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ABSTRACT

SKILL EVALUATION IN WOMEN’S VOLLEYBALL

Lindsay W. Florence

Department of Statistics

Master of Science

The Brigham Young University Women’s Volleyball Team recorded and rated

all skills (pass, set, attack, etc.) and recorded rally outcomes (point for BYU, rally

continues, point for opponent) for the entire 2006 home volleyball season. Only

sequences of events occurring on BYU’s side of the net were considered. Events

followed one of these general patterns: serve-outcome, pass-set-attack-outcome, or

block-dig-set-attack-outcome. These sequences of events were assumed to be first-

order Markov chains where the quality of each contact depended only explicitly on the

quality of the previous contact but not on contacts further removed in the sequence.

We represented these sequences in an extensive matrix of transition probabilities

where the elements of the matrix were the probabilities of moving from one state to

another. The count matrix consisted of the number of times play moved from one

transition state to another during the season. Data in the count matrix were assumed

to have a multinomial distribution. A Dirichlet prior was formulated for each row

of the count matrix, so posterior estimates of the transition probabilities were then

available using Gibbs sampling. The different paths in the transition probability



matrix were followed through the possible sequences of events at each step of the

MCMC process to compute the posterior probability density that a perfect pass results

in a point, a perfect set results in a point, and so forth. These posterior probability

densities are used to address questions about skill performance in BYU women’s

volleyball.
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1. INTRODUCTION

Statistical analysis in the field of sports could provide valuable information to

athletes and coaching staffs. With appropriate analysis of relevant data, practice

sessions could focus on the most important skills. Players could be grouped together

to form optimal teams. Superior players could receive the recognition they deserve.

Coaches could obtain feedback necessary to make immediate changes during the game

or throughout the season (Byra and Scott 1983). A quantitative analysis would be

beneficial for all sports at any level.

However, there has not been a great deal of quantitative research published

on volleyball skills (Daniel and Hughes 2003). This is unfortunate because in 2004

there were an estimated 200 million players worldwide (Verhagen et al. 2004). With

the continually growing popularity of the sport, researchers should do everything

possible to understand the techniques of the game (Vojik 1980). This would improve

the quality of the game in general and allow for higher level of play and satisfaction.

The Brigham Young University Women’s Volleyball Team, a Division I inter-

collegiate team, used a notational analysis system to measure their skill performance

during the 2006 home volleyball season; every serve, pass, attack, and dig was recorded

and graded in real time, while sets were graded after viewing the matches on film.

Every touch made by the team was graded on a scale as fine as 0–5 points in order

to quantify how well the skill was performed. The resulting data set consisted of 13

matches and over 7,300 touches of the ball for the BYU team.

The purpose of this project was to calculate various unconditional probabilities

of certain skills leading to either a point for BYU, continuation of the rally, or a point

for the opponent. The sequences of hits were assumed to follow a first-order Markov

chain, where the quality of each hit depended only on the quality of the previous con-
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tact and not explicity on contacts further removed in the sequence. A count matrix

was constructed which consisted of the number of times play moved from one tran-

sition state to another during the season. A multinomial likelihood distribution was

assumed for each row in the count matrix with a Dirichlet prior distribution for the

associated probabilities. The posterior distribution for the transition probabilities in

each row is then proportional to the product of the likelihood and prior distributions.

Gibbs sampling was implemented to calculate the posterior distributions of the prob-

abilities of moving from one state to another. The mean of the posterior distribution

of the probability was calculated as a point estimate to insert into the transition ma-

trix. The unconditional probabilities associated with performing a particular skill at

various levels were then estimated from the transition matrix at each iteration of the

sampling process. The posterior distributions of the unconditional probabilities were

then available to quantify the uncertainty in the probability point estimates.

The outline of this project follows. Chapter 2 reviews the literature associated

with previous notational systems used in volleyball, the properties of Markov chains,

estimating transition probabilities, the Bayesian methods used in this analysis, and

estimating transition probabilities using Bayesian methods. Chapter 3 consists of

the paper submitted to the Journal of Quantitative Analysis in Sports. Appendix A

discusses combining certain rows and columns of the original count matrix in order

to provide better estimates of the desired probabilities. Appendix B gives a small

portion of the raw data provided by the software Data Volley (Data Project, Salerno,

Italy, release 2.1.9). Appendix C contains the R code used to clean the data and

perform the analyses.
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2. REVIEW OF LITERATURE

This chapter is divided into four sections. Section 2.1 describes some of the

previous notational analysis systems used in volleyball and statistical analyses per-

formed on volleyball skills. Section 2.2 discusses some properties of Markov chains

and methods for estimating transition probabilities. Section 2.3 gives a brief overview

of the Bayesian methods used to calculate the posterior distributions for each transi-

tion probability. Section 2.4 discusses some previous literature estimating transition

probabilities in a Bayesian framework.

2.1 Previous Research in Volleyball

In order to fully comprehend a sport team’s performance, it seems reasonable

that the skills used must be recorded, graded, and analyzed quantitatively. According

to Daniel and Hughes (2003), there has not been a considerable amount of quanti-

tative analyses published concerning the performance of volleyball skills. However,

various notational analysis systems have been developed for the purpose of analyzing

volleyball skills (Coleman et al. 1971; Coleman 1975; Sawula 1977; Lirdla 1980; Vojik

1980; Rose 1983; Eom and Schutz 1992; Zetou et al. 2007). Most notational analysis

systems grade skills according to the outcome of a rally or the opponent’s perfor-

mance (Mortensen 2007). For example, serves are graded based on the performance

of the opponent’s pass. Attacks are graded according to how well the opposing team

responds to the attack. Setting is unique in the game of volleyball because it does

not have a direct influence on the opponent’s performance (Coleman 1975). Thus,

setting is more difficult to define a grading system based solely on the quality of the

contact.
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Daniel and Hughes (2003) performed an analysis on the differences between elite

(international teams) and non-elite (university teams) volleyball players. They used

chi-square tests to compare the two groups and found that the elite players performed

significantly better in serving and passing. For the elite players, they also found the

quality of the set depended on the quality of the pass, and the quality of the attack

depended on the quality of the set. This was also noticeable in the non-elite players,

but the relationship was not as strong.

Eom and Schutz (1992) analyzed eight national men’s volleyball teams that

participated in the 1987 Federation of International Volleyball Korean Cup. The

purpose of their analysis was to determine which skills are the best predictors of a

successful team. Using discriminant analysis they found the block, the spike in the

attack process (responding to an opponent’s serve), and the spike in the counterattack

process (responding to an opponent’s attack) to be the most significant skills in

determining whether a team will be successful. They also analyzed the differences

in the set-spike sequence in the attack process and the counterattack process. Using

multivariate analysis of variance, they found the attack and counterattack processes

to be significantly different. Thus, they advised treating set-attack sequences as

separate events when coming from either a dig or a pass.

Another paper by Zetou et al. (2007) analyzed the skills performed in 38 Men’s

Olympic Volleyball games. They performed separate discriminant analyses for passing

and attack from reception (the first attack of the rally) in order to determine the

most significant skills contributing to scoring points. They used stepwise methods

for selecting variables and estimated the classification based on the jackknife (leave-

one-out) approach. In the analysis involving passing, they found that the individual

receiving the serve should either make the best pass possible so the setter can set an

up-tempo attack or make a good pass so the setter can set a high set to an outside

hitter in zone 4 or 2. In the analysis based on attack from reception, the “ace-point,”

4



or point directly following the attack, was the most important factor in predicting

the win of the rally.

This project builds on this previous work and adds an extra dimension. Al-

though notational systems have long been used to quantify volleyball performance

in some dimensions, there has never been an extensive attempt to grade setting pre-

cision. Even though setting was not incorporated into their analysis, Zetou et al.

(2007) discussed the need to evaluate setting due to its direct influence on attacks.

Currently, the only grades recorded by the NCAA for volleyball are assists to the

hitter and setting errors. Using their grading system, it is possible for a setter to

have a perfect set that is not counted as an assist if the hitter performed poorly.

The setter could also receive an assist if a hitter recovered from a poor set resulting

in a positive outcome. The data set used for this analysis was produced by and for

the BYU Women’s Volleyball Team, and included an independent rating of every

skill performed by team members during the 2006 home season. By grading set-

ting independently of the attack and outcome, the natural association between the

performance of one skill and the performance of subsequent skills can be examined.

2.2 Markov Chains

2.2.1 Properties of Markov Chains

Because volleyball skills are performed in a fairly rigid time sequence pattern

(pass-set-attack, etc.), it seemed natural to treat these patterns as Markov chains.

That is, the problem was approached as estimating the probability of transitioning

from one state to another while the ball was on BYU’s side of the net. A Markov chain

is a sequence of random variables in which the current state only depends explicitly
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upon the previous state. This can also be defined as

Pr(Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) (2.1)

= Pr(Xn+1 = xn+1|Xn = xn),

where X represents a state in the Markov chain sequence and n represents the time

at which the state occurred (Stewart 1994). All the possible probabilities of moving

from one state to another are comprised in the transition probability matrix.

Properties of Markov chains make it possible to classify every state in the tran-

sition probability matrix. In a recurrent state, the probability of eventually returning

to that state is 1. In other words, it is possible to return to that state multiple times.

A transient state has a probability less than 1 of returning to the given state. If it

is possible to eventually arrive at any state in the transition probability matrix given

the current state, the Markov chain is said to be irreducible (Ross 1996). A state that

can transition to the same state in one step is known to be aperiodic. An irreducible

and aperiodic Markov chain where the states are positive recurrent produces a sta-

tionary distribution. A probability distribution z for a Markov chain, where z is a

vector of elements containing the probabilities of transitioning from state i to another

state j, is defined as a stationary distribution if and only if zP = z, where P is the

transition probability matrix (Stewart 1994). Knowing a transition probability ma-

trix will converge to the stationary distribution is essential for Markov chain Monte

Carlo methods to be successful (see Section 2.3 for more information on MCMC).

2.2.2 Estimating Transition Probabilities

In the last half century, different methods have been utilized to estimate the

probabilities in a transition matrix. In earlier analyses, such as Miller (1952) and

Telser (1963), least squares estimators were implemented when only sample propor-
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tions from aggregate time series data were available. One dilemma with least squares

estimates, though, is that transition probability estimates could be negative. To

compensate for this problem, Judge and Takayama (1966), Theil and Rey (1966),

and Lee et al. (1968) discussed using restricted least squares estimators based on a

quadratic programming iteration method. Another problem with least squares es-

timators for proportional data is heteroscedasticity (Theil and Rey 1966; Lee et al.

1969). Madansky (1959) used weighted least squares estimators to try to correct this

problem. In addition, Theil and Rey (1966) proposed using weighted restricted least

squares estimators.

Lee et al. (1969) performed a simulation study to compare various least squares

estimators when using sample proportions from aggregate time series data. They

simulated 50 data sets from a four-state transition matrix using sample sizes of 25, 50,

75, and 100. They found that weighted restricted least squares estimators performed

better over unweighted restricted least squares and unweighted unrestricted least

squares. They also found that the restricted least squares estimator was far superior

to the unrestricted least squares estimator. These results were based on statistical

tests including chi-square and Kolmogorov-Smirnov goodness-of-fit test, Kendall’s

coefficient of concordance, and Wilcoxon matched-pairs signed-rank test.

Along with the various forms of least squares estimators, maximum likelihood

estimators have continually been used throughout the last half century when individ-

ual measurements are available as opposed to aggregate proportions (Anderson and

Goodman 1957; Duncan and Lin 1972; Craig and Sendi 2002). With the advance-

ment of computer capabilities, Bayesian models have also become a common method

to estimate transition probabilities (Lee et al. 1968; Boender and Rinnooy-Kan 1983;

Fahrmeir 1992; Assoudou and Essebbar 2003).

A paper by Lee et al. (1968) compared different methods of estimating transition

probabilities including least squares, weighted least squares, maximum likelihood, and
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Bayesian models using a multinomial likelihood and a Dirichlet prior distribution.

They simulated 50 data sets for a first-order stationary Markov chain with four states

using sample sizes of 25, 50, and 100. To gauge the performance of the different

estimators, they calculated the mean square error for each transition probability.

They also calculated an overall mean square error for each estimated transition matrix

by summing the mean square errors associated with the transition probabilities in the

matrix. They found that the Bayesian estimators performed better than maximum

likelihood, least squares, and weighted least squares estimators. These results were

based on the mean square error, absolute value of the error, and various nonparametric

tests including Wilcoxon’s matched-pairs signed-rank test, Kendall’s coefficient of

concordance, and Kolmogorov-Smirnov’s goodness-of-fit test.

