

Brigham Young University BYU ScholarsArchive

All Theses and Dissertations

2009-08-04

The Effects of Abdominal Training on Postural Control, Lower Extremity Kinematics, Kinetics, and Muscle Activation

Matthew J. Gage Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the <u>Exercise Science Commons</u>

BYU ScholarsArchive Citation

Gage, Matthew J., "The Effects of Abdominal Training on Postural Control, Lower Extremity Kinematics, Kinetics, and Muscle Activation" (2009). *All Theses and Dissertations*. 1893. https://scholarsarchive.byu.edu/etd/1893

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

THE EFFECTS OF ABDOMINAL TRAINING ON POSTURAL CONTROL, LOWER EXTREMITY KINEMATICS, KINETICS,

AND MUSCLE ACTIVATION

by

Matthew J. Gage

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Exercise Sciences

Brigham Young University

December 2009

Copyright © 2009 Matthew J. Gage

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Matthew J. Gage

This dissertation has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

Date	J. Ty Hopkins, Chair
Date	Iain Hunter
Date	J. Brent Feland
Date	David D. Draper
Date	William Myrer
Date	Richard Sudweeks

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the dissertation of Matthew J. Gage in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

J. Ty Hopkins Chair, Graduate Committee

Accepted for the Department

Larry Hall Chair, Department of Exercise Sciences

Accepted for the College

Gordon B. Lindsay, Associate Dean College of Health and Human Performance

ABSTRACT

THE EFFECTS OF ABDOMINAL TRAINING ON POSTURAL CONTROL, LOWER EXTREMITY KINEMATICS, KINETICS, AND MUSCLE ACTIVATION

Matthew J. Gage

Department of Exercise Sciences

Doctor of Philosophy

Context: Abdominal training may decrease the risk of lower extremity injuries through improved balance and postural control. Objective: To determine the effect of an eightweek abdominal-training program on center of pressure, lower extremity joint angles, and abdominal muscle activation during a single-leg drop landing. The effects of abdominal training on abdominal muscle thickness was assessed. Design: A cohort research design. Setting: Research laboratory. Other Participants: Sixty healthy physically active college-aged students participated. They were divided into three groups: Control, Chronic ankle instability (CAI), and Healthy. Nineteen Control (age = 22.0 ± 2.72 yrs, mass = 74.1 ± 13.8 kg, height = 172.6 ± 11.3 cm, BMI = 24.8 ± 3.1 %), 21 CAI (age = 22.1 ± 2.3 yrs, mass = 77.6 ± 14.0 kg, height = 175.4 ± 12.3 cm, BMI = 25.1 ± 2.6 %), and 20 healthy (age = 22.9 ± 3.4 yrs, mass = 70.9 ± 15.6 kg, height = 172.2 ± 8.9 cm, BMI = 23.7 ± 3.3 %). Subjects in the CAI group had a history of CAI and functional

ankle instability (FAI). The Ankle Instability Index and the Functional Ankle Ability Measure were used to self-report CAI and FAI respectively. Interventions: The CAI and Healthy groups participated in an eight-week abdominal-training program while the Control group maintained their normal activities of daily living and level of physical activity. Main Outcome Measures: Abdominal muscle thickness was measured biweekly throughout the study. Center of pressure excursion, muscle activation, vertical ground reaction force, and lower extremity joint angles were measured during a single-leg drop landing, pre- and postabdominal training. Results: Muscle thickness at rest increased in the rectus abdominis and external oblique muscles follow training. Eight weeks of abdominal training decreased vertical ground reaction forces and muscle activation down the lower kinetic chain. Center of pressure excursion and velocity were increased following training. Conclusions: Eight-weeks of abdominal training increased abdominal muscle thickness. Training improved neuromuscular efficiency throughout the kinetic chain and may have improved dynamic postural control. Our data also suggest CAI subjects may utilize both feedforward and feedback mechanisms to maintain postural control. Key Words: ankle instability, abdominal training, balance, functional ankle instability, and vertical ground reaction force

ACKNOWLEDGMENTS

To my God and personal Savior, Jesus Christ. Without His strength this would not have been possible. I'm forever grateful for His grace and mercy.

To Michel, I am indebted to you forever, for your unconditional love and the sacrifices you made for my career and our family. You are truly a gift from God. Your encouragement and support was deeply appreciated. I Love You!

To Tanner & Tyson, thank you for moving to Utah. Beside your mother, the two of you are the greatest gifts God has given me. Thank you for coming to the research lab to assist me with data collection. I am so proud to be called your Dad. I Love the two of you so much!

To my parents, without your love and support I would not be who or where I am today. Thank you and don't forget!

To my committee members, without all of your mentoring and guidance this research project and my knowledge would not be what it is today. Thank you for all of your support.

To Dr. Ty Hopkins, I feel blessed that you were my advisor. Your guidance and wisdom helped transform my thinking. Thank you for never misleading me and always having my back. I now admit you were right, EVERYTHING IS NEUROLOGICAL! Thank you for everything.

To the Exercise Sciences faculty and staff and Department of Exercise Sciences, thank you for all your encouragement and support over the past four years. All of you made my family and me feel at home in Utah and at BYU.

To Dr. Matt Seeley, thank you for your mentoring and assistance with Matlab.

To the graduate and undergraduate students I worked alongside, thank you for challenging me and putting up with my grief.

To my research assistants, thank you for all of your help with this research project. It wouldn't have been possible without your assistance.

List of Tablex
List of Figures xi
The Effects of Abdominal Training on Postural Control, Lower Extremity Kinematics,
and Muscle Activation
Abstract2
Introduction4
Methods7
Statistical Analysis19
Results
Discussion
Conclusions
References
Appendix A Prospectus
Introduction
Review of Literature
Methods183
References
Appendix A-1a Ankle instability questionnaires

Table of Contents

List of Tables

Tables

1. Single-leg drop landing instructions	47
2. Sequence of the pretraining data collection session	48
3. Sequence of the post-training data collection session	49
4. Surface electrode placement	50
5. Eight-week abdominal training program	51
6. Description of lower abdominal series	52
7. Abdominal muscle thickness at rest	53
8. Abdominal muscle thickness during abdominal hollowing	54
9. Lower extremity joint excursion and peak angles	55
10. Mean normalized EMG	56
11. Peak normalized EMG	57
12. Center of pressure excursion and velocity	58
13. Data collection time window	59
14. Mean and peak vertical ground reaction force data	60

List of Figures

Figures	
1. Camera set-up for left leg dominance	61
2. Camera set-up for right leg dominance	62
3. Supine hook-lying position	63
4. Single-leg drop landing	64
5. Image of lateral abdominal muscles	65
6. Standardized streak for ultrasound transducer head placement	66
7. Grid overlay and measurement procedure	67
8. Transverse abdominis/internal oblique reference position	68
9. External oblique reference position	69
10. Gluteus medius reference position	70
11. Vastus medialis reference position	71
12. Peroneus longus reference position	72
13. Anterior, lateral, and posterior views of plug-in gait marker placement	73
14. Curl-up starting position	74
15. Curl-up peak position	75
16. Side-bridge starting position	76
17. Neutral spine position	77
18. Sit-up with rotation starting position	78
19. Right elbow to left knee	79
20. Return to starting position	80

21. Left elbow to right knee	81
22. Level 1 Lower abdominal series	82
23. Level 2 Lower abdominal series	83
24. Level 3 Lower abdominal series	84
25. Level 5 Lower abdominal series	85
26. Prone-bridge starting position	86
27. Prone-bridge peak position	87

THE EFFECTS OF ABDOMINAL TRAINING ON POSTURAL CONTROL, LOWER

EXTREMITY KINEMATICS, AND MUSCLE ACTIVATION

Matthew J. Gage, PhD, ATC Department of Exercise Sciences, Brigham Young University, Provo, UT

J. Ty Hopkins, PhD, ATC, LAT, FNATA, FACSM, Associate Professor, Department of Exercise Sciences, Brigham Young University, Provo, UT

Iain Hunter, PhD, Associate Professor, Department of Exercise Sciences, Brigham Young University, Provo, UT

J. Brent Feland, PhD, PT Associate Professor, Department of Exercise Sciences, Brigham Young University, Provo, UT

David D. Draper, EdD, ATC, LAT, FNATA Professor, Department of Exercise Sciences, Brigham Young University, Provo, UT

J. William Myrer, PhD, Professor, Department of Exercise Sciences, Brigham Young University, Provo, UT

Richard Sudweeks, PhD, Professor, Department of Instructional Psychology and Technology, Brigham Young University, Provo, UT

Send correspondence to: Matthew J. Gage 401 N. 4th Street Department of Athletic Training, Arena C-33 Indiana State University Terre Haute, IN 47809 (812) 237-3961 (812) 237-4368 (fax) MattJGage@gmail.com

ABSTRACT

Context: Abdominal training may decrease the risk of lower extremity injuries through improved balance and postural control. Objective: To determine the effect of an eightweek abdominal-training program on center of pressure, lower extremity joint angles, and abdominal muscle activation during a single-leg drop landing. The effects of abdominal training on abdominal muscle thickness was assessed. Design: A cohort research design. Setting: Research laboratory. Other Participants: Sixty healthy physically active college-aged students participated. They were divided into three groups: Control, Chronic ankle instability (CAI), and Healthy. Nineteen Control (age = 22.0 ± 2.72 yrs, mass = 74.1 ± 13.8 kg, height = 172.6 ± 11.3 cm, BMI = 24.8 ± 3.1 %), 21 CAI (age = 22.1 ± 2.3 yrs, mass = 77.6 ± 14.0 kg, height = 175.4 ± 12.3 cm, BMI = 25.1 ± 2.6 %), and 20 healthy (age = 22.9 ± 3.4 yrs, mass = 70.9 ± 15.6 kg, height = 172.2 ± 8.9 cm, $BMI = 23.7 \pm 3.3$ %). Subjects in the CAI group had a history of CAI and functional ankle instability (FAI). The Ankle Instability Index and the Functional Ankle Ability Measure were used to self-report CAI and FAI respectively. Interventions: The CAI and Healthy groups participated in an eight-week abdominal-training program while the Control group maintained their normal activities of daily living and level of physical activity. Main Outcome Measures: Abdominal muscle thickness was measured biweekly throughout the study. Center of pressure excursion, muscle activation, vertical ground reaction force, and lower extremity joint angles were measured during a single-leg drop landing, pre- and postabdominal training. Results: Muscle thickness at rest increased in the rectus abdominis and external oblique muscles follow training. Eight weeks of

abdominal training decreased vertical ground reaction forces and muscle activation down the lower kinetic chain. Center of pressure excursion and velocity were increased following training. Conclusions: Eight-weeks of abdominal training increased abdominal muscle thickness. Training improved neuromuscular efficiency throughout the kinetic chain and may have improved dynamic postural control. Our data also suggest CAI subjects may utilize both feedforward and feedback mechanisms to maintain postural control. Key Words: ankle instability, abdominal training, balance, functional ankle instability, and vertical ground reaction force

INTRODUCTION

In the 1960s, Freeman et al¹⁻³ coined the term "functional instability" to describe the neuromuscular deficits they observed at the ankle and foot. These deficits were believed to be responsible for repeated "giving way" episodes. Functional ankle instability is thought to be one of the components of chronic ankle instability (CAI).⁴ Freeman² hypothesized that when an injury to the ankle occurs, deafferentiation of the afferent nerves may result which could contribute to CAI. Other researchers have observed decreased proprioception,^{2, 5, 6} joint position sense,⁶⁻⁹ strength,⁹⁻¹⁴ coordination,², ⁸ balance,^{15, 16} postural control¹⁷⁻²⁵ and increased peroneal muscle latency^{26, 27} in CAI subjects. The cause of CAI remains unclear despite the extensive research in this area.

Due to the complexity of these findings, researchers have begun to study the relationship between proximal joints/muscles and CAI. Numerous studies support the theory that CAI subjects use proximal muscles to compensate for distal neuromuscular deficits. ²⁸⁻³³ Activation of the gluteus medius (GMed),²⁸ gluteus maximus,^{29, 31} and biceps femoris³¹ have been reported to be altered in CAI subjects compared to healthy subjects. The GMed activated earlier in CAI than healthy subjects following a perturbation,²⁸ and subjects with a history of a severe ankle sprain demonstrated delayed gluteus maximus and earlier biceps femoris activation.^{29, 31} In addition to altered proximal muscle activation, arthrogenic muscle inhibition of the hamstrings and facilitation of the quadriceps were observed in CAI subjects, demonstrating altered motorneuron pool excitability of proximal muscles.³⁴ Gribble et al³³ reported a disruption in sagittal postural control during a dynamic task in CAI subjects, which was

most notable in joints proximal to the ankle. Smaller reach distances and knee-flexion angles were also observed in CAI subjects.^{32, 33} While these studies support the idea that proximal muscle contraction patterns are altered in CAI, none of these studies assessed subjects during dynamic functional movement.

Since different tasks have been used to assess the relationship between CAI and proximal joints/muscles it is difficult to make comparisons. Some of the tasks used were a prone leg extension, single-leg perturbation, maximal voluntary contraction, and Star Excursion Balance Test.^{28, 29, 32-34} These tasks are not dynamic functional tasks that would be observed during an athletic event. Therefore, we chose to use a single-leg drop landing for our study. A single-leg drop landing provides a controlled representation of landings that occur during athletic events. It has been reported that abdominal muscle activation and center of pressure excursion (COPd) increased as the level of difficulty increased during a single-leg drop landing in healthy subjects.³⁵ A single-leg drop landing places greater demands on the kinetic chain in comparison to previously used tasks.

It is unknown if the kinetic chain responds neuromuscularly proximal to distal or distal to proximal during dynamic movement. A distal to proximal response would support what Freeman hypothesized (feedback mechanism). When the ankle moves, the somatosensory system informs the central nervous system of the movement, then a signal is sent to the muscles around the ankle to respond to its movement. However, a proximal to distal response (feedforward mechanism) would suggest that training the proximal muscles may assist in the prevention and/or treatment of CAI. Based on these aforementioned studies, it appears that CAI subjects do not use a feedback-only mechanism to maintain postural control.³⁶ A more comprehensive theoretic model that includes both feedback and feedforward mechanisms may be more appropriate. Understanding how the feedback and feedforward mechanisms interrelate may aid in preventing CAI. If feedforward mechanisms are involved in helping CAI subjects maintain dynamic postural control, it would be logical to think that training the muscles proximal to the ankle may improve postural control.

Abdominal or "core" training is thought to improve balance, postural control, and reduce the risk of lower extremity injuries.³⁷⁻⁴⁰ This theory is supported by the fact that subjects with a history of lower extremity injuries required greater trunk muscle recruitment to stabilize the body during dynamic tasks compared to healthy subjects.⁴¹ Recently, researchers observed improved postural control in healthy subjects following a six week core training program.³⁹ Following training those subjects demonstrated greater reach distance, and peak excursion during a Star Excursion Balance Test.³⁹ These studies are consistent with the feedforward ideas suggested earlier. However, further research is required to comprehensively assess how abdominal training affects postural control and the risk of lower extremity injuries.

The purpose(s) of our study was to determine if muscle activation, center of pressure (COP), and kinematics differed between groups during a single-leg drop landing pre- and postabdominal training. Another purpose of this study was to determine if morphological changes occur to abdominal muscle thickness at rest and during abdominal hollowing (AH) between & within groups.

METHODS

Design

Two different cohort designs were utilized to analyze changes in the dependent variables (abdominal muscle thickness, muscle activation, COP, sagittal lower extremity joint angles, and vertical ground reaction force). Separate 3 x 5 designs (group x time) were used to analyze abdominal muscle thickness at rest and during AH. A 3 x 2 design (group x time) was used to analyze COP excursion, lower extremity joint angles, muscle activation, and vertical ground reaction force (VGRF) during single-leg drop landings. These measurements were taken pre- and postabdominal training.

Participants

Seventy-five physically active subjects of both genders were recruited to participate in our study. They were divided equally into three groups (Control, Healthy & CAI). The Healthy and CAI groups participated in an eight-week abdominal-training program while the Control subjects were asked to maintain their activities of daily living (ADL) without increasing their current level of physical activity.

Inclusion criteria for the CAI group were a history of 1) at least one substantial ankle sprain with the initial sprain occurring more than 12 months ago, 2) the ankle "giving way" during functional activities (CAI), and 3) functional ankle instability. Three questionnaires were used to determine if subjects fit the inclusion criterion set for the CAI group. The Ankle Instability Index determined if subjects had CAI. Subjects had to answer "yes" to at least two of questions four through eight on the Ankle Instability Index to be classified as having CAI. The Functional Ankle Ability Measure (FAAM) ADL and FAAM Sport questionnaires allowed subjects to self-report functional ankle instability. Functional ankle instability was self-reported if subjects scored greater than or equal to 90% on the FAAM ADL scale and 80% on the FAAM Sport Scale. Subjects in the Control and Healthy groups were randomly assigned and matched by gender and leg dominance with a CAI subject.

Exclusion criteria were a history of cardiovascular or neurological disorder, mechanical ankle instability, childbirth or pregnancy within the past two years; abdomen, low back, or lower extremity injury/pain within the past year that restricted the subject's ability to be physically active; abdominal, low back, or lower extremity surgery within the past two years; or regular participation in an abdominal-training program. Regular participation was defined as performing abdominal training exercises three or more times a week. Subjects were excluded during the study if they sustained an abdomen, low back, or lower extremity injury that restricted their ADL or if they missed two abdominal thickness measurement or training sessions (supervised or unsupervised). Failure to return the weekly exercise log at the supervised training session was also grounds for exclusion from this study.

Fifteen of the 75 subjects were unable to complete the eight-week study for a variety of reasons. Six Control group subjects did not complete the study due to time commitment (1), illness (1), and instrument malfunction (4). Four CAI subjects failed to complete the study because of time commitment (3) and illness (1). Five Healthy group subjects were unable to complete the study because of time commitment (3) and failure to complete abdominal workouts (2). Thus 60 subjects completed the study, 19 Control

(age = 22.0 ± 2.72 yrs, mass = 74.1 ± 13.8 kg, height = 172.6 ± 11.3 cm, BMI = 24.8 ± 3.1 %), 21 CAI (age = 22.1 ± 2.3 yrs, mass = 77.6 ± 14.0 kg, height = 175.4 ± 12.3 cm, BMI = 25.1 ± 2.6 %), and 20 Healthy (age = 22.9 ± 3.4 yrs, mass = 71.0 ± 15.6 kg, height = 172.2 ± 8.9 cm, BMI = 23.7 ± 3.3 %). All of the subjects read and signed the approved informed consent form prior to data collection.

Instrumentation

Ultrasound Imaging

We used the LOGIQ P5 Laser Doppler Ultrasound (General Electric, Piscataway, NJ, USA) with a linear phased array probe (45 x 10 mm footprint; 7 to 12 MHz frequencies) to measure abdominal muscle thickness at rest and during abdominal hollowing (AH). Probe frequency was set at 10 MHz with a gain of 70 for all measurements.⁴²

Previous ultrasound imaging research focused on establishing reliability,⁴³⁻⁴⁹ validity,⁵⁰ and a correlation between muscle activation and abdominal muscle thickness changes. Ultrasound imaging provides a noninvasive instrument to measure abdominal thickness at rest and during AH.⁵¹⁻⁵³ It is also a reliable⁴³⁻⁴⁹ and valid⁵⁰ instrument to measure changes in abdominal thickness. Lateral abdominal muscle thickness was measured previously by the primary investigator over four weeks with good to excellent intrarater (ICC= 0.89-0.96) and intersession reliability (ICC= 0.90-0.94).⁴⁶ A correlation between changes in abdominal muscle thickness and muscle activation exist during submaximal activities.

Electromyography

The Delsys Myomonitor IV System (Delsys Inc., Boston, MA) was used to measure muscle activation of the transverse abdominis (TrA) /internal oblique (IO), external oblique (EO), GMed, vastus medialis (VM), and peroneus longus (PL) muscles. These measurements were collected using Delsys surface electromyography (EMG) sensors (DE-2.1, Delsys Inc., Boston, MA). The Myomonitor IV System is a wireless unit. Therefore we had to account for a delay in signal transmission because all wireless systems have a delay. Delsys estimated the delay to be approximately 60 ms. We accounted for the delay 60 ms delay while we processed the muscle activation data. Electromyography data were collected at 1250 Hz. The input impedance of the amplifier was $>10^{15}$ megohm//0.2 pF, with a common mode rejection ratio of 90 dB, high and low pass filters of 20 and 450Hz, a signal to noise ratio of -92 dB, and a gain of 1000.

Five "good" single-leg drop landing trials were used to determine mean and peak normalized muscle activation values. Matlab software (R2008b, The Mathworks, Inc, Natick, MA) processed the raw muscle activation data postcollection. All muscle activation data were integrated and smoothed using a root mean square (RMS) algorithm with a 50 ms moving window. Mean and peak muscle activation data were normalized to reference values.

Force Plate

An AMTI OR6-5 force plate (Newton, MA) was used to measure ground reaction force and COP during single-leg drop landings. The sampling rate for ground reaction force and COP data was set at 1250 Hz. Vertical ground reaction force identified the time window. The time window ran from initial contact until the VGRF reached the subject's mass a second time following initial contact. During this time window of the single-leg drop landings; kinematic, COP, and muscle activation data were analyzed. Center of pressure was calculated three different ways: total excursion length (COPd), mean and peak center of pressure velocity (COPv).

Kinematics

We used the Vicon motion analysis system and the plug-in gait (Vicon, Centennial, CO) model to measure joint angles of the ankle, knee, and hip in the sagittal plane during single-leg drop landings. Total joint excursion and peak flexion of the ankle, knee, and hip were measured during the time window previously discussed in this section under "Force Plate." The analog output features of the Vicon Nexus system synchronized COP, muscle activation, and kinematic data. Kinematic data were collected at 250Hz using six Vicon MX13+ cameras running on Nexus 1.3 software (Vicon, Centennial, CO).⁵⁴ Two different camera set-ups were utilized during data collection; set-up was determined by leg dominance. Figures 1 & 2 illustrate the camera set-ups used for left and right leg dominant subjects.

Procedures

Orientation Session

Subjects completed the required paperwork (consent form, Ankle Instability Index, FAAM ADL & Sport) and were familiarized with how to perform AH and a single-leg drop landing. A physical exam of the ankle was completed by an experienced certified athletic trainer (12 years) to assess for mechanical ankle instability. Subjects were taught and practiced how to correctly perform AH in the supine hook-lying position (Figure 3). The following standardized instructions were given to every subject prior to performing AH, "gently pull your umbilicus towards the table without moving your spine and maintain normal breathing."⁵⁵ Ultrasound imaging confirmed the correct performance of AH. Visual biofeedback via ultrasound imaging was provided to some subjects (~ 5) if they were unable to correctly perform AH. Subjects had to correctly perform three consecutive AH maneuvers without visual feedback, prior to the end of the orientation session.⁴⁵ Feedback was not provided during data collection.

Subjects then learned and practiced how to perform a single-leg drop landing from a 35 cm platform (Figure 4) onto their dominant leg. Leg dominance was defined as the leg the subject planted to kick a ball. All subjects were given standardized singleleg drop landing instructions. The standardized instructions are in Table 1. Single-leg drop landings were repeatedly practiced and an investigator visually determined if the drop landing was correctly performed. Subjects were required to correctly perform three consecutive single-leg drop landings prior to the completion of the session.

Pre- and Posttraining Data Collection Sessions

The pretraining data collection session occurred approximately three weeks after the orientation session. Abdominal muscle thickness was measured at rest and during AH. The remaining four dependent variables (COP, kinematics, muscle activation, and VGRF) were measured during five good single-leg drop landings. A good trial was defined as the subject landing on their dominant leg while maintaining balance for approximately three seconds without losing his/her balance. Failed landings were not included; prior to the study the maximum number of failed drop landings allowed was set at ten. All of the subjects were able to perform five "good" landings within ten trials. Approximately two minutes elapsed between trials, during this time the investigators reviewed the kinematic data.

Postural control was assessed using COPd and COPv. Kinematics measured total excursion of the ankle, knee, and hip joints along with mean and peak joint flexion angles. Muscle activation of the TrA/IO, EO, GMed, VM, and PL muscles were measured to assess muscle activation. The sequences of the pre- and posttraining data collection sessions are in Tables 2 and 3, respectively.

Abdominal thickness measurements. Thickness of the rectus abdominis (RA), EO, IO, and TrA muscles were measured using ultrasound imaging. The RA was only measured at rest while the EO, IO, and TrA were measured at rest and during AH. Rectus abdominis thickness was only measured at rest because it was not possible to simultaneously measure the RA and lateral abdominal muscles (EO, IO, & TrA) during AH with one ultrasound probe. Subjects refrained from eating or exercising for a minimum of one hour prior to all abdominal muscle thickness measurements.

Abdominal muscle thickness (RA, EO, IO, TrA) measurements were taken with subjects in a supine hook-lying position on a plinth.⁴³ Their hips and knees were flexed to approximately 45° and 90°, respectively.⁴⁴ The RA measurement site was lateral to the linea alba at the thickest point of the muscle and level with the umbilicus.⁴⁹ The thickest point was visibly identified by the primary investigator. Lateral abdominal

muscle thickness measurements were taken level with the umbilicus and medial to the mid-axillary line on the subject's dominant side.⁵⁶ This site provided the clearest ultrasound image of the EO, IO, and TrA (Figure 5). Immediately after each measurement site was identified, a line was placed on the subject's skin to identify the measurement sites of RA and the lateral abdominal muscles. A Sharpie® marker was used to place these lines at the lateral edge of the probe (Figure 6). The lateral edge of the probe was aligned with these lines to standardize ultrasound head placement for future measurements. Each subject was provided with a Sharpie® marker to re-mark the measurement lines throughout the eight-week study. Abdominal muscle thickness was measured biweekly throughout the eight-week training program at weeks 0 (pretraining), 2, 4, 6, and 8 (posttraining). These measurements were taken on the same day and at the same time throughout the eight-week study. All muscle thickness measurements were taken by the primary investigator.

Five separate images of the RA and lateral abdominal muscles (EO, IO, and TrA) were obtained at rest, followed by five measurements of the lateral abdominal muscles during AH. Subjects held the AH maneuver for approximately six seconds to provide the primary investigator time to capture an image. Abdominal hollowing images were obtained at peak TrA thickness, which was visibly determined by the primary investigator. Approximately 30 seconds elapsed between image captures. The ultrasound imaging software's internal calipers were used to quantify muscle thickness.

To standardize abdominal thickness measurements a 25×18 cm transparency with a vertical center line was placed over the computer screen to identify the middle of the frozen images (Figure 7). Thickness measurements started where the superficial fascial layer and center line intersected (Figure 7).^{49, 55, 57} The perpendicular distance between the superficial and deep fascial layers represented the muscle's thickness. Each image was analyzed separately. These thickness values were averaged for statistical analysis.

Electromyography, lower extremity joint angles, and center of pressure. Center of pressure, electromyography, and lower extremity joint angles during five good singleleg drop landings were measured pre- and postabdominal-training program. These variables were measured during the time window discussed previously in the methods section under Force Plate.

Surface EMG sensors were placed over the TrA/IO, EO, GMed, VM, and PL after the skin was prepped. Over the electrode site, the skin was abraded with fine sandpaper and cleansed with an alcohol wipe prior to electrode placement; correct placement was confirmed through manual muscle testing. All electrodes were aligned parallel with the orientation of muscle fibers, and placed approximately midway between the innervation zone and the insertion of the distal tendon.⁵⁸ Table 4 describes the placement and direction of these electrodes. Electromyography measured muscle activation during single-leg drop landings and while reference values were obtained. Reference values were used to normalize drop landing muscle activation pre- and postabdominal training.

Reference values were then obtained for each of these muscles using manual muscle testing. Two, five-second practice trials were given to each subject to familiarize them with the reference value position and contraction. Thereafter, muscle activation of

the three, five-second trials were averaged to calculate the reference values for each muscle. The mean reference value was used to normalize the pre- and posttraining drop landing muscle activation data. Reference values for the TrA/IO were collected by having subjects perform the AH maneuver the same way they did when muscle thickness measurements were taken. Reference values of the EO, GMed, VM, and PL were obtained during maximal contractions. Figures 8 – 12 demonstrate how subjects were positioned to obtain each muscle's reference value.

Reflective markers were placed over lower extremity anatomical landmarks to measure kinematic data of the ankle, knee, and hip during the single-leg drop landings. Twenty single reflective markers were placed on every subject. The single markers were placed bilaterally over the 5th metatarsal styloid process, on the dorsum between the 2nd and 3rd phalanges, lateral malleoli, calcaneus (posterior middle), knee joint line (lateral), greater trochanter, anterior superior iliac spine, and posterior superior iliac spine. The markers over the 5th styloid processes and greater trochanters were reference markers that were used to assist in filling gaps post data collection. Figure 13 illustrates reflective marker placement for anterior, lateral, and posterior views. Anthropometric measurements were then taken and entered into Vicon Nexus. Subjects wore spandex clothing (shirt and shorts) and a standardized pair of Nike T-Lite V shoes (Nike Inc., Beaverton, OR) that we provided during data collection. Spandex clothing allowed reflective markers to be placed more accurately over anatomical landmarks and reduced the chance of loose clothing covering up markers during data collection.

Total joint excursion and peak joint angles were measured pre- and posttraining while subjects completed five good single-leg drop landings. The joint angles of interest were ankle dorsiflexion, knee and hip flexion.

Abdominal Training

The Healthy and CAI groups were taught the eight-week abdominal-training program when pretraining data collection was completed. Subjects performed the training program three days a week with one day of rest between workouts. One workout each week was completed under the direct supervision of the investigators, while the remaining two workouts were done on their own. These subjects were required to complete a weekly abdominal training exercise log; this log was returned to the investigators every week at the weekly training session.

The exercises focused on training the EO, IO, TrA, and RA muscles. Table 5 provides a summary of the abdominal-training program by weeks. The exercises chosen were based upon previously reported muscle activation of the abdominal musculature (RA, IO/TrA, and EO) during rehabilitative exercises.⁵⁹ Abdominal hollowing was performed during all of the exercises in an attempt to preferentially activate the TrA. The abdominal-training program included five different exercises: curl-up, side-bridge, sit-up with rotation, lower abdominal series (LAS), and prone-bridge.

Curl-up. Subjects laid on the floor/table in the supine hook-lying position with arms resting at their side (Figure 14). Subjects were instructed to: "1) perform AH, 2) bring chin to chest, 3) lift and slide arms forward, and 4) curl the trunk until the inferior angles of the scapula were off the floor/table" ⁶⁰ (Figure 15).

Side-bridge. Instructions given to subjects for the side-bridge were, "1) assume a side lying position on one side, 2) place the elbow closest to the floor/table at a 90° angle underneath the shoulder with the forearm flat on the floor/table, 3) place the opposite arm along the upper side of the body, 4) perform AH, and 5) lift the pelvis towards the ceiling and 6) return to the side lying position" (Figures 16 and 17). This exercise was performed bilaterally.

Sit-up with rotation. Subjects started in the supine hook-lying position with their arms crossed against their chest. The instructions were to "1) lift the trunk off the floor/table, 2) rotate as the trunk was flexed until the left elbow touched the right knee or the right elbow touched the left knee, 3) return to the starting position, and 4) repeated steps 1 and 2 to the opposite side" (Figures 18-21).

Lower abdominal series (LAS). This series consists of five different levels of exercises that progress in difficulty. Four of those levels were included in this eightweek program. Level four of the LAS was skipped because previously individuals stated that level 3 was harder than level four. Therefore, we chose to eliminate level four. Level one was considered the easiest and level five the most difficult. This exercise focused on training the TrA. Abdominal hollowing was performed throughout these exercises. Common mistakes individuals made throughout these exercises included holding one's breath, contracting the gluteal and hamstring muscles, lifting the head, and abdominal pouching. Abdominal pouching is the visible contraction of the RA instead of hollowing the abdominal cavity.⁶¹ The starting position for all of the LAS exercises was

the supine hook-lying position. The levels are illustrated in Figures 22-25. The instructions provided to the subjects for each level are described in Table 6.

Prone-bridge. The prone-bridge exercise was added to the training program during the fourth week. It provided some variation to the program and increased the demands placed on the abdominal muscles. Subjects started prone with their elbows under their shoulders (Figure 26). They lifted their pelvis until they reached the peak position, which was when the shoulders, pelvis, and ankles were in a straight line (Figure 27). The peak position was held for the assigned time.

STATISTICAL ANALYSIS

SPSS 16.0 (SPSS Inc., Chicago, IL, USA) was used to manage and analyze the data. The dependent variables were muscle thickness, COP, muscle activation, kinematics, and VGRF, while the independent variables were group and time. The means of five trials were averaged and used for statistical analysis of the dependent variables. Differences between groups prior to the abdominal-training program were assessed using a one-way analysis of variance (ANOVA). A General Linear Model repeated measures ANOVA was used to analyze abdominal muscle thickness, COP excursion, muscle activation, and kinematic differences between groups following the eight-week abdominal-training program. Tukey-Kramer post-hoc multiple comparison tests were performed to make pairwise contrasts between groups. A simple *t-test* with a Bonferonni adjustment determined if a difference existed within groups, pre- and postabdominal training. The partial eta² statistic was used to report effect size.

RESULTS

The results were separated into the "pretraining data" and "posttraining data" sections. Data for the five dependent variables were reported under each of those sections. The data reported in the pretraining data section represent the differences observed between groups prior to training. Results under the posttraining data section are the differences observed between and within each group over time (eight weeks).

Pretraining Data

Abdominal Muscle Thickness

Mean muscle thickness values at rest and during AH are in Tables 7 & 8. Muscle thickness of the RA, EO, IO, and TrA at rest and during AH were not different between groups at rest (RA: $F_{(57, 2)} = 1.17$, p = 0.318; EO: $F_{(57, 2)} = 0.77$, p = 0.468; IO: $F_{(57, 2)} = 0.55$, p = 0.582; TrA: $F_{(57, 2)} = 1.16$, p = 0.319) or during AH (EO: $F_{(57, 2)} = 1.04$, p = 0.360; IO: $F_{(57, 2)} = 0.33$, p = 0.722; TrA: $F_{(57, 2)} = 0.18$, p = 0.834).

Kinematics

Joint excursion and peak flexion angle means along with effect size for the ankle (dorsiflexion), knee, and hip joint are in Table 9. Mean joint excursion (Ankle: $F_{(57, 2)} = 1.82$, p = 0.172; Knee: $F_{(57, 2)} = 0.30$, p = 0.742; Hip: $F_{(57, 2)} = 0.49$, p = 0.613) and peak joint angles (Ankle: $F_{(57, 2)} = 0.60$, p = 0.550; Knee: $F_{(57, 2)} = 0.15$, p = 0.864; Hip: $F_{(57, 2)} = 0.13$, p = 0.878) were not different between groups.

Electromyography

Mean and peak muscle activation values for the TrA/IO, EO, GMed, VM, and PL muscles are in Tables 10 and 11. A difference between groups was observed in peak and

mean TrA/IO (peak: $F_{(57, 2)}$ = 3.28, p = 0.045; mean: $F_{(57, 2)}$ = 3.29, p = 0.044), EO (peak: $F_{(57, 2)}$ =: $F_{(57, 2)}$ = 7.25, p = 0.002; mean: $F_{(57, 2)}$ = 13.06, p < 0.001), and GMed (peak: $F_{(57, 2)}$ = 3.20, p = 0.048; mean: $F_{(57, 2)}$ = 3.14, p = 0.051). There was no difference between groups for peak and mean VM (peak: $F_{(57, 2)}$ = 0.42, p = 0.657; mean: $F_{(57, 2)}$ = 0.25, p = 0.780) and PL (peak: $F_{(57, 2)}$ = 0.36, p = 0.698; mean: $F_{(57, 2)}$ = 0.26, p = 0.772) muscle activation values.

Pair-wise post-hoc comparisons revealed the CAI group had greater mean and peak TrA/IO (peak: p = 0.041; mean: p = 0.039) and EO (peak: p = 0.022; mean: p = 0.002) muscle activation than the Control group. The CAI group had greater mean and peak EO (peak: p = 0.002; mean: p < 0.001), and GMed (peak: p = 0.037; mean: p = 0.040) muscle activation than the Healthy group. No differences were observed between groups for mean and peak VM and PL muscle activation.

Center of Pressure

Tables 12 and 13 contain the means and effect size for the COP variables (COPd, peak and mean COPv, and time window pre training). Peak and mean COPv (peak: $F_{(57, 2)} = 9.16$, p < 0.001; mean: $F_{(57, 2)} = 8.31$, p = 0.001), were different between groups. No difference in COPd ($F_{(57, 2)} = 1.26$, p = 0.291) or time window ($F_{(57, 2)} = 0.88$, p = 0.422) were observed between groups.

Pair-wise comparisons showed the Control group had greater COPv (peak p < 0.001; mean: p = 0.001) than the Healthy group. Control subjects also had greater peak COPv (p < 0.001) than CAI subjects. Chronic ankle instability subjects had greater mean COPv than Healthy subjects (p = 0.021).

Vertical Ground Reaction Force

Peak and mean VGRF were reported in Table 14. A difference between groups was observed for peak VGRF ($F_{(57, 2)}$ = 3.43, p = 0.039) but not mean VGRF ($F_{(57, 2)}$ = 1.68, p = 0.195). The CAI group demonstrated greater peak VGRF than the Healthy group (p = 0.033).

Posttraining Data

Abdominal Muscle Thickness

Posttraining mean muscle thickness values at rest and during AH along with effect size are in Tables 7 and 8. An interaction between time and group existed for RA thickness at rest ($F_{(8,4)}$ = 4.07, p < 0.001). The CAI (p < 0.001) and Healthy (p < 0.001) group's thickness increased while the Control group was unchanged. Post-hoc comparisons revealed no difference in RA thickness between the combined mean thicknesses of the three groups before and after training. Mean EO thickness at rest increased in the CAI (p < 0.001) and Healthy (p = 0.002) groups. External oblique thickness was greater in the CAI group than the Control group (p = 0.013). No changes were observed in IO and TrA muscle thickness at rest (IO: $F_{(8,4)}$ = 0.33, p = 0.857; TrA: $F_{(8,4)}$ = 1.33, p = 0.261).

