any t such that 0 < t <

min(|βA|),

max
(
|β̂

(1)

Ac |
)
< t < min

(
|β̂

(1)

A |
)

with arbitrarily high probability. Therefore, for any t > 0, there exists a pair (δ, λ) such

that z(β̂(δ, λ, β̃), t) selects the truly nonzero βs and excludes the truly zero-valued βs with

probability tending to one.

We have proved that it is possible to shrink estimates in one step such that the largest

near-zero coefficient is arbitrarily small, and the smallest “nonzero” coefficient is arbitrarily

close to the corresponding the OLS-estimated coefficient. It is important however, that we

extend this theory to k-step estimator.

Conjecture 1.

Given a data set with n sufficiently large and fixed p, assume we have a pair (δ, λ) meeting

the criteria of Theorem 2. Then z(β̂
(1)
, δ)

p−→ β.

Proof: (Outline) We know that β̃
p−→ β, by the consistency of the OLS estimator.

This allowed us to establish that there exists a pair (δ, λ) such that z(β̂
(1)
, δ)Ac = 0 and
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z(β̂
(1)
, δ)A− β̃A was arbitrarily small, both with probability one (in the limit). Assume that

we have such a pair (δ, λ). Then

z(β̂
(1)
, δ)

p−→


plim β̃j if j ∈ A,

0 if j ∈ Ac
= β.

Conjecture 2.

Let X be a data set with n sufficiently large and fixed p. We conjecture that for any k ∈ N,

there exists a pair (δ, λ) such that z(β̂
(k)
, δ)

p−→ β, where the zero-thresholding is applied

after the k-step shrinkage.

Proof: (Outline) Conjecture 1 takes care of the k = 1 case. For k = 2, recall that by

Theorem 2, there exists a pair (δ, λ) such that z(β̂
(1)
, δ)Ac = 0 and z(β̂

(1)
, δ)A − β̃A was

arbitrarily small, both with probability one (in the limit). In fact, even before the zero-

thresholding, β̂
(1)

Ac was arbitrarily close to zero (in probability) and β̂
(1)

A was arbitrarily close

to the β̃A (in probability). Recall that we pass β̂
(1)

as an argument to the W-matrix of

β̂
(2)

. It can be shown (in a way similar to the proof of Theorem 2) that β̂
(2)

A is very close

to β̂
(1)

A (in probability) and β̂
(2)

Ac is very close to zero (in probability). By an induction-like

argument, we may reasonably expect the same thing for any k. Thus, there will exist some

t between max
(
|β̂

(k)

Ac |
)

and min
(
|β̂

(k)

A |
)
, and thresholding using this t results in an estimator

arbitrarily close to the OLS estimates in its nonzero components and exactly equal to zero

for the remaining components (with arbitrarily high probability). This estimator will thus

be arbitrarily close to β in probability.
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Conjecture 3.

The proposed method of fixing λ and finding δ2 using t = δ and BIC will obtain a pair (λ, δ)

meeting the criteria of Theorem 2 and Conjecture 2 with probability tending to one as n

increases.

Proof: (Outline) We provide a heuristic argument for this conjecture. BIC has been shown

to be asymptotically consistent in a number of penalized likelihood model selection settings

as long as the true sparse model is among the candidate models (e.g. Dicker (2010), Zou,

Hastie, and Tibshirani (2007), Wang, Li, and Tsai (2007), and their references). For large

enough n, by searching over a range of zero-thresholding δ values, we essentially guarantee

that the true model will be among the candidate models. Thus, it is reasonable to suspect

that BIC will be consistent for model selection in this setting. Note that BIC being consistent

in this setting is equivalent to the pair (δmin(BIC), λ) meeting the criteria of Theorem 2 and

Conjecture 2.

The implication of Theorem 2 and Conjectures 1-3 is that the estimator obtained

using the described thresholding rule, z(β̂(β̃, δ, λ)(k), δ), will possess the oracle properties

for any k. This is due to the two-step nature of the ShrinkSet estimator, which shrinks the

near-zero estimates very close to zero and then sets them to zero. The coefficients far from

zero experience little shrinkage and mimic their corresponding OLS coefficients. We state

the oracle property implication formally in Theorem 3.

