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ABSTRACT

OPTIMAL INTEREST RATE FOR A BORROWER WITH ESTIMATED

DEFAULT AND PREPAYMENT RISK

Scott T. Howard

Department of Statistics

Master of Science

Today’s mortgage industry is constantly changing, with adjustable rate mort-

gages (ARM), loans originated to the so-called “subprime” market, and volatile in-

terest rates. Amid the changes and controversy, lenders continue to originate loans

because the interest paid over the loan lifetime is profitable.

Measuring the profitability of those loans, along with return on investment to

the lender is assessed using Actuarial Present Value (APV), which incorporates the

uncertainty that exists in the mortgage industry today, with many loans defaulting

and prepaying. The hazard function, or instantaneous failure rate, is used as a mea-

sure of probability of failure to make a payment. Using a logit model, the default and

prepayment risks are estimated as a function of interest rate. The “optimal” interest

rate can be found where the profitability is maximized to the lender.
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1. INTRODUCTION

The mortgage industry in today’s society is constantly changing, with ad-

justable rate mortgages (ARM) providing creative borrower opportunities and lenders

originating loans to subprime borrowers with credit history problems and volatile

interest rates. Amid changes and controversy, lenders continue to originate loans

because the interest paid over the lifetime of the loan is profitable. Measuring the

profitability of mortgage loans will be discussed in detail in the sections that follow.

1.1 Return on Capital

One measure of profitability is return on capital (ROC). In a general sense,

ROC can be defined as the ratio of Net Income to Capital. As applied to a mortgage,

the capital is the loan amount and the net income is the interest paid. That is,

ROC =

∑
(PV (Interest Payments))

Capital
=

∑
PV (Payments)− Capital

Capital
,

where PV denotes the present value, which adjusts for the time value of money,

formally defined below.

Difficulty arises when measuring the profitability of loans since the cash flows

are spread out over different economic cycles. For that reason, it is necessary to take

the present value of the cash flows so as to adjust for inflation as the value changes

over time. Another adjustment such as credit spread, which is the difference between

revenue and cost of funds, could be used as well. For this project, inflation rate will be

used. Inflation fluctuates, but on average is around 3% per year. (InflationData.com

2008) This percentage will be used as the annual rate in this project. Treating a

fixed-rate mortgage as an annuity, the present value (Brigham and Houston 2002) is
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calculated as

PV (annuity) =
1− (1 + r)−n

r
· y,

where y represents the monthly payment, r represents the inflation rate (expressed

monthly) and n represents the number of months in which a payment was received.

1.2 Loan Payback Situations

Consider the profitability of three examples of borrower repayment. First, a

complete payback scenario, in which a borrower makes all payments for the loan

term. Second, a default scenario, in which a borrower makes payments for a period of

time, then stops paying. The lender receives the collateral from the borrower. Third,

a prepayment scenario, in which a borrower makes payments until a certain point

and then pays the outstanding balance with a single payment.

1.2.1 Complete Loan Payback

The most common mortgage is for a fixed principal amount, with a specified

term and interest rate. The promissory note is agreed upon by the lender and borrower

after loan approval.

Consider a loan for $100,000 with a 30-year term fixed interest rate of 6% APR.

Using the PV equation, the monthly payment will be

y = 100000/
1− (1 + (.06/12))−360

.06/12
= 599.55.

Using the PV equation with inflation at 3.0 APR,

PV (Payments) =
1− (1 + (.03/12))−360

(.03/12)
· $599.55 = $142, 207.

That is, from a return on capital perspective, $142,207 − $100,000 = $42,207 (in

today’s dollars) or 42% return on the $100,000 invested capital.
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1.2.2 Default

When a borrower violates the terms of the mortgage by failing to make a pay-

ment, the borrower is in default. Defaults may be due to the inability to pay the loan.

Accidents, sickness, death, and termination of employment are a few situations which

may lead to inability to pay. A borrower with the ability to pay may default if the

collateral of the loan is worth less than the outstanding balance. For example, con-

sider a $100,000 loan whose collateral is a home with an estimated value of $150,000.

As long as the value of the home is greater than the outstanding balance, a borrower

who could not make the monthly payments could avoid default by selling the house

and paying the outstanding balance. But, if after 5 or 10 years the value of the home

decreased to $60,000 or $40,000, then paying for the full term of the loan would be

paying more for the home than it is worth, so a borrower may choose to default. The

return on capital is affected not only by the reduced number of payments but also

by the loss incurred because the collateral sold through foreclosure is worth less than

the outstanding balance.

The return on capital of a defaulted loan requires the present value of the

payments and the present value of the loss incurred at default. When a borrower

defaults, the collateral is repossessed by the lender and sold, almost always for less

than the outstanding balance. Return on capital (ROC) could then be calculated as

follows:

ROC =

∑
PV (Payments up to Default) + PV (Collateral)− Capital

Capital

=
PV (y1, y2, . . . , yt−1) + PV (∆t)− Capital

Capital
,

where y1, y2, . . . , yt−1 denote monthly payments made prior to default and ∆t is the

value of the collateral in month t.

In this example, consider a borrower that defaulted after 10 years. To demon-

strate the effect that collateral value has on ROC, two scenarios with different values
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for ∆t are presented. For the first scenario, let ∆120 = 60,000. In other words, the

collateral at default is valued at $60,000. After 120 months, PV (∆120) = 44,465.74.

For the second scenario, let ∆120 = 40,000. In other words, the collateral at default

can be sold for $40,000. For this scenario, PV (∆120) = 29,643.82 after 120 months.

The respective ROC with these two specified values for ∆120 after 10 years of paying

$599.55 per month, at 3% inflation are

ROC1 =
PV (y1, y2, . . . , yt−1) + PV (∆120)− $100, 000

$100, 000

=
$62, 090.45 + $44, 465.74− $100, 000

$100, 000
= 6.6%

and

ROC2 =
PV (y1, y2, . . . , yt−1) + PV (∆120)− $100, 000

$100, 000

=
$62, 090.45 + $29, 643.82− $100, 000

$100, 000
= −8.3%.