During AH, thickness changes were observed in the EO, IO, and TrA muscles. An interaction was ($F_{(8, 4)}$ = 3.84, p < 0.001) present between EO thickness and group. Post-hoc tests revealed that EO thickness increased in both the CAI (p < 0.001) and Healthy (p < 0.001) groups following the eight-week abdominal-training program. The CAI (p = 0.003) and Healthy (p = 0.050) groups had thicker EO muscles during AH than the Control group. Mean IO and TrA thickness during AH did not change between (IO: $F_{(2,1)} = 0.26, p = 0.774$; TrA: $F_{(2,1)} = 0.073, p = 0.930$) or within (IO: $F_{(8,4)} = 1.21, p = 0.306$; TrA: $F_{(8,4)} = 1.47, p = 0.214$) groups. Despite the lack of within group significance, the Healthy group's IO (p = 0.004) and TrA (p = 0.033) thickness during AH increased.

Kinematics

Joint excursion and peak flexion angle means along with effect size following training are in Table 9 for the ankle (dorsiflexion), knee, and hip joint. An interaction existed between group and time for ankle excursion. No differences existed between or within the groups for ankle excursion (within: $F_{(2,1)} = 0.63$, p = 0.430; between: $F_{(2,1)} = 1.27$, p = 0.289) and peak ankle angle (within: $F_{(2,1)} = 3.78$, p = 0.057; between: $F_{(2,1)} = 0.020$, p = 0.980). The Control group's peak ankle angle differed between pre- and postmeasurements (p = 0.005). Knee excursion differed within groups ($F_{(2,1)} = 5.24$, p = 0.026). No differences existed between or within groups for peak knee angle (within: $F_{(2,1)} = 1.05$, p = 0.627; between: $F_{(2,1)} = 0.64$, p = 0.534): and peak hip angle (within: $F_{(2,1)} = 0.34$, p = 0.564: between: $F_{(2,1)} = 0.045$, p = 0.956).

Electromyography

Tables 10 and 11 contain posttraining muscle activation values (peak and mean) and effect size for all muscles. A difference was present within groups for peak ($F_{(2,1)}$ = 5.40, p = 0.024) and mean ($F_{(2,1)}$ = 4.36, p = 0.041) TrA activation. The CAI group's

peak (p = 0.002) and mean (p = 0.003) TrA/IO muscle activation decreased significantly following the training program.

Peak and mean EO muscle activation differed between groups (peak: $F_{(2,1)} = 3.50$, p = 0.037; mean: $F_{(2,1)} = 4.28$, p = 0.018). The CAI group had greater peak and mean EO muscle activation than the Control (peak: p = 0.084; mean: p = 0.072) and Healthy (peak: p = 0.054; mean: p = 0.023) groups. Peak and mean EO muscle activation data decreased following abdominal training in both the CAI and Healthy groups, however, it was not significant.

Peak and mean GMed decreased in all groups and group differences were observed (peak: $F_{(2,1)} = 5.14$, p = 0.009; mean: $F_{(2,1)} = 6.43$, p = 0.003). The CAI group had greater peak and mean GMed (peak: p = 0.007; mean: p = 0.002) muscle activation than the Healthy group.

Peak ($F_{(2,1)}$ = 18.20, p < 0.001) and mean ($F_{(2,1)}$ = 23.11, p < 0.001) VM activation decreased within the CAI and Healthy groups. A decrease in peak (CAI: p = 0.003; Healthy: p = 0.009) and mean VM muscle activation (CAI: p = 0.008; Healthy: p = 0.001) were observed in the CAI and Healthy groups.

A difference within groups for peak ($F_{(2,1)} = 4.65$, p = 0.035) and mean ($F_{(2,1)} = 4.21$, p = 0.045) PL activation existed, however, post-hoc testing showed no statistical difference.

Center of Pressure

Posttraining means and effect size for COPd and COPv are displayed in Table 12. Differences within groups existed for COPd ($F_{(2, 1)} = 12.97, p = 0.001$). Center of pressure distance increased in the CAI (p = 0.053) and Healthy groups (p = 0.009).

An interaction was present between group and time on the mean COPv variable $(F_{(2,1)} = 18.72, p < 0.001)$. Mean COPv demonstrated within group differences $(F_{(2,1)} = 50.98, p < 0.001)$. The CAI (p < 0.001) and Healthy (p < 0.001) group's mean COPv increased after the training program. Peak COPv differences existed within $(F_{(2,1)} = 35.32, p < 0.001)$ and between $(F_{(2,1)} = 18.98, p < 0.001)$ groups. The Control group had greater peak COPv than the CAI (p = 0.032) and Healthy (p < 0.001) groups, while the CAI group had greater mean COPv than the Healthy group (p = 0.002). Peak COPv increased in the CAI and Healthy groups (CAI: p < 0.001; Healthy: p = 0.004).

Posttraining means for the time window are in Table 13. An interaction between time window and group was present when pre- and posttraining measurements were compared ($F_{(2, 1)} = 3.41$, p = 0.040). The Control group's time window increased (p = 0.015).

Vertical Ground Reaction Force

The mean and peak VGRF means and effect size following training are in Table 14. Peak and mean VGRF varied within groups (peak: $F_{(2,1)} = 5.45$, p = 0.023; mean: $F_{(2,1)} = 4.14$, p = 0.047). The CAI group's VGRF decreased following abdominal training (peak:, p = 0.002; mean: p = 0.006).

DISCUSSION

Abdominal Thickness

Mean thickness values observed prior to training were similar to those previously reported in healthy subjects.^{49, 62} Abdominal muscle thickness was not different between groups prior to abdominal-training. Following the eight-week abdominal-training program, the CAI and Healthy groups demonstrated increased RA and EO muscle thickness at rest and during AH. Thickness changes were not observed in the TrA or IO muscles despite the focus placed on performing AH in an attempt to activate the TrA during all training exercises.

Increased thickness or morphological changes are a sign of increased strength.⁶³ Although IO and TrA thickness at rest and during AH was unchanged, it does not mean strengthening did not occur. Strength increases can occur without morphological changes.⁶³⁻⁶⁵ Strength increases observed during the first four to six weeks of any training program are largely due to neurological adaptations.⁶³ Changes in RA and EO thickness may indicate that the eight-week training program strengthened those muscles in the CAI and Healthy groups. The TrA and IO muscles may have become stronger without morphological changes. It may take longer than eight weeks of training to observe thickness changes in the TrA and IO muscles. Another explanation for no TrA and IO thickness changes was that subjects relied more on their global (RA and EO) than local abdominal muscles (IO and TrA) during the training exercises.

Our data demonstrate that eight weeks of training using the training program discussed in this study is enough time to see morphological changes in the RA and EO.

The IO and TrA muscles may have been strengthened even though there were no changes in thickness. This could be evident by the reduction in TrA/IO muscle activation following training.⁶⁶ A reduction in muscle activation is a sign of increased strength.⁶⁶ Therefore, even though TrA/IO thickness did not increase at rest we still believe the TrA and IO were strengthened.

Kinematics

The Control group differed between pre- and postmeasurements of peak knee flexion. Knee excursion differed within groups although post-hoc tests revealed no difference. Kinematic differences were previously observed in the sagittal plane between CAI and Healthy subjects.^{67, 68} Limited dorsiflexion was previously reported during landing as a potential cause of CAI.⁶⁸ Our CAI subjects did not demonstrate deficits in mean or peak dorsiflexion. Therefore our data are inconsistent with prior research that stated CAI subjects may not dorsiflex their ankle as much as healthy subjects. However, we defined a shorter time window to analyze kinematics than previously used; this may explain why no differences were observed between groups in this study.

People use an ankle, hip, or combination (hip and ankle) strategy during landing to maintain postural control.⁶⁹ An ankle strategy is identified by less joint excursion or a stiff landing while a hip strategy demonstrates greater lower extremity joint excursion.⁶⁹ The ankle landing strategy places greater demands on the ankle and lower leg musculature while the hip and combination strategies transfer more energy up the kinetic chain.⁶⁹ It has been reported that CAI and healthy subjects use different landing strategies. ^{18, 70, 71} Chronic ankle instability subjects use an ankle strategy while healthy subjects utilize a hip or combination strategy during single-leg landings to maintain postural control.^{67, 69, 72} A soft landing or hip strategy is identifiable by greater knee flexion.⁶⁹ Prior to abdominal training, it does not appear that our CAI group used only an ankle strategy. This is inconsistent with previously published research.^{67, 69, 72}

Although not significant, changes in knee joint kinematics occurred following abdominal-training. The CAI and Healthy groups increased peak knee flexion angles following training. Despite the lack of significance greater peak knee flexion is consistent with the idea that training may allow individuals to transition from an ankle strategy to a combination strategy.

Electromyography

Muscle activation varied between groups pre- and postabdominal training. The CAI group had greater peak and mean proximal muscle activation than the Control (TrA/IO and EO) and Healthy (EO and GMed) groups prior to training. Chronic ankle instability subjects may have relied more on their proximal muscles to maintain postural control than the Control and Healthy groups. This could be due to learned compensatory strategies to account for neuromuscular deficits and/or it may suggest the use of a feedforward mechanism. Vastus medialis and PL activation were not different between groups before training.

Decreased muscle activation was observed in the CAI and Healthy groups following training. Muscle activation decreased in all of the muscles, however only the TrA/IO, VM, and PL were significantly reduced. The CAI group had decreased TrA/IO, VM, and PL activation while Healthy subjects had decreased VM activity. Decreased muscle activation following training indicates improved neuromuscular efficiency.⁶⁶ The CAI and Healthy groups were able to perform the same task (single-leg drop landing) with the recruitment of fewer motor units/muscle fibers following abdominal-training. This supports our theory that the TrA and IO were strengthened despite no change in their thickness at rest. Therefore neuromuscular efficiency was improved by abdominal-training. External oblique and GMed muscle activation remained greater in the CAI than Healthy group.

Prior research observed differences in proximal muscle activation between healthy subjects and those with a history of ankle sprains.^{28, 29, 31} A delay in gluteus maximus activation was observed by Bullock-Saxton et al²⁹ in previously injured subjects. Beckman and Buchanan²⁸ observed that subjects with a history of ankle sprains activated their GMed earlier in response to a perturbation than healthy controls. Both of those studies assessed the onset of muscle activation and did not report amplitudes. We did not assess the onset of muscle activation. However, we did observe greater proximal muscle activation in CAI subjects than Control (pretraining: TrA/IO and EO) and Healthy (pretraining: TrA/IO and EO; posttraining: EO and GMed) subjects.

This may suggest that CAI subjects use a combination of an ankle and hip landing strategy. This is consistent with recently published research that stated CAI subjects may not use an ankle strategy only to maintain postural control.^{24, 67} If CAI subjects rely on more than an ankle strategy, this would suggest that they may use a feedback and

feedforward mechanism. If CAI subjects use both feedback and feedforward mechanisms then neuromuscular changes should be observed down the lower kinetic chain during a task. We observed a decrease in EMG amplitude following training, this suggests improved neuromuscular efficiency.^{66, 73} Improved neuromuscular efficiency is represented physiologically by a decrease in the number of motor units required to perform a task.⁶⁶ The CAI subjects in our study demonstrated less motor unit recruitment while performing a single-leg drop landing following training than prior to training. This suggests a change in the central nervous system motor strategies. A change in the central nervous system indicates CAI subjects may use a feedforward mechanism to maintain postural control in addition to a feedback mechanism. Therefore our data are consistent with the theory that CAI subjects may use both feedback and feedforward mechanisms to maintain postural control. If this is the case, clinicians may want to focus rehabilitation efforts on the entire kinetic chain following an ankle injury.

We observed no differences in peak or mean PL and VM activation prior to training. One potential explanation for no differences in muscle activation may be due to the preactivation (feedforward mechanism) of muscles prior to initial contact. Therefore a feedforward mechanism may compensate for lower extremity deficits. Prior research observed quadriceps facilitation and inhibition of the hamstrings during maximal voluntary contractions in CAI subjects.³⁴ Facilitation of a muscle increases muscle activation above its normal amplitude. Quadriceps facilitation may explain why we observed no difference in VM muscle activation. Although a similar landing study reported decreased PL activation prior to initial contact but no differences post-initial

contact.⁶⁸ We did not assess muscle activation prior to initial contact; however, our data are consistent with no differences in PL activation post-initial contact.⁶⁸ If PL deficits exist prior to initial contact and do not following contact this may suggest the combination of feedforward and feedback mechanisms actually assist in maintaining dynamic postural control during a single-leg drop landing. Although deficits in PL activation prior to initial contact may also suggest the PL is not activating properly prior to landing. This suggests the feedback and feedforward mechanisms used to maintain postural control may be affected by CAI, therefore increasing the risk of recurrent ankle sprains. Further research is needed to determine the relationship between feedforward and feedback mechanisms in CAI subjects.

Muscle activation changed following the eight-week abdominal-training program. The CAI and Healthy subjects demonstrated decreased muscle activation. Decreased muscle activation during a single-leg drop landing indicates the lower extremity neuromuscular system became more efficient after abdominal training in performing the same task. They did not have to recruit as many muscles fibers to maintain postural control posttraining. Decreased muscle activation in CAI (VM and PL) and Healthy (VM) subjects suggest that abdominal training does influence muscle activation down the lower kinetic chain. Increased gluteus maximus and medial hamstring muscle activation were previously observed when subjects performed AH during prone hip extension.⁷⁴ A more efficient neuromuscular system (greater endurance) may decrease the risk of lower extremity injuries during landing by providing a more stable base over time.

Vertical Ground Reaction Force

We observed greater peak and mean VGRF in the CAI group than the Healthy group prior to abdominal-training. The CAI and Healthy groups' peak and mean VGRF were decreased following training.

Previous researchers reported differences in ground reaction forces between CAI and healthy subjects.⁷² Researchers previously observed that CAI subjects had greater peak VGRF and reached those peaks sooner than healthy subjects.⁷² We did not assess the timing of peak force. Our data before training were consistent with previous research that demonstrated that CAI subjects generate greater VGRF than Healthy subjects.

The greater VGRF observed in CAI subjects may help explain why they experience recurrent ankle sprains.⁷² Following abdominal-training, the CAI group's mean and peak VGRF decreased. This demonstrates that eight weeks of abdominal training can decrease the forces that act on the foot and ankle to cause injury. If VGRF can be reduced in CAI subjects through abdominal-training, the likelihood of recurrent ankle sprains may also be prevented or reduced. Therefore, clinicians may want to include abdominal training as part of their patient's ankle rehabilitation programs.

Center of Pressure

The Control and CAI groups had greater mean COPv than the Healthy group prior to training. Peak COPv was also greater in the Control group than the CAI and Healthy groups during pretraining data collection. There was no difference between groups for COPd before training. After training, the Control group had greater peak COPv than both the CAI and Healthy groups. Center of pressure excursion and COPv (peak and mean) was increased in the CAI and Healthy groups following abdominal-training. We speculate abdominal training made the spine more stable by decreasing center of gravity variation. This allowed subjects to deal with greater speeds during landing (increased COPv) and potentially more movement in the lower kinetic chain (increased COPd), which would be characteristic of a softer landing (decreased VGRF).

At first glance it would appear that COPd and COPv (peak and mean) became worse following training. Prior research concluded that increased COPd and COPv represent a decline in postural control.⁷⁵ However, when you consider COPd and COPv (peak and mean) increased while VGRF decreased following abdominal training, an increase in COP may be a positive outcome. We theorize increased COPd and COPv in conjunction with decreased VGRF during a functional dynamic task may represent improved dynamic postural control. Chronic ankle instability subjects have demonstrated greater VGRF postinitial contact compared to healthy controls.⁶⁸ Greater VGRF is thought to contribute to CAI.⁶⁸ Therefore if abdominal training decreased VGRF and increased COPd and COPv, we theorize dynamic postural control may actually be improved due to the relationship between VGRF and COP. Increased COPd and COPv suggest the CAI and Healthy groups were able to travel faster (COPv) with greater COPd following training. This may represent improved dynamic postural stability during a dynamic functional task even though it is contrary to previous COP data. It is important to recognize that most COP research has been completed during a static task, while we used a dynamic task.

Our data contradict previous research that states differences in force plate measures exist between Healthy and CAI subjects prior to training. Although there seems to be some confusion with regard to which COP measurement is the most accurate at detecting postural control changes. Previously it was reported that COPd may be a more sensitive measure of postural control than other measurement methods.²² This may be limited to a static stance. However, a recent study set out to determine the most accurate force-plate measure to distinguish between CAI and Healthy subjects. Ross et al⁷⁶ concluded that medial/lateral ground reaction force standard deviation and anterior/posterior time to stabilization were the most accurate at discriminating between CAI and Healthy subjects. That may be why our CAI group's COPd, and COPv were not different than the Control and Healthy groups prior to training.

Limitations

Like all research studies ours had limitations. Center of pressure was the only measure of postural control used. It would have been beneficial to have another measure of postural control to compare with our COP data. The use of surface electrodes to measure muscle activation is another limitation. Surface electrodes provide an estimation of the muscle activation of muscle fibers only underneath the electrode.⁷³ Due to the depth and location of the TrA and IO, muscle activation for those muscles can not be reported separately without the use of fine-wire electrodes. Another limitation is the abdominal training may have also trained other muscles (eg. erector spinae, multifidi, hip flexors, gluteal, quadriceps, hamstrings muscles).

Future Research

Future research needs to focus on understanding the role abdominal muscles have during landing in healthy and injured subjects. It would be beneficial to determine the time required to achieve hypertrophy of the TrA and IO at rest. This would assist clinicians in determining the length of their patients' training programs. Further studies should determine what effect training CAI subjects how to land has on lower extremity muscle activation and postural control. Our study measured kinematic changes only in the sagittal plane; future research should assess frontal plane changes following training. Further research needs to determine if decreasing VGRF results a decreased risk of lower extremity injuries.

CONCLUSIONS

Eight weeks of abdominal training resulted in changes in RA and EO muscle thickness, muscle activation (TrA/IO, VM, and PL), and postural control for the CAI and Healthy groups. No significant kinematic differences were observed. Our training program caused thickness changes to occur in the RA and EO muscles at rest and during AH but not the IO and TrA. Training decreased muscle activation of the proximal and distal muscles. This suggests abdominal training may improve neuromuscular function down the lower kinetic chain by potentially enhancing the capabilities of feedforward mechanisms. Our data are consistent with the hypothesis that CAI subjects use feedforward and feedback mechanisms to maintain postural control.

This study demonstrated the importance of training muscles proximal to the ankle in an attempt to prevent and reduce CAI. Clinicians must not train only the foot and lower leg musculature following an ankle sprain but they should consider training the entire kinetic chain.

REFERENCES

- Freeman MAR. Instability of the foot after injuries to the lateral ligament of the ankle. *J Bone Joint Surg Am.* 1965;47B(4): 669-677.
- 2. Freeman MAR, Dean MRE, Hanham IWF. The etiology and prevention of functional ankle istability of the foot. *J Bone Joint Surg Am*. 1965; 47B(4): 678-685.
- Freeman MAR, Wyke B. Articular reflexes at the ankle joint: An electromyographic study of normal and abnormal influences on ankle-joint mechanoreceptors upon reflex activity in leg muscles. *Brit J Surg.* 1967; 54(12): 990-1001.
- Delahunt E. Neuromuscular contributions to functional instability of the ankle joint. J Body Move Ther. 2007; 11(3): 203-213.
- 5. Ryan L. Mechanical stability, muscle strength and proprioception in the functionally unstable ankle. *Australian Journal of Physiotherapy*. 1994; 40(1): 41-47.
- Fu ASN, Hui-Chan CWY. Ankle joint proprioception and postural control in basketball players with bilateral ankle sprains. *Am J Sports Med.* 2005; 33(8): 1174-1182.
- Willems T, Witvrvouw E, Verstuy J, Vaes P, De Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. *J Athl Train.* 2002; 37(4): 487-493.
- 8. Konradsen L. Factors contributing to chronic ankle instability: kinesthesia and joint position sense. *J Athl Train.* 2002; 37(4): 381-385.

- Lentell G, Baas B, Lopez D, McGuire L, Sarrels M, Snyder P. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. *J Orthop Sports Phys Ther.* 1995; 21(4): 206-215.
- McKnight CM, Armstrong CW. The role of ankle strength in functional ankle instability. *J Sport Rehabil.* 1997; 6: 21-29.
- 11. Kaminiski TW, Perrin DH, Gansneder BM. Eversion strength analysis of uninjured and functionally unstable ankles. *J Athl Train*. 1999; 34(3): 239-245.
- 12. Munn J, Beard DJ, Refshauge KM, Lee RYW. Eccentric muscle strength in functional ankle instability. *Med Sci Sports Exerc*. 2003; 35(2): 245-250.
- Hartsell HD, Spaulding SJ. Eccentric/concentric ratios at selected velocities for the invertor and evertor muscles of the chronically unstable ankle. *Br J Sports Med.* 1999; 33: 255-258.
- Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. *J Orthop Sports Phys Ther*. 1997; 26(2): 78-86.
- 15. McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. *Clin J Sports Med.* 2000; 10: 239-244.
- 16. McGuine TA, Keene JS. The effect of a balance training program on the risk of ankle sprains in high school athletes. *Am J Sports Med.* 2006; 34(7): 1103-1111.
- Docherty CL, Valovich McLeod TC, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. *Clin J Sports Med.* 2006; 16(3): 203-208.

- Brown C, Ross S, Mynark R, Guskiewicz KM. Assessing functional ankle instability with joint position sense, time to stabilization, and electromygraphy. *J Sport Rehabil*. 2004; 13: 122-134.
- 19. Hale SA, Hertel J, Olmstead-Kramer LC. The effect of a four week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. *J Ortho Sports Phys Ther.* 2007; 37(6): 303-311.
- 20. Pintsaar A, Brynhildsen J, Tropp H. Postural corrections after standardised perturbations of the single limb stance: effect of training of training and orthotic devices in patients with ankle instability. *Br J Sports Med.* 1996; 30: 151-155.
- 21. Hertel J, Olmstead-Kramer LC. Deficits in time-to-boundary measures of postural control with chronic ankle instability. *Gait Posture*. 2007; 25: 33-39.
- Cornwall MW, Murrell P. Postural sway following inversion sprain of the ankle J Am Podiatr Med Assoc. 1991; 81(5): 243-247.
- 23. Evans T, Hertel J, Sebastianelli W. Bilateral deficits in postural control following lateral ankle sprain. *Foot Ankle Int.* 2004; 25(11): 833-839.
- 24. Wikstrom EA, Tillman MD, Chmielewski TL, Caraugh JH, Borsa PA. Dynamic postural stability deficits in subjects with self-reported ankle instability. *Med Sci Sports Exerc.* 2007; 39(3): 397-402.
- 25. Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control *Arch Phys Med Rehabil.* 2004 85: 589-92.

- Vaes P, Van Gheluwe B, Duquet W. Control of acceleration during sudden ankle supination in people with unstable ankles. *J Orthop Sports Phys Ther.* 2001; 31(12): 741-752.
- 27. Santilli V, Frascarelli MA, Paoloni M, et al. Peroneus longus muscle activation pattern during gait cycle in athletes affected by functional ankle instability. *Am J Sports Med.* 2005; 33(8): 1183-1187.
- Beckman SM, Buchanan TS. Ankle inversion injury and hypermobility: Effect on hip and ankle muscle electromyography onset latency. *Arch Phys Med Rehabil.* 1995; 76: 1138-1143.
- 29. Bullock-Saxton JE, Janda V, Bullock MI. The influence of ankle sprain injury on muscle activation during hip extension. *Int J Sports Med.* 1994; 15(6): 330-334.
- Bullock-Saxton JE. Sensory Changes associated with severe ankle sprain. Scand J Rehabil Med. 1995; 27: 161-167.
- Bullock-Saxton JE. Local sensation changes and altered hip muscle function following severe ankle sprain. *Phys Ther.* 1994; 74(1): 17-31.
- 32. Gribble PA, Hertel J, Denegar CR. Chronic ankle instability and fatigue create proximal joint alterations during performance of the star excursion balance test. *Int J Sports Med.* 2007; 28: 236-242.
- 33. Gribble PA, Hertel J, Denegar CR, Buckley WE. The effects of fatigue and chronic ankle instability on dynamic postural control *J Athl Train*. 2004; 39(4): 321-329.

- 34. Sedory EJ, McVey ED, Cross KM, Ingersoll CD, Hertel J. Arthrogenic muscle response of the quadriceps and hamstrings with chronic ankle instability. *J Athl Train*. 2007; 43(3): 355-360.
- Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. *Clin* Sports Med. 2008; 27(3): 353-370.
- 36. Willson JD, al e. Core stability and its relationship to lower extremity function and injury *J Am Orthop Surg.* 2005; 13: 316-325.
- Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes *Med Sci Sports Exerc*. 2004; 36(6): 926-934.
- 38. Kahle NL, Gribble PA. Core stability training in dynamic balance testing among young, healthy adults. *Athletic Training & Sports Health Care: The Journal for the Practicing Clinician.* 2009; 1(2): 65-73.
- Samson KM, Sandrey MA, Hetrick A. A core stabilization training program for tennis athletes. *Athlet Ther Today*. 2007; 12(3): 41-46.
- 40. Nadler SF, Malanga GA, Bartoli LA, Feinberg JH, Prybicien M, DePrince M. Hip muscle imbalance and low back pain in athletes: influence of core strength. *Med Sci Sports Exerc.* 2002; 34(1): 9-16.
- 41. Gage MJ, Hopkins JT. Increased abdominal activation and center of pressure excursion during static and dynamic movements. *J Athl Train*. 2008; 43(3): S-16.

- 42. Bunce SM, Hough AD, Moore AP. Measurement of abdominal muscle thickness using m-mode ultrasound imaging during functional activities *Manual Ther.* 2004; 9(1): 41-44.
- 43. Teyhen DS, Miltenberger CE, Deiters HM, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain *J Ortho Sports Phys Ther.* 2005; 35(6): 346-355.
- 44. Hides JA, Miokovic T, Belavy DL, Stanton WR, Richardson CA. Ultrasound imaging assessment of abdominal muscle function during drawing-in of the abdominal wall: An intrarater reliability study. *J Ortho Sports Phys Ther.* 2007; 37(8): 480-486.
- Critchley DJ, Coutts FJ. Abdominal muscle function in chronic low back pain patients: Measurement with real-time ultrasound scanning *Physiotherapy*. 2002; 88(6): 322-32.
- 46. Gage MJ, Myrer W, Seeley M, Hopkins JT: Reliability of measuring active and relaxed lateral abdominal muscle thickness using ultrasound imaging in healthy subjects American College of Sports Medicine Annual Meeting, Indianapolis, IN, 2008.
- 47. Bunce SM, Moore AP, Hough AD. M-mode ultrasound: a reliable measure of transversus abdominis thickness? . *Clin Biomech*. 2002; 17: 315-317.
- 48. Kidd AW, Magee S, Richardson CA. Reliability of real-time ultrasound for the assessment of transversus abdominis function *J Gravit Physiol*. 2002 9(1): P131 P132.

- Rankin G, Stokes M, Newham DJ. Abdominal muscle size and symmetry in normal subjects *Muscle Nerve*. 2006; 34: 320-326.
- 50. Hides JA, Wilson S, Stanton W, et al. An MRI investigation into the function of the tranversus abdominis muscle during "drawing-in" of the abdominal wall *Spine*. 2006; 31(6): E175-E178.
- 51. Hodges P, Pengel L, Herbert R, Gandevia S. Measurement of muscle contraction with ultrasound imaging *Muscle Nerve*. 2003; 27: 682-692.
- 52. John EK, Beith ID. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging? *Clin Biomech*. 2007; 22(9): 972-979.
- McMeeken JM, Beith ID, Newham DJ, Milligan P, Critchley D. The relationship between EMG and change in thickness of transversus abdominis *Clin Biomech*. 2004 19: 337-342.
- 54. Ford K, Myer G, Smith R, Vianello R, Seiwert S, Hewett T. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings *Clin Biomech.* 2005; 21: 33-40.
- 55. Critchley D. Instructing pelvic floor contraction facilitates transversus abdominis thickness increase during low-abdominal hollowing *Physiother Res Int.* 2002; 7(2): 65-75.
- 56. Ainscough-Potts AM, Morrissey MC, Critchley D. The response of the transverse abdominis and internal oblique muscles to different postures *Manual Ther*. 2006; 11: 54-60.

- 57. Teyhen DS, Gill NW, Whittaker JL, Henry SM, Hides JA, Hodges PW.
 Rehabilitative ultrasound imaging of abdominal muscles. *J Ortho Sports Phys Ther.*2007; 37(8): 450-466.
- Hopkins T, Pak JO, Robertshaw AE, Feland JB, Hunter I, Gage M. Whole body vibration and dynamic restraint. *International Journal Of Sports Medicine*. 2008; 29(5): 424-428.
- 59. Ekstrom RA, Dionatelli RA, Carp KC. Electromyographic Analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises *J Ortho Sports Phys Ther*. 2007; 37(12): 754-762.
- 60. Richardson CA, Toppenberg R, Jull G. An initial evaluation of eight abdominal exercises for their ability to provide stabilisation for the lumbar spine *Aust J Phsiopther.* 1990; 36(1): 6-11.
- Sahrmann SA: Diagnosis and treatment of movement impairment syndromes St. Louis, MO: Mosby, 2002.
- Mannion AF, Pulkovski N, Toma V, Sprott H. Abdominal muscle size and symmetry at rest and during abdominal hollowing exercises in healthy control subjects. *J Anat.* 2008; 213(2): 173-182.
- Moritani T, DeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain *Am J Phys Med.* 1979; 58(3): 115-130.
- 64. Moritani T, DeVries HA. Reexamination of the relationship between the surface integrated electromyogram (EMG) and force of isometric contraction *Am J Phys Med.* 1978; 57(6): 263-277.

- Enoka RM. Neural adaptations with chronic physical activity *J Biomechanics*. 1997;
 30(5): 447-455.
- 66. Brooks GA, Fahey TD, Baldwin KM: Exercise Physiology: Human Bioenergetics and Its Applications. 4th ed, 2005.
- 67. Delahunt E, Monaghan K, Caulfield B. Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional ankle instability of the ankle joint during single leg landing. *J Ortho Res.* 2006; 24: 1991-2000.
- 68. DeVita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity *Med Sci Sports Exerc.* 1992; 24(1): 108-115.
- 69. Van Deun S, Staes FF, Stappaerts KH, Janssens L, Levin O, Peers KKH. Relationship of chronic ankle instability to muscle activation patterns during the transition from double-leg to single-leg stance. *Am J Sports Med.* 2007; 35(2): 274-281.
- 70. Fu SN, Hui-Chan CWY. Modulation of prelanding lower-limb muscle responses in athletes with multiple ankle sprains. *Med Sci Sports Exerc.* 2007; 39(10): 1774-1783.
- 71. Caulfield B, Garrett M. Functional instability of the ankle: Differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. *Int J Sports Med.* 2002; 23: 64-68.
- Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. *Clin Biomech*. 2004; 19(6): 617-621.
- 73. Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor

muscle activity and amount of anterior pelvic tilt. *J Ortho Sports Phys Ther*. 2007; 37(6): 320-324.

- Ross SE, Guskiewicz KM, Gross MT, Yu B. Balance measures for discriminating between functionally unstable and stable ankles. *Med Sci Sports Exerc.* 2009; 41(2): 399-407.
- 75. Enoka RM: Neuromechanics of human movement 3rd ed. Champaign, IL: Human Kinetics, 2002.
- 76. Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of abdominal muscles to rapid limb movement J Electromyogr Kinesiol. 2003; 13: 477-489.
- 77. Carcia CR, Martin RL. The influence of gender on glute medius activity during a drop jump. *Phys Ther Sport.* 2007; 8: 169-176.

Steps	Instructions
1	Step up onto the 35 cm platform
2	Place your hands approximately 6" (15.2 cm) above your hips to avoid covering up the reflective markers
3	Move the dominant limb in front of the platform
4	Lean forward and drop off the platform; guide the dominant foot towards the center of the force plate as you drop; prior to landing pull the nondominant foot away from the platform
5	Land as you normally would
6	Upon landing stand erect on your dominant limb; locate the camera directly in front of you with your eyes; maintain your balance for approximately five seconds

Table 2. Sequence of the Pretraining Data Collection Session

Data Collection Timeline

- 1. Demographic data was collected
- 2. Subjects were assigned to a group
- 3. Subjects practiced correctly performing AH
- 4. Abdominal muscle thickness measurement sites were identified & marked with a permanent marker
- 5. Subjects correctly performed three consecutive AH, confirmed via ultrasound imaging
- 6. Took five RA muscle thickness measurements at rest
- 7. Took five lateral abdominal muscle thickness measurements at rest
- 8. Took five lateral abdominal muscle thickness measurements during AH
- 9. Placed surface EMG electrodes & reflective markers on the subject
- 10. Anthropometric measurements were taken
- 11. Subjects practiced performing a single-leg drop landing
- 12. Subjects correctly performed three consecutive single-leg drop landings
- 13. Five single-leg drop landing trials were performed for data collection (COP, EMG, & kinematics)
- 14. The CAI and Healthy groups were instructed on how to perform the abdominal strengthening program

Abbreviation: AH, abdominal hollowing; COP, center of pressure; EMG, electromyography; USI, ultrasound imaging

- 1. Took five RA muscle thickness measurements at rest
- 2. Took five lateral abdominal muscle thickness measurements at rest
- 3. Took five lateral abdominal muscle thickness measurements during AH
- 3. Placed surface EMG electrodes & reflective markers on the subject
- 4. Anthropmetric measurements were taken
- 5. Subjects practiced performing a single-leg drop landing
- 6. Subjects correctly performed three consecutive single-leg drop landings
- 7. Five single-leg drop landing trials were performed for data collection (COP, EMG, & kinematics)

Abbreviation: AH, abdominal hollowing; COP, center of pressure; EMG, electromyography

Table 4. Surface Electrode Placement

Muscle	Electrode	Electrode Placement
	Direction	
External Oblique	Oblique	Approximately 12-15 cm lateral to the umbilicus ⁷⁷
Internal Oblique / Transverse Abdominis	Transverse	2cm medial and inferior to the anterior superior iliac spine ⁷⁷
Gluteus Medius	Longitudinal	Halfway between the greater trochanter and lateral most aspect of the iliac crest ^{59, 78}

Table 5. Eight-Week Abdominal-Training Program

Table J. Light-Week A	odominal-framing f
Week One	Repetitions
Level 1 LAS	2 sets of 10
Curl-up	2 sets of 10
Side-bridge	2 sets of 10
Sit-up with rotation	2 sets of 10
Week Two	Repetitions
Level 1 LAS	3 sets of 10
Curl-up	3 sets of 10
Side-bridge	3 sets of 10
Sit-up with rotation	3 sets of 10
-	
Week Three	Repetitions
Level 2 LAS	2 sets of 10
Curl-up	2 sets of 15
Side-bridge	2 sets of 15
Sit-up with rotation	2 sets of 15
Week Four	Repetitions
Week Four Level 2 LAS	Repetitions 3 sets of 10
Level 2 LAS	
Level 2 LAS Curl-up Side-bridge	3 sets of 10
Level 2 LAS Curl-up	3 sets of 10 3 sets of 15
Level 2 LAS Curl-up Side-bridge	3 sets of 10 3 sets of 15 3 sets of 15

·	
Week Five	Repetitions
Level 3 LAS	2 sets of 10
Curl-up	2 sets of 20
Side-bridge	2 sets of 20
Sit-up with rotation	2 sets of 20
Prone-bridge	3 sets of 10s
Week Six	Repetitions
Level 3 LAS	3 sets of 10
Curl-up	3 sets of 20
Side-bridge	3 sets of 20
Sit-up with rotation	3 sets of 20
Prone-bridge	2 sets of 15s
Week Seven	Repetitions
Week Seven Level 5 LAS	Repetitions 2 sets of 10
Level 5 LAS	2 sets of 10
Level 5 LAS Curl-up	2 sets of 10 2 sets of 25
Level 5 LAS Curl-up Side-bridge	2 sets of 10 2 sets of 25 2 sets of 25
Level 5 LAS Curl-up Side-bridge Sit-up with rotation	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 2 sets of 25
Level 5 LAS Curl-up Side-bridge Sit-up with rotation	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 2 sets of 25
Level 5 LAS Curl-up Side-bridge Sit-up with rotation Prone-bridge	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 3 sets of 15s
Level 5 LAS Curl-up Side-bridge Sit-up with rotation Prone-bridge Week Eight	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 3 sets of 15s Repetitions
Level 5 LAS Curl-up Side-bridge Sit-up with rotation Prone-bridge Week Eight Level 5 LAS Curl-up Side-bridge	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 3 sets of 15s Repetitions 3 sets of 10
Level 5 LAS Curl-up Side-bridge Sit-up with rotation Prone-bridge Week Eight Level 5 LAS	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 3 sets of 15s Repetitions 3 sets of 10 3 sets of 25
Level 5 LAS Curl-up Side-bridge Sit-up with rotation Prone-bridge Week Eight Level 5 LAS Curl-up Side-bridge	2 sets of 10 2 sets of 25 2 sets of 25 2 sets of 25 3 sets of 15s Repetitions 3 sets of 10 3 sets of 25 3 sets of 25

Abbreviation: LAS, Sahrmann lower abdominal series; s, seconds

Table 6. Description of Lower Abdominal Series

able 0. Dese	inpuoli of Lower Abdominal Series
LAS Level	Description
1	Subjects lifted the first leg to 90° of hip flexion followed by the 2nd leg, the
	knees flexed as the hips flexed; the first leg was then lowered to the starting
	position, followed by the second leg
2	Subjects lifted the first leg to 90° of hip flexion followed by the 2nd leg, the
	knees flexed as the hips flexed; the heel of the first leg was then lowered and
	slid across the floor/table until it became straight; the first leg returned to 90° of
	hip flexion by sliding the heel across the table; this was repeated by the second
	leg
3	Subjects lifted the first leg to 90° of hip flexion followed by the 2nd leg, the
	knees flexed as the hips flexed; the first leg was then straightened without the
	heel touching the floor/table until it became straight; the first leg returned to 90°
	of hip flexion; this was repeated by the second leg
4	Subjects started with both legs straight; both legs were then flexed to 90° of hip
	flexion, the knees flexed as the hips flexed; the legs were not allowed to touch
	the floor/table; both legs were straightened without touching the floor/table
1.1	