Theorem 3.

If Conjectures 2-3 hold, then the proposed k-step ShrinkSet estimator possess the oracle

properties for any k ∈ N .

Proof: By Conjecture 3, the proposed method of fixing λ and finding δ2 using t = δ

and BIC will obtain a pair (λ, δ) meeting the criteria of Conjecture 2. By Conjecture 2,

z(β̂
(k)
, δ)

p−→ β for any k ∈ N .
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In the nonzero components of β, z(β̂
(k)
, δ) converges in probability to β by virtue of

β̂
(k)

’s arbitrary nearness to β̃. So, asymptotically, β̂
(k)

A will have the same distribution as the

OLS estimator: it will be normally distributed with mean βA and variance (X′AXA)−1σ2.

In the zero-valued components of β, z(β̂
(k)
, δ) converges in probability to β by

virtue of the thresholding rule. Since P
(
|β̂(k)
i | < δ

)
, where i is the index corresponding

to max
(
|β̂

(k)

Ac |
)
, approaches one asymptotically, the ShrinkSet estimator selects the truly

nonzero βs and excludes the truly zero-valued βs with probability tending to one.

In the simulation section, we show that δmin(BIC) tends to zero in probability, but

not as fast as the largest should-be-zero coefficients. Furthermore, we demonstrate that

as n increases, P
(
max(|β̂

(1)

Ac |) < δ
)

approaches 1, thus showing that the requirements of

Theorem 2 have been met. We then demonstrate that for high n, the one-step ShrinkSet

procedure results in approximately normal estimators, with mean equal to the true β value

and variance approximately equal to that of the OLS estimator. This further establishes

the tenability of Conjectures 1-3, which, when combined with Theorem 2, imply that the

ShrinkSet estimators will possess the oracle properties.

3.7 Application when p� n

An important application of variable selection procedures is when there are many more

variables measured on each individual than there are individuals in the study, the so-called

“large p, small n” problem. For example, genomic data can have thousands of variables

collected on a few dozen patients. We describe two possible implementations of our approach

and compare these to two LASSO-based models built using glmnet (Friedman, Hastie, and

Tibshirani 2010). We do not include SELO in our comparison, because Dicker (2010) has

not extended the results to the p � n setting. In both ShrinkSet implementations, and

for the first LASSO model, we select the estimator which minimizes a BIC-type parameter

(called “extended BIC” (EBIC)), adapted for high-dimensional analysis. Following Lian
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(2010) closely, we minimize

EBIC(β̂) = log

[
(y −Xβ)′(y −Xβ)

n

]
+
d · log(n)

√
p

n
.

Although Lian (2010) employs EBIC for high-dimensional varying coefficient models based

on B-spline basis expansions, our results suggest that their method can be used effectively

in simpler settings. For comparison, we also include a LASSO model selected by minimum

cross-validation error. We shall include two simulation scenarios: one with 7 nonzero coeffi-

cients out of p = 10, 000 with moderate covariance, and one with 16 nonzero coefficients out

of p = 1, 000 with very high covariance.

Implementation 1: Reducing X matrix in terms of correlation with y

Because our estimate is based on the X′X matrix, it is impossible to reliably estimate p > n

truly nonzero βs. However, if we constrain some of these estimates to be zero (which our

method does automatically), then we can produce reliable estimates of some subset of less

than n coefficients. We observed that choosing p < .85n columns of X was typically more

effective than choosing p < n. Therefore, we begin by selecting one at a time the .85n

columns of X most highly correlated with y. We redefine X as only those columns of X

and run our algorithm. This is very similar to the sure independence screening procedure

recommended by Fan and Lv (2008). In the results section, we call this the correlation

method.

