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Program synthesis aims to mechanise the task of programming from the user intent (using 
pre and post condition, examples and sketches). There are many approaches (or concepts) 
in program synthesis that are usually implemented in isolation: deductive, syntax-based, 
inductive, etc. In this paper, we present a characterisation of program synthesis as model 
finding, using Alloy∗ . Such a characterisation unifies several of these concepts in a single 
model. Through model finding, we obtain a general framework for rapid development of a 
program synthesiser accommodating denotational semantics based synthesis, simultaneous 
deductive and inductive synthesis, software reuse, syntactic ingredients (the Alloy∗ scope 
of entities), and a new one: a soft sketch (a set of commands that must appear in the 
synthesised program but in no particular order of execution). Our family of synthesisers 
produce general purpose programs in the Java language. As the Alloy∗ synthesiser requires 
several rounds of user assistance to set scope, sketches, etc., particularly for complex 
problems, we integrated the model finder to a genetic algorithm module, where candidate 
solutions and user inputs are generated and mutated automatically. We carried out 
empirical evaluations on program synthesis successfully. As results, we verified that: (i) 
we can synthesise thirteen programs (Maj5, Maj8, IntSQRT, Max4, Modu, Fact, Fib,
aMax, aDouble, aSum, eCount, aBubSort, aSelSort); (ii) inductive synthesis was 
faster than deductive synthesis; (iii) synthesis with reuse was faster; and (iv) Genetic 
Algorithm is better than user trial and error approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Program synthesis typically performs a search over the space of programs to find a source code that is consistent with 
a variety of constraints (for instance, input-output examples, specifications, and incomplete programs — or sketches [1]). 
Program synthesis is considered the holy grail of Computer Science since the beginning of Artificial Intelligence in the 
1950s [2]. Automatic program synthesis is gaining attention nowadays thanks to the advances in Artificial Intelligence and 
SAT/SMT theories (together with the development of efficient solvers). Such advances have led to recent developments in 
different trends in program synthesis like deductive synthesis and inductive synthesis.

In deductive synthesis, a program that satisfies a formal specification must be produced by deduction. One way to do that 
is to model the problem of program synthesis as a SAT/SMT problem so that a solver is employed to automatically find a 
program that satisfies a formal specification [2]. As a SAT/SMT solver can now check the satisfiability of very complex logical 
expressions in reasonable time, fully automatic deductive synthesisers have currently produced promising results [3–6].
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In the last decade, a new trend in program synthesis has appeared. Several applications of synthesis in the so called 
programming-by-examples field have been deployed in mass-market industrial products [7–9]. This kind of synthesis is 
known as inductive synthesis, where the formal specification is replaced by a set of input-output examples. The usage of 
examples instead of specifications comes from the Artificial Intelligence culture [10–13].

In our previous study [14], we presented a deductive synthesiser which was built on top of the Alloy∗ [15] model finder. 
Here, the term deductive synthesiser means that the user intention is represented by a pre and post condition (like in a 
deductive approach). Alloy∗ subsequently tries to find a program that satisfies this contract. Note, however, that Alloy∗ is, at 
the end, always inductive. By inductive synthesiser we mean the usual definition: input and output examples are generalised 
into programs.

The syntax and the denotational semantics of Winskel’s IMP (erative) language [16] were our starting point to build 
an Alloy∗-based Program Synthesiser (APS for short), whose syntax and semantics are based on Alloy language elements 
(such as signatures, relations, predicates, etc). We then applied the Alloy∗ model finder (the Alloy∗ Analyser) to search 
for a program that satisfies a contract written in terms of pre and post condition. Alloy∗ is a variant of the Alloy [17]
model finder that implements a convenient Counter Example-Guided Inductive Synthesis (CEGIS) [18] algorithm. This fa-
cility, in combination with the Alloy∗ modelling language, made the construction of the Alloy∗ synthesiser interesting. By 
using the primitive implementation of CEGIS and the high-level modelling language of Alloy∗ , we could encode the syn-
thesis problem at a very abstract level (synthesis as a search over the states constrained by a denotational semantics). 
Our Alloy∗-based Program Synthesiser (APS) was able to synthesise high-level program constructs like sequential com-
positions, if-then-elses and while loops. Such results were similar to the synthesiser developed by Srivastava et al. [4], 
where a SAT/SMT solver was used directly. Alloy∗ is related to a large domain of applications such as program verification, 
software testing, fast prototyping, as well as teaching. Our goal is to exploit program synthesis in these domains in the 
future.

As Alloy∗ provides us with this platform for a rapid development of a synthesiser, the original synthesiser was eas-
ily extended and adapted to deal with examples instead of specifications (that is, instead of using a formal contract 
we can just use input-output examples). This allowed us to produce an inductive programming-by-example synthesiser 
with an almost effortless endeavour. The inductive version of the synthesiser was achieved by realising that Alloy∗ treats 
a set of input-output examples just as any regular constraint. The inductive version modified 4 lines of the deductive 
model and added 5 new lines. This new version takes as input not only examples but also sketches (programs with 
holes) [1]. It also possesses the ability to reuse functions by simply reusing the way the language was embedded into 
Alloy∗. For instance, a program that returns the maximum of 3 numbers can be implemented by calling the maximum of 
2 numbers twice: max(x,max(y,z)). With the ability to call functions, it can (hopefully) avoid doing all programs from 
scratch.

In the attempt to synthesise more real-world related problems, we introduced arrays in the Alloy∗ specification. With 
this, we were able to synthesise well-known sorting algorithms like Bubble sort and Selection sort. In terms of arrays, 
there are synthesisers capable of: (i) mapping functions to search/sort over lists [4,19,20]; (ii) handling strings by extracting 
specific data [21–23]; or (iii) simulating finite size arrays [24]. APS outputs arrays written as Java’s source code, such 
as:

int i = 0;
int [ ] myArray = new int [ 3 ] ;
while ( i <3) {

myArray [ i ] = 2 ∗ i ;
i ++;

}

In order to reduce the repetitive tasks of interacting with Alloy∗ to change the scope of the model entities and the task 
of verifying the correctness of the synthesised program, we enveloped APS around the concepts of Genetic Algorithms [25]. 
This extension gave rise to the Alloy∗ Program Synthesiser with Genetic Algorithm (APS-GA, for short), a variant of the APS 
that can generate user inputs, mutate candidate solutions, and automatically test the results, thus reducing both the user 
mental effort and amount of interactions. APS-GA was first introduced in our previous work [25]. In this article we describe 
it in more detail.

To explore the inductive aspect of APS, the user provides a small set of examples (to guide the synthesiser on producing 
candidate programs) and a larger set of test cases that is as comprehensive as possible to capture all expected input and 
output values (in order to enable APS-GA to check whether the solution is correct). Examples must be smaller than test 
cases in order to prevent state explosion. We detail this issue in the following sections.

By providing only examples and test cases as inputs, the synthesiser can be effective for simple problems. Although 
our sketches are optional, complex cases need them in general. Many synthesisers use sketches to guide and speed up 
the search for a solution. Our synthesiser is no different than the others but uses a more flexible solution. Our sketches 
are called soft sketches because they represent a set of commands that must appear in the synthesised program, but in no 
particular order (the order of execution of a traditional sketch is hard coded). It is worth noting that a soft sketch can also 
define (optionally) pieces of hard code as well. It is up to the user’s needs. Also, pieces of soft sketches can occasionally 
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occur more than once in the synthesised program if needed. Such a feature is impossible with a traditional sketch as it 
denotes a fixed template of the synthesised program.

Moreover, the Alloy∗ scope is produced automatically. This scope defines the amount of operations and commands that 
must appear in the synthesised program. For instance, a user can inform Alloy∗ to search for a program that contains 
exactly one while loop and at most 5 assignments. This information, which we call syntactic ingredients, was provided 
interactively by the user when using the APS, but is generated automatically with the aid of Genetic Algorithm (APS-
GA). Finally, with Genetic Algorithm we also verify automatically (by producing Java programs and running tests on them) 
whether a synthesised program is correct or not with respect to the test cases provided. All these features reduce both 
the mental effort of the user and the interactions needed. With Genetic Algorithm, we were able to synthesise thirteen 
programs: integer square root (IntSQRT), majority of 5 (Maj5), majority of 8 (Maj8), maximum of 4 (Max4), modulo 
(Mod), factorial (Fact), Fibonacci (Fib), maximum element of an array (aMax), assignment a[i] = 2*i, for each i
and array a (aDouble), sum of all elements of an array (aSUm), counting of occurrences of a given number in an array 
(eCount), Bubble Sort (aBubSort) and Selection Sort (aSelSort). They are found in the SyGuS competition [26], iJava 
and IntroClass, and Genetic programming communities.