Abbreviation: LAS, Sahrmann lower abdominal series

	RA (a	<i>v</i>) rest	EO (d	i) rest	IO @	rest	TrA (a) rest
	Pre	Post*	Pre	Post	Pre	Post	Pre	Post
Control	10.7 ± 1.9	10.7 ± 2.0	6.1 ± 1.2	$6.2 \pm 1.3^{ }$	9.4 ± 2.2	9.2 ± 2.2	3.8 ± 0.9	3.7 ± 0.9
CAI	$11.9 \pm 2.9^{\ddagger}$	$12.8 \pm 2.9^{\ddagger}$	$6.7 \pm 1.6^{\$}$	$7.9\pm2.1^{ }$	10.0 ± 3.3	9.7 ± 2.1	4.0 ± 1.3	3.8 ± 0.9
Healthy	$11.3\pm2.5^\dagger$	$12.9\pm2.8^\dagger$	$6.3 \pm 1.4^{\parallel}$	$7.3 \pm 1.9^{\parallel}$	9.2 ± 2.5	9.6 ± 2.8	3.6 ± 0.7	3.7 ± 0.8
Effect size ^b	0.0	076	0.0	018	0.0	09	0.0)16

Table 7. Abdominal Muscle Thickness at Rest^a (mm)

Abbreviations: mm, millimeter(s); Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean ± standard deviation

^b Partial eta² statistic was used to report effect size ^{*} Interaction existed between rectus abdominis thickness and group, p < 0.001

[†]Rectus abdominis thickness increased within groups between the pre- and posttraining data collection sessions; p < 0.002

^{*} Rectus abdominis thickness increased within groups between the pre- and posttraining data collection sessions; p < 0.001

[§] External oblique thickness increased within groups between the pre- and posttraining data collection sessions; p < 0.001

External oblique thickness increased within groups between the pre- and posttraining data collection sessions; p = 0.002

CAI \geq Control; p = 0.013

	Pre	Post	Pre	Post	Pre	Post
Control	6.2 ± 1.4	6.3 ± 1.4 [§] ∥	10.6 ± 2.7	11.0 ± 3.3	5.8 ± 1.0	6.0 ± 1.3
CAI	$6.9 \pm 1.5^{++}$	$8.3\pm2.4^{\dagger\S}$	11.4 ± 3.9	11.2 ± 2.5	5.9 ± 1.8	5.9 ± 1.4
Healthy	$6.5 \pm 1.6^{\ddagger}$	7.8 ± 1.7 ^{‡∥}	$11.0 \pm 3.4^{ }$	12.3 ± 4.3	5.6 ± 1.2	6.3 ± 1.6
Effect size ^b	0.	177	0.0)09	0.0	003

Table 8. Abdominal Muscle Thickness during Abdominal Hollowing^a (mm)

Abbreviations: mm, millimeter(s); Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean ± standard deviation

^b Partial eta² statistic was used to report effect size * An interaction existed between group and time for external oblique thickness; p < 0.001[†]External oblique thickness increased within the CAI group between the pre- and posttraining data collection sessions; p < 0.001

[‡]External oblique thickness increased within the Healthy group between the pre- and posttraining data collection sessions; p < 0.001

Solution for the set of the set

Internal oblique thickness increased within the Healthy group between the pre- and posttraining data collection sessions; p = 0.004

	Ankle Excursion		Ankle Peak	
	Pre Post [*]		Pre	Post
Control	42.6 ± 15.9	45.9 ± 12.6	$18.7 \pm 7.1^{\dagger}$	$24.0\pm9.9^{\dagger}$
CAI	43.3 ± 13.1	41.0 ± 14.9	20.9 ± 7.1	21.4 ± 6.9
Healthy	50.4 ± 14.1	46.6 ± 11.7	21.5 ± 10.3	21.7 ± 8.6
Effect size ^b	0.043		0.001	

Table 9. Lower Extremity Joint Excursion and Peak Angles^a (°)

	Knee Excursion		Knee	Peak
	Pre	Post	Pre	Post
Control	29.0 ± 7.1	25.8 ± 6.7	33.3 ± 7.2	30.9 ± 9.6
CAI	27.8 ± 9.7	25.4 ± 9.8	33.3 ± 11.1	35.9 ± 20.2
Healthy	26.7 ± 9.7	25.6 ± 10.5	31.8 ± 10.8	34.4 ± 12.8
Effect size ^b	0.0	004	0.0	010
	Hip Ex	cursion	Hip	Peak
	Pre	Post	Pre	Post
Control	16.0 ± 15.5	127102	24.9 ± 16.6	20.0 ± 17.0

	Pre	Post	Pre	Post
Control	16.9 ± 15.5	13.7 ± 8.3	34.8 ± 16.6	30.0 ± 17.0
CAI	16.0 ± 10.1	16.5 ± 11.0	33.7 ± 15.6	33.2 ± 15.4
Healthy	13.5 ± 6.6	12.7 ± 7.7	32.4 ± 11.8	34.5 ± 12.3
Effect size ^b	0.022		0.002	

Abbreviations: °, degree(s); Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean \pm standard deviation ^b Partial eta² statistic was used to report effect size ^{*} An interaction existed between group and time for peak ankle excursion; p = 0.052

[†]Peak ankle angle increased within the Control group between the pre-and posttraining data collection sessions; p = 0.005

	Transverse Abdomin	is/Internal Oblique	External	External Oblique		
	Pre	Post	Pre	Post		
Control	$311.7 \pm 176.2^*$	378.7 ± 510.3	$194.5 \pm 101.8^{\dagger}$	138.3 ± 97.1		
CAI	$855.0 \pm 1038.2^{*\parallel}$	$365.0 \pm 292.3^{\parallel}$	$328.4 \pm 163.6^{\dagger\ddagger}$	$287.9 \pm 602.5^{ }$		
Healthy	503.6 ± 481.5	332.8 ± 572.3	$148.7 \pm 56.3^{\ddagger}$	$127.7 \pm 187.0^{ }$		
Effect size ^b	0.00	50	0.1	31		
	Gluteus M	Aedius	Vastus N	Iedialis		
	Pre	Post	Pre	Post		
Control	91.2 ± 69.0	70.5 ± 20.0	520.5 ± 719.5	202.6 ± 82.7		
CAI	$109.4 \pm 62.2^{\$}$	$91.8 \pm 43.6^{\text{T}}$	$611.3\pm478.4^{\infty}$	$219.7\pm145.8^{\infty}$		
Healthy	$65.6 \pm 29.9^{\$}$	$50.2 \pm 23.4^{\P}$	665.8 ± 726.5 "	157.4 ± 66.7 "		
Effect size ^b	0.18	4	0.0	06		
	Peroneus	Longus				
	Pre	Post	-			
Control	323.7 ± 739.0	126.8 ± 110.4	_			
CAI	356.1 ± 836.0	126.0 ± 81.2				
Healthy	212.8 ± 257.5	107.8 ± 54.1				
Effect size ^b	0.01	2				

Table 10. Mean Normalized EMG^a (%)

Abbreviations: %, percent; Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean \pm standard deviation ^b Partial eta² statistic was used to report effect size ^{*} CAI \geq Control; $p \leq 0.07$

[†] CAI \geq Control; $p \leq 0.00$

* CAI \geq Healthy; $p \leq 0.02$ * CAI \geq Healthy; $p \leq 0.04$

TrA/IO activation decreased between the pre- and posttraining data collection sessions; p = 0.003

¹CAI \geq Healthy; p = 0.02

[¶]CAI \geq Healthy; $p \leq 0.00$

 $^{\infty}$ VM activation decreased between the pre- and posttraining data collection sessions; p =0.02

"VM activation decreased between the pre- and posttraining data collection sessions; p =0.02

	Transverse Abdominis/Internal Oblique		External Oblique	
	Pre	Post	Pre	Post
Control	$675.8 \pm 345.3^{*}$	786.9 ± 1084.4	$434.3\pm277.8^\dagger$	298.8 ± 201.5
CAI	$1876.1 \pm 2354.4^{*\parallel}$	$771.6 \pm 546.7^{\parallel}$	$824.3 \pm 692.6^{\dagger\ddagger}$	568.5 ± 1146.0
Healthy	1062.3 ± 993.8	622.6 ± 874.9	$312.2 \pm 174.4^{\ddagger}$	$368.1 \pm 812.5^{ }$
Effect size ^b	0.074		0.109	

Table 11. Peak Normalized Muscle Activation^a (%)

	Gluteus Medius		Vastus Medialis	
	Pre	Post	Pre	Post
Control	215.8 ± 191.4	195.9 ± 164.1	980.9 ± 1315.7	457.9 ± 200.1
CAI	$288.6 \pm 265.1^{\$}$	$217.9 \pm 146.3^{\text{\$}}$	$1371.7 \pm 1510.5^{\circ\circ}$	$458.9\pm254.0^{\infty}$
Healthy	$134.9 \pm 68.5^{\$}$	$106.2 \pm 47.1^{\P}$	1195.9 ± 1162.9 "	$370.5 \pm 300.1^{"}$
Effect size ^b	0.153		0.015	

	Peroneus Longus		
	Pre	Post	
Control	676.4 ± 1549.9	269.7 ± 239.8	
CAI	795.1 ± 1756.1	254.1 ± 142.5	
Healthy	432.1 ± 508.1	217.6 ± 123.8	
Effect size ^b	0.01	0.015	

Abbreviations: %, percent; Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean ± standard deviation

^b Partial eta² statistic was used to report effect size ^{*} CAI \geq Control; p = 0.08[†] CAI \geq Control; p = 0.02

* CAI \geq Healthy; $p \leq 0.02$ * CAI \geq Healthy; $p \leq 0.00$ * CAI \geq Healthy; p = 0.04TrA/IO activation decreased between the pre- and posttraining data collection sessions; p = 0.002

¹ CAI \geq Healthy; p = 0.05

 ¶ CAI \geq Healthy; p = 0.01

^{∞} VM activation decreased between the pre- and posttraining data collection sessions; p =0.02

"VM activation decreased between the pre- and posttraining data collection sessions; p =0.03

	COPd		COPv Mean		COPv Peak	
	Pre	Post	Pre	Post [¶]	Pre	Post
Control	32.6 ± 20.5	36.9 ± 9.8	$70.0 \pm 14.7^{*}$	68.5 ± 13.2	$932.4 \pm 448.7^{\ddagger\$}$	$1110.3 \pm 190.3^{[/]}$
CAI	$26.5 \pm 4.6^{\parallel}$	$31.7 \pm 6.8^{\parallel}$	$65.8\pm15.3^{\dagger\infty}$	$82.0 \pm 11.0^{\infty}$	$698.1 \pm 120.5^{\ddagger}$	$1059.5 \pm 273.9^{ j- }$
Healthy	30.3 ± 6.1	$37.6 \pm 9.2^{ }$	$50.8 \pm 16.6^{*\dagger !!}$	$81.3 \pm 14.2^{"}$	$567.9 \pm 104.4^{\circ}$	$794.6 \pm 126.2^{n-1}$
Effect size ^b	0.0	080	0.0	76	0.0	040

Table 12. Center of Pressure Excursion^a (mm) and Velocity^a (mm/s)

Abbreviations: mm, millimeters; mm/s; millimeters per second; Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean \pm standard deviation

^b Partial eta² statistic was used to report effect size

* Control \geq Healthy; $p \leq 0.00$

[†] CAI \geq Healthy; p = 0.01

[‡] Control \geq CAI; p = 0.02

[§] Control \geq Healthy; $p \leq 0.00$

A trend towards increased COPd existed between the pre- and posttraining data collection sessions; p = 0.053

COPd increased between the pre- and posttraining data collection sessions; p = 0.009An interaction existed between group and time for the mean COPv; $p \le 0.001$

^{∞ ,!!} Mean COPv increased between the pre- and posttraining data collection sessions; $p \le 0.001$

[†] Peak COPv increased between the pre- and posttraining data collection sessions; $p \le 0.001$

Peak COPv increased between the pre- and posttraining data collection sessions; p = 0.004

^f Control \geq CAI; p = 0.03

Control \geq Healthy; $p \leq 0.001$

 $^{-}$ CAI \geq Healthy; p = 0.002

Table 13. Data Collection Time Window^a (ms)

	Time Window		
	Pre	Post [*]	
Control	$0.39\pm0.1^\dagger$	$0.44\pm0.2^{\dagger}$	
CAI	0.34 ± 0.1	0.35 ± 0.1	
Healthy	0.38 ± 0.1	0.36 ± 0.1	
Effect size ^b	0.061		

Abbreviations: ms, milliseconds; Post, posttraining data collection; Pre, pretraining data collection

^a Values are expressed as mean \pm standard deviation ^b Partial eta² statistic was used to report effect size ^{*} An interaction between time and group existed on time window; p = 0.04

[†] Time window increased between the pre- and posttraining data collection sessions; p =0.015

	Peak VGRF		Mean VGRF	
	Pre	Post	Pre	Post
Control	2216 ± 418.6	2217.5 ± 436.0	1171.8 ± 252.6	1149.6 ± 265.6
CAI	$2459.6 \pm 430.8^{*\dagger}$	$2286.1\pm583.3^\dagger$	$1275.9 \pm 257.7^{\ddagger}$	$1197.8 \pm 321.5^{\ddagger}$
Healthy	$2085.9 \pm 534.1^{*}$	2039.7 ± 473.5	1122.0 ± 309.3	1124.2 ± 294.1
Effect size ^b	0.073		0.030	

Table 14. Mean and Peak Vertical Ground Reaction Force Data^{a, b} (Newtons)

Abbreviations: Post, posttraining data collection; Pre, pretraining data collection; VGRF, vertical ground reaction force

^a Values are expressed as mean \pm standard deviation ^b Partial eta² statistic was used to report effect size * CAI \geq Healthy; $p \leq 0.03$

[†]Peak VGRF decreased between the pre- and posttraining data collection sessions; p =0.002

[‡] Mean VGRF decreased between the pre- and posttraining data collection sessions; p =0.006

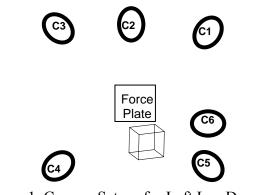


Figure 1. Camera Set-up for Left Leg Dominance Abbreviations: C1-6, cameras 1-6

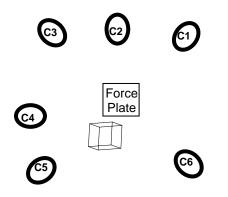


Figure 2. Camera Set-up for Right Leg Dominance Abbreviations: C1-6, cameras 1-6

Figure 3. Supine Hook-lying Position

Figure 4. Single-leg Drop Landing

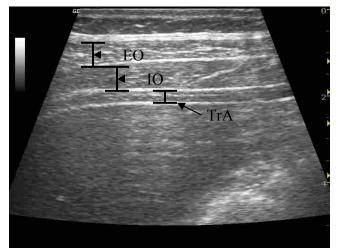


Figure 5. Image of Lateral Abdominal Muscles

Figure 6. Standardized Streak Used Ultrasound Transducer Head Placement

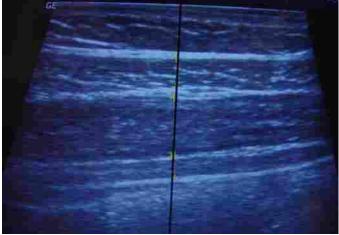


Figure 7. Grid Overlay and Measurement Procedure

Figure 8. Transverse Abdominis / Internal Oblique Reference Position

Figure 9. External Oblique Reference Position

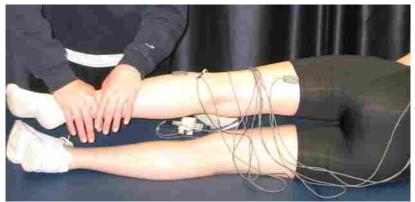


Figure 10. Gluteus Medius Reference Position

Figure 11. Vastus Medialis Reference Position

Figure 12. Peroneus Longus Reference Position

Figure 13. Anterior, Lateral, and Posterior Views of Plug-in Gait Marker Placement

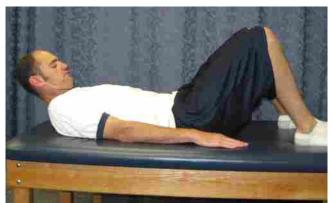


Figure 14. Curl-up Starting Position

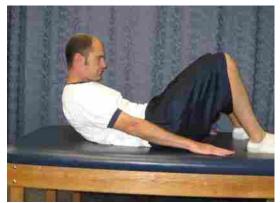


Figure 15. Curl-up Peak Position

Figure 16. Side-Bridge Starting Position



Figure 17. Neutral Spine Position

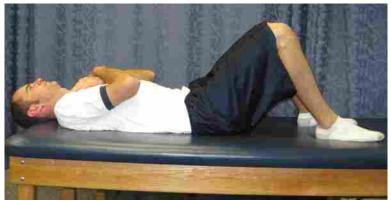


Figure 18. Sit-up with Rotation Starting Position

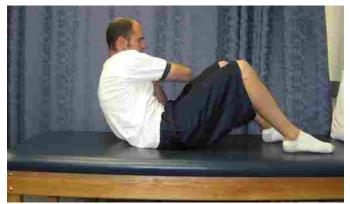


Figure 19. Right Elbow to Left Knee

Figure 20. Return to Starting Position

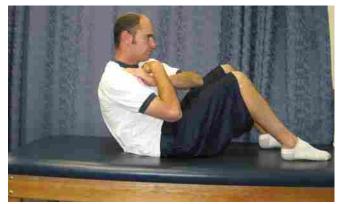


Figure 21. Left Elbow to Right Knee

Figure 22. Level 1 Lower Abdominal Series

Figure 23. Level 2 Lower Abdominal Series

Figure 24. Level 3 Lower Abdominal Series

Figure 25. Level 5 Lower Abdominal Series

Figure 26. Prone-Bridge Starting Position

Figure 27. Prone-Bridge Peak Position

Appendix A

Prospectus

Chapter 1

Introduction

The ankle is the most frequently injured lower extremity joint in the human body.^{79, 80} Approximately 85% of all ankle sprains occur to the lateral ligaments.⁸¹ Ankle sprains frequently occur during both activities of daily living and athletic events. Athletes miss more games and practices from an ankle injury than any other injury.⁸⁰ It was reported that approximately 30 to 40% of the individuals who sprain their ankle will develop chronic ankle instability.^{1, 2}

Three terms commonly used to classify ankle instability are chronic, functional, and mechanical. Chronic ankle instability (CAI) is where individuals suffer from recurrent bouts of lateral ankle sprains.⁸² Researchers believe CAI is due to two types of instability dysfunctions.^{83, 84} These dysfunctions are known as functional and mechanical ankle instability. Functional ankle instability (FAI) refers to recurrent ankle joint laxity due to neuromuscular deficits.⁸² This ankle instability is self-reported through various questionnaires. Functional ankle instability subjects report at least one substantial ankle sprain that occurred greater than one year ago and have "giving way" episodes.⁸⁵ Mechanical ankle instability (MAI) is the result of deformities to bony or ligamentous structures of the ankle and/or foot caused by the initial or recurrent injury(s).^{82, 86} Some patients with ankle instability have signs and/or symptoms of both FAI and MAI.^{84, 87} The majority of ankle instability research has centered on the implications of FAI because without surgical intervention it is believed little can be done to change MAI.⁸⁶ Although FAI has been studied for years, its causes and effects remain unclear. Many factors are believed to contribute to FAI. Some of the most common are decreased proprioception,^{2, 5, 6} joint position sense,⁶⁻⁹ strength,⁹⁻¹⁴ and increased peroneal muscle latency.^{26, 27} Individuals with FAI have also demonstrated decreased coordination,^{2, 8} balance,^{15, 16} and postural control.¹⁷⁻²⁵ Although these risk factors have been demonstrated by FAI subjects, researchers have also observed no deficits.^{5, 9-12, 88-97} All of these variables are thought to make FAI patients prone to CAI. However, a consensus regarding the importance of these risk factors or how they may interact with each other has not been reached. Due to the complexity of these risk factors, researchers have begun to study the interrelationship between proximal joints and muscles and FAI. Both how FAI might effect the proximal joints and muscles and how FAI subjects may use these muscles to compensate for ankle instability during dynamic movements.²⁸⁻³³

Functional ankle instability subjects have demonstrated compensatory landing strategies compared to healthy control subjects.^{18, 70, 71} They land in a more erect or stiff-legged position than healthy subjects.⁷⁰ This is referred to as an ankle-landing strategy because it requires the ankle joint and surrounding muscles to absorb greater energy than the knee and hip. Therefore, FAI subjects may place greater demands on the injured ankle joint and surrounding muscles in an attempt to maintain balance or postural control. Healthy subjects use a combination of landing strategies (ankle, hip, and/or combined),⁶⁹ which allows energy to be transferred up the kinetic chain for energy absorption.^{69, 98} As energy is transferred up the kinetic chain, the knee and hip joints along with their surrounding muscles reduce the amount of energy absorbed by the ankle. This serves to take some of the stress off the ankle and surrounding muscles.^{69, 99-102} How the

compensatory landing strategy of FAI subjects affects their proximal muscle activation is unclear.

Altered proximal muscle activation and strength deficits were observed in subjects with CAI. Subjects with FAI have demonstrated altered gluteus medius (GMed),²⁸ gluteus maximus (GMax),^{29, 31} and biceps femoris (BF)³¹ muscle activation. Arthrogenic muscle inhibition of the quadriceps and hamstrings was also observed in CAI subjects. This may explain why proximal strength deficits exist in CAI subjects.³⁴ A correlation between ankle/foot injuries and ipsilateral hip abductor and adductor muscle weakness exists.¹⁰³ Subjects with a history of a lower extremity injury or low back pain have exhibited decreased hip extensor strength.¹⁰⁴ Gribble et al³³ observed CAI and fatigue may disrupt postural control during a dynamic task, this was most notable in joints proximal to the ankle.³³ Hip abductor and extensor weakness in subjects with a lower extremity injury required greater recruitment of trunk stabilizer muscles during dynamic tasks.⁴¹ The involvement of proximal joints and muscles superior to the pelvis is unknown, thus further research is required.

It was theorized that abdominal muscle strength may play a role in reducing the risk of lower extremity injuries.¹⁰⁵ Few research studies however, have assessed the relationship between core muscles and lower extremity injury. Trunk muscle involvement increased with the presence of GMed weakness.⁴¹ Healthy subjects increased abdominal muscle activation as the difficulty of static and dynamic tasks increased.³⁵ Hodges and Richardson^{106, 107} observed that the transversus abdominis (TrA) muscle activated prior to any lower or upper extremity limb movement. These studies

suggest a feedforward mechanism may be utilized to activate the TrA prior to movement. Gluteus maximus muscle activation increased when abdominal hollowing (AH) was performed during a prone straight leg raise; however, this study did not assess GMed muscle activation.⁷⁴ Abdominal hollowing is a strengthening exercise that isolates the contraction of the TrA muscle.⁵⁵ Currently however, it is unknown how abdominal muscle activation is affected by a lower extremity injury such as ankle instability.

The purpose(s) of our study are to first determine if muscle activation, center of pressure, and kinematics differ between FAI and healthy subjects during a single-leg drop landing. These variables will then be measured following an eight-week abdominal strengthening program undertaken by healthy and FAI subjects to determine what effect abdominal strengthening has on muscle activation, center of pressure (COP) excursion, and kinematics. A better understanding of how abdominal and lower extremity muscles interact during single-leg drop landing may aid in finding a possible contributor to ankle instability and could change the way clinicians rehabilitate FAI patients.

RESEARCH QUESTIONS

- Does COP excursion, muscle activation, muscle thickness, and kinematics differ between healthy and FAI subjects during a single-leg drop landing?
- 2. Does an eight week abdominal strengthening program improve postural control in healthy and FAI subjects?

- 3. Does abdominal strengthening increase peak and mean electromyography (EMG) amplitude of lateral abdominal (internal oblique /TrA, external oblique) and lower extremity muscles (GMed and BF) during a single-leg drop landing?
- 4. Do morphological changes individually occur to the external oblique (EO), internal oblique (IO), and TrA during an eight week abdominal strengthening program?
- 5. Does abdominal strengthening change ankle, knee, or hip joint angles (frontal and sagittal planes) during a single leg drop landing?

RESEARCH HYPOTHESES

- Functional ankle instability subjects will demonstrate deficits in COP excursion, muscle activation, and kinematics compared to healthy controls preabdominal strengthening.
- An eight week abdominal strengthening program will decrease COP excursion, increase muscle activation and kinematics in healthy and functional ankle instability subjects.
- Abdominal muscle strengthening will increase mean and peak EMG amplitude of the IO/TrA and EO muscles, GMed, and BF muscles during a single-leg drop landing
- 4. The thickness of the EO, IO, and TrA at rest and during AH will increase during an eight-week strengthening program.

- 5. Abdominal strengthening will decrease hip adduction, and increase knee flexion and dorsiflexion in FAI subjects during a single-leg drop landing.
- 6. A positive correlation will exist between abdominal muscle thickness during AH and muscle activation during a single-leg drop landing.

OPERATIONAL DEFINITIONS

- Abdominal hollowing subjects gently pull their umbilicus towards the plinth or floor without moving their spine and maintaining normal breathing while lying supine.⁵⁵
- Arthrogenic muscle inhibition the presynaptic ongoing reflex inhibition of musculature surrounding a joint following distention or damage to structures of that joint.¹⁰⁸
- Balance ability to maintain equilibrium by controlling the center of gravity over its base of support.¹⁰⁹

Center of pressure – assesses body equilibrium and postural control.

- Chronic ankle instability condition where individuals suffer from recurrent bouts of lateral ankle sprains.³⁶
- Coordination ability of muscles and muscle groups to perform complicated movements.¹⁰⁹
- Core includes the hip, pelvis, and lumbar spine along with any muscles or soft tissue that inserts or originates on these bony structures.

Correct abdominal hollowing – a significant increase in TrA thickness, with minimal or no increase in EO and IO thicknesses.

Dominant limb – the limb an individual would plant with while kicking a ball.⁵⁸

Electromyography – an instrument used to assess the electrical activity of muscle tissue.¹¹⁰

Energy absorption – amount of work absorbed by the joints and muscles.

Force sense – ability to reproduce or detect a given amount of force.^{89, 111}

Functional ankle instability - condition referring to recurrent ankle joint

instability due to neuromuscular deficits.

Ground reaction force – the sum of all forces applied to a surface (ie., foot).¹¹⁰

Healthy – No abdominal, low back, or lower extremity injury in the past year or surgery in the past two years.

Initial contact – the first contact between the foot and ground or force plate.

Joint position sense – posture of a segment and joint in space.¹¹²

Kinematics – the study of motion without regards to what caused the motion.¹¹⁰

Kinesthesia – ability to detect movement.⁸⁹

- Kinetics study of forces such as work, energy, impulse, momentum, and power acting on human body.¹¹⁰
- Lateral abdominal muscles the EO, IO, and TrA, commonly referred to as the lateral abdominal wall muscles.
- Mechanical ankle instability condition caused by deformities to bony or ligamentous structures of the ankle and/or foot.^{82, 86}

- Muscle thickness the perpendicular distance between the superficial and deep fascial lines of the muscles; thickness measurements will not include the fascial boundary.
- Postural control the ability to control the position of the body in space for the dual purposes of stability and orientation.⁷⁵
- Proprioception the ability to provide feedback to the nervous system through joint position sense, kinesthesia, sense of resistance (force).¹¹²
- Physically active participate in 30 minutes of aerobic activity a minimum of 3 times per week.
- Regular participation performing abdominal strengthening exercises three times per week.
- Single-leg drop landing landing on the dominant leg from a 35 cm platform onto the force plate while the nondominant limb is nonweight bearing.
- X-axis measures forces in the medial-lateral direction.¹¹⁰

Y-axis - measures forces in the anterior-posterior direction.¹¹⁰

Z-axis- measures forces in the vertical direction.¹¹⁰

ASSUMPTIONS

This study is based on the following assumptions:

 Center of pressure, muscle activation, and kinematics will be different between FAI and healthy subjects.

- 2. Subjects will honestly answer the foot and ankle ability measure (FAAM) questionnaire.
- Subjects will complete all of the abdominal strengthening exercise protocol three times a week and will provide honest responses on the weekly exercise log.
- 4. Surface EMG electrodes placed over the IO/TrA represent muscle activation of both the IO and TrA.
- 5. Center of pressure is an accurate indirect measure of balance and postural control.
- 6. Reflective markers will be accurately placed over anatomical landmarks.
- 7. Eight weeks of abdominal strengthening is enough time to observe change in abdominal muscle thickness at rest and during AH.

DELIMITATIONS

- 1. All subjects will be physically active.
- 2. All subjects will be free from any neurological or cardiovascular disorders.
- 3. No history of pregnancy or childbirth in the past two years.
- 4. Subjects will self-report CAI using the AII questionnaire.
- 5. Subjects will self-report FAI using the FAAM questionnaire.
- Subjects other than the FAI group will have no history of an abdomen, low back, or lower extremity injury in the past year.
- Subjects will have no history of a surgery to the abdomen, low back, or lower extremity in the past two years.

LIMITATIONS

- 1. Center of pressure excursion is the only measure we are using to represent balance and postural control.
- 2. Surface EMG is an estimation of the muscle activation of muscle fibers only underneath the electrode.
- 3. Individual muscle activation of IO and TrA can not be determined.
- The abdominal strengthening exercises may strengthen more than just the abdominal muscles (eg. erector spinae, multifidi, hip flexors, gluteal, quadriceps, hamstrings muscles) which may contribute to the findings.

Chapter 2

Review of Literature

Ankle instability and sprains continue to frequently occur despite the knowledge gained from extensive research. Numerous contributing factors have been associated with chronic ankle instability (CAI). The majority of functional ankle instability (FAI) studies have only assessed the involvement of the lower leg musculature. Researchers recently began to assess the involvement of proximal joints and musculature in FAI subjects. This research indicates that proximal musculature may have an important role in both preventing and rehabilitating FAI.

The relationship between hip musculature and ankle instability has been attributed to somateosensory deficits and/or spinal, and supraspinal input.³⁶ It remains unclear how a distal injury may affect the feedback and feedforward mechanisms. Assuming the feedforward mechanism is the primary connection between proximal musculature and distal injuries, there is a need for further research to assess the role of other proximal "core" muscles.

The relationship between ankle instability and lateral abdominal muscles has not been assessed. In athletic events the upper body is required to move in multiple directions and planes. To maintain postural control during dynamic movements the spine must be stabilized, otherwise postural control may be diminished; therefore, increasing the risk of injury. Since the lateral abdominal muscles assist in providing spinal stabilization during dynamic movements it is logical to assess the relationship between the lateral abdominal muscles and ankle instability. This study will assess the connection

between this muscle group and FAI.

The outline below identifies the topics contained in this literature review.

DATABASES AND KEYWORDS SEARCHED ANKLE INJURY STATISTICS ANKLE INSTABILITY Mechanical Ankle Instability Functional Ankle Instability CONTRIBUTORS OF FUNCTIONAL ANKLE INSTABILITY Proprioception Kinesthesia. Joint Position Sense. Sense of Resistance. Motorneuron Pool Excitability Arthrogenic Muscle Inhibition. Lower Extremity Muscle Activation Peroneal Muscle Group Latency. Altered Electromyography. Lower Extremity Strength Deficits Eversion Strength. Inversion Strength. Plantar Flexion Strength. Postural Control Sway. Center Of Pressure. Time to Boundary. *Time to Stabilization.* Dynamic Postural Stability Index. Equitest. Balance Error Scoring System. Star Excursion Balance Test. Single-Leg Balance Test. Biomechanics Landing Types. Landing Strategies. Energy Absorption During Landing. Perturbations. Muscle Activation. Ankle Instability and Landing. Gender Differences.

100

PROXIMAL ANATOMICAL STRUCTURES AND LOWER EXTREMITY INJURY Hip Musculature Ankle Instability. Abdominal Musculature. CENTRAL NERVOUS SYSTEM Brain Spinal Cord Feedback Feedforward CONTEMPORARY THEORY: ANKLE INSTABILITY & SOMATOSENSORY DEFICITS CORE STABILITY Musculature **REHABILITATION PROGRAMS** Ankle Rehabilitation Abdominal Strengthening Exercises INSTRUMENTATION Electromyography Force Plate Kinematics Ultrasound Imaging

DATABASES AND KEYWORDS SEARCHED

CINAHL, MEDLINE, Pre-CINAHL, and SPORTDiscus databases were searched

from 1965 - present. Additional literature was gathered from citations in articles,

textbooks, and symposiums. Keywords searched include the following terms:

Abdominal muscles Abdominal strengthening Ankle Ankle instability Arthrogenic muscle inhibition Balance Center of pressure Chronic ankle instability Coordination Core stability	Electromyography (EMG) Energy absorption External oblique Feedback Feedforward Force sense Functional ankle instability Gluteus maximus Gluteus medius Hip musculature Internal oblique	Landing strategies Mechanical ankle instability Muscle activation Peroneal Postural control Strength Training Transverse abdominis Ultrasound imaging
Core strengthening	Joint position sense	

ANKLE INJURY STATISTICS

Approximately 50% of all sports related injuries occur to the lower extremity.¹¹³ The ankle is the most commonly injured joint in the lower extremity¹¹⁴ and human body.^{81, 113-115} Epidemiological research assessed the frequency of ankle injuries in both collegiate¹¹³ and high school athletes,^{79, 80, 114} along with the general public.^{115, 116} The rate of ankle injuries vary depending on gender, type of participation (game or practice), and sport. Ankle injuries are most often associated with sports requiring a combination of jumping and change of direction during running.⁸⁰ Males injured their ankles more in football^{113, 114} and basketball^{80, 113, 115} than any other sports. It was reported that 45% of ankle injuries in basketball occur during landing.¹¹⁶ Soccer and volleyball were the sports that reported the greatest incident of ankle injuries for females.^{114, 115} Typically more ankle injuries occur during competition than practice.⁸⁰ Over 50% of those who sprain their ankle do not seek professional treatment.¹¹⁶

Epidemiological studies have identified some other contributing factors associated with ankle injuries. These factors include history of injury,¹¹⁶ being overweight,¹¹⁷ wearing air celled shoes,¹¹⁶ not stretching prior to participation,¹¹⁶ FAI,^{1,2} and mechanical ankle instability (MAI).⁸⁶ A history of an ankle sprain was the strongest predictor of an ankle injury, individuals with a previous ankle injury were five times more likely to reinjure their ankle.¹¹⁶ An ankle injury was 4.3 times greater when air celled shoes were worn.¹¹⁶ Failing to stretch prior to exercise made individuals 2.6 times more likely to suffer an ankle injury.¹¹⁶ Although some contributing factors have been identified, controversy remains regarding the importance of these factors.¹¹⁸ Table 1 summarizes the epidemiological studies discussed in this section.

Authors/Year	Instrument(s)	Results	Conclusion
Fernandez et al,		52.8% of injuries were to the LE	LE injuries commonly occur in HS athletes
2007^{114}	Epidemiology	F(x) most common in ankle (41.8%)	Gender & team-specific patterns exist
		Ankle (40%) was the most common LE joint injured	
			Soccer highest rate for girls
Freeman,	1-year Epidemiology	AP instability & adhesion formation are not	Subjects demonstrated MAI
1965 ¹		associated with FAI	FAI is not initiated by MAI or adhesion formation
		No subtalar motion, calf weakness, or tib-fib injury ↑ observed	Cause of FAI unknown
Freeman et al,	Epidemiology	Proprioceptive deficits in 25% of patients	Proprioceptive deficits demonstrated immediately after injury
1965 ²		Coordination exercises \downarrow risk of FAI initially & post	Deficits should persist in FAI patients
		Coordination group had lower incidence of FAI &	FAI & deficits may decrease w/ motor coordination rehab
		proprioception deficit	Coordination rehab virtually eliminates FAI symptoms & deficits
			Deficits are associated with FAI
Garrick,	Epidemiology		85% of all sprains are lateral
1977 ⁸¹			Lateral ligaments are most commonly injured body part
Garrick &	Epidemiology	Ankle & foot injuries comprise 25.2% of injuries	Foot/ankle are the most commonly injured body parts
Requa, 1988 ¹¹⁵		Basketball had highest incident of ankle injuries	VB had the greatest # of ankle sprains
Hootman et al,	Epidemiology	More than 50% of all injuries were to the LE in	More attention should be given to injury prevention research that is
2007 ¹¹³		games & practices	applicable to all types of LE injuries
		Spring FB & MBB had the highest rates of ankle sprains	Ankle sprains were the most common injury (15%)
McHugh et al,	1-leg stance on tilt	Females had better balance	Balance and hip strength were not significant indicators for
2006 ¹¹⁷	board	Females sprain their ankles more	noncontact ankle sprains
	Handheld	No balance, hip abductor, adductor, or flexion	Previous injury & overweight ↑ risk
	dynamometer	strength differences between FAI & control subjects	Hip weakness in FAI subjects is likely a consequence of injury & not causative factor
McKay et al,	Questionnaire	45% of ankle injuries occurred during landing	History of ankle injuries was the strongest predictor
2000^{116}	Recreational	56.8% did not seek professional treatment	CAI subjects are 5x likely to reinjure
	basketball players	73% reported previous ankle injury	Air cell shoes are 4.3x more likely to injure their ankle
			Not stretching made players 2.6x likely to become injured

Table 1. Summary of Epidemiological Studies

Nelson et al, 2007 ⁸⁰	1-year Epidemiology	Ankle injuries cause athletes miss \leq 7 days (51.7%), 7 to 21 days (33.9%), \geq 22 days (10.5%)	Ankle injuries occur more in competition than practice Boys' basketball had the highest rate of ankle injury Sports that combine jumping & swift Δ of direction while running were most often associated with ankle injuries
-------------------------------------	------------------------	---	--

106

ANKLE INSTABILITY

Mechanical Ankle instability

Little research has been done to assess how mechanical deficits following an ankle injury contribute to MAI. Research has identified some of the factors that may contribute to MAI.⁸⁶ Pathological laxity, arthrokinematic restrictions, degenerative changes, and synovial changes are some of the contributing factors that may cause MAI.^{82, 86} Hypermobility and hypomobility are the result of these mechanical changes following injury.⁸⁶ The talocrural, inferior tibiofibular, and subtalar joints are common sites for these mechanical changes.^{82, 86} Additional research discussed the relationship between FAI and MAI.^{82, 84, 119} Some CAI subjects have demonstrated symptoms of both FAI and MAI, this showed that FAI and MAI are not exclusive.^{84, 119} This makes it difficult to identify the type of instability affecting a patient. Typically MAI is identified through clinical exams and other diagnostic tests (ie., stress radiography, magnetic resonance imaging).⁸⁶ Mechanical ankle instability is initially treated with conservative rehabilitation.⁸⁶ Rehabilitation includes providing external support¹²⁰ (ie., taping or bracing) to the ankle joint and functional rehabilitation.⁸⁶ However, if symptoms persist in MAI patients, a surgical intervention may need to be done to repair the mechanical deformities⁸⁶; although, researchers observed that MAI patients have less laxity than FAI patients.⁸³ Therefore, the relationship between FAI and MAI remains unclear and further research is needed to determine what role MAI has in FAI patients.⁸³ Since both mechanical and functional deficits contribute to CAI,¹¹⁹ further research also needs to determine what role FAI has in MAI patients.

