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ABSTRACT

GRAPHICAL AND BAYESIAN ANALYSIS OF UNBALANCED PATIENT

MANAGEMENT DATA

Emily Stewart Righter
Department of Statistics

Master of Science

The International Normalizing Ratio (INR) measures the speed at which
blood clots. Healthy people have an INR of about one. Some people are at greater
risk of blood clots and their physician prescribes a target INR range, generally 2-3.
The farther a patient is above or below their prescribed range, the more dangerous
their situation. A variety of point-of-care (POC) devices has been developed to
monitor patients.

The purpose of this research was to develop innovative graphics to help
describe a highly unbalanced dataset and to carry out Bayesian analyses to de-
termine which of five devices best manages patients. An initial Bayesian analysis
compared a machine-identical beta-binomial model to a machine-specific beta-
binomial model. The response variable was number of in-range visits. A sec-
ond Bayesian analysis compared a machine-identical lognormal model, a machine-
specific lognormal model, and a machine-specific lognormal model with lower ther-

apeutic bound as a predictor. The response variable was INR. Machines were



compared using posterior predictive distributions of the absolute distance outside
a patient’s therapeutic range.

For the beta-binomial models, the machine-identical model had the lower
DIC, meaning that POC device was not a strong predictor of success in keeping
a patient in-range. The machine-specific lognormal model with a term for lower
therapeutic bound had the lowest DIC of the three lognormal models, implying
that the additional information of distance out of range revealed differences among
the POC devices. Three of the machines had more favorable out-of-range distri-
butions than the other two. Both Bayesian analyses provided useful information

for medical practice in managing INR.
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Chapter 1

Introduction

The International Normalizing Ratio (INR) measures how quickly an indi-
vidual’s blood clots. Healthy people should have an INR of approximately one.
However, if people are at higher risk for heart attacks, strokes, and other adverse
events, their physician may prescribe a patient-specific therapeutic INR range to
lower their risk, generally between two and three (Hirsch et al, 2001). The farther
out of their therapeutic range the patient is in either direction, the more dangerous
their situation is.

The lab is the gold standard as far as determining what a patient’s INR is.
However, it takes a long time to draw blood, send it to the lab, have it analyzed,
and have the results returned to the doctor so they can make a dosing decision
for the patient. Point-of-care (POC) devices have been developed to increase
efficiency. In a matter of minutes, a doctor can take a fingerstick, have it analyzed
by the POC device, and make a dosing decision. However, the accuracy of the
readings is still unclear, as is the doctor’s reaction to the reading as compared to

the lab value.



The Cleveland Clinic Foundation carried out a study in 2002 to compare 5
POC devices for monitoring INR. The study was a large sample (over 300 patients)
longitudinal study. The follow up times were highly irregular, as was the number
of follow-ups per patient.

Previous research indicates that the POC devices may not all perform the
same with respect to patient management (Sunderji et al. 2005, McBane et al.
2005, Bussey et al. 1997, Kaatz et al. 1995). The purpose of this project was to
determine if the POC devices exhibit differences, and if so, which devices manage
patients better. As opposed to the accuracy of the POC devices which has been
studied elsewhere (Sunderji et al. 2005, McBane et al. 2005, Bussey et al. 1997,
Kaatz et al. 1995), the concern of this research was the value of the devices in
managing the patients’ health.

One important aspect of this research is the patient-specific therapeutic
range for INR. With such a unique feature for a highly unbalanced longitudinal
dataset, exploratory data analysis through innovative graphical tools was essential.
The results of the graphical analysis guided the development of further statistical
analysis.

Each patient was nested within a machine, and there was inherent pa-
tient variability - some patients were simply easier to manage than others. So
even though the randomization of patients to machines largely neutralized the
between-patient variability, it was essential to model all sources of variability

though a hierarchical model. Bayesian methods inherently deal well with hier-



archical situations.

The purpose of this study was to use a Bayesian hierarchical model to
determine if the POC device by which a patient is managed makes a difference in
how well that patient can be kept within their prescribed INR therapeutic range.
If some devices manage patients better than others, physicians should exercise

judgment in their choice of POC device.



Chapter 2

Literature Review

This chapter provides background on the subject matter. The first section
deals with the medical background and implications. The later sections illuminate

the statistical concepts.

2.1 INR

The INR is calculated by standardizing prothrombin time (PT) which is
a measure of the clotting time of a blood sample. PT is measured by testing a
blood sample with an enzyme that activates blood clotting factors, such as human

placenta or rabbit brain. The formula for standardization is

INR = ( PTpatient ) I8t

2.1
PTmeannormal ( )
(Hirsch et al. 2001) where PT,cannormar is the mean prothrombin time calculated
from a set of normal, non-medicated patients at that particular lab (D’Angelo et

al. 1997). The ratio of the patient’s PT to this mean PT is raised to the power
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of the international sensitivity index (ISI) of the thromboplastin. ISI reflects the
responsiveness of the thromboplastin reagent (e.g. rabbit brain) to the World
Health Organization standard. A healthy person would have a prothrombin time
very near the PT),cqnnormal, Making the ratio approximately one, regardless of the
ISI.

Some people are at higher risk for blood clots. Issues such as venous throm-
bosis (blood clots in the vascular system), myocardial infarctions (heart attacks),
complications due to irregular heart beats (atrial fibrillation), or complications due
to major heart surgery (e.g. valve replacement or heart-lung bypass) may encour-
age a physician to prescribe a therapeutic INR range (Smith 2002). Prophylaxis
of venous thrombosis, treatment of venous thrombosis, treatment of pulmonary
embolism, prevention of systemic embolism, tissue heart valves, acute myocar-
dial infarction, valvular heart disease, atrial fibrillation, and bileaflet mechanical
valve in aortic position generally have a suggested therapeutic INR range of 2.0
- 3.0. Patients with mechanical prosthetic valves or needing to prevent recurrent
myocardial infarction often have a higher suggested range such as 2.5 - 3.5.

INR values less than 2.0 for patients undergoing anticoagulation therapy
renders the therapy less effective in most cases (Hirsch et al. 2001). Also, too high
an INR (greater than 3) puts the patient at higher risk of bleeding complications,
without increasing efficacy of the therapy, i.e., reducing clotting incidents (Hyers
et al. 2001).

Maintaining a level of INR that reduces the adverse side effects of anti-



coagulation therapy while still enjoying the benefits of therapeutic effectiveness
requires careful monitoring. Historically, a patient would visit their doctor and
have blood drawn. The blood would then be sent to the lab for analysis. The lab
would report back to the doctor, who would then make a dosing decision or other
recommendation to the patient to keep their INR within the prescribed therapeu-
tic range. While the gold standard of the lab analysis is accurate, there is a great
loss of effectiveness in managing patients, as it takes several days to get lab results
back and make dosing recommendations. This may be dangerous to the patient if
adjustments need to be made to their treatment.