In summary, the main contributions of this article are:

• The characterisation of synthesis of general-purpose programs as model finder that acts as a multi-concept platform for 
rapid development of a program synthesiser that features both inductive and deductive synthesis simultaneously;

• An empirical evaluation showing that an inductive synthesis is as efficient as (and, most of the times, better than) a 
deductive synthesis;

• The introduction of a synthesiser that, after a simple adjustment in the Alloy∗ specification, is able to: (i) reuse func-
tions, where we have to define their syntax and well-formedness rules, and define their semantics in the Alloy∗
relational language; and (ii) deal with arrays, where we have to define the arrays themselves (their names and contents 
in terms of Alloy∗ sequences), the array well-formedness rules and an updated syntax and semantics for expressions 
and assignments as they were affected by the inclusion of arrays;

• An empirical evaluation about the performance of the synthesis of 7 well-known non-array programs (IntSQRT, Maj5,
Maj8, Max4, Mod, Fact and Fib) and 6 well-known array programs (aMax, aDouble, aSUm, eCount, aBubSort, 
and aSelSort);

• An empirical analysis measuring the time taken: (i) to translate from an Alloy∗ model to a SAT solver language, (ii) to 
find a solution, and (iii) to synthesise with reuse. Results showed that deductive synthesis takes less time to translate 
to the SAT language than inductive synthesis but takes longer to find a solution, and that synthesising with reuse is 
faster.

This article is organised as follows. Section 2 presents an Alloy∗ specification (syntax, well-formedness rules, semantics 
and the synthesis predicate) corresponding to a deductive synthesiser. Section 3 shows how to extend this specification to 
implement an inductive synthesiser as well as the facility of reusing functions. Section 4 describes an extension to deal 
with arrays. Section 5 augments the Alloy∗-based Program Synthesiser (APS) with Genetic Algorithm aspects (APS-GA) and 
other facilities to ease the user experience. Section 6 performs an empirical evaluation discussing: deductive vs inductive 
approaches; reuse; the use of Alloy∗ model combined with Genetic Algorithm strategy; programs with arrays, and the 
effectiveness of the Genetic Algorithm. Section 7 compares our work with some related studies, and Section 8 concludes 
and addresses future work.

2. An Alloy∗ deductive program synthesiser

Our Alloy∗-based synthesiser was inspired by Winskel’s IMP(erative) language [27] (syntax and the denotational seman-
tics). In this section we present its syntax, well-formedness rules (defined by ourselves), and its semantics as well as a 
synthesis predicate in Alloy∗.

2.1. The syntax of IMP in Alloy∗

In his book [27], Winskel defines a set of locations (or memory addresses) by Loc. In Alloy∗, an abstract signature sig

defines such a given set.

abstract sig Loc { }

We define another abstract syntactic class to represent commands (Cmd).

abstract sig Cmd { }
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Concrete commands are defined as subclasses of Cmd, such that they partition Cmd in distinct subclasses. The most basic 
is Skip, which is the command that does nothing.

lone sig Skip extends Cmd { }

The relation extends Cmd establishes an inheritance relationship between Cmd and Skip. In this case, extends models the 
grammatical dependency between the non-terminal Cmd and the terminal Skip. The term lone constrains the signature to 
have at most one instance.

An arithmetic expression AExp is either an integer constant (IntVal), integer variable (IntVar), addition (Add), subtraction 
(Sub) or multiplication (Mult).

abstract sig AExp { }
sig IntVal extends AExp { val : one Int }
sig IntVar extends AExp { name: one Loc }
sig Add extends AExp { op1: one AExp , op2: one AExp } . . .

Each class of expression has fields. For instance, an IntVar expression contains the field name that belongs to Loc, and the 
fields op1 and op2 of an addition are its operands. Subtraction and multiplication are defined similarly to addition.

An assignment X := a is a command whose left-hand side is an integer variable and the right-hand side is an arithmetic 
expression.

sig Assign extends Cmd { lhs : one IntVar , rhs : one AExp }
{ ( IntVar <: rhs ) �= lhs and rhs �∈ IntVal and lhs . name �∈ XLoc }

Let R be a relation and S be a set. The expression S <: R filters R with respect to S. For instance, (IntVar <: 
rhs) != lhs, means that any IntVar signature (integer variable) that appears in the rhs relation (right side hand of 
an expression, such as assignment) does not occur in the lhs relation (left side hand of an expression). This semantic rule 
prevents a Java source-code like anyVar = anyVar; to be produced. This signature has some restrictions. The right-hand 
side: (i) must be different from the variable on the left-hand side; (ii) cannot be a constant (rhs /∈ IntVal) and (iii) must 
not be a read-only variable (XLoc extends Loc and denotes read-only variables).

The sequential composition of commands curr (for the current command) and next becomes the entity SComp.

sig SComp extends Cmd { curr , next: one Cmd }

A Boolean expression BExp is encoded in the form lhs OP rhs, where lhsand rhs are arithmetic expressions such that they 
must be different from auxiliary variables (ALoc). The ALoc signature extends a Loc signature to denote auxiliary variables that 
are forbidden to be used in conditions. This helps the synthesiser in reducing the state space.

sig ALoc extends Loc { }

An operator OP ∈ {EQ, NEQ, LEQ, LTH, GEQ, GTH} where EQ, NEQ, LEQ, LTH, GEQ, and GTH denote =, �=, ≤, <, ≥, and >, 
respectively.

abstract sig BExp { lhs , rhs : one AExp }
{ lhs . name �∈ ALoc and rhs . name �∈ ALoc }

sig EQ extends BExp { } . . .

The operators NEQ, LEQ, LTH, GEQ, and GTH are defined in a similar way to EQ.
A conditional statement if b then C0 else C1 becomes the entity CondS, where we had to change else to elsen because the 

former is a reserved Alloy∗ keyword.

sig CondS extends Cmd { cond: one BExp , then , elsen : one Cmd }
{ then �= elsen }

We restrict then to be different from elsen to prevent the synthesis of commands of the form if b then C else C , which is 
the same as C [28]. This restriction reduces our search space.

The most difficult statement to encode is the while statement. In addition to the usual Boolean condition (cond) and body 
(wbody), we consider an auxiliary structure (unfold) to unfold (or “run”) the body over the iterations.
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1 sig While extends Cmd {
2 cond: one BExp , wbody: one Cmd, unfold : set Expansion }
3 { (# unfold ≥ 2 ⇒ (∀ d i s j e1 , e2: unfold •
4 e1 . exp . f i r s t . curr . bind �= e2 . exp . f i r s t . curr . bind ) ) }
5 sig Expansion { exp: seq StChg }
6 { #exp = #exp . elems and (∀ i : exp . inds • i �= exp . l a s t I d x
7 ⇒ exp [ i ] . next = exp [ add [ i , 1 ] ] . curr ) }
8 sig StChg { curr , next : one State }

A While is a command (Cmd) composed of a condition (cond), the body of the while (wbody), and a set of expansions 
(Expansion) of that body (unfold) (Line 2). The expansion denotes the minimum repetition of the body of the while before its 
condition becomes false. We require at least two expansions (#unfold ≥2), such that two disjoint expansions do not reuse the 
same starting state to expand the while body (Lines 3 and 4). An Expansion is a sequence 〈(s0, s1), (s1, s2), ..., (sn−1, sn)〉 of 
state changes (Line 8) where si is a state (Lines 5 and 7). The size of an expansion exp is the length of its sequence of state 
changes exp.elems (Line 6). Each pair (si, si+1) denotes a state changing StChg (Line 10) from si to si+1 by running the body of 
the loop one time. A state change at position i must have its next state equals to the current state at position i+1 (Lines 6 
and 7). Thus, instead of finding the semantics of while by a fix-point computation, we ask Alloy∗ to produce expansions 
that correspond to such a computation.

A program is a unique atom from which all other statements must be linked to (or reachable from).

one sig Prog { body: one Cmd }

2.2. The well-formedness of IMP in Alloy∗

Signatures do not fully capture the grammar of the IMP language. Thus we need to add some extra constraints to assure 
the synthesis of well-formed programs.

