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ABSTRACT

A Bayesian Approach to Missile Reliability

Taylor Hardison Redd
Department of Statistics, BYU

Master of Science

Each year, billions of dollars are spent on missiles and munitions by the United
States government. It is therefore vital to have a dependable method to estimate the
reliability of these missiles. It is important to take into account the age of the missile,
the reliability of different components of the missile, and the impact of different
launch phases on missile reliability. Additionally, it is of importance to estimate
the missile performance under a variety of test conditions, or modalities. Bayesian
logistic regression is utilized to accurately make these estimates. This project presents
both previously proposed methods and ways to combine these methods to accurately
estimate the reliability of the Cruise Missile.

Keywords: Bayesian reliability, Bayesian logistic regression, Metropolis-Hastings,
Gibbs sampling
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chapter 1

MISSILE RELIABILITY

1.1 Introduction

Each year the United States Government spends billions of dollars on military ex-

penses. A large portion of that spending accounts for missiles and munitions. It is

estimated that in 2011 approximately $12.9 billion will be spent in this sector alone.

With so much money spent in this area, it is important to know exactly which mu-

nitions are available and determine with what degree of certainty these munitions

will work. For this reason reliability of these missiles and munitions is so important.

The goal of this project is to develop a model for and methods of determining the

reliability of the Cruise Missile.

1.2 Missile Specifics

The missile being modeled is consists of 41 components, working in series, that go

through four different phases. The goal is to estimate the reliability of the missile–

possibly by calculating the reliability of each individual component in each phase.

Knowing the reliability of each component, in turn, allows us to compute our esti-

mated total reliability.

The main goal is to calculate the underlying reliability of each missile; however,

there are certain effects that we would like to take into account. First, we would like

to account for an aging effect. We would like to be able to allow the reliability to

change depending on the age of the missile. One way to approach the effects of aging

is to have a single effect of age on the system. If, however, we would like to allow for

greater flexibility, we could allow each component to have its own aging effect.
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The other effect we would like to model is the test conditions. The missile

is tested in three different test conditions. While only one test condition is similar

to the conditions the missile will actually be fired in, the other two conditions are

still useful in estimating reliability. We would like to find a model that can take into

account these different test conditions, or modalities, when estimating the reliability

of the missile.
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chapter 2

LITERATURE REVIEW

2.1 Introduction

Loosely stated, reliability is the probability of a component to successfully perform its

intended function under certain circumstances. This, however, is a vague description

that neglects questions that need to be considered: at what standard does it work,

under what conditions will it work, and how long will it work at that standard and

under those conditions.

For example, it may be reasonable to define reliability as the probability of

a device functioning properly. Alternatively, on might be interested in failure time,

defined as the time an object, such as a light bulb, will work (Hamada, Wilson, Reese,

and Martz 2008). While both these definitions of analysis are important for different

types of problems, we will concentrate our focus on the first example. Specifically, we

are only interested in the probability of an item (the missile or component) accom-

plishing a task at a given time. No attention will be paid to lifetime or failure time

analysis or to the performance of the missile. We will only look at the outcome as a

success or failure. Therefore, reliability is defined here as the probability of a success.

2.2 Bayesian Reliability

In this analysis, we use Bayesian methods to estimate reliability. Bayesian analysis

consists of two parts: the likelihood function and the prior distributions. The likeli-

hood function is the sampling distribution of the data. Contained in the likelihood

function are parameters that are treated as unknown quantities. Probability densi-

ties are assigned to each parameter to describe its uncertainty. These densities are
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referred to as prior distributions. It is here that expert opinion can be incorporated

to help define the priors.

Bayesian methods are preferred over classical maximum likelihood estimates

for numerous reasons. First, Bayesian methods allow us a formal way to incorporate

expert knowledge when estimating reliability. This will be important as we have little

knowledge of missiles or missile reliability. Second, in the presence of scarce data,

Bayesian methods allow for much narrower interval estimates than classical inference.

This is due to the information obtained by the prior distribution. Finally, Bayesian

methods allow for increased flexibility when modeling reliability. As a brief example,

consider the case where there are 10 missile tests and all tests succeed. The MLE,

maximum likelihood estimate, of the missile reliability would be an unrealistic value

of 1. Using Bayesian methods, our posterior distribution for the reliability would not

be 1. In fact, we would not have a point estimate for the reliability. Instead, we

would have a distribution that would not have all probability mass at 1. This allows

a much more realistic estimate.

2.3 Multiple Components

In the most basic case, we can model system reliability as

XS ∼ Binom(n,RS),

RS ∼ Beta(α, β),

where XS is the number of successful tests of the system, n is the number of tests, and

RS is the probability of a successful test, or system reliability. This specific model

eliminates the problem of occasionally getting unrealistic estimates that are generated

from classical reliability methods while also allowing us to incorporate expert opinion

in the prior. However, it does a poor job in allowing flexibility to model things such

as multiple components, different modality, and aging effects.
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In response to having multiple components and subsystems, Martz, Waller,

and Fickas (1988) and Martz and Waller (1990) also proposed using binomial likeli-

hoods and beta priors. However, instead of having a likelihood on the system outcome

and a prior on the system reliability, RS, each component and subsystem outcome

(for example, component i) would have it’s own likelihood and prior for Ri, where Ri

indicates the reliability of the ith component. Since the system relies on these com-

ponents and subsystems, these likelihoods and priors would then induce a posterior

reliability on the system. For example, assume we have a system with three compo-

nents in series. Each of these three components would be given their own likelihood

and prior. This would lead to the following model:

X1 ∼ Binom(n,R1),

X2 ∼ Binom(n,R2),

X3 ∼ Binom(n,R3),

R1 ∼ Beta(a1, b1),

R2 ∼ Beta(a2, b2),

R3 ∼ Beta(a3, b3),

where n is the number of tests, Xi is the number of successes on the ith component, and

Ri is the reliability of the ith component. Assuming three components independently

in series gives rise to an induced system reliability, RS = R1 ∗R2 ∗R3.

2.4 Different Modality in Reliability

Missiles are often tested using different procedures. For example, some tests are

nondestructive, others are destructive. These different types of tests, or modalities,

lead to the missile going through more severe conditions. To take these different
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conditions into account, Robinson and Chang (2003) allowed each different mode to

have it’s own reliability. They proposed the model,

Xk ∼ Binomial(nk, Rk),

Rk ∼ Beta(α, β),

α ∼ Weibull(ν, λ),

β ∼ Uniform(0, 10),

where k refers to the different test modality, and Xk is the number of successes in

the nk trials for the kth modality with reliability Rk. This allows the reliability to

change as a function of the modality. While this is often a good model to use, there

are situations when it creates difficulties.

Reese, Hamada, and Robinson (2005) noted that the model produced by

Robinson and Chang assumed the reliabilities, Rk, are conditionally independent.

Essentially, each modal reliability comes from a ‘population’ of reliabilities for all

test modalities. This assumption makes each reliability related; however, it also in-

troduces more variation in the results than assuming a single reliability across modal-

ities. This increase in variation is especially evident in modalities with few test cases.

Without a large number of test cases, it is reasonable to have more variation in the

posterior reliability. However, this increased variation in the posterior of the reliabil-

ity for modalities with few test cases is then passed across or propagated to the other

modalities. This occurs because they are assumed to come from the same population

of reliabilities.

To combat these difficulties, Reese et al. (2005) proposed using an extension

of logistic regression in order to take into account these different modalities and

conditions. Their motivation was that “all test modalities are attempting to estimate

the same quantity, only that some may have less fidelity than others. More precisely,

tests with more fidelity are ones which agree more closely with actual test conditions.”
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Let R be the reliability of the missile in the actual test conditions. Conditions that

are harsher than actual test conditions will decrease this underlying reliability, R;

while softer conditions will increase it. Therefore, they suggest estimating R while

simultaneously estimating the effect of the different conditions.

To do this, they propose taking the logit transform of the ‘base’ reliability, R.

This reliability will serve as a point of reference for the other modalities. Expressing

R on the logit scale, we have

logit(R) = log

(
R

1−R

)
= µ. (2.1)

Now, instead of estimating R, we will estimate the quanitity of interest on the logit

scale, µ. With this point of reference, we can now express Rk, where k indicates the

modality, on the logit scale as

logit(Rk) = log

(
Rk

1−Rk

)
= µ+ λk. (2.2)

This allows all tests, regardless of modality, to influence estimates of our base relia-

bility, R. Once these estimates are obtained, we can then convert them back to the

reliability using the inverse logit relationship,

R =
exp(µ)

1 + exp(µ)
, (2.3)

to calculate R. Similarly, to calculate Rk we use the inverse logit relationship

Rk =
exp(µ+ λk)

1 + exp(µ+ λk)
. (2.4)

2.5 Aging

Because there is often a degradation of materials with time, we would like to be able

to find the effect of aging on the reliability of the missile. As stated before, (2.2)

leads us to logistic regression on the reliability. The terms µ and λk are explanatory

variables for the reliability. While the above equation only takes into account the
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modality of the test, we can expand it to take into account the age of the missile.

This extension leads to

log

(
Ri

1−Ri

)
= µ+ λi + α ∗ age, (2.5)

where α is the effect of age on the reliability of the missile. This allows for a very

flexible model that can easily incorporate the effect time has on the missile.

2.6 Methodology for Generating Posteriors

Once we have specified a model, we turn to generating posterior distributions for

the unknown parameters and hyperparameters. Generating draws from the joint

posterior can often be difficult as the dimension of the parameter space becomes

large. Therefore, it is usually desired to use the marginal distributions to generate

random variables. In practice, however, obtaining these distributions is extremely

difficult. One method to get around actually calculating the marginal distributions is

Gibbs Sampling. While the method was mostly developed by Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953) and further developed by Hastings (1970), it

has recently received interest due to Gelfand and Smith (1990).

Essentially, we first find the distribution of a given parameter or hyperparam-

eter, conditional on the rest of the parameters and hyperparameters. We then take

draws from these conditional distributions, or complete conditionals. These draws are

then used as values in the other complete conditionals. Iterating through each param-

eter/hyperparameter for each draw and taking a sufficiently large number of draws

will result in characteristics of the marginal densities of each parameter. Casella and

George (1992) give a more detailed explanation of Gibbs sampling.

