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ABSTRACT 

 
 

SELECTING THE BEST LINEAR MIXED MODEL 
 

USING PREDICTIVE APPROACHES 
 
 

Jun Wang 
 

Department of Statistics 
 

Master of Science 
 
 

        The linear mixed model is widely implemented in the analysis of longitudinal data.  

Inference techniques and information criteria are available and well-studied for goodness- 

of-fit within the linear mixed model setting. Predictive approaches such as 2
adjR , PRESS ,  

and adjCCC  are available for the linear mixed model but require more research (Edward, 

2005). This project used simulation to investigate the performance of 2
adjR , PRESS, 

adjCCC , Pseudo F-test and information criterion for goodness-of-fit within the linear 

mixed model framework. Marginal and conditional approaches for these predictive 

statistics were studied under different variance-covariance structures.  

        For compound symmetry structure, the success rates for all 17 statistics (marginal 

and conditional PRESS, CCC, and 2R , F test, AIC and BIC) were high. The study 

suggested using marginal rather than conditional residuals for PRESS, CCC and 2R . It 

suggested using REML likelihood function which has the term ||log
2
1

1

'∑
=

m

i
ii XX  for AIC 

and BIC. For CCC, 2R , and the information criterion, there was no difference for the 

various parameter number adjustments.  



    

         For autoregressive order 1 plus random effect, the study suggested using 

conditional residuals for PRESS, marginal residuals for CCC and 2R , and using REML 

function with the term ||log
2
1

1

'∑
=

m

i
ii XX  for AIC and BIC. Also there was no difference 

for the different parameter number adjustments.  

         The F-test performed well for all covariance structures. The study also indicated 

that characteristics of the data, such as the covariance structure, parameter values, and 

sample size, can greatly impact performance of various statistics. No one criterion is 

consistently better than the others in terms of selection performance in the simulation 

study. 
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Chapter 1 
 
 

Introduction 
 

 
 
        The linear mixed model is a powerful tool for the analysis of longitudinal data.  
 
Longitudinal data involves repeated measurements on the same individual or 

experimental unit. For the purposes of estimation and inference, the linear mixed model 

extends the ordinary linear model with independently and identically distributed Gaussian 

errors to a wide variety of correlated Gaussian data.  

        Information criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) are 

available as goodness-of-fit statistics for model selection in the linear mixed model 

setting (Ferron et al., 2002; Gomez et al., 2005). Pseudo F-tests for linear mixed model 

selection are also available using various small sample approximations. The performance 

of these tests for complex mixed linear models was studied by Schaalje et al. (2002).   

         Predictive criteria such as the 2R , PRESS (Allen, 1974), and CCC (Lin, 1989)  
 
statistics have been well established in model selection for standard linear models but  
 
have received little study for linear mixed models (Edwards et al., 2005). However, many 

of these statistics can be adapted to the mixed model setting (Vonesh et al., 1996). For 

example, 2R =
∑

∑

=

=

−

−
− n

i
ii

i

n

i
i

yy

yy

1

2

2

1

)(

)ˆ(
1  is defined in linear regression as the proportion of total 

variation in y that is explained by the model. 2R can be modified in the longitudinal 

setting by using either marginal or conditional predicted values (Schabenberger, 2004). 

CCC, an alternative measure of agreement, was modified by Vonesh et al. (1992) for use 
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in mixed-effects regression settings. The PRESS statistic, a cross-validative measure of 

goodness-of-fit, was modified for the mixed linear model setting by Schabenberger 

(2004) and Christensen et al. (1992). 

         This study uses simulations to investigate and compare the performance of AIC,  
 
BIC, pseudo F, 2R , PRESS and CCC for model selection within the linear mixed model  
 
framework. Marginal and conditional versions for these statistics (Vonesh et al., 1996)  
 
are studied under different variance-covariance structures. 
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Chapter 2 
 
 

Literature Review 
 
 
 

2.1. Linear Mixed Models for Repeated Measures 
 
         In the context of repeated measures data, let iy  be an )1( ×in vector of observed 

data on the thi  subject where },...,1{ mi∈ , and m is the number of independent units 

(subjects). The mixed model can be written as:  

iiiii uZXy εβ ++=       ,                                                      (1) 

where iX is an )( pni ×  known constant design matrix for the thi  subject, β  is a )1( ×p  

vector of unknown coefficients of the fixed effects, iZ  is a )( qni ×  known constant 

design matrix for the thi  subject with rank q , iu  is a )1( ×q  vector of unknown 

individual-specific random effects, and iε  is a )1( ×in vector of random errors (Gurka, 

2006). The vector of coefficients of the random effects, iu , is assumed to follow the 

normal distribution with mean vector 0 and covariance matrixG . iε  is assumed to follow 

a normal distribution with mean vector 0 and covariance matrix iR . The vectors iu  and iε  

are assumed independent; consequently, 0),cov( =iiu ε and iiiii VRGZZy =+= ')var( . 

Let ∑
=

=
m

i
inN

1
, and denote the unique parameters of  iR  and G  by the )1( ×k  vectorθ . 

         The log-likelihood function for the linear mixed model is then 

       ∑ ∑
= =

− −−−−−=
m

i

m

i
iiiiiML XyVXyVNl

1 1

1' )()()(
2
1))(log(

2
1)2log(

2
),( βθβθπθβ    .      (2) 
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         The maximum likelihood estimator (MLE) is produced by numerically maximizing 

),( θβMLl  with respect to the unknown parameters. Since the MLE of θ  is biased (Gurka, 

2006), the Restricted Maximum Likelihood estimator (REML) of θ  is typically used. 

Assuming that rank ( '
1X L'

2X '
mX ) is p , the REML estimator of θ  is calculated by 

maximizing the likelihood function of a transformation of the original N  observations to 

a new set of N – p observations (Gurka, 2006). The transformation is constructed such 

that the restricted log-likelihood function can be written as  

     

)ˆ()()'ˆ(
2
1|)(|log

2
1

|)(|log
2
1|'|log

2
1)2log(

2
)(

1

11

1

'

11

βθβθ

θπθ

ii

m

i
iiiii

m

i
i

m

i
i

m

i
iiREML

XyVXyXVX

VXXpNl

−−−−

−+
−

=

∑∑

∑∑

=

−−

=

==     ,                      (3) 

where β̂  is  

                          ∑∑
=

−−

=

−=
m

i
iii

m

i
iii yVXXVX

1

11

1

1 )ˆ(ˆ'))ˆ(ˆ'(ˆ θθβ                ,                 (4) 

and iV̂ is the estimated covariance matrix iV . In practice, iterative procedures are used to 

maximize (2) or (3).  

         It is interesting to note that SAS PROC MIXED (2003) computes the REML 

estimates with a version of equation (3) that leaves out the term |'|log
2
1

1
∑
=

m

i
ii XX (Gurka, 

2006). The same estimates are obtained, but the information criteria (to be discussed in 

section 2.2) are different. The log-likelihood function used by SAS will be denoted 

2REMLl . 
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2.2     Model selection in linear mixed models 

2.2.1   AIC and BIC 

         Information criteria such as AIC (Akaike, 1973), BIC (Schwarz, 1978), AICC 

(Hurvich Tsai, 1989), and CAIC (Bozdogan, 1987) are available for selecting the 

covariance structure ( iZ , G , and iR ) and the mean model ( iX  and β ) in linear mixed 

models. In general, these information criteria are functions of both the maximized log-

likelihood for a given model ( l ) and a penalty term based on the number of parameters 

( s ) in the model (Gurka, 2006). The usual formulas for AIC and BIC are: 

slAIC −=                      ,                                                                (5) 

                                2/)(log *NslBIC −=      ,                                                               (6) 

where *N is a function of N , p  or m  (usually *N = N  or m  under ML, and *N = pN −  

or m  under REML), and kps += . When using ML estimation, generally kps += , the 

total number of parameters in the model. However, under REML estimation, ks = , the 

number of covariance parameters only (Gurka, 2006). A larger value of the information 

criterion for a given model indicates a preference for that model. 

         Keselman et al. (1998) compared the effectiveness of AIC and BIC for detecting 

various population covariance structures. In particular, the criteria were compared in 

unbalanced nonspherical repeated measures designs having equal/unequal group sizes, 

various covariance matrices, and normally/nonnormally distributed responses. Their 

results show that neither approach uniformly selected the correct covariance structure. 

Indeed, for most of the structures investigated in the study, AIC and particularly BIC 

more frequently picked the wrong covariance structure than the correct covariance 

structure. Keselman’s results show that AIC chose the correct covariance structure 47% 
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of the time while BIC was right 35% of the time. The negative results obtained for BIC 

could be due to the severe penalty imposed for the number of parameters (Keselman et 

al., 1998).  

           Ferron et al. (2002) also studied the performance of AIC and BIC for choosing a 

covariance structure. Data were generated following an AR(1) structure with different 

sample sizes, numbers of repeated measures, and levels of autocorrelation. AIC and BIC 

were computed for the true covariance structure, AR(1), and for the independent 

structure, I2σ . The results show that AIC was more successful than BIC for every 

combination of sample size, number of repeated measures, and level of autocorrelation. 

AIC chose the right covariance structure 79% of the time versus 66% for BIC. AIC and 

BIC both performed better when the sample size, the number of the repeated measures, 

and the level of autocorrelation were higher. The number of the repeated measures was 

the most influential factor and the effect of sample size was greater when the number of 

repeated measures was smaller.  

         Gomez et al. (2005) studied the performance of AIC and BIC criteria in selecting 

the true covariance structure. They generated data using 15 covariance structures. The 

results show that the success rate of AIC and BIC in choosing the correct covariance 

structure depends greatly on the sample size and complexity of the covariance structures. 

Success rates were generally low, but they were higher for larger sample sizes and 

simpler covariance structures. Pairing (a positive pairing refers to the case in which 

the largest sample size was associated with the covariance matrix containing the largest 

values) had only a small effect on the performance of AIC and BIC.  
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         Gurka (2006) compared the performance of AIC and BIC for MLl , REMLl , and 

2REMLl (see section 2.1). He assessed linear mixed model selection under three scenarios: 

(1) selection of the fixed effects when the covariance structure is known, (2) selection of 

the random effects when the fixed effects are known, and (3) simultaneous selection of 

the fixed and random effects. The results show that all versions of the two criteria 

selected the proper random effects structure over 90% of the time, no matter the true 

variance or correlation. BIC performed slightly better than AIC. The results also showed 

that BIC performed better overall when using REMLl , while for AIC 2REMLl selection was 

superior to REMLl  as well as MLl .  