Implementation 2: Reducing X matrix based on LASSO output

A dimension-reduction alternative is to use output from LASSO itself. We overfit a LASSO

model using glmnet with small λ and keep only those columns of X corresponding to nonzero

β̂s. If this is larger than .85n, we reduce further in terms of correlation with y, until we

have less than p ≤ .85n We then run our algorithm to shrink “nonsignificant” β̂s to zero.

We call this the hybrid method.
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LASSO with λ selected by EBIC

Using glmnet (Friedman et al. 2010), we obtain 100 different β̂s, each vector corresponding

to a different value of λ. We choose the model with the minimum EBIC.

LASSO with λ selected by cross-validation

Using cv.glmnet (Friedman et al. 2010), we find the value of λ associated with the minimum

cross-validation error. We then fit a LASSO model by passing this λ value as an argument

to glmnet (Friedman et al. 2010). We use leave-one-out cross-validation in the p = 1, 000

case and 10-fold cross-validation in the p = 10, 000 case.

3.8 Other applications

Robust regression

The least squares estimate is not robust against outliers, and nor is our proposed estimator,

because it relies on penalized least squares. However, if we use an outlier-resistant loss

function, such as Huber’s ψ function (Huber 1964), and minimize

Q(β) =
n∑
i=1

ψ(|yi − x′iβ|) + λ

p∑
j=1

(
1− exp

(
−
β2
j

δ2
))
,

as suggested by Fan and Li (2001) (but with a different penalty), the result will be a robust

estimator, with nonsignificant terms shrunk to zero after the zero-thresholding step. We

suspect that a solution for this optimization is possible using iteratively reweighted least

squares, as shown by Fan and Li (2001), but with appropriate modification of the weights.

Link functions

Our method can also be generalized so as to accommodate different link functions such as

log, logit, and probit. For example, modifying a result by Zou (2006), the penalized logistic
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maximum likelihood estimate would be

β̂logistic = arg max
β

n∑
i=1

(
yi(x

′
iβ)− log(1 + exp(x′iβ))

)
− λ

p∑
j=1

(
1− exp

(
−
β2
j

δ2
))
,

which is solvable using the Newton-Raphson algorithm. Following Hastie et al. (2009), we

express the first derivative of the penalized log-likelihood as

∂`(β)

∂β
= X′(y − p)− 2W(β)β,

where p is the vector of fitted probabilities and W(β) is defined as was W before, except

W(β) is in terms of the actual parameter β instead of an estimate thereof. Similarly,

∂`(β)

∂β∂βT
= −X′(V +Z)X,

where V corresponds to a diagonal matrix with entries p(1− p) and

Z = 2X(X′X)−1
∂(W(β)β)

∂β
(X′X)−1X′.

For a given estimate of β, say β̂, we can substitute Ẑ = 2X(X′X)−1(W(β̂))(X′X)−1X′ for

Z. Starting with the regular logistic regression estimate or even a vector of zeros (call it

βold), we iterate

βnew = βold −
(
∂`(β)

∂β∂βT

)−1
∂`(β)

∂β

until convergence, with derivatives being evaluated at βold and Ẑ being substituted for Z.

As Hastie et al. (2009) have shown, this is equivalent to iteratively reweighted least squares

(IRWLS). Because Ŵ is fully specified by βold, for fixed λ and δ our method requires only

the iterative step inherent to logistic regression/IRWLS. This is significant because other

methods (e.g. SELO) require additional iteration (in the form of the coordinate descent

algorithm) for calculating βnew given βold. Future research may focus on establishing the

oracle properties for these generalized methods.
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chapter 4

SIMULATIONS AND RESULTS

4.1 Estimator performance

Setup

We use the same simulation parameters as in Dicker (2010). That is, we set y = Xβ + ε

where X ∼ N(0,Σ), β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , and ε ∼ N(0, σ2); we took Σ = (σij), where

σij = .5|i−j|; each simulation consisted of the generation of 1,000 independent data sets and

parameter estimation for each data set; four simulations were conducted: all combinations of

n ∈ {50, 100} and σ2 ∈ {1, 9}. Metrics observed at each iteration of the simulations include:

1. whether the correct set of nonzero coefficients was selected,

2. the average model size (number of nonzero coefficients),

3. the mean squared error,
||β̂ − β||2

p
, and

4. the model error, (β̂ − β)TΣ(β̂ − β).

