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ABSTRACT

A COMPARATIVE SIMULATION STUDY OF ROBUST ESTIMATORS

OF STANDARD ERRORS

Natalie Johnson

Department of Statistics Statistics

Master of Science

The estimation of standard errors is essential to statistical inference. Statistical

variability is inherent within data, but is usually of secondary interest; still, some

options exist to deal with this variability. One approach is to carefully model the

covariance structure. Another approach is robust estimation. In this approach, the

covariance structure is estimated from the data. White (1980) introduced a biased,

but consistent, robust estimator. Long et al. (2000) added an adjustment factor to

White’s estimator to remove the bias of the original estimator. Through the use of

simulations, this project compares restricted maximum likelihood (REML) with four

robust estimation techniques: the Standard Robust Estimator (White 1980), the Long

estimator (Long 2000), the Long estimator with a quantile adjustment (Kauermann

2001), and the empirical option of the MIXED procedure in SAS.

The results of the simulation show small sample and asymptotic properties of

the five estimators. The REML procedure is modelled under the true covariance

structure, and is the most consistent of the five estimators. The REML procedure

shows a slight small-sample bias as the number of repeated measures increases. The





REML procedure may not be the best estimator in a situation in which the covari-

ance structure is in question. The Standard Robust Estimator is consistent, but it has

an extreme downward bias for small sample sizes. The Standard Robust Estimator

changes little when complexity is added to the covariance structure. The Long estima-

tor is unstable estimator. As complexity is introduced into the covariance structure,

the coverage probability with the Long estimator increases. The Long estimator with

the quantile adjustment works as designed by mimicking the Long estimator at an

inflated quantile level. The empirical option of the MIXED procedure in SAS works

well for homogeneous covariance structures. The empirical option of the MIXED

procedure in SAS reduces the downward bias of the Standard Robust Estimator when

the covariance structure is homogeneous.
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1. INTRODUCTION

The estimation of standard errors is essential to statistical inference. In many

situations (e.g. linear models), the primary interest of estimation is in the parameters

of the mean structure. Statistical variability itself is usually of secondary interest and

is sometimes even considered to be a nuisance (Huber 1972). The efficient estimation

of the covariance parameters, however, usually leads to efficient inference about the

parameters of the mean structure.

The statistical variability inherent in data and its effects on standard errors of

parameter estimates in linear models can be dealt with in several ways. One approach

is to fully model the covariance structure of the data, then use parametric methods

to estimate the covariance parameters (e.g. restricted maximum likelihood). A poor

choice for the specified covariance structure of the data does not usually greatly

affect the validity of the parameter estimates, only the efficiency of these estimates

(Diggle 1994) and subsequent inferences. Another approach to dealing with statistical

variability is robust estimation. In this approach, the covariance structure itself is

estimated from the data. The procedure is “robust” in that it is said to produce

valid results for many different covariance structures. With robust estimation, the

parameter estimates are valid but are not as efficient as when the true covariance

structure is known and a parametric method is used.

Because there are many approaches to dealing with statistical variability, de-

ciding which procedure is most appropriate for the situation may be difficult. The

use of restricted maximum likelihood (REML) would be appropriate, but the true

covariance structure is usually unknown. Several options to model the covariance

structure are available, such as spatial power (SP), variance components (VC), un-

structured (UN), and compound symmetric (CS). Information criteria such as AIC

1



Figure 1.1: Weights of 43 mice in a study of teratology of carbon black oil split into
four treatments
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or BIC may also be used to select a covariance structure. Another option is to use

a robust estimator proposed by White (1980) or variations on this estimator (Long

2000, SAS Institute 2003).

As an example, Hansen et al. (2000) studied teratogenic effects of carbon black

oil on mice. After receiving one of the four treatments, mouse pups were weighed at

each of four preselected ages (4, 8, 12, and 16 days). Figure 1.1 shows the rate of

growth for the 43 mice in the study. The log of the weight of the mouse was used as

the response variable.

Table 1.1 shows the parameter estimates and the standard errors for several

methods used to estimate the covariance structure. The standard errors differed

among the estimators in this example. In this situation, the unstructured covariance

matrix was selected by AIC. This raises the question: when are each of these proce-

dures (REML plus AIC or the robust estimators) appropriate for use with repeated

measures data?

This project is a comparative simulation study of the statistical properties of

robust estimators of standard errors for repeated measures data. Specifically, this

project compares parametric methods based on REML (Thompson 1969) and robust

approaches based on the sandwich estimator (White 1980). This is done using several

covariance structures with both homogeneous and heterogeneous variances. Other

items of interest that will vary are the amount of correlation within the covariance

matrices, the number of repeated measures per unit, and the number of units per

treatment. The prevalence with which the parameter is located within the computed

95% confidence interval is measured.

This is an important study because both procedures (REML and the robust

estimators) for estimation of standard errors are commonly used, yet only a few

simulation studies have been done to compare the estimators, especially in small-

sample and repeated measures situations. This study provides valuable and practical

3



information on the effects that the covariance structure and other study features have

on the efficiency of the estimates.

4



Table 1.1: Comparison of the estimates and standard errors of the parameters with
respect to various covariance estimation techniques for the control group of the ter-
atogenic study on mice

Method Parameter Estimate Standard Error
REML—Auto-Regressive Intercept 3.336700 0.070960

Day -0.011930 0.011900
Day2 0.002612 0.000570

REML—Random Coefficients Intercept 3.335400 0.141000
Day -0.011810 0.032160
Day2 0.002612 0.001583

REML—Unstructured* Intercept 3.335400 0.045710
Day -0.011810 0.007293
Day2 0.002612 0.000463

REML—Compound Symmetric Intercept 3.335400 0.082820
Day -0.011810 0.015920
Day2 0.002612 0.000784

Robust Estimator Intercept 3.335447 0.021389
Day -0.011807 0.009662
Day2 0.002612 0.000475

Long Estimator Intercept 3.335447 0.103007
Day -0.011807 0.025508
Day2 0.002612 0.001268

Empirical Intercept 3.336300 0.020550
Day -0.012700 0.008426
Day2 0.002645 0.000422

* Refers to the covariance structure under REML with the smallest AIC

5



2. LITERATURE REVIEW

In order to more fully consider each of the estimators discussed in the previous

example, the literature detailing these methods will be examined. This chapter is

divided into three sections. The first section is an introduction to the notation of the

Robust estimator, including some of its asymptotic properties. The second section is

an overview of the options for implementing the Robust estimator. The third section

is a review of previous simulation studies involving the Robust estimator.

2.1 Notation

Consider the linear model

y = Xβ + ε, (2.1)

where y is an n× 1 vector of observations from a dependent variable, X is an n× k

matrix of observations from an independent variable assumed to be full rank, ε is

distributed normally with mean vector 0 and covariance matrix V, a positive definite

diagonal or block-diagonal matrix. The generalized least squares estimate for β and

its covariance matrix are

β̂ = (X′V−1X)−1X′V−1y (2.2)

and

cov(β̂) = (X′V−1X)−1. (2.3)

These estimates assume that the covariance matrix V is known. If V is unknown,

neither equation (2.2) nor (2.3) can be calculated.

One approach for estimating the covariance matrix V is to use maximum like-

lihood. This approach maximizes the joint likelihood of the original observations.

6



However, the maximum likelihood approach sometimes yields biased estimates of the

variance components (Long 1962). Restricted maximum likelihood (REML) is an

approach that is designed to reduce the bias of the estimates of the variance compo-

nents brought about by maximum likelihood. The REML procedure maximizes the

joint likelihood where the sufficient statistics are location-invariant (Long 1962). The

REML procedure is an iterative procedure using one of several maximizing algorithms

to converge to the global maximum (Burch 2001).

Another possible approach for inference is to use the ordinary least squares

estimator for β,

ˆ̂
β = (X′X)−1X′y. (2.4)

This estimator is not fully efficient, but it no longer has the unknown V in it; it

can always be calculated, and it is unbiased (Rencher 2000, p. 152). The covariance

matrix of ˆ̂
β for the model in (2.1) is

cov(
ˆ̂
β) = (X′X)−1X′VX(X′X)−1. (2.5)

The estimator
ˆ̂
β avoids the use of V, but its covariance matrix (2.5) still includes

the unknown V. Thus, inferences cannot be carried out based on ˆ̂
β unless V can

somehow be estimated. Several researchers have investigated estimators of cov(
ˆ̂
β)

and their properties. Eiker (1963) investigated sufficiency and consistency of cov(
ˆ̂
β),

equation (2.5), using the covariance of the errors cov(εε′) as the estimate of the V

matrix. Huber (1967) further investigated the asymptotic properties of the covariance

matrix using maximum likelihood methods. Huber (1967) used the negative of the

information matrix to estimate V. Robust estimation is based on the claim that

cov(
ˆ̂
β), equation (2.5), is somewhat insensitive to the quality of the estimate of V

(Diggle 1994, p. 69). Under fairly broad conditions, this robust estimator is consistent

(Kauermann 2001).
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A more general analog of
ˆ̂
β, equation (2.4), is

ˆ̂βW = (X′WX)−1X′Wy, (2.6)

where W is a “working” covariance matrix. This analog is unbiased for estimating

ˆ̂
β, and the covariance matrix for ˆ̂

βW is

cov( ˆ̂βW ) = (X′WX)−1X′WVWX(X′WX)−1. (2.7)

2.2 Estimation of cov( ˆ̂β)

White (1980) introduced a consistent estimator for the situation in which V is

diagonal but possibly heteroscedastic. This method uses the estimate

ĉov(
ˆ̂
β) = (X′X)−1X′V̂X(X′X)−1, (2.8)

where

V̂ =




(y1 − x′1
ˆ̂
β)2 0 · · · 0

0 (y2 − x′2
ˆ̂
β)2 · · · 0

...
...

. . .
...

0 0 · · · (yn − x′n
ˆ̂
β)2




. (2.9)

Notice that this estimate of V does not allow for correlation among observations.

This estimate has several names, including the sandwich estimator, the con-

sistent variance estimator, the Robust estimator, and the White estimator. In this

project, it will be referred to as the Standard Robust Estimator. The Standard Ro-

bust Estimator is biased downward, but it is consistent (Kauermann 2001). The

8



consistency of the estimator is what makes it appealing. One of the benefits of this

estimator is that it does not rely on a specific formal model of the heteroscedasticity

for its consistency (White 1980).

Several programs offer the option of using the Robust estimator. In SAS, the

REG procedure uses the acov option to compute the weighted least squares sandwich

estimate (SAS Institute 2003). The acov option uses

cov(β̂) = (X′X)−1(X′(diag(e2
i ))X)(X′X)−1, (2.10)

where

ei = yi − x′i
ˆ̂
β. (2.11)

Some efficiency is lost when the Robust estimator is used, but the estimate is still

consistent (Agresti 2002, p. 472).

The Robust estimator is computed using ordinary least squares residuals, which

tend to be too small (White 1985). Kauermann (2001) provides an option to reduce

bias when using the Robust estimator; namely, substitution of

ε̃i =
ε̂i

(1− hii)1/2
, (2.12)

where hii is the ith diagonal element of the hat matrix

H = X(X′X)−1X′ (2.13)

for

ε̂i = (yi −Xi
ˆ̂
β)(yi −Xi

ˆ̂
β)′. (2.14)

A generalization of the Robust estimator is often used when V is block-diagonal,

with blocks (Vi) of equal size. One can use the least squares estimator (2.4) with

ĉov(
ˆ̂
β) = (X′X)−1X′V̂bX(X′X)−1, (2.15)

9



where

V̂b =




(y1 −X1
ˆ̂
β)(y1 −X1

ˆ̂
β)′ 0 · · · 0

0 (y2 −X2
ˆ̂
β)(y2 −X2

ˆ̂
β)′ · · · 0

...
...

. . .
...

0 0 · · · (yn −Xn
ˆ̂
β)(yn −Xn

ˆ̂
β)′




.

(2.16)

This is similar to the estimator that SAS uses in the empirical option of the MIXED

procedure (SAS Institute 2003). The empirical option uses the estimator

cov(β̂) = (X′V̂
−1

b X)−1(ΣS
i=1X

′
iV̂

−1

bi ε̂iε̂
′
iV̂

−1

bi Xi)(X
′V̂

−1

b X)−1, (2.17)

where

ε̂i = yi −Xi
ˆ̂
β. (2.18)

In this situation, S is the number of subjects in the study. The matrices with the

subscript i are those for the i -th subject (SAS Institute 2003).

2.3 Simulation Studies of the Robust Estimator

Many simulation studies have been done to investigate the properties of the

REML estimator (e.g. Thompson 1969, Swallow 1984, Burch 2001, Schaalje 2002).

Gomez (2004) used simulation to study properties of the AIC- and BIC-selected

REML estimator. However, only a few studies have been done to understand the

properties of the Robust estimator.

2.3.1 Kesselman et al. 1999

Kesselman et al. (1999) conducted a simulation study to compare Type I error

rates and power for REML-based tests and the Welch-James (WJ) test, a test based

on a robust variance estimator similar to the Robust estimator. The researchers were

10



interested in testing the hypothesis

H0 : Cµ = 0, (2.19)

where C is a set of independent linear contrasts in factorial studies with hetero-

geneous non-independent covariance structures. Kesselman et al. (1999) generated

data from both Normal and Lognormal distributions using covariance structures of

Unstructured (UN), Heterogeneous First-order Autoregressive (ARH), or Random

Coefficients (RC). All of the covariance structures had within-subject heterogeneity,

as well as equal and unequal between-subject variances.