In response, several POC devices have been developed to monitor patient
INR. These machines sit in the doctor’s office and with a fingerstick can give an
INR reading in a matter of minutes. Many studies have been done to measure and
compare the accuracy of these types of machines (Sunderji et al. 2005, McBane
et al. 2005, Bussey et al. 1997, Kaatz et al. 1995). All of these studies show vary-
ing degrees of disagreement between the POC device(s) and the lab. Collectively
among the studies, there was no clear winner in accuracy. Shermock et al. (2002)
carried out a study to determine dosing decision agreement between venous sam-
ples analyzed in a lab and two point-of-care devices. The bigger picture, however,
is determining whether a patient can be safely managed solely using one of these

machines, and consequently, if some machines are better than others.



2.2 Exploratory Data Analysis

Exploratory data analysis is essential to visualize patterns in the data
(Tukey 1977). Particularly with longitudinal datasets, examining the data graph-
ically is important in uncovering information on the correlation structure (Diggle
et al. 1994). Innovation in graphics is essential because every dataset has unique
details and attributes that must be illuminated.

The obvious first graph with longitudinal data is a simple scatter plot of the
response variable vs. time. Jittering may be useful if the observation times tend
to be common for many subjects. However, with large numbers of subjects, each
with varying numbers of data points, the graph quickly would become cluttered
and fail to properly display trends. Other important elements of the data, such
as correlations within patients or differences between machines are impossible to
pick out.

By connecting the dots by subject, the trends over time are better ex-
pressed. These are often called ”spaghetti plots” (Wu and Tsang, 2004). Correla-
tion structures and trends over time, as well as distributional aspects of the data
then become slightly more evident. However, with so much data, the clutter often
overwhelms the information.

Tufte (1983), emphasizes the data-ink ratio, and that one must not use
much more ink than they have information to display. While it may be argued

that occasionally a study has sufficient data to warrant lots of ink, often spaghetti



plots or collections of similar curves may be summarized and clarified by selecting a
few representative lines or curves, which may be more effective from an information
standpoint . Jones and Rice (1997) accomplish this by using principal components
analysis to order the curves, and connecting the dots for subjects corresponding
to the most extreme and the median of each major principal component. The use
of principal components is only feasible with balanced data. Diggle et al. (2002)
suggested ordering the curves based on other study-specific criteria.

On occasion, it is imperative to organize huge amounts of data for pro-
cessing at a glance. Small multiples are series of graphics, each showing the same
combination of variables, indexed by changes in another variable (Tufte, 1983).
Small multiples invite comparison and are efficiently interpretable.

With longitudinal data, it is essential to explore the autocorrelation func-
tion. This is more easily done with balanced data where the data are collected
at a fixed number of evenly spaced time points. Diggle et al. (2002) round their
observation times to the nearest year, and that liberty may be taken with other
slightly unbalanced datasets. The correlation may then be calculated for pairs of
observations separated by all possible time intervals within subjects. Of course,
the sample autocorrelation is subject to sampling variation, and a measure of
variability is important to demonstrate the uncertainty in the estimate. A sample
correlation coefficient has standard error of roughly 1/ V/N where N is the number
of independent pairs of observations in the calculation under the assumption of

zero correlation (Diggle et al. 1994). This permits plotting tolerance limits of zero



autocorrelation to determine if the sample autocorrelation is likely due to chance.

The semivariogram also characterizes the autocorrelation function (Curran
1988). The semivariogram is harder to compute and construct than the autocor-
relation plot, but it is not distorted by rounding the observation times when the
underlying stochastic process is observed at at irregular time-points (Armitage
and Colton 1999). Diggle popularized the semivariogram in the context of longi-
tudinal data (Diggle et al. 1988). It is also possible to calculate tolerance limits
for the semivariogram when the autocorrelation is zero, simply by computing the

overall variance of the variable in question.

2.3 Bayesian Modeling and Inference

Bayesian inference is based, naturally, on Bayes Theorem (Gelman et al.

2003). In its simplest form, Bayes Theorem for two events A and B is

P(A|B)P(B)

(2.2)

Thomas Bayes (1764) was apparently the first to use this theorem for parameter

estimation, by substituting the parameter vector # and data y for events:

_ fw|o)=(6)
or, more explicitly,
_ fylo)m(6)
") = Tl (6) >4

where f(y|@) is the sampling distribution of the data given the parameter 0, f(y) is
the marginal distribution of the data, 7(€) is the prior distribution of the parameter

9



0, and 7(f|y) is the posterior distribution of the parameter 6 given the data y.
Modern Bayesian inference is also based on the posterior predictive distri-

bution for future data,

wly+lo) = [ w57 B)w(Oly)a9 25)

where 7(y*|0) is the sampling distribution for future data y* given the parameter
0.

Bayesian inference focuses on using the features of the posterior or posterior
predictive distribution to draw sensible conclusions. For example, the mean of the
posterior distribution may be used as an estimate of the parameter. The highest
density region of the predictive posterior distribution may be used as a prediction
interval.

While Bayesian methodology was conceived in the 18th century, widespread
use was not possible until recent years due to the difficulty in computation. For
example, the denominator of equation 2.4, often referred to as the 'mormalizing
constant’ is not easily integrable, even for simple situations, such as the nor-
mal distribution with unknown variance. Metropolis et al.(1953) were among the
first to develop a practical approach using Markov Chain Monte Carlo (MCMC)
simulation. Hastings (1970) generalized Metropolis’ algorithm, and the resulting

algorithm is commonly referred to as the Metropolis-Hastings algorithm.
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2.3.1 Gibbs sampling

Occasionally, a prior distribution is conjugate, which means that by com-
bining the data with the prior distribution, the posterior distribution is of the
same family of distributions as the prior. Gibbs sampling involves knowing the
full conditional distribution of each random variable, but not knowing the joint
distribution (Geman and Geman 1984). If so, samples from complete conditional
distributions can be alternately drawn, and the sequence converges to the poste-
rior distribution of the parameters (Gelman et al. 2003). This is the easiest form
of Metropolis-Hastings sampling. The WinBUGS software (WinBUGS 14) uses

Gibbs sampling to draw from the posterior in these situations.

2.3.2 Adaptive Rejection Sampling

Rejection sampling involves defining an envelope function that can be sam-
pled from rather than sampling from the posterior (Gelman et al. 2003). This
method is used if it is too difficult to sample from the actual posterior distribu-
tion. To be an appropriate envelope function, the density must be greater than
the posterior for all parameter values. A draw from the envelope distribution is
accepted with probability equal to the ratio of the height of the posterior to the
height of the envelope at that point.