If, when calculating the complete conditional, the form of a known distribution

is found, draws can be taken from a random number generator for that distribution.

On the other hand, if the complete conditional, denoted g(θ), does not take the form
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of a known distribution, the Metropolis-Hastings algorithm can be implemented. This

algorithm was also developed in the papers by Metropolis et al. (1953) and Hastings

(1970). In the Metropolis-Hastings algorithm, we start with an initial value, θ0, of

a parameter. We then generate a new ‘candidate’ value, θN , for a draw from the

posterior. This candidate value is then accepted as a draw from the posterior with

probability
g(θ0)

g(θN)
. If this value is not accepted, the old value is taken as the new

draw. For a more detailed describtion of the Metropolis-Hastings algorithm, see Chib

and Greenberg (1995).

2.7 Model Fit

As we continue to adjust and to try to improve the model by correctly accounting for

different influencing factors, it is important to make sure we are accurately modeling

the reliability of the missile. It is possible that as we create our model we do not

do an adequate job of modeling the reliability. In order to test how well we do in

modeling the reliability we turn to the Bayesian χ2 Test. This test allows us to test

model fit.

The Bayesian χ2 test is motivated by the χ2 goodness-of-fit diagnostic that was

first proposed by Pearson (1900). As this is a common test we use the definition given

by Hamada, Wilson, Reese, and Martz (2008). “Let y1, . . . , yn denote an independent

and identically distributed sample drawn from distribution f(y|θ)” where θ is known.

“Let 0 = a0 < a1 < · · · < aK−1 < aK = 1 denote predetermined quantiles from a

uniform distribution, and define pj = aj − aj−1. Finally, let mj denote the number

of observations yi for which aj−1 < F (yi|θ) ≤ aj. Then Pearson’s chi-squared test

statistic, R0, may be defined as

R0 =
K∑
k=1

(mk − npk)2

npk
.” (2.6)

Pearson (1900) showed that R0 follows a chi-squared distribution with K− 1 degrees

of freedom when the model is true. Note, this is true when θ is known. Cramér
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(1946) and Chernoff and Lehmann (1954) address when θ is estimated using different

methods.

Johnson (2004) loosened the standard assumptions in two ways to define a

Bayesian version of the χ2 goodness-of-fit statistic. First, instead of using the ‘true’

or optimal value of θ, as in (2.6), we will use a randomly sampled draw of θ from

the posterior. This randomly sampled draw, θ̃, is then used to estimate pk. The

assumption of identically distributed data is relaxed by redefining the bin counts

mj according to the number of observations yi for which aj−1 < Fi(yi|θ̃) ≤ aj, where

Fi(yi|θ̃) is the conditional distribution function for the sampled value of θ̃. Therefore,

a Bayesian version of (2.6) can be defined as

RB(θ̃) =
K∑
k=1

[mk(θ̃)− npk]2

npk
. (2.7)

For large n, the sample size, the distribution of RB is χ2
K−1, independently of the

dimension of θ (Johnson 2004). This allows for two important features of the statistic.

First, there does not need to be any adjustment for the dimensionality of θ. Second,

the statistic allows for nonidentically distributed data. These features allow the

statistic to be used in a much broader range of models than the χ2 statistics proposed

by Pearson (1900), Cramér (1946), and Chernoff and Lehmann (1954).

It is important to note, RB is based off of one randomly selected draw from

the posterior, θ. In response to this, the average value of RB over many draws from

the posterior, can be found; however, this averaged value has no known reference

distribution (like χ2
K−1 in the case of a single value). Alternatively, we could report

the proportion of values that exceed a critical value of the distribution χ2
K−1(Hamada

et al. 2008). Other methods for assessing significance for values of RB are discussed

by Johnson (2007).
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2.8 Model Selection

Once we find multiple models to use, it is also important to have a formal way to

compare these models. This will allow decisions to be made on which model and set

of alterations should be used as we move forward. While there are many different

approaches to model selection, we will focus on four: Bayes Factor, Bayesian Informa-

tion Criterion (BIC), Akaike Information Criterion (AIC), and Deviance Information

Criterion (DIC). These approaches are discussed below.

Bayes Factor

One of the first and most basic, conceptually, of model selection tools is the use of

a Bayes Factor. Bayes Factor’s allow for comparison by essentially finding the odds

that a given model is the correct model. For a given model, M1, we can find the odds

with

Pr(M1|D)

1− Pr(M1|D)
,

where D indicates the data. Given two different models to compare, we can simplify

this, using Bayes’ Theorem, to

B12 =
Pr(D|M1)Pr(M1)

Pr(D|M2)Pr(M2)
, (2.8)

where B12 is the Bayes Factor between model 1 and model 2. Typically, the prior

odds,
Pr(M1)

Pr(M2)
, are equal to 1. This then reduces to

Pr(D|M1)

Pr(D|M2)
=

∫
Pr(D|Θ1,M1)π(Θ1|M1)dΘ1∫
Pr(D|Θ2,M2)π(Θ2|M2)dΘ2

. (2.9)

Essentially, the Bayes Factor is the likelihood ratio hypothesis test except for a few

key differences:

• The specification of model 1 to model 2 does not matter.
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• The likelihood is integrated over Θ, as opposed to maximized. This allows for

comparison across the entire Θ space instead of just a point estimate.

• Model 1 and model 2 do not need to be nested models. They can differ with

respect to likelihoods, priors, hyperpriors, etc.

The value log(B12) can be used to shed insight on which model to use. Table 2.1,

shown below, summarizes the different values of log(B12) and its interpretation.

log(B12) Evidence in favor of M1 over M2

0 – 0.5 Not worth more than a bare mention

0.5 – 1.0 Substantial

1.0 – 2.0 Strong

> 2.0 Decisive

Table 2.1: Functional interpretation of natural logarithm of Bayes Factors for com-

paring two models, M1 and M2

Bayes’ factors can often be difficult to calculate, especially as the model com-

plexity increases. DiCiccio, Kass, Raftery, and Wasserman (1997) supply different

methods and approximations for Bayes’ factors. One approximation is given below

in (2.11).

BIC

While the method of using Bayes Factors for model selection is very useful, one

serious drawback is that it can often be difficult to calculate. Schwarz (1978) gives

one possible solution to this difficulty with the Bayesian Information Criterion, or

BIC, which is defined as

BIC = −2 log[f(y|Θ̂)] + p log n, (2.10)
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where p is the number of parameters of the model, n is the number of observations,

and f(y|Θ̂) is the likelihood. As with most information criterion-based methods,

models with a lower BIC than other models present evidence as the better model.

We can use the BIC value to find an approximation of the Bayes Factor (Carlin

and Louis 2009). This approximation is given by

B̂12 = exp

{
− 1

2

(
BIC1 −BIC2

)}
. (2.11)

BIC is typically preferred over Bayes’ factor because it is often used to approximate

the Bayes’ factor (Hamada et al. 2008).

While there are many ways to choose Θ̂ for f(y|Θ̂), often the posterior mean

is used. If the posterior distribution is skewed, the posterior median can also be used.

It is important to note that the posterior mean and median can depend greatly on

the prior distributions of Θ for each model. A logical question is then, “How can

one compare models without letting priors influence the decision?” Replacing f(y|Θ̂)

with maxM1f(y|Θ) takes the effect of priors out of the calculations. Essentially,

maximizing the likelihood allows the different information criterion-based methods

to be calculated with little to no influence from the priors.

AIC

Similar to BIC is the Akaike Information Criterion, or AIC. Akaike (1974) proposed

the following information criterion-based method,

AIC = −2 log
[
f(y|θ)

]
+ 2p. (2.12)

Like BIC, the first term in (2.12) is to account for model fit, while the second term is

a penalty for the number of parameters included in the model. Similar to BIC, when

using AIC, it is not the absolute size but the relative size–specifically, the difference

between models–that is important (Burnham and Anderson 2002). While this is a
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useful information criterion tool, many practitioners have noted that using AIC tends

to keep too many terms in the model. This makes sense because the penalty for added

parameters is relatively small when compared to log(n) (Carlin and Louis 2009).

DIC

Spiegelhalter, Best, Carlin, and van der Linde (2002) proposed another way of com-

paring models. This alternative is especially effective when comparing hierarchical

models. While BIC penalizes for the number of parameters in a model, they note

that “the inclusion of a prior distribution induces a dependence between parameters

that is likely to reduce the effective dimensionality, although the degree of reduction

may depend on the data that are available.” It is therefore important to be able to

find an estimate for the effective number of parameters in a model. The effective

number of parameters can be estimated by pD, defined as

pD = D(θ)−D(θ), (2.13)

where

D(θ) = −2 log
[
f(y|θ)

]
,

and f(y|θ) is the likelihood function. D(θ) is considered the ‘Bayesian deviance,’

with D(θ) being the mean of the deviances and D(θ) being the deviance of the mean

of the parameters. We therefore use D(θ) as a measure of model fit and pD as a

measure of model complexity (Carlin and Louis 2009). Using these measures, we

define DIC as the model fit plus the model complexity, or

DIC = D(θ) + pD (2.14)

= 2D(θ)−D(θ). (2.15)

While there is no intrinsic meaning of the DIC value, the difference between two

models can give insight into model selection. As with AIC, BIC, and other information
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criterion methods, the lower the DIC a model has, the better–with differences of 3 to

5 typically being the smallest differences that should be noted or considered (Carlin

and Louis 2009).

DIC is very advantageous for a number of reasons. Besides its generality,

Carlin and Louis (2009) note that DIC is easy to calculate during an MCMC run

by simply monitoring θ and D(θ). This often turns out to be much easier than

computing Bayes’ factors. Spiegelhalter et al. (2002) caution that pD can be negative.

While this would seem to be unsettling to have a negative value for an estimate of

effective parameters, it can be used to check the agreement between priors and data.

If pD < 0, it typically suggests ‘substantial conflict between the prior and data.’ One

drawback of the DIC is that it is not invariant to parameterization. This then requires

the parameterization to be carefully considered beforehand. Overall, however, DIC

should be strongly considered when comparing any models that have a hierarchical

structure.
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chapter 3

METHODS AND PROPOSAL

We now outline the three different models proposed in modeling missile reliability.

