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ABSTRACT 
 

Pharmacokinetics of Dexamethasone Delivered via Iontophoresis 
 

Justin H. Rigby 
Department of Exercise Sciences, BYU 

Doctor of Philosophy 
 
 

Study Design: Controlled laboratory study. Objectives: To determine the time course of 
dexamethasone sodium phosphate (Dex-P) iontophoresis delivery to underlying tissues using 
microdialysis. Background: The efficacy of iontophoresis at delivering Dex-P through the skin 
is unknown in humans because of the lack of minimally invasive measurement techniques. 
Methods: Sixty-four healthy male participants (age = 24.4 ± 3.3 yrs, height = 71.8 ± 2.5 in, 
weight = 181.8 ± 26.1 lbs) were randomly assigned into one of six groups: 1) 1 mA current, 1 
mm probes depth; 2) 1 mA current, 4 mm probes depth; 3) 2 mA current, 1 mm probes depth; 4) 
2 mA current, 4 mm probes depth; 5) in vivo retrodialysis; and 6) skin perfusion flowmetry. 
Microdialysis probes assess the combined recovery (Dextotal) of Dex-P, dexamethasone (Dex) 
and its metabolite. In vivo calibration of the microdialysis probes occurred via retrodialysis. 
Laser Doppler flowmetry assessed skin perfusion. Results: There was no difference of Dextotal 
between current intensities (P = 0.99) but a greater amount of Dextotal was recovered by the 1 mm 
probe (P < 0.0001) compared to the 4 mm probe. Peak means for the 1 and 2 mA at 1 mm were 
10.8 ± 8.1 and 7.7 ± 5.5 μg/ml and at 4mm being 2.0 ± 0.8 and 1.3 ± 0.9 μg/ml, respectively. 
Skin perfusion rapidly increased during both current intensity treatments, but significantly 
decreased before the conclusion of the 1 mA treatment (P < 0.0001). Peak skin perfusion was 
741.4 ± 408.7% and 711.6 ± 260.8% baseline for 1 and 2 mA intensities, respectively. 
Conclusion: Iontophoresis delivery of Dex-P was successful measured in vivo through human 
skin. Significant concentrations of Dextotal were found regardless of current intensity. Though 
current induced vasodilation occurred, it did not significantly affect the tissue accumulation of 
Dextotal. 
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INTRODUCTION 

Iontophoresis is a transdermal drug delivery system which uses a direct, or galvanic, 

current to transfer ions through the skin to underlying tissues. Dexamethasone sodium phosphate 

(Dex-P) delivered via iontophoresis is commonly used in physical medicine and rehabilitation to 

treat tendinopathies, however, this procedure has inconsistent clinical outcomes.1,8,18,21-23,25,28,33 

Research designed to examine Dex-P iontophoresis efficacy has been lacking due to 

methodological limitations.  

Using animal models, initial research has demonstrated the effectiveness of Dex-P 

iontophoresis at delivering the drug across the epidermis6,12,24 but without accumulation in 

venous blood.5 However, the human epidermis has structural differences from animal models 

making a true evaluation of Dex-P iontophoresis effects on humans unclear with animal models. 

In vivo human studies are limited by an inability to monitor tissue levels of Dex-P with 

minimally invasive techniques. Researchers use indirect methods such as assessing skin 

blanching characteristics2 and venous blood draws31 to examine Dex-P delivery. One group of 

researchers directly measured the concentration of Dex-P in underlying tissues after an 

iontophoresis treatment using tissue biopsies.13,14 After a 40 mA*min iontophoresis treatment 

with Dex-P to the semitendinosus, Gurney et al13 found Dex-P in some but not all biopsy 

samples.  

