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ABSTRACT

ACCOUNTING FOR ADDITIONAL HETEROGENEITY: A THEORETIC

EXTENSION OF AN EXTANT ECONOMIC MODEL

Bradley J. Barney

Department of Statistics

Master of Science

The assumption in economics of a representative agent is often made. How-

ever, it is a very rigid assumption. Hall and Jones (2004b) presented an economic

model that essentially provided for a representative agent for each age group in deter-

mining the group’s health level function. Our work seeks to extend their theoretical

version of the model by allowing for two representative agents for each age—one for

each of “Healthy” and “Sick” risk-factor groups—to allow for additional heterogene-

ity in the populace. The approach to include even more risk-factor groups is also

briefly discussed. While our “extended” theoretical model is not applied directly to

relevant data, several techniques that could be applicable were the relevant data to

be obtained are demonstrated on other data sets. This includes examples of using

linear classification, fitting baseline-category logit models, and running the genetic

algorithm.
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1. INTRODUCTION

Those involved in the social sciences have a vested interest in explaining why

people make the choices they do. One important result of understanding a person’s

decision-making processes is the insight that can be gained into deducing that person’s

likely responses in various situations. As an economics example, knowing what the

likely effect of a consumption tax on cigarettes will be on cigarette use can help in

making decisions about whether or not to impose the tax, and if so, how high it

should be to attain some desired result.

One point worthy of mention before proceeding is the assumption in economics

that there is a representative agent who can characterize aggregate results. This

assumption is often made to avoid staggering complexities which would be present if

the behaviors of numerous unique agents were to be dynamically and simultaneously

modeled. In effect, what is assumed is that the aggregate response in a given situation

can be expressed by using only one agent. Frequently, such a representative agent is

assumed to behave a certain way in order to optimize some specified function, usually

in the presence of specified constraints. As an example, a utility function with the

variables consumption and leisure time might be given, and the representative agent’s

behavior (given time and income restrictions) which produces the greatest possible

utility for that person would be assumed to characterize the aggregate behavior of all

agents under consideration by assuming that the agent’s actions are repeated once for

each member of the group the agent represents. This assumption greatly simplifies

the task of modeling large-scale results in an economy, but it is not always an ideal

assumption, as is discussed in Section 2.2.

Identifying a way to move away from the strict assumption of having a char-

acteristic agent in order to include more heterogeneity is a worthwhile endeavor in
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creating more realistic models. While there are different possible means of implement-

ing more variety in macroeconomics, the method proposed here looks at a specific

example of how more heterogeneity can be included in an economic model.

In the earlier stages of this work, Hall and Jones had a copy of one of their

papers available online, referred to hereafter as Hall and Jones (2004b), which has

since been published in a modified form. The recently published version of this paper

is referred to herafter as Hall and Jones (2007). Some of what is contained in this

work does not apply to the (2007) version of their paper, which is undesirable because

it is their final version. However, because much of the work in this document was

done before the recent version of the Hall and Jones article was published, this work

is based on the (2004b) version of the Hall and Jones article. Because this version

is no longer readily available online, both versions are cited when there is agreement

between the two. If the articles do not agree, a version preceding the other two

articles, Hall and Jones (2004a), is cited along with the (2004b) paper. However, this

paper will refer to the model as the Hall and Jones (2004b) model, but it is still quite

similar to the (2007) model. Note also that understanding of Hall and Jones (2004b)

was deepened by Dr. Mark Showalter in personal communications from May–July

2005 and by discussion with Dr. Dennis Tolley throughout 2005; these comments

have influenced the provided summary of Hall and Jones (2004b).

Hall and Jones (2004b) undertook, among other things, to provide insight into

the fact that United States consumers are spending a greater percentage of their

earnings on health care now than they did previously; the percentage of earnings spent

nearly tripled from 1950 to 2000 (Hall and Jones 2004b, p. 2; Hall and Jones 2007,

p. 39). Through their work, they show that substantial growth in the proportion of

total income spent on health is in concordance with optimizing behavior in a fictional

economy with specified properties (M. Showalter, personal communications, May–

July 2005). Hall and Jones initially present a very rigid economic structure but then
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relax several of their assumptions and apply their model to economic and health data

from the United States. They rely on the assumption that a representative agent can

be used to characterize all people in the economy of the same age at a given time

throughout their paper.

The aim of the research proposed here is to show how a model can be modi-

fied to contain additional heterogeneity. For illustration purposes, the Hall and Jones

(2004b) model will be modified in this way. Explicitly, Hall and Jones (2004b) assume

that age is the only difference among individuals’ health functions at a given time;

thus, a representative agent for each age group is sufficient to model behavior in the

health economy at any given time (see also Hall and Jones 2007). In this project their

model is extended to include risk factors. Recall that the purpose of this project is

to illustrate how to adapt a model to allow for more variety in the populace than

the model would otherwise allow. There is a substantial increase in complexity as-

sociated with a very general result. The principles used in extending the Hall and

Jones (2004b) model are illustrated with only two risk-factor states; that is, it is as-

sumed there are two representative agents for each age group and that knowing the

behaviors of these representative agents is sufficient to determine aggregate behavior.

The two risk-factor groups, which have age-specific properties, are generically termed

“Healthy” and “Sick.”

The extended model presented in this project will make a weaker assumption

than the representative agent assumption used by Hall and Jones (2004a,b)—it will

assume that people are exactly the same with respect to the model in a given time

period if they are the same age and belong to the same risk-factor group. Strictly

speaking, the extended model presented can be considered to be a model with three

risk-factor groups, with the third group being “Deceased,” but this group will be

treated fundamentally differently. People in the “Deceased” risk-factor group are not

modeled further once they enter this group, because the purpose of this group is to
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allow for an individual to always be in a risk-factor group in future periods. Thus,

there is no associated representative agent for people in this risk group.

Not only will there be two representative agents for each age group, one for

those in the “Healthy” group and one for those in the “Sick” group, but agents in

either of these risk-factor groups in one discrete time period could stay in that group,

switch to the other group, or be in the “Deceased” group in the next time period. The

ability of individuals to switch between risk-factor groups is an important feature of

the proposed model because it incorporates more heterogeneity than simply having

different groups. It will be assumed that individuals in the “Deceased” risk-factor

group cannot later enter the “Healthy” or “Sick” groups.

While the extension of including these risk-factor groups might seem very trivial,

there is a significant amount of change involved in doing so. It is also important to

recognize that this is a first step. Once the model has been extended to two risk-

factor groups, it is much easier to extend the model to more groups. While it will be

noted how to adapt the model for more risk-factor groups, in almost all instances, the

presentation involves only the risk-factor groups “Healthy,” “Sick,” and “Deceased.”

It is important to recognize that the goal of this paper is to illustrate a procedure

by which additional heterogeneity can be accounted for in an economic model, as

summarized above and as detailed throughout the rest of this document. While some

of the data necessary to actually apply the extended model to the U.S. economy are

currently being gathered, all of the necessary data to fit the theoretical model are not

available. For the reader interested in understanding how certain practical techniques

for fitting the extended model could be implemented, some examples requiring data

are given based on another type of currently available data or using assumed values

in place of unknown quantities. It is important to note that the data used are not

claimed to be related to the extended version of Hall and Jones’ (2004b) model, but

these examples are useful as an example of how the appropriate data might be handled
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if it were available.

A close-to-optimal numeric solution of the extended model only makes sense if

necessary model parameters are well estimated or reasonably assumed. This project

does not claim to use reasonable values in all instances, and the data to estimate

all of the parameters is not available. A procedure for obtaining a close-to-optimal

numerical solution for maximizing a particular function will be demonstrated for a

very simplified version of the problem using assumed values for all unknown model

parameters. Although this makes the final results meaningless, it provides an example

of the numerical solution tool to be used. It cannot be overstated that this paper

attempts to inform the reader how increased heterogeneity could be accounted for in

economic modeling by extending a posed theoretical model by Hall and Jones (2004b)

and does not attempt to sustain nor reject Hall and Jones’ findings from having fitted

their model with U.S. data.
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2. LITERATURE REVIEW

2.1 Hall and Jones (2004b) Model

While there is a great deal of information presented in Hall and Jones (2004b),

the focus of this project is on the model itself, as opposed to the implications of

the fitted model or the details of how Hall and Jones fitted their model, given that

alternative methods are sometimes suggested herein. Note that the Hall and Jones

(2004b) model will be closely followed in the “extended” version of this model.

Essentially, in the principal model of Hall and Jones (2004b), they assume a

deterministic function for the health level, xa,t, of any individual of age a at time t as

an age-dependent function of that individual’s “effective health input,” ztha,t, where

zt represents the health technology level at time t and ha,t denotes the individual’s

health spending. This health level is also used as the inverse of the probability that

a corresponding individual will live to the next period. Hall and Jones also assume

a particular form for the utility of a person of age a at time t as a function of the

individual’s health level and the individual’s consumption spending for that period,

ca,t. They pretend that someone in charge of the economy wants to maximize a func-

tion consisting of the sum of all individuals’ utility in this period and a diminishing

proportion of the total utility in every future period (Hall and Jones 2004b, pp. 13–14;

see also Hall and Jones 2004a, pp. 15–16).

There are a number of constraints placed on the problem, including total income

equals total health spending plus total consumption spending in each period; the

same number of people are born each year, denoted by Na=0,t = N0; the health

levels determine the proportion of individuals of each age that will be alive in the

following time period; health technology level has exponential growth; income is the

same across individuals, and this common level of per-capita income, yt, also has
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exponential growth; the health function determines health level. After posing this

theoretical model, they impose a particular form on the health functions and then

apply this model to U.S. data under a pair of scenarios to discuss the past and make

future projections (Hall and Jones 2004b, pp. 2–3, 14–15, 18; see also Hall and Jones

2004a, pp. 2–3, 16–17, 20).

Again, Hall and Jones did much more, but this review represents an overview

of what is needful to understand the extended model. Specific information will be

provided throughout this paper. While there are admittedly important features of

Hall and Jones’ paper that have not been discussed, they will not be addressed herein.

The focus of this paper is simply on how a certain aspect of their theoretical model

could be extended to include more representative age groups and to allow switching

between risk-factor groups. Also, means to apply this model in the future provided

someone were to collect the relevant data is generally described, but no attempt is

made to fit the extended theoretical model to past data, and estimation of some

important parameters is not addressed at all in the extended model.

2.2 Representative Agent Literature

The assumption of one representative agent characterizing all members of a

macroeconomy is rather common. Highlights of the development of using represen-

tative agents are briefly noted in Martel (1996), and Hartley (1996) provides a much

more in-depth account. The concept of a representative entity being used to model

the economy was initially created by Marshall, who in 1920 introduced the concept

of a representative firm (Hartley 1996, p. 169; Martel 1996, p. 128). However, his

usage of the term representative had a quite different implication than it does now

(Hartley 1996, p. 169). According to Hartley, Marshall was seeking to find a way to

get a unique price and equilibrium at the aggregate level while still allowing firm-to-

firm differences (Hartley 1996, p. 171). This can be compared with Hall and Jones’
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(2004b) usage of a representative agent for each age group, wherein they assume

that all persons of the same age at a given time are exactly the same in their health

functions (Hall and Jones 2004b, pp. 7, 13; see also Hall and Jones 2007, pp. 44–45,

49).

Despite the rather widespread use of the representative agent supposition, there

are criticisms against it. Besides mentioning other arguments, Kirman (1992) makes

the following four arguments against using representative agents:

(1) No strong support exists that collective actions of individual optimizers would

behave as just one optimizing person would.

(2) Discounting the first argument still leaves the flaw that altering a model pa-

rameter might produce a discrepancy between what the representative agent

would do and what the collective actions would be (in the presence of the

alteration).

(3) It is possible that every individual forming the aggregate would prefer the

second of two possibilities, but the representative agent would prefer the first

possibility.

(4) Relying on a representative agent in empirical work has the drawback of being

very restrictive insofar as collective actions might be very complex but only

one individual can be used to characterize them.

Similarly, Carroll (2000) presents a result which he claims is cause to stop using

the representative agent approach in certain cases and to instead use an approach

that is in line with “key microeconomic facts.” This claim follows from his deduc-

tion that sometimes an altered representative agent approach (altered by including

idiosyncratic risk) does not give outcomes consistent with these microeconomic facts.
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He finds that in an example where he tries to adapt a model to eliminate these in-

consistencies, the results are substantially different from those obtained using the

representative agent approach (Carroll 2000, pp. 110–114).

Many other economists have also seen the weaknesses of using representative

agents. Because of this, methods of altering or bypassing this assumption have arisen.

Martel (1996) provides a discussion on problems with using representative agents,

as well as a summary of several paths alternative research is taking. He mentions

two areas which are still related to the representative-agent case. The first area he

describes as dividing the macroeconomy into different non-aggregated sectors, each

of which is then assumed to have a representative agent. He describes a second type

of research that modifies the representative agent assumption as the use of extra

variables to incorporate characteristics of cross-section-specific distributions (Martel

1996, pp. 137–138).

Daniel’s (1993) paper provides an example of research with more than one

representative agent. In her work, Daniel explores the relationship between the timing

of taxes (i.e., in what time period(s) taxes are levied) and the macroeconomy. She

uses two representative families instead of just one, as this allows for families with

either of two discount parameters. She finds that using two representative families

instead of just one substantially alters the implied macroeconomic impact caused by

the timing of taxes.

Similarly, Hall and Jones (2004a,b) used a different representative agent for

each age group rather than just one overall. The extended model is based on having

multiple representative agents for each age group. Thus, this is the technique used in

the extended model to avoid the restriction of having only one representative agent

overall and to allow for more heterogeneity in the model.

Caselli and Ventura (2000) use the assumption that there is a representative

consumer who can characterize what all consumers do on average. They note that
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to be consistent with this assumption, heterogeneity among consumers must be in-

corporated in an acceptable manner, but they point out that the assumption of a

representative consumer does not preclude heterogeneity of consumers. Caselli and

Ventura discuss the inclusion of heterogeneity in three consumer traits and give ex-

amples of models that have heterogeneous consumers and yet are consistent with the

assumed existence of a representative consumer. They argue that the assumption of

a representative consumer causes relatively little further restriction of the observable

dynamics of model results beyond what the observable dynamics would be without

the representative consumer assumption (Caselli and Ventura 2000, pp. 909, 911–912,

923).

Martel (1996) also notes work by Hildenbrand that, instead of trying to adapt

the representative agent approach, depends on agent differences for having a sta-

ble aggregate demand (Martel 1996, p. 138). Related work leads Russell (1995) to

conjecture that having enough heterogeneity present in his model could imply “ap-

proximate” holding of the Coase theorem (Russell 1995, p. 105). In recent work by

Hildenbrand and Kneip (2005), they note that as a type of diversity with regard to

households increases, as measured by their proposed index, the impact that prices

have on “the aggregate consumption expenditure ratio” decreases, under the condi-

tion that there are not an infinite number of households so that the index proposed

can be used (Hildenbrand and Kneip 2005, p. 155). Note that in each of the afore-

mentioned cases heterogeneity seems to be a desirable trait rather than a nuisance.

2.3 Relevant Health Economics Literature

In addition to the Hall and Jones (2004b) paper, there is a great deal of research

in health economics which is relevant to the proposed extension of the Hall and Jones

model. One key assumption in Hall and Jones (2004a,b) is that a person’s health level

and utility depend, in part, on the person’s health expenditures. Nordhaus (2003)

10



claims that empirical evidence and reason seem to indicate economically quantifiable

health gains are at most modestly related to health spending. He notes that an

alternative way to assess health contributions is to look at how many doctor visits

people make or how many days they spend in a hospital (Nordhaus 2003, pp. 10–11).

Nordhaus’ statement is particularly meaningful because Hall and Jones (2004b,

2007) suppose that a person’s health level is a deterministic function of health spend-

ing, among other things. While this may be a less-than-ideal assumption about what

determines a person’s health, especially in light of Nordhaus’ comment, there is an

important point which hopefully reduces the anxiety involved with making this as-

sumption. Recall that the goal of the proposed research is to show how heterogeneity

might be added to an economic model. As part of the Hall and Jones (2004a,b) model,

the dependence of health level on health expenditures was an integral element in the

purposes of their research, and such dependence also helped to make the model more

tractable than it would otherwise be. It makes sense to perpetuate a dependence of

health on health expenditures in the extended model, which is discussed in Chapter 3.

Literature which seeks to assess how medical treatments affect people is also

relevant. Meltzer points out that when analyzing “medical interventions” in terms

of how much gain is derived from them versus how much they cost, a particular

obstacle is having the means to summarize the benefits associated with an intervention

using just one number. He notes that the increase in life expectancy associated with

different interventions can be compared, even for different medical conditions, yet

the comparison of life expectancies leaves something to be desired because it does

not incorporate how the intervention impacts the enjoyment of life. He describes the

advent of quality-adjusted life years (QALY’s) as means to overcome this deficiency.

Essentially, QALY’s assign weights ranging from zero to one to each life year, where

the weights correspond to how healthy the person is in that life year. These weights

then provide information on how enjoyable that life year is from a health perspective
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(Meltzer 2003, p. 215).

Quality-adjusted life years have become widely used, but they are not embraced

by all as an ideal assessment tool (Meltzer 2003, p. 216). Cox, Fitzpatrick, Fletcher,

Gore, Spiegelhalter, and Jones argue that instead of always converting a multivariate

treatment impact into a univariate measure, in certain situations the multivariate

treatment impact should be stated so that individuals can then make a choice suited

to their desires; the treatment impact is not based on a multivariate-to-univariate pro-

jection using other individuals’ preferences (Cox et al. 1992, p. 354). Meltzer argues

in effect that even though multiple methods of estimating the weight parameters in

QALY’s have often led to correlated results, the correlation in the results can only be

used to conclude that QALY’s can be precisely (and possibly not validly) measured

(Meltzer 2003, p. 216).

Although Hall and Jones (2004b) did not state that they were using QALY’s,

they included the health level in the utility function and set the inverse of the health

level equal to the mortality rate (Hall and Jones 2004b, pp. 12–13; see also Hall and

Jones 2004a, pp. 14–15). Thus, the health level as used in their model does impact

both the enjoyability and the expected duration of life (Hall and Jones 2004b, p.

13; Hall and Jones 2007, p. 49). The extension of their model will also allow for

health spending to influence the enjoyability and expected duration of life. However,

a concept somewhat like that used to motivate the use of QALY’s will be used in

the health level to allow for the probability of being in a “Healthy” state in the next

period to have a bigger weight than the probability of being in a “Sick” state. For

the details of this, see the discussion in Section 3.1.3.

12



2.4 Classification Literature

2.4.1 Introduction to Classification Techniques

Putting “classification analysis” into a more narrow context, one use of clas-

sifying is to determine to which of multiple populations an individual belongs. To

make accurate classifications, an important preliminary step is to determine the char-

acteristics of individuals in each of the populations. Measurements taken on people

who have already been correctly grouped can help in identifying these characteristics

because they might provide insight into the types or ranges of measurement values

that are likely to be observed in each population. When some future person has un-

known population membership, that person can be measured. That person’s likely

membership is determined based on how his or her observed measurements compare

to what was seen in each population’s reference group (Rencher 2002, p. 299).