We first go over the specifics of the models, along with details about how each will

account for different features. Three different test cases are then laid out to test the

models. Included in these test cases are the success criteria for each one. Finally,

proposed steps to be used for model selection are outlined.

3.1 Model 1

We begin with Model 1, a base model, that will then be simplified for other models.

Similar to the approach of Martz et al. (1988) and Martz and Waller (1990), we begin

by dividing the system reliability up into subsystem reliabilities. These subsystem

reliabilities will be the reliabilities of the components of the missile in the different

phases of the missile. For simplicity, we assume the components are in series. This as-

sumption not only simplifies the assumption but it also makes for a more conservative

model. We then have

RS = R1,1,1 ∗R2,1,1 ∗ · · · ∗RC,P,1, (3.1)

where RS is the system reliability and Rij1 is the reliability of the ith component

during the jth phase under the 1st test conditions. C and P denote the number of

total components and phases respectively.

We then turn to modeling the reliability of each of these subsystems. To do

this, Bayesian logistic regression is used as suggested by Reese et al. (2005). We start

by taking the logit transform, given in (2.1), of each subsystem reliability. We set

this equal to the three explanatory variables: µij, the underlying reliability for the
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ith component during the jth phase; αi, the age effect on the ith component; and,

λijk, the effect of the kth mode on the ith component during the jth phase. Note, λij1

is set to 0. This will allow the first modality to be the ‘base reliability’ or point of

reference. We then have

logit(Rijk) = µij + αi ∗ age+ λijk. (3.2)

We now present the likelihood that is used for the models. The likelihood shown in

(3.3) is for the general case with nc components and np phases. The general likelihood

is defined as:

f(Z, x|R) =

(R1,1 . . . Rnc,1)
Z1 . . . (R1,np . . . Rnc,np)Znp

(1−R1,1)
x1,1 . . . (1−Rnc,1)

xnc,1 . . . (3.3)

(1−R1,np)x1,np . . . (1−Rnc,np)xnc,np ,

where Zj is the number of successes in the jth phase and xij is the number of failures

for ith component during the jth phase.

There are two important restrictions to keep in mind. First:

N = Z1 +
C∑
i=1

xi1,

where N is the total number of tests and C is the number of components. Basically,

the number of tests must be equal to the sum of the number of phase one successes

and the sum of the failures in each component during phase one. Also, the number

of successes in the previous phase must equal the sum of the number of successes in

the next phase and the sum of the failures in each component during the next phase,

or:

Zj−1 = Zj +
I∑
i=1

xij for all j = 2, . . . , P.

We now specify our priors. Since we have taken the logit transform, we are

now only interested in estimating the parameters in (3.2), namely, µij, αi, and λijk.
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Because we believe each parameter is related to the parameters across components

and phases (µ1,1 is related to µ2,1 and α1 is related to α3), we construct a hierarchical

model. The priors are then:

µij ∼ N(ωj, σ
2
µ), (3.4)

αi ∼ N(γ, σ2
α), (3.5)

λijk ∼ N(ηjk, σ
2
λ). (3.6)

Given these priors, we must now specify priors for the following hyperparameters:

ωj, γ, and ηjk. These priors are as followed:

ωj ∼ N(ω0, σ2
ω), (3.7)

γ ∼ N(0, σ2
γ), (3.8)

ηjk ∼ N(η0
jk, σ

2
η), (3.9)

where ω0 and η0
jk are constants, not hyperparameters. We now specify the priors for

the following variance hyperparameters: σ2
µ, σ

2
α, σ

2
λ, σ

2
ω, σ

2
γ, and σ2

η.

σ2
µ ∼ IG(aµ, bµ), (3.10)

σ2
α ∼ IG(aα, bα), (3.11)

σ2
λ ∼ IG(aλ, bλ), (3.12)

σ2
ω ∼ IG(aω, bω), (3.13)

σ2
γ ∼ IG(aγ, bγ), (3.14)

σ2
η ∼ IG(aη, bη), (3.15)

Now that priors and likelihood are outlined, Model 1 is completely specified.
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3.2 Model 2

We now specify Model 2. This model is similar to Model 1 with the slight difference

that we will only want to allow for one aging effect across all components. Instead of

having different values for each αi, there is only one common value, α. Thus, (3.2) is

replaced with:

logit(Rijk) = µij + α ∗ age+ λijk. (3.16)

All the priors in Model 1 are the same except for now, α is no longer hierarchical and

(3.5) is replaced by

α ∼ N(0, σ2
α). (3.17)

Also, the priors (3.8) and (3.14) are no longer needed. As mentioned, all other priors

are held the same.

3.3 Model 3

In Model 3, we estimate just the system reliability without dividing the reliability

into subsystems as done in (3.1). We therefore are only interested in estimating RS.

Similar to (3.2) and (3.16), we will take the logit transform of RS. Because we are

now only looking at modeling one reliability there are no indices on µ or α. However,

there will still be a modal index on λ because there are still different test conditions

on each test. We therefore have:

logit(RS) = µ+ α ∗ age+ λk. (3.18)

The priors for Model 3 are as followed:

µ ∼ N(µ0, σ2
µ), (3.19)

α ∼ N(0, σ2
α), (3.20)

λk ∼ N(ηk, σ
2
λ), (3.21)

20



where µ0 is a constant. We now only have one parameter, λk, with a hierarchical

structure. Therefore, our only hyperparamter prior is

ηk ∼ N(η0, σ2
η), (3.22)

where η0 is a constant. The variance hyperparameters are the same as in Model 1,

except priors (3.13) and (3.14) are no longer needed.

3.4 Test Cases

In order to make sure the models work, we lay out four test cases, along with success

criteria. In summary, we will have a null case with no aging, a constant aging case,

a sudden onset degradation case, and a modality effect case. These will be outlined

thoroughly below. Each illustrative cases will show the robustness of the models.

In all three test cases, C, the number of components, is fixed to 20; P, the

number of phases, to 4; and M, the number of modalities, to 3. While these are not

the exact numbers of the actual Cruise Missile, they will give sufficient evidence for

success of the models. For each case there are 100 tests. The tests will consist of a

uniform population of missiles aged 1-20 years and a uniform population of modalities

for each test.

Case 1 - Null Case

The first case is a null case where no aging will occur. It is important to check to

make sure we can model this simple case. In this null case, each missile will have a

reliability of approximately 0.96, independent of missile age. We also assume each

component, during each phase, has the same reliability. We then generate the data

according to these probabilities. Ultimately, we want to make sure we estimate the

underlying reliability correctly. Also, we want to make sure the slope of the aging

effect is zero with high probability. This is important because we do not want to
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overfit the model when there is no aging effect. Similarly, we want our modal effect

to be zero with high probability. In order to check for these conditions, we outline

the following success criteria.

Success Criteria:

1. Demonstration of Proper Mixing: Since the algorithm will implement the Metropolis-

Hastings algorithm to generate observations from the posterior, we show there

is a reasonable mixing rate. We want the acceptance rate for each parameter

generated using the Metropolis-Hastings algorithm to be between 20-40%. If it

is in this range, the criterion is satisfied.

2. Demonstration of Convergence: Since the test case data was generated such

that the system reliability is approximately .96, this will be our target system

reliability. We therefore expect the posterior median reliability for the 100-test

data set to be in the interval (0.925, 0.975).

3. Demonstration of No Aging: Since there is no aging effect in the data, it is

important that the aging effect, αi, is zero with high probability for all i. To

check this we consider

Pαi
= min(Pr(αi > 0|data), P r(αi < 0|data)).

If Pαi
< 0.10 for any component i, then we conclude that there is high proba-

bility that there is an aging effect, and the test has failed.

4. Demonstration of No Modality Effect: Similar to the aging effect, since there

is no modality effect in the data, we will want to demonstrate the model does

not try to estimate a modality effect. To do this we examine

Pλijk
= min(Pr(λijk > 0|data), P r(λijk < 0|data)).

Again, if Pλijk
< 0.10 for any i, j, k, then we conclude that there is high proba-

bility that there is a modal effect, and the test has failed.
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Case 2 - Constant Aging Case

The next case is for a constant aging effect. Because it is difficult to explain and

interpret the aging results in terms of system reliability, we will deviate from the null

case and talk about the constant aging case in terms of µ,ij , αi, etc. Recall the logit

transform explained in Section 2.4,

log

(
Rij

1−Rij

)
= logit(Rij) = µij + αi ∗ age+ λijk.

We set µij = 7.6 ∀i, j, which means Rij ≈ 0.9995 and RS ≈ 0.96 at time 0. An aging

effect is introduced by letting α2 = −0.05 and α5 = −0.2. For i 6= 2, 5, αi is set to

zero. For Model 1 and Model 2, it is important to be able to recognize when there is

an aging effect on certain components and not on others. Also, similarly to the null

test case, we want out model to correctly identify the aging effect without altering or

incorrectly identifying the underlying reliability of each component (Rij).

Success Criteria:

1. Demonstration of Proper Mixing: As in Case 1, we want a mixing rate of 20-40%

for all parameters that are generated from the Metropolis-Hasting algorithm.

This ensures proper mixing and a sufficient exploration of the parameter space.

2. Demonstration of Convergence: Assuming criterion 1 is met, we want the model

to approximate the true values for µij, which is 7.6. Therefore, we want the

median of the posterior for each µij to be in the range (6.5, 7.9), or µij’s are

such that the induced system reliability, RS, is in the range (0.925, 0.975). If

this holds than the test meets the criterion.

3. Demonstration of Aging: Since there is no aging effect on any components

except for 2 and 5, we first want to make sure there is no evidence of aging on

the other components. As mentioned above, we will examine

Pαi
= min(Pr(αi > 0|data), P r(αi < 0|data)).
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If, for any i 6= 2, 5, Pαi
< 0.1, then we have evidence of aging on these compo-

nents and the test fails. Alternatively, if Pαi
> 0.1 for i = 2, 5, then there is

not sufficient evidence of aging when there should be and the test fails.

4. Demonstration of No Modality Effect: Since there is again no modality effect,

we make sure the model does not estimate an effect. To check this we repeat

the test presented in the null case test.

Case 3 - Sudden Degradation Onset Case

In the third test case, we look at the case of sudden onset aging. This occurs when

reliability of a missile is constant for the beginning of the missile’s life but begins to

decrease at a certain age. Currently, the model is built to only handle cases where

the aging is constant through time. Since this is a common type of aging, we would

like to make sure our model can give a somewhat reasonable estimate if this were to

happen.