The WinBUGS software uses a variation on rejection sampling when the
prior is not conjugate (Gilks and Wild 1992). It is called adaptive rejection sam-

pling because as sampling proceeds, a squeezing function (defined to always be

11



below the posterior distribution) (Lawson 2005) and the rejection envelope con-

verge to the density function.

2.3.3 Goodness-of-fit

Bayesian modeling has progressed at a rate faster than its diagnostic tests
have been able to maintain (Gelman et al. 1996). Several methods have been
developed to assess goodness-of-fit of Bayesian models, with varying degrees of
applicability and usefulness.

One relatively simple method is to draw samples corresponding to the de-
sign of the study from the posterior predictive distribution (equation 2.5) to in-
vestigate whether it resembles the data. If predictions are inconsistent with the
observed data evidence is provided against model assumptions (Lynch and West-
ern 2004). The posterior predictive distribution used in goodness-of-fit testing is

commonly denoted
oy 1) = [ ol lo)p(oly)e, (2.6

where p(y™?|0) is the sampling distribution of the data, p(f|y) is the posterior
distribution of the parameters, and y"“ is the vector of predictions corresponding
to the design of the study. A Q-Q plot (Baggerly 1998) or other graphical device
is used to compare the distributions of y and y"?. If the distributions are similar,

it can be concluded that the model fits.

12



2.3.4 Comparing Models: DIC

In order to compare various Bayesian models, Spiegelhalter et al. (2002)
derived a ”Deviance Information Criterion” (DIC). If 6 is the parameter vector
in the model, let D be the posterior mean of the deviance defined as negative
twice the log likelihood of the data, i.e., —2  log(p(y|0)). D is a point estimate
of the deviance obtained by substituting in the posterior means 6 of 6, thus D =

—2xlog(p(y|f)). Then
DIC=D+pp=D+2%pp (2.7)

where pp is D— D, the number of effective parameters in the model. By penalizing
for useless parameters, much like its sister criteria AIC and BIC, the DIC is useful

both for model comparison and a measure of goodness-of-fit (Spiegelhalter et al.

2003).
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Chapter 3

Methodology

This chapter discusses the methods used to collect and analyze the data.

3.1 Design of the Patient Management Study

In 2002, the Cleveland Clinic Foundation Anticoagulation Clinic in cooper-
ation with the Department of Biostatistics and Epidemiology designed a double-
blind randomized trial to compare patient management on five different point-of-
care devices. Each of 371 patients receiving anticoagulation therapy was randomly
assigned to one of five machines: (1) the ProTime Microcoagulation System (Pro-
Time device; International Technidyne Corporation Limited, Edison NJ 08820),
(2) Rapidpoint Coag (Rapidpoint machine; Bayer Healthcare, Newbury, Berk-
shire, RG14 1JA, UK), (3) the Hemochron Microcoagulation System (Hemochron
device; International Technidyne Corporation Limited, Edison NJ 08820), (4) Co-
aguChek S System (Coaguchek; Roche Diagnostics, F. Hoffmann-La Roche Ltd,

Basel, Switzerland), and (5) CoaguChek ProDM (Coaguchek; Roche Diagnostics,

14



F. Hoffmann-La Roche Ltd, Basel, Switzerland). Aside from the POC measure-
ment, each patient had venous samples sent to a reference laboratory (the ”gold
standard”). The venous samples were analyzed at the Cleveland Clinic Hematol-
ogy Laboratory using the Sysmex CA-6000 Coagulation Analyzer (Sysmex, Kobe,
Japan). The thromboplastin reagent used to determine prothrombin time was In-
novin (Dade Behring), which had an ISI of approximately 1.0. The gold standard
lab values comprise the dataset for this project.

This was a longitudinal study. At irregular times over a period of time
ranging from 14 to 152 days, patients were managed on the POC reading alone.
The physicians were not informed of the lab results unless there was a huge dis-
crepancy, in which case the patient was removed from the study.

A weakness of this dataset is that there is no record of dosing decisions.
Also, there is no ”doctor” variable, though there are pharmacist and lab tech
variables, neither of which will be used in the current analysis.

Due to the irregular and unbalanced nature of the repeated measures, and
to a patient-specific measure of ”"badness” (absolute distance out of the patient’s
therapeutic range), innovative analyses were required for this project. Initially,
the data were examined graphically in several ways (section 3.2). The graphics
helped to formulate useful statistical models (section 3.3) to compare the five POC

devices.
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3.2 Graphical Analysis

The dataset consisted of highly unbalanced and irregularly spaced longi-
tudinal data. For each patient a specified central therapeutic range was ”good”,
and the tails of the distribution represented a graded danger to the patient. Due
to this, a careful and informative graphical analysis was a necessary component

in order to better understand how to statistically model the data.

3.2.1 Visualizing Longitudinal Patterns: Spaghetti Plots

The initial scatter plot with horizontal jittering revealed very little about
the pattern or the correlations. In the initial spaghetti plot, INR was plotted over
time as small multiples by machine, with lines connecting values for each patient.
Horizontal lines were overlaid on this plot at INR = 2 and INR = 3 because those
are the most common INR therapeutic limits in our dataset (approx. 85%). In
looking at that plot, it was clear that the data were right skewed. After log-
transforming the INR, the distributions looked much more symmetric.

However, the spaghetti plots were still too crowded to be useful. We ranked
subjects according to the average absolute distance out of therapeutic range. We
then selected as representative curves (Jones and Rice 1992) the worst, the best,
the median, and the 25" and 75" percentiles subjects per machine. We connected
values only for those patients (appendix 1). While Jones and Rice (1992) utilized
principal components to order their curves, this dataset called for the unique
measure of badness by patient described above.

16



3.2.2 Visualizing Patient-Specific Badness: Bubble Plot

To get a useful depiction of how well each machine manages its patients, a
plot showing the "badness” pattern of each machine was imperative. We used the
graphical elements of color, symbol size, sorting, and small multiples to create an
informative graphic.

Using the log of the INR, the distance outside of the log transformed ther-
apeutic range was calculated for each data point. These were then summed up for
each patient. Since the data were highly unbalanced, both in the spacing of ob-
servations and the number of observations per patient, it was necessary to divide
the sum of the distance out-of-range for each patient by the number of data points
for that patient as a summary measure of how poorly that patient was managed.
Within machines, patients were then sorted by this summary measure.

The purpose of sorting patients by badness was to visualize how each ma-
chine performed. In plotting patients over time in order of badness, a pseudo-
pareto longitudinal chart was created. This facilitated visual comparison among
machines.