Rencher provides an exposition of several different classification techniques.

Among these, he describes linear and quadratic classification techniques (Rencher

2002, chap. 9). If the covariance matrix associated with the vector of random variables

to be measured on an individual from a given population is assumed to be the same

across populations, the former technique can be used, but if not then the latter can

be used.

Of particular interest, Rencher describes a linear classification technique used

by Fisher (1936) for classifying with two candidate populations. Rencher notes that

this technique has the advantage of not depending on the random variables having a

multivariate-normal distribution (Rencher 2002, pp. 300–302). However, to incorpo-

rate important prior information, a similar linear classification criterion based on a

rule by Welch (1939) does make the assumption of multivariate normality (Rencher

2002, p. 302). Rencher also notes that both of these linear classification techniques

assume the covariance matrices to be the same for both populations (Rencher 2002,
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pp. 300, 302). He also explains linear classification rules when there are more than

two candidate populations, both for when there is prior information on the proportion

of individuals in each population as well as for when there is not prior information

(pp. 304–305).

Rencher explains the quadratic classification technique used when the covari-

ance matrices are not assumed to be the same for both populations, but this technique

requires a multivariate normal distribution for the random vector. Unless a substan-

tial amount of data is available or the covariance matrices differ greatly from each

other, using linear rather than quadratic classification might be advantageous because

of the instability associated with estimating a different sample covariance matrix for

each population (Rencher 1998, p. 232–233).

Rencher also describes a technique based on the groups to which similar indi-

viduals belong and a technique using a kernel density estimate, both of which are non-

parametric approaches (Rencher 2002, chap. 9). While the technique using the kernel

density estimate does not make strong parametric assumptions or require the covari-

ance matrices to be the same in each population, it is very sensitive to the value of a

parameter which characterizes how much the estimated density should be smoothed

(Rencher 2002, pp. 315–317). It seems likely that a large number of response vectors

would have to be gathered to reasonably estimate a multivariate density function

with this nonparametric technique, especially as the response vector’s length grows.

Fix and Hodges (1951) introduced a nonparametric classification technique that is

called the k nearest neighbor rule. The rule uses the k observations (among all the

observations from individuals with known population membership) that are closest to

the observation from an individual with unknown population membership. The rule

then classifies the individual as belonging to the population that is most prevelantly

represented by these k observations. In measuring the closeness of any two obser-

vations, the rule takes into account the covariance matrix of the observations. The
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rule uses a pooled estimate of the covariance matrix and is also sensitive to the value

of k, or how many nearby observations are considered when classifying an individual

(Rencher 2002, pp. 318–319). The use of a pooled covariance matrix estimate might

hurt the technique’s classification accuracy if the covariance matrices are wildly dif-

ferent from each other across populations. Likewise, the sensitivity to k leaves the

possibility of poor classification performance if an inappropriate value of k is chosen.

If the measurements being taken on individuals are all categorical, another

technique explained by Rencher (2002) might be considered (Rencher 2002, p. 314).

This technique uses a rule proposed by Welch (1936) which classifies an individual

into a population based on the ratio of the multivariate density of one population

evaluated at the individual’s response vector to the ratio of the multivariate density

of another population, again evaluated at the individual’s response vector (Rencher

2002, p. 314). To estimate the multivariate density of a random response vector from

a given population, Rencher explains that we could use the proportions of observed

response vectors (from the given population) that equal each possible response vector.

A considerable drawback to this technique is the need to have large sample sizes from

each population to ensure accurate estimates (Rencher 2002, pp. 314–315). The need

for large sample sizes becomes more and more pressing as more response vectors

become possible.

A markedly different technique, Grade of Memberships modeling (GoM), is

described in detail in Manton, Woodbury, and Tolley (1994). A fundamental notion in

this technique is that rather than one individual’s characteristics pertaining entirely to

a population, the individual can be considered as pertaining to each population with

a proportion from 0 to 1 inclusive, where the sum of the proportions is one (Manton

et al. 1994, chap. 1). However, in the proposed extension of the Hall and Jones

(2004b) model, it will be assumed that individuals are wholly in one population at

each time period, so this technique cannot be directly applied unless this assumption
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were relaxed. Nonetheless, the GoM model could be used in an indirect fashion

by first estimating each individual’s grade of membership in each population with

GoM modeling and then classifying the individual into a population based on these

estimated grades (H. D. Tolley, personal communication, June–July 2005). This

method might be advisable if all of the measurements being taken on an individual

are categorical (H. D. Tolley, personal communication, July 2005) because the GoM

technique was created specifically to deal with a response vector of many dimensions

containing categorical responses (Manton and Land 2000, p. 198).

None of the techniques mentioned so far seem clearly superior in all situations

for classification into one of multiple populations based on an individual’s response

vector. If all variables are continuous, there is still no single technique that seems

clearly superior if we assume neither multivariate normality nor covariance matrices

that do not differ across populations. However, the linear classification technique us-

ing prior information, which does make both of these assumptions, seems promising

if there is not a great quantity of data. For instance, if there is not a sufficiently

large amount of data, allowing for different covariance matrices with the alternative

quadratic classification technique could be problematic because the sample covari-

ance matrices used in place of a single pooled covariance matrix would not be stable

(Rencher 1998, p. 233).

The only classification technique that will be demonstrated in this paper is the

linear classification technique using prior information. The other techniques have

been mentioned to inform the reader of other methods which exist for classifying

individuals into populations based on response vectors.

2.4.2 Details of the Linear Classification Technique

The technique for classification used in this project is the version of the linear

classification technique for multiple populations that incorporates prior information
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(Rencher 2002, pp. 304–305). This technique assumes that a random response vector

from any of the candidate populations has the same covariance structure as a random

response vector from any of the other candidate populations (Rencher 2002, pp. 304–

305).

The remainder of this section describes the linear classification technique with

M candidate populations, with some changes to Rencher’s (1998, 2002) notation to

aid in understanding. Let pm represent the probability prior to collecting measure-

ments on an individual that he or she is in the mth population, m = 1, . . . ,M (Rencher

1998, p. 230). This project assumes that the prior probability of each population is

known. If the prior probability of each population is not already known, then the

prior probability for a given population might be assumed to equal the proportion of

individuals in a reference set that pertain to the given population. Such a reference

set should be obtained by randomly sampling from the collection of all individuals

and determining population membership for each individual in the sample.

We use y to denote the vector of measurements from an individual (Rencher

1998, p. 230). The classification rule classifies an individual into the mth population

if

ln(pm) + ȳ′mS−1
pl y − 1

2
ȳ′mS−1

pl ȳm > ln pi + ȳ′iS
−1
pl y − 1

2
ȳ′iS

−1
pl ȳi

for all i 6= m (Rencher 2002, p. 305). Note that the previous equation is substantially

altered from the presentation in Rencher (2002). For clarification, ȳm represents the

mean response vector for those individuals in the reference set from themth population

(Rencher 2002, p. 304). Also, Spl represents the estimated covariance matrix under

the assumption that each population has the same covariance matrix. The estimated

covariance matrix is calculated as

Spl =
1

N −m

M∑
m=1

(nm − 1)Sm,

with nm denoting how many individuals from the reference set were in the mth popu-
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lation, N denoting how many individuals were in the reference set, and Sm denoting

the sample covariance matrix for the mth population (Rencher 2002, p. 304; note

minor change in notation).

Given the previous assumptions in this subsection, the additional assumption

that the distribution of each population’s response vectors is multivariate normal

yields a desirable property. This desirable property is that the aforestated rule is a

sample analog of the classification rule with the smallest misclassification probability

(Rencher 2002, pp. 302, 304–305).

2.5 Life Table Transition Probabilities Literature

Various techniques exist to estimate the probability of success in a binary event

as a function of one or more predictor variables. One common method involves

fitting a logistic regression model and using the model fit to obtain success probability

estimates. In the simple version of a logistic regression model in which there is only

one continuous predictor variable, x, it is assumed that

log
π(x)

1− π(x)
= α + βx,

where π(x) is the probability of success as a function of x (Agresti 2002, p. 122). As

Agresti notes, the conversion from π(x) to log π(x)
1−π(x)

is referred to as the logit link, so

that a logit model is just another name for a logistic regression model (Agresti 2002,

p. 123). The more general representation of the technique is to assume

π(x) = Φ(α + βx),

where Φ represents a class’s standard cdf (Agresti 2002, p. 124). With this more

general representation, if Φ(c0) > Φ(c1) whenever c0 > c1 (these inequalities are not

explicitly defined in a referenced source), the linear model is

Φ−1 [π(x)] = α + βx
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(Agresti 2002, p. 124). The logistic regression and probit models are particular cases

of this general technique using the standard logistic and standard normal cumulative

distribution functions for Φ (Agresti 2002, pp. 124–125).

In the more general case where the response is multinomial rather than sim-

ply binomial, however, the logistic regression approach must be modified. Agresti

and Greene explain the baseline-category and cumulative logit models, which are

used for models of nominal and ordinal categories of responses, respectively. Agresti

and Greene also provide an introduction to other types of multinomial data models

(Agresti 2002, chap. 7; Greene 2003, chap. 21).

In the baseline-category logit model, one of the possible multinomial responses

is picked to be the baseline category (Agresti 2002, p. 268). As the name suggests, all

other responses are compared to this one. Using J to denote the number of possible

responses as well as the baseline category, it is assumed that

log
πj(x)

πJ(x)
= αj + βjx, j = 1, . . . , J − 1

(Agresti 2002, pp. 267–268; note that the equation has been modified to include only

one explanatory variable). Agresti notes that if αJ and βJ are set to zero then the

above equation would apply for all j (Agresti 2002, p. 271). Consequently,

πj(x) =
exp(αj + βjx)

1 +
∑J−1

k=1 αk + βkx

for all j (Agresti 2002, p. 268; again, the equation has been modified to include only

one explanatory variable).

While the baseline-category logit model is a rather flexible approach to ob-

tain multinomial probability estimates, a different alternative is sought so that the

probability of dying can be interpreted in a more straightforward fashion. Instead

of modeling a multinomial response in one step, a binomial response could first be

modeled, and then a baseline-category logit model could be used. That is, suppose

there are J > 2 possible responses. In the first step, the model treats a success as
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having j = 1, . . . , J − 1 so that only the j = J response is considered a failure. Then,

letting πr(x) denote the probability of a success,

πr(x) =
exp(αr + βrx)

exp(αr + βrx) + 1
.

In the next step, a conditional baseline-category logit model—conditional on the re-

sponse not being the J th response—could be used. This can easily be done by ignoring

all occurrences of the J th response when fitting the baseline-category logit model. Let

πs(x) denote the probability of the sth response, s = 1, . . . , J − 1, conditional on the

response not being the J th response. If we set both αJ−1 and βJ−1 equal to zero so

that s = J − 1 is the baseline category,

πs(x) =
exp(αs + βsx)

1 +
∑J−2

s=1 exp(αs + βsx)
.

Thus, the probabilities of each response j = 1, . . . , J would be modeled as

follows:

πj=1(x) = Pr(response 1| not response J) Pr(not response J) = πs=1(x)πr(x)

...

πj=J−1(x) = πs=J−1(x)πr(x)

πj=J(x) = (1− πr(x)).

The estimation of multinomial probabilities is a pertinent issue for the proposed

research. In the Hall and Jones (2004b) model, the probability of an individual

going from his or her present age and risk-factor group combination (or state) to

another specified state (i.e., the transition probability) is assumed to follow a first-

order Markov process. The assumption that each transition probability follows a

first-order Markov process implies that, conditional on an individual’s health level

in the present state, the individual’s health level in any previous state has no effect

on the probability of the individual moving to the specified future state. Because a
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person in the state corresponding to risk-factor group “Living” and age a (recall that

a state is a unique combination of risk-factor group and age) can go to either the

state corresponding to “Living” and age a+ 1 or the state corresponding to “Dead”

in the next period, there is a binary response. In the extended model an individual

can go to one of multiple states in the next period, so the response can be considered

multinomial. Actual estimation of the probability of going to each of these states as a

function of “effective health input” can be done in many ways (Hall and Jones 2004b,

p. 13; see also Hall and Jones 2004a, p. 15). The technique recommended for the

extended model is to fit a baseline-category logit model to estimate the probabilities

of each state in the next period given an individual’s state and health level in the

current period.

The data necessary to assess whether or not the transition probabilities in the

extended model actually follow a first-order Markov process, as will be assumed,

could be collected. A way to make the assessment when there are no explanatory

variables is described by Bishop, Fienberg, and Holland (1975). While the Markov-

process assumption for the Hall and Jones (2004b) model does not necessarily hold,

there is even more reason to question the assumption for the extended model. With

the original model, if it is assumed that individuals cannot go from a “Dead” state

to a “Living” state, all individuals who at time t are in the state corresponding to

“Living” and of age a would have gone through the same sequence of states. Yet

in the extended model, all people at time t in a given state need not have had the

same sequence of states leading up to that point. Therefore, it could make sense to

check whether or not knowing an individual’s current state captures all the necessary

health history information. Nevertheless, the model extension will proceed on the

assumption that this characteristic holds. Were the process really a higher-order,

albeit finite, Markov chain, the states could be redefined so that the process is a first-

order one (as in Ross 2003, pp. 182–183). In that case, the extended model could be
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altered.

2.6 Optimization Techniques Literature

There are multiple methods of obtaining solutions to problems of optimization.

For simple problems, setting up a Lagrangian equation can be very helpful. Nicholson

(2002) has a helpful introduction to Lagrangian equations with economic applications

in mind. Other methods, such as the use of an exhaustive search or the use of a

popular algorithm by Nelder and Mead, are discussed in Haupt and Haupt (2004).

For the problem at hand, the function that must be optimized takes a large number

of arguments and has dynamic structure (i.e., many time periods are considered,

and results from the current time period affect the results for future time periods).

The dynamism of the equation as well as the large dimensionality of the function

to be optimized suggest that a different optimization approach might be helpful.

Hall and Jones (2004b) include an algorithm with their paper which they utilized to

obtain numerical answers to optimize the relevant Bellman equation (Hall and Jones

2004b, p. 40; see also Hall and Jones 2004a, p. 40). They were able to use first-order

conditions in a relatively simple manner.

This project uses an alternative to such a strong dependence on first-order

conditions. Genetic algorithms can identify values for the arguments that provide a

close-to-optimal outcome even if certain mathematical properties like continuity are

not present (Hamada, Martz, Reese, and Wilson 2001, p. 176). Thus, even if first-

order conditions are not sufficient for determining optimizing arguments, a genetic

algorithm can be used. Also, because the maximization involved in the proposed

model extension is over many parameters, a genetic algorithm approach could be used

because it is a relatively time-efficient means of finding a close-to-optimal outcome

(C. S. Reese, personal communication, July 12, 2005).

Hamada et al. (2001) provide a very understandable description of genetic al-
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gorithms. The basic idea seems to reflect what is thought to go on in evolution—that

in mating, chromosomes containing genetic characteristics of the mates stochasti-

cally crossover and mutate; individuals with the best-suited chromosomes tend to be

more likely to pass their chromosomes along (Hamada et al. 2001; Haupt and Haupt

2004, chap. 1). Genetic algorithm–based optimization considers a pool of proposed

sets, where each set is a group of values corresponding to the function’s arguments

(Hamada et al. 2001, p. 176). Sets from the pool can be stochastically “mated,”

with the sets being crossed-over and mutated (Hamada et al. 2001, p. 177). Based

on genetic algorithm literature, it seems that the algorithm attempts to guide the

mating, crossing-over, and mutating processes so that repeated application yields

close-to-optimizing argument values.

The implementation of a genetic algorithm requires additional considerations

when the objective function has dynamic equality constraints and many arguments

over which to optimize. Based on varied readings regarding the genetic algorithm, it

seems that for a complex model, such as the extended model proposed in Chapter 3,

letting the genetic algorithm produce sets of argument values in an unconstrained

fashion will almost certainly create problems by resulting in sets that do not meet the

constraints. Adjustments can be made to penalize functions in a variety of manners

for not meeting constraints (Sakawa 2002, p. 133), or reference points can be used

in conjunction with search points to produce sets in each generation, or iteration,

that do meet the constraints, as first done by Michalewicz and Nazhiyath (1995)

and improved by Sakawa and Yauchi (1998) (Sakawa and Yauchi 1998, p. 885; also

explained thoroughly in Sakawa 2002, chap. 7). While these concepts should be used

in obtaining a close-to-optimal solution for the entire extended model, because of the

complex nature and abundance of arguments, a simplified version of the extended

model that also uses assumed values for unknown parameters will be solved which

does not require such techniques and which should be able to be computed much
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more quickly. This is described further in Section 3.3.4.

2.7 Relation Between Proposed Research and Extant Literature

The proposed research seeks to extend the model presented in Hall and Jones

(2004b). Because it is an extension, rather than a replacement, much of their work

will be relied upon in making the extension; a similar foundation and many similar

elements will be used.

There are additional elements of the proposed work to Hall and Jones’ model.

Namely, the proposed work will include extra heterogeneity by using more represen-

tative agents and can perhaps best be categorized as mimicking the work of Daniel

(1993) and others to divide individuals into groups and assume a representative agent

in each group. It should be noted that Hall and Jones (2004b) seem to have proceeded

in this manner, as they have one representative person for each age group rather than

one overall representative. However, the proposed work will incorporate an addi-

tional level of heterogeneity by having multiple representative agents for each age

group. This allows for there to be multiple risk-factor groups represented in each

age. Individuals will be able to move between these risk-factor groups as they age.

Also, a quality-adjustment principle will be incorporated when measuring the utility

associated with a given health level, as discussed in Section 3.1.3 and Section 3.1.4.

The extended model requires the ability to classify individuals into risk-factor

groups so that data which contain information on the age, health spending, and

health-related risk factors of individuals can be used in estimating model parameters.

Although various techniques exist by which to classify individuals into risk-factor

groups, the linear classification technique using prior information seems reasonable.

After having assigned individuals into risk-factor groups, successive baseline-category

logit models can be used to estimate state-to-state transition probabilities as a func-

tion of an individual’s health expenditures, as well as of the individual’s initial state
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and the health technology level. Finally, while perfect optimization will not neces-

sarily be achieved, a genetic algorithm can be used to arrive at a close-to-optimal

allocation of resources. However, the example illustrating the use of a genetic al-

gorithm will only attempt to arrive at such a close-to-optimal solution for a very

simplified form of the model.
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3. METHODOLOGY FOR PROPOSED EXTENSION

The work demonstrated in this chapter is (1) the theoretical representation of

a possible extension of the Hall and Jones (2004b) model and (2) the implementa-

tion of techniques that could be used in some of the parameter estimations and in

finding a close-to-optimizing resource allocation; the techniques are implemented on

pedagogical examples. The bulk of the work lies in coming up with the theoretical

extension of the model, while the examples are included to provide basic examples of

classification analysis, successive baseline-category logit model-fittings, and genetic

algorithm usage in the context of the extended model. In each instance the examples

give results not of primary importance to the extended model due to the nature of

the data analyzed or the parameter assumptions.

