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ABSTRACT

Screening Designs that Minimize Model Dependence

Kenneth Fairchild
Department of Statistics, BYU

Master of Science

When approaching a new research problem, we often use screening designs to de-
termine which factors are worth exploring in more detail. Before exploring a problem, we
don’t know which factors are important. When examining a large number of factors, it is
likely that only a handful are significant and that even fewer two-factor interactions will be
significant. If there are important interactions, it is likely that they are connected with the
handful of significant main effects. Since we don’t know beforehand which factors are signif-
icant, we want to choose a design that gives us the highest probability a priori of being able
to estimate all significant main effects with their associated two-factor interactions. This
project examines the methodology of finding designs that do not rely on an assumed model.
We propose a method of modifying the D-Optimality criteria that averages over models with
a common set of main effects and varying subsets of two-factor interations. We also calculate
the proportion of the subsets that produce estimable designs. We use these results to find
the best models for given run size and number of main effects.

Keywords: Experimental Design, Plackett-Burman Designs, Model Dependency, Optimal
Designs, Model-Robust Designs
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chapter 1

INTRODUCTION

1.1 Screening Designs

When approaching a new research problem, there may be many factors that may be plausible

contributors to our dependent variable. Since we don’t know which factors are important,

we often use screening designs to determine which factors are worth exploring in more

detail. The goal of the screening experiment is to study as many variables as we think are

plausible contributors to the dependant variable under the assumption that all except the

most important will wash out.

Having a large number of factors can be problematic because in order to study a large

number of factors, along with their interactions, we also have to have a large number of runs

in our experiment to get estimates for each one. This can become cost prohibitive if each

experimental run is very time consuming, very expensive, or both. Ideally, we’d like to get

information about the important factors without having to run an experiment that allows

estimation of every possible interaction. This is a reasonable desire because if we don’t

believe that all the factors are important, we also will not believe that all the interactions

are important.

1.2 Fractional Factorial Designs

One solution to the above problem is to sacrifice the ability to estimate higher level interac-

tion terms for the benefit of having fewer experimental runs. The most basic design to reduce

the number of experimental runs is the fractional factorial design. The fractional factorial

design is produced by intentionally confounding certain factors with interaction terms.
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Consider an example where we have four factors (A, B, C, and D), each with two

levels (-1 and 1). For a full factorial design, we would generate every possible combination

of each factor. This would require 24 = 16 runs. If we wanted to reduce the number of

runs, we could use a one half-fraction design. A one-half fraction design can be obtained by

generating a full factorial of A, B and C, and setting the level of factor D to be equal to

ABC. This fully confounds D with ABC, making them indistinguishable. The factor level

combinations for this design are shown in Table 1.1. Note that many other one half-fraction

designs are possible.

Table 1.1: Fractional Factorial - D=ABC

Run A B C D
1 -1 -1 -1 -1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 -1
5 1 -1 -1 1
6 1 -1 1 -1
7 1 1 -1 -1
8 1 1 1 1

1.3 Plackett-Burman Designs

Fractional Factorial Designs are very useful designs for screening experiments because of

their simplicity in both generation and interpretation. Their shortcoming is that they are

limited to designs with run numbers that are powers of the number of factors levels, and any

confounded effects are completely confounded and cannot be all included in the fitted model.

The number of factor levels is usually two and for all desgins considered for this project we

will use two factors levels. Plackett and Burman (1946) propose designs to resolve this

problem by creating reduced run two-factor level designs that have run numbers that are

multiples of four, but not powers of two to fill in the gaps between possible factorial designs.
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Plackett-Burman designs have two-factors interactions that are only partially confounded

with main effects and other two-factor interactions.

Generating these models begins with an initial row of length n − 1 where n is the

number of rows in the design. This initial row is then shifted by taking the last element and

moving it to the front. This is repeated until run n− 1. Run n is at the low level for every

factor. This method produces a design matrix that is n × (n − 1) (Table 1.2 provides an

example with 12-runs and 11 columns). These designs can be used to analyze fewer factors

than n − 1 by assigning the factors to only a subset of the total number of columns. This

selection has implication in the alias structure of the design and thoughtful selection of these

columns is the subject of this project.