A program must have all its locations associated to a variable name.

∀v: Loc • v ∈ IntVar . name

The remaining constraints are listed below. For conciseness we omit their Alloy∗ code.1

• All commands must belong to the body of the synthesised program;
• All relational operators must belong to conditions of an if-then-else or a while;
• All arithmetic expressions must be in the right-hand side of an assignment;
• An illegal cycle must not be produced. An illegal cycle is a program that executes the command c and, without being in 

the scope of a while loop, returns to c.

2.3. The semantics of IMP in Alloy∗

Another Alloy∗ characterisation of IMP is the model of its denotational semantics. Except for the conditional and while 
statements, the embedding of the semantics comes directly from the semantics of IMP.

The semantic clauses are defined in terms of the relations evalC, evalA and evalB that evaluates a command, an arithmetic 
expression and a Boolean expression, respectively, based on a corresponding state.

A state has a field bind that maps a location to an integer.

sig State { bind: Loc → one Int }

The relation evalC relates a command, an initial state and a final state. The relations evalA and evalB relate an expression e, 
a state s, and the value of e in s.

The final state of Skip is equal to its initial state. Thus the semantics of Skip is an identity relation.

evalC [ Skip ] ∈ iden

An assignment overrides the binding of the initial state with the new binding established by the assignment.

1 All details can be found in the work by Maranhão [29] (Chapter 3).
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∀c: Assign , i S t : evalC [ c ] . univ • evalC [ c ] [ i S t ] . bind = i S t . bind ++ { c . lhs . name→evalA [ c . rhs ] [ i S t ] }

The override operator ++ updates the initial binding (iSt .bind) with the mapping from the left-hand side c.lhs .name to the 
value of the right-hand side evalA[c.rhs][ iSt ] of the assignment.

A sequential composition is the composition (denoted by . in Alloy∗) of the final state of the first command with the 
initial state of the second command.

∀c: SComp • evalC [ c ] = ( evalC [ c . cur ] ) . ( evalC [ c . next ] )

The semantics of the conditional command is defined below.

∀c: CondS , i S t : evalC [ c ] . univ •
( evalB [ c . cond ] [ i S t ] = BitTrue ⇒

evalC [ c . then ] [ i S t ] = evalC [ c ] [ i S t ]
else evalC [ c . elsen ] [ i S t ] = evalC [ c ] [ i S t ] )

If the condition evaluates to true, the final state is the final state of the then branch (evalC[c.then][iSt]). Otherwise, the final 
state is the final state of the elsen branch (evalC[c.elsen][iSt ]).

Concerning the semantics of a while loop, the first point is the evaluation of its condition in the initial state (evalB[c.

cond][iSt]). If it evaluates to false (BitFalse), then nothing happens: the final state equals the initial state (Line 2). Otherwise 
(Line 4 to 10), the body of the loop expands (or “runs”). Such expansions must satisfy the following properties: (i) the first 
state of the expansion (st .exp. first .curr) is the initial state (Line 4); (ii) each next state (st .exp.last .next) must correspond to the 
evaluation of the current state (evalC[c.wbody][ic.curr]=ic.next) (Line 6); (iii) each intermediate iteration evaluates its condition 
to true (Line 7); and, (iv) the final state (ic=st.exp.last) has the last state (condition) false (Line 8), otherwise true (Line 9). 
The last clause assures that the initial states of all expansions are valid (Line 10).

1 ∀c: While , i S t : evalC [ c ] . univ •
2 ( ( ( evalB [ c . cond ] [ i S t ]=B i t F a l s e ⇒ evalC [ c ] [ i S t ]=i S t
3 else
4 (one s t : c . unfold • s t . exp . f i r s t . curr=i S t and
5 evalC [ c ] [ i S t ]=s t . exp . l a s t . next and
6 (∀ i c : s t . exp . elems • evalC [ c . wbody ] [ i c . curr ]=i c . next and
7 evalB [ c . cond ] [ i c . curr ]=BitTrue and
8 ( i c=s t . exp . l a s t ⇒ evalB [ c . cond ] [ i c . next ]=B i t F a l s e else
9 evalB [ c . cond ] [ i c . next ] = BitTrue ) ) ) ) )

10 and (∀ s t : c . unfold . exp . f i r s t . curr • evalB [ c . cond ] [ s t ] = BitTrue ) )

2.4. The synthesis predicate of IMP in Alloy∗

The following predicate is an adaptation of the predicate reported by Milicevic et al. [30] in which we take into account 
states and state changes.

1 pred Synt [p: Prog ] {
2 ∀ i S t : State , evalC : Cmd → ( State → lone State ) ,
3 evalB : BExp → State → Bit ,
4 evalA : AExp → State → Int
5 when { PreC [ i S t ] and Semantics [ evalC , evalB , evalA ] }
6 { PosC [ iSt , evalC [p . body ] [ i S t ] ] }
7 }

The synthesis predicate is defined in terms of a pre condition (PreC), a post condition (PosC) and the semantics (Semantics). 
The semantics defines the behaviour of the evaluation functions. The pre and post condition are predicates that are instan-
tiated for each case study. This predicate states that we want a representative program (p: Prog) such that in all initial 
state (iSt), which satisfies the precondition of the problem (PreC[iSt]) and the semantics of the modelled language 
(Semantics[evalC, evalB, evalA]), its postcondition holds in the final state given by evalC[p.body][iSt]. 
More details about these predicates can be found in the work by Maranhão [29].

3. Extending the Alloy∗ model towards inductive synthesis and reuse

Following the study by Gulwani et al. [2], creating formal specifications (deductive synthesis) needs an effort comparable 
to creating the source code itself. Thus inductive synthesis seemed to be an interesting starting point to users with few (or 
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even none) programming skills. It is worth observing that by deductive we mean a synthesis based on a formal contract. 
Thus, in this work, the term deductive applies only to the style of the user intent, namely, pre and post condition. But 
internally, the Alloy∗ Analyser engine uses instances of entities to find a solution instead of deducting it from axioms and 
inference rules. That is, from a formal contract, the Alloy∗ Analyser instantiates all input and output (I/O) examples (in a 
finite domain) to find a solution. On the one hand, the computational effort is considerably high to find all these examples. 
On the other hand, a classical deductive system needs human guidance.

We extend our Alloy∗ model towards inductive synthesis by simply adapting the state to take into account already 
provided input-output examples.

sig I S t a t e extends State { }
sig FState extends State { }
one sig Example {

pairs : I S t a t e one → one FState
}

The synthesis predicate changed slightly to deal with the provided I/O examples from the user (instead of a formal 
contract). In summary, we threw away the pre and post condition and created a new predicate named Exmp (Line 6). Also, 
for each synthesis, a soft-sketch is written down into the new predicate Exmp (Lines 10 to 12).

1 pred Synt [p: Prog ] {
2 ∀ i S t : IS tate , evalC : Cmd → ( State → lone State ) , evalB : BExp → State → Bit ,
3 evalA : AExp → State → Int when {
4 Semantics [ evalC , evalB , evalA ]
5 } {
6 Exmp[ iSt , Example . pa i rs [ i S t ] ]
7 }
8 }
9 . . .

10 pred Exmp[ i S t : one IS tate , f S t : one FState ] {
11 / / f o r each s y n t h e s i s problem the user has to
12 / / provide examples or s o f t−s k e t c h e s here .
13 }

This simple adaptation allowed us to see another benefit of inductive synthesis that may be even more worthy than the 
fact that examples2 are easier to be provided than a formal contract.

3.1. Reuse of functions calls

Another aspect that is used by some synthesisers is the reuse of function calls. Inspired by the study by Polozov and 
Gulwani on PROSE [7], we noticed that it is basically built on top of reuse. Our study instead was based on the synthesis 
from scratch of the IMP language by Winskel [16]. These functions are, in general, domain specific (for example, to handle 
strings). Thus, the user may have an idea of what it is needed.

So we decided to investigate what happens when we allow the reuse of function calls instead of always trying to 
synthesise from the primitive commands originally available in the IMP language. In this section we illustrate the case of 
the Max3 problem.