The inability to adequately characterize Dex-P delivery to underlying tissue during 

iontophoresis leaves us with insufficient data to help optimize iontophoresis parameters and 

thereby limits our ability to explain the inconsistencies in clinical outcomes. We use a minimally 

invasive technique, intradermal microdialysis, to sample the accumulation of Dex-P, its 

biologically active form (dexamethasone, Dex) and its metabolites during iontophoresis delivery. 
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Microdialysis is a method used to sample local exogenous or endogenous compounds 

from interstitial fluid. Microdialysis involves perfusing a probe, which has a semi-permeable 

membrane, with a physiological solution (perfusate) allowing equilibration between the perfusate 

and interstitial fluid. Equilibration of an analyte occurs through a diffusion gradient between the 

interstitial fluid and perfusate resulting in a dialysate containing our analyte of interest.30 Our lab 

has used this technique successfully to examine transdermal drug delivery of lidocaine.9,10  

 One aim of this study was to quantify the time course of Dex-P iontophoresis delivery 

through the skin (at 1 and 4 mm depth) at current intensities of 1 and 2 mA using intradermal 

microdialysis. Based upon current theories for drug delivery with iontophoresis we tested the 

well accepted hypothesis15 that the tissue accumulation of Dex in the underlying skin will follow 

a similar time course when plotted as a function of iontophoresis dose (mA*min) regardless of 

the applied current intensity. 

METHODS 

Participants 

We recruited 64 healthy males (age = 24.2 ± 3.3 y, height = 181.8 ± 26.1 cm, mass =  

82.4 ± 11.8 kg, subcutaneous fat thickness = 0.61 ± 0.19 cm). Females were excluded from this 

study because of potential side-effects of Dex-P on fetal development in pregnant women. Male 

participants were also kept from participating if they had one or more of the following 

conditions: a known allergy to Dex, diabetes, an infection or open wound on the posterior lower 

leg, decreased circulation or sensitivity in the area to be treated, or an injury to either lower 

extremity within the previous 2 mo. 
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The study was approved by Brigham Young University’s Institutional Review Board 

before participant recruitment. All participants provided written informed consent before 

individual data collection began. 

Instruments and Dialysate Analysis 

We used the Triviarion iontophoresis delivery kit (ActivaTek Inc., Salt Lake City, UT) to 

deliver Dex-P to the treatment site. The drug-delivery (cathode) electrode (12.56 cm2) was 

prepared with 2 ml of 0.4% Dex-P while the center of the dispersive (positive) electrode  

(37.5 cm2) was placed 15 cm distal to the Dex-P filled cathode electrode. We used an Iontophor-

II phoresor (model: 6111PM/DX, Life-Tech Inc., Stafford,TX) to deliver the iontophoresis 

treatment.  

The 18 kilo-Dalton linear (3.0 cm) hollow fiber microdialysis probes (150 micron OD) 

were manufactured in our laboratory per instructions described previously by other 

researchers9,10 and gas sterilized with ethylene oxide. We used an infusion pump (model: Pump 

11 VPF; Harvard Apparatus, Holliston, MA) to perfuse the microdialysis probes with sterile 

saline. The depth of the inserted microdialysis probe was verified using musculoskeletal 

ultrasound imaging (model: LogiQ P5, probe type: 12L, General Electric Company, Fairfield, 

CT). 

The concentrations of Dex-P, Dex and its metabolites in each dialysate sample was 

determined by reverse-phase high performance liquid chromatography (RP-HPLC) using a 

previously established method.7 A diode array detector (model: 1260 Infinity, Agilent 

Technologies, Inc., Santa Clara, CA) with a wavelength of 239 nm was used to measure the 

peaks of Dex-P and DEX at 4.2 and 12.4 min, respectively. The lower limit quantification of 
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Dex-P and Dex was 100 ng/mL and 50 ng/mL, respectively. The standard curves for each 

analyte is shown in FIGURE 1.  Analysis of dialysis samples by RP-HPLC revealed a peak at  

5.8 min which represented the Dex metabolite, dexamethasone-21-oic acid (Dex-21-oic acid), 

and was quantified using a combination of the Dex-P and Dex calibration curve. 

Skin perfusion was measured via laser Doppler flowmetry (LDF). Four laser Doppler 

skin probes (model: VP7a, Moore Instruments, Wilmington, DE) were interfaced with a laser 

Doppler monitor (Moore Instruments, Wilmington, DE). The laser Doppler output was 

monitored using Powerlab (ADInstruments Inc., Colorado Springs, CO) in order to measure 

changes in skin perfusion.  