Table 1.2: Basic 12-run Plackett-Burman Design

Run 1 2 3 4 5 6 7 8 9 10 11
1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + - + + - + - -
8 - - + + + - + + - + -
9 - - - + + + - + + - +

10 + - - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

1.4 Hall’s Designs

Hall (1961) developed a series of five 16-run designs called Type I, II, III, IV, and V. They

are given in increasing order of counfounding structure complexity for their two-factor in-

teractions. For this project we will be using Type V exclusively because the increased

complexity of the confounding structure of the two-factor interactions allows us to avoid

complete confounding of factors in more cases than the other Hall’s designs.
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1.5 Model Dependency

Without performing a full factorial experiment, we have no way of obtaining estimates

for each factor and all possible interactions. However, when performing a screening ex-

periment, we don’t expect that all effects will be significant, and, by extension, we don’t

expect all that their associated interactions will be significant. Both Fractional Factorial

and Plackett-Burman designs give us methods of obtaining estimates of the main effects and

some interactions by assuming that other interactions are likely not significant.

A potential problem arises with fractional factorial designs when factors that are of

interest are confounded in the design. For illustration, consider the four factor experiment

from above. Assume that we defined D=AB instead of D=ABC, then our design matrix

would be given in Table 1.3.

Table 1.3: Fractional Factorial - D=AB

Run A B C D
1 -1 -1 -1 1
2 -1 -1 1 1
3 -1 1 -1 -1
4 -1 1 1 -1
5 1 -1 -1 -1
6 1 -1 1 -1
7 1 1 -1 1
8 1 1 1 1

Suppose we perform the experiment and upon analysis of the data we find that A,

B, and D are all significant. Because D=AB, there is no way to determine whether this last

significance is due to factor D, the AB interaction, or whether both of them are significant,

unless we perform additional experiments.

In this scenario, had we defined D=ABC, D=BC, or D=AC, we would have been

able to distinguish D and AB. The selection of D=ABC ensures no main effects are con-

founded with any two-factor interactions. In more complicated designs it may not always
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be as straightforward or intuitive. In practice, if an experiment is performed and important

interactions are not estimable, follow-up experiments would need to be performed in order

to allow estimation of all important effects. In order to avoid this situation, we would like

a model that a priori has a minimal chance of having significant factors and interactions

confounded.

Plackett-Burman designs, by their construction, have main effects that are orthogonal

to each other, but have complicated confounding of interaction terms. Each interaction term

may be partially confounded with a large number of other main effects and interactions.

Contrast this with the fractional factorial design that has simple confounding structure of

interactions completely confounded with other model terms. Plackett-Burman designs do

not, however, remove the problem of confounding entirely, but often important interaction

effects are only partially confounded rather than completely counfounded. This project

will be focusing on Plackett-Burman Designs and Hall’s 16-run design type V and how we

can thoughtfully assign factors to columns in the design to get the best chance of having

important main effects and two-factor interactions estimable without the need for follow-up

experiments.
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chapter 2

LITERATURE REVIEW

There is considerable body of literature that has considered the subject of optimal designs.

Some authors try to quantify the projection properties of the design or to group similar

models together. In this chapter we will discuss some of the work that has been done on

evaluating design dependence and how they contribute to this project.

2.1 Design Creation

D-Optimal Designs

There have been many approaches trying to quantify a “good” design. Generally, we want

a design that can estimate the most factors in the fewest runs possible. However, not all

designs are equally efficient in doing so. The most common metric for design efficience is

D-Optimality (DuMouchel and Jones 2010). A D-Optimal design attempts to minimize

det([X ′X]−1) where X is the design matrix. This minimizes the volume of the confidence

ellipsoid for the parameters (DuMouchel and Jones 2010). The assumption is that if the

design provides minimal variance in estimating the parameters of the model, then it should

be the best design for estimating the specified model.

The most common criticism of D-Optimality is that a D-Optimization algorithm will

be based on some prespecified model (DuMouchel and Jones 2010). This creates a design

that is dependent on an assumed model, and the alias structure is optimized towards a model

that may or may not be correct.

For this project, we assume that the effect sparsity principle holds, or in other words,

that only a subset of the main effects are actually significant. D-Optimality depends on the

specification of the design matrix X. We don’t know beforehand which factors are significant,
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so applying D-Optimality for the complete design matrix is insufficient for our needs. It is

optimized for a predetermined model, but instead we want to assume that the actual model

is unknown and will only be a subset of the full model. In order to use this criteria, we will

have to develop a method to average its results over several potential subset models.

DuMouchel and Jones (2010) propose an extension of D-optimality using a Bayesian

approach. They propose including a set of primary parameters to include in the model Xpri

and a set of potential parameters Xpot. In general, it is assumed that primary terms will be

main effects, and potential terms will be interaction terms. Priors are specified as N(0, σ2)

for primary terms, and N(0, τ 2) for potential terms. The prior variance is chosen to be less

informative for the primary effects and more informative for the potential effects. Potential

effects tend to be less active and therefore the more informative prior tends to shrink their

estimates toward zero.