2.3 Bayesian Methods

Bayesian models are based on Bayes’ Theorem, which states that

π(θ|y) =
f(y|θ)π(θ)

∫
f(y|θ)π(θ)dθ

, (2.2)

where π(θ|y) is the posterior distribution, f(y|θ) is the likelihood, and p(θ) is the

prior distribution. The denominator in Equation 2.2 is also known as the normalizing

constant. Thus, the posterior distribution is proportional to the product of the like-

lihood and the prior distribution. The parameters of the prior distribution are based

on a priori knowledge or belief.

The definition of a conjugate prior distribution is if F is a class of sampling

distributions p(y|θ) and P is a class of prior distributions for θ, then the class P is

conjugate for F if

p(θ|y) ∈ P for all p(·|θ) ∈ F and p(·) ∈ P
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(Gelman et al. 2004). Because it is possible to always choose P to be conjugate

according to this definition, natural conjugate prior distributions are a subject of in-

terest. A natural conjugate prior distribution implies that the prior distribution has

the same functional form as the likelihood (Gelman et al. 2004). Natural conjugate

prior distributions make it possible to obtain draws directly from the posterior distri-

bution using Markov chain Monte Carlo (MCMC) simulation and a Gibbs sampler.

Another advantage to using a conjugate prior distribution is the parameters of the

posterior distribution are easier to interpret.

Markov chain Monte Carlo simulation is the most common method used to

sample from the posterior distribution. The goal of MCMC is to estimate the pa-

rameters, θ, and obtain draws from the posterior distribution, p(θ|y). This method

is useful when it is not possible to sample θ directly from p(θ|y). Each distribution

of draws is updated from the previous iteration forming the Markov chain. After

enough iterations, the distribution will converge to the unique stationary distribution

and arrive at the posterior distribution (Gelman et al. 2004).

Because the Dirichlet distribution is a natural conjugate prior distribution for

the multinomial likelihood distribution, draws can be obtained directly from the pos-

terior distribution using a Gibbs sampler. Gibbs sampling is an iterative process

which samples from each of the conditional posterior distributions instead of integrat-

ing over the entire joint posterior distribution. Gibbs sampling can also be considered

a special case of the Metropolis-Hastings algorithm where every iteration is accepted

(Gelman et al. 2004). The steps of a Gibbs sampler are found in Ross (1996) and

listed as follows:

(1) Let θ
0 = (θ0

1, θ
0
2, . . . , θ

0
n) be any vector where the values are located inside the

parameter space.

(2) Let i = 1.
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(3) Randomly generate an observation, θ1
1, from f(θ1|θ

i−1
2 , . . . , θi−1

n ), which is the

full conditional distribution of θ1 given the most recent values of the other

parameters.

(4) Randomly generate an observation, θ1
2, from the conditional distribution

f(θ2|θ
i
1, θ

i−1
3 , . . . , θi−1

n ).

(5) Continue until the observation, θ1
n, has been generated from the conditional

distribution f(θn|θ
i
1, θ

i
2, . . . , θ

i
n−1).

(6) Store the vector of generated observations into θ
1 = (θ1

1, θ
1
2, . . . , θ

1
n).

(7) Let i = i + 1.

(8) Repeat steps 3 through 7 N times.

As the limit of N goes to infinity, θ
N converges to the joint posterior distribution

p(θ|y), assuming the Markov chain is irreducible and aperiodic. A more detailed

explanation of the Gibbs sampler can be found in Casella and George (1992).

2.4 Bayesian Estimation of Markov Processes

Most previous work using Bayesian models to estimate transition probabilities

assumed a multinomial likelihood distribution and Dirichlet prior distribution (Lee

et al. 1968; Satia and Lave 1973; Ezzati 1974; Meshkani and Billard 1992; McKeigue

et al. 2000; Assoudou and Essebbar 2003; Ozekici and Soyer 2003; Zhao et al. 2005).

Other models, such as those used by Cargnoni et al. (1997) and Assoudou and Es-

sebbar (2003), assumed different prior distributions including the normal distribution

and Jeffreys’ prior distribution, respectively.

Assoudou and Essebbar (2003) performed a simulation study on estimating

transition probabilities comparing maximum likelihood estimators with Bayesian es-

timators using the Dirichlet prior distribution and Jeffreys’ prior distribution. They
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simulated 20 data sets using a sample size of n = 21 for a two-state model and ten

data sets with a sample size of n = 61 for a three-state model. They found that both

Bayesian estimators performed better than maximum likelihood estimators and had

a lower mean square error for the two- and three-state models they simulated. In

comparing the model using Dirichlet and Jeffreys’ noninformative prior distributions,

the Jeffreys’ prior distribution gave slightly better estimates than the Dirichlet dis-

tribution. This may be influenced by the relatively small simulated sample sizes and

number of data sets generated.

Based on the work performed by Anderson and Goodman (1957) and Lee et al.

(1968), Ezzati (1974) analyzed aggregate time series data for home heating units using

both methods of maximum likelihood and Bayesian estimation. For their Bayesian

model, they used a multinomial likelihood and a Dirichlet prior distribution. Their

estimates were based on the posterior mean and variance. The purpose of their anal-

ysis was to forecast market shares of annual sales for home heating units including

oil burners, gas burners, and electric heat. One concern with their model was assum-

ing the transition probabilities remained constant over time. A change in consumer

behavior would alter the transition probabilities and make it unlikely to accurately

forecast future observations. In order to alleviate this problem, they incorporated

various marketing variables such as income or price elasticity of alternative heating

units into the prior distribution. They found that their models performed well when

compared to actual historical data.

To calculate Bayesian point estimates of the transition probabilities, several

earlier methods used the posterior mean or mode (Lee et al. 1968; Boender and

Rinnooy-Kan 1983; Fahrmeir 1992; McKeigue et al. 2000; Ozekici and Soyer 2003).

DeGroot (1970) showed that the posterior expectation is the optimal Bayesian esti-

mator with respect to the quadratic loss function. The quadratic loss function L is
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defined as

L(w, d) = a(w − d)2, (2.3)

where a is a constant, w is the parameter of interest, and d is the estimate of w.
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3. PAPER FOR THE JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS

3.1 Introduction

The Brigham Young University Women’s Volleyball Team, a Division I intercol-

legiate team, used a notational analysis system to measure skill performance during

the 2006 home volleyball season; every serve, pass, attack, and dig was recorded and

graded in real time, while sets were graded after viewing the matches on film. Every

touch made by the team was graded on a scale ranging as fine as 0–5 points in order

to quantify how well the skill was performed.

We assumed the sequences of hits followed a first-order Markov chain, where

the quality of each hit depended only on the quality of the previous contact and not

explicitly on contacts further removed in the sequence. We assumed a multinomial

likelihood distribution for each row in the count matrix and a Dirichlet prior distri-

bution for the associated probabilities. The count matrix consisted of the number

of times play moved from one transition state to another during the season. The

posterior distribution for the probabilities in each row is then proportional to the

product of the likelihood and prior distributions. Gibbs sampling was implemented

to calculate the posterior distributions of the probabilities of moving from one state

to another. We used the mean of the posterior distribution of the probability as a

point estimate to insert into the transition matrix. The transition probability matrix

can then be used to estimate probabilities of various sequences of events. We used the

transition probability matrix to estimate the unconditional probabilities associated

with performing a particular skill at various levels.

Section 3.2 examines previous work on volleyball analysis and estimating tran-

sition probabilities. Section 3.3 discusses the data and the notational grading system

used for the BYU Women’s Volleyball Team. Section 3.4 discusses the transitional
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probability matrix, our Bayesian model, and the methods used to calculate posterior

distributions of unconditional probabilities for a certain skill resulting in a point for

BYU, continuation of rally, or a point for the opponent. Section 3.5 presents the re-

sulting point estimates and posterior distributions for the unconditional probabilities.

Section 3.6 discusses ways the methodology might be used to improve play.

3.2 Previous Literature

In order to fully comprehend a sport team’s performance, the skills used must

be recorded, graded, and analyzed quantitatively. According to Daniel and Hughes

(2003), there has not been a considerable amount of quantitative analyses published

concerning the performance of volleyball skills. However, various notational analysis

systems have been developed for the purpose of analyzing volleyball skills (Coleman

et al. 1971; Coleman 1975; Sawula 1977; Lirdla 1980; Vojik 1980; Rose 1983; Eom

and Schutz 1992; Zetou et al. 2007). This paper builds on this previous work and

adds an extra dimension: although notational systems have long been used to quantify

volleyball performance in some dimensions, there has never been an extensive attempt

to include the grading of setting in the systems. By grading setting independently

of the attack and outcome, the natural association between the performance of one

skill and the performance of subsequent skills can be examined. The data set we used

was produced by and for the BYU Women’s Volleyball Team and included a rating

of every skill performed by team members during the 2006 home season.

Because volleyball skills are performed in a fairly rigid time sequence pattern

(pass-set-attack, etc.), it seemed natural to treat these patterns as Markov chains.

That is, we approached the problem as one of estimating the probability of transition-

ing from one state to another while the ball was on BYU’s side of the net. Common

methods used in estimating transition probabilities have included maximum likeli-

hood (Anderson and Goodman 1957; Duncan and Lin 1972; Craig and Sendi 2002),
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Bayesian methods (Lee et al. 1968; Boender and Rinnooy-Kan 1983; Fahrmeir 1992;

Assoudou and Essebbar 2003), least squares (Miller 1952; Telser 1963), weighted

least squares (Madansky 1959), restricted least squares (Theil and Rey 1966; Lee

et al. 1968), and weighted restricted least squares (Theil and Rey 1966). Lee et al.

(1968) compared different methods of estimating transition probabilities including

least squares, weighted least squares, maximum likelihood, and Bayesian models.

They found that Bayesian estimators performed better than maximum likelihood,

least squares, and weighted least squares estimators. These results were based on the

mean square error and absolute value of the error from various nonparametric tests.

Assoudou and Essebbar (2003) also found that Bayesian estimators performed better

than maximum likelihood and had a lower mean square error for two- and three-state

models.

Most work using Bayesian models to estimate transition probabilities has as-

sumed a multinomial likelihood distribution and a Dirichlet prior distribution (Lee

et al. 1968; Satia and Lave 1973; Ezzati 1974; Meshkani and Billard 1992; McKeigue

et al. 2000; Ozekici and Soyer 2003; Zhao et al. 2005). The models used by Cargnoni

et al. (1997) and Assoudou and Essebbar (2003) assumed different prior distribu-

tions including the normal distribution and Jeffreys’ prior distribution, respectively.

To calculate Bayesian point estimates of the transition probabilities, several earlier

methods used the posterior mean or mode (Lee et al. 1968; Boender and Rinnooy-

Kan 1983; Fahrmeir 1992; McKeigue et al. 2000). DeGroot (1970) showed that the

posterior expectation is the optimal Bayesian estimator with respect to the quadratic

loss function.

3.3 The Data

The data were recorded into a program called Data Volley (Data Project,

Salerno, Italy, release 2.1.9). The grading system was developed based on the number
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of possible codes Data Volley was capable of handling. Serves were graded on a six-

point (0–5) scale, passes on a five-point (0–4) scale, and attacks by position on the

court (middle, right side, left side, back row) and outcome (kill, rally continuation,

error, block). We evaluated sets according to three variables: distance from the net

(0–3 feet, 3–5 feet, etc.), height of the set (high and low), and position of the set in

relation to the hitter (inside and outside). Digs and blocks were also noted in the

data.

A trained member of the women’s volleyball coaching staff graded and recorded

in real time every serve, pass, dig, and attack performed by BYU for the 13 home

matches during the 2006 season. A default code was inserted for sets, so these could

be graded at a later time while viewing the game on film. To grade the sets, the

matches were filmed by two cameras observing different angles of the court at the

same time. One camera recorded the entire court from behind the end line of the

BYU women’s team. The other camera was parallel to and approximately five feet

away from the net, showing only BYU’s side of the court. Questionable sequences

found in the data were also verified by viewing the sequences on film. The hits

recorded for the opposing team included serves and attacks. This allowed us to track

when the ball had crossed the net. The final data set consisted of over 7,300 touches

of the ball for the BYU team.

Considerable work was necessary before the data were ready to analyze. The

data set contained many unnecessary codes that had to be removed. The information

in the data that was necessary for the analysis included the number of the player

who made contact with the ball, the skill type and skill grade of the contact, and

when the game ended. The team that contacted the ball could be determined by

looking at the player’s number, which was coded so BYU numbers were less than 50

and opposing team numbers were greater than 50. Although the score was inserted

by the person coding the data it was often inaccurate. To alleviate this problem, the
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score was determined at the conclusion of each rally by identifying the next team to

serve. The outcome for the final rally of each game was determined by the final score.