Color was used to distinguish data points within the prescribed therapeutic
range (black) from those which were not (red). Lots of black points are good, lots
of red points are bad. This was not sufficient, however, because as previously
mentioned, how far a data point is out-of-range is of interest as well. Hence,
the size of the graphical symbol was used to visualize the distance out of log

therapeutic range of the log INR. The area of the out-of-range symbol was made

17



proportional to the distance out-of-range. Because the plotting symbol was a

circle, we termed this a "bubble plot’ (appendix 1)

3.2.3 Crude Visualization of Autocorrelation: Correlation Plot

Exploring the autocorrelation function of longitudinal data is easiest with
balanced data. In our first effort to visualize the autocorrelation, we artificially
balanced the INR data by rounding the observation times to the nearest week. In
the rare case where there was more than one observation in a week, the average
INR of the two observations was used. Often there were no observations in a
particular week, and these were treated as missing values.

Following that, all observations within patient were paired. Then pairs
were grouped by their time lag, and correlations were calculated for each group.
Correlations were then plotted versus time lag. As a reference, the upper 95%
tolerance limit assuming zero autocorrelation was overlaid on the plot. If the
sample autocorrelation was higher than the tolerance limit, the correlation was

considered significant at the 5% level.

3.2.4 Better Visualization of Autocorrelation: Semivariogram

The semivariogram is a refinement of the autocorrelation plot described
previously. It requires no rounding of the time variable, giving a less distorted
visualization.

Within each patient, all possible pairings of INR values were made. The
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time lag for these pairs was used as the horizontal axis on the graph. The vertical
axis represented half the squared difference of the log INR values. Residuals from
a crude model for the mean are often used as the vertical axis (Armitage and
Colton 1999). However, the log INR values themselves were used in this case,
under the assumption that machines and other effects were relatively small.

A smooth line using a spline routine (SAS Institute 2000) was fitted and
overlaid on this plot to demonstrate trends in the autocorrelation over time. A
95% tolerance limit corresponding to zero autocorrelation was also calculated and

overlaid on the plot.

3.3 Hierarchical Bayesian Modeling and Analysis

The overall strategy of the Bayesian modeling was to fit two models using
MCMC, one allowing for differences among machines, the other assuming that
machines were identical. We then carried out goodness-of-fit testing for the more
complex model, the machine-specific model. If the fit was satisfactory, we then
chose one of the two models using DIC. If the machine-specific model was chosen,
we computed and compared posterior predictive distributions for the 5 POC de-
vices. All of the calculations were done in WinBUGS 14, and goodness-of-fit plots

were constructed using BRUGS (appendix 1).
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3.3.1 Beta-Binomial Analysis of Out-of-Range Indicator

On a simple level, the more often a patient’s INR is out of their prescribed
therapeutic range, the worse the machine. This definition ignores distance out of
range, which increases danger of adverse effects to patients, but it allows a valid
initial analysis of the data.

Let y;; be the number of in-range INR values for patient ¢« managed on ma-
chine j. Let n;; be the total number of INR measurements for patient < on machine
J. Plots (figure 4.6) indicated the autocorrelation function was flat. Therefore, a
reasonable machine-specific hierarchical Bayesian model for y;; was

Yij|mij ~ binom(m;, ni;)
m;; ~ beta(aj, ;)
a; ~ gamma(.001,.001)
B ~ gamma(.001,.001)
Note that vague prior distributions were used for all parameters.
The corresponding machine-identical model was:
Yij ~ Bin(mij, nij),
mi; ~ Beta(a, §),
a ~ Gamma(.001,.001),

B ~ Gamma(.001,.001).
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Both models were fitted to the data using WinBUGS 14 (appendix 1).
A burn-in of 1000 iterations was used. If the trace plots indicated convergence,
50,000 iterations were used to sample from the the posterior distributions of the
parameters.

Goodness-of-fit was tested by drawing samples from the posterior predictive
distribution in the same proportions among machines in the dataset. DIC was
calculated for both models. Finally, 50,000 samples were drawn from appropriate

posterior predictive distributions.

3.3.2 Bayesian Estimates of INR distributions by patient

While knowing if a patient was out-of-range was important, more can be
learned from the dataset. The farther out-of-range a patient was, the more dan-
gerous their situation. It became essential, then, to estimate the distribution of
each patient’s INR, and compare expected danger across machines.

Since INR is bounded below by zero and is strongly right skewed, it was
reasonable to assume a lognormal distribution. The mean of the lognormal dis-
tribution was assumed to be normally distributed, and the precision parameter
(1/variance) was assumed to be gamma distributed. Parameters of each of these
distributions were assigned hyperpriors that were diffuse enough to largely allow
the data to determine the posterior distribution. If z;j is the INR of patient 7 on

machine j at visit £ and z;; is the lower bound of the therapeutic range of patient
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¢ on machine j, the machine specific model was:

Zijk|bij, B, Tij ~ lognormal (¢i; + Blogxi;, 74;)

bijlm;, s; ~ normal(m;, s;)

m; ~ normal(0,.0001)

s; ~ gamma(.0001,.0001)

B ~ normal(0,.0001)

7; ~ gamma(.0001,.0001)

A slightly simpler machine-specific model ignored the lower bound of the

therapeutic range:
Zijklpiz, T ~ lognormal (p;;, ;)
ij|lm;, s; ~ normal(m;, s;)
m; ~ normal(0,.0001)
s; ~ gamma(.0001,.0001)

7; ~ gamma(.0001,.0001)

The machine-identical model was very similar:

Zijk|pi, T ~ lognormal(p;, T)

wilm, s ~ normal(m, s)
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m ~ normal(0,.0001)
s ~ gamma(.0001,.0001)
T ~ gamma(.0001,.0001)

Goodness-of-fit was tested by drawing samples from the posterior predictive
distribution of INR for the machine-specific model, and graphically comparing the
draws to the data. DIC was calculated for all three models.

Devices were compared by estimating posterior predictive distributions of
badness for each device. Badness was defined as the absolute distance out of

therapeutic range for each visit.
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Chapter 4

Results

This chapter offers the results of the graphical and Bayesian analyses.

4.1 Graphical Analysis

The initial scatterplot of INR over time (Figure 4.1) showed very little
trend. Within patient correlations were not evident from the plot.

When the values of each figure were joined it became clear that there were
consistent differences among patients (Figure 4.2). The irregular nature of the
follow-ups was obvious. It was also clear that most of the data fell within the INR
limits of 2-3. Positive deviations were more rare, but often of larger magnitude.

After ordering each patient by badness within machine, the minimum, max-
imum, median, first and third quartiles were selected. Those patients’ INR values
were plotted as lines in Figure 4.3, with points for all other INR values. These
plots were not very informative.