S2 Criteria

Because of the D-optimal design’s dependence on an assumed model, (Jones and Montgomery

2010) propose the use of the S2 criteria for selecting models. To calculate S2 first construct

a design matrix, X, where X contains a column of 1’s, columns of coefficients for the main

effects, and columns of coefficients for all two-factor interaction. Then

E(S2) =
1

2

∑
i<j

(x′ixj)
2/(k(k − 1)),

where k is the number of columns in X, xi is the i-th row of X, and xj is j-th column

of X. Minimizing E(S2) is equivalent to minimizing the sum of squares of the off-diagonal

elements of the correlation matrix of X (Jones and Montgomery 2010). In other words, the

S2 criteria penalizes designs with large correlations between main effects and interactions,

while it favors models with difuse correlations among the various effects. This result is

similar to the D-Optimal design in that it is dependent on the model structure, but in this

case the assumed model is the one with all main effects and all two-factor interactions.
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Model Classification

When using Plackett-Burman designs, there are many possible combinations of columns in

the design matrix that can be assigned to various factors. However, there are limited number

of non-isomorphic designs for a given number of factors being modeled (Wang and Wu 1995).

When two design matrices are non-isomorphic, it means that the one design matrix cannot

be formed by row and column operations on the other. The choice of columns is not arbitrary

and has an impact on the estimability of two-way interactions.

For a 12-run Plackett-Burman design, for k ≤ 4, there are enough runs to estimate all

four main effects, and all
(
4
2

)
= 6 two-factor interactions. In the case of n=5 or 6, however,

there are two non-isomorphic designs (Wang and Wu 1995). For k=5, the first is called

design 5.1, and is characterized by having a duplicate run. Design 5.2 has a mirror image

run. Similarly, designs for k=6 (6.1 and 6.2) have the same properties. These designs alter

the number of estimable two-factor interactions because a mirror image run doesn’t help in

separating confounded factors and interactions.

Projection Estimation Capacity

Loeppky, Sitter, and Tang (2007) introduce another approach to evaluating a design matrix.

Given an n × m design matrix D, define a sequence of length m that has elements pk(D)

that equal the number of subsets that have k main effects and all their associated two-

factor interactions all estimable. This sequence can not generally be optimized for all k,

so a design that is best for a specific number of k main effects is the optimal choice under

this criterion. This method also makes the assumption that given a set of main effects, all

two-factor interactions involving these main effects are likely to be important. Empirically

this has not been the case as we will discuss later, and it is an assumption that we would

like to relax.
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2.2 Design Analysis

In all reduced run models with fewer runs than a full factorial of all factors, there are more

factors and interactions than there are degrees of freedom. If all main effects and interactions

were significant, we would not be able to obtain estimates of all these factors and interactions

without performing additional runs of our experiment. We have two principles that we can

appeal to however. The first is effect sparsity, which says that not all effects are likely to

be significant (Lawson 2002). The second is the effect heredity princple which says that

significant interactions are more likely to involve significant main effects than main effects

that are not significant (Lawson 2002). In a design with a complex alias structure, we can

estimate some otherwise inestimable interaction terms if we only estimate a subset of the

main effects (Lawson 2002).

The modeling strategy given by both Hamada and Wu (1992) and Lin (1998-1999)

is to use a forward stepwise selection in two stages. The first stage is a forward selection

for the main effects and next stage is for the interaction terms. This allows as many main

effects as are significant to be inserted into the model before considering interactions. As

soon as additional factors do not seem statistically relevant, the process is halted.

Chipman et al. (1997) add a Bayesian approach to the variable selection method.

This is accomplished by placing a normal mixture prior on each variable, a mixture of a

“significant” normal and an “insignificant” normal. To apply this method the experimentor

must be able to specify priors for what significant means relative to what insignificant means.

2.3 Empirical Prevalence of Two-Factor Interactions

The design selection methods defined previously all hinge generally on the idea that many of

the two-factor interactions involving the significant main effects will also be important. Em-

pirically this has not been the case. Bergquist, Vanhatalo, and Nordenvaad (2011) recently

showed, in a literature review of a broad range of studies, that the number of two-factor

interactions that they found significant was only 7 out of 174, or about 4%. Based on these
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results, we do not assume that all two-factor interactions associated with significant main

effects will be significant, but we would like to have a high probability that small subsets of

two-factor interactions are estimable without additional runs. Table 2.1 shows the results

of the literature search done by Bergquist, Vanhatalo, and Nordenvaad (2011). It shows the

aggregates of the studies they examined and then the results separated into full factorial

and fractional factorials.