Functional ankle instability

Functional ankle instability has been described as sensorimotor or neuromuscular deficits that coincide with recurrent ankle sprains.^{36, 82} Freeman and colleagues¹⁻³ noticed ligamentous injuries to the ankle and foot often led to proprioceptive deficits. Joint instability was believed to be the result of proprioceptive deficits. Since the 1960s, extensive research has been completed on FAI. The majority of the research has assessed possible contributing factors associated with FAI. There are a number of factors associated with FAI which adds to the complexity of this multifaceted dysfunction.

CONTRIBUTORS OF FUNCTIONAL ANKLE INSTABILITY

Some of the factors associated with FAI include but are not limited to deficits in proprioception (force sense,^{89, 111, 121} joint position sense,^{6, 9, 122-127} kinesthesia,^{125, 128, 129}), motorneuron pool excitability,^{34, 130} sensory changes,³⁰ muscle activation,^{26, 27, 29, 31, 131-133} strength,^{13, 14, 124, 134, 135} and postural control.^{6, 15, 17, 19, 21-25, 33, 128, 136, 137} Functional ankle instability subjects have demonstrated the use of a compensatory landing strategy. This includes greater hip adduction than healthy control and the use of primarily an ankle landing strategy. The compensatory strategies are thought to be an attempt to maintain postural control. Some believe FAI subjects may use the proximal muscles and joints to reduce the stress placed on the ankle and risk of CAI.^{67, 68, 72, 138, 139} All of the contributors of FAI mentioned above will be discussed in greater detail below.

Proprioception

Proprioception is frequently used incorrectly to refer to kinesthesia, joint position sense, balance, and other sensorimotor system terms.¹¹² Riemann & Lephart,¹¹² stated there are three aspects to conscious proprioceptive senses: kinesthesia, joint position sense (JPS), and sense of resistance or force. In an attempt to eliminate confusion regarding proprioception, these three areas will be discussed separately.

Kinesthesia. Diminished kinesthesia was observed in subjects with an acute ankle sprain⁹⁰ and CAI.^{9, 128, 129, 140, 141} Subjects rated their perceived kinesthesia deficits, while blinded observers also rated their deficits.^{128, 129} Forkin et al¹²⁸ and Garn and Newton¹²⁹ used a kinesthesiometer to assess kinesthesia and observed that the uninjured limb detected passive plantar-flexion better than the injured limb. No difference was observed when a motorized kinesthesiometer was used to measure perceived passive plantar-flexion and dorsiflexion between CAI and healthy subjects.⁸⁸ As velocity increased, perceived displacements became smaller.⁸⁸ No difference was observed in detection of passive plantar-flexion and dorsiflexion at different velocities when the ankle was taped, therefore, ankle bracing and taping do not enhance kinesthesia.^{88, 141} The ability to detect passive inversion and eversion motion was less following an acute ankle sprain and in CAI subjects when compared to healthy controls.^{9, 90, 140} Detection errors measured one week post-acute ankle sprain were greater than errors at 6 and 12 weeks post-injury.⁹⁰ This demonstrated that detection errors decreased over time, although the injured limb made more errors at 12 weeks post-acute ankle sprain than the control group.⁹⁰ It can be concluded that kinesthesia deficits may contribute to FAI. Table 2 summarizes the kinesthesia studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Forkin et al,	Kinesthesiometer	Subjects detected passive plantar-flexion uninjured	Balance & kinesthetic deficits are common in gymnasts with
1996 ¹²⁸		(158/165) ankle movement > than injured $(143/165)$	MAS
	Kinesthesiometer	The injured limb had \downarrow passive plantar-flexion kinesthesi	a Kinesthetic deficits exist in the injured ankle joints of athletes
1988 ¹²⁹			with a history of MAS
Jerosch et al,	1-leg jumping course	Difference between injured & healthy ankle joints	Ankle braces reduced 1-leg jumping errors
1995 ¹⁴¹	1-leg stance test	1-jumping errors	Taping makes no difference
	Angle reproduction	Difference between injured & healthy ankle joints	Difference between injured & uninjured ankle joints for all 3
		1-leg stance	tests
		Reproduction errors > in injured ankle	
Konradsen et al,	Inversion angle	Injured limb > angle error than uninjured	Acute ankle injuries result in Δ of inversion ankle position
1998 ⁹⁰	position	Injured angle errors $> @$ 1wk than $@$ 6 & 12 wks	Injured limb has $>$ error @ 12 wks compared to healthy limb
Lentell et al,	Passive movement	> passive inversion movement sense in involved ankles	> passive inversion movement sense & talar tilt present in the
1995 ⁹	sense	(<i>p</i> ≤.05)	involved limb
Refshauge et al,	Kinesthesiometer	70% passive inversion & eversion detection \uparrow with	Ability to detect inversion & eversion is impaired in CAI
2003 ¹⁴⁰	with a motor	velocity	subjects
		CAI group had worse detection than controls	
Refshauge et al,	Kinesthesiometer	No difference in kinesthesia between (healthy & CAI)	Smaller displacements perceived as ↑ in velocity
2000^{88}	with a motor	groups & velocity	Ability to detect passive plantar-flexion & dorsiflexion is not
		No difference in kinesthesia between taped & untapped	impaired in CAI subjects
		groups & velocity	Ankle taping did not enhance kinesthesia

Table 2. Summary of Kinesthesia Research Studies

Joint position sense. Many researchers have assessed JPS in CAI subjects. Deficits in JPS was determined to be a possible predictor of ankle joint injuries.¹⁴² Subjects with CAI demonstrated an increase in ankle repositioning errors for inversion^{7, 122, 123, 125, 126, 141} and plantar flexion.⁶ The greatest repositioning errors occurred near the beginning and end of inversion range of motion.^{122, 123, 127} A positive relationship` existed between severity of injury and JPS deficits.¹²⁷ Both active and passive JPS deficits exist in CAI subjects.¹²²

A positive relationship existed between plantar-flexion repositioning errors and postural sway in subjects with multiple ankle sprains, both plantar-flexion repositioning errors increased as postural sway increased.⁶ Subjects with CAI demonstrated an increase in knee joint angle repositioning errors when compared to a healthy control group.¹²³ This suggested a distal injury such as CAI may alter proximal joint(s) and muscle function.

Others applied interventions to CAI subjects to determine if JPS errors could be decreased. Konradsen and Magnusson¹²⁵ observed that a ten-minute warm-up run on a treadmill reduced ankle replication errors. Ankle taping and a variety of ankle braces were applied to subjects to determine if an external support device could improve JPS during ankle angle reproduction, single leg stance test, and single leg stance position test. Ankle taping did not improve JPS; however, ankle braces may improve JPS.¹⁴¹ A ten-week elastic-tubing strengthening program increased strength and decreased inversion, dorsiflexion, and plantar-flexion JPS.¹²⁴

A study by Docherty et al⁸⁹ contradicts the relationship between ankle instability and JPS. Docherty et al,⁸⁹ reported no relationship between FAI and both active inversion and

eversion JPS. However, this study did demonstrate a positive correlation between FAI and force sense.⁸⁹ Table 3 summarizes the joint position sense studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Boyle & Negus,	Active & passive	No difference for uninjured group (passive)	Healthy subjects no difference in active or passive JPS
1998 ¹²²	JPS (pedal	30% and 90% positions (active) were different	Active & passive JPS deficits exist in CAI subjects
	goniometer)	> error @ 30% active JPS	
		Difference between groups' passively in all positions	
		Difference between groups' active JPS @ 30%	
Docherty et al,	Force Sense	No relationship between inversion or eversion active JPS & FA	1
2006 ⁸⁹	Active JPS	Force sense positively correlated with FAI	subjects
Docherty et al,		Training group ↑ strength & JPS	Ankle strengthening improves inversion & plantar
1998 ¹²⁴	Handheld	No eversion JPS effect but there was a dorsiflexion JPS effect	flexion JPS
	dynamometer		FAI subjects had ↑ strength, inversion, dorsiflexion,
			and plantar flexion JPS
Fu & Hui-Chan,	Passive ankle	↑ in ankle repositioning errors in subjects with bilateral MAS	Ankle repositioning & postural sway in stance \uparrow with
2005^{6}	repositioning		MAS
			+ relationship between repositioning & postural sway
Glencross &	Goniometer	Difference in MES between injured vs. healthy limbs ($p < .01$)	> error @ largest angles of movement
Thorton, 1981 ¹²⁷		Difference in MES between joint angles	Error > for most severely injured group
Jerosch et al,	1-leg jump course	Ankle braces ↓ 1-leg jumping & stance errors	Difference between injured & uninjured ankle joints
1995 ¹⁴¹	1-leg stance position	n Difference between injured & healthy ankle joints	for all 3 tests
	test	During 1-leg jumping & stance errors	Ankle taping makes no difference
	Angle reproduction	Reproduction errors > in injured ankle	Ankle braces may improve JPS
Konradsen &	Electronic torsion	Absolute inversion error > on affected side compared to	No difference between sides
Magnusson,	Goniometer	uninvolved limb & healthy group	Injured limb had > inversion replication errors
2000 ¹²⁵		Difference in absolute error before & after warm-up	Warming up \downarrow error by 38%
Konradsen,	Literature review	Δ in JPS & kinesthesia found in CAI may \uparrow injury risk	Balance & coordination training can restore the ↑
2002 ⁸			uncertainty of joint positioning to normal levels
Nakasa et al, 2008^{126}	Goniometer footplate	Difference in inversion angle replication error between ankles of the unstable group & healthy group	FAI had JPS deficits compared to healthy volunteers
Payne et al,	ROM	8 out of 42 basketball players sprained an ankle during a season	Ankle joint proprioceptive deficits can be used to
1997 ¹⁴²	JPS-Biodex	Proprioception was a predictor of ankle injury	predict ankle injuries in females
·	Strength-Biodex	Strength & ROM failed as injury predictors	Male & female basketball players have similar injury
	. 8.	J. J	rates

Table 3. Summary of Joint Position Sense Research Studies

Tsiganos et al, 2008 ¹²³	JPS (isokinetics)	CAI subjects have > error than healthy control group $(30^{\circ} p < .001, 45^{\circ} p < .023, \& 70^{\circ} p < .05)$ CAI dominant limb > knee angle error than control dominant CAI dominant & non-dominant \$\percept\$ error from 30^{\circ} to 45^{\circ} to 70^{\circ}\$ knee angle	Integrating proximal joint assessment to a distal injury may improve rehabilitation of CAI
Willems et al, 2002^7	Active & passive JPS (Biodex)	Instability group was less accurate during active position sense near maximal inversion	CAI group underestimated the reference angle CAI may have inappropriate foot positioning CAI due to diminished JPS

Sense of resistance. Sense of resistance or force sense is reportedly one of the earliest methods used to assess proprioception.^{89, 111} It is comprised of two different senses: effort and tension.¹¹¹ The effort sense is primarily a central mechanism with the influence of the peripheral system.¹⁴³ Tension placed on the muscle is physiologically monitored by the peripheral system especially the Golgi tendon organs.¹⁴³

Few research studies have monitored force sense in an injured population. Functional ankle instability subjects have demonstrated force sense deficits.^{89, 111, 121} A relationship between force sense and muscle stiffness was observed, especially between the involved limb stiffness and contralateral reproduction.¹⁴⁴ The relationship between low-load eversion force sense errors and both the number of "giving way" episodes and ankle instability index was assessed, a positive correlation was observed between FAI and force sense errors.¹¹¹ Greater eversion force sense errors were observed in FAI subjects.^{89, 121} These studies demonstrated that FAI subjects had difficulty replicating eversion forces. Currently there is a clear consensus that FAI subjects have difficulty detecting force sense. Therefore, force sense deficits are thought to impair joint stability, although further research needs to be done to confirm this theory.¹²¹ Table 4 summarizes the sense of resistance studies discussed in this section.

 Table 4.
 Summary of Sense of Resistance Research Studies

Author, Year	Instrument(s)	Results	Conclusion
Arnold & Docher	ty,Force Sense	Eversion force sense errors were + correlated with # of giving	FAI subjects struggled to replicate eversion forces
2006 ¹¹¹	AII	way episodes & AII (ipsilateral)	Larger errors were related to giving way & perceived ankle instability
Docherty et al,	Force Sense	No relationship between inversion or eversion active JPS & FA	ALLow load force sense deficits are present in FAI
2006 ⁸⁹	Active JPS	Force sense positively correlated with FAI	subjects
Docherty & Arno 2006 ¹²¹	ld,Force Sense	Absolute & variable errors different between groups FAI subjects had > absolute & variable force sense errors	FAI is associated with deficits to reproduce a given force
			This deficit may impair an individual's ability to provide joint stability
Docherty et al, 2004 ¹⁴⁴	Force Sense JPS Stiffness	No correlation between force sense & JPS or JPS & stiffness Contralateral reproduction correlated w/ involved limb stiffnes	Force sense is correlated with involved limb stiffness s
McCloskey et al, 1974 ¹⁴³	Force Sense	Difficult for subjects to match weights, ↑ with movement Difficult for subjects to match tension	Sense of effort exists & is separate from peripheral sense of tension It is unknown what peripheral receptors are responsible for conscious appreciation of tension

Motorneuron Pool Excitability and Sensory Change

Arthrogenic Muscle Inhibition. Arthrogenic muscle inhibition (AMI) is a limiting factor in joint injury rehabilitation.¹⁰⁸ Joint injury, immobilization, pain, muscle atrophy and weakness are some of the factors which influence or are effected by AMI.¹⁰⁸ Muscle inhibition decreases the number of motor units available to perform a muscle contraction, which increases the risk of CAI and a prolonged rehabilitation.¹⁰⁸

The Hoffmann reflex (H-reflex), $H_{max}:M_{max}$ ratio, and central activation ratio (CAR) are common techniques used to measure motorneuron (MN) availability. The H-reflex measures α -MN recruitment following an electrical stimulation of a peripheral nerve.¹⁴⁵ The H: M_{max} ratio normalizes the maximal H-reflex to maximum M-response. This ratio indicates the number of MNs capable of being activated.¹³⁰ Central activation ratio is the ratio between a maximal voluntary contraction (MVC) and a MVC with an external electrical superimposed burst applied.³⁴ A small CAR value indicates greater AMI.

Research studies have assessed the relationship between AMI and FAI. McVey et al¹³⁰ measured the H-reflex and M-response of the anterior tibialis, peroneals, and soleus bilaterally in FAI and healthy subjects. Functional ankle instability subjects demonstrated smaller peroneal and soleus H:M_{max} ratios on the injured side compared to the healthy side.¹³⁰ No side-to-side differences were observed in the healthy subjects H:M_{max} ratios.¹³⁰ Sedory et al³⁴ assessed the arthrogenic muscle response of the hamstrings and quadriceps in healthy and CAI subjects using CAR. Chronic ankle instability subjects exhibited quadriceps facilitation in the injured limb compared to the uninjured limb and healthy group.³⁴ However, the hamstrings CAR value was smaller for the CAI group compared to the control group.³⁴ These studies provide data to

support the theory that AMI is present in FAI subjects.^{34, 130} A distal joint injury, such as FAI, may alter the response of proximal muscles during movement. Arthrogenic muscle inhibition of the lower leg and thigh musculature may be due to FAI. The role proximal muscles have in FAI subjects needs to be researched further.

Functional ankle instability subjects also demonstrated difficulty in detecting sensory changes. Bullock-Saxton³⁰ used two-point discrimination and vibration to assess sensory changes in FAI subjects compared to a healthy control group. Two-point discrimination and vibration threshold perception were not identified as well by FAI subjects.³⁰ Functional ankle instability subjects took longer to identify two-point discrimination and vibration had to be increased to reach vibration perception threshold.³⁰

Arthrogenic muscle inhibition was present in the lower leg and further up the kinetic chain in FAI subjects. The combination of AMI and the difficulty to identify sensory changes suggest that the central and peripheral nervous systems may be affected by FAI. Table 5 summarizes the motorneuron pool excitability and sensory change studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Bullock-Saxton	Vibration	Higher the vibration frequency, the lower the perception	Side to side differences present in vibration, 2-point discrimination,
1995 ³⁰	2- point	level	& balance
	discrimination	↑ vibration needed to reach threshold of perception (FAI)) Sensory changes are consequential on ankle injury
		Injured group did not identify 2-point discrimination as well as uninjured	Motor control is likely to be affected by ankle sprains
Hopkins &	Kinematic	PL RMS amplitude decreased following effusion & 30-	↓ joint torque after ankle joint effusion
Palmieri,	Kinetic	min post effusion	\downarrow muscle function accompanies ankle joint effusion in the form of \downarrow
2004^{146}	EMG	No changes in TA & soleus	plantar-flexion torque & PL activation
McVey et al,	H:M ratio	Soleus & peroneal H:M ratio smaller in injured limb of	Depressed H:M ratio suggest AMI in the injured limb musculature
2005 ¹³⁰		FAI subjects	
		No difference in TA of FAI group	
		Control group had no differences	
Palmieri et al,	H-reflex	Soleus H-reflex & H:M ratios lower before injection	MN excitability is facilitated in the PL, soleus, & TA after joint
2004^{147}	M-response	M-wave ↑ immediately after injection	effusion
	H:M ratio	PL H-reflex & M-wave were lower before injection	Facilitation is a reaction that helps to maintain postural control &
		No difference in PL & TA H:M-ratios	locomotion
		TA H-reflex & M-wave ↑ after injection	
Palmieri et al,	COP distance	COP path \downarrow after effusion	Postural control improved following joint effusion
2003 ¹⁴⁸	MPF		Additional somatosensory feedback, neural drive or
			tension are possible explanations
Sedory et al,	CAR	Quadriceps CAR greater in involved limbs vs.	Demonstrates change in proximal and neurological related
2007 ³⁴	EMG	uninvolved; both hamstrings CAR lower in CAI group	unilateral CAI

Table 5. Motorneuron Pool Excitability and Sensory Change

Lower Extremity Muscle Activation

Peroneal Muscle Group Latency. The peroneal muscles have been the target of extensive CAI research. Contraction of the peroneus brevis and longus muscles are responsible for ankle eversion. They are thought to be the primary muscles capable of preventing inversion ankle sprains. Functional ankle instability subjects however, have demonstrated increased peroneal muscle latency.^{26, 131, 133, 149, 150} Increased peroneal muscle latency is believed to make FAI subjects prone to CAI.^{26, 133}

Peroneal muscle latency was measured primarily by using a trap-door mechanism during static stance. This mechanism was an attempt to simulate the mechanism of injury for an inversion ankle sprain. Along with prolonged peroneal muscle latency, the unstable ankle accelerated into inversion faster than the stable ankle.²⁶ To compensate for the prolonged peroneal latency, FAI subjects demonstrated ankle dorsiflexion, knee flexion, hip adduction, and flexion.¹³¹ Lofvenberg et al¹³³ assessed the reaction times of the peroneus longus (PL) and tibialis anterior (TA). Prolonged peroneal reaction time was observed in FAI subjects compared to healthy controls, but not when the injured limb was compared to the uninjured limb.¹³³ This indicated FAI may affect both limbs and it may be better to compare FAI subjects to a healthy control group instead of their uninjured limb. ¹³³ The TA muscle did not demonstrate any latency changes.¹³³ Ankle taping¹⁵⁰ and injecting local anesthetic into the sinus tarsi¹⁴⁹ decreased the reaction time of the peroneal muscles. However, facilitation of the soleus, PL, and TA was observed following an injection of a saline solution into the ankle capsule.¹⁴⁷ Therefore, it was suggested the MN-pool excitability may increase following an injection of saline solution into the ankle joint capsule.¹⁴⁷

Subjects have also demonstrated no increase in peroneal muscle latency.⁹⁰⁻⁹⁵ These studies used a similar trap-door methodology to measure latency. No difference in peroneal latency was observed between limbs^{90, 91, 93} or groups.⁹³⁻⁹⁵ Peroneal reaction time was not affected three weeks postacute ankle sprain.⁹⁰ A flaw of this study was that reaction time was not measured until three weeks post-injury, so it is unknown if a difference in reaction time existed immediately following an acute sprain.

Leg dominance, inversion angle, and rehabilitation influence peroneal muscle latency.^{91,} ^{92, 94} Peroneal latency increased as the trap door angle increased.⁹² This study also theorized that leg dominance may influence peroneal latency more than an injury.⁹² All the subjects were right dominant and the right peroneal latency was greater than the left side.⁹² Rehabilitation programs may allow peroneal muscle function to return to normal.^{91, 94}

A consensus has not been reached regarding peroneal latency in FAI subjects. One reason there may not be a consensus is that the static trap-door mechanism may not simulate what occurs during dynamic movement (ie., jogging, running, landing).¹⁵¹

Konradsen et al¹³² used electromechanical delay (EMD) to assess the role of the peroneal, hamstrings, and quadriceps muscles as a defense mechanism to prevent inversion ankle sprains during static stance and walking in healthy subjects. A trap-door mechanism was used in this study to assess EMD at three different starting positions: 10° inversion, neutral, and 10° eversion. The 10° inversion position produced the fastest muscle activation out of the three starting positions. Subjects in this study demonstrated a median of 20° ankle dorsiflexion, 30° knee flexion, and 25° of hip flexion to correct for the dropping of the trap-door.¹³² This study observed peroneal muscle activity prior to the hamstrings and quadriceps muscle activation.¹³²

The authors concluded that the reflex reaction to sudden inversion was initiated at the peripheral level followed by spinal or supraspinal centers.¹³² Both the peripheral and supraspinal responses were thought to be too slow to prevent an inversion ankle sprain at heel strike.¹³² Table 6 summarizes the peroneal muscle latency studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
No Prolonged Latency			
Ebig et al, 1997 ⁹¹	SEMG	No difference in PL & TA mean firing rates between stable & unstable ankles No difference between TA & PL No difference between stable & unstable for all motions	FAI may not result in a diminished PL or TA response Subjects participated in a rehab program
Fernandes et al, 2000 ⁹²	SEMG	↑ latency as tilt angle increased Latency differed by sides, right < left injured and healthy groups had no difference in PL latency	Ankle instability does not influence PL latency Side dominance may influence latency
Isakov et al, 1986 ⁹³	SEMG Latency	Latency times did not differ by leg or group	Stretch inversion motion has no role in protecting the ankle
Johnson & Johnson, 1993 ⁹⁴	Inversion platform SEMG	No difference between 3 groups or between affected & unaffected ankle	Rehabilitation appears to enable normal peroneal function in both surgical & nonsurgical lateral ankle sprains
Konradsen et al, 1998 ⁹⁰	SEMG	PRT did not differ between limbs @ 3wks post-acute sprain	Peroneal reaction time to sudden inversion was not affected 3wks post injury
Vaes et al, 2002 ⁹⁵	SEMG	1 st deceleration time was shorter in unstable ankle Latency, total inversion time, 2 nd deceleration time, & EMD were not different	Unstable ankles have less control of inversion speed Peroneals do not have longer latency
Prolonged Latency			
	BAPS board SEMC	GSense of instability was gone postinjection for all subjects PRT was 82.0 ms & 69.3 ms pre- & postinjection	Difference existed between groups before injection & within the FAI group before & after injection Inflammation may suppress peroneal gamma-MN activity & cause FAI & shorten PRT
Karlsson & Andeasson, 1992 ¹⁵⁰	SEMG	Difference in MAI between stable & unstable ankle joints Unstable ankles had > PRT than stable ankle Taping \downarrow PRT in the unstable ankle	Tape has an effect on proprioceptive ankle function & may improve FAI
Konradsen & Ravn, 1990 ¹³¹	SEMG Electric goniometer	All subjects reacted with ankle dorsiflexion, knee flexion, hip adduction & flexion	Prolonged reaction time in unstable ankle

Table 6. Summary of Peroneal Muscle Latency

Konradsen et al 1997 ¹³²	, SEMG 2-D kinematics	Peroneal reflex latency median was 48ms Knee flexion reached median of 30°	Dynamic response to sudden inversion involves both peripheral reaction & a central mediated strategy
		Median hip flexion was 25°	A uniform reaction pattern exists for both unilateral & contralateral limbs
			Only anticipated muscle activity, static stabilizer strength, or external support can prevent an injury
Lofvenberg et a 1995 ¹³³	ıl, SEMG	No difference in median PRT between CAI group contralateral and ipsilateral limbs Median ipsilateral PRT was longer in CAI group when	Delayed proprioceptive response to sudden angular displacement of the ankle can be 1 of the causes of CAI
		compared to healthy group	
Vaes et al,	Accelerometer	Unstable ankles ↓total supination time	Unstable ankle has shorter total supination time, less efficient
2001^{26}	SEMG	\uparrow PL latency in unstable ankle (<i>P</i> =0.017)	deceleration
			Peroneals protect the ankle less

EMD- electromechanical delay; FAI- functional ankle instability; IEMG- integrated electromyography; MN- motor neuron; ms- milliseconds; Nm- Newton meters; PL-peroneus longus; PRT- peroneal reaction time; SEMG- surface electromyography; TA- tibialis anterior; wk- week

Altered Electromyography. Subjects with FAI have demonstrated altered peroneal muscle activation during walking compared to healthy subjects.^{27, 138} Delahunt et al¹³⁸ analyzed electromyography (EMG) of the PL, rectus femoris, TA, and soleus. The PL was the only muscle to demonstrate altered muscle activation in FAI subjects. Muscle activation was analyzed at three different times: preheel strike, at heel strike, and postheel strike.¹³⁸ The FAI subjects had greater rectus femoris activation during preheel strike and increased PL EMG postheel strike.¹³⁸ Functional ankle instability subjects had greater inversion throughout all three time periods with a decrease in foot to ground clearance.¹³⁸ The combination of altered PL activation and biomechanical factors make FAI subjects prone to CAI.¹³⁸

Side-to-side comparisons of unilateral FAI subjects demonstrated that the PL muscle was activated for a shorter time on the injured side.²⁷ The timing of the PL is altered following an injury, makes FAI subjects prone to injury.²⁷ Table 7 summarizes the altered lower extremity muscle activation studies discussed in this section.

Peroneals			
Author, Year	Instrument(s)	Results	Conclusion
Santilli et al,	Kinematics	No correlation between sides & PL activity	
2005^{27}	SEMG	Injured side \downarrow PL activation (22.8%) time	\downarrow PL activity may reduce protection of
		during stance phase vs. uninjured (37.6%)	lateral ankle sprains
Delahunt et a	1 SEMG	FAI ↑ inversion @ pre-IC, IC, & post-IC	FAI subjects demonstrate altered ankle
2006^{138}	Kinematic	FAI \downarrow foot-floor clearance during terminal	joint neuromuscular control & kinematics
		swing	\uparrow PL activity may result from Δ in
		FAI ↑PL EMG post-HS	preprogrammed feedforward motor
		FAI ↑RF EMG pre-HS	control

Table 7. Altered Lower Extremity Muscle Activation

Lower Extremity Strength Deficits

Eversion Strength. The strength of the evertors has been the primary focus of researchers studying strength deficits in FAI subjects.¹⁵²Isometric eccentric eversion strength deficits existed following an acute inversion ankle sprain.⁹⁰ Eversion strength deficits remained at three weeks postacute sprain when compared to the uninjured limb. However, at the 12-week follow-up, evertor strength in the injured limb was 96% as strong as the uninjured limb.⁹⁰ It was not documented if the subjects participated in a rehabilitation program or not. Therefore, it is an assumption that evertor muscle strength will be close to normal after 12 weeks postacute sprain. This study used the uninjured limb of FAI subjects as the control.

Bush¹³⁴ observed a surprising isometric eversion strength difference between sides. The eversion strength of the injured limb was 8% greater than the healthy limb. This is surprising because the strength deficit was actually on the healthy limb. This may have occurred because the subjects in this study were collegiate athletes who had returned to full activity; therefore, they probably participated in a rehabilitation program. If rehabilitation was only performed to the injured limb, this may have contributed to the injured limb being stronger.

Strength of the lower leg muscles were measured using an isokinetic device, decreased eversion strength was observed.^{7, 13, 153} A relationship existed between strength ratio (eccentric evertor/concentric inversion peak torque) deficits and CAI. Chronic ankle instability subjects demonstrated muscle weakness compared to a healthy control group strength.^{13, 153} The peak torque ratio increased as velocity increased except at 180°/s & 240°/s in both groups.¹³ Eccentric evertor peak torque and strength ratios were different between the CAI and healthy groups near the ends of range of motion.¹⁵³ The CAI group had lower peak evertor strength throughout the

range of motion.¹⁵³ Strength deficits were also observed in a CAI group when eversion peak torque values were normalized to body weight.⁷ Willems et al⁷ observed that CAI subjects had evertor muscle weakness and decreased JPS. Porter et al¹⁵⁴ used strength ratios (peak torque/body weight) and time to peak torque to assess dorsiflexor and evertor strength in FAI subjects. No strength or time to peak torque differences were observed between FAI and healthy subjects.¹⁵⁴

Although the previous studies observed eversion strength differences, other studies have observed no differences in eversion strength.^{5, 9-12, 96, 97} Inversion and eversion mean peak torque values were measured isokinetically and isometrically, no difference was observed between the limbs of CAI subjects.⁹⁷ The authors concluded that muscle weakness was not a major contributing factor to CAI.⁹⁷ Bernier et al ⁹⁶ assessed eccentric inversion and eversion strength and postural sway. No difference was observed in postural sway or strength between the FAI and healthy groups.⁹⁶ However, inversion peak torque was different between the dominant and nondominant limbs in the healthy control group, suggesting that limb dominance may be an indicator of strength.⁹⁶

No difference in concentric and eccentric peak torques,^{10, 12, 155} eversion or inversion strength^{5, 155} were observed in FAI subjects. These studies concluded that FAI do not appear to have eversion^{5, 9, 10, 12, 155} or inversion^{5, 10, 96, 97} strength deficits. Ryan⁵ observed no difference in eversion strength, however, observed that FAI subjects had a decrease in balance. McKnight and Armstrong¹⁰ observed no strength difference during all ankle motions.¹⁰

Inversion Strength. Invertor strength was observed to be less than evertor strength.^{12, 14} Subjects with an acute ankle sprain demonstrated greater invertor weakness than those with CAI.¹⁴ invertor muscle weakness may be a contributing factor to acute ankle sprains and CAI. This is an area that needs further research, but at this time the majority of researchers have observed inversion strength deficits.

Plantar-flexion Strength. Plantar-flexion strength deficits have been observed.^{135, 156} Peak torque differences were observed between limbs and groups.¹³⁵ The injured side of FAI subjects demonstrated decreased plantar-flexion range of motion and hip abductor strength, a correlation existed between hip abductor and extensor strength.¹⁵⁶ One study observed no difference in plantar-flexion strength.¹⁰ Plantar-flexor weakness may influence the risk of an ankle injury. Table 8 summarizes the lower extremity strength studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Kaminski & Hartsell, 2002 ¹⁵²	Literature review		Ankle strength deficits are not highly correlated with CAI
McKnight & Armstrong, 1997 ¹⁰	Isokinetics Goniometer	No difference between groups for any ROM No differences in strength or work measurements between groups	No differences in AROM, strength, or work measurements between groups
Evertors			
Bernier et al, 1997 ⁹⁶	Balance system Isokinetic	No difference in 1-leg postural sway or eversion strength between limbs Difference between dominant & nondominant limbs in healthy	Postural sway & PT are not affected by FAI
Bush, 1996 ¹³⁴	Strain gauge Inclinometer Force plate Platforms	No difference between injured & healthy side in proprioception, ROM, & sway Evertor strength on the injured side was $8\% \ge$ healthy side Both ankles of the injured group are weaker than the control group	Evertor strength was the only significant predictive factor Evertor weakness is a strong predictor of an ankle sprain
Kaminski et al, 1999 ¹⁵⁵	Isokinetic dynamometer	Concentric PT ↓ as velocity ↑ No difference in concentric, eccentric, or isometric eversion strength between groups	Unless an obvious weakness to evertors exist, strengthening may be a waste of time and energy Eversion muscle strength deficits were not found
Konradsen et al, 1998 ⁹⁰	SEMG	PRT did not differ between FAI & healthy groups Injured ankle eversion strength @ 3 wks was \downarrow than healthy	Acute inversion injuries result in marked Δ to assess inversion position Peroneal reaction time to sudden inversion was not affected 3 wks post injury
Lentell et al,	Passive JPS	> passive motion in involved ankles	No evertor weakness present
1995 ⁹	Isokinetics (PT)	No difference in PT between ankles	> passive JPS & talar tilt present in the involved limb
Lentell et al, 1990 ⁹⁷	Isokinetics	No PT difference between involved & uninvolved ankles Isometric & isokinetic PT was symmetrical across population \downarrow balance on injured limb	Evertor or invertor weakness are not associated with CAI Balance deficits associated with FAI limb
Ryan, 1994 ⁵	Isokinetics UBE	Evertor mean strength was not different between stable (19.2 Nm) & unstable ankles (18.8 Nm) Proprioceptive differences between affected (4.0 s) & unaffected ankles (1.8 s)	MAI is frequently absent from FAI subjects Evertor weakness was not present Impaired proprioception contributes to FAI
Munn et al, 2003 ¹²	Isokinetic	No eccentric or concentric evertor strength deficit was found in the injured limb Max eccentric inversion strength was ≤ eccentric eversion Eccentric inversion torques for injured limb were 12% >	FAI is not associated with evertor strength deficits Invertor strength deficits were found Weak invertors may contribute to FAI

Table 8. Summary of Lower Extremity Strength Studies

Ryan,	Isokinetics	Evertor mean strength was not different between stable (19.2	MAI is frequently absent from FAI subjects
1994 ⁵	UBE	Nm)& unstable ankles (18.8 Nm)	Evertor weakness was not present
		Balance differences existed between affected (4.0 s) & unaffected ankles (1.8 s)	Impaired proprioception contributes to FAI
Wilkerson et al, 1997 ¹⁴	Isokinetic	> invertor than evertor deficits for PT & average power	Lateral ankle ligament injury may be associated with
		Acute group had > deficits than chronic group	invertor deficits
			Rehab may restore evertor/invertor strength relationship
Strength ratios			
Hartsell & Spaulding, 1999 ¹³	Isokinetic dynamometer	Unstable ankle was weaker eccentrically & concentrically for inversion & eversion	CAI & muscle weakness co-exist
Porter et al,	Isokinetic	No difference in concentric dorsiflexion PT/BW ratio & TPT	No concentric strength or TPT differences in CAI
2002 ¹⁵⁴	PT	between FAI limbs & group	subjects
	TPT	No difference in concentric eversion PT/BW ratio & TPT between	
		FAI limbs & group	
xx7*11 / 1		TPT values were @ 240° s were slower that 120° s	
Willems et al, 2002^7	Active & passive	No difference for active or passive JPS	CAI group underestimated the reference angle
2002^{7}	JPS (Biodex)	Instability group had lower eversion strength values than control &	
	Peak torque	other 3 groups	No relationship between invertor strength & sprains Evertor strength differences observed
Yildiz et al,	Isokinetics	Eccentric evertor/concentric invertor strength ratios were lower in	Diminished proprioception & evertor weakness
2003^{153}	ISOKIIIEtics	CAI group @ 15° & 20°	eccentric evertor) (a) end ROM
2003		Eccentric evertor PT near end range were \downarrow in CAI	End ROM strength values are most valuable
		Both CAI & healthy groups had \downarrow concentric invertor PT values	Evertor strength weakness may predispose recurrent
		Strength ratios $\uparrow (a)$ end range	ankle injuries
Hip		Strength ratios @ end range	
Friel et al.	Goniometer	Hip abductors weaker on involved side	CAI subjects have weaker hip abductors
2006 ¹⁵⁶	Handheld	Plantar-flexion ROM < on injured side	5
	dynamometer	Hip abductor & extensors correlated	
Plantar-Flexors	÷		
Fox et al,	Isokinetics	Difference between FAI limb & matched control PT	Deficit in plantar flexion PT in FAI subjects
2008 ¹³⁵		Difference between sides of control group PT	

Postural Control

Functional ankle instability is believed to foster poor postural control. Poor postural control is the inability to maintain stability during dynamic or static movement.¹⁵⁷ Many different clinical and research techniques are used to assess postural control. The force plate is the most common instrument used to assess postural control in research. Measurements that use a force plate include sway, center of pressure (COP) excursion, Time to Boundary (TTB), Time to Stabilization (TTS), and the Dynamic Postural Stability Index (DPSI). Other measurement methods used clinically and in research include the Biodex Balance System, Balance Error Scoring System (BESS), Single-Leg Stance Test, and Star Excursion Balance Test (SEBT). Due to the wide variety of measurement techniques used to assess postural control, this section will be organized by measurement technique in an attempt to compare study results.