The pseudo-pareto or bubble plots were plotted in Figure 4.4. After or-
dering patients by badness within machine, patients were plotted against time,
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Figure 4.1: INR vs. days for all follow-up times for all patients on all machines
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Figure 4.2: Log INR values for each patient in each machine with overlaid typical
therapeutic limits of (log)2 and (log)3. Each line connects a patient over time.
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Figure 4.3: Log INR values for each patient in each machine with overlaid typical
therapeutic limits of (log)2 and (log)3. Lines connect between patients graded
the worst, best, median and 25th and 75th percentiles as determined using each
patient’s average badness. The hardest to manage patient is represented by the
heavy red line, the 75th percentile is the light red line, the median patient is shown
as the thin gray line, the light black line represents the 25th percentile patient,
and the heavy black line represents the best, or most easily managed patient for
each machine.
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with the character color representing in-range (black) or out-of-range (red), and
the character size being in proportion to the distance out-of-range. Bubble plots
were very informative. There were no drastic differences among machines. There
appear to be approximately the same proportions of harder-to-manage and easier-
to-manage patients across machines, with a few slight exceptions. Rapidpoint
seemed to have a higher proportion of large red bubbles. Coaguchek S seemed to
have red bubbles extending further down the graph.

Figure 4.5 is the correlation plot. Each doctor visit was rounded to the
nearest week, and the correlation between INR values within patient was cal-
culated. There appeared to be constant autocorrelation for the first 13 weeks.
Beyond that, we lack statistical power, since there were so few observations more
than 13 weeks apart.

The semivariogram is the refined correlation plot - no rounding was neces-
sary (Figure 4.6). There appears to be relatively constant autocorrelation. The
observation of constant autocorrelation led to the inclusion of patient-specific pa-

rameters in the Bayesian models but no further modeling of the autocorrelation.

4.2 Bayesian Analysis

4.2.1 Beta-Binomial Analysis

After a burn-in period of 1000 iterations, 50,000 iterations were monitored

for both of the beta-binomial models. Trace plots showed adequate convergence.
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Protime Hemochron Coaguchek S CoaguchekProDM Rapidpoint

Figure 4.4: Patients vs. time, by machine. Out-of-range points are red, in-range
black, with character size proportional to distance out-of-range. Patients are or-
dered by badness, with the worst patient (or hardest to manage) being at the top
of the graphic, while the easiest to manage patients are at the bottom.
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Figure 4.5: Autocorrelation is the solid line, 95% tolerance limit for zero autocor-
relation is the dashed line
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Figure 4.6: Semivariogram of days between measurements by patient.

31



Goodness-of-fit investigations (Figure 4.7) show that the data is sufficiently mod-
eled by the machine-specific beta-binomial model, since the density of the INR
agreed well with the density of the INR"P.

The machine-identical model in the beta binomial analysis had a smaller
DIC (882.4) than the DIC from the machine-specific model (893.0). Therefore, we
conclude that the probability of a patient being within their therapeutic range is
independent of POC device.

The estimate for the mean proportion of visits in range across individuals
was 0.4634, with a 95% probability interval of (0.43110, 0.4960). The 95% limits
of the distribution of proportion in-range for individuals ranged from 0.29166 to

0.63567 using this model. Table 4.1 contains the posterior estimates of o and f3.

Statistics | Mean | SD | Median
Alpha 4.187 | 1.471 | 3.854
Beta 4.858 | 1.746 | 4.457

Table 4.1: Alpha and Beta Summary Statistics

4.2.2 Lognormal Analysis

Like the beta-binomial models, the lognormal models each had a burn-
in of 1000 iterations followed by 50,000 iterations. The trace plots for each of
the variables showed convergence (appendix 2). The goodness-of-fit of the most
complex model (machine-specific including a term for the lower therapeutic bound)

was satisfactory (Figure 4.8).
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Figure 4.7: Goodness-of-Fit Beta-Binomial Model: Overlaid density curves for the
data (solid line) and the corresponding posterior predictive distribution (dashed
line) of number of INR values in range per patient.
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Figure 4.8: Goodness-of-Fit Lognormal Model: Overlaid density curves for the
data (solid line) and the corresponding posterior predictive distribution (dashed
line) of badness.
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The DIC for the machine-identical model was 3389. The machine-specific
model without a term for therapeutic lower bound had a DIC of 3232. The
machine-specific model with a term for therapeutic lower bound had a DIC value
of 3228. The most complex model had the lowest DIC making it the best fitting
model of the three. Thus we conclude that machines were different and that the
lower bound was predictive.

Of greatest interest were the posterior predictive distributions of badness,
defined as the absolute distance of a patient’s lab INR value outside the patient’s
therapeutic range. If a patient’s INR is in-range, their badness measurement is
zero for that visit.

Every draw from a posterior predictive distribution was a random draw
from a patient on one of the five POC devices. For simplicity, each patient was
assumed to have the prescribed therapeutic range of 2-3, since this was by far
the most common in the actual dataset. Each POC device had 10,000 simulated
patients with one draw of INR each. Table 2 contains the parameter estimates of
0, the m’s, the s’s, and the 7’s.

The posterior predictive densities for the lognormal model are displayed
as zero-inflated distributions (Figure 4.9) (Rodrigues 2003). The bars at zero on
the badness plots reveal the differences between machines for the proportion of
draws with zero badness. Trailing out to the right are the densities of positive
badness. In comparing badness across machines, it seems that while there is no

clear winner amongst machines although three of them, Protime, Hemochron,
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Statistic Mean SD Median
v -0.03216 | .03980 | -0.03185
m/[Protime] 0.8242 | .02785 | 0.8242
m[Hemochron] 0.8224 | .03114 | 0.8220
m[Coaguchek S] 0.7254 | .05434 | 0.7251
m[CoaguchekProDM] | 0.7728 | .1042 | 0.7724
m[Rapidpoint] 0.7132 | .1554 | 0.7146
s[Protime] 5681.0 | 6118.0 | 3600.0
s[Hemochron] 1866.0 | 3639.0 | 636.3
s[Coaguchek S] 1810.0 | 3758.0 | 362.4
s[CoaguchekProDM] 785.7 | 2514.0 | 26.6
s|Rapidpoint] 726.8 | 2528.0 | 36.2
7[Protime] 10.50 4776 10.49
7[Hemochron] 10.110 | .6373 | 10.09
7[Coaguchek S] 7.68 1.481 7.53
7[CoaguchekProDM]| | 761.40 | 2618.0 | 23.76
7[Rapidpoint] 871.50 | 2807.0 | 40.86

Table 4.2: 3, m, s, and 7 Summary Statistics
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and CoaguchekProDM, are somewhat superior to the other two, Rapidpoint and
Coaguchek S. The bars for zero badness are higher for these three, and the positive
badness densities are not only smaller (as would be necessary with higher zero
bars), but also do not extend out as far as the other machines. Coaguchek S
had a high density of lower-range positive badness. Rapidpoint also had a higher
positive density, but the density had a thicker tail, implying that patients went
farther out of range occasionally. This agrees with previous observations made

from the bubble plot.
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Figure 4.9: Zero-Added Posterior Predictive Distributions of Badness by Machine
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Chapter 5

Recommendations and Contributions to Statistical Practice

This chapter discusses the results and their implications and suggests pos-
sible areas of future research. The first section examines some of the weaknesses
of the dataset and offers remedies for future studies. The next sections outline

further developments for statistical analysis of data of this nature.