For this test we again let µij = 7.6 for all i, j. We then add an aging effect

on component 5 and let α5 = −.2. However, this aging effect will start at age 11.

Therefore, we get

logit(R5jk) = µ5jk + α5 ∗ (age− 10).

In this test case, we just consider a sudden onset aging effect, and therefore, do not

add a modality effect.

Success Criteria:

1. Demonstration of Proper Mixing: As described in the other tests, we will be

using the Metropolis-Hastings algorithm to generate draws from our posterior.

Therefore, we make sure there is a proper mixing rate for all parameters gen-

erated using the Metropolis-Hastings algorithm. Again, the criterion for the

acceptance rate is the range 20–40%.
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2. Demonstration of Convergence: Assuming criterion 1 is met, we want the model

to approximate the true values for µij, which is 7.6. Therefore, the median of

the posterior for each µij should be in the range (6.5, 8.0), or µij’s are such that

the induced system reliability, RS, is in the range (0.925, 0.975). If this holds

than the test meets the criterion.

3. Demonstration of Aging: If criteria one and two are met, we show the aging

effect. Since there should be no aging effect on any components except for

component 5, we first show that αi is zero with high probability for all i 6= 5.

We consider Pαi
as described above. If Pαi

> 0.1 for all i 6= 5, it passes the initial

test and we look at Pα5 . Since there is not a constant aging effect, we would

just like to see that α5 6= 0 with high probability. Hence, if Pr(α5 ≥ 0) > 0.1

then the test fails. Otherwise, the test succeeds.

4. Demonstration of No Modality Effect: Finally, since we have not added a modal-

ity effect, we consider Pλijk
, as it is defined above. If Pλijk

< 0.1, then the test

fails.

Case 4 - Modal Effect

In the final test case we would like to add a modality effect. Again, let µij = 7.6

∀i, j. In this case we have no aging effect. However, we do have a modality effect.

Mode 2 has a positive effect on reliability on component 1 with a value, λ1j2 = 1.5

for j=(1,2,3,4). Mode 3, on the other hand, has a negative effect on reliability for

component 2 and phase 3 with a value, λ2,3,3 = −2. It is important to find these

modal effects because we do not want to overestimate or underestimate the underlying

reliability based on what type of test is run. This allows us to account for the

differences in these test types.

Success Criteria:
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1. Demonstration of Proper Mixing: Again, the criterion for the acceptance rate

is the range 20–40%.

2. Demonstration of Convergence: Assuming criterion 1 is met, the model should

approximate the true values for µij, which is 7.6. Therefore, we want the median

of the posterior for each µij to be in the range (6.5, 8.0), or µij’s are such that

the induced system reliability, RS, is in the range (0.925, 0.975). If this holds

than the test meets the criterion.

3. Demonstration of No Aging: Since no aging effect has been added for this test,

αi should be zero with high probability for all i. To test this we consider Pαi

where,

Pαi
= min(Pr(αi > 0|data), P r(αi < 0|data)).

If Pαi
< 0.1 for any i, then the test fails.

4. Demonstration of Modal Effect: The target for the modal effect is λ1j2 = 1.5 for

j=1,2,3,4, λ2,3,3 = −2, and λijk = 0 for all other i, j, k. So, the median of λ1,j,2

should be in the range (1.25, 1.75) for all j, the median of λ2,3,3 in the range (-

2.25, -1.75), and λijk for all other i, j, k, to be zero with high probability. Again,

we consider Pλijk
> 0.10. If this holds for all other i, j, k, then the criterion is

met.

3.5 Model Selection

After fitting each of the models to the four different data sets we use model selection

to select the preferred model to use. We start by checking the test case success

criteria. Assuming all criteria are satisfied we proceed by comparing AIC, BIC, and

DIC. If not all success criteria are met, we find the model that succeeds in the most

test criteria and proceed with comparing the different information criterions. Since

these models are hierarchical, we will use the Deviance Information Criterion that
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was set out in Section 2.8 as the most important of these measures. This is reported

in Section 4.4.
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chapter 4

EVALUATION OF THE MODELS

4.1 Introduction

As discussed in Chapter 3, three different models are proposed to account for the

reliability of the missile. We start with Model 1, the full model, where there is a unique

µij for each component, i, and phase, j, combination. Also, Model 1 has a unique

aging parameter, αi, for each component. Additionally, each component, phase, and

modality combination has a unique modality effect, denoted λijk. Model 2 is the same

as Model 1 except for now all components have the same aging parameter. Model 3

has only µ, α, and λ parameters at the system level. Essentially, we summarize all

the µij into a single µS parameter. Similarly, we do the same for αi and λijk. For

more details on these models refer to Sections 3.1, 3.2, and 3.3.

Section 4.2 discusses the details of the MCMC algorithm used in parameter

estimation. Section 4.3 discusses the success or failure of the test cases outlined in

Section 3.4. Lastly, Section 4.4 summarizes Section 4.3 and discusses final model

comparisons using DIC which was outlined in Section 2.8.

4.2 MCMC Algorithm

In order to generate draws from the posterior, and for computational efficiency, the

MCMC algorithm was coded using MATLAB. Throughout the algorithm, µij, αi,

and λijk for all i, j, and k were updated using a Metropolis-Hastings step. All other

variance parameters (σ2
µ, σ

2
α, σ

2
η,etc.) and hyperparameters (ηjk, ωj, and γ) that were

outlined in Section 3.1 are updated using a Gibbs sampling step. This code can be

seen in Appendix A. This code took significant computation time to run 200,000
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iterations for each model and data set. Model 1 and Model 2 each required approx-

imately 7 days per data set. Model 3 took about 2 hours of computation time per

data set to run. This required (7 days × 2 models × 4 data sets )+ (2 hours × 4

data sets) ≈ 56.33 days of computation time.

On top of the time required to run the actual algorithms, it is also worth noting

the difficulty and amount of time consumed in dealing with the tuning parameters.

When using any Metropolis-Hastings steps, one must choose the standard deviation

for the candidate distribution such that the parameter space is properly ‘explored.’ If

too large of a standard deviation is chosen, not enough draws from the posterior will

be accepted. This causes the posterior draws to not cover the entire space of the actual

posterior. If too small of a standard deviation is chosen, the draws could potentially

get hung up at a local maxima and, again, not cover the true entire posterior space.

The first success criterion for each data set ensures a proper standard deviation was

chosen. This standard deviation was chosen manually, using trial and error, for each

parameter (i.e. the standard deviation for the candidate values for all µij’s is the

same but different than the standard deviation for the candidate values for all the

αi’s.

4.3 Success Criteria

Recall the success criteria outlined in Section 3.4. Before proceeding to compare the

different models using DIC, we would like to check the models to see how successful

they are in identifying different phenomena in the data sets provided. Each of the

four data sets provides a different test case as described in Section 3.4. We check

different success criteria for all three models before proceeding to the next data set.

30



Data Set 1

This data set is the null case (i.e. no aging and no modal effect). This is essentially

a base case. We would like to see the following:

1. Proper mixing (20% - 30% acceptance rate) for each parameter.

2. Demonstration of convergence to the ‘true’ values.

3. Demonstration of no aging.

4. Demonstration of no modal effect.

model 1

1. The mixing rates of the different parameters are first checked. Table 4.1 shows

the different mixing rates. All mixing rates are in the 20-40% range, and,

therefore, the criterion is satisfied.

Parameter Mixing Rate

µ 30.91%

α 29.80%

λ 39.23%

Table 4.1: Mixing rates for parameters of Model 1 for null case. All are within the

acceptable 20-40% range.

2. Checking to make sure the model is converging on the correct underlying relia-

bility, we see that the median of µij is contained in the range (6.233,7.929) for

all i and j. Most, but not all, of these are in the acceptable range; however,

when we convert these back to component reliabilities and find the induced sys-

tem reliability, RS, we find that RS ≈ .962. Since this is in the range outlined

in Section 3.4, we conclude the test case has succeeded.
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3. To ensure there is no aging effect, we consider Pαi
, as defined in Section 3.4. We

would like to see Pαi
> 0.1 to indicate that there is no aging effect. However,

using this model we see that Pαi
< 0.1 for 17 of the 20 components. We

therefore conclude that there is an aging effect, and the test case has failed for

this criterion. Looking at Figure 4.1 we see that there is a significant positive

aging effect. This is a problem that will be addressed in Section 5.2.

Figure 4.1: Posterior probability density of aging parameter for null case with no

aging shows there is a positive aging effect using Model 1.

4. Finally, we look to see if there is a modality effect. We consider Pλijk
, for all

i, j, and k. Since Pλijk
∈ (.3326, .4999) for all i, j, and k, we say there is no

significant modality effect. Therefore, Model 1 passes criterion four for Data

Set 1.

model 2

1. The mixing rates of the different parameters are first checked. Table 4.2 shows

the different mixing rates. All mixing rates are in the 20-40% range, and,

therefore, the criterion is satisfied.
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Parameter Mixing Rate

µ 33.23%

α 23.23%

λ 40.12%

Table 4.2: Mixing rates for parameters of Model 2 for null case. All mixing rates are

in the desired 20-40% range

2. Checking to make sure the model is converging on the correct underlying relia-

bility, we see that the median of µij is contained in the range (6.06,7.92) for all

i and j. Converting each µij and solving for RS, we find RS ≈ .961. The test

criterion is therefore met.

3. To check for the effect of aging, we consider Pα. Using Model 2, Pα = .1441, and

we conclude there is no significant aging effect. Figure 4.2 shows the density of

α. Recall, in Model 2 there is only one aging parameter that is shared for every

component. Therefore, only one density is shown.

Figure 4.2: Posterior probability density of aging parameter for null case with no

aging. Aging effect is 0 with high probability.
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4. Again, we demonstrate that there is no modality effect, this time for Model 2.

Since Pλijk
∈ (0.3386, 0.4999) for all i, j, and k, we conclude there is no modal

effect. Therefore, Model 2 succeeds in passing this criterion for Data Set 1.

model 3 As described before, this model is a simplified version where the under-

lying reliability and different effects (age and different modalities) are estimated at

only the system level.