Table 2.1: Rate of Active Contrasts in Experiments

All experiments Tested in total Number of active effects Active/tested
Contrasts of effect 637 121 0.19
Main factor 160 85 0.53
Two-factor interaction 320 31 0.10
Three-factor interaction 100 2 0.02
Only full factorials Tested in total Number of active effects Active/tested
Main factor 94 56 0.60
Two-factor interaction 146 24 0.16
Three-factor interactoin 96 2 0.02
Only fractional factorials Tested in total Number of active effects Active/tested
Main factor 66 29 0.44
Two-factor interaction 174 7 0.04
Three-factor interaction 0 0 –

Since this project is focused on reduced run experiments, we look at the fractional

factorial section of Table 2.1 to see the prevelance of two-factor interactions. This empirical

result is the basis for our developing a method that doesn’t attempt to optimize toward a

model that contains all the two-factor interactions or an arbitrary subset of them.
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chapter 3

METHODS

The purpose of this study is to find reduced-run designs that maximizes the probability that

we can estimate a small subset of two-factor interactions that correspond to the main effects

that are significant in an experiment. Since we don’t believe that all two-factor interactions

will be significant, our reduced-run experiments try to find important effects and interactions

without exploring every possible effect and interaction. The result of the methods presented

here will be to show that we can find useful, reduced run designs for evaluating the important

main effects and two-factor interactions that have maximum a priori chance of not needing

additional runs.

3.1 Variation of D-Optimality

D-Optimality, that is the minimization of det([X ′X]−1), has the limitation of being tied

to the specific assumed model represented by the design matrix X. This is equivalant to

maximizing det([X ′X]) which is computationally simpler and will be used for this project.

Our goal is to avoid the limitation of having an assumed model.

To do this we need to create a metric that accounts for the fact that only a handful of

two-factor interactions are likely significant, as stated by Bergquist et al. (2011). For a given

number of main effects, which will vary according to the experiment, we want to consider a

reasonable number of possible two-factor interactions that we will call t. Reasonable in this

sense is based on the literature search done by Bergquist et al. (2011) indicating empirically

that it is unlikely that a large proportion of possible two-factor interactions will be significant.

For a given set of s main effects, we will consider every possible combination of the

main effects combined with t of the associated two-factor interactions. For each combination

we calculate Dij = log(max(det([X ′ijXij]), 1)) where Xij is the design matrix of the main

13



effects i with two-factor interactions j. We then sum over j to get Di =
∑

j Dij. This is

a monotone transform of a geometric average, except in the case where we have a singular

X ′ijXij matrix where we multiply by 1 instead of 0.

For example, for a Plackett-Burman design of 12 runs, there are 11 columns in the

design matrix. If we begin by taking 5 main effects and want to consider the scenario where

we have potentially 3 significant two-factor interactions without knowledge of what they are

beforehand, then there are
((5

2)
3

)
= 120 combinations of sets of 3 two-factor interactions. For

each of the 120 combination of 3 two-factor interactions, we construct the design matrix

Xij, and calculate Dij = log(max(det([X ′ijXij]), 1)) and then sum over j = 1, . . . , 120 to get

Di =
∑120

j=1Dij.

In general, we can perform this analysis for s main effects and t two-factor interactions

as long as the number of main effects plus the number of two factor interactions is less than

the number of runs in the experiment, that is n > s + t. For this case we will have
(
s
2

)
total two-factor interactions and we will look at each combination of t of them for a total

of
((s

2)
t

)
total subset models. For each subset of two-factor interactions combined with the

main effects, we will calculate Dij and add them together.

The sum Di represents the value for a particular subset of main effects. If we evaluate

Di for every
(
n−1
s

)
possible subset of s main effects, we can determine which design a priori

has the highest likelihood of having estimable two-factor interactions without having to

perform additional runs.

3.2 Percentage of estimable subsets

Another approach is to determine the number of subsets of main effects and 3 two-factor

interactions that are estimable. In the Variation of D-Optimality method (Section 3.1), we

calculated a log sum of determinants, but it would also be useful to know the percentage of

subset designs that had non-zero determinants. This represents the probability that we do

not have to perform additional runs under the assumed number of main effects and two-factor

14



interactions. This is performed simply by counting the number of non-zero determinants

when calculating Di and dividing by the total number of subsets,
((s

2)
t

)
.