All simulations in this paper were performed on a Mac OS X (Version 10.5.8) with a 2.66

GHz Intel Core 2 Duo processor.

One drawback we see in some of the literature on variable selection is a neglect to

fairly compare the proposed method to OLS. For example, Dicker (2010) asserts that OLS

does not perform variable selection and proceeds to compare its performance in model size

to those of variable selection methods without any attempt to pare down the OLS model. A

fairer approach would be to include some automated OLS-based variable selection method,

like a stepwise selection procedure or even regular OLS with all nonsignificant (α = 0.05,
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for example) estimates set to zero. In the next section we present our proposed method’s

results, along with those of Dicker (2010) for reference. We also include OLS results where

nonsignificant estimates were estimated to be zero.

Results

We report the performance of the k-step ShrinkSet estimators, for k ∈ {1, 5, 10}, compared

with the SELO estimator and the OLS estimator. SELO results in Tables 1-4 were obtained

from Table 2 in Dicker (2010).

Table 4.1: Simulation study results (σ2 = 1, n = 50)

Correct model Model size MSE Model error
Mean Mean Mean Mean

ShrinkSet1 0.896 3.119 0.013 0.081
ShrinkSet5 0.860 3.158 0.014 0.086
ShrinkSet10 0.855 3.163 0.014 0.087
ShrinkSetλ=0 0.785 3.263 0.020 0.118
OLS 0.965 3.038 0.015 0.103
SELO 0.866 3.157 0.014 0.087

Table 4.2: Simulation study results (σ2 = 1, n = 100)

Correct model Model size MSE Model error
Mean Mean Mean Mean

ShrinkSet1 0.972 3.035 0.005 0.035
ShrinkSet5 0.912 3.097 0.006 0.039
ShrinkSet10 0.911 3.098 0.006 0.039
ShrinkSetλ=0 0.864 3.153 0.008 0.051
OLS 0.975 3.026 0.007 0.047
SELO 0.914 3.091 0.006 0.037

These results agree with our earlier assertion that the five-step estimator is very close to the

true minimum of Q(β). Specifically, we see very little change in performance between the k-

step estimators for k = 5 and k = 10. However, we see that the one-step ShrinkSet estimator

is the best in low-variance settings and the worst in high variance settings. We attribute

30



Table 4.3: Simulation study results (σ2 = 9, n = 50)

Correct model Model size MSE Model error
Mean Mean Mean Mean

ShrinkSet1 0.560 2.891 0.252 1.378
ShrinkSet5 0.597 2.897 0.242 1.305
ShrinkSet10 0.602 2.898 0.241 1.301
ShrinkSetλ=0 0.565 3.025 0.254 1.524
OLS 0.287 2.132 0.419 3.188
SELO 0.605 2.913 0.240 1.310

Table 4.4: Simulation study results (σ2 = 9, n = 100)

Correct model Model size MSE Model error
Mean Mean Mean Mean

ShrinkSet1 0.852 3.059 0.075 0.436
ShrinkSet5 0.864 3.066 0.071 0.419
ShrinkSet10 0.867 3.065 0.070 0.416
ShrinkSetλ=0 0.820 3.148 0.084 0.522
OLS 0.780 2.839 0.116 0.804
SELO 0.879 3.061 0.070 0.408

the varying success of the one-step ShrinkSet estimator to its direct reliance on the OLS

estimator. We find it noteworthy that Dicker (2010) observed a similar phenomenon for the

SELO one-step estimator. In all scenarios, the five-step and ten-step ShrinkSet estimators

tend to be very similar to the SELO estimator. Importantly, these ShrinkSet estimators

outperform the λ = 0 estimator across the board, which shows that the shrinkage step is

crucial to obtaining good results.