The researchers compared the WJ test, the REML-based test using the cor-

rect covariance structure, and the REML-based test using the covariance structure

selected by the Akaike Information Criteria (AIC). They let the AIC choose between

eleven possible covariance structures: Compound Symmetric (CS), Unstructured

(UN), First-order Autoregressive (AR), Huynh-Feldt (HF), Heterogeneous Compound

Symmetric (CSH), Heterogeneous First-order Autoregressive (ARH), Random Coef-

ficients (RC), UNj, HFj, ARj, and RCj. The subscript j represents unequal between-

subject covariance. The researchers used total sample sizes of 30, 45, and 60. They

also used positive and negative pairings of sample sizes with covariance matrices. A

positive pairing is a situation in which the largest subsamples are associated with

the groups with the largest variances. A negative pairing is a situation in which the

largest subsamples are associated with the groups with the smallest variances.

The WJ test is given by

TWJ = (CȲ)′(CSC′)−1(CȲ), (2.20)

where Ȳ = (Ȳ
′
1, · · · , Ȳ

′
j)
′, with E(Ȳ) = µ (Kesselman 1999). The sample covariance

matrix of Ȳ is S = diag(S1/n1, · · · ,Sj/nj), where Sj is the sample covariance matrix

for the j-th level of the between-subject grouping factor (Kesselman 1999). The WJ
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test was divided by a constant to become distributed as an approximate F (Kessel-

mann 1999). The WJ test is similar to the Robust estimator, but it assumes that

individuals within a group have the same covariance matrix.

For tests of the main effects, the Type I error rate was always lower for the

WJ test than for the AIC-chosen covariance structure. The AIC-based test exceeded

the target error rate when the error structure included negative pairings. The WJ

test only slightly exceeded the target error rate when the structure included negative

pairings. Tests of interaction effects showed little consistency as to when the error

rate exceeded the target level. The AIC-based test and the WJ test often seemed to

overshoot the error rate, revealing a bias toward allowing more error than desired.

The WJ procedure, however, seemed less affected by heteroscedasticity. The results

of the non-Normal data were similar to the results of the Normal data.

The power comparison between the REML-based test and the WJ test showed

that the WJ test was consistently less powerful than the F-test. However, the power

was similar enough that the WJ test could be considered for use when the covariance

structure is unknown.

2.3.2 Long et al. 2000

White and MacKinnon (1985) proposed three alternatives to reduce the bias of

the Standard Robust Estimator (2.8). They did this after noticing that the original

robust estimator introduced by White (1980) did not take into account that ordinary

least squares residuals tended to be too small. This problem with the residuals

resulted in the downward bias of this robust estimator (White 1985). The Standard

Robust Estimator and three alternatives introduced to reduce bias are

cov0(
ˆ̂
β) = (X′X)−1X′(diag(e2

i ))X(X′X)−1, (2.21)

12



cov1(
ˆ̂
β) =

n

n− k
(X′X)−1X′(diag(e2

i ))X(X′X)−1, (2.22)

cov2(
ˆ̂
β) = (X′X)−1X′(diag(

e2
i

1− hii

))X(X′X)−1, (2.23)

and

cov3(
ˆ̂
β) = (X′X)−1X′(diag(

e2
i

(1− hii)2
))X(X′X)−1, (2.24)

where

ei = yi −Xi
ˆ̂
β, (2.25)

and hii is the i-th diagonal element of the hat matrix (2.13). Each of these three

alternatives is designed to reduce the downward bias of V̂b (2.15). The properties of

these three alternatives are described by White and MacKinnon and applied to data

from various experiments. Long et al. (2000) ran a simulation study to compare the

Robust estimator (2.21) to the three alternatives (2.22, 2.23, and 2.24). They also

tested the ordinary least squares estimator with the usual estimate for the covariance

matrix

cov(β̂) =
Σe2

i

n− k
(X′X)−1. (2.26)

The covariance matrix for the ordinary least squares estimator (2.26) is the estimator

with the worst coverage probability (a minimum bound) when the true covariance

structure is heterogeneous. Long et al. (2000) tested each estimator under varying

degrees of heteroscedasticity. They also varied the sample sizes from 25 to 1000.

Long et al. (2000) generated 100,000 observations for each independent variable.

They next generated random errors with the desired error structure. Then, with these

errors, they computed the dependent variables. Random samples of the proper size

were drawn without replacement. Each of these combinations were run using the
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Standard Robust Estimator (2.21), the three alternatives to the Standard Robust

Estimator (2.22, 2.23, and 2.24), and the ordinary least squares estimator (2.26).

Since the ordinary least squares estimator is designed for homoscedastic data,

it had the best properties for homoscedastic data. The properties for the cov3(
ˆ̂
β),

(2.24), were nearly the same as the properties of the ordinary least squares estimator,

even at the smallest sample size (n = 25). The tests for the other three estimators

had varying degrees of distortion for sample sizes n ≤ 100. All of the tests had nearly

the same properties for n ≥ 250.

Under milder forms of heteroscedasticity, the ordinary least squares estimator

worked well for all sample sizes. With more extreme forms of heteroscedasticity,

the ordinary least squares estimator performed increasingly worse as the sample size

increased. When n ≥ 500, the four different estimators performed similarly. Long

et al. (2000) concluded that the estimator (2.24) worked better than all of the other

estimators under both heteroscedasticity and homoscedasticity. Long et al. (2000)

proposed that the estimator in cov3(
ˆ̂
β) (2.24) should always be used.

2.3.3 Kauermann et al. 2001

Kauermann et al. (2001) studied the efficiency of the sandwich estimator using

cov2(
ˆ̂
β) (2.23). The matrix V̂ is calculated using V̂b (2.16). By replacing ε̂i (2.18)

with ε̃i (2.12), the Robust estimator is shown to be less biased.

Kauermann et al. (2001) found that the Robust estimator leads to a substan-

tial loss of efficiency. Using the unbiased Robust estimator (2.23), they tested the

coverage probability of parameters in simple linear regression. They also compared

confidence intervals based on corrected quantiles from a Standard Normal distribu-

tion and t-distribution quantiles, and a Robust estimator based on the Jackknife

procedure. The confidence intervals of the corrected quantiles were computed by in-

creasing the quantile (e.g. from 95% to 99%) to compensate for the downward bias

14



of the Robust estimator. The t-distribution quantile confidence intervals used quan-

tiles from a t-distribution instead of quantiles from a Standard Normal distribution.

Kauermann et al. (2001) claimed that the Robust estimator based on the Jackknife

was mathematically equivalent to cov2(
ˆ̂
β) (2.23). These estimators were compared

across models with varying degrees of heteroscedasticity.

The corrected quantiles for the Robust estimator outperformed the estima-

tor using t-distribution quantiles and the Robust estimator (based on the Jackknife

procedure) in data from Uniform, Normal, and Laplace distributions. Neither the

t-distribution quantile estimator nor the Robust estimator (based on the Jackknife

procedure) achieved the 95% coverage level. The bias-adjusted estimator with the

corrected quantiles—a less biased Robust estimator—exceeded the 95% coverage level

only when the distribution of the data was Normal. This estimator achieved the 95%

coverage level when the sample size was 20 only for the homoscedastic model. Also,

this estimator achieved the 95% coverage level when the sample size was 40 for both

the homoscedastic and heteroscedastic models.

2.3.4 Summary of Simulation Studies of the Robust Estimator

The original Robust estimator as introduced by White (1980) is a biased esti-

mator. Several authors have considered this estimator to be a reasonable estimator

when heteroscedasticity is present as long as an adjustment factor is included in the

estimator. Kesselman et al. (1999) showed that a variation of the Robust estimator,

the WJ test (2.20), is frequently more accurate than the AIC-based test. Long et

al. (2000) tested three variations on the original Robust estimator (2.22, 2.23, and

2.24) in order to determine which variation would best reduce the downward bias of

the Robust estimator. They concluded that cov3(
ˆ̂
β) (2.24) reduces the bias of the

original estimator and they suggested that this equation should always be used to

estimate the covariance matrix of any analysis. Kauermann et al. (2001) compared

15



quantile adjustments to compensate for the downward bias of the Robust estimator.

They concluded that the best adjustment is made by increasing the quantile for the

Standard Normal distribution in the confidence intervals.
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3. METHODS

This chapter details the techniques employed to generate the data, compute

the estimators and their corresponding confidence intervals, and analyze the results.

The data were generated with varying numbers of repeated measurements for each

subject. The number of subjects per data set was varied to investigate the small- and

large-sample properties of each estimator. The covariance structure was compound

symmetric for both the homogeneous and heterogeneous data.

3.1 Estimators

The small- and large-sample properties of five estimators were compared. The

five estimators are the REML procedure (using the correct covariance structure), the

Robust estimator using the empirical option of the MIXED procedure in SAS (2.17),

the Standard Robust Estimator as introduced by White (2.15), the bias-reducing

adjustment to the Robust estimator that Long (2000) introduced (2.24), and the

corrected quantiles adjustment (Kauermann 2001) in conjunction with the Long es-

timator (2.24).

The REML procedure was modelled under the true compound symmetric co-

variance structure. When the correct covariance structure was modelled, the REML

procedure remained extremely close to the target coverage probability. The REML

estimator in the MIXED procedure provided the most accurate estimates under the

true covariance structure for both the point estimates and the standard errors because

the true covariance structure was known and not just estimated from the data.

The Standard Robust Estimator provided the least accurate standard errors

because of its inherent downward bias. The empirical option of the MIXED pro-

cedure in SAS differed from the Standard Robust Estimator in that it included a
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working covariance matrix in its estimation. The Long adjustment to the Standard

Robust Estimator and the corrected quantiles addition to this estimator provided

further insight into the consistency of the Standard Robust Estimator when it has

been adjusted to reduce bias. The quantile adjustment to the Long estimator was

computed with 99% coverage quantiles instead of the 95% coverage quantiles with

which the other estimators were computed.

3.2 Data Generation

The covariance structure used in this simulation study was compound symmet-

ric. Table 3.1 shows the compound symmetric structure for both the homogeneous

and heterogeneous covariance matrices (SAS Institute 2003).

Table 3.1: Compound symmetric structure for both the homogeneous and heteroge-
neous covariance matrices

Compound Symmetric Heterogeneous Compound Symmetric




σ2 ρ ρ
ρ σ2 ρ
ρ ρ σ2







σ2
1 ρσ12 ρσ13

ρσ12 σ2
2 ρσ23

ρσ13 ρσ23 σ2
3




The identity matrix was the basic homoscedastic matrix. The variances for

the basic heterogeneous matrix were odd beginning with 1 and increasing by two

for every additional repeated measure. Added to these base covariance matrices was

a small, moderate, or high level of correlation. The low level of correlation for the

homogeneous covariance matrices was 0.0, the low level of correlation for the hetero-

geneous covariance matrices was 0.1. A small amount of correlation was added to

the heterogeneous covariance matrices because without any correlation SAS returned

an error that the covariance matrix was not positive definite. The homogeneous and
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Table 3.2: Covariance matrices for 3, 4, and 5 repeated measures

Homogeneous Covariance Matrices
Repeated Correlation
Measure 0 0.6 0.9

3




1 0 0
0 1 0
0 0 1







1 0.6 0.6
0.6 1 0.6
0.6 0.6 1







1 0.9 0.9
0.9 1 0.9
0.9 0.9 1




4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0.6 0.6 0.6
0.6 1 0.6 0.6
0.6 0.6 1 0.6
0.6 0.6 0.6 1







1 0.9 0.9 0.9
0.9 1 0.9 0.9
0.9 0.9 1 0.9
0.9 0.9 0.9 1




5




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







1 0.6 0.6 0.6 0.6
0.6 1 0.6 0.6 0.6
0.6 0.6 1 0.6 0.6
0.6 0.6 0.6 1 0.6
0.6 0.6 0.6 0.6 1







1 0.9 0.9 0.9 0.9
0.9 1 0.9 0.9 0.9
0.9 0.9 1 0.9 0.9
0.9 0.9 0.9 1 0.9
0.9 0.9 0.9 0.9 1




heterogeneous covariance matrices had 0.6 and 0.9 for the moderate and high levels

of correlation, respectively. Table 3.2 lists the homogeneous variance-covariance ma-

trices for 3, 4, and 5 repeated measures, respectively. Tables 3.3, 3.4, and 3.5 list

the heterogeneous variance-covariance matrices for 3, 4, and 5 repeated measures by

their level of correlation.