3.3 Project Algorithm

For this project we will produce a series of design matrices that, for a given number of main

effects and two-factor interactions, have the maximum probabilty of being able to estimate

the corresponding subset model without further runs. We will do this for the common run

sizes of 12, 16, and 20. The complexity of this problem increases dramatically as the number

of runs in the design matrix increases. To find the best design we consider each of
(
n−1
s

)
possible combinations of s main effects. Each set of s main effects has

(
s
2

)
potential two

factor interactions for which, for this project, we consider only 3 at a time for a total of
((s

2)
3

)
subset designs. We will preserve only the best design and compile a list of the best designs

for each number of runs. The algorithm steps are enumerated in Table 3.1.

Table 3.1: Project Algorithm

1. Find every
(
n−1
s

)
combinations of s main effects from the design matrix, i = 1, . . . , I

where I =
(
n−1
s

)
.

2. For each combination of main effects, consider all possible combinations of t two-factor

interactions, j = 1, . . . , J where J =
((s

2)
t

)
, where t=3.

3. Calculate the modified D-Optimality criterion Dij = log(max(det([X ′ijXij]), 1)) and
note whether the determinant is zero or non-zero.

4. Sum over j to find Di and compute the proportion of non-zero determinants.

5. For the maximum Di, store the associated columns from the design matrix that cor-
respond to those main effects.

Given the stored best designs, we can then choose the optimal columns from the

design matrix for a given run size. There are a number of possible combinations of main

effects and two-factor interactions that are possible for a given run size. In Table 3.2 we have

a list of designs we would like to explore that we believe are reasonable based on Bergquist
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et al. (2011). Their work has shown that about 4% of interactions empirically turn out to

be significant. We chose the number 3 as the number of interactions to investigate as it

is a reasonable number across the range of run sizes and main effect numbers that we will

be investigating. The combinations of run size, main effects, and two-factor interactions

to explore are found in Table 3.2. These are reasonable number of main effects to explore

for each run size and the number of two-factor interactions are reasonable according to

the approximately 4% of significant two-factor interactions from Bergquist, Vanhatalo, and

Nordenvaad (2011).

Table 3.2: Designs to Explore

Number of Runs Number of Main Effects, s Two-Factor Interactions, t
12 5 3

6 3
7 3
8 3

16 6 3
7 3
8 3
9 3

10 3
11 3

20 9 3
10 3
11 3
12 3
13 3
14 3
15 3

16



chapter 4

RESULTS

One of the most notable results that we found was the fact that though there were numerous

subset designs there was only a relatively small set of unique Di values. Therefore, there

is not a single ”best” design, but there are a set of designs that are equivelant in their Di

values. When running the algorithm, we kept track of the result that was the best so far, so

our reported result is the first in the set of ”best” possible choices of columns.

Using these results found in Tables 4.1− 4.3, an experimenter can select the desired

number of experimental runs and main effects to explore, and then select the corresponding

columns as specified in Tables 4.1−4.3. These designs cover the likely numbers of two-factor

interactions and thereby minimize the chance of needing to perform additional runs. These

results relax one of the most binding restrictions in the area of optimal design, which is that

every two-factor interaction involving a significant main effect is important and should be

estimable. On the other hand, we only seek to maximize the chance that any given subset

of 3 two-factor interactions are estimable.

4.1 Optimal Designs

In Tables 4.1 − 4.3 we have the results of our study along with the design matrix used to

generate them. For each design matrix, we have results for each of the combinations of run

size with number of main effects. On each row we have the optimal column selection from

the design matrix for that number of main effects, the Di score for the optimal combination,

and the proportion of subsets that are estimable for that combination. The Di scores on

each row are only comparable to other designs of the same run size and the same number of

main effects.

17



4.2 Use of Tables 4.1 - 4.3

In order for an experimenter to use the result in the from Tables 4.1 − 4.3, they should do

the following

1. Determine the number of main effects to explore.

2. Decide the number of experimental runs to perform (cost vs estimability).

3. In the appropriate table (4.1 − 4.3), select the columns from the design matrix that

correspond to the recommended columns. For example, columns {1 2 3 4 5 6 8 10 13

14 16 17} for a 20-run Plackett-Burman design with 12 main effects.