4.2 Validation of Conjecture 1

Setup

We are also interested in validating Conjecture 1 through simulation. Particularly, we show

that as n increases, the δ selected by BIC tends to zero in probability, but no faster than

the largest β̂Ac . We generated data and found the associated one-step estimator as in the
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previous simulation setup for all pairwise combinations of n ∈ {50, 500, 5000, 50000} and

σ2 ∈ {0.01, 0.1, 1, 10}. Each row in Table 5 corresponds to the results across 100 iterations.

The value δ̄ refers to the mean of the 100 values for δmin(BIC), while P (δ > |β̂Ac|) refers

to the proportion (out of 100) of δmin(BIC) values which exceeded the largest |β̂Ac | after

one-step shrinkage.

Results

Table 4.5: Simulation study results: Responses of δ̄ and P (δ > |β̂Ac|) to sample size and
variance. Let E be the event that δ > |β̂Ac |.

σ2 = .01 σ2 = .1 σ2 = 1 σ2 = 10
δ̄ P (E) δ̄ P (E) δ̄ P (E) δ̄ P (E)

n = 50 0.026 0.92 0.080 0.92 0.222 0.92 0.459 0.87
n = 500 0.010 1.00 0.027 0.97 0.079 0.94 0.246 0.97
n = 5000 0.007 1.00 0.009 1.00 0.027 0.97 0.081 1.00
n = 50000 0.002 1.00 0.007 1.00 0.009 1.00 0.024 1.00

We see that in every case, the probability that δ exceeds β̂Ac tends to one as n increases.

Furthermore, δ gets smaller as n increases, as demonstrated graphically below (Fig. 4.1).

In addition, we see that δ̄ remains relatively constant across each diagonal, indicating that

a ten-fold increase in n is approximately equivalent to a ten-fold decrease in σ2 in terms of

its effect on δ̄. Altogether, these results give strong support to Conjecture 1.

Asymptotic normality

We now demonstrate that for nonzero coefficients, the one-step ShrinkSet estimator has

approximately the same asymptotic distribution as the OLS estimator. From Figure 4.1,

we see that at (n = 50, σ2 = 10), we have not yet reached what Casella and Berger (2002)

have dubbed “asymptopia,” that is, the asymptotic properties of our estimator have not yet

kicked in. We expect, therefore, that our estimates for β will be nonnormal. By contrast,

at (n = 5000, σ2 = 0.1) or (n = 500, σ2 = 0.01), the asymptotic properties appear to be in

near-full effect, and β̂ should be nearly normal. Figure 4.2 contains the empirical marginal
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Figure 4.1: For all values σ2, the average of δ values associated with the minimum BIC tends
to zero.

distributions (based on 1000 iterations) of the second coefficient of the OLS and one-step

ShrinkSet estimators for the (n = 50, σ2 = 10) and (n = 5000, σ2 = 0.01) situations. We

chose to look at β̃2 and β̂2 because β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the second element is the

smallest nonzero element, so it would be the hardest to distinguish from zero. In addition,

we performed Anderson-Darling and Shapiro-Wilks tests for normality on the ShrinkSet

estimators in the (n = 5000, σ2 = 0.01) case. Both p-values were nonsignificant, indicating

that the normality conclusion is reasonable for the ShrinkSet estimator.

4.3 Simulations for large p, small n setting

Simulation 1 setup

We shall investigate model performance for n ∈ {50, 100, 200} with p = 10, 000 so as to be

consistent with the size of typical genomic data sets. Using the same underlying covariance
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Figure 4.2: As expected, for sufficiently high n, the distribution of the ShrinkSet estimator
is similar to that of the OLS estimator (left panel: n = 50, σ2 = 10; right panel: n = 5000,
σ2 = 0.01.)

structure as in the previous simulations, we define

β = (3, 1.5, 0, 0, 2, 0, 2.5, 2, 0, 0, 0, . . . , 0, 0, 0, 3, 4)T ∈ R10000.

(Note that the true model contains 7 nonzero coefficients.) We use σ2 = 1 and generate y

and X with appropriate dimensions. All simulations are the result of 100 iterations.