5.1 The Study

While the study design was excellent, in a trial this large and long, sim-
ple, balanced data would be impossible to expect. However, some variables that
may have been valuable in the analysis, like prescription adjustments, were not
recorded.

By examining patient management, this project took a wider view on the
outcome than the traditional approach of comparing accuracy of machine. To
broaden this further, studies of life and health of patients over a very long period

of time would yield valuable information.
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5.2 Graphical Analysis

Innovative graphs were employed in an attempt to visually summarize this
unbalanced longitudinal data set. The bubble plot was useful in summarizing
the entire dataset and picking out trends. The bubble plot was more informative
than the other plots, and dealt well with the unbalanced nature of the dataset.
Therapeutic ranges were similar across patients, but the differences were accounted
for in the bubble plot. Other patient management data with widely differing
therapeutic ranges or other elements may benefit from the bubble plot. There
may be other plots that could better display the trends and differences. The

development of more graphical tools for patient management is suggested.

5.3 Statistical Analysis

The hierarchical Bayes models and WinBUGS dealt well with the large,
complex dataset. It was a little surprising to learn that the lognormal model
showed differences among machines whereas the beta-binomial model did not. The
lognormal model contained additional information about the patient management
and was therefore a more powerful model.

Improvements can be made through automation of the techniques we em-

ployed. Investigating other definitions of badness may be helpful.
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5.4 Medical Practice Implications

Slightly fewer than half of the INR measurements can be expected to be
within the prescribed therapeutic range for the average patient (Figure 5.1). A
physician should not be surprised if a few patients are in range as little as 29%
of the time. They should not expect patients to be in range more than 69% of
the time. All else being equal, the better machines to manage a patient on are
Protime, Hemochron, and CoaguchekProDM, but only because patients on those
machines tended to be in range and closer to their prescibed range more often

than the patients on the other machines.
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Figure 5.1: Posterior Predictive Density of Probability In-Range with 95% PI
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Appendix 1

BUGS code:

Beta-Binomial Machine-Identical Model:
model for (i in 1:N) {
in.rangeli] ~ dbin(p[i], tot[i])
pli] ~ dbeta(alphali), betali])
p.obsli] < —in.rangeli/tot[i]
alphali] < —A + 0 * Id[i] + 0 * Pro[i] + 0 Hemli] + 0+ CoS[i] + 0 + CoPl[i] + 0 * Rapli]
betali] < —B + 0 x Id[i] + 0 * Pro[i] + 0 * Heml[i] + 0 * CoS[i] + 0 * CoP[i] + 0 x Rapli]}
A ~ dgamma(.001,.001)
B ~ dgamma(.001,.001)
PP < —AJ(A+B)}}
Beta-Binomial Machine-Specific Model:
model for (i in 1:N) {
in.rangeli] ~ dbin(p[i], tot[i])
p.obs[i] < —in.rangeli/tot|i]
pli] ~ dbeta(alphali), betali])
alphali] < —A[1] x Pro[i] + A[2] « Heml[i] + A[3] » CoS[i] + A[4]  CoP[i] + A[5] * Rap[i] + 0+ Id[i]
betali] < —B[1] * Pro[i] + B[2] * Hemli] + B[3] * CoS[i] + B[4] * CoPli] + B[5]  Rapli] + 0 Id[i]}
A[1] ~ dgamma(.001,.001)
A[2] ~ dgamma(.001, .001)
A[3] ~ dgamma(.001,.001)
A[4] ~ dgamma(.001,.001)
A[5] ~ dgamma(.001,.001)

BI[1] ~ dgamma(.001,.001)
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B[2] ~ dgamma(.001,.001)
B[3] ~ dgamma(.001,.001)
B[4] ~ dgamma(.001,.001)
B[5] ~ dgamma(.001,.001)
PP[1] < —A[1]/(A[1] + B[1])
PP[2] < —A[2]/(A[2] + B[2))
PP[3] < —A[3]/(A[3] + B[3))
PP4] < —A[4]/(A[4] + B[4))

PP[5] < —A[5]/(A[5] + B[5])}}

Lognormal Machine-Identical Model:

model

{ m ~ dnorm(1,.001)

s ~ dgamma(.001,.001)

tau ~ dgamma(.001,.001)
for(iinl : N){

muli] ~ dnorm(m, s)
for(4inl:17){

inrli, j] ~ dlnorm(muli], taw)

133

Lognormal Machine-Specific Model:
model
{
beta ~ dnorm(0,.0001)

tau ~ dgamma(.0001,.0001)
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for(iinl : mach){

mli] ~ dnorm(1,.0001)

s[i] ~ dgamma(.0001,.0001)

medli] < —exp(mli] + beta * log(2))

meanli] < —exp(mli] + beta * log(2) + 1/2/s[i])
stdli] < —meanli]  sqrt(ezp(1/s[i]) — 1)
for(jind : sub){

mali, j] ~ dnorm(mli], s[i)

meanieli, j] < —(beta * log(lowerl[i, j1)) + muli, j]
for(kinl : vis){

inr[i, j, k] ~ dlnorm(meanieli, j], taw)

1

Lognormal Machine-Specific Model with Lower Bound Term:

model

{

beta ~ dnorm(0,.0001)

for(iinl : mach){

ml[i] ~ dnorm(1,.0001)

sli] ~ dgamma(.0001,.0001)

tauli] ~ dgamma(.0001,.0001)

for(jinl : sub){

mult, j] ~ dnorm(mli], si)

meanieli, j| < —(beta x log(lowerl[i, j])) + muli, j]
for(kinl : vis){

inrli, j, k] ~ dlnorm(meanieli, ], tau[i))

1
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R code:
Beta-Binomial model:
datal < — read.csv(”datal.csv”)
attach(datal)
nl < — sum(Pro)

n2 < — sum(Hem)

n3 < — sum(CoS)
n4 < — sum(CoP)
n5 < — sum(Rap)

N < — sum(nl,n2,n3,n4,n5)

# SEPARATE TOT BY MACHINE

totl < — rep(99,N)

tot2 <

rep(99,N)
tot3 < — rep(99,N)
totd < — rep(99,N)

toth <

rep(99,N)

for (iin 1:N)
{
if (Pro[i]==1) tot1[i] < — tot[i]