As for the theoretical representation, many of the Hall and Jones (2004b) model

equations are singled out and then modifications to these equations for the additional

representative agents case are proposed and justified. In many cases the Hall and

Jones (2004b) equations require only minor modifications, but several of them so-

licit substantial consideration. Thus, coming up with a meaningful modification is

nontrivial.

Examples of some of the statistical techniques that could be used in the process

of fitting the extended model are described in this chapter, and the results of applying

these techniques are mentioned briefly in Chapter 4. It is crucial to make clear that

these examples are generally not based on relevant data. Thus, the examples are not

intended to represent the required results necessary for fitting the extended model

and subsequently finding the best allocation of available resources given the model;

instead, the examples are intended to detail several aspects of model fitting and op-

timization if the appropriate data were accessible. Specifically, data on papers from
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The Federalist are used to demonstrate classifying units based on certain quantita-

tive characteristics. Baseball plate-appearance data from Dale Murphy’s 1987 Major

League Baseball (MLB) season is used to demonstrate parameter estimation for suc-

cessive baseline-category logit models. First, the parameters are estimated for an

initial baseline-category logit model. Then the parameters are estimated for another

baseline-category logit model, conditional on a certain outcome. Many assumptions,

including assumed values for all parameters of the theoretical model extension, are

made so that a genetic algorithm can be used in finding close-to-optimizing argument

values.

3.1 Setup of Extended Model Structure with “Healthy” and “Sick” Risk Groups

We begin by supposing that all individuals of the same age at a given time are

not the same with regards to their health as a function of expenditures for health. This

is unlike Hall and Jones (2004b) and Hall and Jones (2007), where in each case their

model assumes that individuals of the same age are the same. Instead, we suppose

that there are two risk-factor groups present in living people, namely “Healthy” and

“Sick,” so that at any given time those persons who are in the same risk-factor group

and have the same age have the same health function, but are allowed to be different

from those persons with a different risk-factor group or age at that time. We also

allow individuals to move between these two risk groups as time progresses.

Upon dying an individual is no longer considered in the extended model. Be-

cause death is the event through which individuals exit the model, a third risk-factor

group, “Deceased,” is included. The motivation for this third risk-factor group is that

it allows individuals to effectively be ignored in all future periods of the model even

though the individuals are still in one of the model’s states in every future period.

An individual’s sequence of state memberships over time will be assumed to follow a

Markov process; thus, the requirement of a Markov process that individuals always
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belong to a state in every future period is satisfied because of this third risk-factor

group (see Ross 2003, p. 181).

We use two different notations to denote a health state corresponding to a

unique combination of risk-factor group and age (except in the case of “Deceased,”

for which age is irrelevant). The first notation is to use the subscript k to denote the

state; for example, health state k = 0 could correspond to “Deceased,” while k = 1

could correspond to age 0 and in “Healthy” group, k = 2 could correspond to age 0

and in “Sick” group, k = 3 could correspond to age 1 and in “Healthy” group, k = 4

could correspond to age 1 and in “Sick” group, and so on. The second notation, which

will often be used, is the pair (g, a) where g = 1, 2, 3 represents risk-factor groups

“Healthy,” “Sick,” and “Deceased,” respectively, and a = 0, 1, 2, . . . represents age.

Note, however, that when g = 3, the age subscript is unnecessary for distinguishing

between states because all individuals in the “Deceased” risk-factor group are put in

a common state; consequently, the (g, a) representation of the “Deceased” state is

(3, ·).

It should be noted that there are many possible states in the model. For exam-

ple, suppose a time period represents one year. The number of possible states depends

on whether individuals’ attainable ages are assumed to be unbounded or not; if the

attainable ages are assumed to be unbounded, there is a countably infinite number

of states, while if the attainable ages are assumed to have an upper bound, A, then

there would be 2(A+ 1) + 1 states (one state for “Deceased” and two other states for

each age 0, 1, 2, . . . , A). However, three states at most are possible in the next period.

Given an individual’s current state, say (g, a), the individual’s next state will either

be (1, a+ 1), (2, a+ 1), or (3, ·).

As previously mentioned, an individual’s sequence of health states will be as-

sumed to follow a Markov process, except for those entering states corresponding to

age 0, as the model would not have a previous health state for these individuals. For
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the distribution of individuals in the states associated with (1) “Healthy” and age 0

and (2) “Sick” and age 0, see the assumption in Section 3.1.5. Because the states are

constructed to contain pertinent age and risk-factor group information, it is supposed

that the present state adequately captures the health history information needed to

calculate the probability of being in any other state in the next time period.

3.1.1 Determining Equations for Transition Probabilities and Health Level

A particularly critical assumption in the Hall and Jones (2004b,2007) models is

the nature of the deterministic equation which characterizes a person’s health level.

The structure of the equation is particularly important because the equation itself

affects the model in two important ways:

(1) a person’s health level in a particular period is one of the arguments in the

person’s utility function for that period, and

(2) a person’s health level is the inverse of the person’s probability of dying during

that period.

Hall and Jones (2004a,b) use a particular form for the function determining

xa,t in their estimation—though not in their theoretical model—and use 1/xa,t as the

probability that someone of age a at time t is not alive in the next period (Hall and

Jones 2004b, pp. 12–13, 18; see also Hall and Jones 2004a, pp. 14–15, 20). There is

not a lone, clear-cut extension to the extended model; that is, it is not clear how a one-

dimensional health level would determine the probabilities of being in either of two

states in the next period; note that only two probabilities are needed to identify all

three probabilities because they sum to one. The question then arises as to whether or

not the probabilities should be related to the health level. It seems clearly preferable

that they be related, especially because in the Hall and Jones (2004b, 2007) model

the two properties have such an obvious correspondence.
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There are several potential methodologies to formulate the health level equa-

tions and the transition probability functions. One methodology is to simultaneously

propose health level equations and transition probability functions; this approach

seems difficult to implement because of the complexity in simultaneously proposing

both types of functions, given that the two types of functions need to have a mean-

ingful relationship to each other. Another methodology is to first propose the health

level functions and then to derive the transition probability functions from the health

level. A different methodology is to first propose the transition probability functions

and then to derive the health level functions from the transition probabilities.

The extended model uses the methodology of first formulating transition prob-

ability functions and then deriving health level equations. To justify the use of this

approach, it should be noted that Hall and Jones (2004a,b) used mortality data to

estimate the parameters in their age-specific health level equation. Indeed, it is not

obvious how they would have estimated the parameters without using mortality data.

In the extension, there is an additional reason to follow the second proposed course—

it is preferable to reduce two probabilities, the third being redundant, to one health

level as opposed to expanding one health level into two probabilities, from which the

third probability would be deduced.

3.1.2 Transition Probabilities Equations

While ideally the defined state-to-state transition probabilities would be a direct

analogue of the Hall and Jones (2004a,b) model’s defined probabilities, they are not.

However, an attempt to make a logical extension has been made. Note that Hall and

Jones (2004b, 2007) allow for a general health function in the theoretical model and

then use a certain form in the empirical version. The proposed model will differ now

in that it will assume a form for the theoretical and empirical model. In the empirical

model of Hall and Jones (2004a,b), the probability of an individual of age a in time
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period t dying before the next time period is given by

1

xa,t
=

1

Aa(ztha,t)θa
,

(from combining equations in Hall and Jones 2004b, pp. 12–13, 18; see also Hall

and Jones 2004a, pp. 14–15, 20). Upon further investigation of the Hall and Jones

(2004a,b) model, it seems problematic that if xa,t is less than one, individuals with

that health level would have a probability greater than one of dying before the next

period. Noting estimates provided by Hall and Jones (2004b, 2007), sufficiently small

but positive levels of effective health expenditures would imply health levels less than

one and thus probabilities larger than one of not living to the next period. However,

had Hall and Jones (2004a,b) modeled the probability of dying in the present period

as

1

Aa(ztha,t)θa + 1
,

then positive values of Aa and θa would not allow any positive level of health inputs

to give a value in the denominator less than one, though the denominator would not

be bounded above. However, because of constraints on the values ha,t can take on in

any finite time period, the denominator is effectively bounded above. This means the

probability of dying in the present period is prohibited from being larger than one

and less than zero.

Modeling the rate of dying for an age group in this fashion has another advan-

tage besides excluding probabilities less than zero or greater than one. The probability

in the preceding paragraph can be expressed as a logit model rather easily. To see

this, first note that

Aa(ztha,t)
θa = exp(ln(Aa) + θa ln(ztha,t))

(compare with nearly equivalent equation on Hall and Jones 2004b, p. 19; see also

Hall and Jones 2004a, p. 21); thus, letting pa,t(ztha,t) denote the probability that an
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individual is alive in the next period,

ln

(
pa,t(ztha,t)

1− pa,t(ztha,t)

)
= ln(Aa) + θa ln(ztha,t).

Note that this logit model is in the form α + βx, where α = ln(Aa), β = θa, and

x = ln(ztha,t).

For the extended theoretical—and, equivalently, empirical—model probabili-

ties, recall that risk groups g = 1, 2, 3 correspond to the “Healthy,” “Sick,” and “De-

ceased” groups. Let Pgg′,a,t(zthg,a,t) denote the probability that an individual of age

a with effective health expenditures zthg,a,t and in risk-factor group g in time period

t is in risk-factor group g′ in the next period with age a+ 1 and time t+ 1. Then the

probability that an individual will be alive in the next period (that is, in risk-factor

group 1 or 2 in the next period) is denoted by Pg(live),a,t(zthg,a,t) = Pg1,a,t + Pg2,a,t.

The extended model assumes that the probabilities Pg1,a,t and Pg2,a,t are those which

would be obtained by first using a logit model to model the probability of a person

living to the next period, and then using a baseline-category logit model to estimate

the conditional probabilities of being in each health state given that the person is

alive in the next period. Explicitly, the model assumes that the probability of living

to the next period follows the relation

Pg(live),a,t(zthg,a,t) =
exp(αg(live),a + βg(live),a ln(zthg,a,t))

1 + exp(αg(live),a + βg(live),a ln(zthg,a,t))
.

Letting Pg(g′|live),a,t(zthg,a,t) represent the probability of being in risk-factor group 1

in the next period conditional on being alive (i.e., not in risk group 3) in the next

period, the extended model assumes that this probability follows the relation

Pg(g′|live),a,t(zthg,a,t) =
exp(αg(g′|live),a + βg(g′|live),a ln(zthg,a,t))∑2
i=1 exp(αg(i|live),a + βg(i|live),a ln(zthg,a,t))

.

The extended model sets αg(2|live),a and βg(2|live),a equal to zero for all (g, a) combi-

nations so that the baseline category always has “Sick” as the risk group. Such a

constraint is made for purposes of identifiability (see Agresti 2002, p. 271). The state
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that a person will belong to in the next time period, given that the person will be

alive in the next time period, can be considered as a binomial response because there

are only two possible states; thus, the last equation corresponds to a probability from

a logit model. The conditional probabilities in the last equation are depicted as cor-

responding to probabilities from a baseline-category logit model, rather than simply

a logit model, because the baseline-category logit model easily admits an expansion

of the model to contain more risk-factor groups.

Therefore, the state-to-state transition probabilities are assumed to be as fol-

lows:

Pg1,a,t(zthg,a,t) = Pg(live),a,t(zthg,a,t)Pg(1|live),a,t(zthg,a,t),

Pg2,a,t(zthg,a,t) = Pg(live),a,t(zthg,a,t)Pg(2|live),a,t(zthg,a,t), and

Pg3,a,t(zthg,a,t) = (1− Pg(live),a,t(zthg,a,t))

for g = 1, 2. Recall that upon dying individuals are no longer considered in the model.

The convention used to restrict individuals who have died from further impacting the

model is to admit them to an absorbing state (that is, a state that is never left

once it is entered). This absorbing state is ignored in the model, thereby preventing

individuals who have died from affecting the model. This absorbing state is referred to

as the “Deceased” state because death is the event through which individuals enter

this state. Because individuals in the “Deceased” state remain in the “Deceased”

state, and because the “Deceased” state corresponds to risk-factor group 3, P33 = 1

by construct, regardless of age or time.

Note that many state-to-state combinations are not accounted for in the equa-

tions (such as going from the state corresponding to “Sick” and age 2 to the state

corresponding to “Healthy” and age 2) because such transitions are impossible, and

thus are known to have zero probability without the need for an equation to relay

this information.
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It is assumed that the level of health technology, zt, is not health-state specific.

If an accurate measure of the level of health technology available to each health state

in each period were identified, this assumption could easily be relaxed.

3.1.3 Health Level Equation

Now that a relation for determining the state-to-state transition probabilities

is in place, we turn our attention to relating the health level to these probabilities.

The sole purpose of doing so is to have a measure which can be included in the utility

function so that health does not merely impact life’s length without consideration of

life’s enjoyability. For instance, suppose two individuals both live to age 70 and have

identical consumption in each time period. If the first individual was in the “Healthy”

group at each age until the time of death, but the second individual spent 25 years

in the “Sick” group before dying, clearly the first individual should have a greater

amount of total utility over those 70 years than the second individual.

While the motivation for using the health level in the utility function is appar-

ent, a decision must be made about how to link the health level to the transition

probabilities. Though there may not be one correct way to define the health level,

it seems natural to use a principle related to using the expected number of quality-

adjusted life years an individual has remaining rather than just the expected number

of additional years a person will live.

Although Hall and Jones (2004b, 2007) probably did not intend this interpre-

tation, the health level’s impact on utility in their models can be characterized as the

psychological effect on an individual’s well-being that is due to the individual’s sur-

vival probability. For example, an individual might have peace of mind by knowing

that the probability of living until the next time period is high. This view prompts

the assumption that the following relation defines an individual’s health level as it
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pertains to utility:

xg,a,t(zthg,a,t) =
1

1− Pg1,a,t(zthg,a,t)− δPg2,a,t(zthg,a,t)
.

Here the parameter δ represents how much an individual values an increase in the

probability of being in a “Sick” state if the probability of being in a “Healthy” state

is kept constant relative to how much that individual values an increase in the proba-

bility of being in a “Healthy” state if the probability of being in a “Sick” state is held

constant. It is assumed that 0 ≤ δ ≤ 1. In order to better understand this equation,

consider the implication of various δ values. If δ is equal to zero, an individual is in-

different between dying and being in the “Sick” risk-factor group, in which case that

individual’s health level is determined by the probability of being in the “Healthy”

group in the next period. If δ is equal to one, an individual has no preference for

being “Sick” versus being “Healthy,” in which case the individual’s health level is

determined by the probability of being alive in the next period, as in the Hall and

Jones (2004b, 2007) health level equation. If 0 < δ < 1, an individual prefers being

in the “Healthy” group to being in the “Sick” group but prefers being in the “Sick”

group to dying.

3.1.4 Utility Equation

Because individuals are assumed to be exactly the same only if they are in the

same health state at the same time, the utility function could be state- and time-

dependent. Aside from its dependence on state and time instead of age and time, the

utility function has the same representation as a function of consumption spending

and health spending as it does in the Hall and Jones (2004a,b) model. Another

notable change is that the health level is calculated in a manner different from the

Hall and Jones (2004b, 2007) model. The utility equation is

uk,t(ck,t, xk,t) = bk,t +
c1−γk,t

1− γ
+ α

x1−σ
k,t

1− σ
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(nearly identical to Hall and Jones 2004b, p. 13; see also Hall and Jones 2004a, p. 15).

There are three components of the utility function. The first part, bk,t, represents the

base amount of utility associated with being in health state k in time period t. The

second part,
c1−γk,t

1− γ
, represents the effect due to consumption spending in time t. The

third part, α
x1−σ
k,t

1− σ
, represents the effect due to the health level in time period t (Hall

and Jones 2004b, p. 13; Hall and Jones 2004a, p. 15). The third part can be weighted

more or less by varying the value of α (Hall and Jones 2004b, p. 27; Hall and Jones

2004a, p. 29).

3.1.5 Objective Function and Associated Constraints

Suppose that given Nt—that is, a vector containing the number of people in

each health state at time t—the decision-maker seeks to find ck,t and hk,t for all k not

equal to zero so as to maximize the following Bellman equation:

Vt(Nt) = max
hk,t,ck,t

(
∞∑
k=1

Nk,tuk,t(ck,t, xk,t) + βVt+1(Nt+1)

)

(nearly identical to Hall and Jones 2004b, p. 14; see also Hall and Jones, 2004a, p.

16). Note that the summation does not include k = 0 because this value corresponds

to those in the “Deceased” state, and it is assumed that individuals in this state are

ignored.

The imposed constraints, meant to be analogous to those of Hall and Jones

(2004a,b), are now included. Note first that one of the constraints is given by the

health function (Hall and Jones 2004b, p. 15; Hall and Jones 2004a, p. 17), which

function for our extended model is given in Section 3.1.3 and which depends itself on

equations in Section 3.1.2.

The constraint regarding the total output in any given period is

∞∑
k=1

Nk,t(yt − ck,t − hk,t) = 0
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(nearly identical to Hall and Jones 2004b, pp. 14–15; Hall and Jones 2004a, pp. 16–

17). This constraint implies that the total amount of output in a given time period

is exactly equal to the sum of the total amount of income spent on consumption and

the total amount of income spent on health. There could be a net surplus of output

in some states, but this would mean a net shortage in at least one other state. As in

Hall and Jones (2004b, 2007), it will be assumed that every living person produces

the same amount of output in a given time period, or that yt does not depend on the

health state, provided that the state is not “Deceased.”

The constraint on how the per capita income changes over time is

yt+1 = egyyt

(Hall and Jones 2004b, pp. 14–15; Hall and Jones 2007, p. 50). The amount of income

any person, irrespective of age and health group type, earns in time t + 1 is some

constant times the amount of income a person earned in time t. This implies per

capita income has exponential growth, with the growth rate being denoted by gy

(Hall and Jones 2004b, p. 15; Hall and Jones 2007, pp. 50–51).

The constraint on how the health technology level changes over time is

zt+1 = egzzt

(Hall and Jones 2004b, pp. 14–15; Hall and Jones 2004a, p. 17). The amount of health

technology available in time t+ 1 is the product of the amount of health technology

available in time t and a constant. This implies that the health technology level has

exponential growth with growth rate gz (Hall and Jones 2004b, pp. 15, 18; Hall and

Jones 2004a, pp. 17, 20).