These covariance matrices were used to generate the data. Random noise was

generated from a Standard Normal distribution and then multiplied by the Cholesky

decomposition of the covariance matrix that corresponded to the combination of

factors currently being generated. The statistical model (2.1) was used to generate

this data. The design matrix, X, in Table 3.6, corresponds to the number of repeated

measures in the combination. The appropriate design matrix was multiplied by the

true vector of coefficients
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Table 3.3: Covariance matrices for 3, 4, and 5 repeated measures with correlation 0.1

Heterogeneous Covariance Matrices
Repeated Correlation
Measure 0.1

3




1 0.1
√

1 · 3 0.1
√

1 · 5
0.1
√

1 · 3 3 0.1
√

3 · 5
0.1
√

1 · 5 0.1
√

3 · 5 5




4




1 0.1
√

1 · 3 0.1
√

1 · 5 0.1
√

1 · 7
0.1
√

1 · 3 3 0.1
√

3 · 5 0.1
√

3 · 7
0.1
√

1 · 5 0.1
√

3 · 5 5 0.1
√

5 · 7
0.1
√

1 · 7 0.1
√

3 · 7 0.1
√

5 · 7 7




5




1 0.1
√

1 · 3 0.1
√

1 · 5 0.1
√

1 · 7 0.1
√

1 · 9
0.1
√

1 · 3 3 0.1
√

3 · 5 0.1
√

3 · 7 0.1
√

3 · 9
0.1
√

1 · 5 0.1
√

3 · 5 5 0.1
√

5 · 7 0.1
√

5 · 9
0.1
√

1 · 7 0.1
√

3 · 7 0.1
√

5 · 7 7 0.1
√

7 · 9
0.1
√

1 · 9 0.1
√

3 · 9 0.1
√

5 · 9 0.1
√

7 · 9 9




β =

(
1 1

)
. (3.1)

With the design matrix and the true vector of coefficients, the random noise,

multiplied by the Cholesky decomposition of the proper covariance matrix, was added

to Xβ. This was done for sample sizes of 5, 10, 25, and 50 subjects within each data

set. Point estimates and standard errors were computed for the intercept and slope

of each of the five estimators. A 95% confidence interval was calculated for each of

the estimators. The Kenward-Roger adjustment (Kenward and Roger 1997) was used

to compute the confidence interval for the REML procedure.

Each combination of factors represented a data set. Each data set was replicated

10,000 times. A marker identified which of the confidence intervals contained the

true parameter value. These were totalled and converted into percentages. The
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Table 3.4: Covariance matrices for 3, 4, and 5 repeated measures with correlation 0.6

Heterogeneous Covariance Matrices
Repeated Correlation
Measure 0.6

3




1 0.6
√

1 · 3 0.6
√

1 · 5
0.6
√

1 · 3 3 0.6
√

3 · 5
0.6
√

1 · 5 0.6
√

3 · 5 5




4




1 0.6
√

1 · 3 0.6
√

1 · 5 0.6
√

1 · 7
0.6
√

1 · 3 3 0.6
√

3 · 5 0.6
√

3 · 7
0.6
√

1 · 5 0.6
√

3 · 5 5 0.6
√

5 · 7
0.6
√

1 · 7 0.6
√

3 · 7 0.6
√

5 · 7 7




5




1 0.6
√

1 · 3 0.6
√

1 · 5 0.6
√

1 · 7 0.6
√

1 · 9
0.6
√

1 · 3 3 0.6
√

3 · 5 0.6
√

3 · 7 0.6
√

3 · 9
0.6
√

1 · 5 0.6
√

3 · 5 5 0.6
√

5 · 7 0.6
√

5 · 9
0.6
√

1 · 7 0.6
√

3 · 7 0.6
√

5 · 7 7 0.6
√

7 · 9
0.6
√

1 · 9 0.6
√

3 · 9 0.6
√

5 · 9 0.6
√

7 · 9 9




percentages represented the coverage probabilities for each combination of factors.
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Table 3.5: Covariance matrices for 3, 4, and 5 repeated measures with correlation 0.9

Heterogeneous Covariance Matrices
Repeated Correlation
Measure 0.9

3




1 0.9
√

1 · 3 0.9
√

1 · 5
0.9
√

1 · 3 3 0.9
√

3 · 5
0.9
√

1 · 5 0.9
√

3 · 5 5




4




1 0.9
√

1 · 3 0.9
√

1 · 5 0.9
√

1 · 7
0.9
√

1 · 3 3 0.9
√

3 · 5 0.9
√

3 · 7
0.9
√

1 · 5 0.9
√

3 · 5 5 0.9
√

5 · 7
0.9
√

1 · 7 0.9
√

3 · 7 0.9
√

5 · 7 7




5




1 0.9
√

1 · 3 0.9
√

1 · 5 0.9
√

1 · 7 0.9
√

1 · 9
0.9
√

1 · 3 3 0.9
√

3 · 5 0.9
√

3 · 7 0.9
√

3 · 9
0.9
√

1 · 5 0.9
√

3 · 5 5 0.9
√

5 · 7 0.9
√

5 · 9
0.9
√

1 · 7 0.9
√

3 · 7 0.9
√

5 · 7 7 0.9
√

7 · 9
0.9
√

1 · 9 0.9
√

3 · 9 0.9
√

5 · 9 0.9
√

7 · 9 9




Table 3.6: Design matrices for 3, 4, and 5 repeated measures

Repeated Measures
3 4 5




1 1
1 2
1 3







1 1
1 2
1 3
1 4







1 1
1 2
1 3
1 4
1 5
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4. RESULTS

This chapter details the results of the simulation study. Complete tables of the

results are given in Appendix B.

4.1 Intercept

The intercept is a stationary column. Certain properties of the estimators are

enhanced when examining the intercept. Each estimator is examined individually,

then the estimators are compared.

4.1.1 REML

The small sample and asymptotic properties of an estimator can be determined

by looking at how increasing sample size affects the properties of an estimator. Be-

cause the REML procedure used the correct covariance structure, it was expected

that this estimator would have excellent properties. Figure 4.1 contains plots of the

coverage percentages in the REML procedure. The REML procedure never varied

more than 0.64% from the target 95% coverage probability. The largest deviation

for the REML procedure occurred under a heterogeneous covariance structure with a

correlation of 0.9 and a sample size of 5. This plot shows that even the REML proce-

dure modelled under the proper covariance structure had some small-sample bias; the

bias was slight, however, which was evidence of the consistency of this estimator. Re-

gardless of correlation or number of repeated measures, the heterogeneous covariance

structure converged to just above the 95% target coverage value with a sample size

of 25. The homogeneous covariance structure with its various correlations converged

to 95% with a sample size of 10.

Figure 4.1 shows a downward trend in coverage rates as the number of repeated
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Figure 4.1: Coverage probability of confidence intervals for the intercept associated
with the REML estimator by sample size and number of repeated measures
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measures increased. The REML procedure did not vary far from the target 95%

coverage rate. There was bias, however, as shown by a 1% change from three repeated

measures to five repeated measures. The heterogeneous covariance structure with its

various correlations had a steeper slope in general than its homogeneous counterpart.

It appears that the sample size required to obtain the 95% coverage probability grows

larger as the number of repeated measures increases. This may be due to the Kenward-

Roger adjustment.

4.1.2 Standard Robust Estimator

The Standard Robust Estimator is the basic form of the four robust estimators

that are being examined. Because it has no adjustment to deal with its inherent

downward bias, it had the smallest average coverage probability of all of the estima-

tors. This downward bias was extreme with small sample sizes. For example, with the

identity matrix as its covariance structure, when n = 5 the Standard Robust Estima-

tor yielded a coverage rate of 84.49%, more than 10% below the target level. Under

a sample size of 50, the Standard Robust Estimator peaked at 94.42% coverage.

Figure 4.2 shows how consistent the Standard Robust Estimator was. The

difference between the six possible covariance structures for each sample size was at

most 0.52% with a sample size of five. This estimator produced extremely consistent

results regardless of the covariance structure or the amount of correlation within a

given covariance structure.

The downward bias of the Standard Robust Estimator was only affected by

sample size and not the number of repeated measures. Figure 4.2 illustrates that

while there was more variation among the covariance structures and their respective

correlations when considering the number of repeated measures, this estimator is

reasonably static.
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Figure 4.2: Coverage probability of confidence intervals for the intercept associated
with the Standard Robust Estimator by sample size and number of repeated measures
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4.1.3 Empirical Option

The empirical option in the MIXED procedure of SAS is the Standard Ro-

bust Estimator with a working covariance matrix included in the equation. Coverage

rates for this estimator had a shape similar to the Standard Robust Estimator, but

there were a few differences between the two estimators. Figure 4.3 shows the plots

of the empirical option coverage rates for sample sizes and repeated measures. The

empirical option had a less significant small-sample bias, regardless of the covariance

structure. The data sets with the homogeneous covariance structure, regardless of

the level of correlation, were not as biased downward as the data sets with the hetero-

geneous covariance structure. The homoscedastic models produced nearly equivalent

results. The heteroscedastic model with the high level of correlation had the most

extreme small-sample bias for this estimator, falling to a coverage level of 88.39%.

The minimal and moderate levels of correlation produced almost identical results. All

of the covariance structures converged to just below the 95% target coverage value.

This estimator was not as consistent across the changing covariance structure as the

Standard Robust Estimator. The working covariance matrix used by the empirical

option reduced the downward bias of the Robust estimator, but this reduction intro-

duced a sensitivity to heteroscedasticity.

The same pattern of the reduction in the downward bias adding a sensitivity to

heteroscedasticity held true for the relationship the empirical option had with the

number of repeated measures. As the number of repeated measures increased from

three to five, the heterogeneous covariance matrix with a correlation of 0.9 exhibited

decreasing coverage probability from 93.46% to 91.28%. For heterogeneous covari-

ance matrices with minimal and moderate levels of correlation, coverage probability

decreased at almost equivalent rates, decreasing by 0.84% and 0.87%, respectively.

The three homogeneous covariance structures produced static results, changing 0.36%

or less. This estimator, though not as consistent as the Standard Robust Estimator,
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Figure 4.3: Coverage probability of confidence intervals for the intercept associated
with the empirical option of the MIXED procedure in SAS by sample size and
number of repeated measures
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decreased the downward bias inherent in its base estimator.

4.1.4 Long Estimator

The Long estimator is the Standard Robust Estimator, except the covariance

matrix uses standardized residuals instead of ordinary residuals. This change in the

residuals considerably reduced the downward bias of the Standard Robust Estimator

(Figure 4.4). However, the results were inconsistent among covariance structures.

When the identity was the covariance structure, there was small-sample bias, but

coverage rates converged to 95%. When nonzero correlation was added to this base

structure, the coverage probability increased with respect to the amount of correlation

added to the covariance matrix. The base heteroscedastic matrix converged to 95.88%.

Adding correlation to this model increased the coverage probability and reduced the

effect of sample size. This suggests the need for a different method of standardization

in this estimator.

With respect to the number of repeated measures in the covariance matrix,

the coverage probabilities that the Long estimator exhibited were somewhat unpre-

dictable. The repeated measures plot in Figure 4.4 illustrates this instability. The

homoscedastic covariance structure with correlations of 0.6 and 0.9 failed to main-

tain a constant coverage probability as the number of repeated measures increased.

Coverage rates for these two structures fell from 96.95% and 98.02% to 93.84% and

93.00%, respectively. All of the other structures exhibited stable coverage rates. Cov-

erage rates for the equivalent heterogeneous structures were very near 100% coverage

probability and did show a slight downward bias.

4.1.5 Long Estimator with Quantile Adjustment

Coverage rates for the Long estimator with the quantile adjustment should

mimic those for the Long estimator, but should be about 4% higher than the Long
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Figure 4.4: Coverage probability confidence intervals for the intercept associated with
the Long estimator by sample size and number of repeated measures
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estimator. The Long estimator with the quantile adjustment performed as expected,

except when the Long estimator had more than 96% coverage probability.

Figure 4.5 shows the sample size and repeated measures plots for the Long

estimator with the quantile adjustment. The Long estimator with the quantile ad-

justment mimicked the Long estimator in regards to repeated measures.

4.1.6 Summary of the Intercept

Table 4.1 lists coverage rates for the intercept relative to sample size, and Figure

4.1 contains plots of each estimator at each sample size for the covariance structures.

The REML procedure had a slight small-sample effect, but it was the most consistent

of the five estimators. The Standard Robust Estimator had the smallest coverage

probability of all the estimators. This estimator had an extreme downward bias with

small sample sizes. The small-sample downward bias that was inherent in the Robust

estimator was less apparent for the empirical option, especially when the data were

from a homogeneous covariance structure. Having a heterogeneous covariance struc-

ture seemed to force the Long estimator to be more consistent but only because the

coverage rates were close to 100%. The dramatic increase in the coverage probability

of the Long estimator was unexpected because this estimator was slightly downward

biased with sample sizes much larger than 50 (Long 2000). This suggests that a more

elaborate method of standardization might be needed. The Long estimator with the

quantile adjustment mimicked the Long estimator with coverage rates, staying about

4% above the Long estimator.

Table 4.2 shows the coverage probabilities of each of the estimators across the

various levels of correlation for the homogeneous and heterogeneous covariance struc-

tures, as well as across numbers of repeated measures. Figure 4.7 contains plots of

coverage rates of each estimator at each value of repeated measures for the respective

covariance structures in terms of the intercept.
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Figure 4.5: Coverage probability of confidence intervals for the intercept associated
with the Long estimator with the quantile adjustment by sample size and number of
repeated measures
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Figure 4.6: Coverage probabilities of each estimator for the intercept with respect to
sample size
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Figure 4.7: Coverage probabilities of each estimator for the intercept with respect to
the number of repeated measures
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The REML procedure was consistent across repeated measures. The Standard

Robust Estimator was consistent across repeated measures, but it had the lowest

coverage probability of all five of the estimators. The empirical option of the MIXED

procedure in SAS had a slight downward trend as the number of repeated measures

increased. The Long estimator was biased downward as the number of repeated

measures increased. The quantile adjustment to the Long estimator mimicked the

Long estimator.