           Keselman et al. (1998) investigated the performance of AIC and BIC in the 

context of covariance structures common in social science. Their results provide an 

interesting comparison to those reported by Gurka (Keselman et al. 2006). The 

differences between Gurka’s results and Keselman’s results show that the performance of 

AIC and BIC depends on the conditions investigated. 

 

2.2.2 Pseudo F-tests and Likelihood Ratio Tests 

         If C is a contrast matrix of rank q, a commonly used test statistic for Ho: 0=βC  is 

the Wald F statistic qWF ddfq /, = , where 

                                     )ˆ()')ˆ'(()'ˆ( 111 ββ CCXVXCCW −−−=                                        (7)  

and ddf is the denominator degrees of freedom. Under the null hypothesis, the Wald F 

approximately follows the F distribution with q and ddf degrees of freedom (Schaalje et 

al., 2002). There are two commonly used methods to compute ddf for the Pseudo F-test. 

The Fai and Cornelius (FC) method computes the ddf using spectral decomposition of the 
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approximate covariance matrix for the contrasts, together with repeated application of a 

method for single degree of freedom tests (Fai and Cornelius, 1996; Giesbrecht and 

Burns, 1985; Schaalje et al., 2002). Kenward and Roger (1997) suggested an improved 

method (KR) to calculate the Pseudo F-test. The KR method adjusts the estimated 

covariance matrix of the parameter estimates, computes a scale adjustment to the test 

statistic and computes the degrees of freedom of the Pseudo F test.   

         The performance of these tests for selecting the model for the means (“mean 

structure”) in complex mixed linear models was studied by Schaalje et al. (2002).  The 

result shows that Type I error rates of both methods are affected by covariance structure 

complexity, sample size, and imbalance. The KR method performs well in situations with 

complicated covariance structures when sample sizes are moderate to small and the 

design is balanced. The KR method is preferable to the FC method, although it also 

inflates Type I error rates for complex covariance structures combined with small sample 

sizes. 

          Gomez et al. (2005) investigated Type I error rates after using AIC and BIC to 

select the covariance structures. The results show that Type I error rates of KR method 

hypothesis tests for best AIC and best BIC models were always higher than the target 

values. Type of selection criterion, number of subjects per treatment, number of repeated 

measures, effect tested, covariance structure, and pairing all affected the Type I error 

rates.  

                                                                     
2.2.3    Predictive Approaches                                             
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There are two main distinctions between mixed models and linear models. First, in a 

mixed model, the data can be considered in a conditional and a marginal sense. The 

conditional distribution of uy |  uses a particular realization of the random effects. The 

marginal distribution of y uses quantities averaged over all possible values of the random 

effects. Correspondingly, there are conditional and marginal predictive approaches for 

mixed models. Second, the estimates of the fixed effects β  depend on the estimates of 

the covariance parameters (Schabenberger, 2004). Predictive approaches for model 

selection in mixed models reflect these distinctions.                         

         R², the squared correlation coefficient, is defined in the simple linear model as 

        

                                                                                           ,                                             (8) 

where iii yyr ˆ−= , iy  is the ith  observation, iŷ   is the ith  predicted value and y is the 

grand mean. The squared correlation coefficient can also be calculated in the mixed 

model setting, but differs depending on whether marginal residuals mr  or conditional 

residuals cr  are used (Vonesh, 1996). A marginal residual, β̂'
iimi xyr −= , is the 

difference between the observed data and the estimated (marginal) mean. A conditional 

residual, uzxyr iiici ˆˆ' −−= β , is the difference between the observed data and the 

predicted value of the observation. Mixed model versions of  2R  can be adjusted for the 

number of parameters to obtain:                                                                                                         

                                                                                            ,                                         (9)    

∑

∑

=

=

−
−= n

i
i

n

i
i

yy

r
R

1

2

1

2

2

)(
1

)1(1 2*2 RkRadj −−=
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 where 
pN

Nk
−

=*  or 
)(

*

kpN
Nk
+−

= .                                                                                                                 

            The PRESS residual (Allen 1974) is the difference between the observed value 

and the predicted value, where the predicted value is obtained without the observation in 

question. The PRESS statistic for the simple linear model can be computed without re-

fitting the model by using the update formula (Schabenberger, 2004). In the longitudinal 

setting such update formulas are not available because the observations are correlated 

(Schabenberger, 2004). The PRESS statistic can also be calculated for mixed models, but 

differs depending on whether the marginal or conditional residual is used.                                    

            The concordance correlation coefficient (CCC) was described by Lin (1989) and 

modified by Vonesh (1992) for use in mixed-effects regression settings. Given bivariate 

measurements 1Y  and 2Y  with means 1µ , 2µ , variances 2
1σ , 2

2σ , and correlation ρ , Lin 

(1989) defined the concordance correlation between 1Y  and 2Y  to be 

                      
2

21
2

2
2

1

21
2

21
2

2
2

1

2
21

)(
2

)(
])[(1

µµσσ
σρσ

µµσσ
ρ

−++
=

−++
−

−=
YYE

c .                       (10)        

           CCC is a measure of the degree of accuracy and precision to which pairs of 

observations correspond to the line of identity. The point estimate of cρ  based on a 

random sample of n observations is  

                   
∑ ∑

∑

= =

=

−+−+−

−
−= n

i

n

i
ii

n

i
ii

c

YYnYYYY

YY

1 1

2
21

2
22

2
11

1

2
21

)()()(

)(
1ρ̂ .                                  (11) 
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            Vonesh (1992) suggested adapting CCC to measure model fit. He defined the 

“model CCC” as  

             
∑ ∑

∑

= =

=

−+−−+−−

−−
−= n

i

n

i
iiii

ii

n

i
ii

c

yyNjyyjyyjyyjyy

yyyy
r

1 1

2''

1

'

)ˆ()ˆˆ()ˆˆ()()(

)ˆ()ˆ(
1 .              (12) 

          There are several advantages of using cr  as a measure of model fit. First, cr  is 

directly interpretable as a concordance correlation coefficient between observed and 

predicted values. Second, it does not require specification of a null model since the line 

of identity serves as a point of reference. In the mixed model setting, we can compute a 

marginal or conditional model CCC by using marginal or conditional estimates (Vonesh, 

1996). Also, CCC can be adjusted for the number of parameters as  

                                          )1(1 * CCCkCCCadj −−= ,                                                   (13) 

   where 
pN

Nk
−

=*  or 
)(

*

kpN
Nk
+−

= . 
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Chapter 3 
 
 

Methodology  
 
 
 

        This chapter describes the methods used for the simulation study. First, data were 

generated with a specified model for the means and with repeated measurements on the 

same individual, correlated according to some known covariance structure. Then, two 

mixed models (a full model and a reduced model) were fit to the data, and several 

predictive approaches were used to select one of the models. The proportion of runs in 

which the correct model was selected was recorded. 

         An explanation of the data generation process is outlined in the first section of this 

chapter. The second section discusses the use of simulations to investigate the 

performance of 2
adjR , PRESS, adjCCC , information criteria, and the F test for model 

selection. Marginal and conditional approaches for these statistics were studied under 

different variance-covariance structures. Data were simulated using PROC IML of SAS 

and analyzed with PROC MIXED. 

 
3.1. Data Generation  
 
       The simulated data followed a repeated measures design. Each data set involved 

m =10 or 20 subjects, and a constant number of observations per subject 3( == nni  or 5  

for 1=i  to m ). The repeated measures followed one of four covariance structures, and 

the fixed effects followed one of six possible models. Thus, 2×2×4×6=96 simulation 

studies were carried out.  
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       The covariance structures were the same for each subject ( VVi =  for 1=i  to m ). 

The four structures are denoted CS (0.5), CS (0.9), ARRE (0.5), and ARRE (0.9). Details 

on these covariance structures when the number of repeated measures was five are in 

Table 1. The upper left 3×3 matrix was used when the number of repeated measures was 

three. 

Table 3.1: Parameter Values for Covariance Structures Used In the Simulations  

 
Compound symmetry (CS (0.5))   
  
                                                                     

1
5 1
5 5 1
5 5 5 1
5 5 5 5 1

.

. .

. . .

. . . .

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

Compound symmetry (CS (0.9))   
 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

19.9.9.9.
19.9.9.

19.9.
19.

1

 

Autoregressive order 1 plus random 
effect (ARRE( ρ =0.5))       
 
                                             

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

16.4.3.25.
16.4.3.

16.4.
16.

1

 

 

Autoregressive order 1 plus random effect 
(ARRE( ρ =0.9))       
 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

192.848.7832.72488.
192.848.7832.

192.848.
192.

1

 

 
 
 

 
 
 

     Data for the four described covariance structures were generated following the two 

step method of Ripley (1987). In the first step, a random multivariate normal vector was 

generated with E( y ) = 0 and Var( y ) = I , where I  is the identity matrix. In the second 
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step, this vector was multiplied by the Cholesky decomposition of the covariance matrix 

corresponding to the covariance structure in question. The resulting random vector had a 

mean vector of zero and covariance matrix of V  (Table 1).  

 

3.2. Modeling the Data 

         The fixed effects part of the models were defined by a combination of design 

matrices ( [ ]210 XXXX i = ) and parameter vectors (
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2

1

0

β
β
β

β ). In the studies with 

n =5, iX  was the same for all subjects, and was given by

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

=

231
121
301
221
131

iX . In the 

studies with n=3, 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

031
101
031

iX . These design matrices were combined with values 

of the parameter vector given in Table 2. For 6.02 =β , some of the expected values 

change by as much as two standard deviations. 

          Two mixed models were fitted to each data set using REML as implemented in 

PROC MIXED. For both models, the correct covariance structure was specified using 

RANDOM and REPEATED statements. Also, two models for the fixed effects were 

specified using the MODEL statement, the full model, and the reduced model. For the 

full model, the MODEL statement was specified as 1Xy =  2X , whereas for the reduced 

model the MODEL statement was 1Xy = .    