As expected, borrowers who default are very costly, as the lender is not receiving

the revenue that was agreed to upon origination of the loan. There is an obvious

benefit to the lender if they can identify the borrowers who are more likely to default

and not originate the loans to these borrowers.

1.2.3 Prepayment

In the current mortgage market, few borrowers follow the complete loan payback

described in Section 1.2.1. Instead, a borrower might decide, after a certain period

of time has passed, that the conditions set out when their loan was originated (i.e.

payment amount, interest rate, etc.) are not ideal for them. They choose to pay off

their current loan with the proceeds from another loan using the same property or

collateral as security. Occasionally, a borrower might pay off their current loan with

cash on hand rather than with the proceeds from another loan. This process is called

prepaying, and is quite popular in a declining interest rate environment.
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Consider a borrower who chose to pay off their loan earlier than anticipated.

For this example, consider prepayment at 5 years (60 months) and 10 years (120

months).

Calculating the return on capital for a borrower that prepays is easier than for

a default scenario, since the borrower pays the exact outstanding balance.

ROC =
PV (Payments up to Prepayment) + PV (Outstanding Balance)− Capital

Capital

=

∑
PV (Interest Payments up to Prepayment)

Capital

=
PV (y1, y2, . . . , yt−1) + PV (Bt)− Capital

Capital
,

where y1, y2, . . . , yt−1 denote monthly payments up to prepayment and Bt is the out-

standing balance in month t.

In the case of a borrower who prepays after 5 years,

ROC5 =
$33, 366.37 + $80, 107.62− $100, 000

$100, 000
= 13.5%.

If the borrower were to prepay after 10 years,

ROC10 =
$62, 090.45 + $62, 019.12− $100, 000

$100, 000
= 24.1%.

Since the capital is all paid back, just earlier than expected, the return on capital in

the situation in which the borrower prepays is still positive, but not as high as the

the ROC for complete loan payback.

1.3 Actuarial Present Value (APV)

The previous examples have assumed known times of payment or default. If a

lender knew that a borrower was going to default after 10 years, it is obvious that the

loan to that specific borrower would never have been originated because the ROC is

a loss. Uncertainty of default exists when a borrower applies for a loan because each
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borrower has some positive probability of defaulting associated with their loan and

circumstances.

Present value depends on outcome; that is, whether a borrower defaults, pre-

pays, or pays the loan in full and the timing of when this outcome might occur.

Accounting for the uncertainty associated with borrower outcome and timing pro-

vides a more realistic measure of return on capital.

The Actuarial Present Value (APV) is defined as the present value of a con-

tingent event; that is, the sum of the present value of the monthly payments under

a given outcome multiplied by the probabilities associated with that outcome (full

payment, prepayment, and default). That is,

APV =
∑

All
possible
outcomes

PV (Outcome) · P (Outcome).

The general idea is finding the present value of the payments up to a certain point

(contingent on a certain outcome) and then multiplying by the probability of the

outcome (full payment, prepayment, or default).

In survival analysis, the hazard function, or instantaneous failure rate, is used

as a measure of this probability of time to failure (Lee and Wang 2003). In the

context of borrower repayment behavior, the hazard function, h(t), is the conditional

probability of missing the tth payment given the borrower pays their loan up until

month t− 1. That is,

h(t) = P [no payment in month t| paid in 1, . . . , t− 1]

and probability that the borrower makes the tth payment is

1− h(t) = P [paying in month t| paid in month 1, . . . , t− 1].

6



Failure to pay is the consequence of either default or prepayment. The hazard

function can therefore be expressed as the hazard function of two competing risks:

h(t) = P [default ∪ prepay in month t| paid in month 1, . . . , t− 1]

= P [default | paid in month 1, . . . , t− 1] + P [prepay| paid in month 1, . . . , t− 1]

= hd(t) + hp(t),

where hd(t) and hp(t) are the hazard functions of default and prepayment.

The probabilities for all possible outcomes in APV can be expressed using hd(t)

and hp(t). For example, the probability of a default in the 2nd month is

P [paid in month 1,default in month 2]

= P [paid in month 1] P [default in month 2 |paid in month 1]

= [1− h(1)] hd(2).

The contribution to APV for default in month 2 is

[PV (Payments up to Default) + PV (Collateral−Outstanding Balance)]

· P [paid in month 1, default in month 2]

= [PV (y1) + PV (∆2)] · [1− h(1)] hd(2),

where y1 is the monthly payment received and ∆2 is the value of the collateral at

month 2. Similarly, the contribution to the APV for a default in month 3 is

[PV (y1, y2) + PV (∆3)] [1− h(1)][1− h(2)] hd(3),

where y1 and y2 are the monthly payments received and ∆3 is the value of the collateral

at month 3. In general, for any default outcome, the contribution to the APV is

[PV (y1, y2, . . . , yt−1) + PV (∆t)] [1− h(1)][1− h(2)] · · · [1− h(t− 1)] hd(t), t = 1, . . . , 359.
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For the prepayment outcome, the probability of a prepayment in the 2nd month

is

P [paid in month 1,prepay in month 2]

= P [paid in month 1] P [prepay in month 2 |paid in month 1]

= [1− h(1)] hp(2).

The contribution to APV for prepayment in month 2 is

[PV (Payments up to Prepayment) + PV (Outstanding Balance)]

· P [paid in month 1,prepay in month 2]

= [PV (y1) + PV (B2)] · [1− h(1)] hp(2),

where y1 is the monthly payment received and B2 is the outstanding balance at month

2. Similarly, the contribution to the APV for a prepayment in month 3 is

[PV (y1, y2) + PV (B3)] [1− h(1)][1− h(2)] hp(3),

where y1 and y2 are the monthly payments received and B3 is the outstanding balance

at month 3. In general, for any prepayment outcome, the contribution to the APV

is

[PV (y1, y2, . . . , yt−1) + PV (Bt)] [1− h(1)][1− h(2)] · · · [1− h(t− 1)] hp(t), t = 1, . . . , 359.