Results for Simulation 1

Our results indicate that the hybrid method outperforms LASSO for all sample sizes, and

that the correlation method outperforms LASSO in relatively high-n settings. More specifi-

cally, for all n studied, the hybrid method outperforms both LASSOs in every category. And

by n = 100, the correlation method is clearly better than both LASSO implementations.

For n = 200, only the correlation method outperforms the hybrid method, but the difference

is marginal. Overall, the hybrid method is probably best, because it is vastly superior to

LASSO in all settings, and only slightly worse than the correlation method in the high-n

setting but clearly better everywhere else.
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Table 4.6: Simulation study results (σ2 = 1, n = 50, p = 10, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.03 6 0.0040 47.7
Hybrid 0.32 7 0.0012 12.4
LASSOEBIC 0.02 0 0.0041 62.1
LASSOCV 0.00 39 0.0014 18.5

Table 4.7: Simulation study results (σ2 = 1, n = 100, p = 10, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.71 7 0.00018 1.42
Hybrid 0.90 7 0.00001 0.10
LASSOEBIC 0.21 8 0.00014 1.95
LASSOCV 0.00 46 0.00008 1.02

Table 4.8: Simulation study results (σ2 = 1, n = 200, p = 10, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.99 7 0.0000051 0.039
Hybrid 0.97 7 0.0000054 0.042
LASSOEBIC 0.52 7 0.0000383 0.541
LASSOCV 0.00 46 0.0000271 0.335

Simulation 2 setup

It is also of interest to assess performance of our methods under a more complicated data

scenario. For the second simulation study, we introduce a more complicated covariance

structure in which the 16 nonzero effects are grouped in clusters of 3-4 with high within-

cluster correlation. We define

β = (3, 4, 5, . . . , 4.5, 6, 3, . . . , 2, 3, 2, . . . , 2, 1.5, 2, . . . , 3.5, 4, 4, 5)T ∈ R1000,

wherein each ellipsis represents 246 zeros. To induce high covariance, we used Σ = (σij),

where σij = .9|i−j|. We investigate model performance for n ∈ {25, 50, 100, 200}. Again,
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we use σ2 = 1 and generate y and X with appropriate dimensions. All simulations are the

result of 100 iterations.

Results for Simulation 2

These results indicate that the hybrid method outperforms all others for all but the n =

25 scenario, where no method does well. The hybrid method is exceptionally adept at

uncovering the correct sparse model. The correlation method has poor MSE and model error

at all levels of n included, but by n = 200, it outperforms both LASSOs in terms of selecting

the true model. Both implementations of LASSO always achieve low MSE, but in general

the hybrid method’s MSE is still lower. When compared to each other, LASSOCV tends to

have lower model error and LASSOEBIC tends select the correct model more frequently. For

the most difficult data scenario (n = 25), no method could uncover the true model, and all

suffered from severe over- or under-fitting.

Table 4.9: Simulation study results (σ2 = 1, n = 25, p = 1, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.00 2 0.42 494
Hybrid 0.00 8 0.31 260
LASSOEBIC 0.00 0 0.21 576
LASSOCV 0.00 21 0.22 265

Table 4.10: Simulation study results (σ2 = 1, n = 50, p = 1, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.00 4 0.339 247.1
Hybrid 0.17 15 0.037 12.1
LASSOEBIC 0.00 17 0.095 182.5
LASSOCV 0.00 36 0.032 12.8
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Table 4.11: Simulation study results (σ2 = 1, n = 100, p = 1, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.02 11 0.168 59.87
Hybrid 0.89 16 0.002 0.23
LASSOEBIC 0.02 21 0.004 1.61
LASSOCV 0.00 36 0.003 0.83

Table 4.12: Simulation study results (σ2 = 1, n = 200, p = 1, 000)

Correct model Model size MSE Model error
Mean Median Mean Mean

Correlation 0.35 16 0.0170 3.725
Hybrid 1.00 16 0.0006 0.089
LASSOEBIC 0.03 19 0.0014 0.574
LASSOCV 0.00 30 0.0011 0.326
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chapter 5