15  

Table 3.2: Values of β  Used In the Simulation 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
1
1

β  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

05.
1
1

β  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1.
1
1

β  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

2.
1
1

β  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

4.
1
1

β  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

6.
1
1

β  

 

          

Table 3.3: Example of SAS PROC MIXED code 

*SAS code for compound symmetry structure; 
proc mixed data=datanew; 
by iter; 
class subj; 
model y=x1 x2/ S influence(iter=5 est) outpred=pred_full(keep=y iter x1 
x2 subj Pred Resid) 
outpredm=predm_full(keep=y iter x1 x2 subj Pred Resid) 
DDFM=kenwardroger; 
random subj/s; 
ods output fitstatistics=cs; 
ods output tests3=pval_cs;  
ods output SolutionF=coef_fixed (keep=estimate iter) ; 
ods output SolutionR=coef_random; 
ods output influence=press (keep=iter pressres); run; 

*SAS code for autoregressive order 1 plus random effect structure; 
proc mixed data=datanew; 
by iter; 
class subj; 
model y=x1 x2/ S influence(iter=5 est) outpred=pred_full(keep=y iter x1 
x2 subj Pred Resid) 
outpredm=predm_full(keep=y iter x1 x2 subj Pred Resid) 
DDFM=kenwardroger; 
random subj/s; 
repeated /type=ar(1) subject=subj; 
ods output fitstatistics=arre; 
ods output tests3=pval_arre;  
ods output SolutionF=coef_fixed (keep=estimate iter) ; 
ods output SolutionR=coef_random; 
ods output influence=press (keep=iter pressres); run;  
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           Several versions of PRESS, adjCCC , 2
adjR , the pseudo F-test and information 

criteria (AIC and BIC) were calculated and recorded for each model. Some of the 

information criteria and the F-test were given by default by PROC MIXED. The 

Kenward-Roger method for the F-test was specified by using the ddfm=kenwardroger 

option in the MODEL statement. For PRESS, adjCCC  and 2
adjR , both marginal and 

conditional residuals were considered.  The marginal residual β̂'
iim xyr −=  is the 

difference between the observed data and the estimated (marginal) mean. The conditional 

residual uzxyr iiic ˆˆ' −−= β  is the difference between the observed data and the predicted 

value of the observation. Marginal and conditional residuals were given by using 

outpredm and outpred options in the model statement of PROC MIXED. The ODS 

(output delivery system) was used to capture the fitted statistics and the residuals. 

PRESS, adjCCC  and 2
adjR  were then calculated using PROC IML.   

         The PRESS statistic is the sum of the squared differences between the observed 

values and the predicted values, where each predicted value is obtained without the 

observations in question. Two versions of PRESS were calculated, the marginal and 

conditional PRESS. A PROC MIXED option was used to compute the marginal PRESS 

residuals. A SAS MACRO (Appendix A) was used to calculate the conditional PRESS 

statistics. 

         adjCCC     was calculated as 

∑ ∑

∑

= =

=

−+−−+−−

−−
−= n

i

n

i
iiii

ii

n

i
ii

yyNjyyjyyjyyjyy

yyyy
CCC

1 1

2''

1

'

)ˆ()ˆˆ()ˆˆ()()(

)ˆ()ˆ(
1                                                                         and 

clnie
Cross-Out
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)1(1 * CCCkCCCadj −−=  where 
sN

Nk
−

=*  and s  is the number of parameters in the 

model. Four versions of adjCCC  were calculated: marginal adjCCC  with ps = , 

conditional adjCCC  with ps = , marginal adjCCC  with kps += , and conditional 

adjCCC  with kps += . 

        The equations for adjusted 2R are: 
∑

∑

=

=

−
−= n

i
ii

n

i
i

yy

r
R

1

2

1

2

2

)(
1  and )1(1 2*2 RkRadj −−=  

where 
sN

Nk
−

=* . Four versions of 2
adjR  were calculated: marginal 2

adjR  with ps = , 

conditional 2
adjR  with ps = , marginal 2

adjR  with kps += , and conditional 2
adjR  with 

kps += .  

        For AIC and BIC, the smaller-is-better formulas were used: slAIC 22 +−=  and 

)(log2 *NslBIC +−= , where l  is the restricted log-likelihood function with  or without 

the term ||log
2
1

1

'∑
=

m

i
ii XX , kps +=  and mN =*  or pNN −=* . Therefore, two 

versions of AIC and four versions of BIC were considered.  

         Seventeen goodness-of-fit statistics were calculated for each iteration and used to 

select either the full or reduced model. The number of times these criteria selected the 

true model (full model if 02 >β , reduced model if 02 =β ) was recorded in each 

situation. Rates of success of these criteria were then compared.  
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Chapter 4 
 
 

Results 
 
 
 

                  Correct model selection rates were tabulated for the seventeen criteria (Tables 3-6) 

and displayed graphically (Figures 1-4). For all statistics, numbers of subjects, numbers 

of measurements, and covariance structures, the success rate was high for 02 =β . 

Overall, the statistics performed better when the number of subjects and/or the number of 

measurements increased. The conditional statistics performed better than the marginal 

statistics overall (Table 7), but not for 02 =β . On average, the first type of CCC and 

2R (calculated using ps = ) performed slightly better than the second type (calculated 

using kps += ) (Table 7). The criterion of better performance was higher success rate 

for 02 =β  and faster increase rate (steeper slope) as 2β  increased from 0.05 to 0.6. 

 
 
4.1. Statistics          

       PRESS statistics performed better for ARRE than for CS. When the covariance 

structure was CS, the performance of marginal and conditional PRESS was similar, but 

when the covariance structure was ARRE, conditional PRESS performed much better 

than marginal PRESS. 

        For CCC, adjustment 1 (calculated using ps = ) was the same as adjustment 

2(calculated using kps += ). Marginal CCC was better than conditional CCC for ARRE 

(1). For CS, marginal CCC was better in that conditional too often chose the more 

complex model. 
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        2R  performance was very similar to CCC: adjustment 1 and adjustment 2 were the 

same and marginal 2R  was better than conditional 2R . Conditional PRESS was better 

than any CCC or 2R . 2R  and CCC (especially marginal) had a “bounce” at 1.02 =β  for 

subject=10 and observation=3 (small sample size). 2R  and CCC conditional performed 

very poorly for observation=3 for ARRE(1). 

        For AIC, AIC1 (with the term ||log
2
1

1

'∑
=

m

i
ii XX ) performed better for 02 =β , 

especially for the lower correlation. AIC2 (without the term ||log
2
1

1

'∑
=

m

i
ii XX ) was better 

for 02 >β . AIC2 was similar to PRESS for the higher correlation, and worse than PRESS 

for the lower correlation. 

        F-test with KR achieved 95% for CS when 02 =β , and slightly more than 95% for 

ARRE(1) for 02 =β . The F-test was similar to PRESS for CS, but not for ARRE(1). The 

F-test was similar to AIC1 but lower than AIC2 for 02 >β .  

         All four kinds of BIC were different. BIC1 (with the term ||log
2
1

1

'∑
=

m

i
ii XX  and 

pNN −=*  ) and BIC2 (with the term ||log
2
1

1

'∑
=

m

i
ii XX  and mN =*  ) were best for 

02 =β , and BIC3 (without the term ||log
2
1

1

'∑
=

m

i
ii XX  and pNN −=*  ) and BIC4 

(without the term ||log
2
1

1

'∑
=

m

i
ii XX  and mN =*  ) were best for 02 >β . BIC1 and BIC2 

were quite similar to each other. BIC4 was better than BIC3 for 02 >β . For 02 >β , 
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BIC4 was better than BIC3,  BIC3 was better than BIC2, and BIC2 was better than BIC1. 

The opposite was true for 02 =β . 

 

4.2.   Sample Size 

        All 17 statistics performed much better for subjects=20 and observations=5 per 

subject than subjects=10 and observations=3 per subject. The performance for 

subjects=20 and observations=5 was similar for subjects=20 and observations=3, and 

better than that for subjects=10 and observations=3. All statistics performed better for 

larger numbers of subjects and performed much better for larger numbers of 

observations. 

  

4.3. Covariance Structure 

       2R , CCC, and PRESS performed better for Compound Symmetry than for 

Autoregressive order 1 plus random effect. Other statistics (AIC, BIC, F-test) were not 

greatly affected. All statistics performed better for higher correlations. 

 

 



21  

  Covariance  
   Structure Parameter 

# of 
subjec

t 

# of 
obs beta Marginal 

Press 
Conditional 
Press 

Conditional 
CCC 

Marginal 
CCC 

Conditional 
R² 

Marginal 
R² 

Conditional 
CCC_2 

Marginal 
CCC_2 

Conditional 
R²_2 

CS 0.5 10 3 0 0.870800 0.8321 0.6165 0.8112 0.6213 0.8246 0.6298 0.8269 0.6348 
CS 0.5 10 3 0.05 0.136400 0.1737 0.3879 0.1969 0.3842 0.1853 0.3763 0.1833 0.3723 
CS 0.5 10 3 0.1 0.146100 0.1893 0.4114 0.2113 0.4080 0.1968 0.3999 0.1942 0.3958 
CS 0.5 10 3 0.2 0.214500 0.2617 0.4942 0.2893 0.4900 0.2731 0.4804 0.2713 0.4765 
CS 0.5 10 3 0.4 0.452900 0.5107 0.7230 0.5521 0.7201 0.5308 0.7141 0.5288 0.7113 
CS 0.5 10 3 0.6 0.720000 0.7684 0.8979 0.7928 0.8964 0.7783 0.8931 0.7783 0.8920 
CS 0.5 10 5 0 0.864800 0.8345 0.6315 0.8141 0.6378 0.8293 0.6402 0.8227 0.6491 
CS 0.5 10 5 0.05 0.161500 0.1886 0.3944 0.2176 0.3881 0.2009 0.3854 0.2091 0.3791 
CS 0.5 10 5 0.1 0.234100 0.2679 0.4787 0.2972 0.4719 0.2790 0.4708 0.2861 0.4644 
CS 0.5 10 5 0.2 0.482700 0.5241 0.7184 0.5612 0.7139 0.5400 0.7130 0.5508 0.7074 
CS 0.5 10 5 0.4 0.919400 0.9347 0.9792 0.9480 0.9784 0.9406 0.9778 0.9442 0.9771 
CS 0.5 10 5 0.6 0.998500 0.9987 0.9999 0.9992 0.9999 0.9991 0.9999 0.9992 0.9999 
CS 0.5 20 3 0 0.883400 0.8344 0.6203 0.8152 0.6246 0.8307 0.6263 0.8231 0.6307 
CS 0.5 20 3 0.05 0.128835 0.1807 0.4042 0.1993 0.3992 0.1841 0.3973 0.1927 0.3925 
CS 0.5 20 3 0.1 0.161910 0.2216 0.4500 0.2413 0.4468 0.2237 0.4448 0.2320 0.4403 
CS 0.5 20 3 0.2 0.296760 0.3659 0.5959 0.3882 0.5930 0.3713 0.5913 0.3801 0.5878 
CS 0.5 20 3 0.4 0.674975 0.7357 0.8800 0.7595 0.8786 0.7435 0.8776 0.7518 0.8760 
CS 0.5 20 3 0.6 0.933150 0.9526 0.9855 0.9588 0.9850 0.9540 0.9851 0.9562 0.9845 
CS 0.5 20 5 0 0.870900 0.8354 0.6322 0.8176 0.6404 0.8348 0.6374 0.8221 0.6447 
CS 0.5 20 5 0.05 0.187300 0.2261 0.4367 0.2506 0.4310 0.2328 0.4327 0.2461 0.4265 
CS 0.5 20 5 0.1 0.323300 0.3707 0.5869 0.4020 0.5808 0.3822 0.5830 0.3968 0.5764 
CS 0.5 20 5 0.2 0.704700 0.7488 0.8828 0.7704 0.8797 0.7530 0.8808 0.7657 0.8784 
CS 0.5 20 5 0.4 0.996500 0.9978 0.9995 0.9985 0.9995 0.9983 0.9995 0.9984 0.9995 
CS 0.5 20 5 0.6 1 1 1 1 1 1 1 1 1 