The APV for a mortgage combines the possible default and prepayment out-

comes with the full payment outcome, shown in the equation on the following page. It

is assumed that the probability that a borrower misses a payment in the first month

(h(t)) is zero. First payment defaults are considered fraud.

8



APV =
∑

All possible
default

outcomes

PV (Outcome) · P (Outcome)

+
∑

All possible
prepay

outcomes

PV (Outcome) · P (Outcome)

+ PV (Monthly payments) · P (Complete loan payback)

= [(PV (y1, ∆2) [1− h(1)] hd(2) + PV (y1, y2,∆3) [1− h(1)][1− h(2)] hd(3)

+ . . . + PV (y1, y2, . . . , y359,∆360) [1− h(1)][1− h(2)] · · · [1− h(359)] hd(360))

+ (PV (y1, B2) [1− h(1)] hp(2) + PV (y1, y2, B3) [1− h(1)][1− h(2)] hp(3)

+ . . . + PV (y1, y2, . . . , y359, B360) [1− h(1)][1− h(2)] · · · [1− h(359)] hp(360))

+ (PV (y1, y2, . . . , y360)
360∏

t=1

[1− h(t)])].
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2. DEFAULT HAZARD FUNCTION ESTIMATION

Calculating Actuarial Present Value requires the probability of missing a payment,

h(t). This chapter describes how to estimate hd(t), the default hazard function using

data.

2.1 Data Description

The loans in this data set are from a $7 billion portfolio in the subprime home

equity market. “Subprime” borrowers generally have weak or damaged credit, which

prevents them from qualifying for loans in the prime market. Not surprisingly, loss

rates in the subprime sector are greater than in the prime sector. These loans are

fixed-rate, with first liens secured by residential real estate originated between 1994

and 2002. Table 2.1 contains summary statistics on these 97,124 loans. Repayment

behavior on these loans is observed between March 2001 and February 2002. This

time window is narrow because many loans in the portfolio are purchased from other

lenders without data on earlier repayment history.

Table 2.1: Summary statistics of a $7 billion portfolio of subprime home equity loans
secured by residential real estate.

Minimum Q1 Median Q3 Maximum
Interest Rate (%) 6.00 7.50 8.75 9.5 18.50
Loan Amount ($) 25,800 55,933 71,519 88,725 331,015
Loan-to-Value Ratio (%) 1.00 70.33 90.39 94.94 100.00
Proprietary Credit Score 0.00 0.52 0.64 0.76 1.00
(0=bad, 1=good)

Percentage of Credit Report Derogatories
12.86 Filed for Bankruptcy
11.72 At Least One NSF Check
41.24 At Least One Major Derogatory
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2.2 Methodology

The probability of default is modeled using a logit model. The response variable

is the incidence of default where y = 1 in the month when default was observed and

y = 0 otherwise. The data for the 97,124 loans are “exploded” by examining the

default behavior each month. For the default data set, if a borrower’s status was not

default (i.e., delinquent less than 180 days) in month t, then the response (incidence of

default) is y = 0. If a borrower defaults (i.e., first occurrence of 180 days delinquent) in

month t, then the response is y = 1. There are no more observations for a delinquent

borrower, as the assumption is made that a borrower cannot transition from default

back to a current state. If a borrower were to prepay in month t, then y = 0 since the

borrower did not default. Consider a borrower that defaults in month t = 10. Then

y1, . . . , y9 = 0 and y10 = 1.

When a borrower files a loan application, the lender receives information from

the application and obtains the borrower’s credit bureau report. These reports include

variables such as the number of non-sufficient funds, the difference between credit

limit and outstanding balance, the number of derogatories, and so forth. The list of

possible covariates for predicting default is large. Many companies have found value

in creating a proprietary or custom score that incorporates credit bureau information

and measurements of the borrower’s behavior with the bank. A proprietary score was

used in this project.

The estimated probability of default changes over time. The rate at which

these probabilities change also varies. To allow for a flexible model, consider piecewise

linear splines for time with possible knots at 12−month intervals from 0 to 360. Using

stepwise variable selection, the significant knots were found to be at months 12, 24,

36, and 60. To avoid too many knots, the knots chosen were at months 12, 36, and

60. Linear extrapolation is used for months greater than the window of loans in the

data set (months 100+).
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The default probabilities are estimated using logistic regression. The default

model has the standardized custom score (Score), interest rate (APR), and time (t),

where

logit(p) = log(
p

1− p
) =β0 + β1 · Score + β2 ·APR + β3 · t + β4 · (t− 12) · I(t > 12)

+ β5 · (t− 36) · I(t > 36) + β6 · (t− 60) · I(t > 60).

The coefficients can be interpreted as β1 being the increase in the log-odds for a one

unit increase in the standardized custom score; β2 being the increase in the log-odds

for a one-percent increase in interest rate, holding all else constant; and β3, β4, β5 and

β6 being coefficients in a linear spline for time with knots at 12, 36 and 60 months.

Estimates for β0, β1, β2, β3, β4, β5, and β6 are given in Table 2.2.

Table 2.2: Maximum Likelihood Logistic Regression Coefficient Estimates for Default

Default
β0 -4.7181
β1 -7.8543
β2 0.0958
β3 0.1207
β4 -0.1129
β5 -0.0150
β6 0.000997

A Decile plot is constructed as a measure of the prediction performance of the

model. The Decile plot is constructed by calculating the estimated probability of

default and grouping into deciles. In each decile, the observed proportion of loans

defaulting is computed. Figure 2.1 shows the Decile plot comparing the estimated

probability of default and observed proportion of accounts defaulting. The actual

probabilities appear well predicted because the values fall closely on a unit slope

through the origin.