1. The mixing rates of the different parameters are first checked. Table 4.3 shows

the different mixing rates. All mixing rates are in 20-40% range, and, therefore,

the criterion is satisfied.

Parameter Mixing Rate

µ 36.84%

α 37.67%

λ 35.99%

Table 4.3: All mixing rates for parameters of Model 3 in the null case are in the

acceptable 20-40% range.

2. We now consider the distribution for µ, the underlying reliability. There is only

one µ parameter for the entire system. Therefore, the value of µ will not be close

to the generated value for each component of 7.6. As mentioned earlier, a value

of µij = 7.6 corresponds to Rij ≈ 0.9995. This implies that the reliability of the

system, RS ≈ 0.95, or µS ≈ 2.944. The mean of the posterior distribution of

µS = 3.668, or RS ≈ 0.975. This is an acceptable number for RS, and therefore

the criterion is met. Figure 4.3 shows the density of µS, the underlying system

reliability, as well as a trace plot of µ from the MCMC algorithm.
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Figure 4.3: Posterior probability density of µS for Model 3 in the null case on the

left. Trace plot of µS (right) shows the algorithm has converged.

3. To check for the effect of aging, we consider Pα. For this data and model,

Pα = 0.2642, and we conclude there is no significant aging effect. Figure 4.4

shows the density of α, the aging effect.

Figure 4.4: Posterior probability density of aging effect for the null case with no aging

using Model 3 shows the aging effect is 0 with high probability.

4. Finally, we demonstrate that there is no modality effect. Since Pλ2 = .03684 and

Pλ3 = 0.2304 (recall λ1 is constrained to 0), we conclude there is no significant
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modality effect and Model 3 passes this criterion for Data Set 1. Figure 4.5

shows the density of λ2 and λ3.

Figure 4.5: Posterior probability density of modality effect using Model 3 for null

case shows no significant effect.

Data Set 2

This next data set is the constant aging case. As described in Section 3.4 there is a

negative effect on certain components. Therefore, we would like to see the following:

1. Proper mixing (20% - 30% acceptance rate) for each parameter.

2. Demonstration of Convergence to the true values.

3. Demonstration of aging.

4. Demonstration of no modality effect.

Again, the importance of Data Set 2 is to see the effectiveness of each model at

identifying aging effects. All three models successful complete criteria one, two, and

four. We, therefore, concentrate on criterion three.
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model 1 We begin with Model 1. With this model, each component has a unique α

parameter. As mentioned before, we would like to see an aging effect on components

2 and 5. On all other components, we would like to not see a significant aging effect.

For this model Pα2 = 0.2089, Pα5 = 0.0148, and Pαi
∈ (0.1981, 0.4493) for all other i.

We, therefore, see a significant aging effect on component 5 and no significant aging

effect on the other components. While the aging effect on component 5 is desired, we

would have also liked to see an aging effect on component 2. Figure 4.6 displays the

posterior densities for α parameters for each component. α2 and α5 are highlighted

as noted in the legend.

Figure 4.6: Posterior probability density of aging effect for Model 1 in the constant

aging case. Component 5 has a significant degradation due to aging.

model 2 To check for the effect of aging, we again consider Pα. Using Model

2, Pα = 0.3752, and we conclude there is no significant aging effect. The criterion,

therefore, fails for this model on Data Set 2. Figure 4.7 shows the density of α. Recall,

in Model 2 there is only one aging parameter that is shared for every component.

Therefore, only one density is shown. It is interesting to note that the density for α

for Data Set 2 is similar to that of α in Data Set 1, except it is shifted more negative.

This shift possibly suggests the model is slightly picking up the aging effect.
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Figure 4.7: Posterior probability density of aging effect for Model 2 in the constant

aging effect. Model 2 found no significant aging effect.

model 3 Using Model 3, there is only one aging parameter that is shared for the

entire system. Since we induced the aging effect by fixing some of the components to

have negative values for α, we would like to make sure there is a negative aging effect

at the system level. Pα = 0.0137 indicates there is an aging effect. Looking at Figure

4.8, the posterior density of αS, we see that it indeed is negative and the criterion is

met.

Figure 4.8: Posterior probability density of aging effect for Model 3 in the constant

aging effect. A significant degradation was found using Model 3.
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Data Set 3

Data Set 3 is the sudden onset aging case. Here, the aging does not start until after

age 10. While none of the models are built to specifically handle this type of aging,

we check to see how each one does for this phenomena. We want to see the following:

1. Proper mixing (20% - 30% acceptance rate) for each parameter.

2. Demonstration of convergence to the true values.

3. Demonstration of aging.

4. Demonstration of no modality effect.

Specifically, Data Set 3 is intended to see how well the models are at picking up an

aging effect when the aging degradation has a sudden onset. Similarly to Data Set

2, all three models successfully complete criteria one, two, and four, and, therefore,

concentration should be focused on criterion three. Recall, component 5 had a sudden

onset aging effect after age 10. We therefore would like to see some aging effect

represented in each model.

model 1 Starting with Model 1, we again investigate Pαi
for each component. We

see Pα5 = 0.4189 and Pαi
∈ (0.1628, 0.4959). Therefore, we do not see a significant

aging effect for any of the components and this test case has failed. Figure 4.9 shows

the posterior distributions for each of the αi parameters.
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Figure 4.9: Posterior probability density of aging effect for Model 1 in the sudden

onset aging case. There was no significant aging effect using Model 1.

model 2 To check for the effect of aging, we again consider Pα. Using Model

2, Pα = 0.2813, and we conclude there is no significant aging effect. The criterion

therefore fails for this model on Data Set 2. Figure 4.10 shows the density of α. Recall,

in Model 2 there is only one aging parameter that is shared for every component.

Therefore, only one density is shown. Similar to Data Set 1 and 2, it is interesting

to note the density for α. Again, the shape is similar to the density of α for Data

Set 1 and 2; however, it’s shifted more negative than the null case (Data Set 1) and

slightly more positive than the aging case (Data Set 2). This again, possibly suggests

Model 2 is slightly picking up the aging effect.
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Figure 4.10: Posterior probability density of aging effect for Model 2 in the sudden

onset aging case shows no significant effect.

model 3 Using Model 3, there is only one aging parameter that is shared for the

entire system. Again, we want to make sure there is a negative aging effect at the

system level. Pα = 0.3066 indicates there is not a significant aging effect. Looking at

Figure 4.11, the posterior density of αS, we see that while the aging effect appears to

be negative, it is not significant. Therefore, the criterion is not met for the sudden

onset degradation.

Figure 4.11: Posterior probability density of aging for Model 3 in the sudden onset

aging case shows no significant aging effect.
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Data Set 4

Finally, Data Set 4 is the test case with different modality effects in the data set.

The specifics of the effects of each modality are given in Section 3.4. We would like

to see the following:

1. Proper mixing (20% - 30% acceptance rate) for each parameter.

2. Demonstration of convergence to the true values.

3. Demonstration of no aging.

4. Demonstration of modality effect.

The main focus of Data Set 4 is the demonstration of the modality effect. All three

models successfully complete criteria one, two, and three. Therefore, the results

presented below are only for criterion four.

model 1 Using Model 1, we see Pλijk
∈ (0.3323, 0.4999) for all i, j, and k. This

implies there is no modal effect. This goes against what we would like to find.

Therefore, we conclude Model 1 has failed the criterion and has failed this test case.

model 2 Similarly, for Model 2 we find Pλijk
∈ (0.3338, 0.4998) for all i, j, and k.

This once again fails to identify the modality effect. Model 2, then, fails to pass the

test case for the different modality effect.

model 3 Using Model 3, we see that Pλ2 = 0.4522 and Pλ3 = 0.4681. Again, we

conclude that there is no modality effect and, therefore, implies that Model 3 also fails

to succeed the criteria for this test case. Figure 4.12 displays the posterior densities

of λ2 and λ3.
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Figure 4.12: Posterior probability density of modality effect for Model 3 in the modal-

ity effect case shows no significant effect.

4.4 Model Comparison and Discussion

We begin by presenting a summary of Section 4.3. Table 4.4 summarizes the success

of each model for the different data sets. X’s indicate successful completion of success

criteria for the test cases. Blank squares indicate that the specified model failed the

indicated criterion for the test case.

Model 1 Model 2 Model 3

Success Criteria 1 2 3 4 1 2 3 4 1 2 3 4

Data Set 1 (Null Case) X X X X X X X X X X X

Data Set 2 (Aging Case) X X X X X X X X X X X

Data Set 3 (Sudden Aging Case) X X X X X X X X X

Data Set 4 (Modality Case) X X X X X X X X X

Table 4.4: Model 3 outperformed other models with respect to test case criteria.

We now discuss each data set, how the models performed, and the DIC for each

model in each data set. For a definition and explanation of DIC, see the subsection
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entitled DIC in Section 2.8. For each data set, a table lists the DIC values and the

Pd, or effective number of parameters, for each model.

Data Set 1

As we can see in Table 4.4, Models 2 and 3 do a better job of identifying certain

characteristics of Data Set 1. Model 1 did a poor job of correctly identifying the

aging effect. Using Table 4.5, we see that not only does Model 3 successfully pass

each criterion, but also has the lowest DIC for Data Set 1.

DIC Pd

Model 1 56.1 6.38

Model 2 64.4 7.64

Model 3 32.0 2.75

Table 4.5: Model 3 has significantly lower DIC values for null case.

Data Set 2

For Data Set 2, Table 4.4 indicates that Model 1 and 3 successfully complete each of

the test criterion. While Model 2 appears to somewhat identify the aging effect, it

is not significant, and therefore, fails the criterion. As in Data Set 1, not only does

Model 3 complete all the test criteria, but it also has the lowest Pd and DIC values,

as shown in Table4.6.

DIC Pd

Model 1 92.1 10.30

Model 2 118.2 13.20

Model 3 44.7 3.34

Table 4.6: Model 3 has significantly lower DIC values for constant aging case.
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Data Set 3

While none of the three models successfully identified the aging effect in Data Set 3,

we still compare the DIC. Once again, Model 3 has the lowest DIC, as can be seen in

Table 4.7. It is important to note that while none of the models found a significant

aging effect, it does appear that each of the models found the aging effect to be more

negative (the desired effect) than the null case.