4. Conduct the experiment using those columns to choose factors levels for each run.

5. Use forward selection to determine significant effects in the model.

Table 4.1: 12-Run Plackett-Burman Design

Run 1 2 3 4 5 6 7 8 9 10 11
1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + - + + - + - -
8 - - + + + - + + - + -
9 - - - + + + - + + - +

10 + - - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

# of Main Effects Optimal Column Selection Di Est. Subsets
5 {1, 2, 3, 4, 5} 2194.037 1.0000
6 {1, 2, 3, 4, 5, 6} 9104.124 1.0000
7 {1, 2, 3, 4, 5, 6, 7} 21785.04 0.7503
8 {1, 2, 3, 4, 5, 6, 7, 8} 32262.43 0.4188
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Table 4.2: 16-Run Hall’s Design

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 - - - - - - - - - - - - - - -
2 - - - - - - - + + + + + + + +
3 - - - + + + + - - - - + + + +
4 - - - + + + + + + + + - - - -
5 - + + - - + + - - + + - - + +
6 - + + - - + + + + - - + + - -
7 - + + + + - - - + - + - + - +
8 - + + + + - - + - + - + - + -
9 + - + - + - + - - + + + + - -

10 + - + - + - + + + - - - - + +
11 + - + + - + - - + + - + - - +
12 + - + + - + - + - - + - + + -
13 + + - - + + - - + - + + - + -
14 + + - - + + - + - + - - + - +
15 + + - + - - + - + + - - + + -
16 + + - + - - + + - - + + - - +

# of Main Effects Optimal Column Selection Di Est. Subsets
6 {1, 2, 4, 8, 10, 12} 10620.22 1.0000
7 {1, 2, 4, 8, 10, 12, 15} 34106.02 0.9947
8 {1, 2, 4, 7, 8, 10, 12, 15} 90121.77 0.9603
9 {1, 2, 4, 7, 8, 9, 10, 12, 14} 166358.2 0.7559

10 {1, 2, 4, 7, 8, 9, 10, 11, 12, 14} 221737.2 0.4684
11 {1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13} 234881.2 0.2533
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Table 4.3: 20-Run Plackett-Burman Design

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 + + - - + + + + - + - + - - - - + + -
2 - + + - - + + + + - + - + - - - - + +
3 + - + + - - + + + + - + - + - - - - +
4 + + - + + - - + + + + - + - + - - - -
5 - + + - + + - - + + + + - + - + - - -
6 - - + + - + + - - + + + + - + - + - -
7 - - - + + - + + - - + + + + - + - + -
8 - - - - + + - + + - - + + + + - + - +
9 + - - - - + + - + + - - + + + + - + -

10 - + - - - - + + - + + - - + + + + - +
11 + - + - - - - + + - + + - - + + + + -
12 - + - + - - - - + + - + + - - + + + +
13 + - + - + - - - - + + - + + - - + + +
14 + + - + - + - - - - + + - + + - - + +
15 + + + - + - + - - - - + + - + + - - +
16 + + + + - + - + - - - - + + - + + - -
17 - + + + + - + - + - - - - + + - + + -
18 - - + + + + - + - + - - - - + + - + +
19 + - - + + + + - + - + - - - - + + - +
20 - - - - - - - - - - - - - - - - - - -

# of Main Effects Optimal Column Selection Di Est. Subsets
9 {1 2 3 4 5 8 13 15 16} 245490.4 1.0000

10 {1 2 3 4 6 8 13 14 16 17} 525426.1 0.9848
11 {1 2 3 4 5 6 8 13 14 16 17} 1032827 0.9918
12 {1 2 3 4 5 6 8 10 13 14 16 17} 1896498 0.9177
13 {1 2 3 4 5 6 7 8 9 10 14 17 18} 3262855 0.9566
14 {1 3 4 5 6 8 9 10 11 12 15 16 18 19} 5187927 0.9035
15 {1 2 4 5 6 7 8 9 10 11 12 13 16 17 19} 7226388 0.7844
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chapter 5

CONCLUSIONS AND FURTHER STUDY

We believe the results of this project offer good estimability for main effects and a likely

number of two-factor interactions in experiments with relatively high numbers of main effects

compared to the number of experimental runs. Jones and Montgomery (2010) consider 16-

run designs with up to 8 main effects and show that is possible to get greater numbers

of main effects with reasonable probability of not having the need to perform additional

runs. The criteria proposed by Loeppky et al. (2007) have the estimability of two-factor

interactions dependent on the number of main effects that are significant. The models they

propose are optimized for being able to able to estimate all two-factoer interactions associated

with significant main effects up to a certain number of main potentially significant main

effects. Our modified D-Optimality criteria considers only that any small subset of two-

factor interactions be estimable with our main effects without performing additional runs.

Considering only a small subset of two-factor interactions allows for more main effects to be

significant without it altering the probable estimibility of the two-factor interactions.