And of notable distinction, there are relations to determine the number of people

of each age and risk-factor group combination in the next period given information

on the present period:

Ng,a+1,t+1 =
3∑

g′=1

Ng′,a,tPg′g,a,t(zthg′,a,t)
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Ng,0,t = Ng,0

(similar to Hall and Jones 2004b, p. 14; Hall and Jones 2007, p. 50). The first of

these relations specifies that the number of people in the health state corresponding

to risk-factor group g and age a + 1 at time t + 1 is equal to the sum over each

risk-factor group g′ of the number of people in risk-factor group g′ and of age a at

time t multiplied by the probability that such a person will be in risk-factor group

g in the next period. As previously mentioned, the extended model will impose the

probability of going from the “Deceased” group to the “Healthy” or “Sick” risk-factor

groups as being zero. The second constraint states that the same number of people

are born into each risk-factor group each year (Hall and Jones 2004b, p. 15; Hall and

Jones 2007, p. 50).

3.2 Note on Extension to More Risk-Factor Groups

It is relatively straightforward to extend the theoretical model to include a

larger, albeit finite, number of risk groups. Let G indicate the number of risk-factor

groups, including the “Deceased” risk-factor group, to be included. Assume that

risk-factor group 1 is the healthiest risk group and risk group G is the “Deceased”

group. The transition probabilities would be given by

Pg1,a,t(zthg,a,t) = Pg(live),a,t(zthg,a,t)Pg(1|live),a,t(zthg,a,t)

...

Pg(G−1),a,t(zthg,a,t) = Pg(live),a,t(zthg,a,t)Pg((G−1)|live),a,t(zthg,a,t)

PgG,a,t(zthg,a,t) = (1− Pg(live),a,t(zthg,a,t)),

where

Pg(live),a,t(zthg,a,t) =
expαg(live),a + βg(live),a ln(zthg,a,t)

1 + expαg(live),a + βg(live),a ln(zthg,a,t)
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and

Pg(g′|live),a,t(zthg,a,t) =
expαg(g′|live),a + βg(g′|live),a ln(zthg,a,t)∑G−1
i=1 expαg(i|live),a + βg(i|live),a ln(zthg,a,t)

for g = 1, . . . , G− 1. Because it is assumed that individuals in the “Deceased” state

remain in the “Deceased” state, PGG = 1 by construct. We could set αg((G−1)|live),a and

βg((G−1)|live),a equal to zero so that the baseline category for the risk groups associated

with being alive is risk group G− 1.

Changing the health level equation for use in the utility function is not quite

as straightforward, but could be done by using the following form:

xg,a,t(zthg,a,t) =
1

1− Pg1,a,t(zthg,a,t)−
∑G−1

g′=2 δg′Pgg′,a,t(zthg, a, t)
.

Here, it would be assumed that 0 ≤ δi ≤ 1 for i = 2, . . . , G−1 so that the probability

of being in any of these risk-factor groups needs to be able to be given a weight

relative to the first risk group, which is assumed to be the healthiest.

By letting k correspond to a health state, or unique (g, a) combination, with

all “Deceased” risk group members being put in state k = 0, many of the equations

already mentioned need no further modification for this more general case; the only

equation requiring modification is that used in determining the number of people in

each state for period t+ 1, which uses G instead of 3 in the sum.

uk,t(ck,t, x,t) = bk,t +
c1−γk,t

1− γ
+ α

x1−σ
k,t

1− σ

Vt(Nt) = max
hk,t,ck,t

(
∞∑
k=1

Nk,tuk,t(ck,t, xk,t) + βVt+1(Nt+1)

)
∞∑
k=1

Nk,t(yt − ck,t − hk,t) = 0,

yt+1 = egyyt

zt+1 = egzzt

Ng,0,t = Ng,0
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Ng,a+1,t+1 =
G∑

g′=1

Ng′,a,tPg′g,a,t(zthg′,a,t)

Again, these equations are either identical to—in the case of the equations for yt+1 and

for zt+1—or based on equations in Hall and Jones (2004b). Also, note that the last

two equations would only need to be applied for g = 1, . . . , G−1, because individuals

in the “Deceased” risk-factor group would no longer affect the optimization decision

as it is set up.

In the remainder of the document the extension with risk groups “Healthy,”

“Sick,” and “Deceased” will be implied when referring to the extended model.

3.3 Obtaining Values for Unknown Parameters

Essential equations of the extended model, including the formulas for deter-

mining the probabilities as a function of effective health expenditures, have been

symbolically depicted. This has the effect of demonstrating how the Hall and Jones

(2004b) theoretical model could be adjusted to have more agent heterogeneity by

using more health states with a representative agent in each one and allowing for

more options as far as future permissible health states. However, note that a specific

form for the health level equations has been imposed in the theoretical version of the

extended model, whereas Hall and Jones (2004b, 2007) wait to use specific forms until

their empirical models in the latter portion of their papers.

One of the first data-driven tasks needing to be performed in applying the model

to the U.S. health economy is estimating the transition probability parameters. The

estimates could then be used in place of the parameters in subsequent calculations.

This task requires two steps: (1) finding a way to appropriately classify individuals

into health states, and (2) using those states to estimate the transition probability

parameters; the transition probability parameter estimates result from fitting a logit

model as well as a baseline-category logit model. Because a logit model is a special
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case of a baseline-category logit model, this procedure fits two baseline-category logit

models.

3.3.1 Classifying Individuals into States

The ability to fit baseline-category logit models to estimate state-to-state tran-

sition probability parameters depends on having the health state in a given time

period, the effective health expenditures for that time period, and the health state in

the next time period for each person used in the models. A person’s health state is

not always obvious to measure directly. The difficulty lies not in determining age at

a given time, but in determining the risk-factor group at that time.

The means to classify the health state based on straightforward measurements

is necessary, but coming up with those means is restricted by the lack of a reference

set from each state. Without a reference set from each state that can be studied, a

classification rule cannot be formed. In order to obtain a reference set, the following

approach could, but will not, be used: randomly select a sufficiently large number

of people of each age. Take a number of health-related measurements on each of

them (e.g., cholesterol level, presence or absence of malaria, etc.). Have a panel of

several experienced physicians diagnose each of these people as either “Healthy” or

“Sick” after reviewing these measurements. The majority vote would decide what

that person’s “true” risk-factor group at the time is considered to be. Combining this

diagnosis with the age would identify the state the person is considered to be in at

that time.

The illustration of how the data could be analyzed is described; the analysis

is contingent on having reference data containing health measurements and health

states. Suppose that all of the random variables in an individual’s response vector of

health measurements are continuous or categorical with a finite number of categories.

Note that such categorical variables could be recoded using dummy variables for
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nominal categories and using the ranked value of the category for ordinal categories;

the recoded variables can be analyzed as continuous variables (Rencher 2002, p. 315).

The above rule is now illustrated on a data set of no particular meaning for this

problem other than as a vehicle for showing how the technique is used. Information on

the sources of this data, as well as the sources of all other data used in this paper, can

be found in Appendix A. The data set used to show the classification technique was

originally used in Collins, Kaufer, Vlachos, Butler, and Ishizaki (2004). It contains

quantitative information on various characteristics of the writing in different papers

from The Federalist as well as the author of each text, whether it be Madison, Hamil-

ton, or “Disputed” (http://lib.stat.cmu.edu/datasets/federalistpapers.txt;

Collins et al., 2004).

As for the cause of twelve of these papers having a “Disputed” author, Rencher

(2002) explains that there are twelve papers that both of the aforementioned au-

thors claimed to have written (Rencher 2002, p. 300). For the present purposes, this

information is ignored.

Suppose all of these papers were written by either Madison or Hamilton and

that the texts originally had the author’s name on them but a random sample of

the papers had the name of the author removed, so the author is grouped under

“Disputed.” An attempt is made to classify the author of each “Disputed” paper; it

is worth mentioning that such classification has been a focus of research by Mosteller

and Wallace (1984), as cited in Rencher (2002, p. 300), and Collins et al. (2004).

The “Disputed” papers have already been assumed to be randomly chosen from

all of the papers; a further assumption made is that the proportion of papers with a

known author that were written by Madison represents the proportion of all of the

papers that were written by Madison. This assumption implies that without knowing

anything about a particular paper, the probability of it having been written by a

given author is exactly equal to the proportion of papers written by that author in
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the collection of all papers for which the author identification is explicit.

We also assume the distribution of the vector representing all of the charac-

teristics to be measured on a paper from a given author has a multivariate normal

distribution for both authors, and that the covariance matrices for these random vec-

tors are exactly the same. We will then use the linear classification criterion as stated

in Section 2.4.2 to classify each of the “Disputed” papers as having been written by

either Madison or Hamilton. This will be done using all available measurements. The

DISCRIM Procedure in SAS 9.1 will be used to make the classifications; the code is

included in Appendix B.1.

This example illustrates the classification technique necessary in the extended

version of the Hall and Jones (2004b) model because it deals with classification into

one of two candidate populations where it is assumed that the measured variables from

each population follow a multivariate normal distribution with no difference in the

covariance matrix of either population. Also, the probability of being in a particular

candidate population prior to seeing the realization of the random variables in a

response vector has been assumed to be represented by the proportion of members

of that population in the reference-set sample. Similarly, we assume in the extended

model that the age-specific sample proportions of individuals in each risk-factor group

equal the age-specific a priori probabilities of each health state.

3.3.2 Estimating Baseline-Category Logit Model Parameters

Fitting a baseline-category logit model with four possibilities for the state in

the next period will now be discussed using baseball data. A compilation of data

sets contains information for every plate appearance in a season for many Major

League Baseball (MLB) players in the 1987-1990 MLB seasons. Two important vari-

ables in the data set are (1) the season Earned Run Average (ERA) of the pitcher

who is pitching in that plate appearance and (2) the discrete outcome of that plate
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appearance, with the categories for the outcome being a non-sacrifice out, a one-

base hit, a multiple-base hit, or either a sacrifice or a walk (from file BB Readme

by Albright, accessible through http://www.dartmouth.edu/~chance/teaching_

aids/data/baseball.zip).

A baseline-category logit model with only an intercept and slope coefficient for

ERA will be fitted for Dale Murphy’s 1987 plate appearances. While the code could

be used in fitting data from other players and for multiple seasons, it will suffice to

use the data from one player for one season. The first baseline-category logit model

will be used to estimate the probability of not getting a non-sacrifice out (analogous

to not dying in the extended model). The baseline category for this first model will be

a non-sacrifice out and the other categories will be grouped together as “non-outs.”

The next baseline-category logit model will include only those observations which did

not result in Murphy getting a non-sacrifice out and will use getting either a sacrifice

or a walk as the baseline category. The code is included in Appendix B.1 and was

run in SAS 9.1 using the Logistic Procedure.

This example shows how a baseline-category logit model with more than two

possible responses can be fitted when there is a continuous explanatory variable.

In the extended model, it is assumed that individuals in a particular health state

at a particular time have their probability of being in a given health state in the

next period determined by their effective health expenditures in that period, but the

specific function is state dependent. Thus, if the necessary data were collected, all the

observations in which an individual was in a given health state in one period could be

used to estimate the parameters of the transition probabilities specific to that initial

state as a function of effective health expenditures. Two different baseline-category

logit models could be fitted for each health state—the first model for the probability

of living and the second model for the conditional probability of each risk group (given

that the next health state is not “Deceased”). The estimated parameters would be
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assumed to be the true values, thus defining what each transition probability is. A

suggested assumption for determining the health technology level for each period is

to assume like Hall and Jones (2004a,b) that gz = 0.01, so that zt = z0e
(0.01)t. And z0

could be set such that the health level in 2005 is one, so that zt = e(0.01)(t−2005). Doing

this would allow health expenditure amounts, which would need to be collected, to

be converted into effective health expenditure amounts so that the models could be

fitted.

3.3.3 Obtaining Values for Other Parameters

After estimating the parameters of the state-to-state transition probability ma-

trix and assuming they are the true values, there are still quantities that are yet to be

determined. These include σ, α, γ, and bk,t (all components of the utility function);

β, the parameter by which utility in the next period is discounted relative to the

present period; and δ, the parameter reflecting the desirability of transferring proba-

bility from being in the “Deceased” risk-factor group to the “Sick” risk-factor group

in the next period relative to transferring probability from being in the “Deceased”

risk-factor group to the “Healthy” risk-factor group in the next period. While none

of these parameters will be estimated for this project, some of these parameters have

been estimated by Hall and Jones (2004b), albeit in a different context because of the

model differences.

Though details of a possible method for estimating each of these parameters

will not be explained, several possibilities exist for how this could, but will not,

be done. For instance, relevant estimates by Hall and Jones (2004b) could be used

where appropriate. One approach, at least for the bk,t parameters, would be to remove

the time-period specificity (i.e., use only bk) and to use psychometric techniques—

for example, asking a random sampling of individuals carefully-designed questions

which reveal their preferences in a multitude of different economic and health-related
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situations—from which these parameters might be estimated. Yet, as previously

stated, no attempt will be made to estimate these parameters in the extended model

for this project. Also, it is noteworthy that Hall and Jones replaced ba,t with b in the

later version of their model (Hall and Jones 2007, p. 49).

We now briefly discuss four other parameters: gy, y0, N1,0, and N2,0. Follow-

ing Hall and Jones (2004b), we will assume that the real per-capita income in the

macroeconomy will grow at 2.31% annually in the future (Hall and Jones 2004b, p.

33; Hall and Jones 2007, p. 64). Hence, log(1.0231), or 0.02284, will be the assumed

value for gy. The value for y0 would be the per-capita income in time period t = 0.

For convenience in implementing the genetic algorithm in a simplified setting, we take

the value of y0 to be equal to one—this implies that hg,a,t and cg,a,t would need to be

expressed throughout all time periods as real health and consumption expenditures

by people in risk group g and of age a in period t divided by the real 2005 per-capita

income, since t = 0 will denote the five-year time period beginning in 2005. Also,

N1,0 and N2,0, the number of people born into each risk-factor group per year, could

be assumed to take on values chosen based on the proportion of infants classified into

each of the risk-factor groups (if the procedure in Section 3.3.1 were to be undertaken)

and the average number of people born during the last five or ten years. Hall and

Jones (2004a,b) accounted for neither immigration nor emigration in the economy

(Hall and Jones 2004b, p. 34; see also Hall and Jones 2004a, p. 35). Similarly, these

factors will not be accounted for in Section 3.3.4.

3.3.4 Using Genetic Algorithm in Simplified Problem

The genetic algorithm in this instance could be very involved, as this is a very

complex problem with a large number of parameters and dynamic constraints. There-

fore, for the purpose of showing the genetic algorithm, the problem is simplified in

that assumed values are assigned to all unknown parameters. Further simplifications
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of the problem result by making some additional assumptions and restrictions. For

example, ages and time are grouped into five-year blocks (Hall and Jones 2004b,

2007). This restriction induces several changes, including an important distinction

for notation. The genetic algorithm will be used to obtain a close-to-optimal solution

beginning in the year 2005, but this will hereafter correspond to t = 0. Also, the

period t = 1 corresponds to the year 2010, not 2006, as time periods are five years

long. This in turn means that the age groups will be grouped into five-year blocks

(i.e., 0-4, 5-9, etc). The genetic algorithm will be run until year 2100 of the model

(or time period 19). The bk,t values are assumed to be time invariant; likewise, Hall

and Jones (2004,b) used future values of ba,t that did not depend on time (Hall and

Jones 2004b, pp. 30–32; Hall and Jones 2004a, pp. 32–34).

A further assumption that will be made is that all individuals in a given risk

group who are age 115 or greater are in the same health state. This assumption does

not seem overly restrictive, as not many individuals would be expected to live this

long. However, it is made so as to have a finite number of arguments over which to

optimize without requiring that all individuals die before a certain age.

Another important assumption, which is made in this example so that the

problem is easier to solve, is that β equals zero. While this assumption would be

undesirable for the theoretical model, it is made in this example of fitting the empirical

model because this assumption simplifies the task of demonstrating the use of a

genetic algorithm. This assumption implies that the optimization in each period

is only over the total amount of utility in that period and does not include some

proportion of the total amount of utility in any future periods. This allows the

optimization problem to be considered one period at a time. After obtaining argument

values in one time period, the argument values are incorporated in the model to set

the stage for the next period’s optimization problem.

Keeping in mind that the corresponding results should not be interpreted—the
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illustration of the technique is what is important—Table 3.1, Table 3.2, and Table 3.3

represent the values for unknown parameters which will be assumed in demonstrating

the genetic algorithm.

The values assumed for each of the parameters are not claimed to be true values

for any real economy. The selection of assumed values is briefly explained. The reason

for setting β equal to zero is to reduce the number of arguments simultaneously

optimized. The reason for setting δ equal to 0.7 is so that being sick is substantially

worse than being healthy, but being sick is very preferable to being dead. The values of

α, σ, and γ are picked to be close to values Hall and Jones (2004b) assumed in various

circumstances. The recursive relations for zt and yt were discussed in Section 3.3.2 and

Section 3.3.3, respectively. The values for the remaining parameters were sometimes

influenced by values used by Hall and Jones (2004b) and at other times were chosen

arbitrarily.

The genetic algorithm to be used based on these parameters is now described.

As noted in Section 2.6, the genetic algorithm mimics biological processes of mating,

crossing-over, and mutation. While not all details are included here, the following

algorithm summarizes the steps taken.

For time period i (i=0, 1, 2, ..., 19) {

Calculate available income for time period

For run j (j=1, 2, 3, 4, 5) {

1. Create 1000 initial sets of argument values using

(pseudo)random numbers subsequently scaled to satisfy

the constraints (up to round-off error).

2. Evaluate implied overall utility level to permit

ranking of sets.

3. Select sets for crossover based on ranking and switch

set values at randomly selected locations to generate

1000 more sets.

4. Mutate sets from step 2 by scaling randomly selected

values by random values to generate 1000 more sets.