Since only touches on BYU’s side of the net were considered, continuation of

the rally was determined by observing if the ball returned to BYU’s side of the net

during a rally. However, because the person recording the data was less interested

in the opponent than BYU, sometimes there were no hits recorded for the opposing

team in a specific sequence, making it appear as if the BYU team hit the ball more

than three times in a row. Such sequences had to be located and corrected before the

analysis could be performed.

3.4 Methods

Every time the ball was on BYU’s side of the net, a sequence of events occurred

that followed one of these patterns: serve-outcome, pass-set-attack-outcome, or dig-

set-attack-outcome. The outcome was a point for BYU, a point for the opponent,

or continuation of the rally. We assumed these sequences were first-order Markov

chains. We represented these sequences in a matrix of transition probabilities where

the elements in the matrix represented the probabilities of moving from one state to

another (e.g., a four-point pass to a perfect set). Impossible sequences (e.g., a perfect

pass to an ace serve) were constrained to have zero probability. Sequences that

always occurred (e.g., an attack kill to a point for BYU) were assigned a probability

of one. Because setting had two measurements recorded, we calculated the transition

probability matrix including set distance from net, set placement, or both according

to the measurement we wanted to analyze.

The transition matrix was comprised of 35 states when analyzing set distance,

37 states with set placement, and 55 states with combined set distance and placement.

The states specified in the matrix were one opponent serve; six BYU float serves; six

BYU jump serves; six passing types; five set distances, seven set placements, or 25
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combinations of set distance and placement; seven attack types; one dig type; and

three outcomes.

We used a Bayesian paradigm to model the unknown transition probabilities.

We assumed a multinomial likelihood

f(yi1, . . . , yik|πi1, . . . , πik) ∝ πyi1

i1 πyi2

i2 . . . πyik

ik (3.1)

for each row, i = 1, . . . , m, in the count matrix, where k is the number of possible

states that could occur next in the sequence of touches and m is the number of states

in the transition matrix. The probability of moving from state i to another state j

in the transition probability matrix is represented by πij , where
∑k

j=1 πij = 1. The

data yij consist of the number of times play moved from state i to another state j

during the season. The count matrix is comprised of all the yij’s.

We specified our prior probability densities in each row to be distributed as

Dirichlet random variables

f(πi1, . . . , πik|αi1, . . . , αik) ∝ παi1−1
i1 παi2−1

i2 . . . παik−1
ik , (3.2)

where each αij represents how often we expected the women’s team to move from state

i to state j relative to moving to a different state in the transition probability matrix.

Prior counts were determined by one of the project designers, a former volleyball

coach. To check for sensitivity to prior assumptions, we also ran an analysis with

prior counts (αij) all equal to one. The results of the sensitivity analysis are discussed

in Section 3.5.

We used Markov chain Monte Carlo methods to produce a posterior distribution

f(πi1, . . . , πik|yi1, . . . , yik, αi1, . . . , αik) ∝ πyi1+αi1−1
i1 πyi2+αi2−1

i2 . . . πyik+αik−1
ik (3.3)
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for each row i in the transition matrix. We used the mean of the posterior distribu-

tion,
yij+αij∑k

j=1
(yij+αij)

, for each of the πij ’s as point estimates to insert in the transition

probability matrix.

In addition to estimating the transition probability matrix, we calculated the

unconditional probabilities of moving from a certain state (e.g., a perfect pass) to an

outcome (e.g., a point for BYU). To obtain a point estimate for the unconditional

probability, we considered all possible sequences of touches that could occur between

the state and outcome in the transition probability matrix. For each sequence, we

multiplied the corresponding probabilities in the transition matrix. Using the law of

total probability, we summed the probability of each sequence to get the unconditional

probability of going from a certain state to an outcome.

In order to understand how much variability existed in our unconditional proba-

bility point estimates, we calculated the distribution for each unconditional probabil-

ity using Gibbs sampling. To efficiently draw values from the posterior distribution,

we drew x1, x2, . . . , xk from independent gamma distributions with shape parame-

ters yi1 + αi1, yi2 + αi2, . . . , yik + αik and common scale parameter and calculated

πij = xj/
∑k

j=1 xj (Gelman et al. 2004). We computed a draw of the unconditional

probability using the current state of the transition probability matrix at each step

of the MCMC process. The unconditional probability distributions were based on

100,000 realizations from each row’s posterior distribution.

3.5 Results

We summarize results by focusing on the unconditional probabilities of moving

from a certain skill to a rally outcome. Figure 3.1 shows the posterior distributions

for the unconditional probability of the present rally sequence ending in a point for

BYU following a pass of the given point rating. A 0-point pass is not shown because

it can never end in a point for BYU. Similarly, Figures 3.2 and 3.3 show the posterior
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distributions for the unconditional probabilities of various set types leading to an

immediate point for BYU. Finally, Figure 3.4 shows the posterior distributions of the

probability of attacks by position on the court leading to a point for BYU. Point

estimates for these probabilities, as well as the probability of the rally continuing and

a point being scored by the opposition, are shown in Table 3.1.

We also performed a sensitivity analysis on the influence of the prior specifica-

tion by setting the prior counts to 1 for every state where the transition probability

was not constrained to be zero or one. The probabilities of passes with the various rat-

ings leading to outcomes using these two prior distributions are shown in Figures 3.1

and 3.6 (posterior densities) and Tables 3.1 and 3.2 (point estimates). The outcomes

are virtually indistinguishable for the two prior specifications. Thus, we have little

reason to believe that the prior specifications we used had a marked influence on the

posterior distributions. Similar differences were observed for all other unconditional

probabilities.

3.6 Discussion

We recognize that this analysis is applicable only to BYU women’s volleyball.

Nonetheless, it is not unreasonable to look for generalizations that might be applicable

to other teams. We also recognize that there are many types of questions that could

be asked based on the analysis that we have presented. We consider just four areas

that may provide useful information for coaches.

Many coaches rate passers based on their passing average. This system seems to

be problematic based on our results. The passing average assumes that the difference

between a 1-point pass and a 2-point pass is equivalent to that between a 2-point pass

and a 3-point pass, etc. This is obviously not the case. For example, a player with

a 3.0 passing average who earns that average with equal numbers of 2-point, 3-point,

and 4-point passes would have a point probability that the rally would terminate with
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Table 3.1: The unconditional probability point estimates for pass types, sets certain
distances from the net, set placements, and attack positions resulting in the various
outcomes.

Pass Types
Pass Score Point Continue Rally Opponent Score

4-Point 0.505 0.260 0.235
3-Point 0.496 0.259 0.245
2-Point 0.489 0.262 0.249
1-Point 0.394 0.278 0.328

Sets Certain Distances from Net
Set Distance Score Point Continue Rally Opponent Score

0–3 Feet 0.506 0.239 0.255
3–5 Feet 0.511 0.258 0.231
5–8 Feet 0.498 0.267 0.235

8–10+ Feet 0.426 0.293 0.281
Set not by Setter 0.456 0.290 0.254

Set Placements
Set Placement Score Point Continue Rally Opponent Score

Perfect 0.509 0.259 0.232
Low and Inside 0.510 0.258 0.232

High and Outside 0.492 0.271 0.237
Low and Outside 0.495 0.260 0.245
High and Inside 0.472 0.284 0.244

Attack Positions
Attack Score Point Continue Rally Opponent Score
Middle 0.530 0.243 0.227

Right Side 0.545 0.207 0.248
Left Side 0.495 0.283 0.222
Back Row 0.384 0.296 0.320
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Figure 3.1: Posterior distributions for the unconditional probabilities of pass types
leading to scoring a point.

Table 3.2: Probability point estimates for passing to certain outcomes when prior
counts were all assumed to be 1.

Pass Score BYU Score Continue Rally Opponent Score
4-Point 0.507 0.258 0.235
3-Point 0.500 0.257 0.243
2-Point 0.492 0.261 0.247
1-Point 0.380 0.279 0.341
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Figure 3.2: Posterior distributions for the unconditional probabilities of set place-
ments leading to scoring a point.
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Figure 3.3: Posterior distributions for the unconditional probabilities of sets from
various distances leading to scoring a point.
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Figure 3.4: Posterior distributions of unconditional probabilities of attacks from var-
ious positions leading to scoring a point.
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Figure 3.5: Posterior distributions of the transition probabilities of a perfect set to
the various attack positions.
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Figure 3.6: Posterior distributions for the unconditional probabilities of pass types
leading to scoring a point when setting the prior counts to 1 for every state where
the transition probability was not constrained to be 0 or 1.
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a point for BYU of 1
3
(.505 + .496 + .489) = .497. Another player who earns a 3.0

passing average by having 70% 4-point passes, 20% 1-point passes, and 10% 0-point

passes would only have a point probability of .7 ∗ .505 + .2 ∗ .394 = .432. While these

examples are admittedly extreme, the deficiencies of the average as a rating system

for passers is obvious. The large discrepancy of probability of point production from

0-point and 1-point passes relative to 2-, 3-, and 4-point passes should be taken into

account.

In a similar vein, it seems reasonable that the target a passer aims for should

be moved further off the net; the penalty paid for a 2-point pass is small compared

to that paid for an overpass. Sending a setter close to the net leads to the occasional

spectacular play but, based on our analysis, would have a lower expected long-run

return.

We now take a brief look at the back set or set to the right side of the court.

Figure 3.5 shows the probability of a perfect set being made to the various attack

points on the court. It is easy to see that the probability of making a perfect back

set is much lower than the probability of making a perfect set either to the left side

or to the middle of the court. However, based on the results shown in Figure 3.4, a

strategy that avoids the back set because of its difficulty would not be wise. The right

side attack has an excellent probability of ending a rally positively. The difficulty of

making the set should be tempered by the results found in Figures 3.2 and 3.3. The

penalty paid for a less than perfect set is not shown to be high in this analysis. If the

high and inside delivery can be avoided (Figure 3.2) the attack has a good probability

of being successful.

Finally, we note that, for the BYU women’s team, at least, the back row set

should be avoided. This attack has significantly lower probability of success (Fig-

ures 3.3 and 3.4). We conjecture that this result would generalize well to other

women’s teams, but have some doubt about applying this generalization to men’s
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teams.

We believe that the methodology described in this paper can be used to assist

a coach in allocating practice time, focusing on optimal skill development, and op-

timizing attack strategies. It seems likely that extensions of this method could be

implemented to help a coach determine which players (and the skill sets they bring

to the court) should be used to form an optimal team.
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A. COLLAPSING THE COUNT MATRIX

The orginal count matrix using all the codes originally used by the individual

rating the skills was 127 × 127. Due to the large number of skill levels in certain

transition states, it was difficult to assimilate desired information from the matrix.

There was also concern with lack of data in certain regions of the count matrix. To

alleviate this problem, counts of similar rows and columns of the count matrix were

added together to create a smaller count matrix. The following changes to the count

matrix were made:

(1) Passes received from float and jump serves were combined according to the

grade assigned. For example, a 4-point pass from a float serve and a 4-point

pass from a jump serve were combined into a 4-point pass.

(2) All digs were combined into a single state.

(3) Setting was combined by either set distance, set placement, or both depending

on the skill of interest.

(4) The types of attack were grouped according to position on the court (middle,

right side, left side, back row). Table A.1 displays the original attack types

and which position of the court they were assigned. Setter-dump, out-of-

system front row attack, and overpass categories were kept separate from

attack positions.

The resulting count matrix was 35 × 35 when analyzing set distance, 37 × 37 when

analyzing set placement, and 55×55 when analyzing the possible combinations of set

placement and distance. These adjusted count matrices were used in estimating the

transition probabilities and unconditional probability distributions discussed in this

project.
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Table A.1: The original attack types combined according to court position (middle,
right, left, back row).

Attack Type Court Position
Front 2 Middle
Gap Set Middle
Back 1 Middle
Slide Middle

Fast Slide Middle
“X-series” or Combo Right

Right Side “Red” Right
High Set to RS Right

Go Left
Hut Left

Highball “4” Left
Inside Left Side Set “Rip” Left

Pipe or BIC Back Row
Back Row B Set Back Row

Back Row Right Side ”D” Back Row
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B. SAMPLE OF RAW DATA

The following is a small portion of the raw data produced by the software Data

Volley. This excerpt is the beginning of the match between Virginia Commonwealth

University and Brigham Young University.