DIC Pd

Model 1 128.2 11.44

Model 2 145.0 13.80

Model 3 61.8 3.60

Table 4.7: Model 3 has significantly lower DIC values for sudden onset aging case.

Data Set 4

Finally, we look at Data Set 4. It appeared that none of the models did a satisfac-

tory job at identifying differences in modality. They all failed the test case criteria.

However, looking at Table 4.8, we once again see that Model 3 has the lowest DIC of

the three models.

DIC Pd

Model 1 84.9 7.60

Model 2 93.9 9.06

Model 3 45.6 3.13

Table 4.8: Model 3 has significantly lower DIC values for modality effect case.
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chapter 5

CONCLUSIONS

5.1 Model Selection

We now choose which model of the three we propose to use. After looking at the

results and discussions in Section 4.4, it is easy to conclude that Model 3 is the most

efficient of the three models. Not only does Model 3 have the lowest DIC in every test

case, but it also successfully passed the most test criteria, and, maybe most important,

it was the quickest to run simulations. As discussed in Section 4.2, Model 1 and Model

2 each take approximately 7 days of computation time to run. Alternatively, Model 3

takes approximately 11
2

to 2 hours. This improvement by a factor of more than 80 is

extremely significant and makes Model 3 much more reasonable to run and use. The

only downside of Model 3 is that it does not give any information about the specific

reliability of the different components. If this information is desired, then Model 1

appears to be a more appropriate model.

5.2 Further Work

While we have proposed three very reasonable models, there are few areas of work

that could be done. This work could improve the models and would shed additional

insight on the models’ efficiency. To improve the models, the handling of the aging

effect needs to be modified, the modality effect needs to be adjusted, and the effect

of sample size needs to be analyzed and addressed.
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Distribution for Aging Effect

In the models proposed here, all the aging parameters were modeled as coming from

a normal distribution. This allows positive and negative values for the α, aging effect.

Often in these models, unless the aging effect was very significant and obvious, the

aging effect would ‘drift’ so that it was a positive value and the underlying reliability,

µ, would decrease. This is a very undesirable effect. To overcome this problem, we

propose α be restricted to only take on negative values. This is reasonable because

it seems extremely unlikely that something such as a missile, or missile component,

would ever become more reliable over time. Therefore, only negative values for α

seem reasonable. To do this, we propose the negative of the aging effect come from a

gamma distribution, or (−α) ∼ gamma(aα, bα). Using this proposal, considerations

would have to be taken to decide what is significant. Using Pα, as defined in Section

3.4 and used in Section 4.3, would no longer make sense because the aging parameter,

α, is now always less than 0.

Fixing modality

As shown in the discussion of Data Set 4 in Sections 4.3 and 4.4, the current models

do not do a sufficient job in identifying different effects due to modality. This result

is somewhat puzzling. While steps were taken to make sure the code was written

and implemented correctly, it is possible that the correct hierarchy is not used for the

modality effects. Further work is suggested to look into where the problems lie and

correcting the modality effect.

Sample Size

Finally, this study only used one sample size for all four data sets, namely 100 tests

for each one. While this seems like a reasonable amount of tests to use, some work
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could be done to see the efficiency of each model as a function of sample size. Because

Model 1 and Model 2 had so many parameters, 279 and 260 respectively, and Model 3

had so few parameters, 13 parameters, it is possible that Model 3 did better because

it had to estimate fewer parameters. It would be interesting to see how Model 1 and

Model 2 perform with additional test outcomes in each data set. This, however, would

increase the computation time needed for each one, which is already substantial.
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appendix a

MATLAB CODE

A.1 Main Program

function[] =MainProgram(testdata,modelnum,iterationnum)

burnin = floor(iterationnum/10);

iterationnum=iterationnum+burnin;

if modelnum==1

SystemOnly=0;

DiffAge=1;

elseif modelnum==2

SystemOnly=0;

DiffAge=0;

else

SystemOnly=1;

DiffAge=0;

end

YesAge=1;

%Start timer to get Elasped Time

timeElapsed = tic;

%Format

format long

directory=cd;
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filename = sprintf(’%s/Data/%s.csv’, directory,testdata);

if(SystemOnly==1)

priorfilename = sprintf(’%s/Data/PriorData2.csv’, directory);

else

priorfilename = sprintf(’%s/Data/PriorData.csv’, directory);

end

% number of iterations we want in MCMC

% if ACMorALCM = 1 then ALCM otherwise if ACMorALCM = 0 then ACM

ACMorALCM = 1;

% AgePartitions is the number of points on the Age axis that you want to

% explicitly

% compute the reliability. This is important when we want to summarize the

% reliability in graphs.

AgePartitions = 10;

% age bins is the number of bins on the age axis we want to use to compute

% the Bayesian Chi-Square statistic

nagebins = AgePartitions;

% the following parameters determine the standard deviation of the mu,

% lambda and alpha

alphamean = 0.0;

Aalpha=10;

Balpha=.5;

Ahyperalpha=10;

Bhyperalpha=.5;

Amu=5;

Bmu=.1;

Ahypermu=5;

Bhypermu=.1;

Alambda=10;

Blambda=.1;

Ahyperlambda=10;
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Bhyperlambda=.1;

muvar = ones(iterationnum,1);

hypermuvar=ones(iterationnum,1);

alphavar = ones(iterationnum,1); %Changed the alphavar in order to get a

% uniform induced prior for overall system reliability

hyperalphavar = ones(iterationnum,1);

lambdavar = ones(iterationnum,1);

hyperlambdavar = ones(iterationnum,1);

% ## seed is an integer which uniquely specifies the random number generator

seed = 1234;

%RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,seed));

%ERROR CHECK

if iterationnum < 2

errordlg(’iterationnum must be 2 or greater’,’Input Error’);

return;

end

if burnin > iterationnum

errordlg(’burnin larger than iterationnum’,’Input Error’);

return;

end

munudge = 1.75;

lambdanudge = 0.75;

hyperlambdanudge = 1.0;

hypermunudge = 5; % Changed hypermunudge from .25 to 12

alphanudge = .15; % Changed alphanudge from .1 to .04

hyperalphanudge = .1; % Changed hyperalphanudge from .1 to .03

%% LOAD RESULTS CSV DATA

%HowLongIsThis = waitbar(0, ’Loading in test data’);

ohno=0;
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TestData = structCSV(filename);

%A= dataset(’file’,filename,’delimiter’, ’,’);

% if(isnumeric(TestData.Test)==0)

% TestData.Test=cell2mat(TestData.Test);

% end

%

% if(isnumeric(TestData.Phase)==0)

% TestData.Phase=cell2mat(TestData.Phase);

% end

% if(isnumeric(TestData.Component)==0)

% TestData.Component=cell2mat(TestData.Component);

% end

% if(isnumeric(TestData.Mode)==0)

% TestData.Mode=cell2mat(TestData.Mode);

% end

numtests = length(unique(TestData.Test)); % number of tests

numphase = length(unique(TestData.Phase)); % number of phases

numcomp = length(unique(TestData.Component)); % number of components

nummodes = length(unique(TestData.Mode)); % number of modes

% Here is where we implement the system only switch

if SystemOnly==1

TestData = systemOnly(TestData);

numphase=1; % need to change the numphase to 1

numcomp=1; % need to change the numcomp to 1

end

N = length(TestData.Test); % number of rows in the test data

onevector = ones(N,1);

littleonevector = ones(numtests,1);

% the following matrices will summarize the success and fail information

% for each and every test result
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% The following were made global variables because they were unnecessarily

% called in functions or passed between functions.

global successmatrix failmatrix unknownmatrix bigonevec isthereunknowns ...

agematrix modematrix P T C MM whichUnknown

successmatrix = zeros(numcomp*numphase,numtests);

failmatrix = zeros(numcomp*numphase,numtests); %numcomp*numphase by numtests

unknownmatrix = zeros(numphase,numtests); %numphase by numtests

bigonevec = ones(1, numtests);

littleonevec = ones(1, numphase);

isthereunknowns = littleonevec*unknownmatrix;

T=numtests;

% These 4 matricies will summarize the covariate information we need for

% the model

modematrix = zeros(numtests,1); % numtests by 1

agematrix = zeros(numtests,1); % numtests by 1

% for each test determine which component failed and which phase

% In the following loops we will compile all the information on the

% covariates for the model (X’s) and also the test result information (Y)

unknownindicator = strncmp(TestData.Comp_Result,’?’,1);

successindicator = strncmp(TestData.Comp_Result,’1’,1);

failindicator = strncmp(TestData.Comp_Result,’0’,1);

modevector = TestData.Mode;

agevector = TestData.Age;

for t = 1: numtests

ohno = ohno + 1;

% waitbar(ohno/numtests);

testindicator = (TestData.Test==t);

modematrix(t) = max(unique(testindicator.*modevector));

agematrix(t) = max(unique(testindicator.*agevector));

for phase = 1:numphase

phaseindicator = (TestData.Phase==phase);

phasetestindicator = testindicator.*phaseindicator;

isthereunknowns = unknownindicator.*phasetestindicator;

unknowntally = isthereunknowns’*onevector;
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if(unknowntally>0)

unknownmatrix(phase,t)= 1;

else

unknownmatrix(phase,t) = 0;

end

for comp = 1:numcomp

compindicator = (TestData.Component==comp);

grandindicator = testindicator.*compindicator.*phaseindicator;

successmatrix(numcomp*(phase-1)+comp,t)=successindicator’...

*grandindicator;

failmatrix(numcomp*(phase-1)+comp,t)=failindicator’...

*grandindicator;

end

end

end

%close(HowLongIsThis);

% all of the measures below aggregate the values over all modes

SS = successmatrix*ones(numtests,1); % successes by comp and phase

FF = failmatrix*ones(numtests,1); % known failures by comp and phase

UF = unknownmatrix*ones(numtests,1); % unknown failures by phase

failsbyphase = zeros(numphase,1); % contains failures by phase

testsbyphase = zeros(numphase,1); % will contain tests by phase

for phase = 1:numphase

list= (numcomp*(phase-1)+1):(numcomp*phase);

failsbyphase(phase) = sum( FF(list) );

failsbyphase(phase) = failsbyphase(phase)+UF(phase);

if(phase==1)

testsbyphase(phase)=numtests;

else

testsbyphase(phase) = testsbyphase(phase-1) - failsbyphase(phase-1);

end

end

successesbyphase=testsbyphase-failsbyphase;

62



%% LOAD PRIOR CSV DATA

% ## We will now read in the prior data

PriorData = structCSV(priorfilename);

% note to self: we need to think about what would happen if M = 1!!