By using our original formulation we synthesised a code like this (with no function calls):

1 int Max3( int num1, int num2, int num3) {
2 int max;
3 i f (num1 > num2) {
4 i f (num1 > num3) { max = num1; }
5 else { max = num3; }
6 }
7 else {
8 i f (num2 > num3) { max = num2; }
9 else { max = num3; }

10 }
11 return max;
12 }

2 An example for us is a pair (input, output). Although we agree with Gulwani et al. [2] that examples are easier to produce than contracts, we have not 
performed a controlled experiment with real users in order to assess the impact of using the kind of examples we adopt.
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Then, we provided the synthesiser with a new syntactical construct named Max2:

sig Max2 extends Cmd {
arg1 : one Loc , arg2 : one Loc , res : one Loc

}
{ arg1 �= arg2 and res �∈ XLoc }

Max2 semantics is defined as:

∀ c: Max2, i S t : evalC [ c ] . univ •
evalC [ c ] [ i S t ] . bind = i S t . bind ++

{ c . res → max[ i S t . bind [ c . arg1 ] + i S t . bind [ c . arg2 ] ] }

Then we have got the following code (that is, a code with reuse), which is more readable than the previous one. As we 
already pointed out in the beginning of this section, reuse is domain related and then each domain has its own specific 
opportunities.

int Max3( int num1, int num2, int num3) {
return Max2(Max2(num1, num2) , num3) ;

}

The syntactic ingredients used to get a reused-solution shown before were the following: three IntVar that repre-
sent those 3 variables (num1, num2, num3); and two Max2, the new syntactic construct that represent reuse. All those 
remaining syntactic ingredients (detailed in Section 5) were not mentioned in this example because they were set to auto-
matic mode. It is worth observing that the synthesis becomes faster with reuse because we direct the search to try to solve 
the problem with the reusable syntactic ingredients first. If that reuse is not possible at first, then the synthesis continues 
with the other syntactic ingredients.

We used this facility when dealing with the synthesis involving arrays (Section 4). We simply noticed that all sorting 
algorithms need a swap statement as a composition of three assignments over three variables (a traditional solution to 
swapping the content of two variables, say X and Y, uses a temporary variable, say T, to avoid losing the initial value of one 
of the variables).

T := X;
X := Y;
Y := T ;

This is equivalent of having a multiple assignment [31] of two variables like X, Y := Y, X available in our synthesiser.
Thus similar to the Max2 function, we introduce a Swap construct.

sig Swap extends Cmd {
src : one ( IntVar + IntArrVar ) ,
dst : one ( IntVar + IntArrVar ) } { src �= dst }

Such a construct is used to represent a multiple assignment like this one src, dst := dst, src. The semantics 
of Swap is very similar to that of a traditional assignment. The first part is for integer variables. Recall that the bind

relation is an association between names and values. Thus, the following Alloy∗ snippet is stating that the bind relation 
will be updated with two new pairs: (i) the first associates the name of src (c.src.name) with the value of dst
(iSt.bind[c.dst.name]); and (ii) the second associates the expected complement: the name of dst (c.dst.name) 
with the value of src (iSt.bind[c.src.name]). As arrays are not involved in such an assignment, we must ensure 
they do not change: evalC[c][iSt].bindA = iSt.bindA).

∀ c: Swap ,
i S t : evalC [ c ] . univ •

( c . src ∈ IntVar and c . dst ∈ IntVar
⇒ ( evalC [ c ] [ i S t ] . bind = i S t . bind ++

{ c . src . name → i S t . bind [ c . dst . name] +
c . dst . name → i S t . bind [ c . src . name] } and

evalC [ c ] [ i S t ] . bindA = i S t . bindA ) )
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4. Extending the Alloy∗ model towards arrays

After dealing with the main concepts synthesisers can offer to the user, we decided to check whether our Alloy∗ synthe-
siser could find the solution of well-known array-based programs. To do that, we just needed to introduce the concept of 
an array in our Alloy∗ specification.

4.1. Extending the syntax

Our first effort was to extend the syntax of IMP with arrays. To use an array inside expressions and assignments we 
needed to add the array itself (its name) as a new element in the Alloy∗ specification.

sig Array { }

By having the Array entity, we could extend the expressions allowed.

sig IntArrVar extends AExp { base : one Array , index: one AExp }
{ no ( IntArrVar <: index ) }

The above definition was needed to permit expressions like A[i] (that is, A[i] ∈ IntArrVar), where A is an Array
(through the element base) and i is an usual arithmetic expression (through the element index). Note that we forbid 
using an array expression as an index (no (IntArrVar <: index)).

Besides expressions, arrays can also occur inside assignments (in the left-hand side). Thus we extend the entity Assign
as follows.

sig Assign extends Cmd { lhs : one ( IntVar + IntArrVar ) ,
rhs : one AExp

}
{ rhs �= lhs and lhs . name �∈ XLoc }

That is, the left-hand side (lhs) of an assignment can now be an integer variable or an integer-based array variable 
(lhs:one (IntVar+IntArrVar)).

Finally, we need to store the content of an array in the state of the system (its semantics). The array’s content 
(ArrayContainer) is indeed an alias for an Alloy∗ sequence (of integers). Thus

sig ArrayContainer {
c e l l s : seq Int

}

And the state used by the semantics of IMP (State) must have a reference to the array’s content. This is accomplished 
by the map bindA, which links an array name with its content.

sig State { bind: Loc → one Int ,
bindA: Array → ArrayContainer }

4.2. Extending the well-formedness conditions and the semantics

Concerning well-formedness, we need just to assure that if an array name is used it must be used by some expression.

some Array ⇒ some IntArrVar and
(∀ eA: IntArrVar • eA . base ∈ Array )

The semantics was extended in just two points: expressions and assignments. For expressions, we characterised in Alloy∗
the evaluation of something like A[e] (or a: IntArrVar), where A (or a.base) is the name of an array and e (or
a.index) is some integer expression used as index of this array. The index is usually evaluated by evalA, but the array 
content has to be recovered from the sequence (s.bindA[a.base].cells).

∀ a: IntArrVar , s : State •
evalA [ a ] [ s ] = ( s . bindA [ a . base ] . c e l l s ) [ evalA [ a . index ] [ s ] ]
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For assignments, we just had to add the formalisation corresponding to arrays (c.lhs ∈ IntArrVar).

1 ∀ c: Assign ,
2 i S t : evalC [ c ] . univ •
3 . . .

4 and
5 ( c . lhs ∈ IntArrVar
6 ⇒ some ct : ArrayContainer • ct . c e l l s =
7 i S t . bindA [ c . lhs . base ] . c e l l s ++ { evalA [ c . lhs . index ] [ i S t ] → evalA [ c . rhs ] [ i S t ] }
8 and ( evalC [ c ] [ i S t ] . bindA = i S t . bindA ++ { c . lhs . base → ct } )
9 and evalC [ c ] [ i S t ] . bind = i S t . bind )

The ... is the original formalisation for integer variables as left-hand sides, but with an extra condition to assert that 
array state variables do not change. For arrays as left-hand sides, we need to ensure that non-array variables do not change 
(evalC[c][iSt].bind = iSt.bind) and show what happens to the array variables. First we state that the content 
is updated by overriding, storing this new state information in ct. Then we use ct to update (by overriding as well) the 
mapping of array variables maintained by bindA.

And the next part deals with array-based variables. For arrays, we have a multiple assignment like A[i], A[j] := 
A[j], A[i], where the goal is to change the elements positions inside an array. We have a similar but complementary 
predicate. We ensure non-array variables do not change (evalC[c][iSt].bind = iSt.bind) and we assume a new 
array content (name ct) such that its content is the same of the original one except at the positions whose elements are 
exchanged (iSrc -> vDst + iDst -> vSrc ). Finally, this new array content is updated in the bindings of arrays 
(evalC[c][iSt].bindA = iSt.bindA ++ c.src.base -> ct).