[Match]

01/09/2007;;;;;;;;1;1;;;DVSW Release 3.7.5;

[Team]

BYU;Brigham Young University;3;Watson Jason;Huebner Aldridge;

VCU;VCU;0;;;

[Oders]

;;;;;;;15;3;

[MatchComments]

;;;;

[Set]

True;9 -10;20-17;25-20;30-22;24;

True;10-8;20-15;25-18;30-21;23;

True;10-7;20-13;25-17;30-21;23;

True;;;;;;

True;;;;;;

[Player1]

0;1;1;2;2;2;;;GOO-CHE;Goodman;;;

0;2;2;;;;;;BEA-JAN;Beaumont;;;

0;3;3;;;;;;EVA-LIN;Evans;;;

0;4;4;;;;;;HAN-ASH;Hansen;;;

0;5;5;;;;;;RIC-LAU;Richards;;;

0;6;6;;;;;;STI-TES;Stimpson;;;

0;7;7;5;;;;;WIL-KIM;Wilson;;;

0;8;8;;;;;;VAN-MAR;Vandersteen;;;

0;9;9;;;;;;BRO-LEX;Brown;;;

0;10;10;4;4;4;;;LOT-ERI;Lott;;;

0;11;11;;5;5;;;KEM-ANI;Kemp;;;

0;12;12;;;;;;PAR-CAT;Parker;;;

0;13;13;;;;;;POR-BRY;Porter;;;

0;14;14;3;3;3;;;HAR-LIN;Hartsock;;;

0;15;15;1;1;1;;;SCH-AMY;Schlauder;;;

0;16;16;;;;;;LAU-STE;Lau;;;

0;20;17;;;;;;JUD-JEN;Judkins;;;

0;24;18;;;;;;DYE-RAC;Dyer;;;

[Player2]

[Scout]
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*P15;;;;;;;09.54.08;1;1;1;;;;

aP3;;;;;;;09.54.08;1;1;1;;;;

*z1;;;;;;;09.54.08;1;1;1;;;;

az1;;;;;;;09.54.08;1;1;1;;;;

53SQ#;p;;;;;;09.54.08;1;1;1;1;39;;

15RQ=;p;;;;;;09.54.08;1;1;1;1;39;;

ap00:01;;;;;;;09.54.17;1;1;1;1;48;;

53SQ=;s;;;;;;09.54.25;1;1;1;1;56;;

49&H#;s;;;;;;09.54.25;1;1;1;1;56;;

*p01:01;;;;;;;09.54.31;1;1;1;1;62;;

*z6;;;;;;;09.54.31;1;6;1;1;62;;

01SQ/;;;;;;;09.54.43;1;6;1;1;74;;

65RQ/;p;;;;;;09.54.43;1;6;1;1;74;;

10AH#PO;p;p;;;;;09.54.51;1;6;1;1;82;;

*p02:01;;;;;;;09.54.54;1;6;1;1;85;;

01SQ+;;;;;;;09.55.06;1;6;1;1;97;;

65RQ!;;;;;;;09.55.06;1;6;1;1;97;;

49&H#;p;;;;;;09.55.06;1;6;1;1;97;;

99&H=;p;;;;;;09.55.06;1;6;1;1;97;;

*p03:01;;;;;;;09.55.18;1;6;1;1;109;;

01SQ#;p;;;;;;09.55.32;1;6;1;1;123;;

65RQ=;p;;;;;;09.55.32;1;6;1;1;123;;

*p04:01;;;;;;;09.55.39;1;6;1;1;130;;

01SQ=;s;;;;;;09.55.56;1;6;1;1;147;;

99&H#;s;;;;;;09.55.56;1;6;1;1;147;;

ap04:02;;;;;;;09.56.02;1;6;1;1;153;;

az6;;;;;;;09.56.02;1;6;6;1;153;;

59SQ=;s;;;;;;09.56.14;1;6;6;1;165;;

49&H#;s;;;;;;09.56.14;1;6;6;1;165;;

*p05:02;;;;;;;09.56.24;1;6;6;1;175;;

*z5;;;;;;;09.56.24;1;5;6;1;175;;

14SH+;;;;;;;09.56.33;1;5;6;1;184;;

65RH!;;;;;;;09.56.33;1;5;6;1;184;;

10DH!;;;;;;;09.56.41;1;5;6;1;192;;

49&H#;p;;;;;;09.56.41;1;5;6;1;192;;

99&H=;p;;;;;;09.56.41;1;5;6;1;192;;

*p06:02;;;;;;;09.56.53;1;5;6;1;204;;

14SH+;;;;;;;09.57.04;1;5;6;1;215;;

65RH+;;;;;;;09.57.04;1;5;6;1;215;;

49&H=;s;;;;;;09.57.04;1;5;6;1;215;;

99&H#;s;;;;;;09.57.04;1;5;6;1;215;;

ap06:03;;;;;;;09.57.21;1;5;6;1;232;;

az5;;;;;;;09.57.21;1;5;5;1;232;;

60SH#;p;;;;;;09.57.28;1;5;5;1;239;;

07RH=;p;;;;;;09.57.28;1;5;5;1;239;;
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ap06:04;;;;;;;09.57.35;1;5;5;1;246;;

60SH!;;;;;;;09.57.42;1;5;5;1;253;;

07RH-;;;;;;;09.57.42;1;5;5;1;253;;

01AL=PB;p;r;;;;;09.57.47;1;5;5;1;258;;

99&H#;p;;;;;;09.57.47;1;5;5;1;258;;

ap06:05;;;;;;;09.57.54;1;5;5;1;265;;

60SH+;;;;;;;09.58.01;1;5;5;1;272;;

10RH+;;;;;;;09.58.01;1;5;5;1;272;;

15EH#;;;;;;;09.58.04;1;5;5;1;275;;

24AQ#P2;s;r;;;;;09.58.05;1;5;5;1;276;;

99&H=;s;;;;;;09.58.05;1;5;5;1;276;;

*p07:05;;;;;;;09.58.16;1;5;5;1;287;;

*z4;;;;;;;09.58.16;1;4;5;1;287;;

10SQ+;;;;;;;09.58.20;1;4;5;1;291;;

65RQ+;;;;;;;09.58.20;1;4;5;1;291;;

49&H=;s;;;;;;09.58.20;1;4;5;1;291;;

99&H#;s;;;;;;09.58.20;1;4;5;1;291;;

ap07:06;;;;;;;09.58.28;1;4;5;1;299;;

az4;;;;;;;09.58.28;1;4;4;1;299;;

65SQ+;;;;;;;09.58.42;1;4;4;1;313;;

10RQ+;;;;;;;09.58.42;1;4;4;1;313;;

15EH#;;;;;;;09.58.45;1;4;4;1;316;;

24AQ#P2;s;r;;;;;09.58.46;1;4;4;1;317;;

99&H=;s;;;;;;09.58.46;1;4;4;1;317;;

*p08:06;;;;;;;09.58.53;1;4;4;1;324;;

*z3;;;;;;;09.58.53;1;3;4;1;324;;

11SQ-;;;;;;;09.59.13;1;3;4;1;344;;

65RQ#;;;;;;;09.59.13;1;3;4;1;344;;

10DH=;s;;;;;;09.59.20;1;3;4;1;351;;

99&H#;s;;;;;;09.59.20;1;3;4;1;351;;

ap08:07;;;;;;;09.59.25;1;3;4;1;356;;

az3;;;;;;;09.59.25;1;3;3;1;356;;

55SQ#;p;;;;;;09.59.39;1;3;3;1;370;;

15RQ=;p;;;;;;09.59.39;1;3;3;1;370;;

ap08:08;;;;;;;09.59.46;1;3;3;1;377;;

55SQ+;;;;;;;09.59.55;1;3;3;1;386;;

15RQ+;;;;;;;09.59.55;1;3;3;1;386;;

15EH+;;;;;;;09.59.59;1;3;3;1;390;;

24AL/PB;p;r;;;;;10.00.01;1;3;3;1;392;;

99&H#;p;;;;;;10.00.01;1;3;3;1;392;;

ap08:09;;;;;;;10.00.11;1;3;3;1;402;;

49&H#;s;;;;;;10.00.11;1;3;3;1;402;;

99&H=;s;;;;;;10.00.11;1;3;3;1;402;;

*p09:09;;;;;;;10.00.32;1;3;3;1;423;;

*z2;;;;;;;10.00.32;1;2;3;1;423;;
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C. R CODE

The following is the R Code written for this project. Section C.1 is the code to

clean the data and prepare for the analysis. Section C.2 displays the code to compute

the transition probability matrix depending on whether evaluating set placement, set

distance, or a combination of the two. Section C.3 gives the code used to compute

the unconditional probability point estimates and distributions. Section C.4 gives the

code used to perform a sensitivity analysis on the prior counts of the unconditional

probabilities.

C.1 Cleaning the data

################################################################

## Clean Data for BYU Women’s Volleyball Team Analysis ##

################################################################

# Read in the current file with all 13 games combined into one file

vb <- read.table("New Matches/combined new.txt",sep=";",

comment.char="@")

#Gives names to the first three columns in the data frame

names(vb) <- c("play", "opponent", "rotation")

#Disregard computer code

vb <-vb[substr(as.character(vb$play),3,3)!="&",]

#Disregard home setters and home scores

vb <-vb[substr(as.character(vb$play),2,2)!="P",]

#Disregard opponent setters and opponent scores

vb <-vb[substr(as.character(vb$play),2,2)!="z",]

#Separates out the player #’s (Will have NAs for scores)

vb$players <- as.numeric(substr(as.character(vb$play),1,2))

vb$skill <- substr(as.character(vb$play),3,4) #Separate skill/score

vb$score <- substr(as.character(vb$play),5,5) #Separate score

skillscore <- substr(as.character(vb$play),3,5)

# Loop through the data and look for when each game is over

# (**1set, **2set,**3set,**4set)

team <- rep(NA,length(vb$players))
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outcome <- rep(NA,length(vb$players))

for(i in 1:length(vb$play)){

if(substr(as.character(vb$play[i]),1,2)=="**"){

outcome[i] <- "GAMEOVER"

if(substr(as.character(vb$play[i-1]),1,2)=="*p"){

j<-2

while(1){

if(vb$players[i-j]<50 ||

substr(as.character(vb$skill[i-j]),1,1)=="S"){break}

j <- j+1}

outcome[i-j] <- "Good"

}

else if(substr(as.character(vb$play[i-1]),1,2)=="ap"){

j<-2

while(1){

if(vb$players[i-j]<50 ||

substr(as.character(vb$skill[i-j]),1,1)=="S"){break}

j <- j+1}

outcome[i-j] <- "Bad"

}

}

}

vb$outcome <- outcome

#Disregard opponent scores

vb <-vb[substr(as.character(vb$play),1,2)!="ap",]

#Disregard home scores

vb <-vb[substr(as.character(vb$play),1,2)!="*p",]

### Goes through a loop and indicates when there is a new serve and

# which hits are by the BYU/opp team

for(i in 1:length(vb$players)){

if(substr(as.character(vb$play[i]),1,2)=="**"){

vb$team[i] <- "GAMEOVER"}

else if(vb$players[i] > 50){

#Signifies when opponent serves

if(substr(vb$skill[i],1,1)=="S") vb$team[i] <- "OPPSERVE"

else vb$team[i] <- "OPP" #Signifies when opponent hits

}

else if(vb$players[i] < 50 && substr(vb$skill[i],1,1)=="S"){

vb$team[i] <- "HOMESERVE"} #Signifies when home serves

else {vb$team[i] <- "HOME"} #Signifies when home hits

}
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##

###Identify the outcomes (Good, Bad, Continue)

##

for(i in 1:length(vb$team)){

if(is.na(vb$outcome[i])){

if(vb$team[i]=="HOME"){

if(vb$team[i+1]=="HOME" && substr(vb$skill[i],1,1)=="A"){

vb$outcome[i] <- "Continue"}

else if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else if(vb$team[i+1]=="OPP"){

### Determines if the ball ever returns to BYU team.

# If not, then outcome is recorded

j <- 0

while(1) {

if(vb$team[i+2+j]=="HOME") {

#If the play goes back to Home team,

# then it was a continued rally

vb$outcome[i]<-"Continue"

break } #Break gets out of the loop

else if(vb$team[i+2+j]=="HOMESERVE") {

#Ball never came back to Home side of net.

vb$outcome[i] <- "Good"

break }

else if(vb$team[i+2+j]=="OPPSERVE") {

vb$outcome[i] <- "Bad"

break }

else {j <- j+1}

}

}

else {vb$outcome[i] <- "NA"}

}

else if(vb$team[i]=="HOMESERVE"){

if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else if(vb$team[i+1]=="OPP"){