To demonstrate the effect of interest rate on hd(t), the logistic regression coef-

ficient estimates from Table 2.2 are plotted for interest rates of 8, 12, and 16% in the

12



Figure 2.1: Default Decile Plot demonstrating prediction performance of the logistic
model.
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partial logit plot in Figure 2.2. Similar partial logit curves could be plotted for other

interest rates. A clear difference exists between loans with interest rates of 8, 12 and

16%, as the logit(p) for a borrower with 16% interest is more than double that for a

borrower with 8% interest.

Figure 2.2: Partial Default Logit Plot. Plot of maximum likelihood estimates at 8%,
12%, and 16% interest for months 1, . . . , 120.
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The logit coefficient estimate for β1 is negative, indicating that the higher the

standardized custom score, the lower the estimated probability of default. The logit

coefficient estimates for β4 and β5 (piecewise linear splines) are negative, indicating

that the rate at which the log-odds and probability of default increases begins to slow

after month 12 and 36 compared to the previous months. The positive coefficient

estimate for β6 indicates that the rate at which the log-odds and probability of default

decreases begins to slow after month 60.

The impact of the negative spline coefficients is magnified in the default proba-

bility plot (Figure 2.3). The estimated probabilities of default for a borrower with a

score of 0.75 are increasing for months t = 1, . . . , 36, but these probabilities decrease
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Figure 2.3: Default Probability Curves. Plot of probability of default for months
1, . . . , 120 at 8%, 12%, and 16% interest using maximum likelihood estimates from
logistic regression for a borrower with a proprietary score of 0.75.
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after month 36. The rate at which these probabilities increase is greater for months

t = 1, . . . , 12 than it is for months after 12. One plausible explanation for this effect

is that borrowers originate a mortgage, but after a short period of time, they realize

that they are in over their heads and default on their loan.

Although small, the probability of default, as shown in Figure 2.3, is much

greater for a loan with an interest rate of 16% than for a loan with 8 or 12% interest.

From a business side, if a lender had the choice to charge a borrower a high interest

rate, it would seem like the most profitable return on investment, since this would

maximize interest return. A lender might, or should, be hesitant to originate loans

with extremely high interest rates, as the probabilities of default are greater for loans

with these interest rates (Figure 2.3). The APV should reflect this fact, and it is

possible for the APV to decrease if interest rate increases.
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3. PREPAYMENT HAZARD FUNCTION ESTIMATION

Calculating Actuarial Present Value requires the probability of missing a payment,

h(t). This chapter describes how to estimate hp(t), the prepayment hazard function

using data.

The probability of prepayment is modeled using a logit model. The response

variable is the incidence of prepayment, where y = 1 the month prepayment was

observed and y = 0 otherwise. The data for the 97,124 loans are “exploded” by

examining the prepayment behavior each month. For the prepayment data set, if a

borrower did not prepay in month t, then the response (incidence of prepayment) is

y = 0. If a borrower prepays in month t, then the response is y = 1. Consider a

borrower that prepays in month t = 10. Then y1, . . . , y9 = 0 and y10 = 1.

The prepayment probability changes over time. To allow for a flexible model,

consider piecewise linear splines with possible knots at 12 month intervals from 0

to 360. Using stepwise variable selection, the significant knots were found to be at

months 36 and 60.

The prepayment hazard function is estimated using logistic regression. The

prepayment model has the standardized custom score (Score), interest rate (APR),

time (t), and linear splines with knots at 36 and 60 months. In other words, with

p = P [prepayment|Score, APR, t], the logit model for prepayment is

logit(p) = log(
p

1− p
) = β0+β1 ·Score+β2 ·APR+β3 ·t+β4 ·(t−36)·I(t > 36)+β5 ·(t−60)·I(t > 60).

The coefficients can be interpreted as β1 being the increase in the log-odds for a one

unit increase in the standardized custom score; β2 being the increase in the log-odds

for a one-percent increase in interest rate, holding all else constant; and β3, β4 and

β5 being coefficients in a linear spline for time with a knot at 36 and 60 months.

Estimates for β0, β1, β2, β3, β4, and β5 are given in Table 3.1.

A Decile plot is constructed as a measure of the prediction performance of

17



Table 3.1: Maximum Likelihood Logistic Regression Coefficient Estimates for Pre-
payment

Prepayment
β0 -9.9756
β1 2.9684
β2 0.2760
β3 0.0180
β4 -0.00399
β5 -0.0157

the model. The Decile plot is constructed by calculating the estimated probability

of prepayment and grouping into deciles. In each decile, the observed proportion

of loans prepaying is computed. Figure 3.1 shows the Decile plot comparing the

estimated probability of prepayment and observed proportion of accounts defaulting.

The actual probabilities appear well predicted since the values fall closely on a unit

slope through the origin. An interesting feature in the prepayment Decile plot is the

large spread of average probability among deciles indicating a very high risk in the

population for prepaying.

To demonstrate the effect of interest rate on hp(t), the logistic regression coef-

ficient estimates from Table 3.1 are plotted for interest rates of 8, 12 and 16% in the

partial logit plot in Figure 3.2. A clear difference exists between loans with interest

rates of 8, 12 and 16%, as the logit(p) for a borrower with 16% interest is more than

double that for a borrower with 8% interest.

The logit coefficient estimate for β1 is positive, indicating that the higher the

standardized custom score, the higher the estimated probability of prepaying. If a

borrower were to have a high custom score, they would be able to receive credit from

another lender, perhaps at a lower rate, enabling them to prepay. The logit coefficient

estimates for β4 and β5 (piecewise linear splines) are negative, indicating that the rate

at which the log-odds and probability of prepayment increases begins to slow after

month 36 and 60 compared to the previous months. Perhaps many borrowers originate

18



Figure 3.1: Prepayment Decile Plot demonstrating prediction performance of the
logistic model.
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loans with the intention of prepaying within a few years, especially if interest rates

are “high.”