( ( c . src ∈ IntArrVar and c . dst ∈ IntArrVar )
⇒ l e t i S r c = evalA [ c . src . index ] [ i S t ] •

l e t iDst = evalA [ c . dst . index ] [ i S t ] •
l e t vSrc = i S t . bindA [ c . src . base ] . c e l l s [ i S r c ] •
l e t vDst = i S t . bindA [ c . dst . base ] . c e l l s [ iDst ] •

( c . src . base = c . dst . base ⇒ (some ct : ArrayContainer •
( ct . c e l l s = i S t . bindA [ c . src . base ] . c e l l s ++

{ i S r c → vDst + iDst → vSrc } and
evalC [ c ] [ i S t ] . bindA = i S t . bindA ++ { c . src . base → ct }
and evalC [ c ] [ i S t ] . bind = i S t . bind ) ) ) )

5. Augmenting the Alloy∗ model with Genetic Algorithm

This section presents an integration of a genetic algorithm with our Alloy∗-based Program Synthesiser (APS). Our genetic 
algorithm integration with the APS is referred to as APS-GA. To better understand this integration, we start by describing 
the syntactic ingredients, the control flow of APS and the user interactions with it.

We call the Alloy∗ scope syntactic ingredients. The synthesiser manipulates up to 15 syntactic constructors, described as 
follows: IntVar (integer variables), IntVal (integer values), Assign (assignment operations), SComp (sequential com-
positions), CondS (conditional statements), While (loop statements), Add (+ operations), Sub (− operations), Mult (×
operations), EQ (= operators), NEQ ( �= operators), LTH (< operators), LEQ (≤ operators), GEQ (≥ operators), GTH (> oper-
ators). Each syntactic constructor must have a range, that is, a pair of integer values {lb : ub | 0 ≤ lb ≤ ub} defining a lower 
bound (lb) and an upper bound (ub) of the amount of such a constructor to occur in the synthesised program. For example: 
(i) a 0:2 pair for Add means that either no Add operator is needed, or a single or double Adds are needed; and (ii) a 0:0
pair for CondS means no conditional statement (if-then-else) must occur in the synthesised program. By default, all 
syntactic constructors are initially set to automatic (auto), which means the synthesiser mechanically assigns values to the 
constructors. Here is an example of syntactic ingredients set manually: the statement run Synt for 7 but exactly 
4 IntVar, exactly 1 While, exactly 1 CondS runs the synthesiser with at most 7 occurrences of each syntac-
tic constructor, except for integer variables (it must have exactly four), while (it must have exactly one), and if-then-else (it 
must have exactly one).

Fig. 1 shows an Activity Diagram [32] illustrating the control flow of the APS in 6 steps. The user prepares the pre and 
post condition, the syntactic ingredients and the sketch (1). The synthesiser searches for a solution (2). If the synthesiser 
does not generate an instance, then the user needs to make changes (solution not found). If the synthesiser generates an 
instance (a candidate program), then the Alloy∗ Analyser generates an XML file (3) that is subsequently transformed into 
source code (4). The user has to check its correctness either by inspection or by compilation and testing (5). The user 
analyses the results and decides whether the candidate program is a correct solution (6). If it is not a correct solution, more 
adjustments are made to the input (1). Otherwise, the synthesis is finished.

In the diagram shown in Fig. 1, all activities contained in the user swim lane are done manually, while all activities in 
the APS swim lane are done mechanically. Also, the user has to interact with the APS dozens of times into the loops 1-2-1 
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Fig. 1. The control flow of the APS.

and 1-2-3-4-5-6-1 until finding, by a trial and error method, a correct program. For example, the synthesis of Fibonacci 
takes a few hundreds of such iterations to find out a desirable solution.

One of the ideas of the program synthesis is to discover programs in which the user does not know a complete solution. 
Therefore, the user would rely on the outcome of the synthesiser. The user may have clues about the inputs (pre and post 
condition, syntactic ingredients, sketch, etc.), but would not know how to implement a complete source code and perhaps 
would be unable to judge whether the generated code is correct. The state-of-the-art does not yet allow us to rely fully 
on synthesisers. Therefore, the scenarios shown in Fig. 2 (and other figures in this document) are within an experimental 
context, where the user either knows if the synthesiser has produced something correct (and does the code inspection) or 
performs test cases to increase its confidence.

Fig. 2 shows the control flow of the APS-GA in 12 steps.
The user must provide input/output examples, syntactic ingredients (optionally as the Genetic Algorithm can generate 

them automatically), a soft sketch (optional) and a test suite (that is, a comprehensive set of input-output pairs) (1)→(2). 
A fitness function (represented by a distance metric, such as discrete, Manhattan, etc [33]) can be optionally provided 
to evaluate how better is a candidate program. The discrete metric is the default. Recall that a soft sketch is a set of 
commands that must appear in the synthesised program, but in no particular order (in contrast to the order of execution of 
a traditional sketch, which is hard coded). The user then invokes the APS-GA (2) → (3). From this point on, the APS-GA does 
steps (3) to (10) mechanically. First, APS-GA generates the syntactic ingredients (3). A chromosome is generated based on 
the input/output examples, the soft sketch and the syntactic ingredients (4). The Alloy∗ Analyser then is executed to search 
for instances (5). If the analyser does not generate an instance, APS-GA discards that chromosome and generates a new 
chromosome by repeating steps (3), (4) and (5). If the analyser generates an instance (a candidate program), then an XML 
model is generated (6) and is transformed into source code in the Java language (7). APS-GA then compiles, executes and 
tests that source code against the test suite (8). It then calculates the fitness function of the candidate program (9). If the 
program has not passed 100% of tests and has not yet reached the timeout, then a mutation is generated (10). Our mutation 
is a random change in the program’s syntactic tree and is implemented by the Alloy∗ next() command, responsible for 
producing a new model different from the current one. If the mutation is invalid (if there is no instance), APS-GA tries again 
N times, where default N = 32 (the user can change N). If next() results in a new instance, steps (6), (7), (8), and (9) are 
repeated. If it pass 100% of the tests or reach the timeout, APS-GA halts. If APS-GA is halted by timeout, then it means that 
the best code generated did not pass 100% of the tests. In this case, the user must inspect (11) and analyse (12) the source 
code to decide if it does (or does not) satisfy her intention. Note that the values of the syntactic ingredients found in the 
first instance (first execution of step (3)) is used as the upper limit of the 0,1, ..,m range of each syntactic ingredient to be 
generated in future generations.

The examples are used to synthesise the program, while the test suite is a different set of examples used to evaluate the 
correctness of a candidate solution. Ideally, examples must capture the user intention while preventing a state explosion. 
For example, we have chosen the 3rd number of the Fibonacci sequence (whose output is the number 2). If we had chosen 
the 10th number (whose output is 55), the number of loops at the While syntactic ingredient would lead the synthesiser 
to state explosion. On the other hand, if we had chosen the first number of the Fibonacci sequence (the well-known 1), 
it would not be expressive enough to help the synthesiser to find out a solution. More precisely, examples are used at 
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Fig. 2. The control flow of the APS-GA.

two different moments: (i) A very small set of examples is used in the core of the synthesiser to generate the candidate 
programs. Less than 6 examples were used for the synthesis of the programs in this study; and (ii) A set of tests (as 
many as necessary to represent all possible inputs and expected outputs, henceforth critical cases) composes the test suite, 
so that the generated candidate program that passes in all tests of the suite, is delivered as a source code solution. For 
example, in Max3 the number of critical cases to compose the test suite would be 6 tests (let num1, num2, num3 be 
integer variables, such that num1 > num2 > num3. Consider in → out = {num1, num2, num3 → num1; num2, num1, num3 →
num1, . . . , num2, num3, num1 → num1}), in Max4 it would be 24 tests. It would be an ideal scenario to always have a test 
suite that once a candidate program is going to pass 100%, it guarantees a correct source code by construction, but that 
depends on the user experience on informing a correct set of critical cases to compose the test suite, for each problem.

Regarding a soft sketch, here is an example of it to synthesise Fibonacci:

?? = Res − v3 ; ?? = Res + v3 ; ?? = v2 + 1;

where ?? means a hole, to be filled by the synthesiser. Also v2, v3 and Res are integer variables and this soft sketch is 
written in Alloy∗ as follows:

/ / ?? = Res − v3
Assign3 . rhs = Sub1
Sub1 . op1 . name = Res
Sub1 . op2 . name = v3
/ / ?? = Res + v3
Assign2 . rhs = Add2
Add2 . op1 . name = Res
Add2 . op2 . name = v3
/ / ?? = v2 + 1
Assign1 . rhs = Add1
Add1 . op1 . name = v2
Add1 . op2 . val = 1

This soft sketch specifies that the program must have 3 assignments to unknown variables and, most importantly, the 
assignments do not need to occur in the particular order as shown in the soft sketch. A soft sketch has the advantage of 
leaving the ordering, occurrences and composition of the constructs to be synthesised. However, if needed, the user can 
restrict such freedom for a faster convergence.
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Fig. 3. The Genetic Algorithm way.