4.2 Slope

The slope is a changing column. Properties of the estimators are enhanced when

examining the slope that may not have been seen when examining the intercept. Each

estimator is examined individually, then the estimators are compared.

4.2.1 REML

Figure 4.8 shows plots of each of the six covariance structures by sample and

repeated measures for the REML procedure. The REML procedure showed a more

distinct small-sample bias for the slope than it did for the intercept. With a sample

size of 25, all six covariance structures had converged to just above the target 95%

coverage probability. The heterogeneous covariance structures had a much greater

small-sample effect than the homogeneous covariance structures. The smallest cov-

erage rate was for the heterogeneous covariance structure with a correlation of 0.9,

which reached a coverage level of 91.38%. The lowest coverage probability for any

homogeneous structure was 94.90%.

With respect to the number of repeated measures in a data set, the REML pro-

cedure remained above the 95% coverage rate for the three homogeneous structures.

The three heterogeneous structures were not able to maintain the same coverage prob-

ability as the three homogeneous structures. However, even with a correlation of 0.9
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Figure 4.8: Coverage probability of confidence intervals for the slope associated with
the REML procedure by sample size and number of repeated measures
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and five repeated measures in the heterogeneous covariance structure, the REML pro-

cedure had a coverage rate of 93.27%. This estimator was stable, but lost efficiency

as the number of repeated measures increased.

4.2.2 Standard Robust Estimator

The Standard Robust Estimator was an extremely consistent estimator. As

shown in Figure 4.9, the estimates for the six covariance structures lie almost on top

of each other when calculated according to sample size. There was a small-sample

bias, with the lowest coverage rate reaching 84.29%. The highest coverage average

reached 94.42%.

As the number of repeated measures increased, the six covariance structures

were static. However, the estimators did not lie on top of each other as they did with

the increase in sample size. As correlation and heteroscedasticity were increased, the

coverage probability slightly increased. The coverage rate remained between 90.49%

and 91.02%. The number of repeated measures did not significantly impact the ability

of the Standard Robust Estimator to reach its asymptotic coverage probability.

4.2.3 Empirical option

The empirical option of the MIXED procedure in SAS yielded results for the

slope similar to the results for the intercept. Figure 4.10 shows coverage rates of

confidence intervals for the six covariance structures associated with the empirical

option by the sample size and the number of repeated measures. With respect to the

sample size, the homogeneous covariance structures lay on top of each other. They

had a small-sample bias that decreased the coverage probability to 87.25%. The

homogeneous covariance matrices converged to 94.54%. The heterogeneous covari-

ance matrices converged to 94%; however, the small-sample bias was not consistent

among the three heterogeneous covariance matrices. The most biased of the three
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Figure 4.9: Coverage probability of confidence intervals for the slope associated with
the Standard Robust Estimator by sample size and number of repeated measures
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heteroscedastic structures was the structure with a correlation of 0.9, for which the

coverage probability reached to only 74.52% when the sample size was 5.

The number of repeated measures in the covariance matrix decreased the ability

of the empirical option to reach the target 95% coverage level. The three homoge-

neous covariance structures lay on top of each other. There was a slight downward

bias as the number of repeated measures increased. The slope for the three heteroge-

neous covariance structures steepened as the number of repeated measures increased.

The lowest coverage rate was 84.32%, more than 10% below the target 95% coverage

level.

4.2.4 Long Estimator

The Long estimator had no consistency about the covariance structures. Figure

4.11 illustrates this inconsistency with respect to the sample size and the number of

repeated measures. When the sample sizes were small, the homogeneous and hetero-

geneous covariance structures at the low level of correlation were the only structures

with coverage rates below the target 95% level. Adding correlation to these structures

increased the coverage rate. The coverage probability for the homogeneous covariance

structures with moderate and high correlation had higher coverage probabilities than

their heterogeneous counterparts. This estimator tended to have a higher coverage

rate than the target 95% rate.

The number of repeated measures also had an impact on this estimator. When

the covariance structure was homogeneous with moderate and high levels of correla-

tion, the coverage probability was essentially stationary around 99.25% and 99.96%,

respectively. The heterogeneous covariance structure with moderate and high levels

of correlation had a downward bias. With moderate correlation, the heterogeneous

covariance structure changed coverage probabilities from 97.85% to 96.69% as the

number of repeated measures increased. The high level of correlation for the hetero-
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Figure 4.10: Coverage probability of confidence intervals for the slope associated with
the empirical option in the MIXED procedure of SAS by sample size and number
of repeated measures
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Figure 4.11: Coverage probability of confidence intervals for the slope associated with
the Long estimator by sample size and number of repeated measures
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geneous covariance structure decreased coverage probability from 99.20% to 97.48%

as the number of repeated measures increased. The homogeneous and heterogeneous

covariance structures at the low level of correlation had a slight upward bias, increas-

ing by 0.41% and 0.38%, respectively. This is evidence of the unpredictability of the

coverage rate of the Long estimator.

4.2.5 Long Estimator with Quantile Adjustment

The Long estimator with the quantile adjustment mimicked the Long estima-

tor. As shown in Figure 4.12, no covariance structure dropped below 97.20%. This

adjustment worked as designed, with about a 4% increase in coverage rate.

4.2.6 Summary of the Slope

Table 4.3 displays the results for each of the estimators by sample size over

the six covariance structures. Figure 4.13 illustrates the effect of the six covariance

structures with respect to the sample size.

The homogeneous covariance structure with a correlation of zero showed that

the five estimators converged to the 95% level when the sample size was 50. The quan-

tile adjustment to the Long estimator and the REML procedure both achieved the

95% coverage level when the sample size was small. The remaining three estimators

(the Long estimator, the empirical option in SAS, and the Standard Robust Esti-

mator) showed a small-sample effect. These estimators eventually converged to just

below the target 95% coverage level. The REML procedure was stationary around

the 95% target rate.

Table 4.4 lists each estimator and their coverage probabilities across the varying

levels of correlation and numbers of repeated measures. As the number of repeated

measures increased, there did not seem to be much change within most of the esti-

mators.
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Figure 4.12: Coverage probability of confidence intervals for the slope associated
with the Long estimator with the quantile adjustment by sample size and number of
repeated measures
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Figure 4.13: Coverage probabilities for the slope with respect to sample Size

10 20 30 40 50

75
80

85
90

95
10

0

Homogenous r=0.0

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

REML
Empirical
Standard
Long
Quantile

10 20 30 40 50

75
80

85
90

95
10

0

Homogeneous r=0.6

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y
REML
Empirical
Standard
Long
Quantile

10 20 30 40 50

75
80

85
90

95
10

0

Homogeneous r=0.9

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

REML
Empirical
Standard
Long
Quantile

10 20 30 40 50

75
80

85
90

95
10

0

Heterogeneous r=0.1

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

REML
Empirical
Standard
Long
Quantile

10 20 30 40 50

75
80

85
90

95
10

0

Heterogeneous r=0.6

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

REML
Empirical
Standard
Long
Quantile

10 20 30 40 50

75
80

85
90

95
10

0

Heterogeneous r=0.9

Number of Subjects

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

REML
Empirical
Standard
Long
Quantile

44



Figure 4.14 shows the effect of the six covariance structures on the coverage

rates of the five estimators with an increasing number of repeated measures. When

the correlation was at its lowest level, the estimators were fairly flat. The quantile

adjustment to the Long estimator and the REML procedure were the only two esti-

mators to achieve the 95% coverage level. The empirical estimator performed worse

than the Standard Robust Estimator when the covariance structure was heteroge-

neous. The Standard Robust Estimator, which slightly surpassed the 90% coverage

probability level, could not maintain the coverage rates of the other estimators.

Within the homogeneous covariance structure, all five of the estimators re-

mained reasonably static. They did not change much when the number of repeated

measures was increased. As the correlation and number of repeated measures in-

creased within the heterogeneous covariance structure, four of the five estimators

developed a downward bias. The fifth estimator, the Standard Robust Estimator,

remained static regardless of changes to the covariance structure or the number of

repeated measures.
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Figure 4.14: Coverage probabilities for the slope with respect to the number of re-
peated measures
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Table 4.1: Coverage rates for the intercept averaged over the number of repeated
measures

Covariance Structure Sample Size
Method Type Correlation 5 10 25 50
REML Homogeneous 0.0 95.16 95.01 95.02 95.08

0.6 95.01 95.10 95.11 95.06
0.9 94.36 94.83 95.05 95.14

Heterogeneous 0.1 94.64 94.95 95.15 95.19
0.6 95.33 95.18 95.30 95.23
0.9 94.58 95.03 95.26 95.29

Standard Homogeneous 0.0 84.49 90.35 93.36 94.32
Robust 0.6 84.60 90.41 93.46 94.37

0.9 84.49 90.38 93.45 94.38

Heterogeneous 0.1 84.08 90.48 93.27 94.19
0.6 84.11 90.36 93.44 94.26
0.9 84.42 90.22 93.60 94.27

Empirical Homogeneous 0.0 93.01 93.85 94.65 94.93
0.6 93.22 94.00 94.66 94.92
0.9 93.26 93.97 94.73 94.90

Heterogeneous 0.1 90.59 92.81 94.47 94.86
0.6 90.66 92.93 94.56 94.83
0.9 88.39 91.95 94.16 94.71

Long Homogeneous 0.0 92.08 93.54 94.46 94.85
Adjustment 0.6 92.95 95.19 96.49 96.74

0.9 92.20 95.56 97.08 97.42

Heterogeneous 0.1 94.48 95.33 95.76 95.88
0.6 98.26 99.05 99.47 99.53
0.9 99.49 99.90 99.99 99.99

Long Quantile Homogeneous 0.0 97.12 98.12 98.78 98.91
Adjustment 0.6 97.46 98.61 99.31 99.48

0.9 96.68 98.63 99.43 99.58

Heterogeneous 0.1 98.66 99.00 99.27 99.26
0.6 99.66 99.87 99.98 99.97
0.9 99.89 99.99 100.00 100.00
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Table 4.2: Coverage rates for the intercept averaged over the sample size

Covariance Structure Repeated Measure
Method Type Correlation 3 4 5
REML Homogeneous 0.0 95.13 95.00 95.09

0.6 95.25 95.03 94.94
0.9 95.00 94.72 94.82

Heterogeneous 0.1 95.21 94.99 94.75
0.6 95.57 95.21 95.00
0.9 95.63 94.90 94.60

Standard Homogeneous 0.0 90.70 90.46 90.73
Robust 0.6 90.74 90.50 90.89

0.9 90.76 90.47 90.80

Heterogeneous 0.1 90.39 90.52 90.61
0.6 90.53 90.57 90.54
0.9 91.41 90.51 90.75

Empirical Homogeneous 0.0 94.15 94.04 94.15
0.6 94.33 93.97 94.31
0.9 94.38 94.02 94.23

Heterogeneous 0.1 93.63 93.13 92.79
0.6 93.75 93.10 92.88
0.9 93.46 92.17 91.28

Long Homogeneous 0.0 93.46 93.64 94.10
Adjustment 0.6 96.95 95.24 93.84

0.9 98.02 95.68 93.00

Heterogeneous 0.1 95.22 95.34 95.53
0.6 99.19 99.07 98.97
0.9 99.94 99.87 99.73

Long Quantile Homogeneous 0.0 98.06 98.31 98.33
Adjustment 0.6 99.22 98.78 98.15

0.9 99.49 98.63 97.62

Heterogeneous 0.1 98.93 99.08 99.14
0.6 99.88 99.89 99.85
0.9 99.99 99.96 99.96
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Table 4.3: Coverage rates for the Slope averaged over the number of repeated measures

Covariance Structure Sample Size
Method Type Correlation 5 10 25 50
REML Homogeneous 0.0 94.90 94.93 95.18 95.15

0.6 94.94 95.06 95.16 95.20
0.9 94.92 95.10 95.32 95.26

Heterogeneous 0.1 93.59 94.61 95.14 95.25
0.6 92.40 94.36 95.24 95.27
0.9 91.38 93.96 95.11 95.26

Standard Homogeneous 0.0 84.30 90.23 93.51 94.30
Robust 0.6 84.29 90.43 93.57 94.36

0.9 84.54 90.46 93.69 94.28

Heterogeneous 0.1 84.29 90.34 93.45 94.12
0.6 84.74 90.72 93.68 94.38
0.9 84.99 90.67 93.71 94.42

Empirical Homogeneous 0.0 87.25 91.50 93.94 94.54
0.6 87.43 91.64 93.94 94.57
0.9 87.40 91.60 94.12 94.47

Heterogeneous 0.1 80.79 88.93 93.11 94.23
0.6 77.69 87.94 92.97 94.15
0.9 74.52 86.54 92.37 93.99