The impact of the negative spline coefficients is magnified in the prepayment

probability plots (Figure 3.3). The estimated prepayment probabilities for a borrower

with score of 0.75 shown in Figure 3.3 are increasing throughout months 1 through

60, then begin to decrease after month 60.

The probability of prepayment, as shown in Figure 3.3, is much greater for a

loan with an interest rate of 16% than for a loan with 8 or 12% interest, and this

probability grows at a higher interest rate of 16%.

From a business side, if a lender had the choice to charge a borrower a high

interest rate, it would seem like the most profitable return on investment, since this

would maximize interest return. A lender might, or should, be hesitant to originate

loans with extremely high interest rates, as the probabilities of prepayment are greater

for loans with these interest rates (Figure 3.3). Essentially, the lender is pushing the

borrower to prepay on their account. The APV should reflect this fact, and it is

possible for the APV to decrease as interest rate increases.
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Figure 3.2: Partial Prepayment Logit Plot. Plot of maximum likelihood estimates at
8%, 12%, and 16% interest for months 1, . . . , 120.
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Figure 3.3: Prepayment Probability Curves. Plot of probability of prepayment for
months 1, . . . , 120 at 8%, 12%, and 16% interest using maximum likelihood estimates
from logistic regression for a custom score of 0.75.
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4. RESULTS

4.1 Actuarial Present Value Estimates

Using the APV formula presented in Section 1.3, APV estimates were obtained

for a borrower with a specified proprietary credit score and interest rate. Table

4.1 shows the actuarial present value calculated for a $100,000 subprime loan to a

borrower with a 0.75 proprietary credit score using the estimated hazard functions

described in Chapters 2 and 3. The APVs presented are for interest rates ranging from

6 to 18%. A proprietary credit score of 0.75 represents a borrower with worthy credit

(3rd Quartile). In calculating the APV, the assumption was made that the security, or

collateral, on the loan was worth $125,000 upon origination, and that upon defaulting,

the bank would receive 75% of $125,000. Some might argue that the assumption of the

lender receiving 75% of the asset’s present value is generous. Therefore, the effect of

different collateral values on APV should be further investigated. Also, no assumption

is made as to what occurs with the capital when prepayment occurs. In other words,

if a borrower prepays on a loan, these calculations do not take into account what the

lender could or could not do with the capital received from the borrower.

The results from Table 4.1 are intriguing. First, one would think that the higher

the interest that you charge, the more money that you make. This is not so when

incorporating the uncertainty due to default and prepayment. Higher interest rates

may push borrowers to prepayment if their credit scores are good enough to receive

credit elsewhere.

Viewed as a function of interest rate, the APV increases as the interest rate

increases from 6 to 10.25%, then decreases. The difference, in terms of return on

capital (ROC) is 5% more for a loan at 12% interest when compared to the same loan

at 8% interest. Also, if the borrower were to receive a 16% interest rate, the APV
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associated with this loan is about 13% less than the loan at 12%. This shows that just

because a lender can charge higher interest rates, a higher return is not guaranteed.

4.2 Solving APV for Interest Rate

Since ĥd(t) and ĥp(t) are functions of interest rate, it is possible to solve for the

APV for a borrower with a given credit score applying for a loan of B0 using collateral

valued at H0 at different interest rates.

For example, consider finding APR∗ such that APV(APR∗, x, β) = B0. That

is, the loan will only be profitable with interest rates greater than or equal to APR∗

since APV (APR∗,xp, β̂) - B0 ≥ 0, where B0 is the capital loaned to the borrower.

This value (APR∗) represents the interest rate at which the lender guarantees a

positive return on their investment. Since lenders desire more than just a positive

return, it is more interesting to solve the following equation for APR∗:

APV (APR∗,xp, β̂)−B0

B0

≥ δ,

where δ represents the desired return on capital (ROC).

4.2.1 Business

From a business perspective, solving APV for interest rate allows for the lender

to set a desired ROC (δ). Since APV is a function of interest rate, a lender desiring a

certain ROC can then use the borrower’s covariates (credit history, or custom score),

and originate a loan such that with interest rate APR∗ will give the lender their

desired return on capital, if such an APR∗ exists (e.g., ROC = 35% is not possible

in Table 4.1).
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4.2.2 Analytics

From an analytics perspective, because APV is a function of interest rate, this

allows for solving for interest rate. By solving for interest rate, the desired return

can be chosen, which allows the lender to find an “optimal” interest rate at which

they will receive their desired return on capital. “Optimal” can also be defined as the

APV at which the lender maximizes their profit. In the business setting, the latter is

what matters most.

4.3 Properties of APV as interest rate changes

Investigating the properties of APV for different values of interest rate, as done

in Section 3.1, shows that interest rate does have an effect on APV. The simple

example presented involved interest rates ranging from 6 to 18% and were for one

loan. It appears that a “maximum” APV exists for a given loan. For the situation

described in Section 3.1, the “optimal” interest rate that produces this maximum APV

was 10.25% (See Figure 4.1). For a borrower with a standardized custom score of 0.75,

with a $100,000 loan and collateral value of $125,000, this interest rate maximizes

the lender’s risk adjusted return on investment.

4.4 Further Research

This project presented APV calculations for a $100,000 loan with a 0.75 stan-

dardized custom score, interest rates ranging from 6 to 18% and collateral value of

$125,000. These variables can be further evaluated with varied loan amounts, custom

scores, and collateral values to see the effect that each of these variables has on APV.

Also, this project has data for months 1 through 100, and extrapolates for months

100 through 360. For subsequent projects, a bigger window of data would be useful

to evaluate.
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Figure 4.1: Plot of Actuarial Present Value for a $100,000 loan with a 0.75 stan-
dardized custom score, interest rates ranging from 6 to 18%, and collateral value of
$125,000.
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Clearly, the “current” interest rate in month t and the APR at loan origination

affects the prepayment hazard function. It would be beneficial to evaluate in further

detail how much of an affect the “current” interest rate has on prepayment.