### Determines if the ball ever returns to BYU team.

## If not, then outcome is recorded

j <- 0

while(1) {

if(vb$team[i+2+j]=="HOME") {
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# If the play goes back to Home team,

# then it was a continued rally

vb$outcome[i]<-"Continue"

break } #Break gets out of the loop

else if(vb$team[i+2+j]=="HOMESERVE") {

#Ball never came back to Home side of net.

vb$outcome[i] <- "Good"

break }

else if(vb$team[i+2+j]=="OPPSERVE") {

vb$outcome[i] <- "Bad"

break }

else {j <- j+1}

}

}

else {vb$outcome[i] <- "NA"}

}

#If Opponent Serves

else if(vb$team[i]=="OPPSERVE"){

if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else {vb$outcome[i] <- "NA"}

}

else {vb$outcome[i] <- "NA"}

}

}

##

### Change the opponent Serve from "SQ" and "SH" to "OQ" and "OH" ###

### This allows us to distinguish between Home and Opponent Serves

##

for (i in 1:length(vb$players)){

if(vb$players[i] > 50 && substr(vb$skill[i],1,1)=="S")

vb$skill[i] <- paste("O",substr(vb$skill[i],2,2),sep="")

}

#We only care about opponents as "float" and "jump" serves

vb$score[substr(vb$skill,1,1)=="O"] <- "#"

##

###Replaces the skill "Attack" with the actual attacking codes:

##

vb$skill[substr(vb$skill,1,1)=="A"] <-

substr(as.character(vb$play),6,7)[substr(as.character(vb$skill),
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1,1)=="A"]

vb <-vb[vb$team!="OPP",] #Disregard opponent hits

# Combine the skill and score together

vb$skillscore <- paste(vb$skill,vb$score,sep="")

#This makes it so I don’t have to keep running the previous code if

# I just want to look at something in the dataset

save(vb,file="volleyclean.txt")

load("volleyclean.txt")

# This creates one long sequence of hits and outcomes ready to analyze

transitions <- NA

for(i in 1:length(vb$play)){

if(vb$outcome[i]=="GAMEOVER"){transitions <-

rbind(transitions, "GAMEOVER")}

else if(vb$outcome[i]=="NA")

#If no outcome, just put in the skill/score

{transitions <- rbind(transitions, vb$skillscore[i])}

else #This is anything that has an outcome

#Have skill/score first, then the outcome

transitions<-rbind(transitions,vb$skillscore[i],vb$outcome[i])

}

#Write the game to a file

write(t(transitions[-1]), "transitions.txt",ncol=1,sep = "\t")

transitions <- as.matrix(read.table("transitions.txt",

comment.char="")) #Read in the game

## Defines the names of all the different hits possible

## Will be used in the transition matrix

hits <- c("OH#","OQ#",

"SH#","SH/","SH+","SH!","SH-","SH=",

"SQ#","SQ/","SQ+","SQ!","SQ-","SQ=",

"RH#","RH+","RH!","RH-","RH=","RH/",

"RQ#","RQ+","RQ!","RQ-","RQ=","RQ/",

"EQ#","EQ+","EQ!",

"EH#","EH+","EH!","EH-","EH/","EH=",

"ET#","ET+","ET!","ET-","ET/","ET=",

"EM#","EM+","EM!","EM-","EM/","EM=",

"EL#","EL+","EL!","EL-","EL/","EL=","E",
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"P2#","P2+","P2=","P2/",

"P3#","P3+","P3=","P3/","P5#","P5+",

"P6#","P6+","P6/",

"P8#","P8+","P8=","P8/",

"PA#","PA+","PA=",

"PB#","PB+","PB=","PB/",

"PD#","PD+","PD=","PD/",

"PG#","PG+","PG=","PG/",

"PH#","PH+","PH=","PH/",

"PK#","PK+","PK=","PK/",

"PM#","PM+","PM=","PM/",

"PO#","PO+","PO=",

"PP#","PP+","PP=",

"PR#","PR+",

"PS#","PS+","PS=","PS/",

"PW#","PW+","PW=","PW/",

"PX#","PX+","PX=","PX/",

"DH#","DH+","DH!","DH-","DH/","DH=",

"Good","Continue","Bad")

######################################################################

# Create the count matrix from from the list of touches and outcomes #

######################################################################

# Function to calculate the actual counts from the data

# for every transition in the matrix

counts <- function(transitions){

c.mat <- as.data.frame(matrix(0,length(hits),length(hits)),

row.names=hits)

names(c.mat) <- hits #Name the columns of the data frame

for(i in 1:(length(transitions)-1) ){

if(transitions[i]=="GAMEOVER" ||

transitions[i+1]=="GAMEOVER"){temp<-NA}

else c.mat[transitions[i], transitions[i+1]] <-

c.mat[transitions[i], transitions[i+1]] + 1

}

return(c.mat)

}

c.mat <- counts(transitions)

# Constrain some of the counts to be zero (data typos):

c.mat["RH#","Continue"] <- 0 #Perfect Pass

c.mat["RQ#","Good"] <- 0

c.mat["RH+","Good"] <- 0 #3 Pt Pass
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c.mat["RQ+","Good"] <- 0

c.mat["RQ+","Continue"] <- 0

c.mat["RH!","Good"] <- 0 #2 Pt Pass

c.mat["RH!","Bad"] <- 0

c.mat["RQ!","Continue"] <- 0

c.mat["RQ!","Bad"] <- 0

c.mat["RH/","Good"] <- 0

c.mat["RQ-","DH-"] <- 0

# Write the game to a file:

write(t(c.mat), "cmat.txt",ncol=ncol(c.mat),sep = "\t")

#Need to constrain the same counts in the prior transition

# count matrix to be zero:

#Read in the prior counts

a.mat <- read.table("amat.txt", comment.char="")

a.mat <- as.data.frame(a.mat,row.names=hits)

names(a.mat) <- hits #Names the columns of the data frame

a.mat["RH#","Continue"] <- 0 #Perfect Pass

a.mat["RQ#","Good"] <- 0

a.mat["RH+","Good"] <- 0 #3 Pt Pass

a.mat["RQ+","Good"] <- 0

a.mat["RQ+","Continue"] <- 0

a.mat["RH!","Good"] <- 0 #2 Pt Pass

a.mat["RH!","Bad"] <- 0

a.mat["RQ!","Continue"] <- 0

a.mat["RQ!","Bad"] <- 0

a.mat["RH/","Good"] <- 0

a.mat["RQ-","DH-"] <- 0

write(t(a.mat), "amat.txt",ncol=ncol(a.mat),sep = "\t")

## Defines the names of all the different hits possible -

# Will be used in the transition matrix

## These are the names associated with the full matrix (127 x 127)

hits <- c("OH#","OQ#",

"SH#","SH/","SH+","SH!","SH-","SH=",

"SQ#","SQ/","SQ+","SQ!","SQ-","SQ=",

"RH#","RH+","RH!","RH-","RH=","RH/",

"RQ#","RQ+","RQ!","RQ-","RQ=","RQ/",

"EQ#","EQ+","EQ!",

"EH#","EH+","EH!","EH-","EH/","EH=",
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"ET#","ET+","ET!","ET-","ET/","ET=",

"EM#","EM+","EM!","EM-","EM/","EM=",

"EL#","EL+","EL!","EL-","EL/","EL=","E",

"P2#","P2+","P2=","P2/",

"P3#","P3+","P3=","P3/",

"P5#","P5+",

"P6#","P6+","P6/",

"P8#","P8+","P8=","P8/",

"PA#","PA+","PA=",

"PB#","PB+","PB=","PB/",

"PD#","PD+","PD=","PD/",

"PG#","PG+","PG=","PG/",

"PH#","PH+","PH=","PH/",

"PK#","PK+","PK=","PK/",

"PM#","PM+","PM=","PM/",

"PO#","PO+","PO=",

"PP#","PP+","PP=",

"PR#","PR+",

"PS#","PS+","PS=","PS/",

"PW#","PW+","PW=","PW/",

"PX#","PX+","PX=","PX/",

"DH#","DH+","DH!","DH-","DH/","DH=",

"Good","Continue","Bad")

################################################################

## Read in the counts matrix

c.mat <- read.table("Full Matrix/cmat.txt", comment.char="")

c.mat <- as.data.frame(c.mat,row.names=hits)

names(c.mat) <- hits #Names the columns of the data frame

################################################################

# This code collapses the count matrix by set placement. #

# Similar code is run to collapse count matrix by set distance #

# and also combination of set distance and placement #

################################################################

### Collapse the count matrix:

#This combines the opponent jump and float serves

newcmat <- c.mat["OQ#",] + c.mat["OH#",]

#Carry over the float serves from BYU

newcmat["SH#",] <- c.mat["SH#",]
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newcmat["SH/",] <- c.mat["SH/",]

newcmat["SH+",] <- c.mat["SH+",]

newcmat["SH!",] <- c.mat["SH!",]

newcmat["SH-",] <- c.mat["SH-",]

newcmat["SH=",] <- c.mat["SH=",]

#Carry over the jump serves from BYU

newcmat["SQ#",] <- c.mat["SQ#",]

newcmat["SQ/",] <- c.mat["SQ/",]

newcmat["SQ+",] <- c.mat["SQ+",]

newcmat["SQ!",] <- c.mat["SQ!",]

newcmat["SQ-",] <- c.mat["SQ-",]

newcmat["SQ=",] <- c.mat["SQ=",]

#This combines the passes received from float and jump serves

newcmat["4pt",] <- c.mat["RQ#",] + c.mat["RH#",]

newcmat["3pt",] <- c.mat["RQ+",] + c.mat["RH+",]

newcmat["2pt",] <- c.mat["RQ!",] + c.mat["RH!",]

newcmat["1pt",] <- c.mat["RQ-",] + c.mat["RH-",]

newcmat["0pt",] <- c.mat["RQ=",] + c.mat["RH=",]

newcmat["PassOverpass",] <- c.mat["RQ/",] + c.mat["RH/",]

# Identify the set placements:

#Perfect Set (PS)

newcmat["PS",] <- c.mat["EQ#",] + c.mat["EH#",] + c.mat["ET#",] +

c.mat["EM#",] + c.mat["EL#",]

#Low and Inside Set

newcmat["LIS",] <- c.mat["EQ+",] + c.mat["EH+",] + c.mat["ET+",] +

c.mat["EM+",] + c.mat["EL+",]

#High and Outside Set

newcmat["HOS",] <- c.mat["EQ!",] + c.mat["EH!",] + c.mat["ET!",] +

c.mat["EM!",] + c.mat["EL!",]

#Outside and Low Set

newcmat["OLS",] <- c.mat["EH-",] + c.mat["ET-",] + c.mat["EM-",] +

c.mat["EL-",]

#Inside and High Set

newcmat["IHS",] <- c.mat["EH/",] + c.mat["ET/",] + c.mat["EM/",] +

c.mat["EL/",]

newcmat["SetError",] <- c.mat["EH=",] + c.mat["ET=",] +

c.mat["EM=",] + c.mat["EL=",]
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newcmat["NotSetter",] <- c.mat["E",]

#Key for attack codes

# P2 Front 2 - middle

# P3 Gap Set - middle

# P5 High set to RS - right

# P6 Back 1 -- middle

# P8 Fast Slide -- middle

# PA Out of system front row attack - Separate Category

# PB Back row B set -- back row

# PD Back row right side "D" - - back

# PG Go -- left

# PH Hut -- left

# PK Right Side "Red" -- right

# PM Highball "4" -- left

# PO Overpass Attack -- Separate Category

# PP Pipe or BIC -- back

# PR Inside left side set "Rip" -- left

# PS Setter Dump -- Separate Category

# PW Slide -- middle

# PX "X-series" or Combo -- right

#Identify the attacks:

newcmat["Middle",] <-

c.mat["P2#",] + c.mat["P2+",] + c.mat["P2=",] + c.mat["P2/",] +

c.mat["P3#",] + c.mat["P3+",] + c.mat["P3=",] + c.mat["P3/",] +

c.mat["P6#",] + c.mat["P6+",] + c.mat["P6/",] +

c.mat["P8#",] + c.mat["P8+",] + c.mat["P8=",] + c.mat["P8/",] +

c.mat["PW#",] + c.mat["PW+",] + c.mat["PW=",] + c.mat["PW/",]

newcmat["Right",] <-

c.mat["P5#",] + c.mat["P5+",] +

c.mat["PK#",] + c.mat["PK+",] + c.mat["PK=",] + c.mat["PK/",] +

c.mat["PX#",] + c.mat["PX+",] + c.mat["PX=",] + c.mat["PX/",]

newcmat["Left",] <-

c.mat["PG#",] + c.mat["PG+",] + c.mat["PG=",] + c.mat["PG/",] +

c.mat["PH#",] + c.mat["PH+",] + c.mat["PH=",] + c.mat["PH/",] +

c.mat["PM#",] + c.mat["PM+",] + c.mat["PM=",] + c.mat["PM/",] +

c.mat["PR#",] + c.mat["PR+",]

newcmat["Back",] <-

c.mat["PB#",] + c.mat["PB+",] + c.mat["PB=",] + c.mat["PB/",] +
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c.mat["PD#",] + c.mat["PD+",] + c.mat["PD=",] + c.mat["PD/",] +

c.mat["PP#",] + c.mat["PP+",] + c.mat["PP=",]