5.1. Genetic Algorithm on Alloy∗ instances

With a genetic algorithm we can now generate populations of candidate solutions that evolve (mutating their syntactic 
ingredients) over time. In particular, the population is produced mainly by generating syntactic ingredients automatically, 
while the mutation of the source code of the candidate programs is captured by the next() operation of the Alloy∗
Analyser.

Syntactic ingredients: Fig. 3 illustrates the genetic algorithm integrated with the APS. A gene is a syntactic constructor 
(like an addition operator or an if-then-else). In the case of APS-GA, there are 15 genes that make one chromosome, 
however this number will increase when implementing reuse or arrays. Note that, in the initial population, Chromo-
some 01 has failed (Found instance? equals No) and thus it is not converted into Java, its fitness value is not 
computed and its “Passed test (%)” is marked as NA (Not Available). This chromosome is discarded. On the other hand,
Chromosome 19 finds a candidate program (Found instance? Yes), which is converted into source code and passes 
on 76% of the test cases (passed test (%) 76). The better the fitness value of the chromosome, the larger its proba-
bility to be selected to the next generation.

In the second generation, for instance, Chromosome 12 had the best fitness of its generation and coincidentally the 
best so far. That process continues until the Gth generation, where Chromosome 09 achieves the fitness=100% (passed 
test (%) 100). This is a candidate program that has passed all tests and thus is a solution for the problem.

In parallel to the evolutionary process, the synthesiser now records the best fitness values achieved so far, that is, the 
synthesiser stores, along the way, all candidate programs sorted by their fitness values. This allows the synthesiser to show, 
at the end of the execution, the best program synthesised across all generations.

Our synthesiser stops when a program passes 100% of the tests (or we run out of time). So, although multiple correct 
programs could be produced, we only return the program that passed in most of tests or passed 100% of them. For instance, 
if an implementation of bubble sort is found, it is the one that is returned by the synthesiser regardless whether another 
implementation of a sorting algorithm could be produced few iterations later.

Mutation: In APS-GA, mutation is applied in two ways: (i) to syntactic ingredients; and (ii) to candidate programs. The 
former uses a genetic algorithm strategy that changes syntactic ingredients as follows. First, it uses an elitist selector that 
clones 90% of the best-fitness candidate programs and throws away the remaining 10% of the worst-fitness programs. It 
then fills up these 10% by repeating the best-fitness programs. Next, mutations are applied to each gene of the program 
population with a 1/12 = 0.083 probability. To simplify, we have decided not to use crossovers along the evolutionary 
process.

In the latter case, APS-GA invokes the Alloy∗ Analyser to make changes in the source code of a candidate program 
by calling the next() method. This is how we implement mutation to candidate programs because it correspondingly 
changes some pieces of the source code, acting as the expected conceptual mutation operation as described in Genetic 
Algorithms. In other words, when the Alloy∗ Analyser finds an instance (a candidate program), it allows the APS-GA to call 
the Analyser’s next() method to get another instance under the same constraints (or the same syntactic ingredients). The 
Alloy∗ Analyser then looks for a new instance through the search space by using its built-in enumeration strategy. Such a 
new instance happens to be a variation of the original instance where some parts of the candidate program change (usually 
it changes the position of variables, expressions or commands of the current candidate program).

Fig. 4 shows four consecutive mutations on candidate program, from the up-left-most to the down-right-most hand-side. 
From Fig. 4(a) to (b), we can see that the mutation changed the while loop condition (from v2 < v3 to v1 > v2) as well 
as exchanged Lines L3 and L4. From Fig. 4(b) to (c) it has exchanged Lines L2 and L3. From Fig. 4(c) to (d) it has changed 
the left hand-side at three Lines (L2: Res with v2, L3: v3 with Res, and L4: v1 with v3). The next() function is 
always called a fixed number of times (say n) after an instance is found. Each call means a mutation. By default n = 32. But 
this value can be set by the user.
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Fig. 4. (a) Excerpt of current Fib candidate; (b) after 1 call, (c) 2 calls, and (d) 3 calls to the next() method.

5.2. User inputs and interaction

Synthesisers that produce general purpose imperative programs usually take as input either a DSL (specific or subset of 
a general purpose language) [34], a sketch [35], or a formal specification [6].

APS [14] takes as input: (i) a formal contract (pre and post condition), (ii) syntactic ingredients (optional, but provided 
by hand by the user), and (iii) sketches (optional). On the other hand, the APS-GA takes as input: (i) examples, (ii) syntactic 
ingredients (optional at the start point, but they are generated mechanically during the evolutionary computation), (iii) a 
soft sketch (optional), (iv) a test suite and (v) a distance metric.

The default value of each syntactic ingredient in the APS is 3, i.e. each syntactic ingredient might occur at most 3 times 
in the synthesised program. It is very unlikely that this default value produces a correct program. Therefore, the user is 
forced to interact with the APS several times adjusting by hand the values of the syntactic ingredients in order to get more 
candidate programs. Moreover, the APS user must validate the candidate programs by hand (either by running test cases 
or by inspecting the source code). The amount of manual interactions the APS user must employ is much higher than 
when considering its combination with Genetic Algorithm (we mean the APS-GA), where the user can input (optionally) 
initial syntactic ingredients, but once the synthesis starts, no user interaction takes place. In each population, new syntactic 
ingredients are generated and all candidate programs are verified via testing in a fully automatic way.

6. Empirical evaluation

In order to evaluate whether APS and APS-GA are able to synthesise a program, three criteria have been used to select 
the problems: (i) similar problems found in the field and proposed by other synthesisers3; (ii) Turing complete problems, 
which means programs with states (variable data read/write), conditional branches, loops, arrays, etc.; (iii) problems that 
require several manual interaction with APS; for example, Max4 requires the user to call the next() 32 times followed 
by testing/inspection of all these instances before finding out a desired solution; and (iv) a few programs that represent 
different categories of problems (for example: Max2, 3 and 4 to Maximum/Minimum problems; GCD, Fib, IntSQRT exercise 
synthesis of while loop; aBubSort, aSelSort exercise array sorting problems; and so on).

The computer setup was: a notebook with an Intel 2.60 GHz i7 processor, 8 GB RAM, 256 GB SSD and Windows 10 
Home operating system.

6.1. Deductive and inductive approaches and Reuse

Fig. 5 compares the time taken to translate Alloy∗ to the solver language (e.g. MiniSAT) with 4 different subjects: Swap 
(swaps the values of two variables), Max2 (returns the maximum of two numbers), Max3 (returns the maximum of three 
numbers) and GCD (returns greatest common divisor of two numbers). Such a translation from Alloy∗ to the solver’s lan-
guage is done automatically by the Alloy∗ Analyser.

According to Fig. 5 we can see that inductive synthesis takes more time than deductive synthesis in the task of translating 
from Alloy∗ to the solver’s language. The difference, where deductive was faster than inductive, in terms of percentage of 
time were: Swap=26.6%; Max2=20.0%; Max3=17.6%; and GCD=7.2%. This is because, in the deductive case, the Alloy∗ Analyzer 
has to translate a generic predicate — the contract — whereas in the inductive case, each input-output example has to be 
translated.

The time taken for the solver to find a solution was measured under the configuration shown in Table 1. The synthesis 
process makes use of examples while the verification process makes use of test cases (the set of examples and the set of 
test cases are disjoint). Moreover, all subjects synthesised have passed in 100% of the test cases and have been inspected by 
the authors to further guarantee their correctness.

3 White et al. [36] have reported a few benchmarks for general purpose automatic program synthesisers in the GP community. The authors have surveyed 
the EuroGP and the GECCO GP track conferences from 2009 to 2012 and have revealed that only 3.8% (8 out of 210) of the papers are in this field. On the 
other hand, programs presented at this paper were tested already and they fall into the “Synthetic problems” and “Algorithmic programming problems” 
sections into the same paper. Also they were tested into Sygus Competition, where some of them fall into the “Integer arithmetic” track [26].
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Fig. 5. Deductive vs inductive translation time.

Table 1
Number of examples used for synthesis and test cases used for verification 
for each subject..