Long Homogeneous 0.0 92.20 93.74 94.69 94.88
Adjustment 0.6 98.35 99.26 99.66 99.74

0.9 99.85 99.99 100.00 100.00

Heterogeneous 0.1 92.06 94.05 95.23 95.41
0.6 95.05 97.22 98.21 98.48
0.9 96.20 98.48 99.32 99.44

Long Quantile Homogeneous 0.0 97.40 98.33 98.80 98.87
Adjustment 0.6 99.59 99.90 99.99 99.98

0.9 99.97 100.00 100.00 100.00

Heterogeneous 0.1 97.21 98.28 98.87 99.08
0.6 98.42 99.46 99.74 99.86
0.9 98.52 99.71 99.92 99.95
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Table 4.4: Coverage rates for the slope averaged over sample size

Covariance Structure Repeated Measure
Method Type Correlation 3 4 5
REML Homogeneous 0.0 95.02 95.05 95.05

0.6 95.15 95.10 95.02
0.9 95.14 95.22 95.10

Heterogeneous 0.1 95.04 94.64 94.27
0.6 94.97 94.34 93.64
0.9 94.68 93.83 93.27

Standard Homogeneous 0.0 90.64 90.56 90.55
Robust 0.6 90.76 90.62 90.61

0.9 90.83 90.68 90.71

Heterogeneous 0.1 90.60 90.64 90.49
0.6 90.94 90.85 90.86
0.9 91.02 90.89 90.94

Empirical Homogeneous 0.0 92.37 91.62 91.44
0.6 92.54 91.70 91.44
0.9 92.42 91.77 91.50

Heterogeneous 0.1 90.78 88.96 88.06
0.6 90.43 88.09 86.04
0.9 89.77 86.48 84.32

Long Homogeneous 0.0 93.65 93.93 94.06
Adjustment 0.6 99.24 99.20 99.32

0.9 99.96 99.95 99.97

Heterogeneous 0.1 93.99 94.20 94.37
0.6 97.85 97.18 96.69
0.9 99.20 98.40 97.48

Long Quantile Homogeneous 0.0 98.21 98.30 98.55
Adjustment 0.6 99.86 99.86 99.88

0.9 99.99 99.99 100.00

Heterogeneous 0.1 98.26 98.39 98.44
0.6 99.51 99.34 99.26
0.9 99.77 99.54 99.27
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5. CONCLUSION

5.1 Estimators

Each estimator reacts differently to increases in sample size, repeated measures,

correlation, and homoscedasticity This section summarizes the properties each esti-

mator exhibits. It also includes a recommendation based on the properties of the

estimators.

The small-sample results for the intercept and the slope for the REML proce-

dure are similar. The small-sample properties of the REML procedure demonstrate

the ability of this procedure to quickly converge to the expected coverage probabil-

ity. When the sample size is only 5, the REML procedure shows only a slight bias

for all covariance structures. When the sample size is 10, coverage rates for the ho-

moscedastic matrices converge to the 95% coverage probability level. For the sample

size of 25, results for the heterogeneous covariance matrices converge to the target

probability level. The REML procedure stays extremely close to the target coverage

level once it converges. However, as the number of repeated measures increases, the

REML procedure develops a downward trend, possibly because of the Kenward-Roger

adjustment. This means that a different sample size is needed to attain convergence

than is needed when there are fewer repeated measures. Regardless of the number of

repeated measures, the REML procedure converges under the true covariance struc-

ture by the time the sample size reaches 25. The REML procedure works extremely

well in this situation because the true covariance structure is known and can be used

in the simulation. The REML procedure, however, may not be the best estimator in

a situation in which the covariance structure is in question.

The Standard Robust Estimator has an extreme downward bias when the sam-

ple size is small. This downward bias decreases as the sample size increases, and seems
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to converge by the time n = 50; however, the Standard Robust Estimator converges

to just below the 95% coverage probability level. Despite this downward bias, this

estimator is extremely predictable across covariance structures. Little change is seen

when the covariance structure is changed or when correlation is added to the covari-

ance structure. The number of repeated measures has little influence on the Standard

Robust Estimator; no more than a 1% change in coverage probability occurs when

the number of repeated measures is changed.

The empirical option of the MIXED procedure in SAS is an enhancement of

the consistent estimator that White introduced (SAS Institute 2003). The Standard

Robust Estimator and the empirical option do not mimic each other in coverage

rates. The empirical option adds the REML estimate of the covariance matrix as a

working covariance matrix. This variation of the Standard Robust Estimator changes

the consistency of the Robust estimator with the smaller sample sizes. The empirical

option with the small sample sizes is much more variable than the Standard Robust

Estimator. The homogeneous covariance structures have a larger coverage probability

than the heterogeneous covariance structures. As the correlation increases, the down-

ward bias of the estimator increases—especially with the heteroscedastic structure.

Overall, the empirical option has a higher coverage probability than the Standard

Robust Estimator when the covariance structure is homogeneous. The Standard Ro-

bust Estimator has a higher coverage probability when the covariance structure is

heterogeneous.

The Long estimator uses standardized residuals in the computation of the co-

variance matrix instead of the residuals used in the ordinary least squares computation

of the covariance matrix. This change in residuals reduces the downward bias of the

Standard Robust Estimator. Although this change does reduce the downward bias, it

is not able to maintain the same properties as the Standard Robust Estimator. The

Long estimator yields some very unexpected results. With a homogeneous covariance
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structure and no correlation in the model, the Long estimator appears similar to the

Standard Robust Estimator, but has a smaller downward bias. However, when corre-

lation is added to the model, the coverage probability increases by 2% or more. When

heteroscedasticity is added to the model, a similar result occurs. The higher the cor-

relation, especially when heteroscedasticity is present, the more extreme the increase

in coverage over the Standard Robust Estimator. This increase quickly reaches the

point where the Long estimator has a coverage probability of more than 99%. If the

expected length of the interval does not increase much, a coverage rate greater than

95% is adequate. While looking at the number of repeated measures per subject,

the Long estimator is static when a heterogeneous covariance structure is used. Con-

versely, when a homogeneous covariance structure is used, especially with correlation,

the Long estimator exhibits a downward bias. These results are quite interesting, but

they make it difficult to predict the extremity of the bias even though the direction

of bias (upward or downward) is more easily ascertained.

The quantile adjustment to the Long estimator is computed by using a higher

quantile than the desired level in order to compensate for the downward bias of

the estimator. The quantile adjustment mimics the Long estimator, but more often

produces coverage rates near 100% (the Long estimator produces rates over 99%).

No estimator is universally preferable. The Standard Robust Estimator works

well for large sample sizes under all covariance structures. The Long estimator works

well for all situations, but the expected length of the confidence intervals may get too

large under heterogeneous covariance structures. The empirical estimator works

well for all homogeneous covariance structures.

When the covariance structure is known, my recommendation is to use the

REML procedure. This procedure is accurate even with sample sizes as small as 10.

The Long estimator should not be used unless the size of the confidence interval does

not matter. The empirical option in the MIXED procedure of SAS should only be
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used with homoscedastic data when a large sample size is available.

5.2 Example

Now that the properties of the estimators have been detailed, recall the ter-

atology example from the introduction. Mice pups were split into 4 treatments.

Treatment 1 includes 11 mice. This treatment is used in Table 1.1 to compare the

different estimators.

The first four estimators are the REML procedure under four different covari-

ance structures. Without knowing the actual underlying covariance structure, the

AIC is used to select the appropriate structure. In this example, the smallest AIC

occurs with an unstructured covariance structure. If the underlying covariance in this

example is truly unstructured, the REML procedure using this structure provides the

most accurate estimates of the standard errors that the REML procedure can provide.

Since the AIC chose the unstructured covariance structure, it is reasonable to

believe that there is heterogeneity within this data. The Standard Robust Estimator

is known to be downward biased. With only 11 mice pups in the sample, this estimator

is expected to produce standard errors smaller than they actually are. The same is

expected of the empirical option of the MIXED procedure in SAS. The Standard

Robust Estimator and the empirical option provide similar standard errors. The

Long estimator, as shown previously, reduces the downward bias of the Standard

Robust Estimator, but it also inflates the standard errors of the estimates when

heterogeneity and/or correlation is present within the data.

The question is how which of the known biases is more acceptable in the stan-

dard errors? This depends on the researcher. For this example, my recommendation

would be to use the Standard Robust Estimator or the empirical option, as they

provide similar results. These two robust estimators also provide results similar to

the AIC-chosen REML model. Each analysis is different and no estimator should
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be exclusively used to estimate standard errors. A proper examination of the data

should be performed in order to determine the best estimator to use.

5.3 Further Research

During the course of this project, many ideas were suggested by myself as well

as my committee. Only a few of these ideas were implemented, because the rest were

outside the scope of this project. These ideas are introduced here as possible further

research into the topic of robust estimators.

When a covariance structure was set up, only positive correlation was used.

Some estimators may react differently to negative correlation. It may be interesting

to study the estimators using both positive and negative levels of correlation.

This study used only a compound symmetric covariance matrix. These es-

timators may not be as consistent under a different covariance structure, such as

auto-regressive, unstructured, Toeplitz, or spatial power.

In this study, the REML procedure was modelled under the true covariance

structure. The true covariance structure is often unknown. One option is to use AIC

to choose a reasonable covariance structure for the data. The REML procedure may

not be as consistent under an AIC-chosen model. The AIC-chosen structure may

not be the true covariance structure. If this is the case, the REML procedure may

perform worse than the other estimators. The REML procedure could be modelled

under the true covariance structure for comparison. The Standard Robust Estimator

with a quantile adjustment is a viable option to compare to the AIC-chosen REML

model.

Also, a more elaborate Long-type standardization is of interest in order to

reduce the bias of the Standard Robust Estimator. A new standardization could yield

more consistent coverage rates. This investigation should include an comparison of

the length of the Long-type intervals to confidence intervals from more consistent
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robust estimators.

Each of these considerations has application throughout the field of statistics.

Like the teratogenic study with the mice, all estimators do not provide the same

standard errors. Discretion is needed when using any of the options that are available.
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1. TERATOGENIC STUDY CODE

options ls=80 formdlim="*";

PROC IMPORT OUT= WORK.all

DATAFILE=

"C:\Documents and Settings\Natalie\Desktop\mouse.xls"

DBMS=EXCEL2000 REPLACE;

SHEET="Sheet1";

GETNAMES=YES;

RUN;

data allm;

set all;

drop w4--afw;

wt=w4; logwt=log(wt); day=4; daysq=day**2; output;

wt=w8; logwt=log(wt); day=8; daysq=day**2; output;

wt=w12; logwt=log(wt);day=12; daysq=day**2; output;

wt=w16; logwt=log(wt);day=16; daysq=day**2; output;

wt=tbw; logwt=log(wt);day=18; daysq=day**2; output;

run;

symbol c=black i=join l=1 repeat=100;

proc gplot data=allm;

by t;

plot logwt*day=id;

run;
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proc mixed data=allm maxit=500;

where day lt 18;

class t id;

model logwt= t t*day t*daysq/noint solution;

random intercept day daysq / subject=id(t) type=un;

run;

proc mixed data=allm maxit=500;

where day lt 18;

class t id;

model logwt=t t*day t*daysq/noint solution;

repeated /subject=id(t) type=cs;

run;

proc mixed data=allm maxit=500;

where day lt 18;

class t id;

model logwt=t t*day t*daysq/noint solution;

repeated /subject=id(t) type=un;

run;

proc mixed data=allm maxit=500;

where day lt 18;

class t id;

model logwt=t t*day t*daysq/noint solution;

random id(t);

repeated /subject=id(t) type=sp(pow)(day);

run;

proc mixed data=allm maxit=500;
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where day lt 18;

class t id;

model logwt=t t*day t*daysq/noint solution;

repeated /subject=id(t) type=vc;

run;

proc mixed data=allm maxit=500 empirical;

where day lt 18;

class t id;

model logwt=t t*day t*daysq/noint solution;

repeated /subject=id(t) type=un;

run;

data allinc;

set allm;

where day lt 18;

run;

data allinc;

set allinc;

where t=1;

run;

proc iml;

use allinc;

read all var{logwt} into y;

read all var{t day daysq} into x;

ij = (j(4,1,1)||j(4,10,0))//(j(4,1,0)||j(4,1,1)||j(4,9,0))//

(j(4,2,0)||j(4,1,1)||j(4,8,0))//(j(4,3,0)||j(4,1,1)||

j(4,7,0))//(j(4,4,0)||j(4,1,1)||j(4,6,0))//(j(4,5,0)||
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j(4,1,1)||j(4,5,0))//(j(4,6,0)||j(4,1,1)||j(4,4,0))//

(j(4,7,0)||j(4,1,1)||j(4,3,0))//(j(4,8,0)||j(4,1,1)||

j(4,2,0))//(j(4,9,0)||j(4,1,1)||j(4,1,0))//(j(4,10,0)||

j(4,1,1));

beta_hat = (x‘*x)**-1*x‘*y;

y_hat = x*beta_hat;

e_hat=y-y_hat;

e_hat2=e_hat#ij;

d_hat_b = e_hat2*e_hat2‘;

hat = x*(x‘*x)**-1*x‘;

*Cov beta hat for robust estimator;

covb_hat = (x‘*x)**-1*x‘*d_hat_b*x*(x‘*x)**-1;