#Setter Dump

newcmat["SetDump",] <-

c.mat["PS#",] + c.mat["PS+",] + c.mat["PS=",] + c.mat["PS/",]

#Out-of-system front row attack

newcmat["OutSystem",] <-

c.mat["PA#",] + c.mat["PA+",] + c.mat["PA=",]

#Overpass

newcmat["Overpass",]<-

c.mat["PO#",] + c.mat["PO+",] + c.mat["PO=",]

#Combine dig scores into one state

newcmat["Dig",] <-

c.mat["DH#",] + c.mat["DH+",] + c.mat["DH!",] + c.mat["DH-",] +

c.mat["DH/",] + c.mat["DH=",]

#Carry over the outcomes

newcmat["Good",] <- c.mat["Good",]

newcmat["Continue",] <- c.mat["Continue",]

newcmat["Bad",] <- c.mat["Bad",]

########################################################

### Do the column collapsing #

########################################################

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=",

"SQ#", "SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"PS", "LIS", "HOS", "OLS", "IHS", "SetError", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")

cmat2 <- as.data.frame(newcmat[,"OQ#"] + newcmat[,"OH#"],

row.names=newhits)

names(cmat2) <- "O"

cmat2[,"SH#"] <- newcmat[,"SH#"]

cmat2[,"SH/"] <- newcmat[,"SH/"]

cmat2[,"SH+"] <- newcmat[,"SH+"]

cmat2[,"SH!"] <- newcmat[,"SH!"]

cmat2[,"SH-"] <- newcmat[,"SH-"]
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cmat2[,"SH="] <- newcmat[,"SH="]

cmat2[,"SQ#"] <- newcmat[,"SQ#"]

cmat2[,"SQ/"] <- newcmat[,"SQ/"]

cmat2[,"SQ+"] <- newcmat[,"SQ+"]

cmat2[,"SQ!"] <- newcmat[,"SQ!"]

cmat2[,"SQ-"] <- newcmat[,"SQ-"]

cmat2[,"SQ="] <- newcmat[,"SQ="]

cmat2[,"4pt"] <- newcmat[,"RQ#"] + newcmat[,"RH#"]

cmat2[,"3pt"] <- newcmat[,"RQ+"] + newcmat[,"RH+"]

cmat2[,"2pt"] <- newcmat[,"RQ!"] + newcmat[,"RH!"]

cmat2[,"1pt"] <- newcmat[,"RQ-"] + newcmat[,"RH-"]

cmat2[,"0pt"] <- newcmat[,"RQ="] + newcmat[,"RH="]

cmat2[,"PassOverpass"] <- newcmat[,"RQ/"] + newcmat[,"RH/"]

cmat2[,"PS"] <-

newcmat[,"EQ#"] + newcmat[,"EH#"] + newcmat[,"ET#"] +

newcmat[,"EM#"] + newcmat[,"EL#"]

cmat2[,"LIS"] <-

newcmat[,"EQ+"] + newcmat[,"EH+"] + newcmat[,"ET+"] +

newcmat[,"EM+"] + newcmat[,"EL+"]

cmat2[,"HOS"] <-

newcmat[,"EQ!"] + newcmat[,"EH!"] + newcmat[,"ET!"] +

newcmat[,"EM!"] + newcmat[,"EL!"]

cmat2[,"OLS"] <-

newcmat[,"EH-"] + newcmat[,"ET-"] + newcmat[,"EM-"] +

newcmat[,"EL-"]

cmat2[,"IHS"] <-

newcmat[,"EH/"] + newcmat[,"ET/"] + newcmat[,"EM/"] +

newcmat[,"EL/"]

cmat2[,"SetError"] <-

newcmat[,"EH="] + newcmat[,"ET="] + newcmat[,"EM="] +

newcmat[,"EL="]

cmat2[,"NotSetter"] <- newcmat[,"E"]

#Identify the attacks:

cmat2[,"Middle"] <-
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newcmat[,"P2#"] + newcmat[,"P2+"] + newcmat[,"P2="] +

newcmat[,"P2/"] +

newcmat[,"P3#"] + newcmat[,"P3+"] + newcmat[,"P3="] +

newcmat[,"P3/"] +

newcmat[,"P6#"] + newcmat[,"P6+"] + newcmat[,"P6/"] +

newcmat[,"P8#"] + newcmat[,"P8+"] + newcmat[,"P8="] +

newcmat[,"P8/"] +

newcmat[,"PW#"] + newcmat[,"PW+"] + newcmat[,"PW="] +

newcmat[,"PW/"]

cmat2[,"Right"] <-

newcmat[,"P5#"] + newcmat[,"P5+"] +

newcmat[,"PK#"] + newcmat[,"PK+"] + newcmat[,"PK="] +

newcmat[,"PK/"] +

newcmat[,"PX#"] + newcmat[,"PX+"] + newcmat[,"PX="] +

newcmat[,"PX/"]

cmat2[,"Left"] <-

newcmat[,"PG#"] + newcmat[,"PG+"] + newcmat[,"PG="] +

newcmat[,"PG/"] +

newcmat[,"PH#"] + newcmat[,"PH+"] + newcmat[,"PH="] +

newcmat[,"PH/"] +

newcmat[,"PM#"] + newcmat[,"PM+"] + newcmat[,"PM="] +

newcmat[,"PM/"] +

newcmat[,"PR#"] + newcmat[,"PR+"]

cmat2[,"Back"] <-

newcmat[,"PB#"] + newcmat[,"PB+"] + newcmat[,"PB="] +

newcmat[,"PB/"] +

newcmat[,"PD#"] + newcmat[,"PD+"] + newcmat[,"PD="] +

newcmat[,"PD/"] +

newcmat[,"PP#"] + newcmat[,"PP+"] + newcmat[,"PP="]

cmat2[,"SetDump"]<-

newcmat[,"PS#"] + newcmat[,"PS+"] + newcmat[,"PS="] +

newcmat[,"PS/"]

cmat2[,"OutSystem"]<-

newcmat[,"PA#"] + newcmat[,"PA+"] + newcmat[,"PA="]

cmat2[,"Overpass"]<-

newcmat[,"PO#"] + newcmat[,"PO+"] + newcmat[,"PO="]

cmat2[,"Dig"] <- newcmat[,"DH#"] + newcmat[,"DH+"] + newcmat[,"DH!"] +

newcmat[,"DH-"] + newcmat[,"DH/"] + newcmat[,"DH="]

51



cmat2[,"Good"] <- newcmat[,"Good"]

cmat2[,"Continue"] <- newcmat[,"Continue"]

cmat2[,"Bad"] <- newcmat[,"Bad"]

c.mat <- cmat2

save(c.mat, file="collapsedcmatR.txt")

################################################################

### Collapse A matrix of prior counts ####

################################################################

##

### Read prior counts into "a.mat" matrix

##

a.mat <- read.table("Full Matrix/amat.txt", comment.char="")

a.mat <- as.data.frame(a.mat,row.names=hits)

names(a.mat) <- hits #Names the columns of the data frame

### Collapse the count matrix:

newamat <- a.mat["OQ#",] + a.mat["OH#",]

newamat["SH#",] <- a.mat["SH#",]

newamat["SH/",] <- a.mat["SH/",]

newamat["SH+",] <- a.mat["SH+",]

newamat["SH!",] <- a.mat["SH!",]

newamat["SH-",] <- a.mat["SH-",]

newamat["SH=",] <- a.mat["SH=",]

newamat["SQ#",] <- a.mat["SQ#",]

newamat["SQ/",] <- a.mat["SQ/",]

newamat["SQ+",] <- a.mat["SQ+",]

newamat["SQ!",] <- a.mat["SQ!",]

newamat["SQ-",] <- a.mat["SQ-",]

newamat["SQ=",] <- a.mat["SQ=",]

newamat["4pt",] <- a.mat["RQ#",] + a.mat["RH#",]

newamat["3pt",] <- a.mat["RQ+",] + a.mat["RH+",]

newamat["2pt",] <- a.mat["RQ!",] + a.mat["RH!",]

newamat["1pt",] <- a.mat["RQ-",] + a.mat["RH-",]

newamat["0pt",] <- a.mat["RQ=",] + a.mat["RH=",]

newamat["PassOverpass",] <- a.mat["RQ/",] + a.mat["RH/",]

newamat["PS",] <- a.mat["EQ#",] + a.mat["EH#",] + a.mat["ET#",] +

a.mat["EM#",] + a.mat["EL#",]
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newamat["LIS",] <- a.mat["EQ+",] + a.mat["EH+",] + a.mat["ET+",] +

a.mat["EM+",] + a.mat["EL+",]

newamat["HOS",] <- a.mat["EQ!",] + a.mat["EH!",] + a.mat["ET!",] +

a.mat["EM!",] + a.mat["EL!",]

newamat["OLS",] <- a.mat["EH-",] + a.mat["ET-",] + a.mat["EM-",] +

a.mat["EL-",]

newamat["IHS",] <- a.mat["EH/",] + a.mat["ET/",] + a.mat["EM/",] +

a.mat["EL/",]

newamat["SetError",] <-

a.mat["EH=",] + a.mat["ET=",] + a.mat["EM=",] + a.mat["EL=",]

newamat["NotSetter",] <- a.mat["E",]

newamat["Middle",] <-

a.mat["P2#",] + a.mat["P2+",] + a.mat["P2=",] + a.mat["P2/",] +

a.mat["P3#",] + a.mat["P3+",] + a.mat["P3=",] + a.mat["P3/",] +

a.mat["P6#",] + a.mat["P6+",] + a.mat["P6/",] +

a.mat["P8#",] + a.mat["P8+",] + a.mat["P8=",] + a.mat["P8/",] +

a.mat["PW#",] + a.mat["PW+",] + a.mat["PW=",] + a.mat["PW/",]

newamat["Right",] <-

a.mat["P5#",] + a.mat["P5+",] +

a.mat["PK#",] + a.mat["PK+",] + a.mat["PK=",] + a.mat["PK/",] +

a.mat["PX#",] + a.mat["PX+",] + a.mat["PX=",] + a.mat["PX/",]

newamat["Left",] <-

a.mat["PG#",] + a.mat["PG+",] + a.mat["PG=",] + a.mat["PG/",] +

a.mat["PH#",] + a.mat["PH+",] + a.mat["PH=",] + a.mat["PH/",] +

a.mat["PM#",] + a.mat["PM+",] + a.mat["PM=",] + a.mat["PM/",] +

a.mat["PR#",] + a.mat["PR+",]

newamat["Back",] <-

a.mat["PB#",] + a.mat["PB+",] + a.mat["PB=",] + a.mat["PB/",] +

a.mat["PD#",] + a.mat["PD+",] + a.mat["PD=",] + a.mat["PD/",] +

a.mat["PP#",] + a.mat["PP+",] + a.mat["PP=",]

newamat["SetDump",]<-

a.mat["PS#",] + a.mat["PS+",] + a.mat["PS=",] + a.mat["PS/",]

newamat["OutSystem",]<-
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a.mat["PA#",] + a.mat["PA+",] + a.mat["PA=",]

newamat["Overpass",]<-

a.mat["PO#",] + a.mat["PO+",] + a.mat["PO=",]

newamat["Dig",] <- a.mat["DH#",] + a.mat["DH+",] + a.mat["DH!",] +

a.mat["DH-",] + a.mat["DH/",] + a.mat["DH=",]

newamat["Good",] <- a.mat["Good",]

newamat["Continue",] <- a.mat["Continue",]

newamat["Bad",] <- a.mat["Bad",]

####################################################

### Do the column collapsing #

####################################################

amat2 <- as.data.frame(newamat[,"OQ#"] + newamat[,"OH#"],

row.names=newhits)

names(amat2) <- "O"

amat2[,"SH#"] <- newamat[,"SH#"]

amat2[,"SH/"] <- newamat[,"SH/"]

amat2[,"SH+"] <- newamat[,"SH+"]

amat2[,"SH!"] <- newamat[,"SH!"]