5. Rescale all argument values to make sure income

constraint is met for each of the 3000 sets and

evaluate implied overall utility level for all 3000
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Table 3.1: Assumptions for unknown probability parameters so genetic algorithm can
be demonstrated

Parameter Description Assumed value in genetic
algorithm demonstration

α1(live),a Age-group-specific intercept in
logit model for probability of be-
ing alive in next period (five years
later) if in healthy group now

(5.2, 4.9, 4.6, . . ., -1.4, -1.7)
for age groups (0–4, 5–9,
10–14, . . ., 110–114, 115+)

α2(live),a Age-group-specific intercept in
logit model for probability of be-
ing alive in next period if in sick
group now

(4.2, 3.9, 3.6, . . ., -2.4, -2.7)
for age groups (0–4, 5–9,
10–14, . . ., 110–114, 115+)

β1(live),a Age-group-specific slope for “ef-
fective health spending amount”
in logit model for probability of
being alive in next period if in
healthy group now

(0.48, 0.46, 0.44, . . ., 0.04,
0.02) for age groups (0–4,
5–9, 10–14, . . ., 110–114,
115+)

β2(live),a Age-group-specific slope in logit
model for probability of being
alive in next period if in sick group
now

(0.48, 0.46, 0.44, . . ., 0.04,
0.02) for age groups (0–4,
5–9, 10–14, . . ., 110–114,
115+)

α1(1|live),a Age-group-specific intercept in
logit model for probability of be-
ing in healthy group in next pe-
riod if in healthy group now, con-
ditional on being alive in next pe-
riod

(5.2, 4.9, 4.6, . . ., -1.4, -1.7)
for age groups (0–4, 5–9,
10–14, . . ., 110–114, 115+)

α2(1|live),a Age-group-specific intercept in
logit model for probability of be-
ing in healthy group in next period
if in sick group now, conditional
on being alive in next period

(4.2, 3.9, 3.6, . . ., -2.4, -2.7)
for age groups (0–4, 5–9,
10–14, . . ., 110–114, 115+)

β1(1|live),a Age-group-specific slope in logit
model for probability of being in
healthy group in next period if in
healthy group now, conditional on
being alive in next period

(0.48, 0.46, 0.44, . . ., 0.04,
0.02) for age groups (0–4,
5–9, 10–14, . . ., 110–114,
115+)

β2(1|live),a Age-group-specific slope in logit
model for probability of being
alive in next period if in sick group
now, conditional on being alive in
next period

(0.48, 0.46, 0.44, . . ., 0.04,
0.02) for age groups (0–4,
5–9, 10–14, . . ., 110–114,
115+)
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Table 3.2: Assumptions for unknown utility, health level, and discount parameters so
genetic algorithm can be demonstrated

Parameter Description Assumed value in genetic
algorithm demonstration

bg,a,t (same
as bk,t for
some k)

Parameter in utility function as-
sociated with risk-factor group g
and age a for time period t (but
will make no difference on opti-
mization decision if β = 0

15 for all ages and risk-
factor groups (except “De-
ceased” group)

α Parameter in utility function for
health level

2

σ Parameter in utility function for
health level

1.7

γ Parameter in utility function for
consumption amount

1.6

δ Parameter in health level equation 0.7
β Discount parameter 0
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Table 3.3: Assumptions for other unknown model parameters so genetic algorithm
can be demonstrated

Parameter Description Assumed value in genetic al-
gorithm demonstration

yt Standardized real per-capita income
for (five-year) period t in units of
2005 real per capita income

exp(0.02284 × 5t) because
yearly growth rate assumed
to be 2.31%, and five years
in a period

zt Standardized health technology level
for period t in units of 2005 health
technology amount

exp(0.01×5t) because yearly
growth rate assumed to be
1%, and five years in a period

N1,0 Number of people in risk group 1
(“Healthy”) and in age group 0–4 ev-
ery period

10,000,000

N2,0 Number of people in risk group 2
(“Sick”) and in age group 0–4 every
period

1,000,000

N1,a,0 Number of people in “Healthy” risk
group and in age group a in period 0

In millions: (10.00, 9.95,
9.90, 9.85, 9.80, 9.75, 9.70,
9.65, 9.60, 9.55, 9.45, 9.10,
8.50, 7.50, 6.00, 2.00, 1.00,
0.20, 0.12, 0.08, 0.01, 0.001,
0, 0) for age groups (0–4, 5–
9, 10–14, . . ., 110–114, 115+)

N2,a,0 Number of people in “Sick” risk
group and in age group a in period 0

In millions: (1.00, 1.00,
1.00, 1.00, 1.00, 1.30, 1.50,
1.60, 1.70, 1.80, 2.00, 2.05,
2.00, 2.50, 2.50, 2.00, 0.50,
0.50, 0.50, 0.30, 0.10, 0.002,
0.0001, 0) for age groups (0–
4, 5–9, 10–14, . . ., 110–114,
115+)
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sets; then keep the 1000 best sets for the next

iteration.

6. Using the best 1000 sets from step 5, return to step 3

provided less than 4500 iterations have been done.

7. Save resulting best set of values from run j of time

period i.

}

The best set of values from the five sets resulting from

the preceding loop is used as the set of values to be used

in the economy, thus permitting the available resources and

population in each state for the next period to be

determined (needed for the next pass through the time-

period loop)

}

Following the example of Hamada et al., the algorithm was constructed to have

decreasing probabilities of elements being switched as well as decreasing probabili-

ties of elements being mutated as iterations were performed within the (i, j) loops,

with the probabilities being restored to higher values at certain numbers of iterations

(2001, pp. 177, 180–181). This simulates “punctuated equilibri[a],” which allow argu-

ment values to settle towards at least locally-optimizing values; the periodic abrupt

increases in the mutation and cross-over probabilities also allow the search space to

be explored more (Hamada et al. 2001, p. 177).

The code implementing the genetic algorithm is included in Appendix B.2. The

genetic algorithm was coded and run in MATLAB 7.0.1 using programming based on

the work of others, most notably Hamada et al. (2001) and Haupt and Haupt (2004).

While the genetic algorithm uses different parameters to control mating, crossing-over,

and mutation, these parameters are not discussed. Finding appropriate values seems

to often require a measured trial-and-error approach, but these particular parameters

do not carry much actual meaning.

The simplified version of the extended model allows the constraints to be im-

posed in the genetic algorithm one time period at a time, beginning with period t = 0.

The constraints can be imposed sequentially because β = 0 means that only utility in
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the current period matters when determining the amounts to devote to health spend-

ing and consumption spending in that period. Consideration of one period at a time

in a sequential fashion permits a given period’s amount of available resources and

state-specific populations to be known prior to applying the algorithm to the given

period (based on the argument values and the number of individuals in each health

state in the previous period). To force the income constraint to be met, the genetic

algorithm calculates the total available income as well as the total income implied

by a set of generated arguments. The algorithm scales each individual argument by

multiplying each of them by the ratio of available income to argument-implied in-

come, forcing total consumption and health expenditures to equal total income in the

period.

Also, it can be shown that in any given period, all individuals would have

an identical level of consumption if the objective function were being optimized.

Therefore, only one consumption argument for each time period is included so as to

improve the efficiency of the algorithm. Thus, each time period has 49 arguments

over which to optimize: a common per-capita consumption value, a health spending

value for individuals in the “Healthy” risk group for each of the 24 age groups (i.e.,

0–4, 5–9, . . ., 115+) and a health spending value for individuals in the “Sick” risk

group for each of the age groups. The simplification still leaves a substantial number

of arguments to be optimally selected.

While convergence criteria were not predetermined, a reasonable retrospective

criterion is to determine if all five different sets from a given time period are close to

each other. Because these sets all start from randomly-generated values, similarity of

the end-values is an indicator that the algorithm might be working. Of course, this

is not a sufficient condition to guarantee convergence, even if many more than five

runs were made for each time period. Nonetheless, confidence in the argument value

results is gained when each run yields similar “optimizing” values.
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For each time period, the best set from each of the five runs are compared to

see which of these sets yields the highest value for the function to be maximized.

Then the argument values in this set are taken to be the actual values for that

time period. In so doing, the value of the function to be maximized is determined

for that time period, as well as the health levels for all age and risk-factor group

combinations and the number of people alive in each state in the next period. Close-

to-optimizing arguments for the next period are determined. The process of finding

close-to-optimizing arguments and using the arguments to determine the quantities

of interest for the next period’s optimization is continued until argument values are

selected for time period t = 19.
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4. PEDAGOGICAL ANALYSIS OF RESULTS

While the particular results for the examples described in the previous chapter

are not important, a brief summary of these results is now included to demonstrate

methods that could be used if the necessary data were to be obtained. Recall also

that the code producing all output in this section is included in Appendix B.1 and

Appendix B.2.

4.1 Classification Analysis Example: The Federalist Papers

From the classification analysis, the results generated by SAS indicate the per-

formance of the linear classification rule by showing the cross-validation classification

error rate. Note that this output is in no way derived from any of the observation

records with “Unknown” for the author. Rather, at this stage the parameters used

in the linear classification rule have been estimated using all papers with the author

known. These parameter estimates are used in the next step—attributing the other

papers to either Madison or Hamilton. One helpful indicator as to how this rule might

perform is to examine the misclassification (or error) rate using cross-validation. For

the 65 papers with the author being identified, Table 4.1 and Table 4.2 summarize

how well the linear-classification technique performed on the The Federalist Papers

data:

Most papers written by Hamilton were assigned to Hamilton, but when Madison

was the author, the rule seemed more erratic. The overall error rate was estimated to

be 12.3 percent. Also of particular importance is how the papers with an “Unknown”

author were classified. Table 4.3 contains the number of “Unknown” papers assigned

by the rule to each author, which indicates that seven of them were attributed by the

linear classification technique to Madison.
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Table 4.1: Classification of The Federalist Papers from known author using linear
classification technique with prior probabilities

Number and percent
From classified into author

author Hamilton Madison Total

Hamilton 48 3 51
94.12 5.88 100.00

Madison 5 9 14
35.71 64.29 100.00

Total 53 12 65
81.54 18.46 100.00

Priors 0.78462 0.21538

Table 4.2: Estimated misclassification rates for known The Federalist Papers by au-
thor

Author

Hamilton Madison Total

Rate 0.0588 0.3571 0.1231

Priors 0.7846 0.2154

Table 4.3: Classification of papers with author “Unknown” using linear classification
technique with prior probabilities

Number and percent
classified into author

Hamilton Madison Total

From “Unknown” author 5 7 12
41.67 58.33 100.00

Prior probabilities 0.78462 0.21538
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Table 4.4: Baseline-category logit parameter estimates when baseline category is non-
sacrifice out and other categories are combined

Standard
Parameter Category DF Estimate error Wald χ2 Pr> χ2

Intercept Hit, walk, or 1 -0.8422 0.3320 6.4357 0.0112
sacrifice out

ERA Hit, walk, or 1 0.1317 0.0787 2.8049 0.0940
sacrifice out

4.2 Baseline-Category Logit Models Example: Dale Murphy Baseball Data, 1987

Season

From the fitting of a baseline-category logit model in SAS, the parameter esti-

mates are readily obtained. For example, the estimated coefficients when fitting the

baseline-category logit model to Dale Murphy’s plate appearance data, with getting

out as the baseline category and not getting out as the other category, are given in

Table 4.4, as obtained from SAS output. This is meant to be analogous in the eco-

nomic model to the baseline-category logit model with not living to the next period

being the baseline category and being alive in the next period (regardless of what

health state the person is in for the next period) as the other category.

Similarly, the estimated coefficients from the second baseline-category logit

model are included in Table 4.5. Recall that this second model is for all observa-

tions where the outcome was not a non-sacrifice out. Here the baseline category has

been chosen as either a sacrifice out or a walk. This baseline-category logit model is

to estimate the probability of each plate appearance outcome, conditional on it not

being an out. This is analogous to estimating the probability of being in each health

state in the next period, conditional on the person living to the next health state.

Recall that the goal of this example was to demonstrate that the estimates for
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Table 4.5: Baseline-category logit parameter estimates when baseline category is
(sacrifice or walk), conditional on not non-sacrifice out. Observations resulting in
non-sacrifice outs are excluded in this model.

Standard
Parameter Category DF Estimate error Wald χ2 Pr> χ2

Intercept Multiple- 1 0.1009 0.6258 0.0260 0.8719
base hit

Intercept Single- 1 0.1043 0.5522 0.0357 0.8501
base hit

ERA Multiple- 1 -0.1532 0.1474 1.0809 0.2985
base hit

ERA Single- 1 -0.0891 0.1281 0.4843 0.4865
base hit

58



the state-to-state transition probability parameters could be easily obtained if the

appropriate data were accessible, and, of course, if the model is valid. Once this is

done, the probabilities as a function of health spending could be computed. The

probability of each plate appearance outcome for Dale Murphy’s 1987 baseball plate

appearances has been estimated from the aforementioned parameter estimates. A

graphical summary of the estimated probabilities is included in Figure 4.1.

One cause for worry is that in this particular example, the model might not

have provided a very good fit. Of course, the present goal is not to find a good model

for Murphy’s baseball performance; any inadequacy in the provided example is not of

direct relevance and so does not mean that the state-to-state transition probabilities

cannot be modeled well by the proposed relations. Nonetheless, it should be stated

that the proposed transition probability model is not necessarily correct. It is im-

portant to recognize that if these probabilities are not modeled well by the functions

in Section 3.1.2, then alternative state-to-state transition probability relations might

need to be implemented.

4.3 Genetic Algorithm Example: Implemented with Arbitrary Values

Some pseudo-code for the genetic algorithm has already been included, and

the actual code is in Appendix B.2. The resulting argument values from the genetic

algorithm are contained in Appendix C for selected time periods. Each time period

has five sets of resulting argument values (one for each run) and the population

for each health state during that time period. Appendix C suggests the arrival of

the resulting argument values close to the optimizing argument values because of

the similarity between each of the five sets of resulting argument values for each

reported time period. The relationship between the population and the argument

values is particularly important, because typically the smaller the percentage of people

in a particular health state, the greater the disparity between the corresponding
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of ERA for Dale Murphy, 1987 MLB Season
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argument values from each of the runs. Even so, the argument values from the five

runs are usually relatively close to each other. It is important to note also that in

the preliminary time periods, some states had no members; values corresponding to

states with no members during that time period cannot have any effect on the overall

utility in that period, so the fact that argument values for these states are not similar

across runs is not a problem.

One problem that the genetic algorithm might have is that of inaccuracies due

to round-off error. Computers do not exactly represent all numbers. In the present

case, the argument values from the genetic algorithm saved by MATLAB seem to

have lost some precision, at least in the values saved to output files. This is apparent

by noting that the income derived from the relation for yt and the income implied by

the argument values written by MATLAB to a file are not exactly the same. However,

the order of the relative difference is very small, as the maximum relative difference

over the twenty periods is less than 0.00001. The effect of the constraints not being

perfectly met is not large enough to detract notably from the implied argument values.

Rather, the genetic algorithm’s failure to guarantee arrival at the best set of argument

values seems to be a more important issue from a practical standpoint, though again,

this does not seem to be a major problem in the present case.

From the sets of argument values in Appendix C, it is easy to compute the

implied proportion of all income devoted to health spending for each time period. The

per-capita consumption for a given time period is already included as an argument,

so coupled with the total population in that time period, the total consumption in

that period is easily obtained. The total health spending in a given time period

can be obtained by summing the total health spending in each health state for the

given time period; the total health spending in a given health state for the given

time period is the product of the number of people in the given state during the time

period and the per-capita health spending of people in that state for that time period.
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Then, the total income can be taken as the sum of the total health spending and the

total consumption, after which the proportion of the total income used for health

spending can be readily obtained. While the total income in time period t could

also be obtained by using the relation exp(0.02284× 5t) to determine the per-capita

income and multiplying by the total population in period t, this was not done because

the constraint that total consumption plus total health spending equals total income

is not exactly met as a result, probably due to round-off error.

While it is not of direct significance because of the arbitrary nature of the

optimization setup, a plot of the near-optimizing health share proportion of income

over the time periods is provided in Figure 4.2.
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5. FINAL COMMENTS

This paper has shown how the theoretical model by Hall and Jones (2004b) can

be extended to have more representative agents, thus providing for more heterogene-

ity. It should be noted that the health level equation in the extended theoretical model

is a modification which imposes a given form and is thus less general for the theoreti-

cal model, but not the empirical model. In addition, a few of the practical tools that

could be used in fitting the extended model have been demonstrated briefly; namely,

the use of linear classification analysis, the fitting of successive baseline-category logit

models, and the use of a genetic algorithm.

In some ways, the “extended” model was not a true extension, as it made a

noteworthy change to the relations by which state-to-state transition probabilities

are determined. Also, all of the demonstrated tools used in fitting the model utilized

approaches different from Hall and Jones (2004b). The viability of the theoretical

model’s application to the United States is certainly questionable. Complicating the

investigation of its viability is the issue of not having the appropriate data to see how

well it might fit. However, the main result of this paper is an interesting theoretical

extension which can allow for a less stringent model in several aspects. As more and

more risk-factor groups are included, the model can allow for an increasingly diverse

populace. While this model may or may not be useful in practice, the means by which

the theoretical model of Hall and Jones (2004b) was modified might have applications

in other macroeconomic models.

At many points in this paper, alternative methods to the procedures in this

paper have been highlighted, primarily in the literature review. Alternative ways to

deal with the assumption of a representative agent, alternative ways of classifying

individuals into health states given data on individuals and data on reference groups,
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and alternative ways of fitting a model with a small number of possible categorical

outcomes are all detailed in that review.
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A. DATA SOURCES

A.1 Data on The Federalist Papers

The data were downloaded on July 21, 2005 from http://lib.stat.cmu.edu/

datasets/federalistpapers.txt. The data were submitted by Jeff Collins. I was

made aware of the data through StatLib: http://lib.stat.cmu.edu/datasets/.

Note that Collins also provides links to extra information in his comments on the

following web page: http://lib.stat.cmu.edu/datasets/federalistpapers.txt.