*Cov beta hat for robust estimator with long adjustment;

mhat=i(44)-hat;

mhat2=mhat*mhat‘;

long=d_hat_b/mhat2;

v3=diag(long);

covb_hat_l = (x‘*x)**-1*x‘*v3*x*(x‘*x)**-1;

*se for beta for robust estimator;

se_beta_hat = (vecdiag(covb_hat))##(1/2);

*se for beta for robust estimator with long adjustment;

se_beta_hat_l = (vecdiag(covb_hat_l))##(1/2);
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param = {"Intercept","Day","Daysq"};

print param beta_hat se_beta_hat se_beta_hat_l;

quit;
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2. TABLES OF COVERAGE RATES FOR THE INTERCEPT AND SLOPE

Table B.1: Coverage rates for the intercept

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

REML Homogeneous 0.0 3 95.29 94.97 95.08 95.17
4 94.88 95.10 94.89 95.11
5 95.32 94.97 95.08 94.97

0.6 3 95.37 95.13 95.19 95.29
4 94.83 95.17 95.02 95.10
5 94.84 94.99 95.13 94.80

0.9 3 94.64 94.65 95.26 95.43
4 93.98 95.00 94.78 95.13
5 94.45 94.83 95.11 94.87

Heterogeneous 0.1 3 95.27 94.98 95.23 95.37
4 94.60 94.97 95.10 95.28
5 94.05 94.90 95.12 94.92

0.6 3 96.06 95.43 95.46 95.34
4 95.33 95.21 95.23 95.08
5 94.61 94.91 95.22 95.26

0.9 3 95.86 95.55 95.54 95.56
4 94.57 94.96 95.08 94.99
5 93.32 94.59 95.16 95.33
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Table B.1: Coverage rates for the intercept (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Standard Homogeneous 0.0 3 84.72 90.17 93.42 94.47
Robust 4 84.37 90.14 93.10 94.24

5 84.38 90.74 93.55 94.26

0.6 3 84.83 89.94 93.58 94.61
4 84.30 90.42 93.08 94.20
5 84.66 90.87 93.73 94.30

0.9 3 84.69 90.19 93.58 94.57
4 84.26 90.15 93.14 94.33
5 84.52 90.81 93.62 94.24

Heterogeneous 0.1 3 83.98 90.16 93.32 94.09
4 84.06 90.32 93.36 94.32
5 84.19 90.97 93.14 94.15

0.6 3 84.03 90.04 93.83 94.20
4 83.96 90.46 93.43 94.41
5 84.35 90.57 93.07 94.16

0.9 3 84.35 89.89 93.77 94.49
4 83.98 90.33 93.54 94.18
5 84.93 90.44 93.48 94.15

Empirical Homogeneous 0.0 3 93.10 93.72 94.70 95.08
4 93.02 93.81 94.40 94.94
5 92.91 94.03 94.86 94.78

0.6 3 93.44 94.00 94.70 95.16
4 92.99 93.77 94.34 94.78
5 93.23 94.22 94.95 94.83

0.9 3 93.72 93.90 94.81 95.09
4 92.84 93.97 94.43 94.85
5 93.21 94.03 94.94 94.75
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Table B.1: Coverage rates for the intercept (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Empirical Heterogeneous 0.1 3 91.57 93.06 94.75 95.13
4 90.50 92.80 94.35 94.87
5 89.70 92.58 94.30 94.59

0.6 3 91.99 93.24 94.76 95.02
4 90.27 93.04 94.40 94.69
5 89.72 92.50 94.52 94.78

0.9 3 90.98 93.02 94.71 95.12
4 88.12 92.21 93.96 94.40
5 86.08 90.62 93.81 94.61

Long Homogeneous 0.0 3 91.37 93.06 94.47 94.94
Adjustment 4 91.83 93.74 94.23 94.77

5 93.04 93.81 94.69 94.84

0.6 3 94.84 96.66 98.04 98.25
4 92.50 95.29 96.32 96.83
5 91.51 93.61 95.10 95.14

0.9 3 95.67 97.98 99.12 99.30
4 92.06 95.82 97.11 97.71
5 88.86 92.89 95.00 95.26

Heterogeneous 0.1 3 93.98 95.08 95.93 95.88
4 94.25 95.32 95.68 96.12
5 95.21 95.60 95.67 95.65

0.6 3 98.38 99.18 99.57 99.64
4 98.22 99.08 99.40 99.59
5 98.18 98.89 99.43 99.36

0.9 3 99.77 99.97 100.00 100.00
4 99.58 99.89 99.99 100.00
5 99.12 99.83 99.99 99.98
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Table B.1: Coverage rates for the intercept (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Long Quantile Homogeneous 0.0 3 96.69 97.93 98.73 98.88
Adjustment 4 97.20 98.26 98.80 98.97

5 97.48 98.18 98.80 98.87

0.6 3 98.23 99.22 99.65 99.77
4 97.49 98.69 99.36 99.56
5 96.67 97.91 98.92 99.10

0.9 3 98.45 99.61 99.92 99.98
4 96.60 98.73 99.51 99.67
5 94.98 97.55 98.87 99.08

Heterogeneous 0.1 3 98.30 98.82 99.32 99.29
4 98.74 99.10 99.16 99.30
5 98.95 99.07 99.34 99.19

0.6 3 99.64 99.88 100.00 99.98
4 99.70 99.87 100.00 100.00
5 99.64 99.87 99.94 99.94

0.9 3 99.95 100.00 100.00 100.00
4 99.87 99.98 100.00 100.00
5 99.83 100.00 100.00 100.00
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Table B.2: Coverage rates for the slope

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

REML Homogeneous 0.0 3 94.80 94.71 95.33 95.23
4 94.83 94.95 95.01 95.41
5 95.07 95.12 95.19 94.82

0.6 3 94.97 94.73 95.53 95.38
4 94.89 95.20 95.11 95.21
5 94.96 95.25 94.83 95.02

0.9 3 94.95 94.89 95.42 95.30
4 94.82 95.26 95.52 95.28
5 94.98 95.16 95.03 95.21

Heterogeneous 0.1 3 94.76 94.64 95.37 95.37
4 93.38 94.61 95.21 95.34
5 92.62 94.59 94.85 95.03

0.6 3 94.47 94.90 95.39 95.13
4 92.33 94.25 95.37 95.41
5 90.40 93.92 94.97 95.26

0.9 3 93.73 94.47 95.32 95.18
4 91.05 93.91 95.04 95.33
5 89.36 93.50 94.96 95.27
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Table B.2: Coverage rates for the slope (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Standard Homogeneous 0.0 3 84.56 89.92 93.65 94.44
Robust 4 83.93 90.38 93.57 94.36

5 84.40 90.40 93.30 94.09

0.6 3 84.32 90.37 93.87 94.47
4 84.21 90.47 93.36 94.45
5 84.34 90.44 93.49 94.15

0.9 3 84.70 90.37 93.89 94.36
4 84.35 90.51 93.62 94.25
5 84.56 90.49 93.55 94.23

Heterogeneous 0.1 3 84.29 90.05 94.01 94.03
4 84.31 90.50 93.38 94.35
5 84.51 90.48 92.97 93.98

0.6 3 85.18 90.51 93.64 94.43
4 84.47 90.63 93.87 94.42
5 84.57 91.02 93.53 94.30

0.9 3 85.37 90.62 93.77 94.30
4 84.58 90.75 93.70 94.54
5 85.03 90.63 93.65 94.43

Empirical Homogeneous 0.0 3 88.61 91.79 94.30 94.79
4 86.61 91.46 93.88 94.53
5 86.54 91.26 93.65 94.31

0.6 3 88.84 92.10 94.44 94.79
4 86.99 91.52 93.66 94.63
5 86.45 91.31 93.72 94.29

0.9 3 88.64 91.99 94.43 94.63
4 86.96 91.56 94.11 94.44
5 86.61 91.25 93.81 94.34
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Table B.2: Coverage rates for the slope (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Empirical Heterogeneous 0.1 3 84.61 90.15 93.86 94.51
4 79.82 88.67 93.09 94.24
5 77.94 87.98 92.39 93.94

0.6 3 83.83 90.11 93.60 94.19
4 77.15 87.55 93.18 94.48
5 72.10 86.15 92.14 93.78

0.9 3 81.62 89.75 93.40 94.29
4 73.71 85.96 92.19 94.04
5 68.22 83.92 91.51 93.64

Long Homogeneous 0.0 3 91.53 93.38 94.80 94.87
Adjustment 4 92.15 93.86 94.53 95.17

5 92.92 93.97 94.75 94.60

0.6 3 98.27 99.29 99.63 99.77
4 98.15 99.23 99.69 99.73
5 98.64 99.27 99.65 99.72

0.9 3 99.85 100.00 100.00 100.00
4 99.82 99.98 100.00 100.00
5 99.88 100.00 100.00 100.00

Heterogeneous 0.1 3 91.48 93.61 95.54 95.34
4 91.93 94.08 95.15 95.63
5 92.77 94.46 94.99 95.27

0.6 3 95.96 97.71 98.75 98.98
4 94.76 97.27 98.15 98.54
5 94.44 96.68 97.73 97.91

0.9 3 97.88 99.28 99.78 99.86
4 96.11 98.57 99.38 99.54
5 94.61 97.58 98.80 98.93
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Table B.2: Coverage rates for the slope (ctnd.)

Covariance Structure Repeated Sample Size
Method Type Correlation Measure 5 10 25 50

Long Quantile Homogeneous 0.0 3 97.13 98.11 98.78 98.80
Adjustment 4 97.23 98.36 98.71 98.88

5 97.83 98.52 98.91 98.92

0.6 3 99.57 99.89 100.00 99.98
4 99.54 99.91 99.99 99.99
5 99.66 99.90 99.97 99.98

0.9 3 99.97 100.00 100.00 100.00
4 99.96 100.00 100.00 100.00
5 99.99 100.00 100.00 100.00

Heterogeneous 0.1 3 96.89 98.07 98.90 99.16
4 97.19 98.33 98.93 99.09
5 97.55 98.43 98.79 99.00

0.6 3 98.69 99.61 99.82 99.92
4 98.32 99.39 99.80 99.86
5 98.25 99.39 99.59 99.80

0.9 3 99.27 99.85 99.98 99.99
4 98.50 99.74 99.93 99.97
5 97.78 99.54 99.85 99.89
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3. SAMPLE SIMULATION CODE

options formdlim="*";

\%let beta0=1;

\%let beta1=1;

\%macro simulated3a(nsub, nit, nmeas);

proc iml;

nsub=&nsub;

nit=&nit;

nmeas=&nmeas;

np1 = nit*nsub*nmeas+1;

*d2a = {1 0, 0 1};

d = {1 0 0, 0 1 0, 0 0 1};

*d4a = {1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1};

*d5a = {1 0 0 0 0, 0 1 0 0 0, 0 0 1 0 0, 0 0 0 1 0, 0 0 0 0 1};

*d2b = {1 0.6, 0.6 1};

*d3b = {1 0.6 0.6, 0.6 1 0.6, 0.6 0.6 1};

*d4b = {1 0.6 0.6 0.6, 0.6 1 0.6 0.6, 0.6 0.6 1 0.6,

0.6 0.6 0.6 1};

*d5b = {1 0.6 0.6 0.6 0.6, 0.6 1 0.6 0.6 0.6,

0.6 0.6 1 0.6 0.6, 0.6 0.6 0.6 1 0.6,

0.6 0.6 0.6 0.6 1};

*d2c = {1 0.9, 0.9 1};

*d3c = {1 0.9 0.9, 0.9 1 0.9, 0.9 0.9 1};
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*d4c = {1 0.9 0.9 0.9, 0.9 1 0.9 0.9, 0.9 0.9 1 0.9,

0.9 0.9 0.9 1};

*d5c = {1 0.9 0.9 0.9 0.9, 0.9 1 0.9 0.9 0.9,

0.9 0.9 1 0.9 0.9, 0.9 0.9 0.9 1 0.9,

0.9 0.9 0.9 0.9 1};

*d2d = {1 sqrt(3), sqrt(3) 1};

*d3d = {1 sqrt(3) sqrt(5), sqrt(3) 3 sqrt(3*5),

sqrt(5) sqrt(3*5) 5};

*d4d = {1 sqrt(3) sqrt(5) sqrt(7),

sqrt(3) 3 sqrt(3*5) sqrt(3*7),

sqrt(5) sqrt(3*5) 5 sqrt(5*7),

sqrt(7) sqrt(3*7) sqrt(5*7) 7};

*d5d = {1 sqrt(3) sqrt(5) sqrt(7) sqrt(9),

sqrt(3) 3 sqrt(3*5) sqrt(3*7) sqrt(3*9),

sqrt(5) sqrt(3*5) 5 sqrt(5*7) sqrt(5*9),

sqrt(7) sqrt(3*7) sqrt(5*7) 7 sqrt(7*9),

sqrt(9) sqrt(3*9) sqrt(5*9) sqrt(7*9) 9};

*d2e = {1 0.6*sqrt(3), 0.6*sqrt(3) 1};