In this study, we considered only Plackett-Burman designs for the 12- and 20-run

designs and Hall’s design type V for the 16-run design. There are other designs that may

result in better Di results for a given run size and number of main effects. There is also

the potential for considering designs of larger size such as a 24-run design. The problem

currently is that for the 20-run designs, running the algorithm for each number of main

effects took at least 24 hours, and a couple took as long as 45 hours. This makes an analysis

of a particular design matrix computationally burdensome for run sizes above 16. This might

be able to remedied, at least partially, through optimization. Since the subset designs are

often equivelant in their Di results, work to prescreen the designs and determine which will
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produce equivalent results could potentially reduce computation time tremendously. There

is nothing about the computations in this algorithm that depend on the previous iteration,

so the process could also be parallelized to great effect.

It would also be interesting to explore the relationship between Di and the proportion

of estimable subsets. They don’t always increase together and it’s not clear what is the

optimal trade off between estimability and orthogonality. A high number of estimable subsets

could mean that there are a lot of highly colinear factors, whereas a large Di signifies that the

average othogonality of the subset matrices is very high but doesn’t say how many subsets

are estimable.
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appendix a

CODE TO ANALYZE DESIGN MATRICES

library(BsMD)

library(R.oo)

library(FrF2)

library(xtable)

rm(list=ls())

data(PB12Des)

pb12<-PB12Des

hall5<-rbind(

c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1),

c(-1,-1,-1,-1,-1,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1),

c(-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1),

c(-1,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1),

c(-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1),

c(-1, 1, 1,-1,-1, 1, 1, 1, 1,-1,-1, 1, 1,-1,-1),

c(-1, 1, 1, 1, 1,-1,-1,-1, 1,-1, 1,-1, 1,-1, 1),

c(-1, 1, 1, 1, 1,-1,-1, 1,-1, 1,-1, 1,-1, 1,-1),

c( 1,-1, 1,-1, 1,-1, 1,-1,-1, 1, 1, 1, 1,-1,-1),

c( 1,-1, 1,-1, 1,-1, 1, 1, 1,-1,-1,-1,-1, 1, 1),

c( 1,-1, 1, 1,-1, 1,-1,-1, 1, 1,-1, 1,-1,-1, 1),

c( 1,-1, 1, 1,-1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1),

c( 1, 1,-1,-1, 1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1),

c( 1, 1,-1,-1, 1, 1,-1, 1,-1, 1,-1,-1, 1,-1, 1),

c( 1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1,-1, 1, 1,-1),

c( 1, 1,-1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1))

pb20<-rbind(

c( 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1),

c(-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1),

c( 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1),

c( 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1),

c(-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1),

c(-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1),

c(-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1),

c(-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1),

c( 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1,-1),
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c(-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1, 1),

c( 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1),

c(-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1, 1),

c( 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1),

c( 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1, 1),

c( 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1, 1),

c( 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1,-1),

c(-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1,-1),

c(-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, 1),

c( 1,-1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1),

c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1))

logsum <- function(x)

{

sum(log(x))

}

###########################################################

# Function : matrixEvaluation #

# Input : design matrix containing main effects only. #

# number of main effects, number of 2-FI’s #

# Output : Breakdown of D_i’s, estimable subsets, #

# Best columns, and time elapsed

# Author : Kenneth Fairchild, 2011 #

###########################################################

matrixAnalysis <- function(designmatrix,n1fi,n2fi)

{

print(paste(nrow(designmatrix),"-run, ",n1fi," MEs and ",n2fi," 2fis",sep=""))

ptm<-proc.time()

X<-as.matrix(designmatrix)

colnames(X)<-intToChar(65+0:(ncol(X)-1))

Xf<-X

for(i in 1:(ncol(X)-1))

{

for(j in (i+1):ncol(X))

{

Xf<-cbind(Xf,Xf[,i]*Xf[,j])

colnames(Xf)[ncol(Xf)]<-paste(colnames(Xf)[i],colnames(Xf)[j],sep="")

}

}

logsums<-rep(0,choose(ncol(X),n1fi))

estsubsets<-rep(0,choose(ncol(X),n1fi))
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#Combinations of "n1fi" main effects chosen from columns in the design matrix

combs<-combn(1:ncol(X),n1fi)

cnXf<-colnames(Xf)

outputdata<-NULL

bestcols<-NULL

bestdet<-0

for(i in 1:ncol(combs))

{

#Two-Factor Interactions associated with the main effects from combination i

itwofi <- combn(combs[,i],2)

names2fi <- paste(colnames(X)[itwofi[1,]],colnames(X)[itwofi[2,]],sep="")

#Ordered reference numbers for the 2-fi’s associated with i

refitwofi <- rep(0,length(names2fi))

for(k in 1:length(names2fi))

{

refitwofi[k] <- which(cnXf==names2fi[k])