A.2 Baseball Data

The data were downloaded on or shortly before April 11, 2005 from http://

www.dartmouth.edu/~chance/teaching_aids/data/baseball.zip. The data were

submitted by Chris Albright. Though the StatLib link to the data appears to

no longer be available, I was made aware of the data through the StatLib web-

site: http://lib.stat.cmu.edu/modules.php?op=modload&name=PostWrap&file=

index&page=/DASL.
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B. CODE

B.1 SAS Code

Listing B.1: SAS Code to Analyze The Federalist Papers Data
data fed Papers ;

i n f i l e ”F:\ FedPapersData . txt ” d e l im i t e r=’ 09 ’ x MISSOVER DSD l r e c l =32767 ;
input TextNumber TextName : $12 . Group Fi r s tPerson InnerThinking

ThinkPos i t ive ThinkNegative ThinkingAhead ThinkingBack WordPicture
Space In te rva l Motion PastEvents Sh i f t i ngEvt s TimeInterval CueComKnow
CuePriorText CueReader CueNot i f i e r CueMovement CueReasoning ;

run ;
proc p r in t data=fed papers ; run ;
proc f r e q ; t ab l e group ; run ;

∗ Sp l i t data in to two data s e t s : f ed papers c e r t a i n f o r when
the author i s undisputed , and fed papers uncer ta in f o r when the
author i s d i sputed . ;

data fed papers c e r t a i n fed papers uncer ta in ;
s e t f ed papers ;
i f ( group eq 1) then Author=”Hamilton ” ;
i f ( group eq 2) then Author=”Madison ” ;
i f ( group eq 3) then Author=”Unknown” ;
i f ( group eq 3) then output fed papers uncer ta in ;
e l s e output fed papers c e r t a i n ;

run ;

∗ Change disputed author , or group=3, to miss ing value . ;
data fed papers uncer ta in ;
s e t f ed papers uncer ta in ;
group =. ;
Author=””;

run ;

∗ Note that the remainder o f the code i s based HEAVILY on an example
g iven in the on−l i n e SAS documentation f o r Proc Discrim−−−s p e c i f i c a l l y
in Example 25 .4 o f the documentation f o r the Discrim Procedure in the
SAS/STAT se c t i on ;

∗ C l a s s i f y va lues that were group=3 but are cons ide red as i f group i s miss ing ;
ods r t f body=”F:\ f e d e r a l i s t output . r t f ” ;
proc d i sc r im data=fed papers c e r t a i n out s ta t=ru l e i n f o
method=normal pool=yes c r o s s v a l i d a t e ;
c l a s s Author ;
var F i r s tPer son InnerThinking

ThinkPos i t ive ThinkNegative ThinkingAhead ThinkingBack WordPicture
Space In te rva l Motion PastEvents Sh i f t i ngEvt s TimeInterval CueComKnow
CuePriorText CueReader CueNot i f i e r CueMovement CueReasoning ;

p r i o r s p ropo r t i ona l ;
run ;

proc d i sc r im data=ru l e i n f o t e s tda ta=fed papers uncer ta in
t e s t ou t=uncer ta in c l a s s i f i e d ;
c l a s s Author ;
var F i r s tPer son InnerThinking

ThinkPos i t ive ThinkNegative ThinkingAhead ThinkingBack WordPicture
Space In te rva l Motion PastEvents Sh i f t i ngEvt s TimeInterval CueComKnow
CuePriorText CueReader CueNot i f i e r CueMovement CueReasoning ;

run ;
ods r t f c l o s e ;
proc p r in t data=uncer ta in c l a s s i f i e d ; run ;

∗Seven o f the twelve papers with disputed author were c l a s s i f i e d as being
from Madison−−−the other f i v e were c l a s s i f i e d as being from Hamilton ;

Listing B.2: SAS Code to Analyze Murphy Baseball Data
data murphy ; i n f i l e ”F:\ pro j e c tapr27 \Pro jec t \87murpd1 . txt ” ;

input AtBat I7 O2 HitVal1 Score R123 R23 Success1 Success2 Game
DN HA T ERA Turf Bats HitVal2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 ;

run ;

data murphy ;
s e t murphy ;
nonsacout=”(non−s a c r i f i c e ) out ” ;
nonoutoutcome=”mult ip le−base h i t ” ;
i f h i t v a l 2 eq 0 then nonoutoutcome=””;
i f h i t v a l 2 ne 0 then nonsacout=”hit , walk , or sac ” ;
i f h i t v a l 2 eq 1 then nonoutoutcome=”s ing l e−base h i t ” ;
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i f h i t v a l 2 eq 2 then nonoutoutcome=”mult ip le−base h i t ” ;
i f h i t v a l 2 eq 3 then nonoutoutcome=” s a c r i f i c e or walk ” ;
l a b e l nonsacout=”Out s ta tu s ” ;
l a b e l nonoutoutcome=”Outcome s ta tu s g iven not (non−sac ) out ” ;

run ;

ods html ;
ods graph i c s on ;
proc l o g i s t i c data=murphy ;

model nonsacout ( r e f =”(non−s a c r i f i c e ) out ”)=ERA/ l i n k=GLOGIT l a c k f i t ;
output out=preds p=predva l s ;
g raph i c s estprob ;

run ;

proc l o g i s t i c data=murphy ;
model nonoutoutcome ( r e f=” s a c r i f i c e or walk ”)=ERA/ l i n k=GLOGIT;
where nonsacout ne ”(non−s a c r i f i c e ) out ” ;
output out=preds p=predva l s ;
g raph i c s estprob ;

run ;
ods graph i c s o f f ;
ods html c l o s e ;

B.2 MATLAB Code

Listing B.3: MATLAB Code Implementing Genetic Algorithm: Code to Run at
Command Line
[ v11 v22]=main GA function ( 5 , 2 0 , 0 . 0 2 2 8 4 , 0 . 0 1 , . . .
1000000 .∗ [ 10 9 .95 9 .90 9 .85 9 .80 9 .75 . . .

9 .70 9 .65 9 .60 9 .55 9 .45 9 .10 8 .50 7 .50 6 .00 2 .00 1 .00 . . .
0 .20 0 .12 0 .08 0 .01 0 .001 0 0 1 1 1 1 1 1 .3 1 .5 1 .6 1 .7 . . .
1 . 8 2 .0 2 .05 2 .00 2 .5 2 .5 2 .0 0 .5 0 .5 0 .5 0 .3 0 .1 0 .002 0.0001 0 ] ) ;

Listing B.4: MATLAB Code Implementing Genetic Algorithm: command line -
code.m
%Command Line Code ;
function b e s t v a l s = command line code ( t , y t , n k t , z t )
J=5;
b e s t a r g s=zeros (49 , J ) ;

for j =1:J

% Order o f v a l u e s i s 48 h e a l t h spend ing s in f o l l o w i n g order :
% h e a l t h y /0−4, h e a l t h y /5−9, . . . h e a l t h y /115+ , s i c k /0−4,
% s i c k /5−9, . . . , s i c k /115+ , and then the consumption v a r i a b l e ;

%run g e n e t i c a l gor i t hm , i n i t i a l l y j u s t f o r one t ime pe r i od ;

% Let m denote number to genera te−−a t each s t e p t h e r e w i l l be t h i s many ;
m=3000;

% Create i n i t i a l poo l o f argument v a l u e s ;
a r g va l s=20 .∗ rand (49 ,m) ;

%Make sure s a t i s f y r e s t r a i n t s
impl ied income=(n k t ) ’ ∗ ( a r g va l s ( 1 : 4 8 , : ) ) + sum( n k t )∗ a r g va l s ( 4 9 , : ) ;
ava i l ab l e in come=sum( n k t )∗ y t ;
a r g va l s=a r g va l s .∗ kron ( ( ava i l ab l e in come ./ impl ied income ) , ones (49 ,1 ) ) ;

% Compute h e a l t h l e v e l s ;
h e a l t h l e v e l s=compute health ( a r g va l s ( 1 : 4 8 , : ) , z t ,m) ;

%Compute o b j f u n c t i o n ;
ob j va lue=compute obj funct ion ( n k t ( : , 1 ) , a r g va l s ( 4 9 , : ) , h e a l t h l e v e l s ,m) ;

% rank a r g v a l s s e t s ;
[ s o v rank index ]= sort ( ob j va lue , ’ descend ’ ) ;
r ank a rg va l s=a r g va l s ( : , rank index ) ;

%Now f o r GA work : have i n i t i a l poo l w i th ranked v a l u e s ;
gen num=0;
G=4500;

for i =1:G
%mate ;
%c r e a t e f u n c t i o n to f i n d p a i r s to mate ;
obs to mate=mate s e l e c t i on (m) ;
%cr e a t e f u n c t i o n to perform cross−ove r s ;
c r o s s o v e r r e s u l t=c r o s s o v e r ( r ank a r g va l s ( : , obs to mate ) ) ;
%cr e a t e f u n c t i o n to perform muta t ions ;
mutate r e su l t=mutate ( r ank a rg va l s ( : , 1 : ce i l (m/3) ) , gen num) ;
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%Combine o r i g i n a l good , cross−over , and mutated i n t o a r g v a l s ;
a r g va l s ( : , 1 : ce i l (m/3) )=rank a r g va l s ( : , 1 : ce i l (m/3) ) ;
a r g va l s ( : , (m/3 +1) : ( 2∗m/3) )=c r o s s o v e r r e s u l t ;
a r g va l s ( : , ( 2∗m/3 +1) :m)=mutate r e su l t ;

% make sure s a t i s f y c o n s t r a i n t s ;
impl ied income=(n k t ) ’ ∗ ( a r g va l s ( 1 : 4 8 , : ) ) + sum( n k t )∗ a r g va l s ( 4 9 , : ) ;
ava i l ab l e in come=sum( n k t )∗ y t ;
a r g va l s=a r g va l s .∗ kron ( ( ava i l ab l e in come ./ impl ied income ) , ones (49 ,1 ) ) ;

%c a l l f u n c t i o n s compute hea l t h , c ompu t e o b j f un c t i on , and s o r t by rank ;
h e a l t h l e v e l s=compute health ( a r g va l s ( 1 : 4 8 , : ) , z t ,m) ;
ob j va lue=compute obj funct ion ( n k t , a r g va l s ( 4 9 , : ) , h e a l t h l e v e l s ,m) ;

[ s o v rank index ]= sort ( ob j va lue , ’ descend ’ ) ;
r ank a rg va l s=a r g va l s ( : , rank index ) ;
gen num=gen num+1;

end

be s t a r g s ( : , j )=rank a r g va l s ( : , 1 ) ;

end

f i l e =[ ’ Be s t 4 p e r i od ’ num2str( t ) ] ;
save ( f i l e , ’ b e s t a r g s ’ , ’−a s c i i ’ ) ;

b e s t h e a l t h l e v e l s=compute health ( b e s t a r g s ( 1 : 4 8 , : ) , z t , J ) ;
b e s t ob j v a l u e s= . . .

compute obj funct ion ( n k t , b e s t a r g s ( 4 9 , : ) , b e s t h e a l t h l e v e l s , J ) ;

[ s b o v rank index be s t ]= sort ( b e s t ob j va l u e s , ’ descend ’ ) ;
r anked be s t va l s=be s t a r g s ( : , r ank index be s t ) ;

b e s t v a l s=ranked be s t va l s ( : , 1 ) ;

end

Listing B.5: MATLAB Code Implementing Genetic Algorithm: compute health.m
function h l e v e l=compute health ( health exp , t e c h l e v e l ,num)

a l p h a l i v e =[5.2 4 .9 4 .6 4 .3 4 .0 3 .7 3 .4 3 .1 . . .
2 . 8 2 .5 2 .2 1 .9 1 .6 1 .3 1 .0 0 .7 . . .
0 . 4 0 .1 −0.2 −0.5 −0.8 −1.1 −1.4 −1.7 . . .
4 . 2 3 .9 3 .6 3 .3 3 .0 2 .7 2 .4 2 .1 . . .
1 . 8 1 .5 1 .2 0 .9 0 .6 0 .3 0 .0 −0.3 . . .
−0.6 −0.9 −1.2 −1.5 −1.8 −2.1 −2.4 −2 .7 ] ;

a l pha h g i v en l=a l ph a l i v e ;

b e t a l i v e =[0.48 0 .46 0 .44 0 .42 0 .40 0 .38 0 .36 0 .34 . . .
0 .32 0 .30 0 .28 0 .26 0 .24 0 .22 0 .20 0 .18 . . .
0 .16 0 .14 0 .12 0 .10 0 .08 0 .06 0 .04 0 .02 . . .
0 .48 0 .46 0 .44 0 .42 0 .40 0 .38 0 .36 0 .34 . . .
0 .32 0 .30 0 .28 0 .26 0 .24 0 .22 0 .20 0 .18 . . .
0 .16 0 .14 0 .12 0 .10 0 .08 0 .06 0 .04 0 . 0 2 ] ;

b e t a h g i v e n l=b e t a l i v e ;
ehe=hea l th exp .∗ t e c h l e v e l ;
l ehe=log ( ehe ) ;
%compute odds o f l i v i n g ;% I t e q u a l s exp ( a l pha+be t a ∗ l n ( e f f . h e a l t h . expend ) ) ;
odd s l i v e=exp(kron ( a l pha l i v e ’ , ones (1 ,num) ) + . . .
(kron ( b e t a l i v e ’ , ones (1 ,num) ) .∗ l ehe ) ) ;

p r ob l i v e=odd s l i v e . / ( ones (48 ,num)+odd s l i v e ) ;

o dd s h l i v e=exp(kron ( a l pha h g i v en l ’ , ones (1 ,num) ) + . . .
(kron ( b e t a h g i v en l ’ , ones (1 ,num) ) .∗ l ehe ) ) ;

p r ob h l i v e=odd s h l i v e . / ( ones (48 ,num)+odd s h l i v e ) ;

prob hea l thy= p rob l i v e .∗ p r ob h l i v e ;
p rob s i ck=p r ob l i v e .∗ (1− p r ob h l i v e ) ;

h l e v e l =(1 . / (1−prob healthy− ( 0 . 7 .∗ prob s i ck ) ) ) ;

end

Listing B.6: MATLAB Code Implementing Genetic Algorithm: compute obj -
function.m
function t o t a l u t i l i t y=compute obj funct ion ( N vec , cons l ev , h ea l th l ev ,num)
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u t i l i t y p e r p e r s o n= ( ( ( ( kron ( ( c on s l e v ) , ones (48 ,1 ) ) . ˆ (−0.6) ) . . .
. / (−0.6) ) ) + ( ( ( h e a l t h l e v ) . ˆ (−0.7) ) .∗ (2/(−0.7) ) ) . . .

+ (15 .∗ ones (48 ,num) ) ) ;

t o t a l u t i l i t y=N vec ’ ∗ u t i l i t y p e r p e r s o n ;
end

Listing B.7: MATLAB Code Implementing Genetic Algorithm: mate selection.m
function col nums=mate s e l e c t i on (num)

num resu l t ing=ce i l (num/3) ;
the sum=sum( 1 : num resu l t ing ) ;
i n i t d r aws=ce i l (rand ( num result ing , 1 ) .∗ the sum ) ;

col nums=ce i l ((−2∗ num result ing−1 . . .
+sqrt ((2∗ num resu l t ing+1)∗(2∗ num resu l t ing+1)−8∗ i n i t d r aws ) ) . / (−2) ) ;

end

Listing B.8: MATLAB Code Implementing Genetic Algorithm: cross over.m
function c r o s s o v e r r e s u l t s=c r o s s o v e r ( i n i t i a l v a l s )

pa i r s 2 sw i t ch= . . .
( f loor (rand ( s ize ( i n i t i a l v a l s , 1 ) , . . .
( s ize ( i n i t i a l v a l s , 2 ) . / 2) ) .∗ (10 . / 6 . 5 ) ) ) ;

make switch 1=kron ( pa i r s2swi tch , [ 1 0 ] ) ;
make switch 2=kron ( pa i r s2swi tch , [ 0 1 ] ) ;

temp vals=i n i t i a l v a l s ;
m s log 1=make switch 1 > 0 ;
m s log 2=make switch 2 > 0 ;
temp vals ( m s log 1 )=i n i t i a l v a l s ( m s log 2 ) ;
temp vals ( m s log 2 )=i n i t i a l v a l s ( m s log 1 ) ;
c r o s s o v e r r e s u l t s=temp vals ;

end

Listing B.9: MATLAB Code Implementing Genetic Algorithm: mutate.m
function output va l s=mutate ( input va l s , t h e gene ra t i on )
%mutate f u n c t i o n to s imu l a t e mutat ion o f argument v a l u e s
% I de s i gned i t t o have d e c r e a s i n g p r o b a b i l i t y o f mutation , as w e l l
% as d e c r e a s i n g va r i ance o f mutation , bu t w i th p e r i o d i c r e s e t s
% ( l i k e t h e punc tua t ed e q u i l i b r i um in Hamada e t a l 2001)
%
% The pe r i od i s 300 g en e r a t i o n s
%
% The i n pu t s are a matr ix o f o r i g i n a l v a l u e s f o r
% the (m/3 , or p opu l a t i o n s i z e /3) b e s t argument s e t s and the g en e r a t i on
% number , which i s needed to s p e c i f y how the mutat ion shou l d behave
% in t h a t p e r i od .
%
% The ou tpu t i s t h e matr ix o f mutated v a l u e s . This w i l l be appended to
% the o r i g i n a l v a l u e s ;

vals2mutate= . . .
f loor (rand ( s ize ( input va l s , 1 ) , s ize ( input va l s , 2 ) ) . . .
.∗ (10 . / ( log (1096 .633 + mod( the generat i on , 300 ) .∗ 13668.15 . / 299) ) ) ) ;

va l s2mutate log = vals2mutate > 0 ;

% The mutat ion r a t e v a r i e s from about 30 pe r c en t to about 4 pe r c en t ;

% the mutat ion p ropo r t i on becomes more and more concen t r a t e d a t 1
% u n t i l t h e r e s e t o f t h e t h e a l pha and b e t a v a l u e s ;
mutate prop=ones ( s ize ( input va l s , 1 ) , s ize ( input va l s , 2 ) ) ;
mutate prop 4 dev= 2 .∗ betarnd ((10 + 2 .∗ mod( the generat i on , 300 ) ) , . . .

(10 + 2 .∗ mod( the generat i on , 300 ) ) , . . .
s ize ( input va l s , 1 ) , s ize ( input va l s , 2 ) ) ;

mutate prop ( va l s2mutate log )=mutate prop 4 dev ( va l s2mutate log ) ;

output va l s=inpu t va l s .∗ mutate prop ;
end

Listing B.10: MATLAB Code Implementing Genetic Algorithm: get new pop -
count.m
function t h e pop i n t = get new pop count ( prev pop , l o g e f f h i n p u t s )

i n i t p op=prev pop ;

% here I compute t h e t r a n s i t i o n p r o b a b i l i t i e s ;
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a l p h a l i v e =[5.2 4 .9 4 .6 4 .3 4 .0 3 .7 3 .4 3 .1 . . .
2 . 8 2 .5 2 .2 1 .9 1 .6 1 .3 1 .0 0 .7 . . .
0 . 4 0 .1 −0.2 −0.5 −0.8 −1.1 −1.4 −1.7 . . .
4 . 2 3 .9 3 .6 3 .3 3 .0 2 .7 2 .4 2 .1 . . .
1 . 8 1 .5 1 .2 0 .9 0 .6 0 .3 0 .0 −0.3 . . .
−0.6 −0.9 −1.2 −1.5 −1.8 −2.1 −2.4 −2 .7 ] ;

a l pha h g i v en l=a l ph a l i v e ;

b e t a l i v e =[0.48 0 .46 0 .44 0 .42 0 .40 0 .38 0 .36 0 .34 . . .
0 .32 0 .30 0 .28 0 .26 0 .24 0 .22 0 .20 0 .18 . . .
0 .16 0 .14 0 .12 0 .10 0 .08 0 .06 0 .04 0 .02 . . .
0 .48 0 .46 0 .44 0 .42 0 .40 0 .38 0 .36 0 .34 . . .
0 .32 0 .30 0 .28 0 .26 0 .24 0 .22 0 .20 0 .18 . . .
0 .16 0 .14 0 .12 0 .10 0 .08 0 .06 0 .04 0 . 0 2 ] ;

b e t a h g i v e n l=b e t a l i v e ;

%compute odds o f l i v i n g ;% I t e q u a l s exp ( a l pha+be t a ∗ l n ( e f f . h e a l t h . expend ) ) ;
odd s l i v e=exp( a l pha l i v e ’ + ( b e t a l i v e ’ .∗ l o g e f f h i n p u t s ) ) ;

p r ob l i v e=odd s l i v e . / ( ones (48 ,1 )+odd s l i v e ) ;

o dd s h l i v e=exp( a l pha h g i v en l ’ + ( be t a h g i v en l ’ .∗ l o g e f f h i n p u t s ) ) ;

p r ob h l i v e=odd s h l i v e . / ( ones (48 ,1 )+odd s h l i v e ) ;

prob hea l thy= p rob l i v e .∗ p r ob h l i v e ;
p rob s i ck=p r ob l i v e .∗ (1− p r ob h l i v e ) ;

% These nex t two v a r i a b l e s do not t a k e i n t o account age c a t e g o r y
% g e n e r a l l y b e i n g incremented ;

num heal thy next per iod=in i t pop (1 : 2 4 , 1 ) .∗ prob hea l thy ( 1 : 2 4 , 1 ) + . . .
i n i t p op (25 : 48 , 1 ) .∗ prob hea l thy (25 : 48 , 1 ) ;

num s ick next per iod=in i t pop (1 : 2 4 , 1 ) .∗ prob s i ck ( 1 : 2 4 , 1 ) + . . .
i n i t p op (25 : 48 , 1 ) .∗ prob s i ck ( 25 : 48 , 1 ) ;

% Now I a d j u s t f o r age u s u a l l y go ing up , w i th 115+ s t a y i n g in 115+
% age group i f s u r v i v e , and a l s o con s t an t amount o f p eop l e in each
% i n i t i a l age group , though numbers d i f f e r a c r o s s r i s k groups .
n h n p =[10000000 ( num heal thy next per iod ( 1 : 2 2 , 1 ) ’ ) . . .