 
Table 4.1: Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=Compound Symmetry (0.5) 

 
 
 
 
 
 



22  

  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal  
R²_2 ftest aic1 aic2 bic1 bic2 bic3 bic4 

CS 0.5 10 3 0 0.8401 0.9495 0.894 0.626 0.9478 0.9123 0.839 0.7047 
CS 0.5 10 3 0.05 0.1683 0.0542 0.1089 0.3736 0.0561 0.0908 0.1742 0.3018 
CS 0.5 10 3 0.1 0.1803 0.0665 0.1227 0.3985 0.0647 0.104 0.1954 0.3193 
CS 0.5 10 3 0.2 0.2560 0.108 0.189 0.4831 0.1127 0.1637 0.2708 0.4083 
CS 0.5 10 3 0.4 0.5093 0.2842 0.4217 0.7292 0.2961 0.3883 0.5175 0.6684 
CS 0.5 10 3 0.6 0.7617 0.5434 0.7003 0.8983 0.5716 0.6659 0.7826 0.87 
CS 0.5 10 5 0 0.8379 0.9484 0.9567 0.6336 0.9839 0.9636 0.8906 0.7117 
CS 0.5 10 5 0.05 0.1907 0.0662 0.0576 0.3906 0.0233 0.0489 0.1327 0.317 
CS 0.5 10 5 0.1 0.2697 0.1126 0.0985 0.478 0.0461 0.0879 0.2043 0.4057 
CS 0.5 10 5 0.2 0.5256 0.3022 0.284 0.7218 0.1625 0.2598 0.4496 0.6644 
CS 0.5 10 5 0.4 0.9383 0.8275 0.8183 0.9797 0.6785 0.7989 0.912 0.9728 
CS 0.5 10 5 0.6 0.9990 0.9932 0.992 1 0.9692 0.9901 0.9973 0.9998 
CS 0.5 20 3 0 0.8397 0.9511 0.9346 0.64 0.9802 0.9646 0.909 0.8259 
CS 0.5 20 3 0.05 0.1756 0.0583 0.0741 0.3743 0.026 0.0427 0.1047 0.1895 
CS 0.5 20 3 0.1 0.2167 0.0817 0.105 0.4193 0.0366 0.0612 0.1387 0.2343 
CS 0.5 20 3 0.2 0.3621 0.1734 0.2096 0.5805 0.1013 0.1438 0.2727 0.3899 
CS 0.5 20 3 0.4 0.7353 0.518 0.5734 0.8772 0.3837 0.4749 0.6456 0.7616 
CS 0.5 20 3 0.6 0.9516 0.8499 0.8837 0.9865 0.7634 0.8249 0.922 0.9583 
CS 0.5 20 5 0 0.8397 0.9517 0.9733 0.6367 0.9944 0.9841 0.9344 0.8251 
CS 0.5 20 5 0.05 0.2276 0.0828 0.0506 0.4324 0.0143 0.0314 0.1078 0.2408 
CS 0.5 20 5 0.1 0.3758 0.1768 0.1233 0.58 0.0466 0.084 0.2211 0.3959 
CS 0.5 20 5 0.2 0.7475 0.5394 0.4529 0.8799 0.2577 0.3627 0.603 0.7691 
CS 0.5 20 5 0.4 0.9980 0.9863 0.9731 0.9996 0.9211 0.9578 0.9908 0.9984 
CS 0.5 20 5 0.6 1 1 1 1 0.9999 1 1 1 

 
Table 4.1 (continue): Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=CS (0.5) 
* R²_2 and CCC_2 are calculated using s=p + k 
* aic2, bic3 and bic4 are calculated without the term ||log

2
1

1

'∑
=

m

i
ii XX   

* bic2 and bic4 used mN =*  
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  Covariance  
   Structure Parameter # of 

subject 
# of 
obs beta Marginal 

Press 
Conditional 
Press 

Conditional 
CCC 

Marginal 
CCC 

Conditional 
R² 

Marginal 
R² 

Conditional 
CCC_2 

Marginal 
CCC_2 

Conditional 
R²_2 

CS 0.9 10 3 0 0.8601 0.8303 0.5837 0.9891 0.5839 0.9903 0.5969 0.9912 0.5978 
CS 0.9 10 3 0.05 0.1712 0.2031 0.4537 0.0178 0.4529 0.0159 0.4377 0.0135 0.4374 
CS 0.9 10 3 0.1 0.2465 0.2963 0.5465 0.0288 0.5463 0.0255 0.5321 0.0242 0.5316 
CS 0.9 10 3 0.2 0.5134 0.5903 0.8024 0.1333 0.8022 0.1189 0.7924 0.1143 0.7921 
CS 0.9 10 3 0.4 0.9339 0.9602 0.9902 0.6003 0.9902 0.5621 0.9896 0.5594 0.9896 
CS 0.9 10 3 0.6 0.9986 0.9991 0.9999 0.9513 0.9999 0.9338 0.9999 0.9384 0.9999 
CS 0.9 10 5 0 0.837 0.8264 0.623 0.9875 0.6247 0.9892 0.633 0.9891 0.6345 
CS 0.9 10 5 0.05 0.2804 0.3034 0.5215 0.0353 0.5197 0.0313 0.5111 0.0322 0.5095 
CS 0.9 10 5 0.1 0.5439 0.5881 0.7834 0.1412 0.7827 0.1263 0.7773 0.1306 0.7764 
CS 0.9 10 5 0.2 0.9526 0.9697 0.9918 0.6288 0.9918 0.5902 0.9914 0.6083 0.9914 
CS 0.9 10 5 0.4 1 1 1 0.9996 1 0.999 1 0.9996 1 
CS 0.9 10 5 0.6 1 1 1 1 1 1 1 1 1 
CS 0.9 20 3 0 0.8838 0.8355 0.5871 0.9953 0.588 0.9964 0.596 0.9963 0.5961 
CS 0.9 20 3 0.05 0.164642 0.2297 0.482 0.016 0.4815 0.0141 0.4755 0.0146 0.4746 
CS 0.9 20 3 0.1 0.328086 0.4084 0.6551 0.0424 0.6547 0.036 0.6489 0.0388 0.6483 
CS 0.9 20 3 0.2 0.74096 0.8125 0.9334 0.2555 0.9334 0.2272 0.9316 0.2402 0.9314 
CS 0.9 20 3 0.4 0.999688 1 1 1 1 0.9999 1 0.9999 1 
CS 0.9 20 3 0.6 0.999688 1 1 1 1 0.9999 1 0.9999 1 
CS 0.9 20 5 0 0.8586 0.8366 0.6252 0.9942 0.6266 0.9954 0.6297 0.9949 0.6322 
CS 0.9 20 5 0.05 0.3665 0.4181 0.6352 0.0511 0.6339 0.042 0.6311 0.049 0.6299 
CS 0.9 20 5 0.1 0.7808 0.8215 0.9286 0.2829 0.928 0.2491 0.9269 0.2732 0.9264 
CS 0.9 20 5 0.2 0.9981 0.9993 1 0.9437 1 0.9253 1 0.9403 1 
CS 0.9 20 5 0.4 1 1 1 1 1 1 1 1 1 
CS 0.9 20 5 0.6 1 1 1 1 1 1 1 1 1 

 
 

Table 4.2: Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=Compound Symmetry (0.9) 
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  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal 
R²_2 ftest aic1 aic2 bic1 bic2 bic3 bic4 

CS 0.9 10 3 0 0.9921 0.9511 0.9608 0.8817 0.9782 0.9658 0.9403 0.8998 
CS 0.9 10 3 0.05 0.0122 0.0717 0.0582 0.1551 0.0306 0.049 0.0821 0.1317 
CS 0.9 10 3 0.1 0.022 0.1221 0.1038 0.2386 0.0592 0.0913 0.1352 0.2077 
CS 0.9 10 3 0.2 0.1014 0.3494 0.3249 0.5406 0.2311 0.2984 0.3972 0.4983 
CS 0.9 10 3 0.4 0.5185 0.8655 0.8604 0.9521 0.7809 0.8411 0.9063 0.941 
CS 0.9 10 3 0.6 0.9156 0.9953 0.9952 0.9994 0.9915 0.9939 0.9981 0.999 
CS 0.9 10 5 0 0.9906 0.9526 0.984 0.8769 0.9944 0.9857 0.9596 0.8993 
CS 0.9 10 5 0.05 0.0287 0.129 0.0566 0.2442 0.0303 0.0504 0.1134 0.2108 
CS 0.9 10 5 0.1 0.1186 0.3654 0.2211 0.5301 0.1285 0.2022 0.3385 0.4909 
CS 0.9 10 5 0.2 0.5682 0.8985 0.7997 0.9615 0.683 0.7782 0.8912 0.9515 
CS 0.9 10 5 0.4 0.9987 1 1 1 0.9999 1 1 1 
CS 0.9 10 5 0.6 1 1 1 1 1 1 1 1 
CS 0.9 20 3 0 0.9968 0.9495 0.9747 0.8807 0.9919 0.9858 0.9606 0.9353 
CS 0.9 20 3 0.05 0.0132 0.0912 0.0506 0.1872 0.02 0.0326 0.069 0.1114 
CS 0.9 20 3 0.1 0.0322 0.2015 0.1392 0.3455 0.062 0.0934 0.1673 0.2408 
CS 0.9 20 3 0.2 0.2139 0.6127 0.5044 0.7664 0.3436 0.413 0.5756 0.6673 
CS 0.9 20 3 0.4 0.9998 1 1 1 0.966 1 0.9916 1 
CS 0.9 20 3 0.6 0.9998 1 1 1 1 1 1 1 
CS 0.9 20 5 0 0.9958 0.9511 0.9899 0.8808 0.9984 0.994 0.9776 0.9365 
CS 0.9 20 5 0.05 0.0393 0.2162 0.0883 0.3569 0.0327 0.0614 0.1479 0.2546 
CS 0.9 20 5 0.1 0.24 0.6453 0.4102 0.782 0.242 0.3383 0.5394 0.6883 
CS 0.9 20 5 0.2 0.9212 0.9949 0.9793 0.9989 0.9446 0.9677 0.9915 0.9966 
CS 0.9 20 5 0.4 1 1 1 1 1 1 1 1 
CS 0.9 20 5 0.6 1 1 1 1 1 1 1 1 