Procedures 

Participants reported to the lab for a single visit. Participants were screened for the 

inclusion and exclusion criteria. Each reviewed and signed the Institutional Review Board 

approved consent form. Once officially enrolled in the study, the participants were randomly 

assigned to one of the six groups: 1) 1 mA current intensity with probes depth of 1 mm, n = 8;  

2) 1 mA current intensity with probes depth of 4 mm, n = 8; 3) 2 mA current intensity with 

probes depth of 1 mm, n = 8; 4) 2 mA current intensity with probes depth of 4 mm, n = 8;  

5) in vivo retrodialysis of Dex-P and Dex, n = 8 ; and 6) skin blood flowmetry, n = 24. We chose 

to insert the deep probes at a depth of 4 mm because the approximate depth of commonly treated 

tendons is 4 mm below the surface of the skin.4 

Microdialysis Probe Placement for Dex-P and Dex Recovery during Iontophoresis 

Three linear microdialysis probes were inserted in the left posterior lower leg at the depth 

based on the participant’s group assignment. During the microdialysis probe placement, 

participants lay prone on a treatment table. An 8” x 8” area on the left posterior lower leg of the 
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participant was shaved. We visualized the largest girth of the participant’s lower leg. Marks were 

made on the participant’s posterior lower leg indicating where the guide needles would be 

inserted and exit. From the surface of the skin on the posterior lower leg, we measured down the 

medial side 1 or 4 mm (based on group assignment) and made a mark with a felt marker. From 

this mark, we measured lateral 5 cm and made a mark where the probe would exit the lower leg. 

The insertion and exit sites were then cleansed with an iodine swab.  

Using aseptic procedures, three sterile 3.5 in. 27 gauge pediatric spinal tap needles 

(reference 405081, BD Company, Franklin Lakes, NJ) were inserted into the subcutaneous tissue 

of the participant’s left posterior lower leg at the marked sites, either 1 or 4 mm below the 

surface of the skin (actual depth = 1.3 ± 0.3 or 4.0 ± 0.7 mm). The depth of each needle was 

verified using musculoskeletal ultrasound imaging. The microdialysis probes were fed through 

each guide needle and the guide needles were removed leaving the probes in place in the lower 

leg. Once the probes were inserted, sterile saline solution was perfused through the probe at  

1.2 µl/min for 60 min and collected as the pretreatment dialysate. This period allowed the tissue 

to recover from the mild trauma associated with the guide needle insertion. 

Once the 60 min recovery period was complete, the prepared drug-delivery electrode was 

placed on the skin directly over the microdialysis probes. The dispersive electrode was placed  

15 cm distally from the drug delivery electrode. The iontophoresor leads were attached to the 

respective electrode and the unit was turned on to deliver the iontophoresis treatment based on 

the participant’s group assignment (1mA or 2mA for 120 mA*min). Starting with the initiation 

of Dex-P iontophoresis, dialysate from each microdialysis probe was collected in 15 min 

intervals (1mA group = 8 samples and 2 mA group = 4 samples) with the perfusion rate 

maintained at 1.2 µl/min. After the treatment was completed, we collected an additional 4 
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dialysate samples at 15 min intervals. Immediately after each collection period, dialysate samples 

were stored at -20°C until they were analyzed using RP-HPLC. 

Microdialysis Probe Placement for Dex-P and Dex Retrodialysis 

Retrodialysis is an in vivo microdialysis calibration technique based on the theory that in 

vivo loss represents in vivo recovery. During retrodialysis, the microdialysis probe was perfused 

with the analytes of interest (2 µg/mL of Dex-P and Dex) at the same perfusion rate (1.2 µl/min) 

and the dialysate was monitored for the disappearance of the analyte from the probe. The relative 

recovery (RR) was then calculated as a percent.30,32 

𝑅𝑅 = �1 −
�𝐷𝑟𝑢𝑔𝑑𝑖𝑎𝑙𝑦𝑠𝑎𝑡𝑒�
�𝐷𝑟𝑢𝑔𝑝𝑒𝑟𝑓𝑢𝑠𝑎𝑡𝑒�

 � 𝑥 100  

Participants randomly assigned to the retrodialysis group had a single microdialysis probe 

inserted into their left posterior lower leg using the same insertion techniques as described earlier 

(depth = 3.2 ± 1.4 mm). This microdialysis probe was perfused with sterile saline at 1.2 μL/min 

for 60 min as a recovery period. Following the recovery period, sterile saline with 2 μg/mL of 

Dex-P and 2 μg/mL of Dex-P was perfused through the microdialysis probe at 1.2 μL/min. Three 

dialysates were collected at 45 min intervals and were analyzed with RP-HPLC. 