( num hea l thy next per iod (23 ,1 )+num heal thy next per iod (24 ,1 ) ) ] ;

n s n p =[1000000 ( num s ick next per iod ( 1 : 2 2 , 1 ) ’ ) . . .
( num s ick next per iod (23 ,1 )+num s ick next per iod (24 ,1 ) ) ] ;

%Now put i t a l l t o g e t h e r f o r ou tpu t ;
the pop in t row =[ n h n p n s n p ] ;
t h e pop i n t=the pop in t row ’ ;

end

Listing B.11: MATLAB Code to Rank Values and Save Best Run for Each Period:
usefulMatlab
% Import a l l t h e data

% ge t o b j f u n c t i o n v a l u e f o r each run

ob j f un c t i o n va l u e s=zeros (20 ,5 )

k=0; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 1 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 1 ( 4 9 , : ) , h lev , 5 )

k=1; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 2 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 2 ( 4 9 , : ) , h lev , 5 )

k=2; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 3 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 3 ( 4 9 , : ) , h lev , 5 )

k=3; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 4 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 4 ( 4 9 , : ) , h lev , 5 )

k=4; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 5 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 5 ( 4 9 , : ) , h lev , 5 )

k=5; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 6 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 6 ( 4 9 , : ) , h lev , 5 )

k=6; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 7 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 7 ( 4 9 , : ) , h lev , 5 )

k=7; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 8 ( 1 : 4 8 , : ) , z t , 5 ) ;
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ob j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 8 ( 4 9 , : ) , h lev , 5 )

k=8; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 9 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 9 ( 4 9 , : ) , h lev , 5 )

k=9; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 10 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 10 ( 4 9 , : ) , h lev , 5 )

k=10; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 11 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 11 ( 4 9 , : ) , h lev , 5 )

k=11; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 12 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 12 ( 4 9 , : ) , h lev , 5 )

k=12; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 13 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 13 ( 4 9 , : ) , h lev , 5 )

k=13; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 14 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 14 ( 4 9 , : ) , h lev , 5 )

k=14; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 15 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 15 ( 4 9 , : ) , h lev , 5 )

k=15; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 16 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 16 ( 4 9 , : ) , h lev , 5 )

k=16; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 17 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 17 ( 4 9 , : ) , h lev , 5 )

k=17; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 18 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 18 ( 4 9 , : ) , h lev , 5 )

k=18; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 19 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 19 ( 4 9 , : ) , h lev , 5 )

k=19; z t=exp (0 .05∗ k ) ; h l ev=compute health ( Be s t 4 pe r i od 20 ( 1 : 4 8 , : ) , z t , 5 ) ;
o b j f un c t i o n va l u e s ( ( k+1) , : )=compute obj funct ion ( f o r v22 ( : , ( k+1) ) , Be s t 4 pe r i od 20 ( 4 9 , : ) , h lev , 5 )

% Now have o b j e c t i v e f u n c t i o n v a l u e s

B.3 R Code

Listing B.12: R Code to Make Baseball Plot
# These e s t ima t ed v a l u e s were o b t a i n ed from SAS
f i t 1 c o e f<− c (−0.8422 , 0 .1317)

f i t 2 c o e f<− matrix (c (0 . 1009 , 0.1043 ,−0.1532 , −0.0891) ,nrow=2,byrow=FALSE)

out . prob <− function (x , coef1 , coe f 2 ) {1/(1+exp( coe f1+coe f2∗x ) )}

which . prob<− function (x , i n t . prob , s l ope . prob , other . int1 , other . s lope1 ,
other . int2 , other . s lope2 , non . out . int , non . out . s l ope ) {

(exp( non . out . i n t + non . out . s l ope∗x )/ (exp( non . out . i n t + non . out . s l ope ∗x )+1) ) ∗
(exp( i n t . prob + s l ope . prob∗x )/ (exp( i n t . prob + s l ope . prob∗x ) +
exp( other . i n t1 + other . s l ope1∗x ) + exp( other . i n t2 + other . s l ope2∗x ) ) )

}
t t<−seq (0 ,20 ,by=0.05)

par ( mfcol=c (1 , 1 ) )
pdf ( f i l e=”F: /pro j e c tapr27/Pro jec t/Murphy . pdf ” , he ight =6, width=6)

# Plo t o f p r o b a b i l i t y o f g e t t i n g out as a f un c t i o n o f ERA
plot ( tt , out . prob ( tt , f i t 1 c o e f [ 1 ] , f i t 1 c o e f [ 2 ] ) , type=” l ” , ylim=c ( 0 . 0 32 , 0 . 9 68 ) ,
xlab=”Pitcher ’ s ERA” ,
ylab=” Probab i l i t y ” , lwd=2, xlim=c ( 0 . 5 , 1 5 )

#main=”Model Es t imated P r o b a b i l i t i e s o f P l a t e
#Appearance Outcomes as a Funct ion o f ERA\ n fo r Dale Murphy , 1987”
)

# Add to p l o t p r o b a b i l i t y o f s a c r i f i c e or walk as f u n c t i o n o f ERA
l ines ( tt ,which . prob ( tt , 0 , 0 , f i t 2 c o e f [ 1 , 1 ] , f i t 2 c o e f [ 1 , 2 ] , f i t 2 c o e f [ 2 , 1 ] , f i t 2 c o e f [ 2 , 2 ] ,
f i t 1 c o e f [ 1 ] , f i t 1 c o e f [ 2 ] ) , l t y =2,col=”black ” , lwd=2)

# Add to p l o t p r o b a b i l i t y o f s i n g l e as a f un c t i o n o f ERA
l ines ( tt ,which . prob ( tt , f i t 2 c o e f [ 2 , 1 ] , f i t 2 c o e f [ 2 , 2 ] , 0 , 0 , f i t 2 c o e f [ 1 , 1 ] , f i t 2 c o e f [ 1 , 2 ] ,
f i t 1 c o e f [ 1 ] , f i t 1 c o e f [ 2 ] ) , l t y =3,col=”black ” , lwd=2)

# Add to p l o t p r o b a b i l i t y o f mu l t i p l e−base h i t as a f un c t i o n o f ERA
l ines ( tt ,which . prob ( tt , f i t 2 c o e f [ 1 , 1 ] , f i t 2 c o e f [ 1 , 2 ] , 0 , 0 , f i t 2 c o e f [ 2 , 1 ] , f i t 2 c o e f [ 2 , 2 ] ,
f i t 1 c o e f [ 1 ] , f i t 1 c o e f [ 2 ] ) , l t y =4,col=”black ” , lwd=2)

# Add a l e g end : mod i f i ed code from ? l e g end
temp <− legend ( 8 , 0 . 9 5 , legend = c ( ” ” , ” ” , ” ” , ” ” ) , l t y =1:4 , t i t l e=”Outcome” ,
col=c ( ” black ” , ” black ” , ” black ” , ” black ” ) , text . width=strwidth ( ”Non−S a c r i f i c e Out” ) ,
lwd=2)

text ( temp$rect$ l e f t + temp$rect$w, temp$text$y ,
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c ( ”Non−S a c r i f i c e Out” , ” S a c r i f i c e /Walk” , ” S ing l e ” , ”Mult iple−Base Hit ” ) , pos=2)
dev . of f ( )

Listing B.13: R Code to Get Populations Numbers
# This i s code to g e t summary popu l a t i o n numbers f o r s e l e c t e d t ime p e r i o d s

thePopulat ions<−read . table ( ”E: / f o r v22 . txt ” )

round( thePopulat ions [ , c (1 , 2 , 6 , 7 , 11 ,12 ,16 ,17 ) ] )
thePopulat ions [ 24 , c (1 , 2 , 6 , 7 , 11 ,12 ,16 ,17 ) ]
apply ( thePopulat ions [ , c (1 , 2 , 6 , 7 , 11 ,12 ,16 ,17 ) ] , 2 ,sum)

Listing B.14: R Code to Make Health Proportion Plot
# Code to make h e a l t h spend ing p l o t
setwd ( ”E: /tempThesis ” )
for . v11<−as . matrix ( read . table ( ” f o r v11” ) )
for . v22<−as . matrix ( read . table ( ” f o r v22” ) )

for . v11
for . v22

pop .sum<−apply ( for . v22 , 2 ,sum)
t o t a l . cons<−pop .sum ∗ for . v11 [ 4 9 , ]
hea l th . sp . per . s t a t e<−for . v22
t o t a l . hea l th<−diag ( t ( for . v22 ) %∗% for . v11 [−49 , ] )

t o t a l . income1<−t o t a l . cons+t o t a l . hea l th
t o t a l . income2<−exp ( 0 : 19 ∗ (5∗0 .02284) ) ∗pop .sum
t o t a l . income1
t o t a l . income2

prop . hea l th1<−t o t a l . hea l th/ t o t a l . income1
prop . hea l th2<−t o t a l . hea l th/ t o t a l . income2

prop . hea l th3<− 1 − ( t o t a l . cons/ t o t a l . income1 )
prop . hea l th4<− 1− ( t o t a l . cons/ t o t a l . income2 )
max. percent . d i f f<−function (x , y ) {100∗max(abs (2∗(x− y )/ ( x+y) ) )}
max. percent . d i f f ( t o t a l . income1 , t o t a l . income2 )
max. percent . d i f f (prop . health1 ,prop . hea l th2 )

pdf ( f i l e=”F: /Pro jec t/hea l thP lot . pdf ” , he ight =6,width=6)
par (mfrow=c (1 , 1 ) )
plot ( 0 : 1 9 ,prop . health1 , type=” l ” ,
main=”” ,
xlab=”Time Period t ” ,
ylab=”Income Proport ion f o r Health Spending” )

dev . of f ( )
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C. GENETIC ALGORITHM ARGUMENT VALUES FOR SELECTED TIME

PERIODS
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Table C.1: Information from five genetic algorithm runs for time period 0 (2005–2009)

Implied
Associated Argument value (per state member) population
argument in 2005 per capita income units Population for next
(of form for present period from

For state hg,a,t or ct) Run 1 Run 2 Run 3 Run 4 Run 5a period best run

Healthy, ages 0–4 h1,0−4,0 0.062022 0.062022 0.062022 0.062022 0.062022 10,000,000 10,000,000
Healthy, 5–9 h1,5−9,0 0.067858 0.067858 0.067858 0.067858 0.067858 9,950,000 10,509,352
Healthy, 10–14 h1,10−14,0 0.074145 0.074145 0.074145 0.074145 0.074145 9,900,000 10,355,187
Healthy, 15–19 h1,15−19,0 0.080853 0.080853 0.080853 0.080853 0.080853 9,850,000 10,177,275
Healthy, 20–24 h1,20−24,0 0.087916 0.087918 0.087915 0.087915 0.087915 9,800,000 9,970,164
Healthy, 25–29 h1,25−29,0 0.095216 0.095217 0.095217 0.095217 0.095217 9,750,000 9,727,321
Healthy, 30–34 h1,30−34,0 0.102572 0.102574 0.102572 0.102572 0.102572 9,700,000 9,672,278
Healthy, 35–39 h1,35−39,0 0.109702 0.109702 0.109702 0.109702 0.109702 9,650,000 9,463,376
Healthy, 40–44 h1,40−44,0 0.116216 0.116215 0.116215 0.116215 0.116216 9,600,000 9,100,850
Healthy, 45–49 h1,45−49,0 0.121590 0.121590 0.121589 0.121590 0.121590 9,550,000 8,649,835
Healthy, 50–54 h1,50−54,0 0.125175 0.125175 0.125175 0.125175 0.125176 9,450,000 8,100,626
Healthy, 55–59 h1,55−59,0 0.126231 0.126232 0.126232 0.126232 0.126232 9,100,000 7,457,642
Healthy, 60–64 h1,60−64,0 0.124035 0.124035 0.124035 0.124035 0.124035 8,500,000 6,493,960
Healthy, 65–69 h1,65−69,0 0.118048 0.118048 0.118048 0.118048 0.118048 7,500,000 5,331,025
Healthy, 70–74 h1,70−74,0 0.108151 0.108151 0.108151 0.108151 0.108151 6,000,000 4,142,320
Healthy, 75–79 h1,75−79,0 0.094837 0.094837 0.094837 0.094837 0.094836 2,000,000 2,777,754
Healthy, 80–84 h1,80−84,0 0.079244 0.079244 0.079243 0.079244 0.079243 1,000,000 838,954
Healthy, 85–89 h1,85−89,0 0.062924 0.062924 0.062924 0.062924 0.062923 200,000 280,106
Healthy, 90–94 h1,90−94,0 0.047422 0.047421 0.047422 0.047422 0.047422 120,000 56,981
Healthy, 95–99 h1,95−99,0 0.033867 0.033867 0.033867 0.033868 0.033867 80,000 28,602
Healthy, 100–104 h1,100−104,0 0.022797 0.022798 0.022798 0.022797 0.022798 10,000 12,193
Healthy, 105–109 h1,105−109,0 0.014236 0.014236 0.014234 0.014234 0.014235 1,000 1,669
Healthy, 110–114 h1,110−114,0 0.290470 0.266179 0.627921 0.725581 0.178767 0 56

Healthy, 115+ h1,115+,0 0.046522 0.394526 0.196810 0.388436 0.101274 0 0b

Sick, 0–4 h2,0−4,0 0.100985 0.100986 0.100986 0.100986 0.100986 1,000,000 1,000,000
Sick, 5–9 h2,5−9,0 0.110077 0.110078 0.110078 0.110078 0.110078 1,000,000 242,288
Sick, 10–14 h2,10−14,0 0.119534 0.119534 0.119534 0.119532 0.119534 1,000,000 292,891
Sick, 15–19 h2,15−19,0 0.129129 0.129126 0.129128 0.129129 0.129128 1,000,000 354,608
Sick, 20–24 h2,20−24,0 0.138513 0.138513 0.138513 0.138513 0.138513 1,000,000 429,759
Sick, 25–29 h2,25−29,0 0.147188 0.147187 0.147187 0.147188 0.147187 1,300,000 520,988
Sick, 30–34 h2,30−34,0 0.154474 0.154474 0.154474 0.154474 0.154475 1,500,000 663,329
Sick, 35–39 h2,35−39,0 0.159514 0.159514 0.159514 0.159513 0.159514 1,600,000 827,182
Sick, 40–44 h2,40−44,0 0.161317 0.161317 0.161317 0.161317 0.161317 1,700,000 1,010,214
Sick, 45–49 h2,45−49,0 0.158894 0.158896 0.158895 0.158897 0.158895 1,800,000 1,224,666
Sick, 50–54 h2,50−54,0 0.151511 0.151510 0.151510 0.151510 0.151510 2,000,000 1,469,031
Sick, 55–59 h2,55−59,0 0.138991 0.138989 0.138991 0.138990 0.138991 2,050,000 1,752,486
Sick, 60–64 h2,60−64,0 0.122026 0.122026 0.122027 0.122027 0.122026 2,000,000 1,971,118
Sick, 65–69 h2,65−69,0 0.102207 0.102208 0.102207 0.102209 0.102207 2,500,000 2,092,252
Sick, 70–74 h2,70−74,0 0.081663 0.081663 0.081663 0.081665 0.081663 2,500,000 2,204,559
Sick, 75–79 h2,75−79,0 0.062430 0.062429 0.062430 0.062430 0.062430 2,000,000 1,977,474
Sick, 80–84 h2,80−84,0 0.045895 0.045896 0.045895 0.045895 0.045896 500,000 918,537
Sick, 85–89 h2,85−89,0 0.032613 0.032612 0.032612 0.032612 0.032612 500,000 344,010
Sick, 90–94 h2,90−94,0 0.022468 0.022469 0.022469 0.022469 0.022468 500,000 129,322
Sick, 95–99 h2,95−99,0 0.014997 0.014997 0.014997 0.014997 0.014997 300,000 95,047
Sick, 100–104 h2,100−104,0 0.009627 0.009627 0.009627 0.009627 0.009627 100,000 50,313
Sick, 105–109 h2,105−109,0 0.005829 0.005828 0.005829 0.005829 0.005829 2,000 11,058
Sick, 110–114 h2,110−114,0 0.003167 0.003167 0.003167 0.003167 0.003167 100 314
Sick, 115+ h2,115+,0 0.013924 0.231224 0.260045 0.364651 0.500093 0 6

All ct=0 0.896995 0.896995 0.896995 0.896995 0.896995 169,563,100 152,728,981

NOTE: For display purposes, the population numbers were rounded to the nearest integer using the R function round.
aBest of the 5 runs.
bThis number is about 0.45.
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Table C.2: Information from five genetic algorithm runs for time period 5 (2030–2034)

Implied
Associated Argument value (per state member) population
argument in 2005 per capita income units Population for next
(of form for present period from