 
 

Table 4.2 (continue): Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=CS (0.9) 
 * R²_2 and CCC_2 are calculated using s=p + k 
* aic2, bic3 and bic4 are calculated without the term  ||log
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* bic2 and bic4 used mN =*  
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  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal 
Press 

Conditional 
Press 

Conditional 
CCC 

Marginal 
CCC 

Conditional 
R² 

Marginal 
R² 

Conditional 
CCC_2 

Marginal 
CCC_2 

Conditional 
R²_2 

ARRE(1) 0.5 10 3 0 0.6663 0.8233 0.6436 0.8842 0.6553 0.895 0.6817 0.904 0.6922 
ARRE(1) 0.5 10 3 0.05 0.3403  0.1937 0.3585 0.1302 0.3459 0.1198 0.3157 0.1092 0.3026 
ARRE(1) 0.5 10 3 0.1 0.3506 0.2209 0.3565 0.148 0.3447 0.1347 0.3147 0.1249 0.3041 
ARRE(1) 0.5 10 3 0.2 0.4056 0.3231 0.4044 0.2527 0.3912 0.2373 0.3633 0.2225 0.3494 
ARRE(1) 0.5 10 3 0.4 0.5088 0.6192 0.4955 0.5713 0.4847 0.5482 0.4638 0.5312 0.4521 
ARRE(1) 0.5 10 3 0.6 0.609 0.8662 0.5679 0.8505 0.5608 0.8369 0.55 0.8262 0.5434 
ARRE(1) 0.5 10 5 0 0.879 0.8239 0.6929 0.8453 0.7032 0.8605 0.7079 0.857 0.7175 
ARRE(1) 0.5 10 5 0.05 0.1369 0.2101 0.3267 0.1705 0.3245 0.1681 0.3144 0.1578 0.3116 
ARRE(1) 0.5 10 5 0.1 0.1523 0.2987 0.3687 0.25 0.3748 0.2599 0.356 0.2344 0.3615 
ARRE(1) 0.5 10 5 0.2 0.2329 0.5959 0.5154 0.5195 0.5287 0.5393 0.5031 0.5012 0.517 
ARRE(1) 0.5 10 5 0.4 0.3851 0.9617 0.7503 0.9504 0.7565 0.9549 0.7466 0.9452 0.7525 
ARRE(1) 0.5 10 5 0.6 0.5004 0.9988 0.8232 0.9996 0.8228 0.9996 0.8224 0.9993 0.8218 
ARRE(1) 0.5 20 3 0 0.6122 0.8314 0.6028 0.8889 0.6156 0.8989 0.6189 0.8964 0.6336 
ARRE(1) 0.5 20 3 0.05 0.3983 0.1845 0.4037 0.1314 0.3908 0.1198 0.3863 0.1212 0.3721 
ARRE(1) 0.5 20 3 0.1 0.4148 0.2378 0.4069 0.1798 0.3942 0.1643 0.3883 0.1659 0.3747 
ARRE(1) 0.5 20 3 0.2 0.4773 0.4359 0.4172 0.3625 0.4055 0.3438 0.3982 0.3462 0.384 
ARRE(1) 0.5 20 3 0.4 0.581 0.8526 0.4739 0.8227 0.4695 0.8072 0.466 0.8108 0.4592 
ARRE(1) 0.5 20 3 0.6 0.6434 0.9902 0.4632 0.9837 0.4654 0.981 0.461 0.9819 0.4632 
ARRE(1) 0.5 20 5 0 0.897 0.8283 0.6614 0.8533 0.6715 0.8641 0.6683 0.8580 0.6787 
ARRE(1) 0.5 20 5 0.05 0.1144 0.2411 0.3431 0.1757 0.3499 0.194 0.3369 0.1698 0.3425 
ARRE(1) 0.5 20 5 0.1 0.1491 0.4209 0.396 0.3167 0.4161 0.3543 0.3895 0.3085 0.4101 
ARRE(1) 0.5 20 5 0.2 0.2445 0.8256 0.5562 0.7329 0.579 0.7683 0.5527 0.7264 0.5745 
ARRE(1) 0.5 20 5 0.4 0.3796 0.9992 0.692 0.9976 0.6989 0.9983 0.6912 0.9974 0.6985 
ARRE(1) 0.5 20 5 0.6 0.4996 1 0.7935 1 0.7929 1 0.7935 1 0.7926 

 
Table 4.3: Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure= Autoregressive order 1 plus random effect (0.5) 
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  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal  
R²_2 ftest aic1 aic2 bic1 bic2 bic3 bic4 

ARRE(1) 0.5 10 3 0 0.9107 0.9722 0.9259 0.7267 0.9644 0.9384 0.8738 0.7835 
ARRE(1) 0.5 10 3 0.05 0.0992 0.0309 0.0804 0.2831 0.0436 0.0671 0.1391 0.2241 
ARRE(1) 0.5 10 3 0.1 0.1153 0.0352 0.0956 0.3143 0.0544 0.08 0.1607 0.2557 
ARRE(1) 0.5 10 3 0.2 0.2075 0.0818 0.1802 0.4529 0.1067 0.1575 0.2604 0.3893 
ARRE(1) 0.5 10 3 0.4 0.5104 0.2684 0.4799 0.7579 0.3411 0.441 0.5877 0.7108 
ARRE(1) 0.5 10 3 0.6 0.8113 0.5575 0.7917 0.9454 0.6696 0.7637 0.86 0.9264 
ARRE(1) 0.5 10 5 0 0.872 0.9637 0.9644 0.7006 0.9851 0.971 0.9065 0.7579 
ARRE(1) 0.5 10 5 0.05 0.1556 0.053 0.0521 0.3358 0.0209 0.0449 0.127 0.2793 
ARRE(1) 0.5 10 5 0.1 0.2428 0.1061 0.1072 0.4508 0.0498 0.0965 0.2024 0.3931 
ARRE(1) 0.5 10 5 0.2 0.5188 0.3167 0.3263 0.7413 0.2047 0.298 0.4992 0.6946 
ARRE(1) 0.5 10 5 0.4 0.9499 0.8775 0.8899 0.9913 0.7775 0.8716 0.9487 0.9877 
ARRE(1) 0.5 10 5 0.6 0.9996 0.9967 0.9977 0.9999 0.9899 0.9973 0.9989 0.9999 
ARRE(1) 0.5 20 3 0 0.9085 0.9672 0.952 0.7405 0.9858 0.9728 0.9248 0.8684 
ARRE(1) 0.5 20 3 0.05 0.1099 0.0385 0.0573 0.2963 0.0181 0.0331 0.0829 0.1547 
ARRE(1) 0.5 20 3 0.1 0.1534 0.0622 0.0894 0.3588 0.0356 0.0554 0.1256 0.2067 
ARRE(1) 0.5 20 3 0.2 0.3232 0.1648 0.2231 0.567 0.1096 0.1534 0.2826 0.4008 
ARRE(1) 0.5 20 3 0.4 0.7928 0.5962 0.6967 0.9196 0.4892 0.5932 0.7478 0.8468 
ARRE(1) 0.5 20 3 0.6 0.9793 0.9226 0.961 0.9965 0.893 0.9289 0.9762 0.9868 
ARRE(1) 0.5 20 5 0 0.8697 0.9565  0.9752 0.7058 0.9947 0.9870 0.9407 0.8476 
ARRE(1) 0.5 20 5 0.05 0.1871 0.082 0.0517 0.3723 0.0137 0.0318 0.1017 0.2174 
ARRE(1) 0.5 20 5 0.1 0.3461 0.1914 0.1366 0.5614 0.0552 0.0957 0.2381 0.3968 
ARRE(1) 0.5 20 5 0.2 0.7617 0.6184 0.5379 0.9092 0.3314 0.4489 0.6813 0.8268 
ARRE(1) 0.5 20 5 0.4 0.9981 0.9966  0.9932 0.9999 0.9719 0.9861 0.998 0.9997 
ARRE(1) 0.5 20 5 0.6 1 1 1 1 1 1 1 1 

 
 

Table 4.3 (continue): Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=ARRE(0.5) 
* R²_2 and CCC_2 are calculated using s=p + k 
* aic2, bic3 and bic4 are calculated without the term ||log
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* bic2 and bic4 used mN =*  
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  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal 
Press 