RP-HPLC Analysis 

For consistency, standard curves of Dex-P and Dex concentrations were analyzed both 

prior to and at the conclusion of collecting all dialysis samples. The mean standard curves were 

used to determine the concentrations of Dex-P and Dex in each dialysis sample.  

Skin Perfusion Monitoring 

Four LDF probes were attached to the posterior lower leg of the participants randomly 

assigned to the skin blood flow group. The flow probes were placed within the drug delivery 

chamber (adjacent to the center electrode, 0 cm), on the periphery of the drug chamber (2 cm 
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away from center of electrode), on the periphery of the electrode (4 cm away from center of 

electrode) and between the active and dispersive electrodes (6 cm away from center of 

electrode). The placements of the probes are visualized in FIGURE 2. The skin of the posterior 

lower leg was cleaned with isopropyl alcohol and the iontophoresis electrodes and LDF probes 

were then applied. Baseline skin perfusion was established during a 5-min stabilization period. 

Then, a 120 mA*min iontophoresis treatment with Dex-P was applied with a current intensity of 

either 1 (n = 12) or 2 (n = 12) mA. The treatment was randomly assigned and lasted 120 or  

60 min, respectively. Skin perfusion was monitored and instantaneously recorded throughout the 

treatment and for an additional 60 min after the treatment. Heart rate and blood pressure was also 

measured and recorded every 10 min throughout the treatment and posttreatment.  

Data Analysis 

We used the area under the RP-HPLC generated peaks at migration times of 4.2, 5.9 and 

12.4 min to represent the concentration of Dex-P, Dex-21-oic acid, Dex, respectively, in each 

dialysate sample. Using the RP-HPLC standard curves and our retrodiaylsis RR, we calculated 

the total amount of Dex delivered to the tissue or Dextotal (Dextotal = Dex-P + Dex + Dexmetabolite) 

for each sample. Skin perfusion was normalized by dividing the flux reading (mV) by the mean 

arterial blood pressure (mmHg). Changes in skin perfusion were expressed as a percent change 

in skin perfusion relative to baseline. All variables (Dextotal and skin perfusion) were plotted as a 

function of iontophoresis dose. 

Statistical Analysis 

 A 4 x 5 (group x dose) mixed model ANOVA was used to determine differences between 

the intensities and depths of Dextotal over the iontophoresis treatment. Due to our timing of 

sample collection, we could only compare the groups at 30 mA*min dose increments. 
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 A 2 x 13 (intensity x dose) mixed model ANOVA was used to determine differences 

between skin perfusion and intensities over the iontophoresis dose within the drug delivery 

electrode (0 cm). We only show the data for skin perfusion at the 0 cm site because there was no 

visible change in skin perfusion at the other sites. We compared the group differences in skin 

perfusion at 10 mA*min dose increments. 

 We used JMP Pro 10 (SAS Inc., Cary, NC) for all statistical analyses and alpha was set at 

P < 0.05.  

RESULTS 

The retrodialysis recovery indicated that the microdialysis probes collected 27.4 ± 2.0% 

of Dextotal in the extracellular fluid in vivo. Using the standard curve and retrodialysis recovery 

values, the accumulation of Dextotal as a function of iontophoresis dose is shown in FIGURE 3 

for the different current intensities and probe depths. 

We did not recover a substantial amount of Dex-P from the underlying tissues. We 

recovered Dex in only six of 32 participants with mean concentration of 109.9 ± 88.8 ng/mL 

representing only 2.92% of all Dextotal. The majority of Dextotal recovered by intradermal 

microdialysis was the Dex metabolite, Dex-21-oic acid. The Dex metabolite was recovered in all 

subjects across all samples. 