amat2[,"SH-"] <- newamat[,"SH-"]

amat2[,"SH="] <- newamat[,"SH="]

amat2[,"SQ#"] <- newamat[,"SQ#"]

amat2[,"SQ/"] <- newamat[,"SQ/"]

amat2[,"SQ+"] <- newamat[,"SQ+"]

amat2[,"SQ!"] <- newamat[,"SQ!"]

amat2[,"SQ-"] <- newamat[,"SQ-"]

amat2[,"SQ="] <- newamat[,"SQ="]

amat2[,"4pt"] <- newamat[,"RQ#"] + newamat[,"RH#"]

amat2[,"3pt"] <- newamat[,"RQ+"] + newamat[,"RH+"]

amat2[,"2pt"] <- newamat[,"RQ!"] + newamat[,"RH!"]

amat2[,"1pt"] <- newamat[,"RQ-"] + newamat[,"RH-"]

amat2[,"0pt"] <- newamat[,"RQ="] + newamat[,"RH="]

amat2[,"PassOverpass"] <- newamat[,"RQ/"] + newamat[,"RH/"]

amat2[,"PS"] <- newamat[,"EQ#"] + newamat[,"EH#"] + newamat[,"ET#"] +

newamat[,"EM#"] + newamat[,"EL#"]
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amat2[,"LIS"] <- newamat[,"EQ+"] + newamat[,"EH+"] + newamat[,"ET+"] +

newamat[,"EM+"] + newamat[,"EL+"]

amat2[,"HOS"] <- newamat[,"EQ!"] + newamat[,"EH!"] + newamat[,"ET!"] +

newamat[,"EM!"] + newamat[,"EL!"]

amat2[,"OLS"] <- newamat[,"EH-"] + newamat[,"ET-"] + newamat[,"EM-"] +

newamat[,"EL-"]

amat2[,"IHS"] <- newamat[,"EH/"] + newamat[,"ET/"] + newamat[,"EM/"] +

newamat[,"EL/"]

amat2[,"SetError"] <- newamat[,"EH="] + newamat[,"ET="] +

newamat[,"EM="] + newamat[,"EL="]

amat2[,"NotSetter"] <- newamat[,"E"]

amat2[,"Middle"] <-

newamat[,"P2#"] + newamat[,"P2+"] + newamat[,"P2="] +

newamat[,"P2/"] +

newamat[,"P3#"] + newamat[,"P3+"] + newamat[,"P3="] +

newamat[,"P3/"] +

newamat[,"P6#"] + newamat[,"P6+"] + newamat[,"P6/"] +

newamat[,"P8#"] + newamat[,"P8+"] + newamat[,"P8="] +

newamat[,"P8/"] +

newamat[,"PW#"] + newamat[,"PW+"] + newamat[,"PW="] +

newamat[,"PW/"]

amat2[,"Right"] <-

newamat[,"P5#"] + newamat[,"P5+"] +

newamat[,"PK#"] + newamat[,"PK+"] + newamat[,"PK="] +

newamat[,"PK/"] +

newamat[,"PX#"] + newamat[,"PX+"] + newamat[,"PX="] +

newamat[,"PX/"]

amat2[,"Left"] <-

newamat[,"PG#"] + newamat[,"PG+"] + newamat[,"PG="] +

newamat[,"PG/"] +

newamat[,"PH#"] + newamat[,"PH+"] + newamat[,"PH="] +

newamat[,"PH/"] +

newamat[,"PM#"] + newamat[,"PM+"] + newamat[,"PM="] +

newamat[,"PM/"] +

newamat[,"PR#"] + newamat[,"PR+"]

amat2[,"Back"] <-
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newamat[,"PB#"] + newamat[,"PB+"] + newamat[,"PB="] +

newamat[,"PB/"] +

newamat[,"PD#"] + newamat[,"PD+"] + newamat[,"PD="] +

newamat[,"PD/"] +

newamat[,"PP#"] + newamat[,"PP+"] + newamat[,"PP="]

amat2[,"SetDump"]<-

newamat[,"PS#"] + newamat[,"PS+"] + newamat[,"PS="] +

newamat[,"PS/"]

amat2[,"OutSystem"]<-

newamat[,"PA#"] + newamat[,"PA+"] + newamat[,"PA="]

amat2[,"Overpass"]<-

newamat[,"PO#"] + newamat[,"PO+"] + newamat[,"PO="]

amat2[,"Dig"] <- newamat[,"DH#"] + newamat[,"DH+"] + newamat[,"DH!"] +

newamat[,"DH-"] + newamat[,"DH/"] + newamat[,"DH="]

amat2[,"Good"] <- newamat[,"Good"]

amat2[,"Continue"] <- newamat[,"Continue"]

amat2[,"Bad"] <- newamat[,"Bad"]

amat3 <- amat2

# Make sure that each state in the transition matrix

# has at least 1 prior count if data exists there:

for(row in 1:nrow(amat2)){

for(col in 1:ncol(amat2)){

if(cmat2[row,col]>0 && amat2[row,col]==0) amat3[row,col] <- 1

}

}

a.mat <- amat3

#Save the count matrix for later use

save(a.mat,file="collapsedamatR.txt")

####################################################################

#Similar code is used to combine according to set distance and the #

# combinations. Only the altered portion of code is shown below. #

####################################################################

##

### For combining by set distance, replace set placement code with:

56



##

#Combining 0-1 feet from net and 1-3 feet from net

#There were only 4 hits total 0-1 feet from net

# Set 0 to 3 feet from the net

newcmat["0to3ft",] <- c.mat["EQ#",] + c.mat["EQ+",] + c.mat["EQ!",] +

c.mat["EH#",] + c.mat["EH+",] + c.mat["EH!",] +

c.mat["EH-",] + c.mat["EH/",] + c.mat["EH=",]

# Set 3 to 5 feet from net

newcmat["3to5ft",] <- c.mat["ET#",] + c.mat["ET+",] + c.mat["ET!",] +

c.mat["ET-",] + c.mat["ET/",] + c.mat["ET=",]

# Set 5 to 8 feet from net

newcmat["5to8ft",] <- c.mat["EM#",] + c.mat["EM+",] + c.mat["EM!",] +

c.mat["EM-",] + c.mat["EM/",] + c.mat["EM=",]

# Set 8 to 10 feet from net

newcmat["8to10ft",] <- c.mat["EL#",] + c.mat["EL+",] + c.mat["EL!",] +

c.mat["EL-",] + c.mat["EL/",] + c.mat["EL=",]

# Set performed by someone who wasn’t the setter

newcmat["NotSetter",] <- c.mat["E",]

##

### For combining both set placement and distance:

##

newcmat["0to3PS",] <- c.mat["EQ#",] + c.mat["EH#",]

newcmat["0to3LIS",] <- c.mat["EQ+",] + c.mat["EH+",]

newcmat["0to3HOS",] <- c.mat["EQ!",] + c.mat["EH!",]

newcmat["0to3OLS",] <- c.mat["EH-",]

newcmat["0to3IHS",] <- c.mat["EH/",]

newcmat["0to3SetError",] <- c.mat["EH=",]

newcmat["3to5PS",] <- c.mat["ET#",]

newcmat["3to5LIS",] <- c.mat["ET+",]

newcmat["3to5HOS",] <- c.mat["ET!",]

newcmat["3to5OLS",] <- c.mat["ET-",]

newcmat["3to5IHS",] <- c.mat["ET/",]

newcmat["3to5SetError",] <- c.mat["ET=",]

newcmat["5to8PS",] <- c.mat["EM#",]

newcmat["5to8LIS",] <- c.mat["EM+",]
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newcmat["5to8HOS",] <- c.mat["EM!",]

newcmat["5to8OLS",] <- c.mat["EM-",]

newcmat["5to8IHS",] <- c.mat["EM/",]

newcmat["5to8SetError",] <- c.mat["EM=",]

newcmat["8to10PS",] <- c.mat["EL#",]

newcmat["8to10LIS",] <- c.mat["EL+",]

newcmat["8to10HOS",] <- c.mat["EL!",]

newcmat["8to10OLS",] <- c.mat["EL-",]

newcmat["8to10IHS",] <- c.mat["EL/",]

newcmat["8to10SetError",] <- c.mat["EL=",]

newcmat["NotSetter",] <- c.mat["E",]

C.2 Computing the transition probability matrix

#This code produces the posterior means to insert into the

# transition probability matrix

###################################################################

### This calculates the point estimates for the ###

### transition probability matrix according to set placement: ###

###################################################################

# Load c.mat and a.mat from the Collapsed Trans. matrix file

load("By Set Placement/collapsedcmatR.txt")

load("By Set Placement/collapsedamatR.txt")

# Define the names of the transition matrix:

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=",

"SQ#", "SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"PS", "LIS", "HOS", "OLS", "IHS", "SetError", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")

c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

#Initialize transition matrix with zeros to hold point estimates

meanpost <- matrix(0, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

for(row in 1:c.matrow){
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rowi <- as.matrix(c.mat[row,]) #Only deal with one row at a time

#This locates nonzero states in transition matrix and

# records the column numbers

index <- NA

for(i in 1:length(rowi)){

if(rowi[i]>0){index <- c(index,i)}

}

# Calculate the posterior mean for each transition probability

# Insert the mean into the transition matrix

for(col in index[-1]){

meanpost[row,col] <-

(rowi[col] + a.mat[row,col])/sum(rowi + a.mat[row,])

}

}

save(meanpost, file="By Set Placement/meanpost.txt")

###################################################################

### This calculates the point estimates for the ###

### transition probability matrix according to set distance ###

###################################################################

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=",

"SQ#", "SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"0to3ft", "3to5ft", "5to8ft", "8to10ft", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("By Set Distance/collapsedcmatR.txt")

load("By Set Distance/collapsedamatR.txt")

c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

#Initialize transition matrix with zeros to hold point estimates

meanpost <- matrix(0, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

for(row in 1:c.matrow){
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rowi <- as.matrix(c.mat[row,]) # Only deal with one row at a time

index <- NA

for(i in 1:length(rowi)){

if(rowi[i]>0){index <- c(index,i)}

}

# Calculate the posterior mean for each transition probability

# Insert the mean into the transition matrix

for(col in index[-1]){

meanpost[row,col] <-

(rowi[col] + a.mat[row,col])/sum(rowi + a.mat[row,])

}

}

meanpostdistance <- meanpost

save(meanpost, file="By Set Distance/meanpost.txt")

###################################################################

### This calculates the point estimates for the ###

### transition probability matrix with sets still separate ###

###################################################################

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=", "SQ#",

"SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"0to3PS", "0to3LIS", "0to3HOS", "0to3OLS", "0to3IHS",

"0to3SetError", "3to5PS", "3to5LIS", "3to5HOS",

"3to5OLS", "3to5IHS", "3to5SetError",

"5to8PS", "5to8LIS", "5to8HOS",

"5to8OLS", "5to8IHS", "5to8SetError",

"8to10PS", "8to10LIS", "8to10HOS",

"8to10OLS", "8to10IHS", "8to10SetError", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")

# This loads "c.mat" and "a.mat" from the Collapsed Trans. matrix file

load("Sets Still Separate/collapsedcmatR.txt")

load("Sets Still Separate/collapsedamatR.txt")
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c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

#Initialize transition matrix with zeros to hold point estimates

meanpost <- matrix(0, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

for(row in 1:c.matrow){

rowi <- as.matrix(c.mat[row,]) # Only deal with one row at a time

index <- NA

for(i in 1:length(rowi)){

if(rowi[i]>0){index <- c(index,i)}

}

# Calculate the posterior mean for each transition probability

# Insert the mean into the transition matrix

for(col in index[-1]){

meanpost[row,col] <-

(rowi[col] + a.mat[row,col])/sum(rowi + a.mat[row,])

}

}

meanpostsetsep <- meanpost

save(meanpost, file="Sets Still Separate/meanpost.txt")

C.3 Computing the unconditional probabilities

####################################################################

### Calculating the unconditional probability distributions ##

## for passing, set placement, attack ##

####################################################################

## NOTE: Be sure to install the package "abind" otherwise

## this code will not work #####

library(abind)

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("By Set Placement/collapsedcmatR.txt")

load("By Set Placement/collapsedamatR.txt")
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c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

# This code locates in the count matrix the nonzero counts

# and records the column numbers in each row

# Only want to draw probabilities where there are counts

#Initialize the matrix with -1’s.