Conditional 
Press 

Conditional 
CCC 

Marginal 
CCC 

Conditional 
R² 

Marginal 
R² 

Conditional 
CCC_2 

Marginal 
CCC_2 

Conditional 
R²_2 

ARRE(1) 0.9 10 3 0 0.6111 0.8206 0.7092 0.9985 0.712 0.9987 0.7347 0.9991 0.7385 
ARRE(1) 0.9 10 3 0.05 0.402 0.2257 0.4145 0.3217 0.4134 0.3203 0.4057 0.3187 0.4048 
ARRE(1) 0.9 10 3 0.1 0.4163 0.3867 0.2894 0.0156 0.288 0.0141 0.2643 0.0109 0.2632 
ARRE(1) 0.9 10 3 0.2 0.4978 0.758 0.2992 0.0936 0.2998 0.0849 0.2835 0.0691 0.2839 
ARRE(1) 0.9 10 3 0.4 0.6493 0.995 0.3729 0.6411 0.3744 0.5971 0.3689 0.5637 0.37 
ARRE(1) 0.9 10 3 0.6 0.7448 0.9998 0.4155 0.9767 0.4168 0.9617 0.4148 0.9591 0.4157 
ARRE(1) 0.9 10 5 0 0.6847 0.8297 0.7168 0.9933 0.7215 0.9947 0.7266 0.995 0.7309 
ARRE(1) 0.9 10 5 0.05 0.3452 0.3646 0.2583 0.0228 0.2585 0.0229 0.2504 0.0179 0.2494 
ARRE(1) 0.9 10 5 0.1 0.3833 0.7203 0.2516 0.1157 0.2449 0.1132 0.2409 0.1006 0.2378 
ARRE(1) 0.9 10 5 0.2 0.4509 0.9939 0.3722 0.6093 0.3615 0.6128 0.3636 0.5731 0.3533 
ARRE(1) 0.9 10 5 0.4 0.5842 1 0.3918 0.9978 0.3965 0.9983 0.3916 0.9975 0.3961 
ARRE(1) 0.9 10 5 0.6 0.6894 1 0.4748 1 0.4769 1 0.4746 1 0.4766 
ARRE(1) 0.9 20 3 0 0.5657 0.8386 0.6735 0.9989 0.6761 0.999 0.6859 0.9991 0.6885 
ARRE(1) 0.9 20 3 0.05 0.4491 0.2742 0.2948 0.0037 0.2927 0.0035 0.2855 0.0033 0.2827 
ARRE(1) 0.9 20 3 0.1 0.4736 0.5427 0.2367 0.0245 0.2372 0.0216 0.2289 0.0205 0.228 
ARRE(1) 0.9 20 3 0.2 0.5353 0.9446 0.2204 0.2487 0.2215 0.2209 0.2148 0.2214 0.2162 
ARRE(1) 0.9 20 3 0.4 0.6884 1 0.2972 0.9728 0.3013 0.9591 0.2966 0.9656 0.3006 
ARRE(1) 0.9 20 3 0.6 0.7492 1 0.369 1 0.3722 1 0.3689 1 0.372 
ARRE(1) 0.9 20 5 0 0.5752 0.8228 0.6770 0.9961 0.6803 0.9973 0.6802 0.9966 0.6832 
ARRE(1) 0.9 20 5 0.05 0.4535 0.5035 0.2273 0.0414 0.2214 0.0353 0.2228 0.0375 0.2186 
ARRE(1) 0.9 20 5 0.1 0.4867 0.9102 0.2151 0.2681 0.1916 0.256 0.2095 0.2526 0.187 
ARRE(1) 0.9 20 5 0.2 0.5394 1 0.2544 0.9243 0.2544 0.9386 0.2537 0.917 0.2535 
ARRE(1) 0.9 20 5 0.4 0.6396 1 0.3022 1 0.308 1 0.3022 1 0.3078 
ARRE(1) 0.9 20 5 0.6 0.7258 1 0.4117 1 0.4163 1 0.4117   1 0.4163 

 
Table 4.4: Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=Autoregressive order 1 plus random effect (0.9) 
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  Covariance  
   Structure Parameter # of 

subject # of obs beta Marginal  
R²_2 ftest aic1 aic2 bic1 bic2 bic3 bic4 

ARRE(1) 0.9 10 3 0 0.9991 0.9818 0.9794 0.9263 0.9880 0.9832 0.9638 0.9395 
ARRE(1) 0.9 10 3 0.05 0.3175 0.0334 0.0405 0.1172 0.0232 0.0339 0.0667 0.0989 
ARRE(1) 0.9 10 3 0.1 0.01 0.0842 0.1054 0.2379 0.0635 0.0928 0.1505 0.2098 
ARRE(1) 0.9 10 3 0.2 0.0617 0.3002 0.4035 0.6307 0.2932 0.3701 0.4994 0.5898 
ARRE(1) 0.9 10 3 0.4 0.5221 0.7789 0.9652 0.9934 0.9284 0.9565 0.982 0.9914 
ARRE(1) 0.9 10 3 0.6 0.9433 0.9131 0.9998 0.9999 0.9997 0.9997 1 0.9999 
ARRE(1) 0.9 10 5 0 0.9954 0.9773 0.9884 0.9073 0.9949 0.9902 0.9707 0.9237 
ARRE(1) 0.9 10 5 0.05 0.0185 0.0893 0.0629 0.25 0.0322 0.0554 0.1244 0.2214 
ARRE(1) 0.9 10 5 0.1 0.0979 0.3229 0.2948 0.6287 0.1841 0.2713 0.4359 0.5895 
ARRE(1) 0.9 10 5 0.2 0.5765 0.8577 0.9236 0.9902 0.8478 0.9128 0.9657 0.9883 
ARRE(1) 0.9 10 5 0.4 0.9981 0.9923 1 1 1 1 1 1 
ARRE(1) 0.9 10 5 0.6 1 0.999 1 1 1 1 1 1 
ARRE(1) 0.9 20 3 0 0.9993 0.9767 0.9862 0.9262 0.9952 0.9921 0.9790 0.9596 
ARRE(1) 0.9 20 3 0.05 0.0025 0.0585 0.0459 0.1537 0.0173 0.0302 0.06 0.0986 
ARRE(1) 0.9 20 3 0.1 0.0173 0.1826 0.172 0.4027 0.0832 0.1206 0.2133 0.2956 
ARRE(1) 0.9 20 3 0.2 0.194 0.5965 0.7124 0.9017 0.5386 0.6174 0.7662 0.8359 
ARRE(1) 0.9 20 3 0.4 0.9498 0.93 0.9997 1 0.999 0.999 0.9998 0.9999 
ARRE(1) 0.9 20 3 0.6 1 0.9822 1 1 1 1 1 1 
ARRE(1) 0.9 20 5 0 0.9974 0.9743  0.9917 0.9146 0.9979 0.9959 0.9791 0.9538 
ARRE(1) 0.9 20 5 0.05 0.0328 0.1847 0.108 0.3976 0.0414 0.0749 0.1759 0.2891 
ARRE(1) 0.9 20 5 0.1 0.2421 0.6453 0.5751 0.8819 0.3778 0.5008 0.6897 0.8125 
ARRE(1) 0.9 20 5 0.2 0.9336  0.9878  0.9983 1 0.994 0.9976 0.9996 0.9998 
ARRE(1) 0.9 20 5 0.4 1 1 1 1 1 1 1 1 
ARRE(1) 0.9 20 5 0.6 1 1 1 1 1 1 1 1 

 
Table 4.4 (continue): Success Rate of Choosing the Correct Model Using Different Statistics for Covariance Structure=ARRE(0.9) 
* R²_2 and CCC_2 are calculated using s=p + k 

* aic2, bic3 and bic4 are calculated without the term ||log
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* bic2 and bic4 used mN =*  
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Figure 1: Correct model selection rates for 17 criteria for the compound symmetry structure involving within subject correlation of 0.5.
M= calculation with marginal resuduals, C= calculation with conditional residuals, AIC1= with determinat term, AIC2= without determinant term, 
BIC 1,2= with determinat term, BIC3,4= without determinant term, BIC1,3=( )* PNN −= , BIC2,4= ( mN =* ). 
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Figure 2: Correct model selection rates for 17 criteria for the compound symmetry structure involving within subject correlation of 0.9.
M= calculation with marginal resuduals, C= calculation with conditional residuals, AIC1= with determinat term, AIC2= without determinant term, 
BIC 1,2= with determinat term, BIC3,4= without determinant term, BIC1,3=( )* PNN −= , BIC2,4= ( mN =* ). 
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Figure 3: Correct model selection rates for 17 criteria for the autoregressive order 1 plus random effect structure with autocorrelation of 0.5.  
M= calculation with marginal resuduals, C= calculation with conditional residuals, AIC1= with determinat term, AIC2= without determinant term, 
BIC 1,2= with determinat term, BIC3,4= without determinant term, BIC1,3=( )* PNN −= , BIC2,4= ( mN =* ). 



32  

 

Figure 4: Correct model selection rates for 17 criteria for the autoregressive order 1 plus random effect structure with autocorrelation of 0.9.  
M= calculation with marginal resuduals, C= calculation with conditional residuals, AIC1= with determinat term, AIC2= without determinant term, 
BIC 1,2= with determinat term, BIC3,4= without determinant term, BIC1,3=( )* PNN −= , BIC2,4= ( mN =* ). 
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Statistics 0for  Rate Success Average 2 =β  0for  Rate Success Average 2 >β

Conditional PRESS 83.14813% 65.38863% 

 Marginal PRESS 77.59688% 52.86574% 

Conditional CCC 64.35438% 58.39% 

Marginal CCC 91.76688% 52.48213% 

Conditional CCC-2 65.58438% 57.6435% 

Marginal CCC-2 92.32188% 51.4375% 

Conditional 2R  64.8925% 58.25725% 

Marginal 2R  92.49313% 51.69163% 

Conditional 2R -2 66.14375% 57.49638% 

Marginal 2R -2 93.03% 50.64013% 

F-test 96.09188% 50.398% 

AIC1 96.445% 51.232% 

AIC2 78.77750% 69.35038% 

BIC1 98.74188% 44.09075% 

BIC2 97.41563% 48.71213% 

BIC3 94.08313% 55.39738% 

BIC4 86.07688% 63.96625% 

 

Table 4.5: Average Success Rate of Choosing the Correct Model Using Different Statistics 
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Chapter 5 

Conclusions 

 

           This study investigated the performance of PRESS, CCC, 2R , F-test, and two 

information criteria in selecting the better of two models for the mean in linear mixed 

models. Also, the study investigated the impact of marginal and conditional approaches 

for calculating the residual, the impact of using different REML likelihood functions for 

information criteria, and the impact of different adjustments for CCC, 2R , and 

information criteria.  

            The question addressed was appropriateness of the 17 statistics in model selection 

for the fixed effects portion of the model. Although this simulation study was based on a 

very simple scenario and a basic level of model selection, it provides some numerical 

evidence of the usefulness of the 17 statistics in selecting the best linear mixed model.  

            For the compound symmetry structure, the success rates for all 17 statistics were 

high. The study suggested using marginal rather than conditional residuals for PRESS, 

CCC and 2R . It suggested using REML likelihood function, which has the term 

||log
2
1

1

'∑
=

m

i
ii XX  for AIC and BIC. For CCC, 2R , and the information criterion, there 

was no difference for the various parameter number adjustments.  