A greater amount of Dextotal was recovered by the 1mm probes compared to the 4mm 

probes across the final 60 mA*min to 120 mA*min of the iontophoresis treatment (F12,112 = 5.21, 

P < 0.0001). Peak Dextotal at 120 mA*min and 1 mm probe depth for the 1 and 2 mA treatments 

were similar and averaged 10.8 ± 8.1 and 7.7 ± 5.5 μg/ml, respectively. Averaged between 

intensities, this represents approximately 0.23% of the Dex-P placed in the iontophoresis 

chamber. At 4 mm probe depth and 120 mA*min dose Dextotal was similar and averaged  
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2.0 ± 0.8 and 1.3 ± 0.9 μg/ml, for 1 and 2 mA current intensities, respectively. At any given 

probe depth Dextotal was similar for both 1 and 2 mA current intensities across all iontophoresis 

dosages (P > 0.05). 

Skin perfusion increased rapidly during both iontophoresis treatment intensities, 

however, the 1 mA current intensity group showed a significant decrease in skin perfusion before 

the iontophoresis treatment was over (F12,264 = 23.17, P < 0.0001) (FIGURE 4). Peak skin 

perfusion of 741.4 ± 408.7% baseline during 1 mA treatments occurred at 40 mA*min. During  

2 mA treatments, peak skin perfusion of 711.6 ± 260.8% baseline occurred at 110 mA*min. Skin 

perfusion returned to baseline values during the 1 mA treatment intensity at 110 mA*min. While 

skin perfusion returned to baseline in the 2 mA intensity group 60 min after terminating the 

iontophoresis protocol.  

DISCUSSION 

 By combining intradermal microdialysis and RP-HPLC, we successfully measured in 

vivo extracellular Dextotal accumulation at 1 and 4 mm depth in the dermis during iontophoresis 

in human participants. Earlier studies monitored only Dex concentrations and found little or no 

accumulation of Dex in tissue underlying the iontophoresis site. For example, Gurney and 

Wascher,13,14 used tissue biopsies to measure in vivo Dex accumulation. However, only 7 out of 

16 participants had any measureable levels of Dex in the biopsy sample of the semitendinosus 

tendon 85-235 min after a 40 mA*min iontophoresis treatment. In the 7 samples that Dex was 

detected the mean concentration was 6.6 ± 3.2 ng/g.14 Similarly, we recovered Dex in only 6 of 

32 participants with a mean concentration of 109.9 ± 88.8 ng/mL.  However, this represented 

only a small fraction (< 3%) of Dextotal. The major Dex component of our dialysate samples was 

the Dex metabolite, Dex-21-oic acid. 
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Dex-P is an anionic prodrug with an ester link at the 21 carbon to increase the aqueous 

solubility of Dex. Mammalian skin contains esterases which hydrolyzes Dex-P into Dex.24 Based 

on our HPLC analysis,7 the metabolite product of the iontophoresis delivery of Dex-P was 

exclusively Dex-21-oic acid. As such, Dex-P does not appear to completely hydrolyze into pure 

Dex, but instead into an acid ester form. Dex-21-oic acid has a lower affinity for binding to the 

glucocorticoid receptor and has a diminished anti-inflammatory potential compared to Dex.17 To 

our knowledge, our study was the first to report a metabolite conversion of Dex-P when 

delivered through human skin. Animal models have reported a more pure conversion rate of 

Dex-P to Dex in cerebrospinal fluid and plasma.20,29 

During the iontophoresis treatment, tissue levels of Dextotal easily exceeded the minimally 

effective dose for Dex. Heiss et al16 established the ED50 (minimally effective dose) of Dex as  

75 ng/g indicating that small concentrations of Dex have anti-inflammatory effect. Dextotal 

concentrations at both measurement depths surpassed the minimally effective dose of Dex within 

the first 15 mA*min. However, Dex-21-oic acid has a lower affinity for the glucocorticoid 

receptor. Though we noted Dextotal greater than the minimally effective dose for Dex, it is 

unclear what the minimal dose of Dex-21-oic acid is needed to provide sufficient anti-

inflammatory action. 

The assumption of iontophoresis is that the drug concentration delivered through the skin 

is linearly proportional to the applied iontophoresis dose, which is defined as the current 

intensity multiplied by the treatment time.26 Under this assumption, Dextotal should be similar at 

the same iontophoresis dose, regardless of current intensity. We found similar tissue levels of 

Dextotal during 1 and 2 mA treatment intensities. These data provide in vivo data to support the 

widely held expectation that transdermal drug delivery by iontophoresis is depended almost 
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exclusively by iontophoresis dose. Our data refutes speculation by Anderson et al2 that smaller 

iontophoresis intensity may drive more Dex into the tissue. Anderson et al2 indirectly assessed 

Dex delivery by measuring skin blanching, a vasoconstriction reaction attributed by Dex, after a 

40 mA*min iontophoresis treatment, they noted that greater skin blanching occurring for a 

longer period of time and with greater magnitude when lower current intensities (0.05 to  

0.16 mA) were used. 