Finally, many investment options exist in the financial market. The analysis

in this project could be compared with other investment options, such as a 30 year

treasury bond. For example, a $100,000 in a 30 year zero coupon treasury bond at 4%

APR with 3% inflation has APV = 148,788.67. Research could be done to evaluate

other investment options.
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Table 4.1: Actuarial Present Value (APV) for a $100,000 subprime loan with interest
rates from 6 to 18%, proprietary score of 0.75, and inflation at 3.0 APR.

Interest.Rate APV
6.00 99,476.47
6.25 103,285.73
6.50 106,952.57
6.75 110,447.58
7.00 113,743.24
7.25 116,814.02
7.50 119,638.84
7.75 122,198.87
8.00 124,481.56
8.25 126,478.19
8.50 128,186.94
8.75 129,609.69
9.00 130,754.93
9.25 131,635.14
9.50 132,268.21
9.75 132,673.67

10.00 132,874.54
10.25 132,895.12
10.50 132,759.63
10.75 132,491.87
11.00 132,113.85
11.25 131,645.35
11.50 131,104.05
11.75 130,504.55
12.00 129,858.95

Interest.Rate APV
12.25 129,176.60
12.50 128,465.00
12.75 127,729.56
13.00 126,974.08
13.25 126,201.50
13.50 125,413.75
13.75 124,612.24
14.00 123,797.95
14.25 122,971.53
14.50 122,133.49
14.75 121,284.20
15.00 120,423.92
15.25 119,552.80
15.50 118,671.09
15.75 117,778.86
16.00 116,876.26
16.25 115,963.31
16.50 115,040.02
16.75 114,106.43
17.00 113,162.47
17.25 112,207.97
17.50 111,242.77
17.75 110,266.60
18.00 109,279.07
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5. CONCLUSIONS

The mortgage industry in today’s society is constantly changing, with adjustable

rate mortgages (ARM) under attack, controversy dealing with lenders originating

loans to the so-called “subprime” market (borrowers with credit history problems),

and volatile interest rates. Amid the changes and controversy, lenders continue to

originate loans because the interest paid over the lifetime of the loan is profitable.

One measure of profitability is return on capital (ROC), which uses present value to

find the lender’s overall return. However, ROC does not incorporate the uncertainty

that exists in today’s society, as outcomes are uncertain.

To incorporate the uncertainty that exists, actuarial present value (APV) is

used. In general, APV is the sum of the present value of the monthly payments

under a given outcome times the probabilities associated with that outcome (full

payment, prepayment, and default). The hazard function, or instantaneous failure

rate, is used as a measure of the probability associated with a given outcome. The

hazard functions are estimated using logistic regression.

Once estimated, APVs are calculated for different interest rates, as different

interest rates produce different APVs. A maximum APV exists, suggesting an “op-

timal” interest rate. The “optimal” interest rate is the point at which the lender is

maximizing their risk-adjusted return on investment.

Originating loans according to the “optimal” interest rate for a given borrower

allows the lender to maximize the return for a given loan, adjusting for the uncertainty

that exists in today. Incorporating APV and optimizing the interest rate for each loan

over an entire portfolio thus maximizes the risk-adjusted return on capital.
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5.1 Methodology & Models

The default and prepayment hazard functions are each estimated using a logit

model. The response variable is the incidence of default (y = 1 in the month when

default was observed, and y = 0 otherwise) or the incidence of prepayment (y = 1 in

the month when prepayment was observed, and y = 0 otherwise).

The data comes from a $7 billion portfolio in the subprime home equity market.

These loans are fixed-rate, with first liens secured by residential real estate originated

between 1994 and 2002. Repayment behavior is observed between March 2001 and

February 2002. The list of possible covariates for predicting default and prepayment is

large. Many companies have found value in creating a proprietary or custom score that

incorporates credit bureau information and measurements of the borrower’s behavior

with the bank. A proprietary score was used in this project.

The default probabilities are estimated using logistic regression. The default

model has the standardized custom score (Score), interest rate (APR), time (t), where

logit(p) = log(
p

1− p
) =β0 + β1 · Score + β2 ·APR + β3 · t + β4 · (t− 12) · I(t > 12)

+ β5 · (t− 36) · I(t > 36) + β6 · (t− 60) · I(t > 60).

The coefficients can be interpreted as follows: β1 is the increase in the log-odds for a

one unit increase in the standardized custom score; β2 is the increase in the log-odds

for a one-percent increase in interest rate, holding all else constant; β3, β4, β5, and

β6 are coefficients in a linear spline for time with knots at 12, 36 and 60 months.

The prepayment hazard function is estimated using logistic regression. The

prepayment model has the standardized custom score (Score), interest rate (APR),

time (t), and linear splines with knots at 36 and 60 months. In other words, with

p = P [prepayment |Score, APR, t], the logit model for prepayment is
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Table 5.1: Maximum Likelihood Logistic Regression Coefficient Estimates for Default
and Prepayment

Default
β0 -4.7181
β1 -7.8543
β2 0.0958
β3 0.1207
β4 -0.1129
β5 -0.0150
β6 0.000997

Prepayment
β0 -9.9756
β1 2.9684
β2 0.2760
β3 0.0180
β4 -0.00399
β5 -0.0157

logit(p) = log(
p

1− p
) = β0+β1 ·Score+β2 ·APR+β3 ·t+β4 ·(t−36)·I(t > 36)+β5 ·(t−60)·I(t > 60).

The coefficients can be interpreted as follows: β1 is the increase in the log-odds for a

one-unit increase in the standardized custom score; β2 is the increase in the log-odds

for a one-percent increase in interest rate, holding all else constant; β3, β4, and β5 are

coefficients in a linear spline for time with a knot at 36 and 60 months.