             For Autoregressive order 1 plus random effect, the study suggested using 

conditional residuals for PRESS, marginal residuals for CCC and 2R , and using the 

REML function with the term ||log
2
1

1

'∑
=

m

i
ii XX  for AIC and BIC. There was also no 

difference for the various parameter number adjustments.  
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            The F-test performed well for all covariance structures. The study also indicated 

that characteristics of the data, such as the covariance structure, parameter values, and 

sample size, can greatly impact performance of various statistics. No one criterion is 

consistently better than the others in terms of selection performance in the simulation 

study. Further research is needed on model selection from more than 2 models (Gurka, 

2006), model selection for other covariance structures, selection for both mean model and 

covariance structure, model selection using maximum likelihood, and the likelihood ratio 

test, as well as why there was a “bounce” of PRESS, CCC, and 2R  for subjects=10 and 

observations=3. 
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APPENDIX A 
 

Sample SAS Code 
 
/******************************************************************** 
for m=20 (subject), n=5 (observation per subject), covariance 
stucture=cs(0.9),beta2=0.4 
********************************************************************/ 
proc iml; 
*set parameters; 
seed=1.62104E9; 
%let k=%eval(2); 
%let nit=%eval(6000); 
%let nobs=%eval(5); 
%let nsub=%eval(20); 
%let n1=%eval(&nobs*&nsub); 
%let n=%eval(&nobs*&nsub*&nit); 
beta2=0.4; 
covmat_cs={1 0.9 0.9 0.9 0.9, 
           0.9 1 0.9 0.9 0.9, 
           0.9 0.9 1 0.9 0.9, 
           0.9 0.9 0.9 1 0.9, 
           0.9 0.9 0.9 0.9 1}; 
ch=t(root(covmat_cs)); 
x1=j(&nobs,1,1)||{-3,-2,0,2,3}; 
x2={1,2,3,1,2}; 
beta0={1, 1}; 
*generating data; 
do iter=1 to &nit; 
   do subj=1 to &nsub; 
   y1=normal(repeat(seed, &nobs,1)); 
   call rannor(seed,y1); 
   y1p=ch*y1; 
   y2=x1*beta0+x2*beta2+y1p; 
   if (iter=1) & (subj=1) then y=y2; 
   else y=y//y2; 
   if (iter=1) & (subj=1) then  x=x1[,2];  
   else x=x//x1[,2]; 
   if (iter=1) & (subj=1) then  x22=x2;  
   else x22=x22//x2; 
   if (iter=1) & (subj=1) then  subj2=j(&nobs,1,subj); 
   else subj2=subj2//j(&nobs,1,subj); 
   if (iter=1) & (subj=1) then  iter2=j(&nobs,1,iter); 
   else iter2=iter2//j(&nobs,1,iter); 
   end; 
end; 
print seed; 
create datanew var{y iter2 x x22 subj2};  
append; 
quit; 
data datanew (rename=(y=y iter2=iter x=x1 x22=x2 subj2=subj)); 
set datanew ; 
run; 
* fit the full model; 
ods listing close; 
proc mixed data=datanew; 
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by iter; 
class subj; 
model y=x1 x2/ S influence(iter=5 est) outpred=pred_full(keep=y iter x1 
x2 subj Pred Resid) 
outpredm=predm_full(keep=y iter x1 x2 subj Pred Resid) 
DDFM=kenwardroger; 
random subj/s; 
ods output fitstatistics=cs; 
ods output tests3=pval_cs;  
ods output SolutionF=coef_fixed (keep=estimate iter) ; 
ods output SolutionR=coef_random; 
ods output influence=press (keep=iter pressres); 
run; 
ods listing; 
*fit the reduced model; 
ods listing close; 
proc mixed data=datanew; 
by iter; 
class subj; 
model y=x1 / S influence(iter=5 est) outpred=pred_reduced(keep=y iter 
x1 subj Pred Resid) 
outpredm=predm_reduced(keep=y iter x1 subj Pred Resid) 
ddfm=kenwardroger; 
random subj/s; 
ods output fitstatistics=cs_reduced; 
ods output tests3=pval_cs_reduced;  
ods output SolutionF=coef_fixed_reduced (keep=estimate iter) ; 
ods output SolutionR=coef_random_reduced; 
ods output influence=press_redu(keep=iter pressres) ; 
run; 
ods listing; 
/******************************************************************** 
marginal PRESS statistics 
********************************************************************/ 
data press_marginal_full; 
set press; 
pressmf=pressres**2; 
run; 
proc sort data=press_marginal_full; 
by iter; 
run; 
data press_marginal_redu; 
set press_redu; 
pressmr=pressres**2; 
run; 
proc sort data=press_marginal_redu; 
by iter; 
run; 
data press_marginal; 
merge press_marginal_full press_marginal_redu; 
by iter; 
keep iter pressmf pressmr; 
run; 
*sum the PRESS statistics over iteration; 
proc means noprint sum data=press_marginal; 
by iter; 
var pressmf pressmr; 
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output out=press_margin sum=;   
run; 
data pressm; 
set press_margin; 
press_diff=pressmr-pressmf; 
if press_diff>0 then presm_rate=1; 
if press_diff<0 then presm_rate=0; 
run; 
proc means data=pressm; 
var presm_rate; 
run; 
/******************************************************************** 
conditional PRESS statistics 
********************************************************************/ 
*full model; 
data pred3; 
%macro mixed2; 
   %do i=1 %to &n1; 
   data analysis;  
   set datanew; 
   obsnum=mod(_N_,&n1); 
   if obsnum=0 then obsnum=&n1; 
   if obsnum = &i then do; 
   yactual=y; 
   y=.; 
   end; 
proc mixed data=analysis; 
by iter; 
class subj; 
model y=x1 x2/ S outpred=pred; 
random subj/s; 
run; 
data pred2; 
set pred; 
if y=.; 
press=(pred-yactual)**2; 
keep iter press; 
run; 
data pred3; 
set pred3 pred2; 
%end; 
%mend ; 
ods listing close; 
%mixed2; 
ods listing; 
proc sort data=pred3; 
by iter; 
run; 
*reduced model; 
data pred4; 
%macro mixed3; 
   %do i=1 %to &n1; 
   data analysis;  
   set datanew; 
   obsnum=mod(_N_,&n1); 
   if obsnum=0 then obsnum=&n1; 
   IF obsnum = &i THEN do; 
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   yactual=y; 
   y=.; 
   end; 
   run; 
proc mixed data=analysis; 
by iter; 
class subj; 
model y=x1/ S outpred=predr; 
random subj/s; 
run; 
data pred5; 
set predr; 
if y=.; 
press2=(pred-yactual)**2; 
keep iter press2; 
data pred4; 
set pred4 pred5; 
%end; 
%mend ; 
ods listing close; 
%mixed3; 
ods listing; 
proc sort data=pred4; 
by iter; 
run; 
data press_condi; 
merge pred3 pred4; 
by iter; 
run; 
proc means sum noprint data=press_condi; 
where iter~=.; 
by iter; 
var press press2; 
output out=presc sum=; 
run; 
data press_c; 
set presc; 
press_d=press2-press; 
if press_d>0 then presc_rate=1; 
if press_d<0 then presc_rate=0; 
run; 
proc means data=press_c; 
var presc_rate; 
run; 
/******************************************************************** 
CCC and adjusted R-squared 
********************************************************************/ 
*margingal and conditional prediction and residue for the full model ; 
data new; 
merge pred_full (rename=( Pred=pred_conditional 
Resid=resid_conditional)) 
      predm_full (rename=( Pred=pred_marginal Resid=resid_marginal)); 
by iter; 
run; 
proc iml; 
use new; 
read all var{y} into y; 
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read all var{iter} into iter; 
read all var{x1} into x1; 
read all var{x2} into x2; 
read all var{subj} into subj; 
read all var{pred_conditional} into pred_condi; 
read all var{resid_conditional} into resid_condi; 
read all var{pred_marginal} into pred_margin; 
read all var{resid_marginal} into resid_margin; 
k_full=&n1/(&n1-3); 
k_full2=&n1/(&n1-5); 
*compute ccc and R-squared for each iteration (full model); 
ccc_condi=j(&nit,1,0); 
ccc_margin=j(&nit,1,0); 
r2_condi=j(&nit,1,0); 
r2_margin=j(&nit,1,0); 
* conditional; 
do iter2=1 to &nit; 
ybar=sum(y[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
yhatbar_condi=sum(pred_condi[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
ccc_condi[iter2]=1-(resid_condi[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_condi[(iter2-1)*&n1+1:iter2*&n1,])/ 
                 ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar)+ 
                 (pred_condi[(iter2-1)*&n1+1:iter2*&n1,]-
yhatbar_condi)`*(pred_condi[(iter2-1)*&n1+1:iter2*&n1,]-yhatbar_condi)+ 
                 &n1*(ybar-yhatbar_condi)**2); 
r2_condi[iter2]=1-((resid_condi[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_condi[(iter2-1)*&n1+1:iter2*&n1,])/ 
                ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar))); 
* marginal; 
ybar=sum(y[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
yhatbar_margin=sum(pred_margin[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
ccc_margin[iter2]=1-(resid_margin[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_margin[(iter2-1)*&n1+1:iter2*&n1,])/ 
                 ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar)+ 
                 (pred_margin[(iter2-1)*&n1+1:iter2*&n1,]-
yhatbar_margin)`*(pred_margin[(iter2-1)*&n1+1:iter2*&n1,]-
yhatbar_margin)+ 
                 &n1*(ybar-yhatbar_margin)**2); 
r2_margin[iter2]=1-((resid_margin[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_margin[(iter2-1)*&n1+1:iter2*&n1,])/ 
                ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar))); 
 
end; 
cccadj_condi=1-k_full*(1-ccc_condi); 
r2adj_condi=1-k_full*(1-r2_condi); 
cccadj_margin=1-k_full*(1-ccc_margin); 
r2adj_margin=1-k_full*(1-r2_margin); 
ccc_r2_full=cccadj_condi||r2adj_condi||cccadj_margin||r2adj_margin; 
create ccc_r2_full from ccc_r2_full; 
append from ccc_r2_full; 
 