DATA ANALYSIS

Analysis of HIV data set

Rhee, Taylor, Wadhera, Ben-Hur, Brutlag, and Shafer (2006) describe a publicly available

data set on HIV-1 drug resistance and codon mutation. The data consist of mutation

information for some 100 protease codons and a continuous response IC50, a measure of

HIV-1 drug resistance. We were interested in learning which codon mutations were related

to resistance to the drug Amprenavir, a protease inhibitor. This data set was also analyzed

by Dicker (2010), and we follow their example of removing codons with fewer than three

observed mutations and taking the log-transform of IC50. We present the results of our

method in connection with those of SELO, OLS (as used in the simulation setting), and

several other variable selection methods in terms of model size and R2 as a percentage of

the R2 value for complete OLS. One additional method presented is ShrinkSet2, which was

was obtained by removing the nonsignificant terms from the ShrinkSet estimator.

Model size R2/R2
complete

OLS (α = .10) 30 0.985
OLS (α = .05) 22 0.959
OLS (α = .01) 17 0.949
ShrinkSet 28 0.979
ShrinkSet2 22 0.972
SELO 16 0.958
LASSO 32 0.959
Adaptive LASSO 20 0.956
SCAD 33 0.972

Table 5.1: Results of various variable selection procedures on HIV data set from Rhee et al.;
ShrinkSet2 was obtained by removing the nonsignificant terms from the model in Table 5.2.
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Table 5.2: Codons selected by ShrinkSet method

Codon Point estimate Std. error Approx. p-value
P10 0.6605 0.0786 0.0000
P11 0.4192 0.2258 0.0636
P22 0.2738 0.4053 0.4990
P24 0.3252 0.1471 0.0270
P30 0.8879 0.1384 0.0000
P32 0.9217 0.1786 0.0000
P33 0.6724 0.0995 0.0000
P34 0.4874 0.2220 0.0281
P37 -0.2800 0.0644 0.0000
P38 -0.3012 0.4083 0.4603
P45 -0.3657 0.1705 0.0314
P46 0.4853 0.0743 0.0000
P47 1.0053 0.2222 0.0000
P48 0.5978 0.1605 0.0002
P50 0.5147 0.1546 0.0009
P54 0.5387 0.0860 0.0000
P64 -0.3951 0.0745 0.0000
P65 -0.6255 0.2787 0.0250
P66 -0.2858 0.1691 0.0908
P67 0.2835 0.1954 0.1460
P71 -0.3067 0.0765 0.0001
P76 1.2616 0.1596 0.0000
P83 -0.8397 0.4863 0.0840
P84 0.8928 0.0893 0.0000
P88 -1.3109 0.1151 0.0000
P89 0.3378 0.1300 0.0094
P90 0.6779 0.0790 0.0000
P93 -0.3147 0.0622 0.0000

The ShrinkSet procedure explained more variation in y than all but OLS (α = .10),

yet it used fewer terms than OLS (α = .10), LASSO, and SCAD. The reasonable but slightly

ad hoc approach ShrinkSet2 was arguably the best of all, explaining the same amount of

variation as SCAD, but with 11 fewer terms. The following summary table (5.2) gives the

28 codons selected by the ShrinkSet method. Interestingly, 16 of the 17 most significant

p-values correspond to the 16 codons selected by SELO. The notable exception is codon 37,

which SELO did not select. Importantly, ShrinkSet selected mutations at codons 10, 32, 46,
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47, 50, 54, 76, 84, and 90, and these are known to be associated with Amprenavir resistance

(Johnson, Brun-Vézinet, Clotet, Günthard, Kuritzkes, Pillay, Schapiro, and Richman 2010).

Analysis of salary data set

Fan and Peng (2004) describe a salary data set that was used in a gender discrimination

lawsuit. The accusation was that female employees at a bank were paid substantially less

than their male counterparts. Because there were potential confounding variables, a simple

comparison of mean salaries by gender was not appropriate. We report the result of the

ShrinkSet estimator in comparison to the SCAD-penalized linear and semiparametric models.