Sway. Assessing sway in the anterior-posterior and medial-lateral directions provides an objective measure to assess postural control. The theory that FAI subjects have poor postural control compared to healthy controls was not confirmed using sway.¹⁵⁸⁻¹⁶⁰ However, subjects with higher sway values were at a greater risk of an ankle injury during the following competitive season.¹⁶⁰ It was concluded that FAI subjects may have a built in compensatory mechanism to cope with poor balance.¹⁶⁰ Ankle taping did not increase stability or decrease sway.¹⁵⁹ Another study measured single-leg stance sway and TTS during a single-leg jump.¹⁵⁸ Sway values did not differ between groups, but it took FAI subjects longer to stabilize.¹⁵⁸ Postural control deficits may not be present during a static task like the single-leg stance. Therefore, a more dynamic task such as the single-leg jump may need to be used to assess

postural control changes. It can be concluded that sway measurements may not truly represent changes in postural control for FAI subjects.

Center of Pressure. Center of pressure is widely used to assess postural control. Postural control deficits were observed during a single-leg stance in FAI^{22, 161} and acute ankle sprain subjects.^{23, 162} Subjects demonstrated an increased COP excursion velocity (COP_V) bilaterally following an acute sprain during a single leg stance.²³ This indicated that an acute sprain may result in a centrally mediated mechanism which contribute to bilateral postural control deficits.²³ These deficits were observed at the following time periods: 1-day, 7-days & 21-days postinjury with the injured limb having a greater COP_{V} .²³ Center of pressure distance may be more sensitive than other measurement methods at measuring postural control changes.²² Decreased stability was observed two years following an initial ankle injury.²² Peroneal latency and ankle position are highly correlated with COP.^{161, 162} Mitchell et al¹⁶² observed the unstable ankle in subjects with an acute sprain had greater COP excursion when vision was eliminated. Functional ankle instability subjects used different strategies to maintain postural control compared to a healthy control group.¹⁶¹ When the ankle could no longer maintain postural control, FAI subjects used their hip to make corrections.¹⁶¹ The hip correction strategy was used when larger corrections were needed to maintain stability.¹⁶¹ There seems to be some confusion regarding which COP method is most accurate at detecting postural control changes. Despite this confusion postural control deficits were observed in postacute ankle sprain and in FAI subjects during a single-leg stance. As the difficulty of a task increased, it appears that the proximal muscles play a greater role in maintaining postural control.³⁵

Time to Boundary. Chronic ankle instability subjects demonstrated postural control deficits during the TTB measurement.^{21, 136} Both genders of CAI subjects have demonstrated postural control deficits using the TTB test.^{21, 136} Researchers assessed postural control in healthy and CAI female subjects using both COP and TTB during single-leg stance.²¹ Chronic ankle instability subjects demonstrated bilateral postural control deficits using the TTB measurement.²¹ The CAI subjects had lower TTB scores and increased COP_V excursion compared to the healthy control.²¹ It was concluded the TTB test detects postural control deficits better than COP excursion.²¹ Gender differences were not seen during a single-leg stance with eyes open or closed using TTB.¹³⁶ The authors theorized that CAI may place constraints on the sensorimotor system during prolonged single leg stance.¹³⁶ Therefore, CAI subjects may have to alter their postural control strategies.¹³⁶

Time to Stabilization. The TTS measurement during a jump landing was different between healthy and FAI individuals.^{163, 164} Functional ankle instability subjects took longer to stabilize following a jump landing than healthy subjects.^{18, 137, 158, 164} Researchers observed greater TTS scores during a jump protocol compared to a step protocol.¹⁶³ Therefore, a jump protocol will detect dynamic stability deficits better than a step protocol.¹⁶³ The ability to control movement decreased during a jump protocol, therefore, a step protocol may allow the subject to accurately repeat the motion. It was suggested that TTS should be used to detect dynamic postural control changes.^{158, 164} Time to Stabilization can detect poor postural control in FAI subjects during a single-leg jump landing.

Dynamic Postural Stability Index. The DPSI is a relatively new measurement technique used to assess postural control deficits. It is a reliable and practical measurement of dynamic

postural control that provides a comprehensive measurement of dynamic stability in three directions.¹⁶⁵ Wikstrom et al²⁴ used DPSI to assess postural control between FAI and healthy subjects. Functional ankle instability subjects demonstrated differences in the anterior-posterior, vertical, and DPSI indexes compared to a healthy group. The authors concluded the DPSI is a reliable measurement to assess postural control and suggested FAI subjects use a nonankle strategy to maintain stability.²⁴ The altered strategy may predispose FAI subjects to CAI.²⁴

Equitest. The Equitest was used to assess the subject's response to a standardized perturbation.^{6, 20} Subjects with bilateral ankle sprains demonstrated an increase in postural sway following a perturbation.⁶ A positive relationship was also seen between ankle repositioning and postural sway in collegiate basketball players during single leg stance.⁶ Pintsaar et al²⁰ monitored postural corrections during three different perturbations (small, medium, and large) between three groups (healthy, FAI, and MAI). No difference in reaction time was observed between groups, however, the reaction time to a medium perturbation was less than a small perturbation.²⁰ The primary finding of this study was ankle function is related to coordination.²⁰ The ankle was responsible for making small postural control corrections while the hip corrected larger postural adjustments.²⁰ This study supported the theory that impaired neuromuscular function is responsible for altered postural control strategies.²⁰ McGuine et al¹⁵ used the NeuroCom System to assess the balance of high school basketball players prior to their season.¹⁵ Subjects with higher preseason postural sway scores were seven times more likely to sprain their ankle.¹⁵ This suggested if postural control can be improved, the risk of a lower extremity injury may decrease.

Balance Error Scoring System. The BESS is a clinical test used to assess an individual's static balance during three stance positions (double-leg, single-leg, and tandem). It has been used to measure balance differences in healthy¹⁶⁶ and FAI subjects.¹⁷ Functional ankle instability subjects made more balance errors than the healthy subjects during three balance tasks (single-leg on floor, tandem stance on foam, and single-leg stance on foam).¹⁷ The BESS is a reliable method to measure postural control changes in FAI subjects.¹⁷

Star Excursion Balance Test. This test is becoming a widely used method to assess dynamic balance clinically and in research. The SEBT measures reach distance in eight directions (anterolateral, anterior, anteromedial, medial, posteromedial, posterior, posterolateral, and lateral) during single-leg stance. High reliability was obtained for the SEBT when three reach directions (anterior, posteromedial, and posterolateral) were used.¹⁶⁷ The SEBT may be used as a preparticipation test to predict lower extremity injuries in high school basketball players.¹⁶⁷ A decrease in the functional reach test, SEBT, and Biodex balance index was observed following an acute ankle sprain.¹⁶⁸ These three balance test scores were highly correlated.¹⁶⁸ It was concluded that an acute ankle sprain affected unconscious proprioception more than conscious proprioception.¹⁶⁸ This emphasizes the importance of the feedforward mechanism. Researchers have also used the SEBT to assess the effect of fatigue on reach distance in CAI subjects.^{32, 33, 169} Unilateral CAI subjects had a decreased reach distance when standing on the injured limb compared to a matched control group.¹⁶⁹ Following a fatiguing protocol CAI subjects displayed a decrease in SEBT reach distances.^{32, 33} Knee flexion angles were also less after fatiguing; this indicated the neuromuscular deficits associated with CAI affected the proximal joints.³³ It is believed that the neuromuscular deficits observed at the ankle in CAI subjects also occur to the proximal joints.^{32, 33} The SEBT is used by clinicians and researchers to measure dynamic postural control deficits in CAI subjects.

Single-Leg Balance Test. The single-leg balance test has been assessed in different ways. Sometimes it is quantified by the length of time an individual can maintain balance on one limb or it may be judged by the individual or an observer. Subjects with FAI or a history of a severe unilateral ankle sprain demonstrated poor balance when the injured limb was compared to the healthy control during a Single-Leg Stance Test.^{5, 30} Functional ankle instability subjects spent 2.2 seconds longer out of balance on the injured limb.⁵ Severe ankle sprain subjects had a 5.7 second difference between injured and uninjured sides. Motor function was impaired by both FAI and a severe ankle sprain.^{5, 30}

A decrease in single-leg balance was perceived by subjects with a history of ankle sprains and observed by judges.^{128, 129} The majority of subjects with a history of multiple ankle sprains perceived better balance on the uninjured limb.^{128, 129} Judges were blinded and observed decreased balance on the injured limb.^{128, 129} Table 9 summarizes the postural control studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Sway			
Tropp et al, 1984 ¹⁵⁹	Sway	No stability difference b/w FAI & healthy groups 6 wks ankle disk training ↑ stability Ankle taping did not improve stability	 Ankle injury along does not produce FAI Taping does not effect stability 6 wks ankle disk training ↑ stability & ↓ "giving way" feeling
Tropp et al, 1984 ¹⁶⁰	Sway	Ankle injury history did not affect sway ↑ sway=↑ injury risk	Injured group not at higher risk of instability than uninjured FAI @ no > risk of ankle injury FAI may compensate for disturbanced of balance
Ross & Guskiewicz, 2004 ¹⁵⁸	Sway TTS	Mean A/P & M/L sway during 1- leg stance does not differ between groups (FAI & healthy) A/P & M/L TTS differed	r FAI took longer to stabilize Suggest using TTS to assess FAI individuals
Time to Stabilization			
Brown et al, 2004 ¹⁸	Biodex, Vertec, Force plate, EMG	No difference in JPS error scores in 4 directions TTS = ↑ in FAI subjects No EMG difference 200 ms before landing Soleus activated differently between groups in 1000 ms after landing	No difference in replicating joint angles Difference in landing patterns between FAI & healthy FAI subjects land dorsiflexed
Ross & Guskiewicz, 2003 ¹⁶⁴	TTS	TTS with a jump landing can differentiate between FAI & healthy FAI limbs take longer to stabilize	TTS with a jump landing provides a way to identify dynamic postural control deficits
Ross & Guskiewicz, 2004 ¹⁵⁸	Sway TTS	Mean A/P & M/L sway during 1-leg stance does not differ between groups (FAI & healthy) A/P & M/L TTS differed	FAI took longer to stabilize Suggest using TTS to assess FAI individuals
Ross et al, 2005 ¹³⁷	TTS		TTS is longer in FAI group isAnkle instability may impair the subjects' ability to stabilize after a 1-leg landing
Wikstrom et al, 2005^{163}	Force plate	Jump protocol produced > TTS scores in the vertical direction than the step protocol	Jump protocol will be more successful detecting differences in dynamic stability than a step down
Center of Pressure			
Cornwall & Murrell, 1991 ²²	COP distance	Postural sway greater in FAI No difference between AP & ML directions	FAI patients are less stable during a single-leg stance COP distance may be more sensitive to changes versus other studies Instability evident 2 yrs following injury

Table 9. Summary of Postural Control Studies

Evans et al 2004^{23}	COP _V		le Bilateral impairments in postural control during 1-leg stance
2004	Acute sprains	after 1 day Deficit also noted on day 7 & 21 in both ankles	after ankle injury Bilateral deficits indicate centrally mediated mechanism with acute joint injury > postural control deficits in injured limb
Mitchell et al, 2008 ¹⁶²	СОР	UA > lateral & medial sway without vision than SA than the DA & NDA Correlation between PL & PB reaction times & lateral, medial, & anterior sway	FAI subjects have sway deficits Relationship between PL & PB reaction times & sway in UA
Tropp & Odenrick, 1988 ¹⁶¹	COP SEMG	COP is highly correlated to position of ankle & peroneal activity Corrections made @ hip	Different strategies exist for maintaining equilibrium in 1-leg stance Hip is used to correct disequilibrium Hip strategy makes larger corrections possible When ankle can no longer maintain postural control – hip strategy is used
DPSI	DDQL		
Wikstrom et al, 2005^{163}		DPSI was highly reliable & precise between sessions Mean 10s> 5s>3s interval trials	DPSI is a reliable & practical measure of postural control 3 s interval is best to study athletic performance
Wikstrom et al 2007 ²⁴	DPSI 1-leg hop test	Difference in A/P, vertical, & DPSI stability indexes FAI were deficient in these indexes	Ankle instability causes motor control changes, forcing FAI to use a nonankle strategy, & predispose them to injury DPSI is sensitive enough to measure dynamic postural stability in FAI & healthy
ТТВ			
Hertel & Olmstead- Kramer, 2007 ²¹	COPV, TTB	CAI group had ↓TTB and ↑COPV	Postural control deficits were noted bilaterally using TTB Suggests centrally mediated postural control in CAI
McKeon & Hertel, 2008 ¹³⁶	TTB	No group by gender interaction or gender main effects CAI group observe deficits in 4 of 6 measures with EC	CAI may place > constraints on the sensorimotor system during 1-leg stance May indicate diminished ability to respond effectively to postural control demands in CAI
Equitest			
Fu & Hui-Chan, 2005 ⁶	501	↑ postural sway (SOT) in injured subjects	Basketball players with MAS have ↑ ankle repositioning & postural sway during stance A positive relationship was found between repositioning & postural sway

Fu & Hui-Chan,	SEMG of TFL, TA	, TFL activates later than TA during landing in subjects with	
2007 ⁷¹	& PER	BMAS	Change in prelanding EMG noted @ ankle and hip
Pintsaar et al,	Equitest	No latencies differences among 3 groups	Ankle corrects small perturbations
1996 ²⁰		Latency was shorter for medium than for small translations	
			Impaired function is related to change in strategy
Ryan,	Isokinetics	Evertor mean strength was not different between stable	MAI is frequently absent from FAI subjects
1994 ⁵	UBE	(19.2 Nm) & unstable ankles (18.8 Nm)	Evertor weakness was not present
		Proprioceptive differences between affected (4.0 s) & unaffected ankles (1.8 s)	Impaired proprioception contributes to FAI
Van Deun et. al.,	, EMG	Later ankle, hip, & hamstring onset during 2-leg to 1-leg	Lower extremity activation patterns vary between healthy &
2007^{70}	Force plate	stance	CAI
		CAI subjects used similar muscle activation patterns	CAI use 1-landing strategy
		Controls adjusted their activation patterns to the condition	CAI activate ankle, knee, & hip later than control
		Muscle activation seemed proximal to distal	
Balance			
BESS			
Bressel et al,	BESS	Gymnasts 55% less errors than basketball group BESS	Basketball group less static balance than gymnastic group
2007 ¹⁶⁶	SEBT		Γ Basketball group inferior dynamic balance than soccer group
Docherty et al,	BESS	FAI scored higher errors 1-leg on floor, tandem stance on	Postural control deficits were in FAI using the BESS
2006 ¹⁷		foam, & 1-leg on foam	BESS is reliable at measuring postural control changes in FAI
			patients
SEBT			
Akbari et al,	SEBT	Injured limb had a \downarrow FRT, SEBT, & balance index during	The unconscious part of proprioception is more severely
2006 ¹⁶⁸	FRT	unilateral stance on injured limb	affected than the conscious part
	Biodex balance	Strong relationship existed between all balance tests	
	system		
Gribble et al,	Isokinetics	CAI had smaller reach distance & knee-flexion angles	CAI & fatigue disrupted dynamic postural control, most
2004 ³³	Kinematics	Fatigue amplified this trend	notably joints proximal to the ankle
	SEBT		Neuromuscular deficits associated with CAI result in similar
			changes to proximal neuromuscular control
Gribble et al,	SEBT	Lunge fatigue, CAI, & Δ in knee & hip flexion predicted	Isolated ankle fatigue did not cause different responses
2007 ³²	Kinematics	~49% of % MAXD	between groups
	Ankle & lunge	CAI predicted 20% of medial % MAXD	Functional fatigue protocols may expose deficits in dynamic
	fatigue	CAI predicted 18% of anterior % MAXD	postural control caused by neuromuscular control alterations
			in proximal joints present in CAI subjects

Olmstead et al, 2002^{169}	SEBT	CAI had \downarrow reach distance compared to matched control group & uninjured side	SEBT may be an effective means to determine reach deficits between & within unilateral CAI subjects
2002		CAI reached less standing on the injured side	between & within unitateral CAI subjects
Pliskey et al, 2006 ¹⁶⁷	SEBT	SEBT is reliable (ICC 0.82 to 0.87) Anterior right/left reach distance > 4cm = $2.5x$ likely to sustain a lower extremity injury Girls with a composite reach $\leq 94\%$ 6.5x likely to have a lower extremity injury	The SEBT is a reliable measure to assess balance & may predict possible injury.
Robinson & Gribble, 2008 ¹⁷⁰	Normalized SEBT	Increased excursion distance (7), hip flexion (4), & knee flexion (5) occurred out of the 8 reach directions	Maximum reach distance & 1-leg angular displacement achieved stability within 4 practice trials Recommend reducing the # of practice trials from 6 to 4
1- leg stance			
Bullock-Saxton 1995 ³⁰	1-leg stance	5.7s difference between injured group's injured side vs. uninjured side	Side to side differences present in vibration, 2-point discrimination, & balance
			Sensory changes are consequential on ankle injury Motor control is likely to be affected by ankle sprains
Forkin et al,	1-leg balance (EO &	29 of 11 subjects perceived balance better on uninjured d	Balance & kinesthetic deficits are common in gymnasts with
1996 ¹²⁸	EC)	Observers judged EO balance better in 4 & 5 subjects Observers judged EC balance better in 7 of 11 subjects	MAS
Garn & Newton, 1988 ¹²⁹	1-leg balance test		Kinesthetic deficits exist in the injured ankle joints of athletes with a history of MAS
McGuine et al, 2000^{15}	NeuroCom (postura sway)	Higher preseason postural sway scores corresponded with increased ankle sprains; those with poor balance were 7x likely to sprain their ankle	Preseason postural sway can be used to predict ankle injuries in high school basketball players

Biomechanics

Landing Types. Three types of landings have been discussed in the literature. A stiff landing occurs when the peak knee flexion angle is less than 90°, therefore, a stiff landing places individual's in a more erect posture.^{69, 98} An erect posture places additional stress on the ankle joint compared to a soft landing. Greater hip and knee flexion occur during a soft landing, knee flexion greater than 90° is representative of a soft landing.⁹⁸ Greater demands are placed on the proximal joints and muscles during a soft landing compared to a stiff landing.^{69, 98} It is believed that individuals choose between a stiff or soft landing, however, individuals have used a combination of these landing types.¹⁷¹ The combination of landing strategies is referred to as the preferred or normal landing type of landing.¹⁷²

Landing Strategies. Individuals use different landing strategies to maintain postural control following an unexpected perturbation. The ankle and hip strategies are discussed in the literature.¹⁷³ An ankle strategy is primarily used to make corrections to small perturbations or during static movements such as a single-leg stance. The hip strategy is used to correct for larger perturbations or during dynamic tasks where the center of mass is displaced outside of the body's base of support. A combination of these strategies are used to maintain balance as velocity increases following a backward translation.¹⁷¹ Healthy subjects use a hip or preferred landing strategy during dynamic tasks which allow them to perform a soft landing while FAI subjects use the ankle strategy which produces a stiff landing.

Energy Absorption During Landing. Energy absorption varied depending on impact velocity and type of landing performed.^{69, 101} As landing height and demands placed on the lower extremity were increased, subjects altered their landing strategy.^{98, 101} Athletes may not

use their full energy absorption capabilities during every task.¹⁷¹ The ankle absorb the majority of the energy dispersed throughout the kinetic chain during a stiff landing.^{69, 98, 171} A soft landing allowed the proximal joints and surrounding muscles to absorb more energy, therefore, taking some stress off the ankle.^{69, 98, 171} Energy absorption differences between FAI and healthy controls have not been reported. Anterior cruciate ligament reconstruction (ACLr) subjects demonstrated a stiff landing compared to healthy subjects. This required ACLr subjects to use an ankle landing strategy.¹⁷⁴ Knee energy absorption is a predictor of leg impedance in female athletes.¹⁷²

Energy absorption can be altered through training and changing abdominal postures.^{101,} ¹⁷⁵ McNitt-Gray¹⁰¹ compared energy absorption between elite male gymnasts and recreational athletes following a drop landing. Gymnasts used larger ankle and hip extensor moments to absorb energy. Kulas et al¹⁷⁵ concluded abdominal postures (AH and pelvic tilt) may influence lower extremity energy absorption.¹⁷⁵ Training individuals to maintain an abdominal posture may allow them to increase energy absorption up the kinetic chain and improve postural control. The relationship between abdominal muscles and lower extremity injury needs to be researched further.

Perturbations. The kinematics of the ankle, knee, and hip were measured under varying conditions. Riemann et al¹⁷⁶ assessed the corrective actions of the ankle, knee, hip, and trunk in healthy subjects during a single-leg stance on different surfaces (firm, foam, and multiaxial) with eyes open and closed. Closed eyes make it harder to maintain balance.¹⁷⁶ Proximal joint involvement increased, as the difficulty of the task increased.¹⁷⁶ This study did not assess corrective actions on the foam and multiaxial surfaces with the eyes closed.

Following a medial-lateral perturbation to the pelvis or shoulder the center of mass was displaced in the direction of the perturbation.¹⁷⁷ Displacement was corrected by hip joint movement followed by the ankle joint.¹⁷⁷ The contralateral hip reacted first to a shoulder perturbation while the ipsilateral hip reacted first to a pelvis perturbation.¹⁷⁷ Many subjects overshot the correction of the perturbations prior to returning to the starting position.¹⁷⁷ This suggested the central nervous system (CNS) initiated the corrective action to a perturbation prior to the completion of the perturbation, indicating a feedforward mechanism.¹⁷⁷ The direction and location of the perturbation dictated the corrective response not the magnitude.^{177, 178}

Henry et al¹⁷⁸ assessed the corrective response of healthy subjects to lateral and anterior/posterior perturbations. An anterior perturbation was a two stage correction (ankle & hip displaced, then return to neutral) while posterior and lateral perturbations had a three stage correction (hip & ankle displaced, hip angle returns, ankle & hip return to initial position).¹⁷⁸ Controlling the center of mass required both the ankle and hip.¹⁷⁸ The tensor fascia latae contracted first during lateral perturbations while distal muscles activated first with anterior and posterior perturbations.¹⁷⁸

Location of the trunk during a forward lunge dictated the involvement of the ankle, knee, and hip.¹⁷⁹ Joint angles and impulses were assessed during a forward lunge with the trunk in three different positions (flexed, normal, and extended).¹⁷⁹ Greater peak dorsiflexion, knee flexion and less hip flexion occur when the trunk is extended.¹⁷⁹ An increase in GMax and BF muscle activation was observed with a flexed trunk.¹⁷⁹

Muscle Activation. Neuromuscular function was compared between elite triple jumpers and recreational active subjects during two-drop jump heights (40 cm & 80 cm).¹⁸⁰ The triple

jumpers jumped higher at both heights than the control group, this demonstrated triple jumpers had more efficient neuromuscular control.¹⁸⁰ Jumpers activated their vastus lateralis and gastrocnemius muscles earlier than the control group.¹⁸⁰ Greater knee flexion was observed in the triple jumpers than the controls.¹⁸⁰ This may indicate trained athletes use a hip landing strategy while recreationally active subjects use an ankle strategy to land from a drop jump.¹⁸⁰

Wikstrom et al¹⁸¹ assessed neuromuscular control differences between successful and failed jump landings. The muscles (vastus medialis, semimembranosis, lateral gastrocnemius, and TA) were activated earlier with greater amplitude pre- and postlanding during successful landings.¹⁸¹ Activation patterns were proximal to distal with the vastus medialis activating first and the TA last.¹⁸¹ Therefore, successful and failed landings use feedforward and feedback mechanisms, respectively. The authors suggested the failure of hip musculature may be the cause of a failed jump landing.¹⁸¹

Ankle Instability and Landing. Chronic ankle instability subjects have demonstrated altered biomechanics during landing and walking compared to healthy control subjects. Ankle dorsiflexion, inversion, knee flexion, and hip external rotation were altered in FAI subjects.^{67, 68} Functional ankle instability subjects had greater dorsiflexion and knee flexion from 20 milliseconds (ms) prelanding to 60 ms postlanding during single-leg jumps.⁶⁷ These results indicate the differences between groups are not due to reflexive changes.⁶⁷ The authors suggested FAI and healthy subjects use different feedforward mechanisms during landing.⁶⁷ Less dorsiflexion was observed in FAI subjects postinitial contact (90 ms-200 ms).⁶⁸ Prior to initial contact, healthy subjects had greater hip external rotation compared to FAI subjects.⁶⁸ Functional ankle instability subjects are not as efficient at controlling ankle motion compared to

healthy subjects.⁶⁸ They theorized neuromuscular impairments of FAI are not limited to the ankle, but will transmit up the kinetic chain to proximal joints and muscles.⁶⁸ Proximal joints and muscles may have an important role in maintaining postural control in FAI subjects, however, further research is needed.

Chronic ankle instability subjects demonstrated increased inversion during walking and a more lateral COP trajectory while running.^{139, 182} Greater inversion was demonstrated by CAI subjects from 100 ms preheel strike to 200 ms postheel strike.¹³⁹ Chronic ankle instability subjects performed ankle inversion from 5 ms pre- and postheel strike while healthy subjects performed eversion.¹³⁹ Throughout the 200 ms postheel strike, CAI subjects exhibited an evertor moment while the control subjects demonstrated an invertor moment.¹³⁹ Chronic ankle instability subjects also had higher inversion angular velocity than controls at heel-strike.¹³⁹ Subjects with CAI demonstrated a more lateral COP trajectory than subjects with a history of one lateral ankle sprain.¹⁸² Authors agree altered biomechanics place the ankle/foot in a position that will increase the likelihood of a CAI.

Differences in ground reaction forces (GRF) were observed between FAI subjects and healthy subjects. Peak anterior and lateral GRF occurred 10 to 13 ms earlier FAI than control subjects during a jump landing.⁷² Time-averaged GRF was different between groups following initial contact.⁷² Delahunt et al⁶⁸ observed increased vertical, medial, and posterior GRF postinitial contact. Functional ankle instability reached peak posterior GRF sooner than healthy subjects.⁶⁸ This suggests the entire kinetic chain may be affected by FAI.⁶⁸ Altered GRF is contributed to deficits in feedforward motor control.⁷² These data suggested FAI subjects may have an altered feedforward mechanism.

Gender Differences. Biomechanical differences were observed between genders during dynamic tasks (walking, running, landing, and a single-leg squat). Females demonstrated an increased walking cadence and decreased stride length compared to males.^{183, 184} Women displayed increased hip flexion and decreased knee extension during walking.¹⁸⁴ Their knees absorbed more energy while walking than males.¹⁸⁴ Greater oblique pelvic movement and less normalized vertical center of mass (COM) displacement was exhibited by women during walking.¹⁸³ Aging intensified oblique pelvic movement and COM displacement differences between genders.¹⁸³

Female runners demonstrated increased peak hip adduction, internal rotation, and knee abduction angles.¹⁸⁵ Females absorbed more energy in the frontal and transverse planes than males.¹⁸⁵ Males and females use different lower extremity mechanics during running.¹⁸⁵

Healthy men and women demonstrated different biomechanics during a single-leg squat.¹⁸⁶ Women demonstrated greater rectus femoris muscle activation and increased ankle dorsiflexion, pronation, hip adduction, flexion, and external rotation compared to males.¹⁸⁶ Greater knee valgus at the beginning and end of a single-leg squat were observed in females.¹⁸⁶ Gender differences were observed between both one and two-leg landings.^{54, 99, 102, 187, 188} At initial contact during a two-leg landing, females had greater knee extension and plantar flexion angles than their male counterparts.⁹⁹ Females use their ankles and knees to absorb energy more than males and this could be why females are prone to injuries.^{99, 186}

Females demonstrated less hip and knee flexion during a single-leg jump landing and they reached peak hip and knee flexion angles sooner than males.¹⁰² The results of this study also demonstrated females use their ankles to absorb the majority of energy during a single-leg

jump landing.¹⁰² Decreased hip and knee flexion along with shorter time to peak angles may make females more prone to lower extremity injuries.

Russell et al¹⁸⁸assessed knee angle and GMed activation differences between genders in healthy subjects during a single-leg drop landing. Females landed in knee valgus while males landed in varus at initial contact.¹⁸⁸ Males demonstrated greater knee varus than females at maximal knee flexion.¹⁸⁸ The authors concluded women had greater valgus stress placed on their knees than men and GMed activation was not different between genders.¹⁸⁸

Jacobs et al¹⁸⁷ assessed peak torque, endurance capacity, and peak joint displacement of the hip and knee during a single-leg landing in healthy adults. Women demonstrated decreased peak torques and increased valgus knee peak joint displacement compared to their male counterparts.¹⁸⁷ The peak torque of women was correlated with hip flexion, adduction, and knee valgus displacement.¹⁸⁷ Altered biomechanics during single-leg landings may increase a women's risk of knee injury.¹⁸⁷ Hip abductor strength is thought to have an important role in neuromuscular control.¹⁸⁷

Hart el al.¹⁸⁹ assessed lower extremity muscle activation in healthy subjects during a single-leg jump and landing. This study demonstrated that GMed muscle activation was greater in male division I collegiate soccer players than females.¹⁸⁹ No difference was observed in other lower extremity muscles (BF, vastus lateralis, and medial gastrocnemius).¹⁸⁹ Males use their hip muscles more to absorb energy during a single-leg landing than females.¹⁸⁹ This may make females more susceptible to lower extremity injuries than males. Table 10 summarizes the biomechanics studies discussed in this section.

	Instrument(s)	Results	Conclusion
Ankle Instability	1		
Caulfield & Garrett, 2004 ⁷²	Jump landing GRF	Timing of GRF peaks varied between groups Peak lateral & anterior GRF occurred 10 to 13 ms earlier in FA Time-averaged GRF differed between groups post-IC	Disordered patterns most likely due to deficits in feedforward motor control
Caulfield & Garrett, 2001 ⁶⁷	1-leg jumps Kinematics	FAI subjects had > dorsiflexion & exhibited > knee flexion that controls during 20 ms prior to 60 ms post landing	n These timing differences indicate the results are not reflexive Feedforward programs are different between FAI & control subjects
Delahunt et al 2006 ⁶⁸	SEMG (RF, PL, TA, SO) Kinematic Strain gauge	 FAI ↓ PL activity pre-IC FAI ↑ inversion pre-IC FAI ↓ dorsiflexion post-IC FAI ↓ angular velocity post-IC FAI ↓ hip external rotation pre-IC FAI ↑ vertical GRF (35-60 ms) medial GRF (85-105 ms), posterior GRF (75-90 ms) post-IC 	FAI reached peak posterior GRF sooner than control FAI ↓ dorsiflexion FAI not as efficient as control @ reaching dorsiflexion Neuromuscular impairment are not confined to the ankle, but transmit up the kinetic chain
Monaghan et al, 2006 ¹³⁹	Kinematic Kinetics	CAI subjects were more inverted from 100 ms pre-HS to 200 ms post-HS CAI invert during 5 ms pre-& post-HS, while healthy evert CAI exhibited an evertor moment while control invert during 200 ms post-HS CAI have higher angular velocity than controls @ HS	∆ in kinematics & kinetics are likely to result in ↑ stress being applied to ankle joint structures during HS & loading response phases of gait
Energy Absorption			
Decker et al, 2002 ¹⁷⁴	Force plate Kinematics	ACLr subjects land with hip & knee more extended & ankle plantar flexed ACLr had > energy absorption from the knee & ankle than hip	Landing strategies are preselected & can be designed to mediate stresses to a specific joint
Devita & Skelly 1992 ⁶⁹	, Kinetics Energetics	 > joint flexion in preparation for soft landing (hip & knee 9° more, plantar flexed 5° less) Soft landings require > work (hip-54% & knee-46%) Muscles absorb more during a soft landing Ankle absorbs 14% more in stiff landings (plantar flexors absorb more energy) 	Muscular system absorbed more energy during soft landings than stiff Ankle absorbs the most followed by knee then hip

Table 10. Summary of Biomechanics Research Studies

Kulas et al, 2005 ¹⁷⁵	Kinematics	Abdominal postures can be reliably performed during a 1-leg landing	Abdominal postures may have an influence on lower extremity energy absorption
Kulas et al, 2006 ¹⁷²	Kinematics	Knee energy absorption during stabilization accounted for 55.1% Hip absorption @ stabilization was 8.3% Ankle absorption @ impact was 7.1%	Leg impedance ↑ from soft to preferred to stiff landing Leg impedance was primarily explained by knee energy absorption.
McNitt-Gray, 1993 ¹⁰¹	Kinematic Kinetics	Extensor moment ↑ with impact velocity ↑ Energy absorption ↑ with impact velocity ↑	Balance control is associated with ankle or hip adjustments Drop landing kinetic ∆with ↑ in impact velocity Gymnasts & recreational athletes dissipate energy differently
Self & Paine, 2001 ¹⁹⁰	Kinematics	Stiff landings had the highest peak vertical forces & accelerations Achilles tendon peak force highest @ stiff plantar flexed landings	Athletes may not use full energy absorbing potential during sporting events
Zhang et al, 1998 ⁹⁸	Kinematics Kinetics	GRF ↑as landing height ↑ Peak hip moment & power were later than the ankle & knee Peak hip moment & power were > than ankle & knee Ankle muscles ↑ work with ↑ heights ↑ landing stiffness = ↑ ankle muscle contribution & ↓ hip contribution Hip & knee ROM ↓ with stiff landings	 ↑ height, ↑ biomechanical responses Ankle is less capable of energy absorption than hip & knee Knee & hip involvement ∆with landing strategy Hip & knee energy absorption ↑ as mechanical demands ↑ Shift from ankle to hip strategy as landing height ↑
Perturbation Farrokhi et al, 2008 ¹⁷⁹	Kinematics Kinetics	LTE dorsiflexion \geq NL & LTF LTE knee extensor impulse \geq LTF LTE plantar-flexor impulse $>$ during LTF Peak LTE knee flexion angle \geq LTF Peak LTE hip flexion angle \leq NL LTF hip flexion angle \geq NL & LTE LTF hip extensor impulse \geq NL & LTE	The location of the trunk during a forward lunge dictates muscle involvement LTF ↑ hip extensor involvement > GMax & biceps femoris activation for LTF
Henry et al, 1998 ¹⁹¹	SEMG Force plate Motion analysis	Anterior translation has a 2-stage pattern (ankle & hip displaced, then return to neutral) Lateral & posterior translation 3-stage pattern (hip & ankle displaced, hip angle returns, & ankle & hip return back to initia position	Control of COM requires ankles & hips TFL was 1 st activated w/ lateral translation Distal muscles recruited 1 st w/ A/P translations al

Riemann et al,	Kinematic	Difference between joints for FIEC (ankle>hip>knee>trunk),	
2003 ¹⁷⁶		FOEO (ankle>knee & hip>trunk), MAEO (ankle>knee)	FIEO required <correction< td=""></correction<>
		Within joint differences: ankle(FIEC>FOEO>MAEO>FIEO)	
		knee(FIEC>FOEO> FIEO & MAEO), hip(FIEC>FOEO>	joints
		FIEO & MAEO), & trunk(FIEC> FOEO & MAEO>FIEO)	Task rank FIEO <maeo<foeo<fiec< td=""></maeo<foeo<fiec<>
Rietdyk et al,	Kinematics	Hip joint movement & moment occurred 1st followed by	Trunk movement was dependent upon perturbation location
1999 ¹⁷⁷	COP	ankle	Many subjects overshoot in the opposite direction before
		Contralateral hip 1 st active with shoulder perturbation	returning to the stationary position
			sCNS initiates response before perturbation is fully developed
		perturbation	Perturbation location dictates response not magnitude
Muscle			
Activation			
Farrokhi et al,	SEMG	LTF ↑ GMax & biceps femoris EMG	LTF ↑ hip extensor impulse & recruitment
2008 ¹⁷⁹		LTE \uparrow dorsiflexion angle & \downarrow peak hip flexion angle	LTE did not alter LE joint impulse or activation
Konradsen et al,	SEMG	Peroneal reflex latency median was 48 ms	Dynamic response to sudden inversion involves both
1997 ¹³²	2-D kinematics	Knee flexion reached median of 30°	peripheral reaction & a central mediated strategy
		Median hip flexion was 25°	Only anticipated muscle activity, static stabilizer strength, or
		A uniform reaction pattern exists for both unilateral &	external support can prevent an injury
		contralateral limbs	
Runge et al,	SEMG	Activation \uparrow as velocity \uparrow	Ankle & Hip strategies are mixed as velocity increases
1999 ¹⁷¹	kinematics	Anterior muscle activation \uparrow (RA, STER, RF) as backward	EMG patterns during fast translations are indicative of
		translation is reached	combined ankle & hip action
		Knee flexion & peak hip flexion \uparrow as velocity \uparrow	
		Velocity threshold of hip torques emerged the same time as	
		RA EMG	
Viitasalo et al,	SEMG	Triple jumpers 32% higher @ .40 m & 34% @ .80 m	Jumpers have more efficient neuromuscular system than
1998 ¹⁸⁰	Goniometer	VL & gastrocnemius had earlier preactivity than controls	controls
		EMG did not differ b/w drop heights	Jumpers better able to resist > speeds & GRF
		DJ80 had $>$ angles than DJ40	
Wikstrom et al,	SEMG	Greater activation times, preparatory & reactive EMG	Successful jump landing trials had earlier activation & reactive
2008 ¹⁸¹	1-leg jump	Successful landings muscle activation times (VM, SM, LG,	EMG
		TA), preparatory EMG (VM, SM, LG), reactive EMG (VM,	Activation patterns were proximal to distal
		SM, LG, TA)	Preparatory activation plays $a > role$
			Failed trials could be caused by hip musculature failure