cccadj_condi2=1-k_full2*(1-ccc_condi); 
r2adj_condi2=1-k_full2*(1-r2_condi); 
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cccadj_margin2=1-k_full2*(1-ccc_margin); 
r2adj_margin2=1-k_full2*(1-r2_margin); 
ccc_r2_full2=cccadj_condi2||r2adj_condi2||cccadj_margin2||r2adj_margin2
; 
create ccc_r2_full2 from ccc_r2_full2; 
append from ccc_r2_full2; 
quit; 
data ccc_r2_full (rename=(col1=cccadj_condi col2=r2adj_condi 
col3=cccadj_margin col4=r2adj_margin )); 
set ccc_r2_full; 
run; 
data ccc_r2_full2 (rename=(col1=cccadj_condi2 col2=r2adj_condi2 
col3=cccadj_margin2 col4=r2adj_margin2 )); 
set ccc_r2_full2; 
run; 
*reduced model; 
data new_reduced; 
merge pred_reduced (rename=( Pred=pred_conditional_reduced 
Resid=resid_conditional_reduced)) 
      predm_reduced (rename=( Pred=pred_marginal_reduced 
Resid=resid_marginal_reduced)); 
by iter; 
run; 
proc iml; 
use new_reduced; 
read all var{y} into y; 
read all var{iter} into iter; 
read all var{x1} into x1; 
read all var{subj} into subj; 
read all var{pred_conditional_reduced} into pred_condi_reduced; 
read all var{resid_conditional_reduced} into resid_condi_reduced; 
read all var{pred_marginal_reduced} into pred_margin_reduced; 
read all var{resid_marginal_reduced} into resid_margin_reduced; 
*compute ccc and R-squared for each iteration (reduced model); 
k_reduced=&n1/(&n1-2); 
k_reduced2=&n1/(&n1-4); 
ccc_condi_reduced=j(&nit,1,0); 
ccc_margin_reduced=j(&nit,1,0); 
r2_condi_reduced=j(&nit,1,0); 
r2_margin_reduced=j(&nit,1,0); 
do iter2=1 to &nit; 
* conditional; 
ybar=sum(y[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
yhatbar_condi_reduced=sum(pred_condi_reduced[(iter2-
1)*&n1+1:iter2*&n1,])/&n1; 
ccc_condi_reduced[iter2]=1-(resid_condi_reduced[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_condi_reduced[(iter2-1)*&n1+1:iter2*&n1,])/ 
                 ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar)+ 
                 (pred_condi_reduced[(iter2-1)*&n1+1:iter2*&n1,]-
yhatbar_condi_reduced)`*(pred_condi_reduced[(iter2-
1)*&n1+1:iter2*&n1,]-yhatbar_condi_reduced)+ 
                 &n1*(ybar-yhatbar_condi_reduced)**2); 
r2_condi_reduced[iter2]=1-((resid_condi_reduced[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_condi_reduced[(iter2-1)*&n1+1:iter2*&n1,])/ 
                ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar))); 
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* marginal; 
ybar=sum(y[(iter2-1)*&n1+1:iter2*&n1,])/&n1; 
yhatbar_margin_reduced=sum(pred_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,])/&n1; 
ccc_margin_reduced[iter2]=1-(resid_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,])/ 
                 ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar)+ 
                 (pred_margin_reduced[(iter2-1)*&n1+1:iter2*&n1,]-
yhatbar_margin_reduced)`*(pred_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,]-yhatbar_margin_reduced)+ 
                 &n1*(ybar-yhatbar_margin_reduced)**2); 
r2_margin_reduced[iter2]=1-((resid_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,]`*resid_margin_reduced[(iter2-
1)*&n1+1:iter2*&n1,])/ 
                ((y[(iter2-1)*&n1+1:iter2*&n1,]-ybar)`*(y[(iter2-
1)*&n1+1:iter2*&n1,]-ybar))); 
end; 
* adjusted ccc and r-squared; 
cccadj_condi_reduced=1-k_reduced*(1-ccc_condi_reduced); 
r2adj_condi_reduced=1-k_reduced*(1-r2_condi_reduced); 
cccadj_margin_reduced=1-k_reduced*(1-ccc_margin_reduced); 
r2adj_margin_reduced=1-k_reduced*(1-r2_margin_reduced); 
use ccc_r2_full; 
read all var{cccadj_condi} into cccadj_condi_full; 
read all var{r2adj_condi} into r2adj_condi_full; 
read all var{cccadj_margin} into cccadj_margin_full; 
read all var{r2adj_margin} into r2adj_margin_full; 
cccadj_condi=cccadj_condi_full-cccadj_condi_reduced; 
cccadj_margin=cccadj_margin_full-cccadj_margin_reduced; 
r2adj_condi=r2adj_condi_full-r2adj_condi_reduced; 
r2adj_margin=r2adj_margin_full-r2adj_margin_reduced; 
*success rates in choosing the correct model; 
ccc_con=0; 
ccc_mar=0; 
r2_con=0; 
r2_mar=0; 
do i=1 to &nit; 
if (cccadj_condi[i]>0) then ccc_con=ccc_con+1; 
if (cccadj_margin[i]>0) then ccc_mar=ccc_mar+1; 
if (r2adj_condi[i]>0) then r2_con=r2_con+1; 
if (r2adj_margin[i]>0) then r2_mar=r2_mar+1; 
end; 
ccc_con=ccc_con/&nit; 
ccc_mar=ccc_mar/&nit; 
r2_con=r2_con/&nit; 
r2_mar=r2_mar/&nit; 
print ccc_con ccc_mar r2_con r2_mar; 
* if s=# para in beta + covariance structure; 
cccadj_condi_reduced2=1-k_reduced2*(1-ccc_condi_reduced); 
r2adj_condi_reduced2=1-k_reduced2*(1-r2_condi_reduced); 
cccadj_margin_reduced2=1-k_reduced2*(1-ccc_margin_reduced); 
r2adj_margin_reduced2=1-k_reduced2*(1-r2_margin_reduced); 
use ccc_r2_full2; 
read all var{cccadj_condi2} into cccadj_condi_full2; 
read all var{r2adj_condi2} into r2adj_condi_full2; 



45  

read all var{cccadj_margin2} into cccadj_margin_full2; 
read all var{r2adj_margin2} into r2adj_margin_full2; 
cccadj_c2=cccadj_condi_full2-cccadj_condi_reduced2; 
cccadj_m2=cccadj_margin_full2-cccadj_margin_reduced2; 
r2adj_c2=r2adj_condi_full2-r2adj_condi_reduced2; 
r2adj_m2=r2adj_margin_full2-r2adj_margin_reduced2; 
*success rates in choosing the correct model; 
ccc_con2=0; 
ccc_mar2=0; 
r2_con2=0; 
r2_mar2=0; 
do i=1 to &nit; 
if (cccadj_c2[i]>0) then ccc_con2=ccc_con2+1; 
if (cccadj_m2[i]>0) then ccc_mar2=ccc_mar2+1; 
if (r2adj_c2[i]>0) then r2_con2=r2_con2+1; 
if (r2adj_m2[i]>0) then r2_mar2=r2_mar2+1; 
end; 
ccc_con2=ccc_con2/&nit; 
ccc_mar2=ccc_mar2/&nit; 
r2_con2=r2_con2/&nit; 
r2_mar2=r2_mar2/&nit; 
print ccc_con2 ccc_mar2 r2_con2 r2_mar2; 
/******************************************************************** 
AIC, BIC, F test  
********************************************************************/ 
data ftest;set pval_cs; keep fvalue probf iter effect; 
if effect='x1' then delete;run; 
data ftest;set ftest; 
if probf<=0.05 then f_cs=1; 
if probf>0.05 then f_cs=0;run; 
proc means data=ftest;var f_cs;run; 
* AIC AND BIC; 
data cs2;set cs; retain aic bic loglikelihood; keep aic bic 
loglikelihood iter; 
if descr='-2 Res Log Likelihood' then do; 
aic=.;bic=.;loglikelihood=value;end; 
if descr='AIC (smaller is better)' then do; aic=value;end; 
if descr='BIC (smaller is better)' then do; bic=value;  
output; end; run; 
proc iml; 
use cs2; 
read all var{aic} into aic; 
read all var{bic} into bic; 
read all var{loglikelihood} into loglike; 
read all var{iter} into iter; 
x=j(&nobs,1,1)||{-3,-2,0,2,3}||{1,2,3,1,2}; 
term=log(det(&nsub*(x`*x))); 
p=trace(x*sweep(x`*x)*x`); 
s=p+&k; 
aic1=loglike+2*s; 
aic2=loglike-term+2*s; 
bic1=loglike+s*log(&n1-p); 
bic2=loglike+s*log(&nsub); 
bic3=loglike-term+s*log(&n1-p); 
bic4=loglike-term+s*log(&nsub); 
info=iter||aic1||aic2||bic1||bic2||bic3||bic4; 
create info_f from info; 
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append from info; 
quit; 
data info_f (rename=(col1=iter col2=aic1_f col3=aic2_f col4=bic1_f 
col5=bic2_f col6=bic3_f col7=bic4_f)); 
set info_f; 
run; 
data cs_reduced1;set cs_reduced; retain aic_r bic_r loglikelihood_r; 
keep aic_r bic_r loglikelihood_r iter; 
if descr='-2 Res Log Likelihood' then do; 
aic_r=.;bic_r=.;loglikelihood_r=value;end; 
if descr='AIC (smaller is better)' then do; aic_r=value;end; 
if descr='BIC (smaller is better)' then do; bic_r=value;output; end; 
run; 
proc iml; 
use cs_reduced1; 
read all var{aic_r} into aic_r; 
read all var{bic_r} into bic_r; 
read all var{loglikelihood_r} into loglike_r; 
read all var{iter} into iter; 
x=j(&nobs,1,1)||{-3,-2,0,2,3}; 
term=log(det(&nsub*(x`*x))); 
p=trace(x*sweep(x`*x)*x`); 
s=p+&k; 
aic1_r=loglike_r+2*s; 
aic2_r=loglike_r-term+2*s; 
bic1_r=loglike_r+s*log(&n1-p); 
bic2_r=loglike_r+s*log(&nsub); 
bic3_r=loglike_r-term+s*log(&n1-p); 
bic4_r=loglike_r-term+s*log(&nsub); 
info2=iter||aic1_r||aic2_r||bic1_r||bic2_r||bic3_r||bic4_r; 
create info_r from info2; 
append from info2; 
quit; 
data info_r (rename=(col1=iter col2=aic1_r col3=aic2_r col4=bic1_r 
col5=bic2_r col6=bic3_r col7=bic4_r)); 
set info_r; 
run; 
data cs_info; 
merge info_f info_r; 
by iter; 
run; 
data test; 
set cs_info; 
aic1_dif=aic1_r-aic1_f; 
aic2_dif=aic2_r-aic2_f; 
bic1_dif=bic1_r-bic1_f; 
bic2_dif=bic2_r-bic2_f; 
bic3_dif=bic3_r-bic3_f; 
bic4_dif=bic4_r-bic4_f; 
if aic1_dif>0 then aic1_cs=1;else aic1_cs=0; 
if aic2_dif>0 then aic2_cs=1;else aic2_cs=0; 
if bic1_dif>0 then bic1_cs=1;else bic1_cs=0; 
if bic2_dif>0 then bic2_cs=1;else bic2_cs=0; 
if bic3_dif>0 then bic3_cs=1;else bic3_cs=0; 
if bic4_dif>0 then bic4_cs=1;else bic4_cs=0;run; 
proc means data=test; 
var aic1_cs aic2_cs bic1_cs bic2_cs bic3_cs bic4_cs;run; 
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