*d3e = {1 0.6*sqrt(3) 0.6*sqrt(5), 0.6*sqrt(3) 3 0.6*sqrt(3*5),

0.6*sqrt(5) 0.6*sqrt(3*5) 5};

*d4e = {1 0.6*sqrt(3) 0.6*sqrt(5) 0.6*sqrt(7),

0.6*sqrt(3) 3 0.6*sqrt(3*5) 0.6*sqrt(3*7),

0.6*sqrt(5) 0.6*sqrt(3*5) 5 0.6*sqrt(5*7),

0.6*sqrt(7) 0.6*sqrt(3*7) 0.6*sqrt(5*7) 7};

*d5e = {1 0.6*sqrt(3) 0.6*sqrt(5) 0.6*sqrt(7) 0.6*sqrt(9),
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0.6*sqrt(3) 3 0.6*sqrt(3*5) 0.6*sqrt(3*7) 0.6*sqrt(3*9),

0.6*sqrt(5) 0.6*sqrt(3*5) 5 0.6*sqrt(5*7) 0.6*sqrt(5*9),

0.6*sqrt(7) 0.6*sqrt(3*7) 0.6*sqrt(5*7) 7 0.6*sqrt(7*9),

0.6*sqrt(9) 0.6*sqrt(3*9) 0.6*sqrt(5*9) 0.6*sqrt(7*9) 9};

*d2f = {1 0.9*sqrt(3), 0.9*sqrt(3) 1};

*d3f = {1 0.9*sqrt(3) 0.9*sqrt(5),

0.9*sqrt(3) 3 0.9*sqrt(3*5),

0.9*sqrt(5) 0.9*sqrt(3*5) 5};

*d4f = {1 0.9*sqrt(3) 0.9*sqrt(5) 0.9*sqrt(7),

0.9*sqrt(3) 3 0.9*sqrt(3*5) 0.9*sqrt(3*7),

0.9*sqrt(5) 0.9*sqrt(3*5) 5 0.9*sqrt(5*7),

0.9*sqrt(7) 0.9*sqrt(3*7) 0.9*sqrt(5*7) 7};

*d5f = {1 0.9*sqrt(3) 0.9*sqrt(5) 0.9*sqrt(7) 0.9*sqrt(9),

0.9*sqrt(3) 3 0.9*sqrt(3*5) 0.9*sqrt(3*7) 0.9*sqrt(3*9),

0.9*sqrt(5) 0.9*sqrt(3*5) 5 0.9*sqrt(5*7) 0.9*sqrt(5*9),

0.9*sqrt(7) 0.9*sqrt(3*7) 0.9*sqrt(5*7) 7 0.9*sqrt(7*9),

0.9*sqrt(9) 0.9*sqrt(3*9) 0.9*sqrt(5*9) 0.9*sqrt(7*9) 9};

*x2i = {1 1, 1 2};

xi = {1 1, 1 2, 1 3};

*x4i = {1 1, 1 2, 1 3, 1 4};

*x5i = {1 1, 1 2, 1 3, 1 4, 1 5};

beta={&beta0, &beta1};

beta_hatm={.,.};
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ll_m={.,.};

ul_m={.,.};

cover={.,.};

coverm={.,.};

ll_m_l={.,.};

ul_m_l={.,.};

cover_l={.,.};

coverm_l={.,.};

ll_m_lq={.,.};

ul_m_lq={.,.};

cover_lq={.,.};

coverm_lq={.,.};

ll_m_k={.,.};

ul_m_k={.,.};

cover_k={.,.};

coverm_k={.,.};

nn=nsub*nmeas;

rootcovd = (root(d))‘; *rootcovd=1;

seed=1;

y=.;

x={. .};

w=.;

item = {1,2};

itm = item;

do it=1 to nit;

do sub=1 to nsub;
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z=normal(repeat(seed,nmeas,1));

yi=rootcovd*z;

yi=xi*beta+yi;

wi=(sub@j(nmeas,1,1));

w=w//wi;

y=y//yi;

x=x//xi;

end;

its=it@j(nn,1,1);

iter=iter//its;

ycurr=y[nn*(it-1)+2:nn*it+1,1];

xcurr=x[nn*(it-1)+2:nn*it+1,];

xpxi = (xcurr‘*xcurr)**-1;

beta_hat=xpxi*xcurr‘*ycurr;

y_hat = xcurr*beta_hat;

itm = itm//item;

e_hat=ycurr-y_hat;

e_hat2= e_hat#(i(nsub)@j(nmeas,1,1));

d_hat_b = e_hat2*e_hat2‘;

hat = xcurr*xpxi*xcurr‘;
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*Cov beta hat for robust estimator;

covb_hat = xpxi*xcurr‘*d_hat_b*xcurr*xpxi;

*Cov beta hat for robust estimator with long adjustment;

mhat=i(nn)-hat;

mhat2=mhat*mhat‘;

long=d_hat_b/mhat2;

v3=diag(long);

covb_hat_l = xpxi*xcurr‘*v3*xcurr*xpxi;

*Cov beta hat for robust estimator with Kauermann adjustment;

kau=d_hat_b/mhat;

v2=diag(kau);

covb_hat_k = xpxi*xcurr‘*v2*xcurr*xpxi;

*95\% CI for beta for robust estimator;

ll_beta_hat = beta_hat-1.96*(vecdiag(covb_hat))##(1/2);

ul_beta_hat = beta_hat+1.96*(vecdiag(covb_hat))##(1/2);

*CI contain beta for robust estimator;

if ll_beta_hat[1]<beta[1] & ul_beta_hat[1]>beta[1]

then cover[1]=1;

else cover[1]=0;

if ll_beta_hat[2]<beta[2] & ul_beta_hat[2]>beta[2]

then cover[2]=1;
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else cover[2]=0;

*95\% CI for beta for robust estimator with long adjustment;

ll_beta_hat_l = beta_hat-1.96*(vecdiag(covb_hat_l))##(1/2);

ul_beta_hat_l = beta_hat+1.96*(vecdiag(covb_hat_l))##(1/2);

*CI contain beta for robust estimator with long adjustment;

if ll_beta_hat_l[1]<beta[1] & ul_beta_hat_l[1]>beta[1]

then cover_l[1]=1;

else cover_l[1]=0;

if ll_beta_hat_l[2]<beta[2] & ul_beta_hat_l[2]>beta[2]

then cover_l[2]=1;

else cover_l[2]=0;

*95\% CI for beta for robust estimator with kauermann

adjustment;

ll_beta_hat_k = beta_hat-1.96*(vecdiag(covb_hat_k))##(1/2);

ul_beta_hat_k = beta_hat+1.96*(vecdiag(covb_hat_k))##(1/2);

*CI contain beta for robust estimator with kauermann

adjustment;

if ll_beta_hat_k[1]<beta[1] & ul_beta_hat_k[1]>beta[1]

then cover_k[1]=1;

else cover_k[1]=0;

if ll_beta_hat_k[2]<beta[2] & ul_beta_hat_k[2]>beta[2]
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then cover_k[2]=1;

else cover_k[2]=0;

*95\% CI for beta for robust estimator with long adjustment

*with corrected quantiles (99\%);

ll_beta_hat_lq = beta_hat-2.576*(vecdiag(covb_hat_l))##(1/2);

ul_beta_hat_lq = beta_hat+2.576*(vecdiag(covb_hat_l))##(1/2);

*CI contain beta for robust estimator with long adjustment;

if ll_beta_hat_lq[1]<beta[1] & ul_beta_hat_lq[1]>beta[1]

then cover_lq[1]=1;

else cover_lq[1]=0;

if ll_beta_hat_lq[2]<beta[2] & ul_beta_hat_lq[2]>beta[2]

then cover_lq[2]=1;

else cover_lq[2]=0;

beta_hatm=beta_hatm//beta_hat;

ll_m=ll_m//ll_beta_hat;

ul_m=ul_m//ul_beta_hat;

coverm=coverm//cover;

ll_m_l=ll_m_l//ll_beta_hat_l;

ul_m_l=ul_m_l//ul_beta_hat_l;

coverm_l=coverm_l//cover_l;

ll_m_lq=ll_m_lq//ll_beta_hat_lq;

ul_m_lq=ul_m_lq//ul_beta_hat_lq;
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coverm_lq=coverm_lq//cover_lq;

ll_m_k=ll_m_k//ll_beta_hat_k;

ul_m_k=ul_m_k//ul_beta_hat_k;

coverm_k=coverm_k//cover_k;

end;

*w is subject;

w=w[2:np1,1];

y=y[2:np1,1];

x=x[2:np1,1:2];

beta_hatm=beta_hatm[3:nit*2+2,1];

ll_m=ll_m[3:nit*2+2,1];

ul_m=ul_m[3:nit*2+2,1];

coverm=coverm[3:nit*2+2,1];

ll_m_l=ll_m_l[3:nit*2+2,1];

ul_m_l=ul_m_l[3:nit*2+2,1];

coverm_l=coverm_l[3:nit*2+2,1];

ll_m_lq=ll_m_lq[3:nit*2+2,1];

ul_m_lq=ul_m_lq[3:nit*2+2,1];

coverm_lq=coverm_lq[3:nit*2+2,1];

ll_m_k=ll_m_k[3:nit*2+2,1];

ul_m_k=ul_m_k[3:nit*2+2,1];

coverm_k=coverm_k[3:nit*2+2,1];

itm=itm[3:nit*2+2,1];

x1 = x[,1];

x2 = x[,2];
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create data1 var { y x1 x2 w iter };

append;

create mysim var {beta_hatm ll_m ul_m coverm ll_m_l ul_m_l

coverm_l ll_m_lq ul_m_lq coverm_lq ll_m_k ul_m_k coverm_k itm};

append; quit;

*REML;

ods listing close;

proc mixed data=data1;

class w;

by iter;

model y = x2 / solution cl ddfm=kenwardroger;

repeated / subject=w type=cs;

ods output SolutionF=beta_reml;

run;

*Whites estimator;

proc mixed data=data1 empirical;

class w;

by iter;

model y = x2 / solution cl ddfm=kenwardroger;

repeated /subject=w type=cs;

ods output SolutionF=beta_white;

run;

ods listing;
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*REML;

data beta_reml;

set beta_reml;

if lower<&beta0 and upper>&beta0 and effect="Intercept"

then cover=1;

else if lower<&beta1 and upper>&beta1 and effect="X2"

then cover=1;

else cover=0;

run;

proc sort data=beta_reml;

by effect;

run;

proc freq data=beta_reml;

by effect;

table cover;

run;

proc capability data=beta_reml noprint;

var estimate;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by effect;

run;

*White;

data beta_white;

set beta_white;
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if lower<&beta0 and upper>&beta0 then cover=1;

else if lower<&beta1 and upper>&beta1 and effect="X2"

then cover=1;

else cover=0;

run;

proc sort data=beta_white;

by effect;

run;

proc freq data=beta_white;

by effect;

table cover;

run;

proc capability data=beta_white noprint;

var estimate;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by effect;

run;

*Values from IML computations;

proc sort data=mysim;

by itm;

run;

proc freq data=mysim;

by itm;

table coverm;

run;
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proc freq data=mysim;

by itm;

table coverm_l;

run;

proc freq data=mysim;

by itm;

table coverm_lq;

run;

proc freq data=mysim;

by itm;

table coverm_k;

run;

proc capability data=mysim noprint;

var beta_hatm;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by itm;

run;

\%mend;

\%macro simulated3f(nsub, nit, nmeas);

proc iml;

nsub=&nsub;

nit=&nit;

nmeas=&nmeas;

np1 = nit*nsub*nmeas+1;

*d2a = {1 0, 0 1};
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*d3a = {1 0 0, 0 1 0, 0 0 1};

*d4a = {1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1};

*d5a = {1 0 0 0 0, 0 1 0 0 0, 0 0 1 0 0, 0 0 0 1 0, 0 0 0 0 1};

*d2b = {1 0.6, 0.6 1};

*d3b = {1 0.6 0.6, 0.6 1 0.6, 0.6 0.6 1};

*d4b = {1 0.6 0.6 0.6, 0.6 1 0.6 0.6, 0.6 0.6 1 0.6,

0.6 0.6 0.6 1};

*d5b = {1 0.6 0.6 0.6 0.6, 0.6 1 0.6 0.6 0.6,

0.6 0.6 1 0.6 0.6, 0.6 0.6 0.6 1 0.6,

0.6 0.6 0.6 0.6 1};

*d2c = {1 0.9, 0.9 1};

*d3c = {1 0.9 0.9, 0.9 1 0.9, 0.9 0.9 1};

*d4c = {1 0.9 0.9 0.9, 0.9 1 0.9 0.9, 0.9 0.9 1 0.9,

0.9 0.9 0.9 1};

*d5c = {1 0.9 0.9 0.9 0.9, 0.9 1 0.9 0.9 0.9,

0.9 0.9 1 0.9 0.9, 0.9 0.9 0.9 1 0.9,

0.9 0.9 0.9 0.9 1};

*d2d = {1 sqrt(3), sqrt(3) 1};

*d3d = {1 sqrt(3) sqrt(5), sqrt(3) 3 sqrt(3*5),

sqrt(5) sqrt(3*5) 5};