}

j<—1
for (i in 1:N)

{
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if (tot1[i] '= 99)
{

totl[j] < — totl[i]
Jiritl

}

}

totl < — totl[1l:nl]

(repeat for machines 2-5)

# SEPARATE IN.RANGE BY MACHINE
in.rangel < — rep(99,N)
in.range2 < — rep(99,N)
in.range3 < — rep(99,N)
in.ranged < — rep(99,N)

in.rangeb < — rep(99,N)

for (iin 1:293)
{if (Pro[i]==1) in.rangel[i] < — in.rangeli] else in.rangel[i] < — 99}
for (i in 1:293)
{if (Hem[i]==1) in.range2[i] < — in.range[i] else in.range2[i] < — 99}
for (i in 1:293)
{if (CoS[i]J==1) in.range3[i] < — in.range[i] else in.range3[i] < — 99}
for (i in 1:293)
{if (CoPli]==1) in.ranged[i] < — in.rangeli] else in.range4[i] < — 99}

for (iin 1:293)
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{if (Rap[i]==1) in.range5[i] < — in.range[i] else in.range5[i] < — 99}

j<—1

for (i in 1:N)

{

if (in.rangel[i] = 99)

{

in.rangel[j] < — in.rangel[i]
j<—j+1

1

in.rangel < — in.rangel[l:nl]

(repeat for machines 2-5)

# START BRUGS
library(BRugs)
modelCheck(’'model2betabinom.txt’)
modelData(’datal.txt’)
modelCompile(1)
modellnits( ’init2.txt’ )
modelGenlInits()

modelUpdate(1000)

dicSet()
samplesSet("PP’)

samplesSet('p’)
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modelUpdate(50000)

dic2 < — dicStats()
PP1 < — data.frame(samplesSample(’PP[1]’))
PP2 < — data.frame(samplesSample("PP[2]’))
PP3 < — data.frame(samplesSample("PP[3]"))
PP4 < — data.frame(samplesSample(’PP[4]’))

PP5 < — data.frame(samplesSample("PP[5]’))

par(mfrow=c(1,1))
plot(density(PP1[,1]),ylim=c(0,12),xlim=c(.25,.75),xlab=",main="")
lines(density (PP2],1]),col=2)
lines(density (PP3[,1]),col=3)
lines(density (PP4[,1]),col=4)
lines(density (PP5[,1]),col=5)

legend (x=.6,y=12,col=1:5,lty=1,legend=c(”Pro” ”Hem”,” CoS”,” CoP” ”Rap”))

samplesDensity ("PP”)

samplesHistory ("PP”)

samplesStats(”*”) # the summarized results

# SAMPLE FROM POSTERIOR PREDICTIVE DISTRIBUTIONS

J < — rep(totl, each = 100)

NJ < — length(J)
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y.repl < — rep(999, NJ)

for (i in 1:NJ)
{
y.repli] < — rbinom(1,J[i],PP1[i,1])

}

(repeat for machines 2-5)

par(mfrow=c(3,2),mar=c(2, 4, 1, 2) + 0.1)

plot(density(y.repl,bw=.5),xlim=c(0,12),main="xlab=")
lines(density (in.rangel),lty=2)
plot(density(y.rep2,bw=.5),xlim=c(0,12),main="xlab=")
lines(density (in.range2),lty=2)
plot(density(y.rep3,bw=.5) xlim=c(0,12),main="xlab="")
lines(density (in.range3),lty=2)
plot(density (y.rep4,bw=.5) xlim=c(0,12),main="xlab="")
lines(density (in.range4),lty=2)
plot(density(y.rep5,bw=.5),xlim=c(0,12),main="xlab=")

lines(density (in.range5),lty=2)

par(mfrow=c(2,1))
alpha < — data.frame(samplesSample(’alpha’))
beta < — data.frame(samplesSample(’beta’))

plot(density(alpha))
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plot(density(beta))

# GOF
par(mfrow=c(1,1))
plot(density(y.rep,bw=.5),main="xlim=c(-1,12),xlab="1ty=2)

lines(density (in.range.all,bw=.5) xlim=c(-1,12))

Lognormal model:

# START BRUGS

library(BRugs)
modelCheck('modeldnew2.txt’)
modelData(’datada.txt’)
modelCompile(1)
modellnits(’init4new2.txt’ )
modelGenlInits()

modelUpdate(1000)

dicSet()
samplesSet('m’)
samplesSet(’s’)
samplesSet("tau’)

samplesSet ("beta’)

modelUpdate(50000)
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dicdb < — dicStats()

samplesDensity ("m” xlim=c(0,1))
par(new=T)

samplesDensity (" beta”)

samplesHistory(”m” ,mfrow=c(3,2))
samplesHistory(”s” mfrow=c(3,2))
samplesHistory(”tau” mfrow=c(3,2))
par(new=T)
samplesHistory(”beta” mfrow=c(3,2))

9 *”)

samplesStats( # the summarized results

# GOF
gof.data < — read.csv(’gofdvis.csv’)
attach(gof.data)
tot.machl < — 56
tot.mach2 < — 58
tot.mach3 < — 64
tot.mach4 < — 58
tot.machd < — 56

tot < — 292

beta < — samplesSample(’beta’)
ml < — samplesSample('m[1]’)

m2 < — samplesSample('m[2]’)
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m3 < — samplesSample('m|3]")
m4 < — samplesSample('m[4]’)
mb < — samplesSample('m[5]’)
s1 < — samplesSample(’s[1]")
s2 < — samplesSample(’s[2]’)
$3 < — samplesSample(’s[3]’)
s4 < — samplesSample(’s[4]")
s5 < — samplesSample(’s[5])

taul <

samplesSample(’tau[1]’)
tau2 < — samplesSample(’tau[2]’)

taud < — samplesSample(tau(3]’)

taud < — samplesSample(’tau[4]’)

taud <

samplesSample(’tau[5]’)

thetal < — cbind(beta,m1,m2,m3,m4,m5,s1,s2,83,s4,s5 taul,tau2,tau3,taud,taud)

theta < — thetal[seq(from=1,t0=50000, by=>500),]
theta < — data.frame(theta)

thetal < — data.frame(thetal)

mu.rep < — matrix(99,100,tot)

meanie < — matrix(99,100,tot)

inr.rep < — array(data=NA,dim=c(100,max(vis),tot))

for (i in 1:100)

53



for (j in 1:tot.machl)
{
if (mach[j]==1)
{
mu.rep|i,j] < — rnorm(1,mean=theta$mlli],sd=sqrt(1/theta$sl[i]))
meanie(i,j] < — mu.repl[i,j] + theta$betali]*log(inr0[j])
for (k in 1:vis[j])
{
inr.rep[ik,j] < — rlnorm(1,meanlog=meanieli,j],sdlog=sqrt(1/theta$taulli]))