indmat <- matrix(-1, nrow=c.matrow, ncol=c.matcol)

for(row in 1:c.matrow){

index <- 1

for(col in 1:c.matcol){

if(c.mat[row,col]>0){

indmat[row,index] <- col

index <- index + 1

}

}

}

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=",

"SQ#", "SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"PS", "LIS", "HOS", "OLS", "IHS", "SetError", "NotSetter",

"Middle", "Right", "Left", "Back", "SetDump", "OutSystem",

"Overpass", "Dig", "Good", "Continue", "Bad")

#Specify what you want to look at:

pass <- c("4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass")

set <- c("PS", "LIS", "HOS", "OLS", "IHS", "SetError", "NotSetter")

attack <- c("Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass")

outcome <- c("Good", "Continue", "Bad")

#Total number of draws from posterior distribution

nloops <- 100000

post <- matrix(NA, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

#This will store the all the simulated transition matrices:

allsetplacemat <- matrix(0, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

lset <- length(set)

lpass <- length(pass)
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loutcome <- length(outcome)

lattack <- length(attack)

# Create a matrix to store the unconditional probabilities for passing

passoverall <- matrix(NA, nrow=lpass, ncol=loutcome,

dimnames=list(pass, outcome))

passposts <- matrix(0,nrow=lpass, ncol=loutcome,

dimnames=list(pass, outcome))

# Matrix to store unconditional probabilities for set placement

setplaceoverall <- matrix(NA, nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

setplaceposts <- matrix(0,nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

# Matrix to store the unconditional probabilities for attack

attackoverall <- matrix(NA, nrow=lattack, ncol=loutcome,

dimnames=list(attack, outcome))

attackposts <- matrix(0,nrow=lattack, ncol=loutcome,

dimnames=list(attack, outcome))

for(loop in 1:nloops){

# Generate a whole new matrix

# Generate values from a gamma distribution -

# Convert to Dirichlet distribution

for(row in 1:c.matrow){

draws <- matrix(0, nrow=1, ncol=c.matcol)

for(col in 1:c.matcol){

index <- indmat[row,col]

if(index == -1) {break}

draws[index] <- rgamma(1, c.mat[row,index] +

a.mat[row,index], 1)

}

# Convert to a dirichlet distribution

post[row,] <- draws/sum(draws)

}

# Save the generated transition matrix

allsetplacemat <- abind(allsetplacemat,post, along=3)
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###

# Calculates unconditional probabilities for passing types

# based on the simulated transition matrix

###

for(p in 1:lpass){

passp <- pass[p]

for(j in 1:loutcome){

outcomej <- outcome[j]

prob <- 0

for(i in 1:lattack){

attacki <- attack[i]

for(k in 1:lset){

setk <- set[k]

prob <-prob+post[passp,setk]*post[setk,attacki]*

post[attacki,outcomej] +

post[passp,setk]*post[setk,"NotSetter"]*

post["NotSetter",attacki]*

post[attacki,outcomej]

}

prob<-prob+post[passp,attacki]*post[attacki,outcomej]

}

for(k in 1:lset){

setk <- set[k]

prob<-prob+post[passp,setk]*post[setk,"NotSetter"]*

post["NotSetter",outcomej] +

post[passp,setk]*post[setk,outcomej]

}

prob <- prob + post[passp,outcomej]

passoverall[p,j] <- prob

}

}

#Combine the matrices of uncond. probs. along the third dimension

passposts <- abind(passposts, passoverall, along=3)

###

## Compute unconditionals for set placement:

###
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for(k in 1:lset){

setk <- set[k]

for(j in 1:loutcome){

outcomej <- outcome[j]

prob <- 0

for(i in 1:lattack){

attacki <- attack[i]

prob<-prob+post[setk,attacki]*post[attacki,outcomej]+

post[setk,"NotSetter"]*post["NotSetter",attacki]*

post[attacki, outcomej]

}

# Include the probability of going directly to an outcome

# from the set

prob <- prob + post[setk,"NotSetter"]*

post["NotSetter",outcomej] + post[setk,outcomej]

setplaceoverall[k,j] <- prob

}

}

setplaceposts <- abind(setplaceposts,setplaceoverall, along=3)

###

## Compute the unconditionals for attacks:

###

for(i in 1:lattack){

for(j in 1:loutcome){

prob <- 0

prob <- prob + post[attack[i],outcome[j]]

attackoverall[i,j] <- prob

}

}

attackposts <- abind(attackposts,attackoverall, along=3)

}

#Delete the first matrix of zeroes (dummy matrix)

allsetplacemat <- allsetplacemat[,,-1]

passposts <- passposts[,,-1]

setplaceposts <- setplaceposts[,,-1]

attackposts <- attackposts[,,-1]
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save(allsetplacemat,file="allsetplacemat.txt")

save(passposts,file="Passing Results/passposts.txt")

save(setplaceposts,file="Set Placement Results/setplaceposts.txt")

save(attackposts,file="Attack Results/attackposts.txt")

##########################################################

## Calculate unconditional probability distribution ##

## for set distance ##

##########################################################

library(abind)

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("By Set Distance/collapsedcmatR.txt")

load("By Set Distance/collapsedamatR.txt")

c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

# This matrix lists the indices that have counts listed in c.mat

# It is used in the loop to only draw values for those states

# in which we have counts

indmat <- matrix(-1, nrow=c.matrow, ncol=c.matcol)

for(row in 1:c.matrow){

index <- 1

for(col in 1:c.matcol){

if(c.mat[row,col]>0){

indmat[row,index] <- col

index <- index + 1

}

}

}

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=",

"SQ#", "SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"0to3ft", "3to5ft", "5to8ft", "8to10ft", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")
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#Specify what you want to look at:

outcome <- c("Good", "Continue", "Bad")

set <- c("0to3ft", "3to5ft", "5to8ft", "8to10ft", "NotSetter")

attack <- c("Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass")

#Total number of draws from posterior distribution

nloops <- 100000

post <- matrix(NA, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

lset <- length(set)

loutcome <- length(outcome)

lattack <- length(attack)

#Create a matrix to store the unconditional probabilities

overallpost <- matrix(NA, nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

distsetdists <- matrix(0,nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

for(loop in 1:nloops){

# Generate a whole new matrix of transition probabilities

# Generate values from a gamma distribution -

# convert to Dirichlet dist.

for(row in 1:c.matrow){

draws <- matrix(0, nrow=1, ncol=c.matcol)

for(col in 1:c.matcol){

index <- indmat[row,col]

if(index == -1) {break}

draws[index] <- rgamma(1,c.mat[row,index] +

a.mat[row,index],1)

}

# Convert to Dirichlet dist. by dividing by row sum total

post[row,] <- draws/sum(draws)

}

# Calculate the unconditional probabilities for

# each new transition matrix:

for(k in 1:lset){
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setk <- set[k]

for(j in 1:loutcome){

outcomej <- outcome[j]

prob <- 0

for(i in 1:lattack){

attacki <- attack[i]

prob<-prob+post[setk,attacki]*post[attacki,outcomej]+

post[setk,"NotSetter"]*post["NotSetter",attacki]*

post[attacki, outcomej]

}

# Want to include the probability of

# going directly to an outcome from the set

prob <- prob + post[setk,"NotSetter"]*

post["NotSetter",outcomej] + post[setk,outcomej]

overallpost[k,j] <- prob

}

}

distsetdists <- abind(distsetdists,overallpost, along=3)

}

#Delete the first matrix of zeroes (dummy matrix)

distsetdists <- distsetdists[,,-1]

save(distsetdists,file="Set Distance Results/distsetdists.txt")

##########################################################

## Calculate unconditional probability distributions ##

## for set distance/placement combined ##

##########################################################

library(abind)

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("Sets Still Separate/collapsedcmatR.txt")

load("Sets Still Separate/collapsedamatR.txt")

c.matcol <- ncol(c.mat)
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c.matrow <- nrow(c.mat)

indmat <- matrix(-1, nrow=c.matrow, ncol=c.matcol)

for(row in 1:c.matrow){

index <- 1

for(col in 1:c.matcol){

if(c.mat[row,col]>0){

indmat[row,index] <- col

index <- index + 1

}

}

}

newhits <- c("O", "SH#", "SH/", "SH+", "SH!", "SH-", "SH=", "SQ#",

"SQ/", "SQ+", "SQ!", "SQ-", "SQ=",

"4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass",

"0to3PS","0to3LIS","0to3HOS","0to3OLS",

"0to3IHS", "0to3SetError",

"3to5PS","3to5LIS","3to5HOS","3to5OLS",

"3to5IHS", "3to5SetError",

"5to8PS","5to8LIS","5to8HOS","5to8OLS",

"5to8IHS", "5to8SetError",

"8to10PS","8to10LIS", "8to10HOS", "8to10OLS", "8to10IHS",

"8to10SetError", "NotSetter",

"Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass",

"Dig", "Good", "Continue", "Bad")

#Specify what you want to look at:

pass <- c("4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass")

set<-c("0to3PS","0to3LIS","0to3HOS","0to3OLS",

"0to3IHS","0to3SetError",

"3to5PS","3to5LIS","3to5HOS","3to5OLS","3to5IHS","3to5SetError",

"5to8PS","5to8LIS","5to8HOS","5to8OLS","5to8IHS","5to8SetError",

"8to10PS", "8to10LIS", "8to10HOS", "8to10OLS",

"8to10IHS", "8to10SetError", "NotSetter")

attack <- c("Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass")

outcome <- c("Good", "Continue", "Bad")

#Total number of draws from posterior distribution

nloops <- 100000

post <- matrix(NA, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

allpost <- matrix(0, nrow=c.matrow, ncol=c.matcol,
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dimnames=list(newhits,newhits))

lset <- length(set)

lpass <- length(pass)

loutcome <- length(outcome)

lattack <- length(attack)

#Create a matrix to store the unconditional probabilities

overallpost <- matrix(NA, nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

posts <- matrix(0,nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

for(loop in 1:nloops){

# Generate a whole new matrix

# Generate values from a gamma distribution -

# convert to dirichlet dist.

for(row in 1:c.matrow){

draws <- matrix(0, nrow=1, ncol=c.matcol)

for(col in 1:c.matcol){

index <- indmat[row,col]

if(index == -1) {break}

draws[index] <- rgamma(1, c.mat[row,index] +

a.mat[row,index], 1)

}

# Convert to a dirichlet distribution

post[row,] <- draws/sum(draws)

}

allpost <- abind(allpost,post, along=3)

for(k in 1:length(set)){

for(j in 1:length(outcome)){

prob <- 0

for(i in 1:length(attack)){

prob <- prob + post[set[k],attack[i]]*

post[attack[i],outcome[j]]

prob <- prob + post[set[k],"NotSetter"]*

post["NotSetter",attack[i]]*

post[attack[i], outcome[j]]

}
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#Include probability of going directly to outcome from set

prob <- prob + post[set[k],"NotSetter"]*

post["NotSetter",outcome[j]]

prob <- prob + post[set[k],outcome[j]]

overallpost[k,j] <- prob

}

}

#Concatenate the matrices along the third dimension

posts <- abind(posts,overallpost, along=3)

}

#Delete the first matrix of zeroes (dummy matrix)

allpost <- allpost[,,-1]

posts <- posts[,,-1]

setSepUncpr <- posts

save(setSepUncpr,file="Sets Still Separate Results/setSepUncpr.txt")

setSepDists <- allpost

save(setSepDists, file="Sets Still Separate Results/setSepDists.txt")

load("Sets Still Separate Results/setSepDists.txt")

load("Sets Still Separate Results/setSepUncpr.txt")

C.4 Sensitivity analysis on the prior counts of the transition matrix

###################################################################

## Performing a Sensitivity Analysis on computing the ##

## unconditional probability distributions as shown above ##

## This code is used for both point estimates and distributions##

###################################################################

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("By Set Placement/collapsedcmatR.txt")

load("By Set Placement/collapsedamatR.txt")

c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

###

## Assuming prior counts all equal to one
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###

a.matweak <- a.mat

for(row in 1:c.matrow){

for(col in 1:c.matcol){

if(a.mat[row,col]>0) a.matweak[row,col] <- 1

else a.matweak[row,col] <- 0

}

}

a.mat <- a.matweak

###################################################################

## The rest of the code is the same as for calculating the ##

## unconditional probabilities as shown above ##

###################################################################

indmat <- matrix(-1, nrow=c.matrow, ncol=c.matcol)

for(row in 1:c.matrow){

index <- 1

for(col in 1:c.matcol){

if(c.mat[row,col]>0){

indmat[row,index] <- col

index <- index + 1

}

}

}

#etc...
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