}

#Every combination of 3 2-fi’s

subcombs <- combn(refitwofi,3)

num0det<-0

det<-0

for(j in 1:ncol(subcombs))

{

#Matrix of: Main effects from main effect combination i,

# and 2-fi subcombination j

Xs<-Xf[,c(combs[,i],subcombs[1,j],subcombs[2,j],subcombs[3,j])]

det<-log(max(det(t(Xs)%*%Xs),1))

if(det==0)

{

num0det<-num0det+1

}

logsums[i]<-logsums[i]+det

}

logsums[i]<-round(logsums[i],4)
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estsubsets[i]<-1-num0det/ncol(subcombs)

if(logsums[i]>bestdet)

{

bestdet<-logsums[i]

bestcols<-combs[,i]

}

}

length(logsums[which(logsums==max(logsums))])/length(logsums)

print("------------------------------------------------")

print(table(logsums))

print("------------------------------------------------")

print(table(estsubsets))

print("------------------------------------------------")

print("Best Columns")

print(bestcols)

print(bestdet)

print("------------------------------------------------")

print(proc.time()-ptm)

outputdata<-cbind(rownames(as.matrix(table(estsubsets))),as.matrix(table(logsums)))

write.csv(outputdata,paste("c:/filepath/pb",

nrow(designmatrix),"m",n1fi,"i",n2fi,".csv",sep=""))

return(list(logsums,bestcols))

}

pb12o6t3<-matrixAnalysis(pb12,6,3)

pb12o7t3<-matrixAnalysis(pb12,7,3)

pb12o8t3<-matrixAnalysis(pb12,8,3)

pb12o9t3<-matrixAnalysis(pb12,9,3)

pb16o6t3 <-matrixAnalysis(hall5, 6,3)

pb16o7t3 <-matrixAnalysis(hall5, 7,3)

pb16o8t3 <-matrixAnalysis(hall5, 8,3)

pb16o9t3 <-matrixAnalysis(hall5, 9,3)

pb16o10t3<-matrixAnalysis(hall5,10,3)

pb16o11t3<-matrixAnalysis(hall5,11,3)

pb20o9t3 <-matrixAnalysis(pb20, 9,3)

pb20o10t3<-matrixAnalysis(pb20,10,3)

pb20o11t3<-matrixAnalysis(pb20,11,3)

pb20o12t3<-matrixAnalysis(pb20,12,3)

30



pb20o13t3<-matrixAnalysis(pb20,13,3)

pb20o14t3<-matrixAnalysis(pb20,14,3)

pb20o15t3<-matrixAnalysis(pb20,15,3)
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appendix b

CODE TO EVALUATE A SPECIFIC DESIGN

library(R.oo)

##########################################################

# Function : matrixEvaluation #

# Input : design matrix containing main effects only #

# Output : D_i score and proportion est. subsets #

# Author : Kenneth Fairchild, 2011 #

##########################################################

matrixEvaluation <- function(designmatrix)

{

X<-as.matrix(X)

colnames(X)<-intToChar(65+0:(ncol(X)-1))

Xf<-X

for(i in 1:(ncol(X)-1))

{

for(j in (i+1):ncol(X))

{

Xf<-cbind(Xf,Xf[,i]*Xf[,j])

colnames(Xf)[ncol(Xf)]<-paste(colnames(Xf)[i],colnames(Xf)[j],sep="")

}

}

cnXf<-colnames(Xf)

outputdata<-NULL

bestcols<-NULL

bestdet<-0

logsum<-0

estsubsets<-0

#Two-Factor Interactions associated with the main effects from combination i

itwofi <- combn(1:ncol(X),2)

names2fi <- paste(colnames(X)[itwofi[1,]],colnames(X)[itwofi[2,]],sep="")

#Ordered reference numbers for the 2-fi’s associated with i

refitwofi <- rep(0,length(names2fi))

for(k in 1:length(names2fi))
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{

refitwofi[k] <- which(cnXf==names2fi[k])

}

#Every combination of 3 2-fi’s

subcombs <- combn(refitwofi,3)

num0det<-0

det<-0

for(j in 1:ncol(subcombs))

{

#Matrix of: Main effects and 2-fi subcombination j

Xs<-Xf[,c(1:ncol(X),subcombs[1,j],subcombs[2,j],subcombs[3,j])]

det<-log(max(det(t(Xs)%*%Xs),1))

if(det==0)

{

num0det<-num0det+1

}

logsum<-logsum+det

}

return(list(Di = logsum, estsubsets=1-num0det/ncol(subcombs)))

}

matrixEvaluation(X)
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