For state hg,a,t or ct) Run 1a Run 2 Run 3 Run 4 Run 5 period best run

Healthy, ages 0–4 h1,0−4,5 0.114921 0.114921 0.114921 0.114921 0.114921 10,000,000 10,000,000
Healthy, 5–9 h1,5−9,5 0.127164 0.127164 0.127164 0.127164 0.127164 10,645,073 10,672,602
Healthy, 10–14 h1,10−14,5 0.140619 0.140620 0.140620 0.140619 0.140619 10,407,755 10,452,882
Healthy, 15–19 h1,15−19,5 0.155311 0.155311 0.155310 0.155311 0.155311 10,089,877 10,157,160
Healthy, 20–24 h1,20−24,5 0.171207 0.171207 0.171207 0.171207 0.171207 9,690,583 9,784,053
Healthy, 25–29 h1,25−29,5 0.188190 0.188191 0.188191 0.188190 0.188190 9,195,823 9,319,468
Healthy, 30–34 h1,30−34,5 0.206013 0.206014 0.206013 0.206015 0.206013 8,750,355 8,748,731
Healthy, 35–39 h1,35−39,5 0.224242 0.224242 0.224242 0.224242 0.224245 8,219,074 8,207,642
Healthy, 40–44 h1,40−44,5 0.242187 0.242188 0.242188 0.242187 0.242187 7,588,227 7,565,753
Healthy, 45–49 h1,45−49,5 0.258830 0.258831 0.258830 0.258830 0.258829 6,846,470 6,811,958
Healthy, 50–54 h1,50−54,5 0.272758 0.272758 0.272755 0.272758 0.272765 6,145,106 5,942,266
Healthy, 55–59 h1,55−59,5 0.282162 0.282159 0.282163 0.282162 0.282163 5,240,740 5,096,065
Healthy, 60–64 h1,60−64,5 0.284955 0.284955 0.284955 0.284955 0.284954 4,189,205 4,086,491
Healthy, 65–69 h1,65−69,5 0.279091 0.279091 0.279090 0.279091 0.279090 3,107,338 3,006,560
Healthy, 70–74 h1,70−74,5 0.263148 0.263151 0.263148 0.263148 0.263147 2,091,252 1,996,994
Healthy, 75–79 h1,75−79,5 0.237060 0.237060 0.237060 0.237061 0.237059 1,248,035 1,163,669
Healthy, 80–84 h1,80−84,5 0.202671 0.202671 0.202671 0.202671 0.202672 621,047 578,522
Healthy, 85–89 h1,85−89,5 0.163632 0.163630 0.163632 0.163629 0.163631 252,806 230,257
Healthy, 90–94 h1,90−94,5 0.124417 0.124417 0.124418 0.124417 0.124418 84,769 72,142
Healthy, 95–99 h1,95−99,5 0.088925 0.088928 0.088927 0.088926 0.088926 21,284 18,053
Healthy, 100–104 h1,100−104,5 0.059482 0.059489 0.059486 0.059485 0.059479 2,231 3,321
Healthy, 105–109 h1,105−109,5 0.036692 0.036691 0.036697 0.036706 0.036704 219 254
Healthy, 110–114 h1,110−114,5 0.019980 0.019988 0.019981 0.019995 0.019979 15 18

Healthy, 115+ h1,115+,5 0.008172 0.008169 0.008169 0.008169 0.008188 3b 1c

Sick, 0–4 h2,0−4,5 0.189451 0.189450 0.189451 0.189451 0.189446 1,000,000 1,000,000
Sick, 5–9 h2,5−9,5 0.209432 0.209431 0.209432 0.209430 0.209432 175,885 162,357
Sick, 10–14 h2,10−14,5 0.230951 0.230950 0.230950 0.230950 0.230951 197,093 182,414
Sick, 15–19 h2,15−19,5 0.253762 0.253763 0.253761 0.253766 0.253764 238,093 221,375
Sick, 20–24 h2,20−24,5 0.277400 0.277401 0.277398 0.277398 0.277406 286,954 268,174
Sick, 25–29 h2,25−29,5 0.301086 0.301086 0.301086 0.301087 0.301091 343,824 323,220
Sick, 30–34 h2,30−34,5 0.323618 0.323622 0.323617 0.323617 0.323617 415,892 386,516
Sick, 35–39 h2,35−39,5 0.343290 0.343289 0.343288 0.343292 0.343290 500,268 465,325
Sick, 40–44 h2,40−44,5 0.357831 0.357832 0.357831 0.357830 0.357839 596,325 554,920
Sick, 45–49 h2,45−49,5 0.364514 0.364514 0.364512 0.364517 0.364512 700,878 652,161
Sick, 50–54 h2,50−54,5 0.360510 0.360511 0.360510 0.360507 0.360510 827,396 749,773
Sick, 55–59 h2,55−59,5 0.343621 0.343620 0.343620 0.343620 0.343623 937,528 856,152
Sick, 60–64 h2,60−64,5 0.313288 0.313288 0.313291 0.313290 0.313290 1,006,022 923,768
Sick, 65–69 h2,65−69,5 0.271510 0.271511 0.271514 0.271510 0.271510 1,011,820 923,954
Sick, 70–74 h2,70−74,5 0.222887 0.222887 0.222887 0.222887 0.222882 931,956 842,367
Sick, 75–79 h2,75−79,5 0.173391 0.173391 0.173393 0.173392 0.173391 767,540 679,591
Sick, 80–84 h2,80−84,5 0.128352 0.128352 0.128352 0.128354 0.128353 531,006 471,380
Sick, 85–89 h2,85−89,5 0.090954 0.090954 0.090951 0.090953 0.090952 302,549 263,597
Sick, 90–94 h2,90−94,5 0.062018 0.062017 0.062017 0.062018 0.062016 142,886 116,784
Sick, 95–99 h2,95−99,5 0.040748 0.040748 0.040748 0.040749 0.040749 50,778 41,546
Sick, 100–104 h2,100−104,5 0.025662 0.025664 0.025662 0.025664 0.025663 7,555 10,895
Sick, 105–109 h2,105−109,5 0.015212 0.015214 0.015216 0.015213 0.015214 1,048 1,187
Sick, 110–114 h2,110−114,5 0.008089 0.008087 0.008090 0.008084 0.008092 102 121
Sick, 115+ h2,115+,5 0.003273 0.003272 0.003266 0.003271 0.003274 28 11

All ct=5 1.567749 1.567748 1.567749 1.567749 1.567748 125,410,713 124,012,454

NOTE: For display purposes, the population numbers were rounded to the nearest integer using the R function round.
aBest of the 5 runs.
bThis number is about 2.88.
cThis number is about 1.12.

76



Table C.3: Information from five genetic algorithm runs for time period 10 (2055–
2059)

Implied
Associated Argument value (per state member) population
argument in 2005 per capita income units Population for next
(of form for present period from

For state hg,a,t or ct) Run 1 Run 2 Run 3 Run 4a Run 5 period best run

Healthy, ages 0–4 h1,0−4,10 0.210452 0.210451 0.21045 0.210451 0.210451 10,000,000 10,000,000
Healthy, 5–9 h1,5−9,10 0.235341 0.235341 0.235341 0.235341 0.235341 10,762,842 10,781,163
Healthy, 10–14 h1,10−14,10 0.263151 0.263153 0.263151 0.263151 0.263152 10,601,296 10,631,538
Healthy, 15–19 h1,15−19,10 0.294088 0.294088 0.294088 0.294088 0.294088 10,380,106 10,425,882
Healthy, 20–24 h1,20−24,10 0.328283 0.328283 0.328285 0.328283 0.328283 10,096,488 10,161,203
Healthy, 25–29 h1,25−29,10 0.365745 0.365743 0.365743 0.365745 0.365741 9,736,660 9,823,975
Healthy, 30–34 h1,30−34,10 0.406257 0.406257 0.406257 0.406256 0.406257 9,284,995 9,398,601
Healthy, 35–39 h1,35−39,10 0.449277 0.449277 0.449277 0.449277 0.449277 8,724,958 8,868,136
Healthy, 40–44 h1,40−44,10 0.493749 0.493747 0.493749 0.493749 0.493749 8,040,888 8,215,795
Healthy, 45–49 h1,45−49,10 0.537896 0.537906 0.537900 0.537900 0.537900 7,221,318 7,427,884
Healthy, 50–54 h1,50−54,10 0.579000 0.578999 0.578999 0.578999 0.578998 6,264,420 6,498,932
Healthy, 55–59 h1,55−59,10 0.613155 0.613156 0.613158 0.613157 0.613153 5,282,057 5,439,509
Healthy, 60–64 h1,60−64,10 0.635304 0.635309 0.635302 0.635304 0.635304 4,211,059 4,365,704
Healthy, 65–69 h1,65−69,10 0.639608 0.639607 0.639604 0.639607 0.639608 3,110,066 3,251,551
Healthy, 70–74 h1,70−74,10 0.620577 0.620565 0.620580 0.620578 0.620577 2,071,023 2,187,555
Healthy, 75–79 h1,75−79,10 0.575015 0.575015 0.575016 0.575015 0.575016 1,232,911 1,284,299
Healthy, 80–84 h1,80−84,10 0.504276 0.504265 0.504270 0.504268 0.504279 608,354 647,673
Healthy, 85–89 h1,85−89,10 0.415418 0.415422 0.415419 0.415423 0.415423 238,347 258,772
Healthy, 90–94 h1,90−94,10 0.319903 0.319898 0.319905 0.319901 0.319903 71,753 78,396
Healthy, 95–99 h1,95−99,10 0.229626 0.229625 0.229626 0.229620 0.229632 16,086 17,517
Healthy, 100–104 h1,100−104,10 0.153024 0.153031 0.153019 0.153027 0.153018 2,655 2,831
Healthy, 105–109 h1,105−109,10 0.093448 0.093446 0.093449 0.093442 0.093466 314 333
Healthy, 110–114 h1,110−114,10 0.050128 0.050122 0.050098 0.050132 0.050120 28 28

Healthy, 115+ h1,115+,10 0.020157 0.020187 0.020110 0.020155 0.020120 2b 2c

Sick, 0–4 h2,0−4,10 0.349753 0.349755 0.349755 0.349753 0.349757 1,000,000 1,000,000
Sick, 5–9 h2,5−9,10 0.391499 0.391495 0.391489 0.391494 0.391498 117,878 108,822
Sick, 10–14 h2,10−14,10 0.437603 0.437609 0.437610 0.437612 0.437618 133,823 123,860
Sick, 15–19 h2,15−19,10 0.488011 0.488011 0.488021 0.488016 0.488011 165,170 153,471
Sick, 20–24 h2,20−24,10 0.542272 0.542270 0.542272 0.542283 0.542273 203,850 190,220
Sick, 25–29 h2,25−29,10 0.599414 0.599406 0.599407 0.599410 0.599409 250,942 235,290
Sick, 30–34 h2,30−34,10 0.657614 0.657620 0.657611 0.657619 0.657632 307,480 289,879
Sick, 35–39 h2,35−39,10 0.713969 0.713975 0.713975 0.713977 0.713972 373,939 354,764
Sick, 40–44 h2,40−44,10 0.764073 0.764072 0.764069 0.764071 0.764078 449,575 429,685
Sick, 45–49 h2,45−49,10 0.801852 0.801859 0.801858 0.801857 0.801861 531,374 512,354
Sick, 50–54 h2,50−54,10 0.819863 0.819871 0.819875 0.819879 0.819872 612,571 596,972
Sick, 55–59 h2,55−59,10 0.810296 0.810303 0.810293 0.810296 0.810288 693,635 672,441
Sick, 60–64 h2,60−64,10 0.767216 0.767214 0.767219 0.767215 0.767218 750,907 734,501
Sick, 65–69 h2,65−69,10 0.689791 0.689783 0.689791 0.689794 0.689793 761,578 753,086
Sick, 70–74 h2,70−74,10 0.584770 0.584771 0.584773 0.584771 0.584772 704,026 705,278
Sick, 75–79 h2,75−79,10 0.465963 0.465962 0.465968 0.465961 0.465962 587,633 582,330
Sick, 80–84 h2,80−84,10 0.349613 0.349617 0.349617 0.349620 0.349616 410,140 416,793
Sick, 85–89 h2,85−89,10 0.248429 0.248433 0.248434 0.248434 0.248435 229,101 238,281
Sick, 90–94 h2,90−94,10 0.168315 0.168316 0.168315 0.168314 0.168316 99,058 104,076
Sick, 95–99 h2,95−99,10 0.109146 0.109144 0.109146 0.109147 0.109149 32,104 33,757
Sick, 100–104 h2,100−104,10 0.067541 0.067545 0.067543 0.067543 0.067544 7,696 7,959
Sick, 105–109 h2,105−109,10 0.039246 0.039243 0.039243 0.039250 0.039248 1,324 1,366
Sick, 110–114 h2,110−114,10 0.020424 0.020431 0.020420 0.020430 0.020420 168 168
Sick, 115+ h2,115+,10 0.008082 0.008077 0.008077 0.008084 0.008081 18 17

All ct 2.721844 2.721844 2.721844 2.721844 2.721844 126,382,619 128,012,648

NOTE: For display purposes, the population numbers were rounded to the nearest integer using the R function round.
aBest of the 5 runs.
bThis number is about 2.08.
cThis number is about 1.94.
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Table C.4: Information from five genetic algorithm runs for time period 15 (2080–
2084)

Implied
Associated Argument value (per state member) population
argument in 2005 per capita income units Population for next
(of form for present period from

For state hg,a,t or ct) Run 1 Run 2 Run 3 Run 4 Run 5a period best run

Healthy, ages 0–4 h1,0−4,15 0.381452 0.381452 0.381453 0.381452 0.381452 10,000,000 10,000,000
Healthy, 5–9 h1,5−9,15 0.430857 0.430861 0.430857 0.430857 0.430853 10,841,186 10,853,381
Healthy, 10–14 h1,10−14,15 0.486847 0.486847 0.486847 0.486848 0.486847 10,730,943 10,751,213
Healthy, 15–19 h1,15−19,15 0.550118 0.550116 0.550116 0.550116 0.550116 10,577,278 10,608,346
Healthy, 20–24 h1,20−24,15 0.621297 0.621297 0.621297 0.621297 0.621297 10,376,774 10,421,327
Healthy, 25–29 h1,25−29,15 0.700868 0.700868 0.700867 0.700868 0.700868 10,117,289 10,178,415
Healthy, 30–34 h1,30−34,15 0.788993 0.788993 0.788993 0.788993 0.788993 9,784,085 9,865,211
Healthy, 35–39 h1,35−39,15 0.885285 0.885292 0.885285 0.885282 0.885285 9,359,888 9,464,599
Healthy, 40–44 h1,40−44,15 0.988448 0.988448 0.988453 0.988448 0.988450 8,825,423 8,957,083
Healthy, 45–49 h1,45−49,15 1.095776 1.095776 1.095776 1.095776 1.095776 8,160,982 8,322,059
Healthy, 50–54 h1,50−54,15 1.202502 1.202501 1.202502 1.202502 1.202502 7,349,824 7,540,790
Healthy, 55–59 h1,55−59,15 1.301057 1.301056 1.301057 1.301057 1.301057 6,384,468 6,602,205
Healthy, 60–64 h1,60−64,15 1.380464 1.380480 1.380480 1.380470 1.380480 5,276,842 5,512,674
Healthy, 65–69 h1,65−69,15 1.426490 1.426490 1.426490 1.426490 1.426490 4,071,581 4,309,724
Healthy, 70–74 h1,70−74,15 1.423091 1.423090 1.423093 1.423091 1.423091 2,857,083 3,075,254
Healthy, 75–79 h1,75−79,15 1.356645 1.356682 1.356644 1.356647 1.356647 1,760,735 1,935,383
Healthy, 80–84 h1,80−84,15 1.222343 1.222349 1.222356 1.222340 1.222353 928,627 1,028,128
Healthy, 85–89 h1,85−89,15 1.030343 1.030353 1.030351 1.030355 1.030371 393,552 445,638
Healthy, 90–94 h1,90−94,15 0.806340 0.806332 0.806330 0.806333 0.806325 127,058 147,320
Healthy, 95–99 h1,95−99,15 0.583167 0.583157 0.583159 0.583173 0.583171 29,754 35,280
Healthy, 100–104 h1,100−104,15 0.388173 0.388191 0.388165 0.388191 0.388166 5,003 5,886
Healthy, 105–109 h1,105−109,15 0.235055 0.235014 0.235053 0.235054 0.235044 575 689
Healthy, 110–114 h1,110−114,15 0.124384 0.124342 0.124293 0.124358 0.124296 46 55

Healthy, 115+ h1,115+,15 0.049145 0.049140 0.049199 0.049083 0.049018 3b 3c

Sick, 0–4 h2,0−4,15 0.637326 0.637326 0.637326 0.637328 0.637326 1,000,000 1,000,000
Sick, 5–9 h2,5−9,15 0.721540 0.721538 0.721531 0.721547 0.721541 79,094 73,043
Sick, 10–14 h2,10−14,15 0.816440 0.816411 0.816426 0.816436 0.816419 90,945 84,200
Sick, 15–19 h2,15−19,15 0.922590 0.922582 0.922597 0.922581 0.922586 114,349 106,233
Sick, 20–24 h2,20−24,15 1.040099 1.040117 1.040122 1.040116 1.040105 143,995 134,273
Sick, 25–29 h2,25−29,15 1.168260 1.168246 1.168249 1.168248 1.168250 181,283 169,736
Sick, 30–34 h2,30−34,15 1.304855 1.304869 1.304841 1.304857 1.304854 227,832 214,296
Sick, 35–39 h2,35−39,15 1.445595 1.445584 1.445570 1.445584 1.445580 285,250 269,695
Sick, 40–44 h2,40−44,15 1.583002 1.582994 1.582952 1.582955 1.582950 354,752 337,408
Sick, 45–49 h2,45−49,15 1.705382 1.705386 1.705381 1.705355 1.705377 436,425 417,990
Sick, 50–54 h2,50−54,15 1.796412 1.796419 1.796412 1.796404 1.796427 527,939 509,853
Sick, 55–59 h2,55−59,15 1.835628 1.835712 1.835688 1.835674 1.835686 622,543 607,303
Sick, 60–64 h2,60−64,15 1.802235 1.802225 1.802233 1.802247 1.802233 706,560 697,879
Sick, 65–69 h2,65−69,15 1.681959 1.681938 1.681944 1.681942 1.681930 757,748 760,117
Sick, 70–74 h2,70−74,15 1.476995 1.476981 1.477004 1.476977 1.476993 748,083 765,071
Sick, 75–79 h2,75−79,15 1.211721 1.211715 1.211725 1.211716 1.211724 656,133 687,250
Sick, 80–84 h2,80−84,15 0.927105 0.927095 0.927118 0.927108 0.927090 497,641 526,706
Sick, 85–89 h2,85−89,15 0.664281 0.664287 0.664288 0.664276 0.664284 306,088 332,497
Sick, 90–94 h2,90−94,15 0.449077 0.449068 0.449073 0.449073 0.449070 144,631 161,470
Sick, 95–99 h2,95−99,15 0.288210 0.288210 0.288210 0.288213 0.288211 49,960 57,264
Sick, 100–104 h2,100−104,15 0.175547 0.175545 0.175546 0.175538 0.175540 12,472 14,246
Sick, 105–109 h2,105−109,15 0.100062 0.100064 0.100061 0.100067 0.100071 2,133 2,497
Sick, 110–114 h2,110−114,15 0.051015 0.051008 0.050987 0.051010 0.051017 251 298
Sick, 115+ h2,115+,15 0.019773 0.019767 0.019759 0.019749 0.019781 22 26

All ct 4.694764 4.694762 4.694763 4.694764 4.694763 135,905,128 137,990,018

NOTE: For display purposes, the population numbers were rounded to the nearest integer using the R function round.
aBest of the 5 runs.
bThis number is about 2.73.
cThis number is about 3.25.
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