Gender			
Decker et al, 2003 ⁹⁹	Kinematics Kinetics	Females had > knee extension & plantar-flexion angles @ IC Females have > peak angular velocities Females used their ankle & knee to absorb energy more than males	Females absorb more energy with their ankle & knee
Ferber et al, 2003 ¹⁸⁵	Kinematics	Female runners > peak hip adduction, internal rotation, & knee abduction > hip frontal & transverse plane negative work > hip frontal plane (-) work, & peak hip adduction velocity Females > knee abduction angle	Females exhibit different lower extremity mechanics in the frontal & transverse planes @ the hip & knee compared to men
Hart et al, 2007 ¹⁸⁹	SEMG Kinematics	GMed activation < in Div. I soccer athletes (2.62 to 7.17) Males > GMed activation than females	Gender specific force absorbing strategies while landing arise from hip muscles Neuromuscular strategies to attenuate the forces of 1-leg landings may involve more hip activity in males than females
Jacobs et al, 2007 ¹⁸⁷	PT %E PJD	Women lower PT than males Women PT correlated with hip flexion, adduction, & knee valgus PJD during landing	No gender difference in %E Hip abductor strength may play an important role in neuromuscular control of the women's knee
Kerrigan et al, 1998 ^{184, 188}	Kinematics Kinetics	Female cadence is \geq males Stride length is $<$ in females > peak knee absorption in females	Females had > hip flexion & less knee extension before initial contact
Russell et al, 2006 ¹⁵⁵	Force plate SEMG Kinematics		Women land in greater knee valgus than men, GMed does not differ between sexes in healthy subjects Timing of GM activation is of > importance than level of activation GMed activation did not differ between sexes
Schmitz et al, 2007 ¹⁰²	Kinematics Kinetics	Females less hip (60%) & knee (36%) ROM than males during landing Females shorter time to peak hip (52%) & knee (22%) flexion Females 9% > peak normalized vertical GRF	Females absorb > energy @ the ankle than males Females use less total hip & knee flexion & have shorter peak nflexion values during 1-leg drop landing
Smith et al, 2002 ¹⁸³	COM Pelvic obliquity, rotation, tilt	Women had > cadences, and shorter stride length Woman had > pelvic obliquity & lower normalized vertical COM	No gender differences in walking velocity Aging intensifies gender differences

SEMG	Women <i>fankle</i> dorsiflexion, pronation, hip adduction.	Women place their lower extremity & activate their muscles in	
Kinematics		a way that may \uparrow the risk of an ACL injury	
1-leg squat	· · ·		
0 1	Women activated their rectus femoris more than males		
%E- endurance capacity; ACLr – anterior cruciate ligament reconstruction; COM-center of mass; FIEC – firm surface, eyes closed; FIEO – firm surface, eyes			
	Kinematics 1-leg squat	Kinematicsflexion, external rotation, &↓ trunk lateral flexion1-leg squatWomen start & end in more valgus Women activated their rectus femoris more than males	

open; FOEO – foam surface, eyes open; GMed- gluteus medius; GRF- ground reaction force; HS- heel strike; IC – initial contact; MAEO – multiaxial, eyes open; MKF- maximal knee flexion; ms – milliseconds; PJD- peak joint displacement; PT- peak torque; ROM- range of motion; SEMG- surface electromyography

PROXIMAL ANATOMICAL STRUCTURES AND LOWER EXTREMITY INJURY Hip Musculature

The relationship between proximal anatomical structures and lower extremity injury is not fully understood.¹⁹² Nicholas et al¹⁰³ assessed the strength of five lower extremity muscle groups (quadriceps, hamstrings, hip abductors, adductors, and hip flexors) in subjects with different lower extremity pathology (ankle and foot problems, ligamentous instability, patellar lesions, intrarticular defects, arthritis, and back). Different lower extremity pathology was associated with specific muscle weakness.¹⁰³ Subjects with ankle and foot problems demonstrated a strong correlation between ipsilateral hip abductor and adductor weakness.¹⁰³ Ipsilateral quadriceps weakness was related to knee ligament laxity.¹⁰³ Patellar lesion subjects displayed the greatest overall ipsilateral weakness; the quadriceps, hamstrings, and hip flexors all had weakness.¹⁰³ The subjects with intraarticular defects and back groups demonstrated ipsilateral quadriceps weakness.¹⁰³

The relationship between hip strength and patellofemoral pain syndrome was assessed, subjects demonstrated decreased hip abductor and external rotator strength compared to a healthy control group.¹⁹² Although strength differences were observed further research is required to understand the relationship between hip weakness and patellofemoral pain syndrome.¹⁹²

Researchers observed hip strength differences in subjects with a lower extremity or low back injury.^{41, 104, 193} Females demonstrated side-to-side hip muscle weakness in subjects with lower extremity injuries.^{104, 193} Right hip abductor and left hip extensor muscles were stronger than the opposing limb.¹⁰⁴ The muscles of intercollegiate athletes with a history of a lower extremity injury displayed decreased strength on the left compared to the right and hip extensor

muscles were weaker than the abductors.¹⁹³ A distal injury may affect neuromuscular control and foster compensatory strategies.¹⁹³

Nadler et al¹⁹⁴ assessed functional performance of subjects with a history of lower extremity injury using the 20-meter shuttle run during preparticipation physicals. Freshman with a history of lower extremity injury were slower than those without a history of injury.¹⁹⁴ Female subjects were slower on average and the nonfreshman athletes were faster than the freshman, but no difference was observed between nonfreshman regardless of injury history.¹⁹⁴ The authors concluded kinetic chain deficits may last long after recovery and hip muscles are important at transferring forces up the kinetic chain.¹⁹⁴ They also theorized core strengthening may improve shuttle run times.¹⁹⁴

Ankle Instability. Individuals with CAI demonstrated altered hip muscle activation. The gluteal muscles were the primary hip muscles previously assessed in CAI subjects. Subjects with CAI activated their GMed muscle later than healthy control subjects during right or left ankle perturbations.²⁸ The contralateral GMed muscle was activated prior to the ipsilateral GMed in both groups (ankle instability & healthy).²⁸ Greater pelvic displacement was measured in one subject on the perturbation side, therefore, a greater stretch was placed on the ipsilateral side compared to the contralateral side.²⁸ Chronic ankle instability subjects altered their GMed muscle activation as a compensatory strategy in an attempt to maintain postural control. This response was probably due to a polysynaptic reflex instead of a supraspinal signal.²⁸

Chronic ankle instability subjects demonstrated hip abductor weakness on the injured side. A correlation was observed between hip abductor and extensor strength.¹⁵⁶ This study

suggested that both the GMed and GMax may be affected by CAI.¹⁵⁶ The authors suggested that comprehensive ankle rehabilitation programs should include hip strengthening.¹⁵⁶

Subjects that suffered an ankle sprain demonstrated altered GMax muscle activation. The GMax activated later than healthy subjects during a prone-leg extension.^{29, 31} A correlation between muscle function and sensory changes was observed in subjects with a history of unilateral ankle sprains.³¹ It was concluded that changes in local sensation and proximal muscle function are associated with ankle sprains;³¹ therefore, the authors suggest that ankle rehabilitation protocols should be holistic in nature instead of focusing on a specific location such as the lower leg.³¹ Altered muscle (contra-lateral & ipsilateral erector spinae, GMax, and biceps femoris) activation patterns have been observed between healthy subjects and those with a history of ankle sprains.²⁹ The GMed muscle activated later and for a shorter amount of time in subjects that previously sprained their ankle compared to the healthy control group.²⁹

Abdominal Musculature. It has been theorized that the core musculature may have an important role in the prevention of lower extremity injuries.^{37, 38, 105, 195} As previously discussed, recent research has focused on the relationship between lower extremity injuries and the hip musculature. However, research has not directly assessed the relationship between the remaining core muscles and lower extremity injuries. Therefore, further research is required to understand the behavior of the remaining core musculature.^{37, 38, 105, 195} The abdominal muscles are of particular interest because these muscles stabilize the spine during activity along with creating trunk motion.

A study assessed the differences in core stability between genders and history of injury. Core stability was measured in 140 collegiate basketball players (80 females and 60 males) over a two-year period.³⁸ The researchers used a handheld dynamometer to assess isometric hip abduction and external rotation strength.³⁸ They also measured core stability using the lumbar extensor endurance, side bridge, and straight-leg-lowering test.³⁸ Although these are commonly used measures to assess core stability all but the straight-leg-lowering test involve an isometric contraction. Therefore, these may not be the best measures to assess core stability. A gender difference was observed; males demonstrated greater core stability than females.³⁸ Those subjects who suffered a lower extremity injury also demonstrated less core stability compared to the healthy subjects.³⁸ The authors concluded core stability is important to prevent lower extremity injury, especially in females.³⁸ Table 11 summarizes the proximal anatomical structures and ankle instability studies discussed in this section.

Authors, Year	Instrument(s)	Results	Conclusion
Ortiz, et al, 2006 ¹⁰⁵	Literature Review	Defines the core Provides training ideas	Core stabilization & strengthening programs are thought to promote ↑ lumbo-pelvic-hip stability & ↑ neuromuscular recruitment This is thought to ↓low back & lower extremity injuries
Willson, et al, 2005 ³⁷	Literature Review	Core stability maintains low back health & prevents knee injuries Defines core stability	Lower extremity injuries may diminish core stability
Beckman & Buchanan, 1995 ²⁸	EMG latency	GMed activates sooner in FAI than healthy during same side perturbation Contralateral GMed activates before ipsilateral	FAI GMed activates prior to healthy Contralateral GMed activates first followed by ipsilateral
Bolga, et al, 2008 ¹⁹²	Strength Kinematics	PFPS subjects have ↓ strength (hip external rotation & abductor torque) No difference in hip and knee angles	Additional research is required to understand the relationship between hip weakness & PFPS
Bullock-Saxton, 1994 ³¹	SEMG	Difference of vibration @ 3 frequencies in injured ankle > vibration was required by the ankle injury group GMax onset later in ankle injury group Earlier onset of hams & GMax in healthy subjects	Local sensory and proximal muscle function Δ associated ankle sprains Correlation between sensory and muscle function Holistic approach is recommended
Bullock-Saxton, 1995 ³⁰	SEMG	Injured group activation pattern different than healthy GMax activation was delayed Activation time was < for injured than healthy	Altered afferent input from ankle injury may influence CNS motor plan
Friel, et al, 2006 ¹⁵⁶	Goniometer Handheld dynamometer	Hip abductors weaker on involved side Plantar-flexion ROM < on injured side Hip abductor & extensors correlated	CAI subjects have weaker hip abductors
Leetun, et al, 2004 ³⁸	Isometric hip abduction, external rotation LET Side bridge test SLLT	Males demonstrated > core stability than females Athletes who suffered injuries generally demonstrated lower core stability	Females displayed decreased hip external rotation & side bridge compared to males Highlights the importance of proximal stabilization for lower extremity injury prevention
Nadler, et al, 2000 ¹⁰⁴	Dynamometer	L extensor group stronger than R (females w/o injury were 10.9% stronger) R abductors were stronger than L	Females demonstrated side-to-side hip strength differences Athletes with previous LE injury or LBP were found to have differences in hip strength as compared with athletes w/o

Table 11. Summary of Proximal Anatomical Structures and Ankle Instability

		Males had no side-to-side differences	injury
Nadler, et al, 2002 ¹⁹³	Dynamometer	Difference in ratio of max LA/LE in athletes with LE injury No difference b/w max RA/RE	More strength dysfunction on L as compared to R hip in athletes with LE injury
2002			Greater torque on L
			Hip extensors appeared weaker
			Reflects distal injury may affect muscle weakness, firing
			patterns, central inhibition, & compensatory strategy
Nadler, et al	20 m shuttle run	Freshman w/history of LE injury had slower shuttle runs	Kinetic chain deficits may last long after symptomatic
2002^{194}		No difference in nonfreshman regardless of injury	recovery
			Hip musculature plays a role in transferring forces from the
			LE up towards the spine
			Core strength may improve shuttle run times
Nadler, et al,	Dynamometer	No Δ in LBP occurrence	Program Δ hip extensor strength
2002^{41}	-	R Δ hip extensor stronger than L on average (P = .0001)	Need exists for gender specific programs
		Females w/weaker L hip abductors had > chance of LBP	Weak hip abductors cause increased trunk involvement
			Hip abductors help maintain stability in midstance
Nicholas, et al,	Manual muscle	Strong correlation between ankle & foot problems &	Specific weaknesses found with certain conditions
1976 ¹⁰³	tests	ipsilateral hip abductors & adductors	Injured leg weaker than control
	Cybex II		LE injuries may affect remote
Zazulak, et al,	APR & PPR	3 year prospective study	Lends credence to association between \downarrow neuromuscular
2007 ¹⁹⁶		Interaction between gender & knee injuries	control of body's core & \uparrow knee injury risk
		APR deficits observed in female subjects compare to control	Healthy females had better APR than males
		No difference in PPR	↓ active core proprioception predicted knee injury risk in
		2.9-fold \uparrow in knee injury (<i>P</i> = .005), 3.3 \uparrow in ligament/	females
		meniscus injury ($P = .007$)	

GMed - gluteus medius; L - left, , LE- lower extremity, LBP - low back pain, w/o - without, LET - Lumbar Endurance test, PFPS- patellofemoral pain syndrome, R - right, SLLT - Straight leg lowering test

CENTRAL NERVOUS SYSTEM

Brain

The brain is composed of six major divisions. These divisions are the cerebrum, diencephalon, midbrain, cerebellum, pons, and medulla oblongata.⁶⁶ The cerebrum is divided into two cerebral hemispheres which contain three sections (cerebral cortex, white matter, and basal ganglia).¹⁹⁷ Layers of neuron cell bodies make up the cerebral cortex. White matter is composed of myelinated axons that serve as the pathway by which the cerebral cortex communicates with the rest of the central nervous system.¹⁹⁷ The diencephalon is composed of the thalamus and hypothalamus.⁶⁶ The thalamus serves as the relay station for sensory information provided to the cerebral cortex.^{66, 197} Hypothalamus is the homeostasis center and is controlled primarily by the autonomic nervous system.⁶⁶ The midbrain is part of the brainstem and controls eve movements, and relays auditory and visual reflexes.¹⁹⁷ Ascending and descending pathways cross through the midbrain to and from the forebrain.¹⁹⁷ The cerebellum is posterior to the brainstem and coordinates movement and balance.¹⁹⁷ Another part of the brainstem is the Pons; it is the transfer station between the cerebellum and cerebrum.¹⁹⁷ The final part of the brain stem is the medulla oblongata. It transfers information from the spinal cord to the rest of the brain. Descending fibers of the medulla oblongata are associated with motor function while ascending fibers are sensory in nature.¹⁹⁷

Spinal cord

The spinal cord is the link between the peripheral nervous system and the brain. It contains sensory and motor neurons involved with reflexes, ascending, and descending pathways.¹⁹⁷ Each vertebra contains gray matter, unmyelinated cell bodies, with a dorsal and

ventral nerve root.⁶⁶ Signals from skeletal muscles to the spine enter through the vertebra's dorsal nerve root while the ventral root sends information from the central nervous system (CNS) to muscles.⁶⁶ Information coming from the muscles or joints is referred to as feedback (afferent) and travel to the spine via sensory fibers.^{66, 197}

Feedback

Within the joints and muscles of the body there are many different receptors that supply feedback to the nervous system. Muscle spindles signal change in muscle length and rate of change.¹⁹⁷ Spindles are long encapsulated structures that contain intrafusal muscle fibers.^{66, 197} There are two types of intrafusal fibers: nuclear bag and nuclear chain. Nuclear bag fibers are further divided into dynamic and static bag fibers.¹⁹⁷ The nuclear bag fibers are swollen and clustered centrally.¹⁹⁷ Dynamic bag fibers are sensitive to the rate of change in muscle length while static bag fibers are sensitive only to change in muscle length. Nuclear chain fibers are not swollen and form a line/row, they are sensitive to changes in muscle length.¹⁹⁷ Two types of sensory fibers are associated with intrafusal fibers: Type Ia and II.¹⁹⁷ Type Ia fibers are associated with nuclear bag fibers while type II fibers are associated with nuclear chain fibers.¹⁹⁷ Type II fibers react to the muscle spindle being stretched but do not respond to the rate of being stretched.¹⁹⁷ Gamma MNs (γ -MN) signal the peripheral nervous system when the central region of nuclear bag and chain fibers are stretched.¹⁹⁷ Dynamic and static γ -MN maintain spindle sensitivity and length, respectively.¹⁹⁷ The frequency of action potentials sent along the type Ia fibers increase as intrafusal fibers are stretched.¹⁹⁷

Golgi tendon organs (GTOs) are another sensory receptor located in muscle fibers. They are located in the musculotendinous junction and are composed of free nerve endings.¹⁹⁷ Type Ib

sensory fibers relay information from the GTOs to the peripheral nervous system. Goli tendon organs are slow to fire and accommodate and regulate muscle tension. A signal sent from the GTOs to the spine will inhibit alpha MNs (α -MN).¹⁹⁷

Other sensory receptors sometimes referred to as joint receptors are the ruffini corpuscles, pacinian corpuscles, and nociceptors. Ruffini corpuscles relay sensory information regarding joint position and displacement, angular velocity, and intra-articular pressure.⁷³ Pacinian corpuscles monitor mechanical stress and detect joint acceleration.⁷³ Nociceptors also known as free-nerve endings inform the nervous system when a joint is placed under abnormal stress or there is pain.⁷³

Feedforward

Feedforward (efferent) refers to the signals that originate in the CNS and transcend to extremity musculature. Efferent signals communicate with the motor system through spinal tracts. The medial spinal tracts are responsible for transferring information regarding postural and gross motor movement.¹⁹⁷

There are five medial spinal tracts: medial corticospinal, tectospinal, medial reticulospinal, medial vestibulospinal, and lateral vestibulospinal. The medial corticospinal tract originates in the cortex and descends bilaterally through the thoracic vertebrae to affect the shoulder, neck, and trunk muscles.¹⁹⁷ The tectospinal pathway begins in the brain stem (messencephalon) and controls eye and head movement. The medial reticulospinal tract controls postural and limb extensor muscles and begins in the Pons. The medial vestibulospinal tract originates at the medulla oblongata and affects upper back and neck muscles. The lateral vestibulospinal tracts descend ipsilaterally the full length of the spine from the brainstem to

facilitate extensor muscles while inhibiting flexors.¹⁹⁷ This tract's function is to control balance and posture.¹⁹⁷

Lateral spinal tracts assist with motor function by affecting distal limb movements. The lateral corticospinal tract is the primary motor control pathway. It begins in the cortex. The rubrospinal tract begins in the midbrain and controls arm, but not leg motions. The lateral reticulospinal is another tract that originates in the medulla oblongata. It connects directly to γ -MN and affects posture.

CONTEMPORARY THEORY: ANKLE INSTABILITY AND SOMATEOSENSORY DEFICITS

For years researchers have theorized ankle instability was due to joint deafferentation which solely affected the feedback system. Freeman¹⁻³ proposed this theory in the 1960s. Although many still believe in Freeman's theory a more recent theory has been suggested. The contemporary theory is a more comprehensive theory that includes both feedforward and feedback mechanisms.³⁶ Since recent research has demonstrated ankle instability, subjects have altered sensorimotor control or function in proximal musculature, the contemporary theory may be more accurate. Further research is required to support this theory.

CORE STABILITY

Core stability has become a frequently used term by allied health care professionals, strength and conditioning coaches, and those in fitness professions. Two problems exist: 1) the core has not been clearly defined, and 2) professionals have used terms interchangeably (core stability, core strength, trunk stabilization, lumbar stabilization) without clear definitions. King¹⁹⁸ defined the "core" as a cylinder that extends inferiorly from the superior rib cage to the inferior aspect of the pelvis. Others included the spine, pelvis, proximal lower extremity, and abdominal structures as part of the core.¹⁹⁵ Akuthota and Nadler¹⁹⁹ defined the superior portion of the core as the diaphragm, pelvic girdle inferiorly, the abdominal muscles anteriorly, and the paraspinal and gluteal muscles posteriorly.

Core stability is the ability to control the position and motion of the trunk over the pelvis during physical activity.¹⁹⁵ Willson et al³⁷ defined core stability as, "the ability of the lumbopelvic-hip complex to prevent buckling of the vertebral column and return it to equilibrium following a perturbation." It was suggested the variations in core and core stability definitions are due to the complexity of this region.²⁰⁰ The muscles of the core are thought to work in conjunction with each other to provide stability to the spine, trunk, and the extremities during dynamic and static movements. It remains unclear how all of these muscles work together to achieve stability.

Musculature

Over 45 different muscles are included in our definition of the core; they function as stabilizers of the spine and pelvis or assist with the movement of the thigh, trunk, or upper extremity. These muscles include the latissimus dorsi, hamstrings, quadriceps, hip abductors, hip flexors, hip external rotators, gluteal, paraspinal, and abdominal muscles or groups. TABLES 12-14 indicate each muscle's origin, insertion, innervation, and function.

Every researcher included the abdominal muscles as part of the core. Bergmark²⁰¹ separated abdominal and back muscles into two groups, called local and global systems. The

function of muscles in the local system is to stabilize the spine during movement.²⁰¹ Local system muscles (multifidi, interspinal, intertransversii, medial quadratus lumborum, and TrA) originate or insert onto a vertebrae according to Bergmark.²⁰¹ The psoas is the primary hip flexor during non-weight bearing and stabilizes the spine during weight bearing activities.²⁰¹

The global system muscles (erector spinae, EO and IO, RA, quadratus lumborum, psoas, latissimus dorsi) reduce the force transferred to the lumbar spine and local system.²⁰¹ These muscles also serve as primary movers to change pelvis, trunk, and limb position during movement.²⁰¹

Table 12.	Thigh Musculature

Hamstrings				
Muscles	Origin	Insertion	Innervation	Function
Semitendinosus	ischial tuberosity	medial flare of tibia	Sciatic (tibial), L4-S2	knee flexion, extends & medial rotation hip
Semimembranosus	ischial tuberosity	medial flare of tibia	Sciatic (tibial), L4-S3	knee flexion, extends & medial rotation hip
Biceps femoris	<i>Long head</i> :sacrotuberous ligament, ischial tuberosity <i>Short head</i> : linea aspera, proximal 2/3 supracondylar line	fibular head, lateral tibia condyle	Long: Sciatic (tibial), L5-S3, Short: Sciatic (peroneal), L5-S2	knee flexion, lateral rotation, long assists w/ hip lateral rotation
Quadriceps				
Vastus lateralis	intertrochanteric line, greater trochanter	proximal border of patella, tibial tuberosity	Femoral, L2-4	knee extension
Vastus intermedius	proximal 2/3 of femur, distal linea aspera	proximal border of patella, tibial tuberosity	Femoral, L2-5	knee extension
Vastus medialis	distal 1/2 of intertrochanteric line	proximal border of patella, tibial tuberosity	Femoral, L2-6	knee extension
Hip Flexors				
Rectus femoris	ASIS, above acetabulum	proximal border of patella, tibial tuberosity	Femoral, L2-7	extend knee, flexes hip
Psoas major	Ventral T12-L5 transverse processes	lesser trochanter	Lumbar plexus, L1-4	hip flexion
Psoas minor	T12-L1 vertebrae	iliopectineal eminence, arcuate line	Lumbar plexus, L1-2	hip flexion
Iliacus	iliac fossa, iliac crest, sacroiliac ligaments, sacrum	lesser trochanter	Femoral, L1-4	hip flexion
Sartorius	ASIS	medial flare of tibia	Femoral, L2-4	flex, lateral rotate, & abduct hip, flex & medial rotate knee
Tensor fascia latae	iliac crest, ASIS	IT band	Superior gluteal, L4-S1	flex, medial rotate, & abduct hip, knee extension
Hip Adductors				
Pectineus	pubic tubercle	pectineal line of femur	Femoral & Obturator, L2-4	hip adduction
Adductor magnus	pubic ramus, ischial ramus, & ischial tuberosity	medial gluteal tuberosity, adductor tubercle	Obturator, L2-4 & sciatic L4-S1	hip adduction

Gracilis Adductor brevis	symphasis pubis, pubic bone inferior pubic ramus	medial flare of tibia, pectineal line & linea aspera of femur	Obturator, L2-4 Obturator, L2-4	hip adduction hip adduction
Adductor longus	pubic crest/symphasis	linea aspera	Obturator, L2-4	hip adduction
Hip Lateral Rotators				
Piriformis	S1-S4, sacrotuberous ligament	greater trochanter	Sacral plexus, L5-S2	lateral rotation
Quadratus femoris	ischial tuberosity	quadrate line, intertrochanteric crest	Sacral plexus, L4-S2	lateral rotation
Obturator internus	posterior pelvis (obturator foramen)	greater trochanter	Sacral plexus, L5-S2	lateral rotation
Obturator externus	pubis & ischium	trochanteric fossa	Obturator, L3-4	lateral rotation
Gemellus superior	ischial spine	obturator internus tendon, greater trochanter	Sacral plexus, L5-S2	lateral rotation
Gemellus inferior	ischial tuberosity	obturator internus tendon, greater trochanter	Sacral plexus, L4-S2	lateral rotation
Gluteals				
Gluteus minimus	ilium b/w gluteal lines	greater trochanter	Superior gluteal, L4-S1	hip abduction, medial rotation, flexion
Gluteus medius	ilium b/w gluteal lines	greater trochanter	Superior gluteal, L4-S1	hip abduction, medial rotation, flexion
Gluteus maximus	posterior gluteal line, sacrum, coccyx, sacrotuberous ligament	IT band, gluteal tuberosity	Inferior gluteal, L5-S2	hip extension, lateral rotation, adduction/abduction

Table 13. Back and Shou	ulder Musculature
-------------------------	-------------------

Back Muscles				
Muscles	Origin	Insertion	Innervation	Function
Iliocostalis	sacral medial crest, T11-L5 spinous	inferior angle of lower 6 or 7	Spinal	Extension, draws ribs down
lumborum	process, iliac crest, supraspinous lig.,sacral lateral crest	ribs		
Longissimus	lumbar transverse process, anterior	all thoracic transverse	Spinal	Extension, lateral flexion, ribs
thoracis	thoracolumbar fascia	processes, lower 9-10 ribs		downward
Spinalis thoracis	T11-12, L1-2 spinous processes	T1-8 spinous processes	Spinal	Extension
Multifidi	Sacral region: posterior sacrum,	spans 2-4 vertebrae above last	Spinal	Extension, Rotation
	posterior iliac spine, posterior- sacroiliac ligaments	into spinous processes		
Rotares	vertebrae transverse processes	spinous process of above vertebrae	Spinal	Extension, Rotation
Interspinales	pairs between spinous process		Spinal	Extension
Intertransversarii ant. & post.	between transverse processes		Spinal	Lateral flexion
Quadratus	Iliac crest, iliolumbar ligament	Last rib, lumbar transverse	Spinal	Alone, lateral flexion of vertebral
lumborum		processes		column; Together, depression of thoracic rib cage
Latissimus dorsi	T6-12 spinous process, ribs 8-12,	intertubercle groove	thoracodorsal, C6-8	medial rotation, adduction, extension,
	thoracolumbar fascia			assists w/ anterior/lateral pelvis tilt

Muscles Rectus abdominis	minal Musculature Origin Pubic crest and symphasis	Insertion costal cartilages of the fifth -7th rib and xiphoid process	Fiber Direction vertical	Innervation T5-T12, ventral rami	Function trunk flexion
External oblique					
Anterior fibers	5-8 ribs, serratus anterior	linea alba	oblique downward and medially	T5-T13	<i>Bilateral</i> :flexion, compression <i>Unilateral</i> :rotation
Lateral fibers	9-12 ribs	mesh w/ serratus anterior & latissimus dorsi	oblique downward and medially:downward anteriorly	T5-T12	<i>Bilateral</i> :flexion <i>Unilateral</i> :rotation
Internal oblique					
Lower anterior	lateral 2/3 of inguinal ligament, iliac crest	pubic crest, pectineal line, linea alba	transversely across lower abs	T7-L1, iliohypogastric, ilioinguinal, ventral rami	compress & support lower abdominal viscera w/ TrA
Upper anterior	anterior 1/3 of iliac crest	linea alba	obliquely medially and upward	T7-L1, iliohypogastric, ilioinguinal, ventral rami	<i>Bilateral</i> :flexion & compress vicera <i>Unilateral</i> :rotate vertebrae
Lateral	middle 1/3 of iliac crest & thoracolumbar fascia	10-12 ribs, linea alba	obliquely upward and medially but more upward than anterior fibers	T7-L1, iliohypogastric, ilioinguinal, ventral rami	<i>Bilateral</i> :flexion <i>Unilateral</i> :rotation
Transverse abdominis	ribs 6-12;thoracolumbar fascia; iliac crest; lateral 1/3 inguinal ligament	linea alba, pubic crest, pecten pubis	transverse	T7-L1, iliohypogastric, ilioinguinal, ventral rami	flattens ab wall & compress viscera, upper assists w/ breathing(expiration)
Diaphragm					
Sternal part	xiphoid process, costal part: costal cartilages ribs 6-12, TrA,	central tendon		phrenic, C3-5	separates thoracic and abdominal cavities, primary respiration muscle (inspiration -contract, exhalation- relax)
Lumbar part	lumbar vertebrae, lateral arcuate ligament from vertebrae to transverse processes, and 12th rib	central tendon		phrenic, C3-6	separates thoracic and abdominal cavitities, primary respiration muscle (inspiration -contract, exhalation- relax)

REHABILITATION PROGRAMS

Ankle Rehabilitation

The focus of ankle rehabilitation programs have been to improve strength and balance following an ankle sprain. Functional ankle instability subjects demonstrated improvements in joint position sense, peak torque, Single-Leg Stance Test, and other functional measures following strength training programs.^{124, 202} Subjects performed strengthening exercises 3 times a week for 6 weeks. ^{124, 202} Docherty et al¹²⁴ used rubber tubing exercises while Sekir et al²⁰² used an isokinetic training device.

Other six-week ankle-strength training performed on FAI subjects did not prove to be beneficial.^{203, 204} Kaminski et al²⁰⁴ assigned FAI subjects to four training groups (strength, proprioception, strength and proprioception, and control) and assessed strength using peak torque and peak-torque ratios after the training program. Isokinetic strength, muscle fatigue, and single-leg balance were not effected by the training program.²⁰⁴

Subjects with acute ankle sprains and CAI demonstrated improvements in balance, coordination, and postural sway following a balance training program.^{16, 19, 205-211} Many different types of balance training programs were used in research. Balance training using an ankle disk was assessed over 6 and 10 week periods.^{159, 205, 206} Ankle disc training decreased postural sway and FAI, therefore, reducing the chance of CAI.^{159, 206} Displacement of the hip was decreased following six weeks of ankle disc training.²⁰⁵ The postural improvements observed after ankle disc training, stress the importance of central programming.²⁰⁵

Balance board training programs were effective at reducing ankle sprains and FAI.^{209, 210} Although the training program reduced the risk of CAI, it did, however, increase the risk of a knee injury in subjects with a history of an overuse knee injury.²⁰⁹ Residual effects (painless walking, running, and edema) of an acute ankle sprain were not affected by the training program. ²¹⁰ Other balance training programs used the Biodex Balance System (Biodex Inc., Shirley, NY) for training and assessment.^{207, 208} A four-week balance-training program was an effective way to reduce sway and improve balance index scores.^{207, 208}

Subjects that participate in balance training are less likely to injure their ankle.¹⁶ The risk of an ankle sprain in basketball and soccer players decreased following a training program which included closed chain exercises.¹⁶ Center of pressure excursion was decreased and reach distances of CAI subjects were increased following balance training.¹⁹ Holme et al²¹¹ observed JPS, postural sway, and strength deficits six weeks postacute ankle sprain, no differences were observed four months post-injury.²¹¹ It was concluded that supervised rehabilitation may decrease CAI.²¹¹ Rasool and George²¹² observed that SEBT reach distance increased after two and four weeks of a single-leg dynamic balance exercise program in healthy subjects, the researchers suggested that improved postural control may be due to central processing.²¹² Abdominal Strengthening Exercises

Abdominal muscles are thought to play an important role in stabilizing the spine and pelvis.²¹³ Abdominal hollowing, curl-up, pelvic-tilt, and sit-up are some of the exercises that are commonly used to strengthen the abdominal muscles. Additional equipment such as Swiss balls and foam rollers are frequently used to provide variation within a program and increase the level of difficulty.

There is no one strengthening exercise that will strengthen all of the abdominal and core muscles.²¹⁴ Therefore, it is important for clinicians and researchers to use multiple exercises

with their patients or subjects to improve stability, balance, proprioception, and motor control.²¹⁴ To do this clinicians and researchers need to know what muscles are contracted during specific strengthening exercises.

Abdominal hollowing exercises have demonstrated preferential activation of the TrA muscle.^{55, 215} The TrA/IO was voluntarily recruited prior to other abdominal muscles during AH or bracing exercises.²¹⁵ Internal oblique muscle activation was increased during AH while EO and RA muscle activation remained unchanged or decreased.^{216, 217} These studies did not assess TrA muscle activation.

Researchers assessed the role of AH during landing and its effect on lower extremity muscle activation.^{74, 172, 175} Abdominal hollowing decreased anterior tilt of the pelvis and increased GMax and medial hamstring muscle activation during prone hip extension.⁷⁴ Contraction of the TrA may increase muscle activation in muscles distal to the trunk, however, erector spinae muscle activation decreased during AH.⁷⁴ Further research is needed to assess how a voluntary contraction the TrA effects lower extremity muscle activation.

Kulas et al¹⁷⁵ assessed leg spring stiffness and relative energy absorption during three different abdominal postures (control, AH, pelvic-tilt). Subjects were able to reliably maintain these postures during a single-leg landing.¹⁷⁵ Males activated their TrA/IO before the RA and IO and produced greater TrA/IO muscle activation than females while landing on both feet.²¹⁸ The TrA/IO was activated more in males than females, prior to landing, however, females demonstrated greater TrA/IO activation following landing than males.²¹⁸ These studies suggest abdominal posture can be maintained during dynamic tasks, however, males and females activate their TrA/IO at different times during landing.^{175, 218} Clinicians and researchers used the curl-up exercise to assess abdominal muscle strength. The RA is activated more during a curl-up exercise than any other abdominal muscle.^{60, 215, 217, 219} Wohlfahrt et al²²⁰ assessed abdominal muscle strength dynamically with the maximum number of curl-ups and isometrically using the Sahrmann lower abdominal strengthening program. The number of curl-ups a subject could perform was associated with their ability to maintain an isometric static contraction.²²⁰ greater stability was achieved when strengthening exercises were performed at a slower pace, therefore, the speed at which exercises are performed may effect abdominal muscle strength.²²⁰ The RA and EO muscles were activated during lateral flexion, curl-up, and sit-up exercises.²²¹ Variation in muscle activation was observed between subjects during these exercises.²²¹

Researchers have assessed core muscle activation during various other core strengthening exercises. Richardson et al⁶⁰ observed pelvic tilt exercises with one and two leg lowering initiated RA and IO muscle activation. They concluded trunk flexion exercises are performed by the RA with assistance from the IO, while there was little erector spinae (ES) activation.⁶⁰ The EO and ES muscle activation increased with trunk rotation. ⁶⁰

Ekstrom et al⁵⁹ assessed EMG of core, trunk, hip, and thigh muscles (RA, EO, ES, multifidi, GMax, GMed, vastus medialis obliquus, and hamstring) during nine rehabilitation exercises (hip abduction, bridge, bridge with knee extended, side bridge, prone-bridge, superman, lateral step, lunge, and dynamic edge). The greatest GMed muscle activation was demonstrated during the side bridge exercise, while the GMax muscle activation was greatest during the superman exercise (quadruped arm/lower extremity lift).⁵⁹ Lateral step-up and lunge exercises recruited the vastus medialis oblique more than any other muscles.⁵⁹ Hamstrings

demonstrated the greatest muscle activation during the unilateral bridge and superman exercises.⁵⁹ Four exercises demonstrated greater muscle activation in the erector spinae (longissimus thoracis) and multifidi than any other exercises (bridge with knee extended, sidebridge, bridge, and the superman exercise).⁵⁹ The abdominal muscles (RA and EO) were recruited more during the prone-bridge and side-bridge exercises.⁵⁹ The authors suggested these exercises could be used in a core strengthening program depending upon the needs of the patient.⁵⁹

Muscle activation of the RA, EO, ES, and multifidi were measured during three exercises (pelvic-tilt, AH, and level one of the Sahrmann series).²²² The EO demonstrated greater amplitude for all exercises while the RA did not differ between exercises.²²² Erector spinae muscle activation was greater than the multifidi during these three exercises.²²² The pelvic tilt exercise had greater EO muscle activation than AH and Sahrmann series, however, the Sahrmann series recruited the EO more than AH.²²² Rectus abdominus muscle activation was lower during AH than the other exercises.²²²

Core stabilization is essential because abdominal muscle activity is synchronized with lower extremity movement during dynamic tasks.²²³ A comprehensive core strengthening program was suggested to enhance lumbo-pelvic stability and postural control.^{219, 224} Based on the EMG data discussed above abdominal strengthening exercises should be chosen dependent upon the imbalances/weaknesses observed in the patient or the musculature researchers want to study. Further research is required to understand how abdominal muscles interact with lower extremity joints and muscles. Table 15 summarizes the rehabilitation studies discussed in this section.