1

for (i in 1:100)

{
for (j in (tot.machl+1):(tot.machl+tot.mach2))
{
if (mach[j]==2)
{

mu.rep[i,j] < — rnorm(1,mean=theta$m2[i],sd=sqrt(1/theta$s2[i]))
meaniel[i,j] < — mu.rep[i,j] + theta$beta[i]*log(inr0[j])
for (k in 1:vis[j])

{

inr.rep[i,k,j] < — rlnorm(1,meanlog=meanie[i,j],sdlog=sqrt(1/theta$taul[i]))

1

(repeat for machines 3-5)

o4



#throw out NAs and plot vs. lab_inr

F#overlapping density plots

datal < — read.csv(”pt.csv”)

lab.inr < — datal$lab_inr

plotty < — inr.rep
a < — as.vector(plotty)

y.rep < — na.omit(a)

par(mfrow=c(1,1))
plot(density(y.rep ),xlim=c(0,14),ylim=c(0,.6),xlab=" main="1ty=2)
par(new=T)

plot(density(lab.inr),xlim=c(0,14),ylim=c(0,.6),main="xlab=""ylab="Density’)

# POSTERIOR PREDICTIVE DISTRIBUTION
mu.repl < — vector(”numeric”,10000)
meaniel < — vector(”numeric”,10000)
inr.drawl < — vector(”numeric”,10000)

badnessl < — vector(”numeric”,10000)

for (i in 1:10000)

{
mu.repl[i] < — rnorm(1,mean=thetal$m1l[i],sd=sqrt(1/thetal$sli]))

meaniel[i] < — mu.repl[i] + thetal$betali]*log(2)
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inr.drawl[i] < — rlnorm(1,meanlog=meaniel[i],sdlog=sqrt(1/thetal$taulli]))

badnessl[i] < — max(0,(inr.draw1[i]-3),(2-inr.drawl[i]))

badl < — vector(”numeric”,10000)
for (i in 1:10000)
{if (badnessl[i]==0) badl]i] < — 1}

inl < — sum(badl)/length(badness1)

(repeat for machines 2-5)

Code for Plots:
Reduced Spaghetti Plots
badorder < — read.csv(’c:/logbadorder.csv’)
badorder2 < — badorder[,3:19,22]
badorder2 < — cbind(badorder2,logbadid)

attach(badorder2)

linr < — log(lab_inr)

# FIND MIN, 25%, MED, 75%, MAX OF BADNESS TO HAVE LINES

select < — rep(0,length(id)) selectR < — rep(0,length(id[machine=="Rapidpoint’]))

selectP < — rep(0,length(id[machine=="Protime’]))

selectH < — rep(0,length(id[machine=="Hemochron’]))



selectcp < — rep(0,length(id[machine=="Coaguchek S’]))

selectCP < — rep(0,length(id[machine=="CoaguchekPr’]))

# MAKE DIFFERENT LOGBADIDS FOR EACH MACHINE

for (i in 1:1312)

if (machine[i]==2) logbadidli] < — logbadid[i]+100
if (machine[i]==3) logbadid[i] < — logbadid[i]4+200
if (machine[i]==4) logbadid[i] < — logbadid[i]+300

if (machine[i]==5) logbadid[i] < — logbadid[i]+400

for (j in 1:5)

{

for (i in 1:length(loghadid[machine=="Rapidpoint’]))

{
if (logbadid[machine=="Rapidpoint’][i]==fivenum (logbadid[machine=="Rapidpoint’])[j])
selectR[i] < — j

}

(repeat for machines 2-5)

}

select < — cbind(t(selectcp),t(selectCP) t(selectH),t(selectP),t(selectR))

select < — t(select)

detach(badorder2)

57



badorder2 < — cbind(badorder2,select)

attach(badorder2)

pro < — cbind(linr[machine=="Protime’],cum_time[machine=="Protime’],
logbadid[machine=="Protime’],select[machine=="Protime’])

rap < — cbind(linr[machine=="Rapidpoint’],cum_time[machine=="Rapidpoint’],
logbadid[machine=="Rapidpoint’],select[machine=="Rapidpoint’])

hem < — chind(linr[machine=="Hemochron’],cum_time[machine=="Hemochron’],
logbadid[machine=="Hemochron’],select[machine=="Hemochron’])

cs < — cbind(linr[machine=="Coaguchek S’],cum_time[machine=="Coaguchek S’],
logbadid[machine=="Coaguchek S’],select[machine=="Coaguchek S’])

cp < — cbind(linr[machine==’CoaguchekPr’],cum_time[machine=="CoaguchekPr’],

logbadid[machine=='CoaguchekPr’]select[machine=="CoaguchekPr’])

detach(badorder2)

par(mfrow=c(5,1), mar=c(1.5,4,1.5,4)+.1, cex.axis=.9,mgp=c(3,.5,0))

#Protime

pro < — data.frame(pro)

plot(pro$X2, pro$X1, type="p’,pch=19,cex=.6, ylim=c(-.2,2),xlim=c(0,135), main="Protime’,

ylab=" xlab="Days’, xaxt="n’)

points(pro$X2[pro$X3==i], pro$X1[pro$X3==i], type="p’,pch=19,cex=.6)

lines(pro$X2[pro$X4==5], pro$X1[pro$X4==5|, type="1" lwd=2)
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lines(pro$X2[pro$X4==4|, pro$X1[pro$X4==4|, type="1"lwd=1)
lines(pro$X2[pro$X4==3], pro$X1[pro$X4==3], type="1",col="gray’)
lines(pro$X2[pro$X4==2], pro$X1[pro$X4==2|, type="1",col="red’ ,lwd=1)

lines(pro$X2[pro$X4==1], pro$X1[pro$X4==1], type="1",col="red’,lwd=2)

abline(h=log(2),col="blue’)
abline(h=log(3),col="blue’)

(repeat for machines 2-5)

Bubble plot
attach(badorder)

logbadid < — -logbadid

#red bubble plot

par(mfrow=c(1,5),mar=c(5, 2, 4, 0)+.1)

¢ < — 2*sqrt(logtail /pi)

plot(cum_time[machine=="Protime’],logbadid[machine=="Protime’], type="p’, cex=c,
xlab="Time’, ylab="Patient’,main="Protime’, col="red’,yaxt="n’ xlim=c(0,190))
points(cum_time[machine=="Protime’][is.na(tail),loghadid [machine=="Protime’][is.na(tail)], type="p’,

pch=20, cex=.2)

(repeat for machines 2-5)
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