Subject Examples Test cases

Swap 2 3
Max2 2 3
Max3 6 18
GCD 2 20

Fig. 6. Deductive vs inductive solving time.

So, the time taken for the solver to find a solution under this configuration was considerably shorter for the inductive 
case than the deductive case according to Fig. 6. The difference, where inductive was faster than deductive, in terms of 
percentage of time were: Swap=352.7%; Max2=340.0%; Max3=359.8%; and GCD=518.2%. This means that inductive synthesis 
can be 3 to 5 times faster than the deductive synthesis. For more complex problems, we may infer that these differences 
are going to be monotonically larger. This is because, in the deductive case, the generic predicate — the contract — takes 
an additional time to search for all but minimum set of input-output examples that satisfy the contract whereas in the 
inductive case, input-output examples are already given.

On the other hand, in the classical deductive synthesis based on theorem proving, the implementation is the final solu-
tion to the problem whereas in the inductive case it is a partial solution that needs rounds of verification to converge into 
the final solution. So the use of inductive or deductive synthesis depends mostly on the problem at hand.



16 A. Correia et al. / Science of Computer Programming 201 (2021) 102536
Fig. 7. Reuse translation and solving times of the Max3 problem.

Table 2
Execution time (seconds) of the synthesis task.

Prog. Mean (s) St. Dev. Coeff. of Var (%) # Cand.

Maj5 56.4 2.8 4.95 6
Maj8 56.6 2.7 4.77 8
IntSQRT 141.6 6.3 4.48 3
Max4 155.6 3.6 2.34 32
Modu 242.8 9.2 3.79 2
Fact 276.2 13.1 4.76 3
Fib 959.8 35.7 3.71 6

One can see that the effort taken by an inductive synthesiser is smaller than that of a deductive synthesiser (see Fig. 6). 
This is somewhat natural since the deductive case requires the synthesiser to create an implementation that must satisfy 
all input-output pairs whereas the inductive case uses a subset (used considerably smaller) of these input-output pairs.

In terms of reuse of function calls instead of trying to synthesise from the primitive commands, Fig. 7 presents the time 
taken by the Alloy∗ Analyser to translate the Alloy∗ model into the solver’s language as well as the time taken by the solver 
to find a solution to the Max3 problem. It shows that the reuse of functions saves considerable time. It is worth recalling 
that the above code for Max3 is not reused as is: an Alloy∗ version of its syntax and semantics was embedded in the 
synthesiser by hand.

6.2. Using Alloy∗ and Genetic Algorithm

Using APS-GA, Table 2 shows the mean time of 10 runs (in seconds), its standard deviation, the coefficient of varia-
tion, and the number of candidate programs the system has tested before delivering a solution (#Cand) for the following 
subjects: Fibonacci (Fib), integer square root (IntSQRT), Majority of 5 (Maj5), Majority of 8 (Maj8), Maximum of 4 (Max4), 
modulo operation (Modu) and factorial (Fact).

The experimental setup was: population size (10 individuals); the total number of times the population can evolve (5
times).

In our empirical evaluation, we set the syntactic ingredients by giving priority at the following order: automatic, sketch, 
and manual (ranging from fully automatic to fully manual). In general, such a decision is up to the user.

Also, to achieve the performance shown in Table 2, we had to do some manual guesses,4 described as follows: Fibonacci 
had 4 signatures defined manually out of 15, IntSQRT had 2 out of 15, Maj5 had 4 out of 15, Maj8 had 6 out of 15, Max4 
had 0 out of 15, Modu had 4 out of 15, and Fact had 4 out of 15. The main limitation of using Genetic Algorithm is to get 
to a convergence when all syntactic ingredients are left in the automatic mode.

Table 3 shows I/O examples, soft sketches and the synthesised program for the same subjects from the Table 2. It is 
important to mention that the synthesised source codes for the majority programs (Maj5 and Maj8) are simplified versions 
that contain a single if-then-else block.

4 We start by considering the number of variables by the elements used in I/O examples or the contract. By considering X variables, we assume at least 
X assignments. Conditionals and loops are inferred by thinking a bit about the problem at hand. That is, by creating some mental model of the problem (A 
very preliminary solution).
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Table 3
APS-GA inputs and synthesised program.

Subject I/O Examples Soft Sketch Synthesised Program

Fib 3→2 ?? = Res+v3
?? = Res-v3
?? = v2+1

v1=read(); v2=Res=0; v3=1;
while (v1>v2) {

v2 = v2 + 1;
Res= Res + v3;
v3= Res - v3;

}

Int
SQRT

6→2 ?? = v2 + 1;
?? = v3 +

2*v2+1;
?? = v2 - 1;

v1=read(); v2=v3=Res=0;
while(v3<=v1) {

v3 = v3 + 2 * v2 + 1;
v2 = v2 + 1;

}
Res = v2 - 1;

Maj5 1;2;1;1;1→1
2;1;1;2;1→1
1;2;2;1;2→2

?? = v1;
?? = v2;
?? =

v4+v5+v6
+v7+v8;

v1=1; v2=2; v3=7; Res=0;
//Read v4,v5,v6,v7,v8
Res=v4+v5+v6+v7+v8;
if(Res >v3) {

Res = v2;
} else {

Res = v1;
}

Maj8 1,2,1,1,1,1,
1,1→1;

2,2,1,2,1,2,
1,1→1;

1,2,2,1,2,2,
1,2→2;

?? = v1;
?? = v2;
??=v4+v5+. . . +v11;

v1 = 1;
v2 = 2; v3= 12; Res = 0;
// Read v4,v5,..,v11
Res=v4+v5+...+v11;
if (Res >v3) {Res = v2;}
else {Res = v1;}

Max4 5;7;2;1→7
7;2;5;1→7
1;5;7;2→7
5;1;2;7→7

v1 >v2
v1 >v3
v1 >v4
v2 >v3
v2 >v4
v3 >v4
?? = v1;
?? = v2;
?? = v3;
?? = v4

Res=0;//Read v1,v2,v3,v4
if(v1 >v2) {

if(v1 >v3) {
if(v1 >v4) {Res = v1;}
else {Res = v4;}

} else {
if(v3 >v4) {Res=v3;}
else {Res = v4;}

}
} else {

if(v2 >v3) {
if(v2 >v4) {Res = v2;}
else {Res = v4;}

} else {
if(v3 >v4) {Res = v3;}
else {Res = v4;}

}
}

Modu 3;2→1 ?? = v2+v1
-v3;

?? = v4+1;
?? = v2*v4;

//Read v1,v2
v3=v4=Res=0;
while(v3 <= v1) {

v4 = v4 + 1;
v3 = v2 * v4;
Res = v2 + v1 - v3;

}

Fact 3→6 ?? = v2;
?? = v2 * v3;
?? = v3 + 1;

v1=read();v2=1;v3=Res=0;
while(v1 >v3) {

v3 = v3 + 1;
v2 = v2 * v3;

}
Res = v2;

The total time spent to find out a solution varied from 56.4 seconds (Maj5) to 15.9 minutes (Fib). The coefficients of 
variation are under 5% of their own mean time, which show that the experimental setup performance was homogeneous. 
Finally, the synthesiser had to check from 2 (Modu) to 32 (Max4) candidate programs to find a solution.
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Table 4
Syntactic ingredients for Fib defined mechanically: gray cells-sketch/automatic; white cells/manual.

Subject IntVar IntVal Assign SComp
Fib skt skt skt 2:2

CondS While Add Sub Mult
0:0 1:1 skt skt 0:0

EQ NEQ LEQ GEQ LTH GTH
auto auto auto auto auto auto

At first sight, it seems that the synthesis time is too long. But the question is that in general we do not take into 
account the time used by the user to interact with a synthesiser in a try and error approach. In our case, the Genetic 
Algorithm part performs this task automatically. Obviously that, if one considers just the time taken by the Alloy∗ syn-
thesiser when the input is precisely defined, the synthesis takes considerable less time. For instance, in our previous 
study [14], the synthesiser was very competitive because the time taken by adjusts of the user input was not consid-
ered.