P = length(unique(PriorData.Phase)); % number of phases

C = length(unique(PriorData.Component)); % number of components

M = length(unique(PriorData.Mode)); % number of modes

PriorN = length(PriorData.Mode); % number of rows in priorfilename

PriorR = zeros(C*P,1);

PctEquiv = zeros((M-1)*C*P,1);

AgeEffect = zeros(C,1);

PI = zeros(C,P);

mu0 = zeros(C,P); %

PIstress = zeros(C,P,(M-1));

lambda0 = zeros(C,P,(M-1)); % this array will store logit(PIstress)

% This makes the unknow matrices for the case where we have unknown

% failures.

isthereunknowns=sum(unknownindicator);

unknownmatrix = zeros(numphase,numtests);

whichUnknown=find(sum(unknownmatrix)>0);

%HowLongIsThis = waitbar(0, ’Loading in prior data’);

ohno=0;

for mode = 1: M

modeind = (PriorData.Mode==mode);

for phase = 1:P

phaseind = (PriorData.Phase==phase);

for comp = 1:C

compind = (PriorData.Component==comp);

grandind = modeind.*phaseind.*compind;
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if(mode == 1)

PriorR(C*(phase-1)+comp)=grandind’...

*(PriorData.PriorReliability);

else

PctEquiv(P*C*(mode-2)+C*(phase-1)+comp)=grandind’...

*(PriorData.PctEquivilence);

end

end

end

end

% Load data into the Pi and mu0 array

% Do some error checking to prevent someone from putting PriorR = 1 or 0

% for some component.

for phase = 1:P

for comp = 1:C

j = C*(phase-1)+comp;

if(PriorR(j)>0.9999999999)

PriorR(j) = 0.9999999999;

end

if(PriorR(j)<0.001)

PriorR(j) = 0.001;

end

PI(comp,phase)=PriorR(j);

mu0(comp,phase)=log(PI(comp,phase))-log(1-PI(comp,phase));

end

end

mu0=mean(mu0);

% ## For each mode, enter the number of pi values and the percent

% equivilency values. Also need to check if someone puts 0’s in for

% PctEquiv, because both of these errors would be bad!!

for mode = 1:(M-1)

ohno = ohno + 1;
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% waitbar(ohno/M);

for phase = 1:P

for comp = 1:C

j = P*C*(mode-1)+C*(phase-1)+comp;

if(PctEquiv(j)<10^(-10))

PIstress(comp,phase,mode)= 0.9999999999;

lambda0(comp,phase,mode) = log(PIstress(comp,phase,mode))...

-log(1-PIstress(comp,phase,mode)); %

else

PIstress(comp,phase,mode) = 1.0 ...

- PctEquiv(j)*(1.0 - PI(comp,phase));

lambda0(comp,phase,mode) = log(PIstress(comp,phase,mode))...

-log(1-PIstress(comp,phase,mode))-mu0(phase); .

end

end

end

end

MM = min(M,nummodes);

if(MM>1)

needlambda=1;

else

needlambda = 0;

end

% here are some error checkers

if (P > numphase)

errordlg(’number of phases in prior file is larger than in datafile’...,

’Input Error’);

return;

end

if (P < numphase)

errordlg(’number of phases in prior file is less than in datafile’...

,’Input Error’);

return;
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end

if (C < numcomp)

errordlg(’number of components in prior file is less than in datafile’...

,’Input Error’);

return;

end

if (C > numcomp)

errordlg(’number of components in prior file is greater than in datafile’...

,’Input Error’);

return;

end

if (nummodes > M)

errordlg(’number of test mode types in data file is greater than ...

the number in the prior file’,’Input Error’);

return;

end

% ## We now need to initialize 3 arrays to store the data in.

% ## bigmu is the array needed to store the mu values

% ## biglambda is the the arrays needed to store the lambda values

% bigalpha stores the alpha values

bigmu = zeros(iterationnum,C,P);

hypermu = zeros(iterationnum,P); % hyperparameter for mu

muvec = zeros(iterationnum,C*P);

if(MM>1)

biglambda = zeros(iterationnum,C,P,MM-1);

hyperlambda = zeros(iterationnum,C,P,MM-1); % hyperparameter for lambda

lambdavec = zeros(iterationnum,C*P*(MM-1));

else

lambdavec = zeros(iterationnum,C*P);

end

bigalpha = zeros(iterationnum,C);

hyperalpha = zeros(iterationnum,1); % hyperparameters for alpha
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for phase = 1:P

for comp = 1:C

if(testsbyphase(phase)>10)

meann = (SS(C*(phase-1)+comp)/testsbyphase(phase)...

+ PI(comp,phase))/2.0;

bigmu(1,comp,phase) = log(meann)-log(1-meann);

% hypermu(1,comp,phase) = bigmu(1,comp,phase);

muvec(1,C*(phase-1)+comp)=bigmu(1,comp,phase);

else

meann=PI(comp,phase);

bigmu(1,comp,phase) = log(meann)-log(1-meann);

% hypermu(1,comp,phase) = bigmu(1,comp,phase);

muvec(1,C*(phase-1)+comp)=bigmu(1,comp,phase);

end

if(MM>1)

for mode = 1:(MM-1)

biglambda(1,comp,phase,mode) = lambda0(comp,phase,mode);

hyperlambda(1,comp,phase,mode) = lambda0(comp,phase,mode);

lambdavec(1,C*P*(mode-1)+C*(phase-1)+comp)...

=lambda0(comp,phase,mode);

end

else

lambdavec(1,C*(phase-1)+comp)=0;

end

end

end

% These will count the number of acceptance and rejection decisions

% these will be utilized later on in the computation of the mix rate

mucount = 0;
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lambdacount = 0;

alphacount = 0;

hypermucount = 0;

hyperlambdacount = 0;

hyperalphacount = 0;

%% MH Algorithm

ohno=0;

propalphavec=bigalpha(1,:);

oldalphavec=bigalpha(1,:);

propmuvec = muvec(1,:);

oldmuvec = muvec(1,:);

proplambdavec = lambdavec(1,:);

oldlambdavec = lambdavec(1,:);

% Need to initiallize a vector which will store the log-likelihood values

loglike = zeros(iterationnum,1);

% ## Initialize loop on Iteration in the Metropolis-Gibbs hybrid algorithm

for i = 2:iterationnum

ohno = ohno + 1;

%here is where we use the YesAge variable to "turn on/off" the age

%effect

muvar(i) = 1/gamrnd(Amu+(C*P)/2, 1/(1/Bmu+...

(sum(sum((squeeze(bigmu((i-1),:,:))-...

repmat(hypermu((i-1),:),[C,1])).^2)))/2), [1 1]);

hypermuvar(i)=1/gamrnd(Ahypermu+(C*P)/2, 1/(1/Bhypermu+...

(sum((reshape(squeeze(hypermu((i-1),:)), size(mu0))-mu0).^2)/2)));

if MM>1

lambdavar(i) = 1/gamrnd(Alambda+(C*P*(MM-1))/2, 1/(1/Blambda ...
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+ sum(sum(sum(((biglambda((i-1),:,:,:)-...

hyperlambda((i-1),:,:,:)).^2),4),3),2)/2));

hyperlambdavar(i) = 1/gamrnd(Ahyperlambda+...

(C*P*(MM-1))/2, 1/(1/Bhyperlambda...

+ sum(sum(sum((reshape(squeeze(hyperlambda((i-1),:,:,:))...,size(lambda0))-lambda0).^2,3),2))/2));

end

if YesAge==1

if DiffAge==1

%We start by updating the variance for alpha (alphavar).

alphavar(i)=1/gamrnd(Aalpha+C/2, 1/(1/Balpha+...

(sum((bigalpha((i-1),:)-hyperalpha(i-1)).^2))/2), [1 1]);

hyperalphavar(i) = 1/gamrnd(Ahyperalpha+C/2, 1/(1/Bhyperalpha...

+(hyperalpha(i-1)^2)/2), [1 1]);

%Here we initialize the next the vector for the ith iteration. This

%will allow us to get rid of these computationally costly if/elseif

%statements

bigalpha(i,:)=bigalpha((i-1),:);

%moved this outside the loop because it doesn’t change

oldlambdavec = lambdavec((i-1),:);

oldmuvec = muvec((i-1),:);

for comp = 1:C

alphaproposal = bigalpha((i-1),comp)+ alphanudge*(randn(1,1));

% generate a proposal for alpha

% form a proposal and old alpha vector

propalphavec=bigalpha(i,:);

oldalphavec=propalphavec;

propalphavec(comp)=alphaproposal;

logratio = loglikelihood(oldmuvec,oldlambdavec,propalphavec)...

- loglikelihood(oldmuvec,oldlambdavec,oldalphavec);

logratio = logratio + normlike([hyperalpha(i-1),...

alphavar(i)],bigalpha((i-1),comp)) - ...

normlike([hyperalpha(i-1),alphavar(i)],alphaproposal);
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% generate a random uniform and take the log of it

U = log(rand(1,1));

if(U < logratio)

bigalpha(i,comp) = alphaproposal; % accept the proposal

alphacount = alphacount+1;

end

%We now update the hyperparameters for alpha using Gibbs

%sampling because they are conjugate priors for hyperalpha

end % we have now updated the parameters for alpha

hyperalpha(i)=sum(bigalpha(i,:))*...

hyperalphavar(i)/(C*hyperalphavar(i)...

+alphavar(i))+sqrt(hyperalphavar(i)*alphavar(i)/...

(C*hyperalphavar(i)+alphavar(i)))*randn(1,1);

else

alphavar(i)=1/gamrnd(Aalpha+C/2, 1/(1/Balpha+...

(sum((bigalpha((i-1),:)-hyperalpha(i-1)).^2))/2), [1 1]);

hyperalphavar(i) = 1/gamrnd(Ahyperalpha+C/2, 1/(1/Bhyperalpha+...