During the constant influx of drug ions during iontophoresis, passive diffusion and 

washout by blow flow is to be expected. In animal models, iontophoresis delivery creates a depot 

of the drug in the outer layers of the epidermis.24 In addition, it appears that the delivery of 

anionic drugs via the cathode produces a greater depot development than anode delivery of 

drugs.19,27 The anionic drug Dex-P competes with chloride ions during iontophoresis. The small 

molecular weight of chloride ions facilitates the direct current to carry these ions deeper into the 

tissue thereby leaving the larger Dex-P ions to form a depot in the epidermis.2,34 Deeper 

penetration of Dex-P is hypothesized to occur by passive diffusion and/or convective transport 

by the microvasculature system.2 There was a noticeably smaller amount of Dextotal at the 1 mm 

site, but not an increase in Dextotal at the deeper 4 mm site after the 120 mA*min iontophoresis 

treatment. It is likely that tissue clearance of Dextotal by the microvasculature system prevented 

any immediate diffusion mediated increase in Dextotal at the 4 mm sample site. Gurney et al14 

noted an association between extraction time and Dex concentration. At the semitendinosus 

tendon, greater Dex was associated with a longer extraction time, indicating that it may take 

several hours for passive diffusion of the drug to occur. 

Cathodal iontophoresis produces cutaneous vasodilation. Berlinger3 reported that the 

superficial vasculature increased 700% from baseline during cathode iontophoresis. The large 
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increase in skin perfusion at the cathode is approximately 75% of the maximum cutaneous 

vascular conductance.11 These results are similar to our findings. However, in the 1 mA current 

intensity group skin perfusion began to return to baseline at approximately 40 mA*min and 

eventually reached baseline levels before the end of the iontophoresis treatment. In contrast, skin 

perfusion remained elevated throughout the 2 mA current treatment and returned to baseline only 

after the iontophoresis was terminated, requiring at least 60 min to return to baseline.  

Current induced vasodilation, noted in cathode iontophoresis, is thought to be mediated 

by an axon reflex. The current induces primary afferent fiber excitation of C fibers creating a 

release of its vasodilator neurochemicals, such as substance P and calcitonin gene-related 

peptides.35 Also, the production of prostaglandins is stimulated during direct current 

iontophoresis leading to vasodilation. Prostaglandins are also involved in hyper-sensitizing 

receptors located on small sensory neurons lowering the firing threshold of these neurons, 

creating an amplified current induced vasodilation.35 As noted, we found differences in skin 

perfusion between our current intensities. It is possible that the 1 mA current stimulated afferent 

nerves fibers and resulted in the initial vasodilator response, but habituation occurred resulting in 

a reduced vasodilator signal. Conversely, the 2 mA current maintained current induced 

vasodilation throughout the treatment. More interesting is that the differences in current induced 

vasodilation between our two current intensities did not significantly affect the concentration of 

Dextotal in the tissues. Future research is needed to understand if greater current intensities would 

produce sufficient vasodilation to actually impact drug delivery to the underlying tissues. 

  Variations in our methods from previous studies13,14,31 allowed us to monitor several 

time points during iontophoresis delivery to characterize the rate of accumulation of Dex in 

human tissue. First, we used a longer iontophoresis dose than the majority of studies. Anderson 
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et al2 and Gurney and Wascher13 used 40 mA*min iontophoresis doses, while we used a 120 

mA*min dose. Our iontophoresis delivery system did not produce any skin burns with this high 

dose. However, our maximum current intensity was only 2.0 mA (current density = 0.16 

mA/cm2). Second, we measured Dextotal found in the extracellular fluid space using 

microdialysis. Microdialysis provided us a method to measure the time course of tissue 

accumulation of Dex. The lower leg provided us a safe place to insert the microdialysis probes, 

but some assumptions of the iontophoresis delivery and pharmacodynamics were made. We 

assumed that the iontophoresis delivery and pharmacodynamics of Dex-P through the stratum 

corneum at the posterior lower leg would be similar as if done at common treatment sites over a 

tendon. We also assumed a greater concentration of Dextotal would lead to greater cellular and 

clinical outcome responses.  