Table 5.1 displays the logit regression coefficient estimates for the default and

prepayment scenarios. Interesting to note are the opposite signs for the coefficient es-

timate associated with the custom score. For the default scenario, the coefficient

is negative, suggesting that as a borrower’s custom score increases, the log-odds

and probability of default decreases. For the prepayment scenario, the coefficient

is positive, suggesting that as a borrower’s custom score increases, the log-odds and

probability of prepayment increases. Either the borrower is smarter than the default

borrowers, or has the credit necessary to obtain a loan somewhere else, and prepay

their current loan.

After estimating the default and prepayment hazard functions, APV is calcu-

lated for a $100,000 loan, assuming a collateral value of $125,000 and a standardized

custom score of 0.75, and is displayed for interest rates ranging from 6 to 18%. The
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APV values are displayed in Table 5.2. As can be seen in Table 5.2 and in Figure 5.1,

Figure 5.1: Plot of Actuarial Present Value for a $100,000 loan with a 0.75 stan-
dardized custom score, interest rates ranging from 6 to 18% and collateral value of
$125,000.
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a maximum exists at which the lender is receiving the maximum APV. This maxi-

mum APV occurs at an interest rate of 10.25% for the given example, suggesting that

10.25% is the “optimal” interest rate for the given borrower. Similar tables and fig-

ures could be displayed for differing loan amounts, collateral values, and standardized

custom scores, but each suggests that an “optimal” interest rate exists; that is, a point

exists at which the lender is maximizing their risk-adjusted return on investment.

5.2 Application & Use

Originating loans according to the “optimal” interest rate for a given borrower

allows the lender to maximize the return for a given loan, adjusting for the uncertainty

that exists in today’s society. Incorporating APV and optimizing the interest rate for

each loan over an entire portfolio thus maximizes the risk-adjusted return on capital.
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5.3 Further Research

This project presented APV calculations for a $100,000 loan with a 0.75 stan-

dardized custom score, interest rates ranging from 6 to 18%, and collateral value of

$125,000. These variables can be further evaluated, with varied loan amounts, custom

scores, and collateral values to see the effect that each of these variables has on APV.

Also, this project has data for months 1 through 100, and extrapolates for months

100 through 360. For subsequent projects, a bigger window of data would be useful

to evaluate.

Clearly, the “current” interest rate in month t and the APR at loan origination

affects the prepayment hazard function. It would be beneficial to evaluate in further

detail how much of an affect the “current” interest rate has on prepayment.

Finally, many investment options exist in the financial market. The analysis

in this project could be compared with other investment options, such as a 30-year

treasury bond. For example, a $100,000 in a 30-year zero coupon treasury bond at 4%

APR with 3% inflation has APV = 148,788.67. Research could be done to evaluate

other investment options.
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Table 5.2: Actuarial Present Value (APV) for a $100,000 subprime loan with interest
rates from 6-18%, and standardized custom score of 0.75.

Interest.Rate APV
6.00 99,476.47
6.25 103,285.73
6.50 106,952.57
6.75 110,447.58
7.00 113,743.24
7.25 116,814.02
7.50 119,638.84
7.75 122,198.87
8.00 124,481.56
8.25 126,478.19
8.50 128,186.94
8.75 129,609.69
9.00 130,754.93
9.25 131,635.14
9.50 132,268.21
9.75 132,673.67

10.00 132,874.54
10.25 132,895.12
10.50 132,759.63
10.75 132,491.87
11.00 132,113.85
11.25 131,645.35
11.50 131,104.05
11.75 130,504.55
12.00 129,858.95

Interest.Rate APV
12.25 129,176.60
12.50 128,465.00
12.75 127,729.56
13.00 126,974.08
13.25 126,201.50
13.50 125,413.75
13.75 124,612.24
14.00 123,797.95
14.25 122,971.53
14.50 122,133.49
14.75 121,284.20
15.00 120,423.92
15.25 119,552.80
15.50 118,671.09
15.75 117,778.86
16.00 116,876.26
16.25 115,963.31
16.50 115,040.02
16.75 114,106.43
17.00 113,162.47
17.25 112,207.97
17.50 111,242.77
17.75 110,266.60
18.00 109,279.07
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A. ACTUARIAL PRESENT VALUE R FUNCTION CODE

### Function to calculate APV

## Inputs: interest rate(6% = 6, etc.), loan term (years), Principal Amount,

## inflation rate, Collateral value, asset return %(If default, get .75 of collateral),

## custom standardized score(% from 0 to 1)

amort <- function(rate,num.years,Loan.Amount,inflation,collateral,

asset.return,cust.score){

rate.period <- rate / 100/12 ## Monthly interest rate

num.period <- num.years*12 ## Number of periods

inflation.rate <- inflation/100/12 ## Inflation rate per period

### Initializing Vectors and values used in APV calculations ###

Out.Balance <- matrix(0,num.period,1,byrow=T)

Payment <- matrix(0,num.period,1,byrow=T)

Interest <- matrix(0,num.period,1,byrow=T)

Principal <- matrix(0,num.period,1,byrow=T)

PV.pmt <- matrix(0,num.period,1,byrow=T)

PV.Out.Balance <- matrix(0,num.period,1,byrow=T)

PV.Collateral <- matrix(0,num.period,1,byrow=T)

h.def <- matrix(0,num.period,1,byrow=T)

h.prepay <- matrix(0,num.period,1,byrow=T)

prob.nopay <- matrix(0,num.period,1,byrow=T)

prob.pay <- matrix(0,num.period,1,byrow=T)

def.probs <- matrix(0,num.period,1,byrow=T)

prepay.probs <- matrix(0,num.period,1,byrow=T)

def.case <- matrix(0,num.period,1,byrow=T)

prepay.case <- matrix(0,num.period,1,byrow=T)

cumprods <- matrix(0,num.period-1,1,byrow=T)

Init.Balance <- Loan.Amount

Cum.Payment <- 0

Cum.Interest <- 0

Cum.Principal <- 0

for(i in 1:num.period){

Payment[i] <- round((rate.period*Loan.Amount*(1+rate.period)^num.period)/

((1 + rate.period)^num.period - 1),digits=2)
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### First Month Values

if(i == 1){

Interest[i] <- round((Init.Balance * rate.period),digits=2)