Author, Year	Instrument(s)	Results	Conclusion
Balance			
Programs			
Bernier & Perrin		JPS \uparrow with training	Balance can be improved in FAI with 6 wks training
1998 ²⁰⁷	JPS	Passive JPS ↑ than active max inversion	Unclear if JPS can be improved
		No difference in sway index b/w groups	
Gauffin et al,	Sway	Sway ↓ after disk training	Central motor programs are important
1988 ²⁰⁵		\downarrow in hip angle after training	
Hale et al,	COP _V	CAI had > COPV between injured & healthy limbs	SEBT is reliable & able to detect limitations between
2007 ¹⁹	SEBT	CAI subjects had ↓ lateral, posterior-medial, & posterior-lateral	sides
		reach in SEBT	SEBT is sensitive enough to monitor change from rehab
		Rehab improved SEBT reach	
Hoffman &	BAPS training	Sway improved from ankle disk training for X & Y parameter	Ankle disk training ↓ FAI & reinjury
Payne,	Force plate	Difference between the sway of experimental & control groups	10wks disk training \downarrow healthy subjects sway
1995 ²⁰⁶			
Holme et al,	Position sense	Training group had side-to-side strength (plantar flexion, eversion,	Side to side strength & postural sway deficits exist @
1999 ²¹¹	Isometric strength	inversion) & postural sway differences @ 6 wks post injury	6wks
	Postural sway	Injured control group had side to side strength (plantar flexion,	Differences normalize by 4 months
		eversion, inversion, & inversion) & postural sway differences @ 6	Supervised PT may result in a \downarrow ankle sprain reinjury
		wks	
		No side to side differences @ 4 months	
		Control group 29% reinjury & training group 7% reinjury	
McGuine &	Epidemiological	Ankle sprains lower for intervention group; athletes with prior	Balance training reduces the risk of basketball and soccer
Keene,	study	ankle sprains 2x as likely to resprain their ankle	players spraining an ankle; balance training included
2006 ¹⁶			functional closed chain exercises
Rasool &	SEBT	Reach distance increased in the trained leg @ 2 wks & greater @ 4	
George,		wks	response patterns, attention (central processing); balance
2007 ²¹²			training improves reach in all directions; suggest cross-
			over training effect
Rozzi et al,	Biodex Balance	Posttraining scores were better than pretraining scores for both	Balance training is an effective method to improve joint
1999 ²⁰⁸	System	subjects with unstable & stable ankles @ high & low resistance	proprioception & single-leg balance in subjects with
			stable & unstable ankles
Tropp et al,	Sway	No stability difference b/w FAI & healthy groups	Ankle injury alone does not produce FAI
1984 ¹⁶⁰		6 wks ankle disk training \uparrow stability	Taping does not effect stability
		Ankle taping did not improve stability	6 wks ankle disk training \uparrow stability & \downarrow "giving way"

Table 15. Summary of Rehabilitation Research

			feeling
Verhagen et al, 2004 ²⁰⁹	Balance board program	Fewer ankle sprains in the intervention group > reduction of ankle sprain risk in CAI Balance board training ↑ risk of knee injury in players with a history of overuse knee injury	Balance board training is effective for prevention of ankle sprains
Wester et al, 1996 ²¹⁰	Wobble board training Volumetric measurement	Acute ankle sprain edema ↓@ the same rate for the training & non training group No training group had > recurrent sprains	n-Wobble board training ↓ recurrent sprains & preventing FAI
Strength Programs			
Docherty et al, 1998 ¹²⁴	Electric goniomete Handheld dynamometer	rr Training group ↑ strength & JPS No eversion JPS effect but there was a dorsiflexion JPS effect	Ankle strengthening improves inversion & plantar flexior JPS FAI subjects had ↑ strength, inversion, dorsiflexion, and plantar flexion JPS
Kaminski et al, 2003 ²⁰⁴	4 training groups	No difference in PT & PT ratios pre & posttraining Training groups did not effect strength	6 wks of strength & proprioception training had no effect on isokinetic strength measures Further research is needed
Powers et al, 2004 ²⁰³	f _{med} COP	Strength & proprioceptive training had no effect on fatigue or static balance during single leg task	Poor training program Strength, proprioceptive and a combination of the 2 training programs did not ↑ postural control in FAI 6 wk training may not be long enough
Sekir et al, 2007 ²⁰²	Strength JPS Functional tests 6wk training	Invertor PT lower in injured ankle compared to healthy JPS error higher in injured ankle Injured 1-leg stance test ↓ time Functional performance tests longer on injured Isokinetic training 3 days a week improved all variables	Concentric & eccentric isokinetic training improved these parameters Only concentric invertor strength deficits present in FAI subjects

Wk(s)- week(s);

INSTRUMENTATION

Electromyography

The number of action potentials sent along the sacrolemma to the neuromuscular junction are measured using electromyography (EMG).⁷³ Neural changes (increased motor unit recruitment) due to strengthening programs are also measured using EMG, increased EMG activity suggested greater motor-unit recruitment and firing rates.⁶⁶

Surface and in-dwelling or fine-wire electrodes are two types of electrodes used to measure muscle activation.^{66, 73} There are benefits and drawbacks to using each of these types of electrodes. Surface electrodes are convenient to use, require a noninvasive procedure, are cost effective, and measures a larger portion of the muscle electrical activity. The drawback to surface electrodes is cross-talk; you can not differentiate between the muscles that produced the electrical activity during an activity.⁷³ The benefit of indwelling or fine-wire electrodes is the elimination of cross-talk. Indwelling electrodes sample a smaller number of motor units compared to surface electrodes, this is viewed as either a benefit or drawback depending upon the purpose of the research study. A major drawback to fine-wire EMG use is an invasive procedure is required. Depending on the anatomical structures being studied this methodology could prove to be difficult for the researcher and possibly painful for the subject.

The force plate is an instrument used in biomechanics research. It measures the forces applied to it and ground reaction forces.¹¹⁰ Most force plates are three dimensional and measure forces on three different axes (x, y, and z). The x-axis measures forces in the medial-lateral

180

direction, while the y-axis assesses forces in the anterior-posterior directions, and the z-axis measures forces in the vertical or superior direction.

Center of pressure is an indirect measurement of balance and postural sway.⁷⁵ It is the accumulation of forces that are applied to a certain location of the body, typically the foot, during activity. There are many different COP techniques used to assess balance, these include mean sway amplitude, maximum sway amplitude, minimum sway amplitude, peak-to-peak amplitude, sway path, sway velocity root mean square (RMS) amplitude, and RMS velocity.⁷⁵ Center of pressure excursion refers to the total distance traveled during a set amount of time.⁷⁵ An increase in COP excursion is thought to indicate postural control deficits.²¹¹ It was concluded the length of the COP path does not provide useful information for clinicians and researchers.⁷⁵ Center of pressure velocity (COP_v) was reliable between sessions during double-leg stance. An increase in COP excursion and velocity actually measure and its accuracy.⁷⁵ It is theorized that COP_v is a measure of central postural control, which may indicate the response to maintaining postural control.

Kinematics

Range of motion, displacement, and power can be calculated using 3-dimensional kinematics.¹¹⁰ Prior to data collection a stationary wand with reflective markers are waved and placed where the data collection will be performed. This calibrates the equipment and defines the global coordinate system. The reflective markers placed on anatomical landmarks of the subject are then viewed by cameras to monitor motion. Computer software is used in conjunction with measurements between markers and of the subject to calculate body segments.

Ultrasound Imaging

Ultrasound imaging (USI) is a diagnostic tool researchers began to use to assess lateral abdominal muscle (EO, IO, and TrA) behavior.^{51, 57, 225-230} It is also been referred to as rehabilitative or real-time ultrasound imaging in the literature.^{57, 226, 231} Prior to USI, EMG was used to quantify abdominal muscle behavior through muscle activation.^{51, 229} Ultrasound imaging provides a non-invasive method to quantify abdominal muscle behavior (muscle thickness) without the limitations of EMG.

Researchers have compared muscle thickness values obtained using ultrasound imaging with magnetic resonance imaging and EMG.^{50, 51, 53} The validity of using ultrasound imaging to measure lateral abdominal muscle thickness was assessed by comparing lateral abdominal muscle thickness values obtained with ultrasound imaging to those of MRI, a correlation (ICC=0.78-0.95) existed between the two instruments.⁵⁰ Researchers also correlated (R^2 =0.87) changes in abdominal muscle activation measured by EMG with changes in TrA muscle thickness measured by ultrasound imaging.^{51, 53} These three studies have provided a degree of validity for USI.

The reliability of ultrasound imaging was reported for with-in and between raters and sessions.^{43, 44, 48, 49} Intraclass correlation coefficient (ICC) ranged between 0.66-0.99 for intrarater intrasession reliability.^{43, 44} Reported ICC values for intrarater intersession reliability ranged from 0.80-0.99.^{48, 49} Interrater reliability was assessed and excellent ICC values were obtained while measuring TrA thickness at rest and during contraction.²²⁵

182

Chapter 3

Methods

STUDY DESIGN

A 3 x 2 factorial design will be used to assess COP excursion (distance & velocity), muscle activation (IO/TrA, EO, GMed, & BF), and kinematics (ankle, knee, & hip joint angles) before and after an eight week abdominal strengthening. Figure 1 diagrams the 3 x 2 research design. The independent variables are group (control, healthy, and FAI) x time (pre- & posttraining). A 3 x 2 x 6 factorial design will be used to assess lateral abdominal muscle thickness (EO, IO, and TrA) biweekly throughout an eight-week abdominal-strengthening. The independent variables are group (control, healthy, and FAI) x type of contraction (relaxed and during AH) x time (0, 2, 4, 6, 8, and 9 weeks). Figure 2 diagrams the 3 x 2 x 6 research design. Dependent variables include abdominal muscle thickness (EO, IO, RA, and TrA), COP excursion (distance and velocity), muscle activation (peak and mean amplitudes), and kinematics (ankle, hip, & knee joint angles) in the frontal and sagittal planes. The dependent variables are repeated measures. Abdominal muscle thickness will be measured every two weeks throughout the eight week abdominal strengthening program. Center of pressure excursion, muscle activation, and kinematic data will be assessed pre- and posttraining.

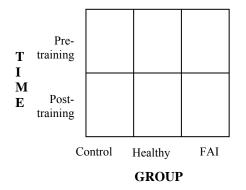


Figure 1. 3x 2 Study Design

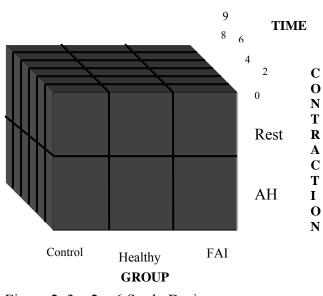


Figure 2. 3 x 2 x 6 Study Design

SUBJECTS

2

Seventy-five physically active female and male college-age subjects will be divided into three groups (control (C), healthy with abdominal strengthening (Healthy), and FAI with abdominal strengthening (FAI)). Twenty-five subjects with a history of FAI will be assigned to the FAI group. The FAI subjects will self-report CAI using the Ankle Instability Index (AII) and FAI with the Foot and Ankle Ability Measure (FAAM) questionnaires, respectively. Subjects in the control and healthy groups will be matched by gender and leg dominance with a subject in the FAI group. If an FAI subject's injured limb is their dominant limb, they will be matched with a subject in the control and healthy group whose dominant limb is the same as the FAI subjects. Fifty subjects will be randomly assigned to the control or healthy groups after they are matched. Exclusion criterion will be a history of cardiovascular or neurological disorder, childbirth or pregnancy within the past two years; abdomen, low back, or lower extremity injury or pain within the past year that restricted the subject's ability to be physically active; abdomen, low back, or lower extremity surgery within the past two years; or regularly participation in an abdominal strengthening program. Regular participation is defined as performing abdominal strengthening exercises three times per week or more. All subjects that qualify to participate in this study will read and sign a university approved informed consent form prior to data collection.

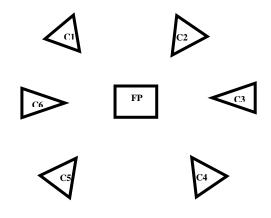
Subjects will also be excluded from the study if they sustain an abdomen, low back, or lower extremity injury during the study that restricts their activities of daily living or miss two abdominal thickness measurement data collection sessions, two strength training sessions, or fail to return a weekly exercise log.

INSTRUMENTS

Ultrasound Imaging

Lateral abdominal muscle thickness will be measured using the LOGIQ P5 Laser Doppler Ultrasound (General Electric, Piscataway, NJ, USA) with a linear phased array probe (45 x 10 mm footprint; 7 to 12 MHz frequencies) at rest and during AH. Probe frequency will be set at 10 MHz with a gain of 70 for all measurements.⁴² Rectus abdominis (RA) muscle thickness will be measured only at rest because it is impossible to measure EO, IO, TrA and RA thickness simultaneously during AH with one probe. The external oblique, IO, and TrA measurement site is midway between the mid-axillary line and level with the umbilicus. The RA measurement site is lateral to the linea alba, thus RA thickness during AH will not be measured. Subjects will be asked to refrain from eating or exercising for a minimum of one hour prior to abdominal thickness measurements.

Electromyography


The BIOPAC MP150 System (BIOPAC Inc., Goleta, CA) will be used to measure muscle activation. These measurements will be collected using surface electrodes with an interelectrode distance set at approximately 2 cm.⁵⁸ The electrodes will be aligned parallel with the muscle fibers, and placed approximately midway between the innervation zone and the insertion of the distal tendon.⁵⁸ Signals will be amplified (DA100B, BIOPAC Inc., Goleta, CA) from disposable, pregelled Ag-AgCl electrodes (EL-503, BIOPAC Inc., Goleta, CA).⁵⁸ Electromyography data will be collected at 1250 Hz. The input impedance of the amplifier will be 1.0 megohm, with a common mode rejection ratio of 90 dB, high and low pass filters of 10 and 500Hz, a signal to noise ratio of 70 dB, and a gain of 2000.⁵⁸

Due to the close proximity of IO and TrA muscles, it is impossible to determine which muscle is activated when surface electrodes are used. Therefore, the muscle activation of the IO and TrA will be reported together instead of individually. The use of surface electrodes to measure muscle activation for the IO and TrA has demonstrated good to excellent reliability and validity.⁷⁷

Force Plate

A force plate (AMTI OR6-5, Newton, MA) will be used to measure COP excursion during a single-leg drop landing. The sampling rate will be set at 1250 Hz. Center of pressure excursion velocity and total excursion length will both be reported because it is unclear which one is a better measure of COP excursion.^{22, 23} Kinematics

Kinematic data will be collected at 250Hz using six Vicon MX13+ cameras running on Nexus 1.3 software (Vicon, Centennial, CO).⁵⁴ Kinematic, COP excursion, and EMG data will be synchronized using triggering devices. The proposed camera set-up is diagramed in Figure 3 with the force plate located in the center. Subjects will wear spandex clothing (shirt and shorts) during data collection. This will allow reflective markers to be placed more accurately over anatomical landmarks reducing the chance of loose clothing covering up markers during data collection.

Abbreviations: C1-6 – Camera Number; FP- Force plate

Figure 3. Kinematic Camera Placement

Reflective markers will be placed on each subject to measure joint angles of the ankle, knee, and hip in both the frontal and sagittal planes. The marker set will be a modification of a previously used marker set used to measure kinematic data during landing.⁵⁴ Good reliability was reported for measuring kinematic data during a drop vertical jump landing with this marker set.²³² A modification of this marker set will be used to improve accuracy of the thigh and lower leg position measurements. This includes using a marker cluster to replace the single markers on the thigh and lower leg.

The custom marker set-up will include single and cluster reflective markers placed over the lower extremity. Twenty-two single reflective markers and four cluster markers that contain four markers will be placed on each subject. The single markers will be placed over the following anatomical landmarks: 5th metatarsal styloid process, between the 2nd and 3rd phalanges, talus (anterior middle), medial and lateral malleoli, calcaneus (posterior middle), knee joint line (medial & lateral), greater trochanter, anterior superior iliac spine (ASIS), and posterior superior iliac spine (PSIS). A 4-marker reflective cluster will be placed over the right and left medial flare of the tibia and anterior aspect of both thighs. Figure 4 illustrates reflective marker placement for anterior, lateral, and posterior views.

Posterior View

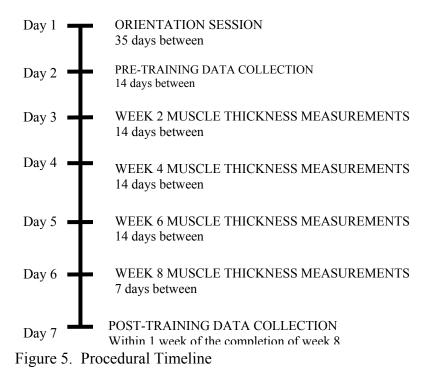

Lateral View

Figure 4. Kinematic Marker Placement

PROCEDURES

Figure 5 provides the timeline for the data collection sessions with the time between sessions. The first session will be an orientation session that will familiarize the subjects with the study's procedures prior to pre-training data collection. Thirty-five days after the orientation

session subjects will report for the pre-training data collection session. Two weeks after pretraining data collection, abdominal muscle thickness measurements will continue. Day 2 through day 6 of data collection sessions will consists of abdominal muscle thickness measurements. These sessions will be 14 days apart at the same time of day. The seventh day of data collection will be the post-training data collection session. This session will occur within 1 week after the completion of the 8th week of the abdominal strengthening program.

Orientation Session

Subjects will participate in two orientation sessions. The first session will occur three weeks prior to the data collection session. It will involve completing paperwork, teaching subjects skills (AH and drop landing), and providing subjects time to practice the skills. The study will be explained to the subjects, and then they will read the approved informed consent form. Upon completion any remaining questions will be answered before subjects sign the

consent form. Subjects will complete the Modified Ankle Instability Index (AII), Foot and Ankle Ability Measure (FAAM) and FAAM sport questionnaires followed by a physical exam of the ankle joint to assess for mechanical ankle instability. The AII and FAAM questionnaires will determine if subjects qualify for the FAI group. To qualify for the FAI group subjects must: 1) have a history of at least one substantial ankle sprain with the initial ankle sprain occurring greater than 12 months ago, 2) complain of the ankle "giving way" during functional activities, this is assessed with questions 4 through 8 on the AII 3) answer yes to at least 2 of those questions. Subjects will self-report FAI by scoring less than or equal to 90% on the FAAM ADL scale and 80% on the FAAM Sport scale. The AII, FAAM, and directions for scoring the FAAM are included in Appendix A1.

Subjects will be taught how to perform AH in the supine hook-lying position (Figure 6) and a single-leg drop landing (Figure 7). The following standardized instructions will be given to every subject prior to performing AH, "gently pull the umbilicus towards the plinth or floor without moving your spine while maintaining normal breathing".⁵⁵ When the rater and subject believe AH is being performed correctly, it will be confirmed using ultrasound imaging. If a subject is unable to correctly perform AH, ultrasound imaging will be used to provide visual biofeedback to assist subjects until they learn how to correctly perform AH. Visual feedback will not be provided during data collection. Subjects have to correctly perform three consecutive AH maneuvers, prior to the end of the orientation session.⁴⁵

Figure 6. Supine Hook-lying Position

Figure 7. Single-leg Drop Landing

Subjects will then be taught how to perform a 35 cm single-leg drop landing.

The instructions given to the subjects for a drop landing will be to 1) place the dominant limb in front of the platform, 2) lean forward placing the dominant foot over the center of the force plate and descend while pulling the nondominant foot away from the platform prior to landing, and 3) upon landing locate the black "X" on the wall with your eyes and stand erect on the dominant limb for approximately five seconds with your hands on your hips. The "X" on the wall will be at eye level and approximately 15 feet directly in front of the subject. Subjects will practice this skill until he/she can correctly perform it. An investigator will visually determine if the drop landing is performed correctly. Subjects are required to correctly perform three consecutive single-leg drop landings prior to the completion of the first orientation session. Table 15 summarizes the sequence of the first orientation session.

Table 15. Steps of Orientation Sessions

First Or	rientation Session		
1.	Explain the study to the subject		
2.	Subjects read through the IRB informed consent form and sign it when their questions are answered		
3.	Subject completes the AII and FAAM questionnaires		
4.	Primary investigator performs physical exam of the ankle to rule out MAI		
5.	Subjects will learn and practice how to correctly perform AH		
6.	Subjects must perform 3 consecutive correctly performed AH, confirmed via USI		
7.	Subjects will learn and practice how to correctly perform a single-leg drop landing		
8.	Subjects must perform 3 consecutive correctly performed single-leg drop landings		
	The second orientation session will occur in conjunction with the first day of data		
collection. Subjects will review the skills taught and learned at the first orientation session.			
They will correctly perform three consecutive AH and drop landings prior to data collection.			

They will concern perform three consecutive Arr and drop fandings prior to data concerton.

The healthy and FAI groups will be instructed on the abdominal strengthening program when

baseline data collection is completed. Subjects are expected to complete a weekly abdominal

strengthening exercise log; this log will be returned to the investigators each week at the weekly

training session.

Data Collection

Table 16 outlines the sequence of the predata collection session. Muscle thickness

measurements will be measured at rest and during AH with subjects in a supine hook- lying

position on a plinth.⁴³ Their hips and knees will be flexed to approximately 45° and 90°,

respectively.⁴⁴ All measurements will be taken level with the umbilicus and medial to the mid-

axillary line on the subject's dominant side.⁵⁶

Table 16. Sequence of Data Collection Session

Data Collection Timeline

- 1. Collect demographic data
- 2. Subject is assigned to a group
- 3. Subjects will practice correctly performing AH
- 4. Identify & mark the USI site with a marker
- 5. Subjects correctly perform three consecutive AH, confirmed via ultrasound imaging
- 6. Take five muscle thickness measurements at rest
- 7. Take five muscle thickness measurements during AH
- 8. Place surface electrodes & reflective markers on the subject
- 9. Subject will practice performing a single-leg drop landing
- 10. Subjects will perform three consecutive single-leg drop landings
- 11. Five single-leg drop landing trials performed for data collection (COP, EMG, & kinematics)
- 12. Introduce and instruct subjects on the abdominal strengthening program

The measurement site is the location that provides the clearest ultrasound image of the

EO, IO, and TrA (Figure 8). Immediately after identifying the measurement site, a line will be

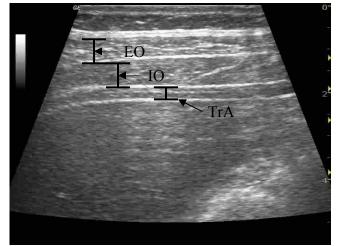


Figure 8. Clearest Image of Lateral Abdominal Musculature.

placed on the subject's skin at the lateral edge of the probe with a permanent marker when the site is determined (Figure 9). The lateral edge of the probe will be aligned with this line to standardize ultrasound head placement for following measurements (Figure 10). Each subject will be provided with a Sharpie® marker to remark the measurement line throughout the eight week study. Abdominal muscle thickness will be assessed biweekly on the same day and at the same time throughout the eight-week study.

Figure 9. Mark to Standardize Ultrasound Transducer Head Placement.

Figure 10. Probe Placement for Thickness Measurements

Three images of the EO, IO, RA, and TrA muscles will be obtained at rest, followed by three measurements of the lateral abdominal muscles during AH. Each image will be analyzed separately. Subjects will hold the AH maneuver for approximately six seconds; this provides the rater time to capture an image. Abdominal hollowing images will be obtained during peak TrA thickness, which the rater will visibly determine. Approximately 30 seconds will elapse between image captures. The ultrasound imaging software's internal calipers will be used to measure muscle thickness.

A 25.2 x 18 cm transparent grid will be positioned over the computer screen to identify the middle of the frozen images (middle line of grid) (Figure 11). The perpendicular line will

start where the fascial layers and middle line of grid intersected (Figure 11).^{49, 55, 57} This location on the image is referred to as the intersection point. A research assistant will record the thickness values and erase them after every image to blind the rater. The three thickness values at rest and during AH will be averaged for statistical analysis.

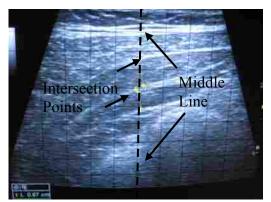


Figure 11. Grid Overlay and Measurement Procedure

Electromyography, COP excursion, and kinematic data will be collected while subjects perform five single-leg drop landing. The mean and peaks of five good single-leg drop landing trials will be used for data analysis. A good trial consists of the subject being able to stand on their single leg for three seconds following landing without losing his/her balance. Failed landings will not be included; the maximum number of drop landings allowed will be ten. If five good trials can not be performed within ten trials the subjects will be excluded from the study.

These measurements will be taken during the first week and within one week after the completion of the abdominal strengthening program. Muscle activation of the lateral abdominal (EO, IO/TrA) and lower extremity muscles (GMed and BF) will be assessed from 500 ms predrop landing until 1 second post-drop landing. Table 17 describes the direction and placement of the surface EMG electrodes. The skin will be abraded with a fine sandpaper block and cleansed with an alcohol wipe prior to placing the electrodes; correct placement will be confirmed using manual muscle tests.

 Table 17.
 Surface Electrode Placement

Muscle	Electrode Direction	Electrode Placement		
External Oblique	Oblique	Approximately 12-15 cm lateral to the umbilicus ⁷⁷		
Internal Oblique /	Transverse	2cm medial and inferior to the anterior superior iliac spine ⁷⁷		
Transverse Abdominis				
Gluteus Medius	Longitudinal	Halfway between the greater trochanter and lateral most aspect		
		of the iliac crest ^{59, 78}		
Biceps Femoris	Longitudinal	Approximately 50% of the distance between the ischial		
		tuberosity to the head of the fibula ²³³		

Joint angles of the ankle, knee, and hip will be measured using kinematics. Table 18 provides a list of the joints, measurements, and the time measurements will be taken during kinematic data collection. The mean degrees of ankle, hip, and knee range of motion (ROM) will be measured at initial contact and peak ROM will be measured when it is reached during the single-leg drop landing. Two minutes rest will be given to the subject between trials. Center of pressure excursion distance and velocity will be assessed for one second post-drop landing.

Table 18. Kinematic Measurements				
Joint	Measurement	Time		
Ankle				
	Dorsiflexion	Initial contact & Peak		
	Plantar-flexion	Initial contact		
Knee				
	Flexion	Initial contact & Peak		
	Extension	Initial contact		
Hip				
	Flexion	Initial contact & Peak		
	Extension	Initial contact		
	Abduction	Initial contact & Peak		
	Adduction	Initial contact & Peak		

Table 18. Kinematic Measurements

Abdominal Strengthening Program

The abdominal-strengthening program will be eight weeks long. Both the healthy and FAI groups will complete this strengthening program. Subjects will perform the abdominal

strengthening program three days a week with one day of rest between strengthening sessions. One of the three strengthening sessions each week will be under the direct supervision of the investigators in the modalities lab, while the remaining two days will be done on their own. An exercise log will be maintained by the subjects and returned to the investigators at the weekly supervised strengthening session. If a subject misses two strengthening sessions or fail to turn in the weekly exercise log he/she will be excluded from the study.

The exercises are focused on strengthening the lateral abdominal muscles and RA. Table 19 provides a summary of the strengthening exercises and repetitions included in this study by weeks. The exercises included in this program were based upon previously reported muscle activation of the abdominal musculature (RA, IO/TrA, and EO) during rehabilitative exercises.⁵⁹ Subjects will perform AH during all of the exercises in an attempt to preferentially activate the IO and TrA.

Repetitions
2 sets of 10
3 sets of 10
2 sets of 10
2 sets of 15
2 sets of 15
2 sets of 15

Table 19.	Eight	Week A	Abdominal	Strengt	hening	Program

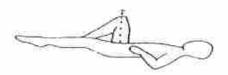
Week Five	Repetitions
Level 3 LAS	2 sets of 10
Curl-up	2 sets of 20
Side bridge	2 sets of 20
Sit-up with rotation	2 sets of 20
Prone bridge	3 sets of 10s
Week Six	
Level 3 LAS	3 sets of 10
Curl-up	3 sets of 20
Side bridge	3 sets of 20
Sit-up with rotation	3 sets of 20
Prone bridge	2 sets of 15s
Week Seven	
Level 5 LAS	2 sets of 10
Curl-up	2 sets of 25
Side bridge	2 sets of 25
Sit-up with rotation	2 sets of 25
Prone bridge	3 sets of 15s

Week Four	
Level 2 LAS	3 sets of 10
Curl-up	3 sets of 15
Side bridge	3 sets of 15
Sit-up with rotation	3 sets of 15
Prone bridge	2 sets of 10s

Week Eight	
Level 5 LAS	3 sets of 10
Curl-up	3 sets of 25
Side bridge	3 sets of 25
Sit-up with rotation	3 sets of 25
Prone bridge	4 sets of 15s

Lower abdominal series (LAS). This series consists of five different levels of exercises that progress in difficulty. Four of these levels will be part of this eight-week program. Level one is considered the easiest and level five is the most difficult. Abdominal hollowing will be performed throughout these exercises. Common mistakes individuals make throughout these exercises include holding one's breath, contracting the gluteal and hamstring muscles, lifting the head, and abdominal pouching. Abdominal pouching is the visible contraction of the RA instead of hollowing the abdominal cavity.⁶¹ The hook-lying position is the starting position for all of the lower abdominal series (LAS) exercises. The levels are illustrated and described below.

Level 1


All

Lift 1 leg to 90° of hip flexion; lift the 2^{nd} leg to 90° of hip flexion, lower leg 1 followed by leg 2 to the starting position

Level 2

Lift 1 leg, then the 2^{nd} leg to 90° hip flexion; touch heel 1 to table, slide it along the floor/table until it is straight; return leg 1 to 90° hip flexion; repeat with second leg; lower leg 1 to starting position; lower leg 2 to the starting position

Level 3

Lift both legs to 90° hip flexion; keep leg 1 at 90° of hip flexion; lower leg 2 just above the floor/table without touching; extend the leg out above floor/table; return leg 1 to 90° of hip flexion; repeat this with second leg; lower both legs together to the starting position

Level 5

Start with both legs straight; flex hips until 90° of hip flexion is achieved; reverse the process while keeping the heels above the table; lower the heels once the legs are extended

Curl-Up. Subjects will lie on the floor/table in the supine hook-lying position with arms resting at their side (Figure 12). Subjects will, "1) perform AH, 2) lift and slide arms forward, 3) bring chin to chest, and 4) curl the trunk until the inferior angles of the scapula are off the floor/table" ⁶⁰ (Figure 13).

Figure 12. Curl-up Starting Position

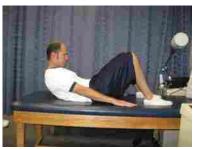


Figure 13. Curl-up Peak Position

Side-Bridge. Instructions given to the subjects for side-bridge are, "1) assume a side lying position on one side, 2) place the elbow closest to the floor at a 90° angle underneath the shoulder with the forearm flat on the floor/table, 3) place the opposite arm along the upper side of the body, 4) perform AH, and 5) lift the pelvis towards the ceiling until a neutral spine is achieved" (Figures 14 & 15). This exercise is performed bilaterally.

Figure 14. Side-Bridge Starting Position

Figure 15. Neutral Spine Position

Sit-Up with Rotation. Subjects start in the hook-lying position with their arms crossed against their chest. The instructions are to "1) lift the trunk off the floor/table, 2) rotate until the left elbow touches the right knee or the right elbow touches the left knee, 3) return to the starting position, and 4) repeated steps 1 and 2 to the opposite side" (Figures 16-19). The direction of rotation will alter every other sit-up and set.

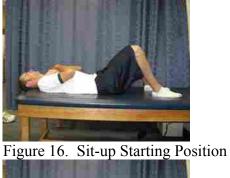


Figure 18. Return to Starting Position

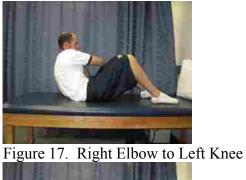


Figure 19. Left elbow to Right Knee

Prone-Bridge. The prone-bridge exercise is added to the strengthening program during the fourth week. It is addition will provide some variation to the program and increase the

demands placed on the abdominal muscles. Subjects will begin in the starting position (Figure 20), prone with their elbows under their shoulders. They will lift their pelvis until they reach the peak position, which is when the shoulders, pelvis, and ankles are in a straight line (Figure 21). The peak position will be held for approximately 3 seconds.

Figure 20. Prone-Bridge Starting Position

Figure 21. Prone-Bridge Peak Position

Data Analysis

SPSS 16.0 (SPSS Inc., Chicago, IL, USA) will be used to analyze and manage the data. Repeated measures ANOVA will be used to analyze abdominal muscle thickness, COP excursion, EMG, and kinematic data. A Tukey-Kramer post-hoc multiple comparison test will be performed to determine pair wise contrasts.

204

REFERENCES

1. Freeman MAR. Instability of the foot after injuries to the lateral ligament of the ankle. *J Bone Joint Surg Am.* 1965; 47B(4): 669-677.

2. Freeman MAR, Dean MRE, Hanham IWF. The etiology and prevention of functional ankle istability of the foot. *J Bone Joint Surg Am*. 1965; 47B(4): 678-685.

3. Freeman MAR, Wyke B. Articular reflexes at the ankle joint: An electromyographic study of normal and abnormal influences on ankle-joint mechanoreceptors upon reflex activity in leg muscles. *Brit J Surg.* 1967; 54(12): 990-1001.

4. Delahunt E. Neuromuscular contributions to functional instability of the ankle joint. *J Body Move Ther.* 2007; 11(3): 203-213.

5. Ryan L. Mechanical stability, muscle strength and proprioception in the functionally unstable ankle. *Australian Journal of Physiotherapy*. 1994; 40(1): 41-47.

6. Fu ASN, Hui-Chan CWY. Ankle joint proprioception and postural control in basketball players with bilateral ankle sprains. *Am J Sports Med.* 2005; 33(8): 1174-1182.

 Willems T, Witvrvouw E, Verstuy J, Vaes P, De Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. *J Athl Train*.
 2002; 37(4): 487-493.

8. Konradsen L. Factors contributing to chronic ankle instability: kinesthesia and joint position sense. *J Athl Train*. 2002; 37(4): 381-385.

9. Lentell G, Baas B, Lopez D, McGuire L, Sarrels M, Snyder P. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. *J Orthop Sports Phys Ther.* 1995; 21(4): 206-215.

10. McKnight CM, Armstrong CW. The role of ankle strength in functional ankle instability. *J Sport Rehabil.* 1997; 6: 21-29.

11. Kaminiski TW, Perrin DH, Gansneder BM. Eversion strength analysis of uninjured and functionally unstable ankles. *J Athl Train*. 1999; 34(3): 239-245.

12. Munn J, Beard DJ, Refshauge KM, Lee RYW. Eccentric muscle strength in functional ankle instability. *Med Sci Sports Exerc.* 2003; 35(2): 245-250.

13. Hartsell HD, Spaulding SJ. Eccentric/concentric ratios at selected velocities for the invertor and evertor muscles of the chronically unstable ankle. *Br J Sports Med.* 1999; 33: 255-258.

14. Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. *J Orthop Sports Phys Ther.* 1997; 26(2): 78-86.

15. McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. *Clin J Sports Med.* 2000; 10: 239-244.

16. McGuine TA, Keene JS. The effect of a balance training program on the risk of ankle sprains in high school athletes. *Am J Sports Med.* 2006; 34(7): 1103-1111.

17. Docherty CL, Valovich McLeod TC, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. *Clin J Sports Med.* 2006; 16(3): 203-208.

18. Brown C, Ross S, Mynark R, Guskiewicz KM. Assessing functional ankle instability with joint position sense, time to stabilization, and electromygraphy. *J Sport Rehabil.* 2004; 13: 122-134.

19. Hale SA, Hertel J, Olmstead-Kramer LC. The effect of a four week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. *J Ortho Sports Phys Ther.* 2007; 37(6): 303-311.

20. Pintsaar A, Brynhildsen J, Tropp H. Postural corrections after standardised perturbations of the single limb stance: effect of training of training and orthotic devices in patients with ankle instability. *Br J Sports Med.* 1996; 30: 151-155.

21. Hertel J, Olmstead-Kramer LC. Deficits in time-to-boundary measures of postural control with chronic ankle instability. *Gait Posture*. 2007; 25: 33-39.

22. Cornwall MW, Murrell P. Postural sway following inversion sprain of the ankle *J Am Podiatr Med Assoc.* 1991; 81(5): 243-247.

23. Evans T, Hertel J, Sebastianelli W. Bilateral deficits in postural control following lateral ankle sprain. *Foot Ankle Int.* 2004; 25(11): 833-839.

24. Wikstrom EA, Tillman MD, Chmielewski TL, Caraugh JH, Borsa PA. Dynamic postural stability deficits in subjects with self-reported ankle instability. *Med Sci Sports Exerc.* 2007; 39(3): 397-402.

25. Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control *Arch Phys Med Rehabil.* 2004 85: 589-92.

26. Vaes P, Van Gheluwe B, Duquet W. Control of acceleration during sudden ankle supination in people with unstable ankles. *J Orthop Sports Phys Ther*. 2001; 31(12): 741-752.

27. Santilli V, Frascarelli MA, Paoloni M, et al. Peroneus longus muscle activation pattern during gait cycle in athletes affected by functional ankle instability. *Am J Sports Med.* 2005; 33(8): 1183-1187.

28. Beckman SM, Buchanan TS. Ankle inversion injury and hypermobility: Effect on hip and ankle muscle electromyography onset latency. *Arch Phys Med Rehabil*. 1995; 76: 1138-1143.

29. Bullock-Saxton JE, Janda V, Bullock MI. The influence of ankle sprain injury on muscle activation during hip extension. *Int J Sports Med.* 1994; 15(6): 330-334.

30. Bullock-Saxton JE. Sensory Changes associated with severe ankle sprain. *Scand J Rehabil Med.* 1995; 27: 161-167.

31. Bullock-Saxton JE. Local sensation changes and altered hip muscle function following severe ankle sprain. *Phys Ther.* 1994; 74(1): 17-31.

32. Gribble PA, Hertel J, Denegar CR. Chronic ankle instability and fatigue create proximal joint alterations during performance of the star excursion balance test. *Int J Sports Med.* 2007; 28: 236-242.

33. Gribble PA, Hertel J, Denegar CR, Buckley WE. The effects of fatigue and chronic ankle instability on dynamic postural control *J Athl Train*. 2004; 39(4): 321-329.

34. Sedory EJ, McVey ED, Cross KM, Ingersoll CD, Hertel J. Arthrogenic muscle response of the quadriceps and hamstrings with chronic ankle instability. *J Athl Train*. 2007; 43(3): 355-360.

35. Gage MJ, Hopkins JT. Increased abdominal activation and center of pressure excursion during static and dynamic movements. *J Athl Train*. 2008; 43(3): S-16.

36. Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. *Clin Sports Med.* 2008; 27(3): 353-370.

37. Willson JD, al e. Core stability and its relationship to lower extremity function and injury *J Am Orthop Surg.* 2005; 13: 316-325.

38. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes *Med Sci Sports Exerc*. 2004; 36(6): 926-934.

39. Kahle NL, Gribble PA. Core stability training in dynamic balance testing among young, healthy adults. *Athletic Training & Sports Health Care: The Journal for the Practicing Clinician.* 2009; 1(2): 65-73.

40. Samson KM, Sandrey MA, Hetrick A. A core stabilization training program for tennis athletes. *Athlet Ther Today*. 2007; 12(3): 41-46.

41. Nadler SF, Malanga GA, Bartoli LA, Feinberg JH, Prybicien M, DePrince M. Hip muscle imbalance and low back pain in athletes: influence of core strength. *Med Sci Sports Exerc.* 2002; 34(1): 9-16.

42. Bunce SM, Hough AD, Moore AP. Measurement of abdominal muscle thickness using m-mode ultrasound imaging during functional activities *Manual Ther.* 2004; 9(1): 41-44.

43. Teyhen DS, Miltenberger CE, Deiters HM, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain *J Ortho Sports Phys Ther.* 2005; 35(6): 346-355.