(hyperalpha(i-1)^2)/2), [1 1]);

%Here we initialize the next the vector for the ith iteration. This

%will allow us to get rid of these computationally costly if/elseif

%statements

bigalpha(i,:)=bigalpha((i-1),:);

%moved this outside the loop because it doesn’t change

oldlambdavec = lambdavec((i-1),:);

oldmuvec = muvec((i-1),:);

alphaproposal = bigalpha((i-1),:)+ alphanudge*(randn(1,1));

% generate a proposal for alpha
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% form a proposal and old alpha vector

oldalphavec=bigalpha(i,:);

propalphavec=alphaproposal;

logratio = loglikelihood(oldmuvec,oldlambdavec,propalphavec)...

- loglikelihood(oldmuvec,oldlambdavec,oldalphavec);

logratio = logratio + normlike([hyperalpha(i-1),alphavar(i)],...

bigalpha((i-1),comp)) - ...

normlike([hyperalpha(i-1),alphavar(i)],alphaproposal);

% generate a random uniform and take the log of it

U = log(rand(1,1));

if(U < logratio)

bigalpha(i,:) = alphaproposal; % accept the proposal

alphacount = alphacount+1; %

end

%We now update the hyperparameters for alpha using Gibbs

%sampling because they are conjugate priors for hyperalpha

hyperalpha(i)=sum(bigalpha(i,:))*hyperalphavar(i)/(C*hyperalphavar(i)...

+alphavar(i))+sqrt(hyperalphavar(i)*...

alphavar(i)/(C*hyperalphavar(i)+alphavar(i)))*randn(1,1);

end

end %end if YesAge==1 statement

mode=1;

% we will now update the mu and lambda parameters

% the following loop structure does this

muvec(i,:)=muvec((i-1),:);

lambdavec(i,:)=lambdavec((i-1),:);
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oldalphavec = bigalpha(i,:);

for phase = 1:P

for comp = 1:C

index = C*(phase-1)+comp;

if(MM>1)

lambdaindex =(mode-1)*C*P + C*(phase-1)+comp;

endlambdaindex=C*P*(MM-1);

else

lambdaindex = C*(phase-1)+comp;

endlambdaindex=C*P;

end

muproposal = bigmu((i-1),comp,phase)+ munudge*(randn(1,1));

% form a proposal and old mu vector

propmuvec=muvec(i,:);

oldmuvec=muvec(i,:);

propmuvec(index)=muproposal;

proplambdavec=lambdavec(i,:);

oldlambdavec=lambdavec(i,:);

% evaluate the logratio of the posterior distributions = difference

% in loglikelihood + differecnce in the logprior distributions

logratio = loglikelihood(propmuvec,oldlambdavec,oldalphavec)...

- loglikelihood(oldmuvec,oldlambdavec,oldalphavec);

logratio = logratio + normlike([hypermu((i-1),phase),...

sqrt(muvar(i))],bigmu((i-1),comp,phase))...

- normlike([hypermu((i-1),phase),sqrt(muvar(i))],muproposal);

% generate a random uniform and take the log of it

U = log(rand(1,1));

if(U < logratio)

muvec(i,index) = muproposal; % accept the proposal

mucount = mucount+1; % increment the mu acceptance counter

end

bigmu(i,comp,phase) = muvec(i,index);

% done with hyperparameters for mu

% ok the mu portion is done.
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if(MM>1)

for mode = 1:(MM-1)

index=(mode-1)*C*P + C*(phase-1)+comp;

endindex=C*P*(MM-1);

muindex= C*(phase-1)+comp;

proplambdavec=lambdavec(i,:);

oldlambdavec=lambdavec(i,:);

lambdaproposal = lambdavec((i-1),index) + ...

lambdanudge*(randn(1,1)); %

proplambdavec(index)=lambdaproposal;

logratio = loglikelihood(oldmuvec,proplambdavec,oldalphavec)...

- loglikelihood(oldmuvec,oldlambdavec,oldalphavec);

logratio = logratio + normlike([hyperlambda((i-1),...

comp,phase,mode),lambdavar(i)],lambdavec((i-1),index))...

- normlike([hyperlambda((i-1),comp,phase,mode),...

lambdavar(i)],lambdaproposal);

% generate a random uniform and take the log of it

U = log(rand(1,1));

if(U < logratio)

lambdavec(i,index) = lambdaproposal;

lambdacount = lambdacount+1;

end

biglambda(i,comp,phase,mode)=lambdavec(i,index);

% now update the hyperparmeters for lambda

% done with hyperparameters for mu

end % this end statement belongs with the mode loop

end % this ends the if loop around the lambda update portion
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end % end the loop on component

end % end the loop on phase

hypermu(i, :)=((squeeze(sum(bigmu(i,:,:)))*hypermuvar(i)+...

mu0’*muvar(i))/(muvar(i)...

+C*hypermuvar(i))+sqrt((muvar(i)*hypermuvar(i))/...

(C*hypermuvar(i)+muvar(i)))*randn(size(mu0’)))’;

if MM>1

hyperlambda(i,:,:,:)=(reshape(biglambda(i,:,:,:),size(lambda0))*...

hyperlambdavar(i)+lambda0(:,:,:)*lambdavar(i))/...

(hyperlambdavar(i)+lambdavar(i))...

+ sqrt((hyperlambdavar(i)*lambdavar(i))/(hyperlambdavar(i)+...

lambdavar(i)))*randn(size(lambda0));

end

% We should store the value of loglikelihood(i)

% the two cases where MM = 1 and MM > 1 turn out to both be satisfied

% with this 1 command!!!

loglike(i) = loglikelihood(muvec(i,:),lambdavec(i,:),bigalpha(i,:));

% we will collect the loglikelihood values in this one vector so that

% they can be used in the computation of DIC and the effective # of

% parameters

if rem((i-burnin),100000)==0

workspacefilename=sprintf(’%s/PosteriorData/%s-%i-Model%i-Iter%i’,...

cd,testdata,iterationnum,modelnum,i);

save(workspacefilename);

end

if rem(i,10000)==0

workspacefilename=sprintf(’%s/PosteriorData/%s-%i-Model%i-iternum%i’,...

cd,testdata,iterationnum,modelnum,i);

save(workspacefilename,’i’);

end
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end % end the loop on iterationnumber

%close(HowLongIsThis);

% Yeah we are done with the Metropolis-Gibbs loop!!!! Hooorrrraaaahhh!!!

toc(timeElapsed);

MCMCtime=toc(timeElapsed);

workspacefilename=sprintf(’%s/PosteriorData/%s-%i-Model%i’,cd,testdata,...

iterationnum,modelnum);

save(workspacefilename);

end

A.2 Likelihood function

function [loglike] = loglikelihood(muvec,lambda,alpha)

% This function will compute the loglikelihood for a given parameter vector

% The parameter space Capital Theta consists of the parameters mu

% (comp,phase) which represents the mean reliability for the component,

% phase

% when the missile is undergoing flight (or usage testing). By

% convention we will take mode = 1 to represent flight testing.

% The parameter lambda(comp,phase,mode) represents the effect on the

% reliability due to testing the missile at stress levels other than

% flight stress levels (all modes > 1).

% The parameter alpha will represent the age effect on each component. We

% assume that the age effect on reliabiltiy for each component will be

% constant

% for different phases and different test modes.

% Let P = number of missile phases

% Let C = number of components

% Let M = number of test modes

% Let T = the number of tests conducted
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% muvec will be a vector having dimension ( C*P by 1)

% lambda will be a vector having dimension ( C*P*(M-1) by 1)

% alpha will be a vector having dimension (C by 1)

% the loglikelihood function is also a function of the test data which

% includes the covariate information (X variables) and the test result

% information (Y’s). The Y variables in this model are success and fail

% infomation by component and phase. This Y variable information is

% stored in the matrices successmatrix, failmatrix, and unknownmatrix.

% Here is the Y variable information:

% unknownmatrix is a (P by T) matrix of 1’s or 0’s which tell us whether

% unknown failures occured by component

% successmatrix is a (C*P by T) binary matrix for successes by comp and

% phase

% failmatrix is a (C*P by T) binary matrix for failures by comp and phase

% Here is the X variable information:

% modematrix is a (T by 1) recording the test mode by test

% agematrix is a (T by 1) recording the age by test

% the linear predictor is everything to the right hand side of the logit

% equation. Specifically the linear predictor for this model is given by

% Linear Predictor = mu(i,j) + lambda(i,j,k)*I(k>1) + alpha(i)*Age +

% beta(i)* I(maintence >0) + gamma(j) * (misssion time)

%The following variables are called globally to prevent them from being

%called/passed when they don’t need to be. Also, because we changed these

%to global variables, the function loglikelihood now only needs to pass 3

%variables.

%We also made P T and C global

global successmatrix failmatrix unknownmatrix bigonevec isthereunknowns ...

agematrix modematrix P T C MM whichUnknown

% First we convert the lambda matrix into a form where it is easy to add to

% the linear predicator matrix.
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lambdaByTest=0;

if MM>1

lambdamatrix=[zeros(1,(P*C)) lambda]; % add zeros to the front of the

% lambdas. This lets us add 0 if the mode of the test is 1.

lambdamatrix=reshape(lambdamatrix, P*C, MM); % we reshape the matrix

% in order to get it in the same dimensions as the elements in the linear

% predicator.

lambdamatrix=lambdamatrix’; % Because the reshape function enters

% things in by column, and we want them inserted in rows, we transpose

% the matrix.

lambdaByTest=lambdamatrix(modematrix, :); % now we take the row of the

% lambda matrix that corresponds to the mode of each test.

end

% This calculates the linearpredictor for each comp, phase, mode

% The first line just adds the mu’s, alpha’s, and lambda’s for each

% component and phase for each test. We then use the transform to get logR

% and log1minusR

linearpred=repmat(muvec, [T,1]) + repmat((agematrix*alpha),[1,P])...

+lambdaByTest;

logR=linearpred-log1p(exp(linearpred));

log1minusR=(-1)*log1p(exp(linearpred));

% Using the successmatrix and the failmatrix, we calculate the

% loglikelihood. We take the diagonal of the matrix multiplication because

% we only need the cross product of the logR for test t, and successmatrix

% for test t. So we only want the (t,t)th entry of logR*successmatrix.

loglikehood= logR*successmatrix + log1minusR*failmatrix;

loglikehood=diag(loglikehood);

loglike = bigonevec*loglikehood;

return;
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