*d4d = {1 sqrt(3) sqrt(5) sqrt(7),

sqrt(3) 3 sqrt(3*5) sqrt(3*7),

sqrt(5) sqrt(3*5) 5 sqrt(5*7),

sqrt(7) sqrt(3*7) sqrt(5*7) 7};
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*d5d = {1 sqrt(3) sqrt(5) sqrt(7) sqrt(9),

sqrt(3) 3 sqrt(3*5) sqrt(3*7) sqrt(3*9),

sqrt(5) sqrt(3*5) 5 sqrt(5*7) sqrt(5*9),

sqrt(7) sqrt(3*7) sqrt(5*7) 7 sqrt(7*9),

sqrt(9) sqrt(3*9) sqrt(5*9) sqrt(7*9) 9};

*d2e = {1 0.6*sqrt(3), 0.6*sqrt(3) 1};

*d3e = {1 0.6*sqrt(3) 0.6*sqrt(5), 0.6*sqrt(3) 3 0.6*sqrt(3*5),

0.6*sqrt(5) 0.6*sqrt(3*5) 5};

*d4e = {1 0.6*sqrt(3) 0.6*sqrt(5) 0.6*sqrt(7),

0.6*sqrt(3) 3 0.6*sqrt(3*5) 0.6*sqrt(3*7),

0.6*sqrt(5) 0.6*sqrt(3*5) 5 0.6*sqrt(5*7),

0.6*sqrt(7) 0.6*sqrt(3*7) 0.6*sqrt(5*7) 7};

*d5e = {1 0.6*sqrt(3) 0.6*sqrt(5) 0.6*sqrt(7) 0.6*sqrt(9),

0.6*sqrt(3) 3 0.6*sqrt(3*5) 0.6*sqrt(3*7) 0.6*sqrt(3*9),

0.6*sqrt(5) 0.6*sqrt(3*5) 5 0.6*sqrt(5*7) 0.6*sqrt(5*9),

0.6*sqrt(7) 0.6*sqrt(3*7) 0.6*sqrt(5*7) 7 0.6*sqrt(7*9),

0.6*sqrt(9) 0.6*sqrt(3*9) 0.6*sqrt(5*9) 0.6*sqrt(7*9) 9};

*d2f = {1 0.9*sqrt(3), 0.9*sqrt(3) 1};

d = {1 1.558845727 2.01246118, 1.558845727 3 3.485685012,

2.01246118 3.485685012 5};

*d4f = {1 0.9*sqrt(3) 0.9*sqrt(5) 0.9*sqrt(7),

0.9*sqrt(3) 3 0.9*sqrt(3*5) 0.9*sqrt(3*7),

0.9*sqrt(5) 0.9*sqrt(3*5) 5 0.9*sqrt(5*7),

0.9*sqrt(7) 0.9*sqrt(3*7) 0.9*sqrt(5*7) 7};

*d5f = {1 0.9*sqrt(3) 0.9*sqrt(5) 0.9*sqrt(7) 0.9*sqrt(9),
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0.9*sqrt(3) 3 0.9*sqrt(3*5) 0.9*sqrt(3*7) 0.9*sqrt(3*9),

0.9*sqrt(5) 0.9*sqrt(3*5) 5 0.9*sqrt(5*7) 0.9*sqrt(5*9),

0.9*sqrt(7) 0.9*sqrt(3*7) 0.9*sqrt(5*7) 7 0.9*sqrt(7*9),

0.9*sqrt(9) 0.9*sqrt(3*9) 0.9*sqrt(5*9) 0.9*sqrt(7*9) 9};

*x2i = {1 1, 1 2};

xi = {1 1, 1 2, 1 3};

*x4i = {1 1, 1 2, 1 3, 1 4};

*x5i = {1 1, 1 2, 1 3, 1 4, 1 5};

beta={&beta0, &beta1};

beta_hatm={.,.};

ll_m={.,.};

ul_m={.,.};

cover={.,.};

coverm={.,.};

ll_m_l={.,.};

ul_m_l={.,.};

cover_l={.,.};

coverm_l={.,.};

ll_m_lq={.,.};

ul_m_lq={.,.};

cover_lq={.,.};

coverm_lq={.,.};

ll_m_k={.,.};

ul_m_k={.,.};
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cover_k={.,.};

coverm_k={.,.};

nn=nsub*nmeas;

rootcovd = (root(d))‘; *rootcovd=1;

seed=1;

y=.;

x={. .};

w=.;

item = {1,2};

itm = item;

do it=1 to nit;

do sub=1 to nsub;

z=normal(repeat(seed,nmeas,1));

yi=rootcovd*z;

yi=xi*beta+yi;

wi=(sub@j(nmeas,1,1));

w=w//wi;

y=y//yi;

x=x//xi;

end;

its=it@j(nn,1,1);

iter=iter//its;

ycurr=y[nn*(it-1)+2:nn*it+1,1];

xcurr=x[nn*(it-1)+2:nn*it+1,];

xpxi = (xcurr‘*xcurr)**-1;

89



beta_hat=xpxi*xcurr‘*ycurr;

y_hat = xcurr*beta_hat;

itm = itm//item;

e_hat=ycurr-y_hat;

e_hat2= e_hat#(i(nsub)@j(nmeas,1,1));

d_hat_b = e_hat2*e_hat2‘;

hat = xcurr*xpxi*xcurr‘;

*Cov beta hat for robust estimator;

covb_hat = xpxi*xcurr‘*d_hat_b*xcurr*xpxi;

*Cov beta hat for robust estimator with long adjustment;

mhat=i(nn)-hat;

mhat2=mhat*mhat‘;

long=d_hat_b/mhat2;

v3=diag(long);

covb_hat_l = xpxi*xcurr‘*v3*xcurr*xpxi;

*Cov beta hat for robust estimator with Kauermann adjustment;

kau=d_hat_b/mhat;

v2=diag(kau);

covb_hat_k = xpxi*xcurr‘*v2*xcurr*xpxi;
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*95\% CI for beta for robust estimator;

ll_beta_hat = beta_hat-1.96*(vecdiag(covb_hat))##(1/2);

ul_beta_hat = beta_hat+1.96*(vecdiag(covb_hat))##(1/2);

*CI contain beta for robust estimator;

if ll_beta_hat[1]<beta[1] & ul_beta_hat[1]>beta[1]

then cover[1]=1;

else cover[1]=0;

if ll_beta_hat[2]<beta[2] & ul_beta_hat[2]>beta[2]

then cover[2]=1;

else cover[2]=0;

*95\% CI for beta for robust estimator with long adjustment;

ll_beta_hat_l = beta_hat-1.96*(vecdiag(covb_hat_l))##(1/2);

ul_beta_hat_l = beta_hat+1.96*(vecdiag(covb_hat_l))##(1/2);

*CI contain beta for robust estimator with long adjustment;

if ll_beta_hat_l[1]<beta[1] & ul_beta_hat_l[1]>beta[1]

then cover_l[1]=1;

else cover_l[1]=0;

if ll_beta_hat_l[2]<beta[2] & ul_beta_hat_l[2]>beta[2]

then cover_l[2]=1;
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else cover_l[2]=0;

*95\% CI for beta for robust estimator with long adjustment

*with corrected quantiles (99\%);

ll_beta_hat_lq = beta_hat-2.576*(vecdiag(covb_hat_l))##(1/2);

ul_beta_hat_lq = beta_hat+2.576*(vecdiag(covb_hat_l))##(1/2);

*95\% CI for beta for robust estimator with kauermann

adjustment;

ll_beta_hat_k = beta_hat-1.96*(vecdiag(covb_hat_k))##(1/2);

ul_beta_hat_k = beta_hat+1.96*(vecdiag(covb_hat_k))##(1/2);

*CI contain beta for robust estimator with kauermann

adjustment;

if ll_beta_hat_k[1]<beta[1] & ul_beta_hat_k[1]>beta[1]

then cover_k[1]=1;

else cover_k[1]=0;

if ll_beta_hat_k[2]<beta[2] & ul_beta_hat_k[2]>beta[2]

then cover_k[2]=1;

else cover_k[2]=0;

*CI contain beta for robust estimator with long adjustment;

if ll_beta_hat_lq[1]<beta[1] & ul_beta_hat_lq[1]>beta[1]

then cover_lq[1]=1;

else cover_lq[1]=0;
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if ll_beta_hat_lq[2]<beta[2] & ul_beta_hat_lq[2]>beta[2]

then cover_lq[2]=1;

else cover_lq[2]=0;

beta_hatm=beta_hatm//beta_hat;

ll_m=ll_m//ll_beta_hat;

ul_m=ul_m//ul_beta_hat;

coverm=coverm//cover;

ll_m_l=ll_m_l//ll_beta_hat_l;

ul_m_l=ul_m_l//ul_beta_hat_l;

coverm_l=coverm_l//cover_l;

ll_m_lq=ll_m_lq//ll_beta_hat_lq;

ul_m_lq=ul_m_lq//ul_beta_hat_lq;

coverm_lq=coverm_lq//cover_lq;

ll_m_k=ll_m_k//ll_beta_hat_k;

ul_m_k=ul_m_k//ul_beta_hat_k;

coverm_k=coverm_k//cover_k;

end;

*w is subject;

w=w[2:np1,1];

y=y[2:np1,1];

x=x[2:np1,1:2];

beta_hatm=beta_hatm[3:nit*2+2,1];

ll_m=ll_m[3:nit*2+2,1];

ul_m=ul_m[3:nit*2+2,1];
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coverm=coverm[3:nit*2+2,1];

ll_m_l=ll_m_l[3:nit*2+2,1];

ul_m_l=ul_m_l[3:nit*2+2,1];

coverm_l=coverm_l[3:nit*2+2,1];

ll_m_lq=ll_m_lq[3:nit*2+2,1];

ul_m_lq=ul_m_lq[3:nit*2+2,1];

coverm_lq=coverm_lq[3:nit*2+2,1];

ll_m_k=ll_m_k[3:nit*2+2,1];

ul_m_k=ul_m_k[3:nit*2+2,1];

coverm_k=coverm_k[3:nit*2+2,1];

itm=itm[3:nit*2+2,1];

x1 = x[,1];

x2 = x[,2];

create data1 var { y x1 x2 w iter };

append;

create mysim var {beta_hatm ll_m ul_m coverm ll_m_l ul_m_l

coverm_l ll_m_lq ul_m_lq coverm_lq ll_m_k ul_m_k coverm_k itm};

append;

quit;

*REML;

ods listing close;

proc mixed data=data1;

class w;
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by iter;

model y = x2 / solution cl ddfm=kenwardroger;

repeated / subject=w type=csh;

ods output SolutionF=beta_reml;

run;

*Whites estimator;

proc mixed data=data1 empirical;

class w;

by iter;

model y = x2 / solution cl ddfm=kenwardroger;

repeated /subject=w type=csh;

ods output SolutionF=beta_white;

run;

ods listing;

*REML; data beta_reml;

set beta_reml;

if lower<&beta0 and upper>&beta0 and effect="Intercept"

then cover=1;

else if lower<&beta1 and upper>&beta1 and effect="X2"

then cover=1;

else cover=0;

run;

proc sort data=beta_reml;

by effect;

95



run;

proc freq data=beta_reml;

by effect;

table cover;

run;

proc capability data=beta_reml noprint;

var estimate;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by effect;

run;

*White;

data beta_white;

set beta_white;

if lower<&beta0 and upper>&beta0 then cover=1;

else if lower<&beta1 and upper>&beta1 and effect="X2"

then cover=1;

else cover=0;

run;

proc sort data=beta_white;

by effect;

run;

proc freq data=beta_white;

by effect;

table cover;

run;
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proc capability data=beta_white noprint;

var estimate;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by effect;

run;

*Values from IML computations;

proc sort data=mysim;

by itm;

run;

proc freq data=mysim;

by itm;

table coverm;

run;

proc freq data=mysim;

by itm;

table coverm_l;

run;

proc freq data=mysim;

by itm;

table coverm_lq;

run;

proc freq data=mysim;

by itm;

table coverm_k;

run;
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proc capability data=mysim noprint;

var beta_hatm;

histogram / kernel (k=Normal c=MISE color=RED l=1 w=3)

cfill=BLUE;

by itm;

run;

\%mend;

*\%simulatedNL(nsub, nit, nmeas);

*Runs 1-4: da matrix, nmeas=3, nsub={5, 10, 25, 50};

title ’Run 1: Identity r=0 m=3 n=5’;

\%simulated3a(5, 1000, 3);

title ’Run 2: Identity r=0 m=3 n=10’;

\%simulated3a(10, 1000, 3);

title ’Run 3: Identity r=0 m=3 n=25’;

\%simulated3a(25, 1000, 3);

title ’Run 4: Identity r=0 m=3 n=50’;

\%simulated3a(50, 1000, 3);

*Runs 21-24: df matrix, nmeas=3, nsub={5, 10, 25, 50};

title ’Run 21: Hetero r=0.9 m=3 n=5’;

\%simulated3f(5, 10000, 3);

title ’Run 22: Hetero r=0.9 m=3 n=10’;

\%simulated3f(10, 10000, 3);

title ’Run 23: Hetero r=0.9 m=3 n=25’;

\%simulated3f(25, 10000, 3);
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title ’Run 24: Hetero r=0.9 m=3 n=50’;

\%simulated3f(50, 10000, 3);
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