44. Hides JA, Miokovic T, Belavy DL, Stanton WR, Richardson CA. Ultrasound imaging assessment of abdominal muscle function during drawing-in of the abdominal wall: An intrarater reliability study. *J Ortho Sports Phys Ther.* 2007; 37(8): 480-486.

45. Critchley DJ, Coutts FJ. Abdominal muscle function in chronic low back pain patients: Measurement with real-time ultrasound scanning *Physiotherapy*. 2002; 88(6): 322-32.

46. Gage MJ, Myrer W, Seeley M, Hopkins JT: Reliability of measuring active and relaxed lateral abdominal muscle thickness using ultrasound imaging in healthy subjects American College of Sports Medicine Annual Meeting, Indianapolis, IN, 2008.

47. Bunce SM, Moore AP, Hough AD. M-mode ultrasound: a reliable measure of transversus abdominis thickness? . *Clin Biomech.* 2002; 17: 315-317.

48. Kidd AW, Magee S, Richardson CA. Reliability of real-time ultrasound for the assessment of transversus abdominis function *J Gravit Physiol*. 2002 9(1): P131 - P132.
49. Rankin G, Stokes M, Newham DJ. Abdominal muscle size and symmetry in normal subjects *Muscle Nerve*. 2006; 34: 320-326.

50. Hides JA, Wilson S, Stanton W, et al. An MRI investigation into the function of the tranversus abdominis muscle during "drawing-in" of the abdominal wall *Spine*. 2006; 31(6): E175-E178.

51. Hodges P, Pengel L, Herbert R, Gandevia S. Measurement of muscle contraction with ultrasound imaging *Muscle Nerve*. 2003; 27: 682-692.

52. John EK, Beith ID. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging? *Clin Biomech*. 2007; 22(9): 972-979.

53. McMeeken JM, Beith ID, Newham DJ, Milligan P, Critchley D. The relationship
between EMG and change in thickness of transversus abdominis *Clin Biomech*. 2004 19:
337-342.

54. Ford K, Myer G, Smith R, Vianello R, Seiwert S, Hewett T. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings *Clin Biomech.* 2005; 21: 33-40.

55. Critchley D. Instructing pelvic floor contraction facilitates transversus abdominis thickness increase during low-abdominal hollowing *Physiother Res Int.* 2002; 7(2): 65-75.

56. Ainscough-Potts AM, Morrissey MC, Critchley D. The response of the transverse abdominis and internal oblique muscles to different postures *Manual Ther.* 2006; 11: 54-60.

57. Teyhen DS, Gill NW, Whittaker JL, Henry SM, Hides JA, Hodges PW.
Rehabilitative ultrasound imaging of abdominal muscles. *J Ortho Sports Phys Ther.*2007; 37(8): 450-466.

58. Hopkins T, Pak JO, Robertshaw AE, Feland JB, Hunter I, Gage M. Whole body vibration and dynamic restraint. *International Journal Of Sports Medicine*. 2008; 29(5): 424-428.

59. Ekstrom RA, Dionatelli RA, Carp KC. Electromyographic Analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises *J Ortho Sports Phys Ther*. 2007; 37(12): 754-762.

60. Richardson CA, Toppenberg R, Jull G. An initial evaluation of eight abdominal exercises for their ability to provide stabilisation for the lumbar spine *Aust J Phsiopther*.
1990; 36(1): 6-11.

61. Sahrmann SA: Diagnosis and treatment of movement impairment syndromes St. Louis, MO: Mosby, 2002.

62. Mannion AF, Pulkovski N, Toma V, Sprott H. Abdominal muscle size and symmetry at rest and during abdominal hollowing exercises in healthy control subjects. *J Anat.* 2008; 213(2): 173-182.

63. Moritani T, DeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain *Am J Phys Med.* 1979; 58(3): 115-130.

64. Moritani T, DeVries HA. Reexamination of the relationship between the surface integrated electromyogram (EMG) and force of isometric contraction *Am J Phys Med.* 1978; 57(6): 263-277.

65. Enoka RM. Neural adaptations with chronic physical activity *J Biomechanics*. 1997; 30(5): 447-455.

66. Brooks GA, Fahey TD, Baldwin KM: Exercise Physiology: Human Bioenergetics and Its Applications. 4th ed, 2005.

67. Caulfield B, Garrett M. Functional instability of the ankle: Differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. *Int J Sports Med.* 2002; 23: 64-68.

68. Delahunt E, Monaghan K, Caulfield B. Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional ankle instability of the ankle joint during single leg landing. *J Ortho Res.* 2006; 24: 1991-2000.

69. DeVita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity *Med Sci Sports Exerc.* 1992; 24(1): 108-115.

70. Van Deun S, Staes FF, Stappaerts KH, Janssens L, Levin O, Peers KKH. Relationship of chronic ankle instability to muscle activation patterns during the transition from double-leg to single-leg stance. *Am J Sports Med.* 2007; 35(2): 274-281.

71. Fu SN, Hui-Chan CWY. Modulation of prelanding lower-limb muscle responses in athletes with multiple ankle sprains. *Med Sci Sports Exerc.* 2007; 39(10): 1774-1783.

72. Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. *Clin Biomech.* 2004; 19(6): 617-621.

73. Enoka RM: Neuromechanics of human movement 3rd ed. Champaign, IL: Human Kinetics, 2002.

74. Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. *J Ortho Sports Phys Ther.* 2007; 37(6): 320-324.

75. Palmieri RM, Ingersoll CD, Stone MB, Krause BA. Center of pressure parameter used in the assessment of postural control *J Sport Rehabil.* 2002; 11: 51-66.

214

76. Ross SE, Guskiewicz KM, Gross MT, Yu B. Balance measures for discriminating between functionally unstable and stable ankles. *Med Sci Sports Exerc.* 2009; 41(2): 399-407.

77. Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of abdominal muscles to rapid limb movement *J Electromyogr Kinesiol.* 2003; 13: 477-489.

78. Carcia CR, Martin RL. The influence of gender on glute medius activity during a drop jump. *Phys Ther Sport.* 2007; 8: 169-176.

79. Garrick JG. Epidemiologic perspective. Clin Sports Med. 1982; 1(1): 13-18.

80. Nelson AJ, Vollins CL, Yard EE, Fields SK, Comstock RD. Ankle injuries among United States high school sports athletes. *J Athl Train*. 2007; 42(3): 381-387.

81. Garrick JG. The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. *Am J Sports Med.* 1977; 5(6): 241-242.

82. Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. *J Athl Train.* 2002; 37(4): 364-375.

83. Hubbard TJ, Kaminski TW, vander Griend RA, Kovaleski JE. Quantitative assessment of mechanical laxity in the functionally unstable ankle. *Medicine & Science in Sports & Exercise*. 2004; 36(5): 760-766.

84. Hubbard TJ, Kramer LC, Denegar CR, Hertel J. Correlations among multiple measures of functional and mechanical instability in subjects with chronic ankle instability. *J Athl Train.* 2007; 43(3): 361-366.

85. Hertel J: Classifying functional ankle instability. Personal communication ed, September 24, 2008.

86. Hubbard TJ, Hertel J. Mechanical contributions to chronic lateral ankle instability. *Sports Med.* 2006; 36(3): 263-277.

87. Santos MJ, Liu W. Possible factors related to functional ankle instability. *J Orthop Sports Phys Ther.* 2008; 38(3): 150-157.

88. Refshauge KM, Kilbreath SL, Raymond J. The effect of recurrent ankle inversion sprain and taping on proprioception at the ankle. *Med Sci Sports Exerc.* 2000; 32(1): 10-15.

89. Docherty CL, Arnold BL, Hurwitz S. Contralateral force sense deficits are related to the presence of functional ankle instability. *J Orthop Res.* 2006; 24(7): 1412-1419.

90. Konradsen L, Olesen S, Hansen HM. Ankle sensorimotor control and eversion strength after acute ankle inversion injuries. *Am J Sports Med.* 1998; 26(1): 72-77.

91. Ebig M, Lephart SM, Burdett RG, Miller MC, Pincivero DM. The effect of sudden inversion stress on EMG activity of the peroneal and tibialis anterior muscles in the chronically unstable ankle. *Journal of Orthopaedic & Sports Physical Therapy.* 1997; 26(2): 73-77.

92. Fernandes N, Allison GT, Hopper D. Peroneal latency in normal and injured ankles at varying angles of perturbation. *Clinical Orthopaedics & Related Research*. 2000; 375: 193-201.

93. Isakov E, Mizrahi J, Solzi P, Susak Z, Lotem M. Response of the pearoneal muscles to sudden inversion of the ankle during standing. *Int J Sport Biomech.* 1986; 2: 100-109.

94. Johnson MB, Johnson CL. Electromyographic response of peroneal muscles in surgical and nonsurgical injured ankles during sudden inversion. *Journal of Orthopaedic & Sports Physical Therapy.* 1993; 18(3): 497-501.

95. Vaes P, Duquet W, Van Gheluwe B. Peroneal reaction times and eversion motor response in healthy and unstable ankles. *J Athl Train*. 2002; 37(4): 475-480.

96. Bernier JN, Perrin DH, Rijke A. Effect of unilateral functional instability of the ankle on postural sway and inversion and eversion strength. *J Athl Train*. 1997; 32(3): 226-232.
97. Lentell GL, Katzman LL, Walters MR. The relationship between muscle function and ankle stability. *Journal of Orthopaedic & Sports Physical Therapy*. 1990; 11(12): 605-611.

98. Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landing. *Med Sci Sports Exerc.* 2000; 32(4): 812-819.

99. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR. Gender differences in lower extremity kinematics, kinetics, and energy absorption during landing. *Clin Biomech.* 2003; 18: 662-669.

100. McCaw ST, Cerullo JF. Prophylactic ankle stabilizers affect ankle joint kinematics during drop landings. *Med Sci Sports Exerc.* 1999; 31(5): 702-707.

101. McNitt-Gray JL. Kinetics of the lower extremities during drop landings from three heights. *J Biomechanics*. 1993; 26(9): 1037-1046.

102. Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Schultz SJ. Sex differences in lower extremity biomechanics during single leg landings. *Clin Biomech.* 2007; 22: 681-688. **103.** Nicholas JA, Strizak AM, Veras G. A study of thigh muscle weakness in different pathological states of the lower extremity *Am J Sports Med.* 1976; 4(6): 241-248.

104. Nadler SF, Malanga GA, DePrince M, Stitik TP, Feinberg JH. The relationship between lower extremity injury, low back pain, and hip muscle strength in male and female collegiate athletes. *Clin J Sports Med.* 2000; 10: 89-97.

105. Ortiz A, Olsen S, Libby CL. Core stability for the female athlete: A review *J Womens Health Phys Ther.* 2006; 30(2): 11-17.

106. Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. *Exp Brain Res.* 1997; 114: 362-370.

107. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb *Phys Ther.* 1997; 77(2): 132-144.

108. Hopkins JT, Ingersoll CD. Arthogenic muscle inhibition: A limiting factor in joint rehabilitation 2000; 9: 135-159.

109. Houglum PA: Therapeutic Exercise for Musculoskelatal Injuries, 2nd ed.

Champaign, IL: Human Kinetics, 2005. (Perrin DH, ed.

110. Robertson DGE, Caldwell GE, Hamill J, Kamen G, Whittlesey SN: Research Methods Biomechanics. Champaign, IL: Human Kinetics, 2004.

111. Arnold BL, Docherty CL. Low-load eversion force sense, self-reported ankle instability, and frequency of giving way. *Journal of Athletic Training*. 2006; 41(3): 233-238.

112. Riemann BL, Lephart SM. The sensorimotor system, part I: The physiological basis of funcational joint stability *J Athl Train*. 2002; 37(1): 71-79.

113. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. *J Athl Train.* 2007; 42(2): 311-319.

114. Fernandez WG, Yard EE, Comstock RD. Epidemiology of lower extremity injuries among U.S. high school athletes. *Academic Emergency Medicine: Official Journal Of The Society For Academic Emergency Medicine.* 2007; 14(7): 641-645.

115. Garrick JG, Requa RK. The epidemiology of foot and ankle injuries in sports. *Clinics In Podiatric Medicine And Surgery*. 1989; 6(3): 629-637.

116. McKay GD, Goldie PA, Payne WR, Oakes BW. Ankle injuries in basketball: injury rate and risk factors. *Br J Sports Med.* 2001; 35: 103-108.

117. McHugh MP, Tyler TF, Tetro DT, Mullaney MJ, Nicholas SJ. Risk factors for noncontact ankle sprains in high school athletes: The role of hip strength and balance ability. *Am J Sports Med.* 2006; 34(3): 464-470.

118. Beynnon BD, Murphy DF, Alosa DM. Predictive factors for lateral ankle sprains: A literature review. *J Athl Train.* 2002; 37(4): 376-380.

119. Hubbard TJ, Kramer LC, Denegar CR, Hertel J. Contributing factors to chronic ankle instability. *Foot Ankle Int.* 2007; 28(3): 343-354.

120. Cordova ML, Ingersoll CD, Palmieri RM. Efficacy of prophylactic ankle support: an experimental perspective. *J Athl Train*. 2002; 37(4): 446-457.

121. Docherty CL, Arnold BL. Closed kinetic chain force sense deficits in functionally unstable ankles. *Journal of Orthopaedic & Sports Physical Therapy*. 2006; 36(11): A-15-a-16.

122. Boyle J, Negus V. Joint position sense in the recurrently sprained ankle. *Australian Journal of Physiotherapy.* 1998; 44(3): 159-163.

123. Tsiganos G, Kalamvoki E, Smirniotis J. Effect of the chronically unstable ankle on knee joint position sense. *Isokinetics and Exercise Science*. 2008; 16(2): 75-79.

124. Docherty CL, Moore JH, Arnold BL. Effects of strength training on strength development and joint position sense in functionally unstable ankles. *J Athl Train.* 1998; 33(4): 310-314.

125. Konradsen L, Magnusson P. Increased inversion angle replication error in functional ankle instability. *Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal Of The ESSKA*. 2000; 8(4): 246-251.

126. Nakasa T, Fukuhara K, Adachi N, Ochi M. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error. *Archives Of Orthopaedic And Trauma Surgery*. 2008; 128(5): 445-449.

127. Glencross D, Thornton E. Position sense following joint injury. *The Journal Of Sports Medicine And Physical Fitness.* 1981; 21(1): 23-27.

128. Forkin DM, Koczur C, Battle R, Newton RA. Evaluation of kinesthetic deficits indicative of balance control in gymnasts with unilateral chronic ankle sprains. *Journal of Orthopaedic & Sports Physical Therapy.* 1996; 23(4): 245-250.

129. Garn SN, Newton RA. Kinesthetic awareness in subjects with multiple ankle sprains. *Physical Therapy*. 1988; 68(11): 1667-1671.

130. McVey ED, Palmari RM, Docherty CL, Zinder SM, Ingersoll CD. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. *Foot Ankle Int.* 2005; 26(12): 1055-1061.

131. Konradsen L, Ravn JB. Ankle instability caused by peroneal reaction time. *Aceta Orthop Scand.* 1990; 61(5): 388-390.

132. Konradsen L, Voigt M, Hojsgaard C. Ankle inversion injuries: the role of the dynamic defense mechanism. *American Journal of Sports Medicine*. 1997; 25(1): 54-58.

133. Lofvenberg R, Karrholm J, Sundelin G, Ahlgren O. Prolonged reaction time in patients with chronic lateral instability of the ankle. *The American Journal Of Sports Medicine*. 1995; 23(4): 414-417.

134. Bush KW. Predicting ankle sprain. *J Manual Manipulative Ther*. 1996; 4(2): 54-58.
135. Fox J, Docherty CL, Schrader J, Applegate T. Eccentric plantar-flexor torque deficits in participants with functional ankle instability. *Journal of Athletic Training*. 2008; 43(1): 51-54.

136. McKeon PO, Hertel J. Spatiotemporal postural control deficits are present in those with chronic ankle instability. *BMC Musculoskeletal Disorders*. 2008; 9: 76-76.

137. Ross SE, Guskiewicz KM, Yu B. Single-leg jump-landing stabilization times in subjects with functionally unstable ankles *J Athl Train*. 2005; 40(4): 298-304.

138. Delahunt E, Monnaghan K, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint *Am J Sports Med.* 2006; 34(12): 1970-1976.

139. Monaghan K, Delahunt E, Caulfield B. Ankle function during gait in patients with chronic ankle instability compared to controls. *Clinical Biomechanics*. 2006; 21(2): 168-174.

140. Refshauge KM, Kilbreath SL, Raymond J. Deficits in detection of inversion and eversion movements among subjects with recurrent ankle sprains... including commentary by Vandervoort AA with authors' response. *J Orthop Sports Phys Ther.* 2003; 33(4): 166-176.

141. Jerosch J, Hoffstetter I, Bork H, Bischof M. The influence of orthoses on the proprioception of the ankle joint. *Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal Of The ESSKA*. 1995; 3(1): 39-46.

142. Payne KA, Berg K, Latin RW. Ankle injuries and ankle strength, flexibility, and proprioception in college basketball players. *J Athl Train*. 1997; 32(3): 221-225.

143. McCloskey DI, Ebeling P, Goodwin GM. Estimation of weights and tensions and apparent involvement of a "sense of effort". *Experimental Neurology*. 1974; 42(1): 220-232.

144. Docherty CL, Arnold BL, Zinder SM, Granata K, Gansneder BM. Relationship between two proprioceptive measures and stiffness at the ankle. *Journal Of Electromyography And Kinesiology: Official Journal Of The International Society Of Electrophysiological Kinesiology.* 2004; 14(3): 317-324.

145. Palmieri RM, Ingersoll CD, Hoffman MA. The Hoffman relex: Methodlogic considerations and applications for use in sports medicine and athletic training research. *J Athl Train.* 2004; 39(3): 268-277.

146. Hopkins JT, Palmieri R. Effects of ankle joint effusion on lower leg function. *Clinical Journal of Sport Medicine*. 2004; 14(1): 1-7.

147. Palmieri RM, Ingersoll CD, Hoffman MA, et al. Arthrogenic muscle response to a simulated ankle joint effusion. *British Journal of Sports Medicine*. 2004; 38(1): 26-30.

148. Palmieri RM, Ingersoll CD, Cordova ML, Kinzey SJ, Stone MB, Krause BA. The effect of a simulated knee joint effusion on postural control in healthy subjects. *Archives of Physical Medicine & Rehabilitation*. 2003; 84(7): 1076-1079.

149. Khin Myo H, Ishii T, Sakane M, Hayashi K. Effect of anesthesia of the sinus tarsi on peroneal reaction time in patients with functional instability of the ankle. *Foot & Ankle International / American Orthopaedic Foot And Ankle Society [And] Swiss Foot And Ankle Society.* 1999; 20(9): 554-559.

150. Karlsson J, Andreasson GO. The effect of external ankle support in chronic lateral ankle joint instability: an electromyographic study. *American Journal of Sports Medicine*. 1992; 20(3): 257-261.

151. Hopkins JT, McLoda T, McCaw ST. Muscle activation following sudden ankle inversion during standing and walking. *Eur J Appl Physiol.* 2007; 99: 371-378.

152. Kaminski TW. Factors contributing to chronic ankle instability: A strength perspective. *J Athl Train.* 2002; 37(4): 394-405.

153. Yildiz Y, Aydin T, Sekir U, Hazneci B, Kormurcu M, Kalyon TA. Peak and end range eccentric evertor/concentric invertor muscle strength ratios in chronically unstable ankles: comparison with healthy individuals. *Journal of Sports Science & Medicine*. 2003; 2(3): 70-76.

154. Porter GK, Jr., Kaminski TW, Hatzel B, Powers ME, Horodyski M. An examination of the stretch-shortening cycle of the dorsiflexors and evertors in uninjured and functionally unstable ankles. *Journal of Athletic Training*. 2002; 37(4): 494-500.

155. Kaminski TW, Perrin DH, Gansneder BM. Eversion strength analysis of uninjured and functionally unstable ankles. *J Athl Train.* 1999; 34(3): 239-245.

156. Friel K, McLean N, Myers C, Caceres M. Ipsilateral hip abductor weakness after inversion ankle sprain. *Journal of Athletic Training*. 2006; 41(1): 74-78.

157. McKeon PO, Hertel J. Systematic review of postural control and lateral ankle instability, part I: Can deficitsbe detected with instrumented testing? *J Athl Train.* 2008; 43(3): 293-304.

158. Ross SE, Guskiewicz KM. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. *Clin J Sports Med.* 2004; 14(6): 332-338.

159. Tropp H, Ekstrand J, Gillquist J. Factors affecting stabilometry recording of single limb stance. *Am J Sports Med.* 1984; 12(3): 185-188.

160. Tropp H, Ekstrand J, Gillquist J. Stabilometry in functional instability of the ankle and its value in predicting injury. *Med Sci Sports Exerc.* 1984; 16(1): 64-66.

161. Tropp H, Odenrick P. Postural control in single-limb stance. *J Orthop Res.* 1988;6(6): 833-839.

162. Mitchell A, Dyson R, Hale T, Abraham C. Biomechanics of ankle instability. Part 2: postural sway-reaction time relationship. *Medicine and Science in Sports and Exercise*.
2008; 40(8): 1522-1528.

163. Wikstrom EA, Tillman MD, Borsa PA. Detection of dynamic stability deficits in subjects with functional ankle instability. *Med Sci Sports Exerc.* 2005; 37(2): 169-175.
164. Ross SE, Guskiewicz KM. Time to stabilization: A method for analyzing dynamic

postural stability. Athlet Ther Today. 2003; 8(3): 37-39.

165. Wikstrom EA, Tillman MD, Smith AN, Borsa PA. A new force-plate technology measure of dynamic postural stability: The dynamic postural stability index *J Athl Train*.
2005; 40(4): 305-309.

166. Bressel E, Yonker JC, Kras J, Heath EM. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. *Journal of Athletic Training*. 2007; 42(1): 42-46.

167. Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. *Journal of Orthopaedic & Sports Physical Therapy.* 2006; 36(12): 911-919.

168. Akbari M, Karimi H, Farahini H, Faghihzadeh S. Balance problems after unilateral ankle sprains. *J Rehabil Res Dev.* 2006; 43(7): 819-824.

169. Olmstead LC, Carcia CR, Hertel J, Schultz SJ. Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability *J Athl Train*.
2002; 37(4): 501-506.

170. Robinson RH, Gribble PA. Support for a reduction in the number of trials needed for the star excursion balance test. *Archives of Physical Medicine & Rehabilitation*. 2008; 89(2): 364-370.

171. Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. *Gait Posture*. 1999; 10: 161-170.

172. Kulas AS, Schmitz RJ, Schultz SJ, Watson MA, Perrin DH. Energy absorption as a

predictor of leg impedance in highly trained females. J Appl Biomech. 2006; 22: 177-185.

173. Horak FB, Nashner LM. Central programming of postural movements: Adaptation to altered support-surface configurations. *J Neurophysiol.* 1986; 55(6): 1369-1381.

174. Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI. Landing adaptations after ACL reconstruction. *Med Sci Sports Exerc.* 2002; 34(9): 1408-1413.

175. Kulas AS, Windley TC, Schmitz RJ. Effects of abdominal postures on lower extremity energetics during single-leg landings *J Sport Rehabil.* 2005; 14: 58-71.

176. Riemann BL, Myers JB, Lephart SM. Comparison of the ankle, knee, hip, and corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. *Arch Phys Med Rehabil.* 2003; 84: 90-95.

177. Rietdyk S, Patla AE, Winter DA, Ishac MG, Little CE. Balance recovery from medio-lateral perturbations of the upper body during standing. *J Biomech.* 1999; 32: 1149-1158.

178. Henry SM, Fung J, Horak FB. Control of stance during lateral and anterior/posterior surface translations. *IEEE T Rehabil Eng.* 1998; 6(1): 32-42.

179. Farrokhi S, Pollard CD, Souza RB, Chen YJ, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. *J Ortho Sports Phys Ther.* 2008; 38(7): 403-409.

180. Viitasalo JT, Salo A, Lahtinen J. Neuromuscular functioning of athletes and nonathletes in the drop jump. *Eur J Appl Physiol.* 1998; 78: 432-440.

181. Wikstrom EA, Tillman MD, Schenker S, Borsa PA. Failed jump landing trial: deficits in neuromuscular control. *Scand J Med Sci Sports*. 2008; 18: 55-61.

182. Morrison KE, Hudson DJ, Kaminski TW: Assessment of center of pressure trajectory during a running gait in subjects with chronic ankle instability American College of Sports Medicine Annual Meeting, Indianapolis, IN, 2008.

183. Smith LK, Lelas JL. Gender differences in pelvic motions and center of mass displacement during walking: Stereotypes quantified. *J Women Health Gen-B*. 2002; 11(5): 453-458.

184. Kerrigan DC, Todd MK, Croce UD. Gender differences in joint biomechanics during walking: normative study in young adults. *Am J Phys Med Rehab.* 1998; 77: 2-7.
185. Ferber R, Davis IM, Williams DS. Gender differences in lower extremity mechanics during running. *Clin Biomech.* 2003; 18: 350-357.

186. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during single-legged squat. *Am J Sports Med.* 2003; 31(3): 449-456.

187. Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. *J Athl Train*. 2007; 42(1): 76-83.

188. Russell KA, Palmieri RM, Zinder SM, Ingersoll CD. Sex differences in valgus knee angle during single-leg drop jump. *J Athl Train.* 2006; 41(2): 166-171.

226

189. Hart JM, Garrison JC, Kerrigan DC, Palmieri-Smith R, Ingersoll CD. Gender differences in gluteus medius muscle activity in soccer players performing a forward jump. *Res Sports Med.* 2007; 15: 147-155.

190. Self BP, Paine D. Ankle biomechanics during four landing techniques. *Med Sci Sports Exerc.* 2001; 33(8): 1338-1344.

191. Henry SM, Fung J, Horak FB. EMG responses to maintain stance during multidirectional surface translations. *J Neurophysiol.* 1998; 80: 1939-1950.

192. Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip Strength and Hip and Knee Kinematics During Stair Descent in Females With and Without Patellofemoral Pain Syndrome. *J Orthop Sports Phys Ther.* 2008; 38(1): 12-18.

193. Nadler SF, Malanga GA, Solomon JL, Feinberg JH, Foye PM, Park YI. The relationship between lower extremity injury and the hip abductor to extensor strength ratio in colegiate athletes. *J Back Musc Rehab.* 2002; 16: 153-158.

194. Nadler SF, Malanga GA, Feinberg JH, Rubanni M, Moley P, Foye PM. Functional performance deficits in athletes with previous lower extremity injury. *Clin J Sports Med.* 2002; 12: 73-78.

195. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function *Sports Med.* 2006; 36(3): 189-198.

196. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholwicki J. The effects of core proprioception on knee injury. *Am J Sports Med.* 2007; 35(3): 368-373.

197. Haines DE: Fundamental Neuroscience, 2nd ed. New York, NY: Churchill Livingstone, 2002.

198. King MA. Core stability: creating a foundation for functional rehabilitation *ATT*. 2000; 5(2): 6-13.

199. Akuthota V, Nadler SF. Core strengthening. *Arch Phys Med Rehabil.* 2004; 85(1): S86-S92.

200. Faries MD, Greenwood M. Core tranining: Stabilizing the confusion. *Strength Cond J*. 2007; 29(2): 10-25.

201. Bergmark A. Stability of the lumbar spine, a study in mechanical engineering *Aceta Orthop Scand.* 1989; 230(suppl): 1-54.

202. Sekir U, Yildiz Y, Hazneci B, Ors F, Aydin T. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability. *Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal Of The ESSKA*. 2007; 15(5): 654-664.

203. Powers ME, Buckley BD, Kaminski TW, Hubbard TJ, Ortiz C. Six weeks of strength and proprioception training does not affect muscle fatigue and static balance in functional ankle instability *J Sport Rehabil.* 2004; 13: 201-227.

204. Kaminski TW, Buckley BD, Powers ME, Hubbard TJ, Ortiz C. Effect of strength and proprioception training on eversion to inversion strength ratios in subjects with unilateral functional ankle instability. *Brit J Sports Med.* 2003; 37(5): 410.

205. Gauffin H, Tropp H, Odenrick P. Effect of ankle disk training on postural control in patients with functional ankle instability. *Int J Sports Med.* 1988; 9(2): 141-144.

206. Hoffman M, Payne VG. The effects of proprioceptive ankle disk training on healthy subjects. *J Orthop Sports Phy Ther.* 1995; 21(2): 90-93.

207. Bernier JN, Perrin DH. Effect of coordination training on proprioception of the functionally unstable ankle. *J Ortho Sports Phys Ther.* 1998; 27(4): 264-275.

208. Rozzi SL, Lephart SM, Sterner R, Kuligowski L. Balance training for persons with

functional ankle instability. J Ortho Sports Phys Ther. 1999; 29(8): 478-486.

209. Verhagen E, Twisk J, Bouter L, Bahr R, van Mechelen W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. *American Journal of Sports Medicine*. 2004; 32(6): 1385-1393.

210. Wester JU, Jespersen SM, Nielsen KD, Neumann L. Wobble board training after partial sprains of the lateral ligaments of the ankle: a prospective randomized study. *Journal of Orthopaedic & Sports Physical Therapy.* 1996; 23(5): 332-336.

211. Holme E, Manusson SP, Becher K, Bieler T, Aagaard P, Kjaer M. The effect of supervised rehabilitation on strength, postural sway, position sense and re-injury risk after acute ankle ligament sprain. *Scand J Med Sci Sports*. 1999; 9: 104-109.

212. Rasool J, George K. The impact of single-leg dynamic balance training on dynamic stability. *Phys Ther Sport.* 2007; 8: 177-184.

213. Hubley-Kozey CL. Training the abdominal musculature. *Phsiother Can.* 2005; 57:5-17.

214. Colston M, Taylor T, Minnick A. Abdominal muscle training and core stabilization: the past, present, and future *ATT*. 2005; 10(4): 6-12.

215. Barnett F, Gilleard W. The use of lumbar spinal stabilization techniques during the performance of abdominal strengthening exercise variations. *J Sports Med Phys Fitness*. 2005; 45: 38-43.

216. Beith ID, Synnott RE, Newman SA. Abdominal muscle activity during the abdominal hollowing manoeuvre in the four point kneeling and prone positions. *Manual Ther.* 2001; 6(2): 82-87.

217. O'Sullivan P, Twoney L, Allison G. Altered abdominal muscle recruitment in patients with chronic back pain following a specific exercise intervention *J Orthop Sports Phys Ther.* 1998; 27(2): 114-124.

218. Kulas AS, Schmitz RJ, Schultz SJ, Henning JM, Perrin DH. Sex-specific abdominal activation strategies during landing. *J Athl Train.* 2006; 41(4): 381-386.

219. Kollmitzer J, Ebenbichler GR, Sabo A, Kerschan K, Bochdansky T. Effects of back extensor strength training versus balance training on postural control. *Med Sci Sports Exerc.* 2000; 32(10): 1770-1776.

220. Wohlfahrt D, Jull G, Richardson CA. The relationship between the dynamic and static function of abdominal muscles *Aust J Physiother*. 1993; 39(1): 9-13.

221. Konrad P, Schmitz K, Denner A. Neuromuscular evaluation of trunk-training exercises *J Athl Train.* 2001; 36(2): 109-118.

222. Vezina MJ, Hubley-Kozey CL. Muscle activation in therapeutic exercises to improve trunk stability. *Arch Phys Med Rehabil.* 2000; 81: 1370-1379.

223. Lanning CL, Uhl TL, Ingram CL, Mattacola C G, English T, Newsom S. Baseline values of trunk endurance and hip strength in collegiate athletes. *J Athl Train.* 2006; 41(4): 427-434.

224. Mills JD, Tauton JE, Mills WA. The effect of a 10-week training regimen on lumbopelvic stability and athletic performance in female athletes: A randomized-controlled trial. *Phys Ther Sport.* 2005; 6: 60-66.

225. Springer BA, Mielcarek BJ, Nesfield TK, Teyhen DS. Relationships among lateral abdominal muscles, gender, body mass index, and hand dominance. *J Orthop Sports Phys Ther.* 2006; 36(5): 289-297.

226. Whittaker JL, Teyhen DS, Elliot JM, et al. Rehabilitative ultrasound imaging: Understanding the technology and its applications. *J Ortho Sports Phys Ther.* 2007; 37(8): 434-449.

227. Whittaker JL, Thompson JA, Teyhen DS, Hodges PW. Rehabilitative ultrasound imaging of pelvic floor muscle function. *J Ortho Sports Phys Ther*. 2007; 37(8): 487-498.
228. Hides JA, Wong I, Wilson SJ, Belavy DL, Richardson CA. Assessment of abdominal muscle function during a simulated unilateral weight-bearing task using ultrasound imaging. *J Ortho Sports Phys Ther*. 2007; 37(8): 467-471.

229. Ferreira PH, Ferreira ML, Hodges PW. Changes in recruitment of the abdominal muscles in people with low back pain *Spine*. 2004 29(22): 2560-2566.

230. Raney NE, Teyhen DS, Childs JD. Observed changes in lateral abdominal muscle thickness after spinal manipulation: A case series using rehabilitative ultrasound imaging. *J Ortho Sports Phys Ther.* 2007; 37(8): 472-79.

231. Teyhen DS. Rehabilitative ultrasound imaging: The roadmap ahead. *J Ortho Sports Phys Ther.* 2007; 37(8): 431-433.

232. Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion analysis:

Implications for longitudinal analyses. Med Sci Sports Exerc. 2007; 39(11): 2021-2028.

233. Hopkins JT, Ingersoll CD, Sandrey MA, Bleggi SD. An electromyographic

comparison of 4 closed chain exercises. J Athl Train. 1999; 34(4): 353-357.

Appendix A1

Ankle Instability Questionnaires

234

	dified Ankle Instability I			••		
1.	Have you ever sprained ana. Have you sprainedb. Have you sprained	h ankle? I your right ankle? I your left ankle?		Yes	No	
2.	Have you ever seen a doct	tor for an ankle sprain?		Yes	No	
3.	Did you ever use a device to an ankle sprain? No	weight	due Yes			
4.	Does your ankle ever feel unstable while walking on a flat surface?				No	
5.	5. Does your ankle ever feel unstable while walking on uneven ground? Yes					
6.	Does your ankle ever feel	unstable during recreational or sport	activity?			
			Yes	No	N/A	
7.	Does your ankle ever feel	unstable while going up stairs?		Yes	No	
8.	Does your ankle ever feel		Yes	No		
9.	Have you ever had rehabil	?	Yes	No		
10.	Have you ever had an inju If yes, please explain	ury to your knee?		Yes	No	
		Injury	Date			
11.	Have you ever had an If yes, please explain Side (Right or Left)	injury to your leg below the knee? Injury	Date	Yes	No	
	mber of previous ankle spr w long since your last ankl	LEFT:	RIGHT:			
110	w iong since your last dliki	LEFT:	RIGHT:			

Foot and Ankle Ability Measure (FAAM)

Please answer <u>every question</u> with <u>one response</u> that most closely describes to your condition within the past week. If the activity in question is limited by something other than your foot or ankle mark <u>not applicable (N/A)</u>.

	No difficulty at all	Slight difficulty	Moderate difficulty	Extreme difficulty	Unable to do	N/A
Standing						
Walking on even ground						
Walking on even ground without shoes						
Walking up hills						
Walking down hills						
Going up stairs						
Going down stairs						
Walking on uneven ground						
Stepping up and down curbs						
Squatting						
Coming up on your toes						
Walking initially						
Walking 5 minutes or less						
Walking approximately 10 mins						
Walking 15 minutes or greater						

Because of your **foot and ankle** how much difficulty do you have with:

.0%

	No difficulty at all	Slight difficulty	Moderate difficulty	Extreme difficulty	Unable to do	N/A
Home Responsibilities						
Activities of daily living						
Personal care						
Light to moderate work (standing, walking)						
Heavy work (push/pulling, climbing, carrying)						
Recreational activities						

How would you rate your current level of function during your usual activities of daily living from 0 to 100 with 100 being your level of function prior to your foot or ankle problem and 0 being the inability to perform any of your usual daily activities?

FAAM Sports Scale

Because of your **foot and ankle** how much difficulty do you have with:

	No difficulty at all	Slight difficulty	Moderate difficulty	Extreme difficulty	Unable to do	N/A
Running						
Jumping						
Landing						
Starting and stopping quickly						
Cutting/lateral movements						
Low impact activities						
Ability to perform activity with your normal technique						
Ability to participate in your desired sport as long as you would like						

How would you rate your current level of function during your sports related activities from 0 to 100 with 100 being your level of function prior to your foot or ankle problem and 0 being the inability to perform any of your usual daily activities?

.0 %

Overall, how would you rate your current level of function? \Box Normal \Box Nearly normal \Box Abnormal \Box Severe

 \Box Severely abnormal

Scoring Instructions for the FAAM

The ADL and Sports subscales are scored separately.

The response to each item on the ADL subscale is scored from 4 to 0, with 4 being "no difficulty" and 0 being "unable to do". N/A responses are not counted. The score on each of the items are added together to get the item score total. The total number of items with a response is multiplied by 4 to get the highest potential score. If the subject answers all21 items, the highest potential score is 84. If one item is not answered the highest score is80, if two are not answered the total highest score is 76, etc. The item score total is divided by the highest potential score. This value is then multiplied by 100 to get a percentage. A higher score represents a higher level of physical function.

The Sports subscale is scored the same as above, 4 being "no difficulty at all" to 0 being "unable to do". The score on each item are added together to get the item score total. The number of items with a response is multiplied by 4 to get the highest potential score. If the subject answers all 8 items the highest potential score is 32. If one item is no answered the highest potential score is 28, if two are not answered the highest potential score. This value is multiplied by 100 to get a percentage. A higher score represents a higher level of physical function.

Psychometric Information

Relates to scores out of 100 percentage points

	ADL subscale	Sports subscale
Error associated with a one time	7 points	10 points
measurement95% confidence		
Minimal detectable difference over a four	6 points	12 points
week period		
95% confidence		
*Minimal Clinically Important Difference	8 points	9 points
	• .1 1• .• • 1	1 . 1

* The Minimal Clinically Important Difference is the score distinguished patients who felt they improved with physical therapy from those who felt they did not improve over a four week period.