Principal[i] <- round((Payment[i] - Interest[i]),digits=2)

Out.Balance[i] <- round((Init.Balance - Principal[i]),digits=2)

PV.pmt[i] <- round(((1- (1+ inflation.rate)^(-i))/

(inflation.rate))*Payment[i],digits=2)

PV.Out.Balance[i] <- round((Out.Balance[i]/(1+inflation.rate))

*(1/(1+inflation.rate)^i),digits=2)

PV.Collateral[i] <- round(((collateral*asset.return)/(1+inflation.rate))

*(1/(1+inflation.rate)^i),digits=2)

## Default Hazard

h.def[i] <- ((exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i -

0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60)))

/(1 + exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i -

0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60))))

## Prepay Hazard

h.prepay[i] <- ((exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate

+ 0.0180*i - 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60)))

/(1 + exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate + 0.0180*i

- 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60))))

prob.nopay[i] <- h.def[i]+h.prepay[i]

prob.pay[i] <- 1 - (h.def[i]+h.prepay[i])}

else{ ### Months 2,...,359

Interest[i] <-round((Out.Balance[i-1] * rate.period),digits=2)

Principal[i] <- round((Payment[i] - Interest[i]),digits=2)

Out.Balance[i] <- round((Out.Balance[i-1] - Principal[i]),digits=2)

PV.pmt[i] <- round(((1- (1+ inflation.rate)^(-i))/

(inflation.rate))*Payment[i],digits=2)

PV.Out.Balance[i] <- round((Out.Balance[i]/(1+inflation.rate))

*(1/(1+inflation.rate)^i),digits=2)

PV.Collateral[i] <- round(((collateral*asset.return)/(1+inflation.rate))

*(1/(1+inflation.rate)^i),digits=2)

## Default Hazard

h.def[i] <- ((exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i
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- 0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60)))

/(1 + exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i

- 0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60))))

## Prepay Hazard

h.prepay[i] <- ((exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate

+ 0.0180*i - 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60)))

/(1 + exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate + 0.0180*i

- 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60))))

prob.nopay[i] <- h.def[i]+h.prepay[i]

prob.pay[i] <- 1 - (h.def[i]+h.prepay[i])

cumprods <- cumprod(prob.pay)

def.probs[i] <- (cumprods[i-1])* h.def[i]

prepay.probs[i] <- (cumprods[i-1])* h.prepay[i]

def.case[i] <- def.probs[i]*(PV.pmt[i-1]+PV.Collateral[i-1])

prepay.case[i] <- prepay.probs[i]*(PV.pmt[i-1]+PV.Out.Balance[i-1]) }

#### Adjusting for rounding error in last month

if(i == num.period){

Interest[i] <-round((Out.Balance[i-1] * rate.period),digits=2)

Principal[i] <- round(Out.Balance[i-1],digits=2)

Payment[i] <- Principal[i] + Interest[i]

Out.Balance[i] <- 0.00

PV.pmt[i] <- round(((1- (1+ inflation.rate)^(-i))

/(inflation.rate))*Payment[i-1],digits=2)

PV.Collateral[i] <- round(((collateral*asset.return)/(1+inflation.rate))

*(1/(1+inflation.rate)^i),digits=2)

PV.Out.Balance[i] <- 0.00

## Default Hazard

h.def[i] <- ((exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i

- 0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60)))

/(1 + exp(-4.7181 - 7.8543*cust.score+ 0.0958*rate + 0.1207*i

- 0.1129*(i-12)*(i>12) - 0.0150*(i-36)*(i>36) - 0.000997*(i-60)*(i>60))))

## Prepay Hazard

h.prepay[i] <- ((exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate

+ 0.0180*i - 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60)))
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/(1 + exp(-9.9756 + 2.9684*cust.score+ 0.2760*rate + 0.0180*i

- 0.00399*(i-36)*(i>36) - 0.0157*(i-60)*(i>60))))

prob.nopay[i] <- h.def[i]+h.prepay[i]

prob.pay[i] <- 1 - (h.def[i]+h.prepay[i])

def.probs[i] <- (cumprods[i-1])*h.def[i]

prepay.probs[i] <- (cumprods[i-1])*h.prepay[i]

def.case[i] <- def.probs[i]*(PV.pmt[i-1]+PV.Collateral[i-1])

prepay.case[i] <- prepay.probs[i]*(PV.pmt[i-1]+PV.Out.Balance[i-1])

prob.fullpay <- cumprods[i]

fullpay.case <- prob.fullpay*PV.Out.Balance[i] }

### Calculating total amt. paid in Payment, Interest, Principal ####

Cum.Payment <- Cum.Payment + Payment[i]

Cum.Interest <- Cum.Interest + Interest[i]

Cum.Principal <- Cum.Principal + Principal[i] }

APV <- sum(prepay.case)+sum(def.case)+ fullpay.case

Prob.check <- sum(def.probs)+ sum(prepay.probs)+prob.fullpay

Pmt.No <- seq(1,num.period)

### Other possible values to return - (Amortization table with Cum. Totals, etc.)

## out1 <- cbind(Pmt.No,Payment,Principal,Interest,Out.Balance,PV.pmt

## ,PV.Out.Balance,PV.Collateral,h.def,h.prepay,prob.nopay,prob.pay)

## cum.Totals <- rbind(c(num.period,Cum.Payment,Cum.Principal,Cum.Interest,

## 0,0,0,0,0,0,0,0))

## out2 <- rbind(out1,cum.Totals)

return(cbind(APV))}

yy <- matrix(0,49,1,byrow=T)

xx <- seq(6,18,by=.25)

for(i in 1:length(xx)){

yy[i] <- amort(xx[i],30,100000,3,125000,.75,.75) }

out1 <- as.matrix(cbind(xx,yy))
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