Limitations 

 Our study has limitations. We used healthy individuals in order to describe the delivery 

characteristics of Dex-P when delivered via iontophoresis at two different current intensities. We 

assume that the delivery of Dex-P through the skin would be similar in an injured population. 

Our results are limited to inferences made between the two current intensities, 1 and 2 mA, 

which we selected. 

Future Research 

A comprehensive examination of all iontophoresis parameters in an effort to optimize 

drug delivery has yet to be performed in human participants. Future studies using different 

current intensities and different iontophoresis devices (i.e. wired phoresors vs. wireless patches) 

is required to establish effective parameters for clinical iontophoresis of Dex-P. 
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CONCLUSION 

 Using microdialysis, we successfully measured transdermal drug delivery of Dex-P over 

the course of an iontophoresis treatment in vivo through human skin. When delivered through 

human skin Dex-P accumulated primarily as the hydrolyzed and less potent Dex metabolite, 

Dex-21-oic acid. However, based on the significant concentrations of Dextotal, compared to the 

minimally effective dose of Dex, which was recovered at 1 and 4 mm tissue depths, we believe 

Dex-P iontophoresis to be an effective modality at treating tendonitis conditions. Dextotal 

recovery increased throughout the iontophoresis treatment at similar rates between the 1 and 2 

mA current intensities indicating no difference in drug delivery between our high and low 

current intensities. Current induced vasodialation was prolonged throughout the treatment when 

treating with 2 mA current intensity, but did not significantly affect the tissue accumulation of 

Dextotal. 
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FIGURE 1. RP-HPLC standard curves of dexamethasone sodium phosphate (Dex-P), 
dexamethasone (Dex) and their combined standard curve for Dexamethasone-21-oic acid 
calculation. Each point represents the mean area under the absorbance (239 nm) time curve 
(AUC) of duplicate runs. 
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FIGURE 2. Placement of laser Doppler flowmeter probes to measure skin perfusion during 
iontophoresis treatment. Laser Doppler flowmeter probes were placed inside the drug chamber (0 
cm), just outside the drug chamber (2 cm) and 4 and 6 cm from the center of the drug electrode. 
 



20 
 

 

 

FIGURE 3. Dextotal concentrations (Dextotal = Dexamethasone sodium phospate+Dexamethason+Dexamethasone-21-oic acid) between 
1 and 2 mA intensities and different depth over a 120 mA*min iontophoresis dose. Values are mean ± 1 SEM for 8 participants in 
each group. ∗= Indicates significant difference of Dextotal between 1 and 4 mm at a given current intensity (p<0.05). 
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Figure 4. Superficial skin perfusion response of 1 and 2 mA current intensities during a 120 mA*min iontophoresis dose. Vales are 
mean ± 1 SEM for 12 participants in each group. ∗ = Indicates significant difference between 1 and 2 mA treatment intensities 
(p<0.05). 
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Appendix A 
Reverse-Phase Higher Performance Liquid Chromatography Methods
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Instrument Model: Agilent 1260 (Agilent Technologies Inc., Santa Clara, CA) 
Column: Zorbax eclipse XDB-C8 4.6 x 150 mm 5μm 
 
Binary Pump (model: G1212B) 
Flow: 0.650 mL/min 
Use solvent types: Yes 
Low pressure limit: 0.30 bar 
High pressure limit: 600.00 bar 
Maximum flow gradient: 100.00 mL/min2 
 
Stop time: 17.00 min 
Post time: 1.00 min 
 
Solvent: Aminium formade (20mM) / acetonitrile (70/30) in pH 3.8 adjusted with formic acid 
 
 
Sampler (model: G1329B) 
Draw speed: 200.00 μL/min 
Ejection speed: 200.00 μL/min 
Injection volume: 20.00 μL 
 
 
Column Comp. 
Temperature: 45.0° C 
 
 
DAD (model: G4212B) 
Peakwidth: >0.10 min (2.0 sec response time) 
Signals 

A. Wavelength: 239.0 nm (reference 360 nm) 
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