We use the same metrics as in the previous example, namely, model R2 as a fraction of

OLS R2 and number of nonzero components. By these criteria, there is no uniformly best

estimator. We see that ShrinkSet does a good job at finding a parsimonious model at the

expense of some explanatory power.

Model size R2/R2
complete

ShrinkSet 7 0.966
SCADlinear 11 0.995
SCADsemiparametric 111 0.988

Table 5.3: Results of various variable selection procedures on salary data set

The following table (5.4) contains only those coefficients which were retained by the

ShrinkSet estimator. ComputerJob is a binary variable indicating whether the employee’s

tasks regularly require computer skills. Not surprisingly, the associated coefficient is positive.

The JobLevel variables are indicator variables indicating whether the employee’s job is entry-

level (1) or very advanced (6). Since 6 was absorbed in the intercept, we see that all the

JobLevel coefficients are negative, and they increase as expected. Notably, gender was not

included in the list of relevant predictors, and we conclude that there is little evidence of

gender-based discrimination in salary at this bank. Both SCAD models resulted in the same

1This number reflects the number of regular nonzero coefficients plus the number of nonparmetric func-
tions.
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conclusion, because gender was retained with a high standard deviation. This analysis shows

that the occasional tendency of the ShrinkSet procedure to retain some variables for which

it gives large approximate p-values (see Table 5.2) is not pervasive. In addition, it shows

that the ShrinkSet procedure, at least in some situations, outperforms SCAD in terms of

automatically thresholding nonsignificant coefficients to zero.

Variable Point estimate Std. error Approx. p-value
Intercept 58.9794 1.3222 0.0000

ComputerJob 4.1148 0.9168 0.0000
JobLevel1 -27.1037 1.4119 0.0000
JobLevel2 -25.1869 1.4507 0.0000
JobLevel3 -21.1132 1.4468 0.0000
JobLevel4 -15.4761 1.5025 0.0000
JobLevel5 -8.8612 1.5538 0.0000

Table 5.4: Factors for predicting salary selected by ShrinkSet procedure
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chapter 6

CONCLUSIONS AND FURTHER RESEARCH

We have proposed a novel variable selection method based upon an obscure penalty function

that mimics the L0 penalty. Unlike other variable selection penalties, the ShrinkSet penalty

is everywhere-differentiable and everywhere-continuous, allowing for an efficient iterative

ridge algorithm capable of finding the approximate maximizer of the associated penalized

likelihood in very few iterations. Because the penalty is not singular at the origin, the

associated maximizer does not produce sparse solutions, despite having shrunk irrelevant

coefficients very close to zero. We therefore employ a zero-thresholding step based upon

a shrinkage parameter δ in order to obtain the ShrinkSet estimator. Unlike some existing

methods, the ShrinkSet procedure explicitly estimates this thresholding parameter in its

normal implementation, and requires no additional computation to do so.

We have given strong evidence for the asymptotic oracle properties of our estimator

and have compared its finite-sample performance to that of several leading methods in var-

ious simulation and data analysis settings. In all scenarios studied, the ShrinkSet estimator

either outperformed or was on par with other variable selection procedures. In addition,

we maintain that the smooth nature of the penalty allows for optimization that is both

computationally efficient and pedagogically appealing.

While this project has set forth some of the most important properties of the ShrinkSet

estimator, there is still much to be learned. As mentioned in the text, further research could

focus on establishing the oracle properties of the robust and generalized linear estimators.

In addition, there may be other effective implementations of the ShrinkSet penalty in the

p� n setting. Finally, formal proofs of the conjectures set forth in this project would help to

solidify the ShrinkSet procedure’s position in the class of effective variable selection methods.

43



The fact that there are still unanswered questions should not dissuade readers from using

the ShrinkSet procedure, however. It has been almost two decades since the LASSO was

first introduced, but statisticians today continue to make great discoveries while studying

its properties. We suspect that further investigations into the ShrinkSet procedure would

likewise benefit and enrich the field.
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