6.2.1. The synthesis of Fibonacci
To better understand how the Alloy∗ synthesiser interacts with the Genetic Algorithm part, we describe the inputs to 

synthesise Fibonacci.5

Input → output examples: For each I/O example, the user needs to provide to the synthesiser a pair of initial (IState) 
and final (FState) state values for all variables involved in the synthesis task. We named v1, v2, v3, v4, . . . , and 
so on, for input and temporary variables, and Res for the output variable. For example, the synthesis of the Fibonacci 
program has required one input (v1), a pair of temporary variables (v2 and v3), and one output (Res). For certain 
synthesis used in this article, we need to provide examples related to an expected well-known solution to the prob-
lem. In the case of Fibonacci, the iterative solution uses the previous two Fibonacci elements to compute the next one. 
This is the reason we used variables v1, v2 and v3 as input. The initial and final states are declared as shown be-
low.

one sig I S t a t e 1 extends I S t a t e { } { bind = {v1→3}+{v2→1}
+{v3→0}+{ Res→0}}

one sig FState1 extends FState { } { bind = {v1→3}+{v2→1}
+{v3→3}+{ Res→2}}

One I/O example was enough to perform a successful synthesis. The initial state of the variable Res is zero and it is 
expected that the program will end up with Res equals to two. Also, the variable v1 must keep the same value 3 from the 
initial to the final state, the variable v2 also keeps the same value 1 at any set of examples for the Fibonacci’s synthesis, 
and the variable v3 will vary from zero (at the initial state) to 3 (at the final state).

Moreover, the Fibonacci test suite contains pairs of the form inp→out, where inp is the input and out is the expected 
result. The test suite contains the following pairs: 1 → 1, 2 → 1, 4 → 3, 5 → 5, 6 → 8, 7 → 13, 8 → 21, 9 → 34, 10 →
55. Also, note that here we skip the pair 3 → 2 as it has already been used as an I/O example of the synthesis process.

Soft Sketch: The synthesis of Fibonacci has required the following soft sketch: ?? = Res + v3; ?? = Res - v3; 
?? = v2 + 1;, where ?? means a hole [35]. Note that the semicolon (;) only separates the assignments, without forcing 
any order in their executions.

Syntactic Ingredients: Table 4 shows how syntactic ingredients are defined for Fibonacci. The user may want to reduce 
the time spent to find out a solution by constraining the search space and guess the bounds of the scope of the signatures. 
There are two ways to do that: (i) by writing down a soft sketch that set up the scopes indirectly (see cells filled with skt
in Table 4); and (ii) by setting up the bounds of the syntactic constructors manually.

Although the syntactic ingredients have default values (set to auto), if the genetic algorithm does not converge to a 
correct answer, we indeed need more user guidance. In order to provide such arguments, the user needs some knowl-
edge of programming to guess the values of the ingredients. We have not carried out a controlled experiment to measure 
the effort to provide syntactic ingredients, but we think it is somewhere in between programming and providing exam-
ples.

Once a soft sketch (cells filled with skt in Table 4) and/or I/O examples are defined, the user has to define the syntactic 
ingredients as signatures in the Alloy∗ model. For instance, for the Fibonacci soft sketch, mentioned before, the syntactic 
ingredients (variables, assignments, addition and subtraction operations) have to be written as signatures in the Alloy∗
model, as shown on the next page

5 For conciseness, we only report the Fibonacci synthesis in detail. The scripts for all other examples can be found in the following website: https://
github .com /PSMFg /psmf /wiki.

https://github.com/PSMFg/psmf/wiki
https://github.com/PSMFg/psmf/wiki
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1 . . .

2 / / d e f i n i t i o n −− v1 was mention on I /O example
3 one sig v1 , v2 , v3 , Res extends DLoc { }
4 one sig Assign1 , Assign2 , Assign3 extends Assign { }
5 one sig Add1 , Add2 extends Add { }
6 one sig Sub1 extends Sub { }
7 . . .

8 / / S o f t sketch
9 Assign3 . rhs = Sub1 / / ?? = Res − v3

10 Sub1 . op1 . name = Res
11 Sub1 . op2 . name = v3
12 Assign2 . rhs = Add2 / / ?? = Res + v3
13 Add2 . op1 . name = Res
14 Add2 . op2 . name = v3
15 Assign1 . rhs = Add1 / / ?? = v2 + 1
16 Add1 . op1 . name = v2
17 Add1 . op2 . val = 1
18 . . .

After that, there is no further user intervention, APS-GA will count and will set ranges of the syntactic ingredients auto-
matically. First APS-GA counts how many definitions exist in the Alloy∗ model, for the Fibonacci problem mentioned before, 
the count will be: 4 DLoc (named v1, v2, v3, Res), which is a kind of IntVar; 3 Assigns (named Assign1, 
Assign2, Assign3); 2 Adds (named Add1, Add2); and 1 Sub (named Sub1). Secondly, APS-GA sets the bounds of 
previous counted syntactic ingredients (Invar=4:4, Assign=3:3, Add=2:2, and Sub=1:1).

In the synthesis of the Fibonacci program, we defined manual values {lb : ub} for a sequential composition (SComp), a 
conditional constructor (CondS), a while loop (While) and a multiplication (Mult) (see Table 4).

6.3. Considering programs with arrays

The subjects used are described below:

• Maximum/minimum element found in an array (aMax);
• Assignment of all elements of an array (e.g. myArray[index]= 2*index;) with some expression (aDouble);
• Addition of all elements of an array (aSUm);
• Counting the number of occurrences of a value in an array (eCount);
• Bubble sorting (aBubSort);
• Selection sorting (aSelSort).

For each program synthesised, Table 5 shows the mean time of 10 runs (seconds), its standard deviation, the coefficient 
of variation, and the number of candidate programs the system has tested before delivering a solution (#Cand).

Table 5
Execution time of the synthesis task.

Prog. Mean St. Dev. Coeff. of Var (%) #Cand.

aMax 14.0 0.4 2.97 1
aDouble 18.0 0.8 4.31 1
aSum 151.0 6.1 4.07 16
eCount 347.3 7.2 2.08 15
aBubSort 271.0 1.0 0.37 3
aSelSort 407.0 5.6 1.37 10

6.3.1. The synthesis of an array’s Maximum element (aMax)
In what follows, we describe in detail the inputs given to synthesise aMax.6

Input → output examples: For each I/O example, the user needs to provide to the synthesiser a pair of initial (IState) 
and final (FState) state values for any variables involved in the synthesis task. For example, the synthesis of the aMax 
program has required a pair of input (InLoc1 and InLoc2), an input array (InArray1) pointing out to a container 
(ArrayC1 and their pairs of index→value-cells), and one output (OutLoc). The container, initial and final states are 
declared as follows on the next page:

6 For conciseness, we only report the aMax synthesis in detail. The scripts for all other examples can be found in the following website: https://github .
com /PSMFg /psmf /wiki.

https://github.com/PSMFg/psmf/wiki
https://github.com/PSMFg/psmf/wiki
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one sig ArrayC1 extends ArrayContainer { }
{ c e l l s = {0 → 2 + 1 → 3 + 2 → 1 + 3 → 0} }

one sig I S t a t e 1 extends I S t a t e { }
{ bind = { OutLoc → 0 + InLoc1 → 0 + InLoc2 → 3}

and bindA = { InArray1 → ArrayC1 } }
one sig FState1 extends FState { }

{ bind = { OutLoc → 3 + InLoc1 → 3 + InLoc2 → 3}
and bindA = { InArray1 → ArrayC1 } }

The initial state of the variables InLoc1 and OutLoc is 0 and it is expected that the program will end up with 
both values equals to 3. Also, the variable InLoc2 must keep the same value (3) from the initial to the final state, as so 
the InArray1 array (with values shown at column Examples from Table 6). The input variables InLoc1 and InLoc2
represent the lowest and highest indices of the array. As InLoc1 is incremented during the program, its final value must 
be equal to InLoc2 in the final state. Moreover, the aMax test suite is quite different. Now the user needs to provide, for 
any variable involved in the synthesis task, its category (only input _in, only output _out, or both _io), its type (only 
integer _int, or only array of integers _intArr), its name (such as _InLoc1 or _IOArray2), and its value (a single, 
a pair, or more) that is related with category and type the user can set. For example, the synthesis of the aMax program 
requires a single integer (OutLoc) for output (_out) variable, a pair of single integer (_InLoc1 and _InLoc2), and an 
array (_InArray1) for input (_in) variables and the test suite must have lines such as:

_out_int_OutLoc=13;
_in_int_InLoc1=0;
_in_int_InLoc2=5;
_in_intArr_InArray1=[0]2=[1]13=[2]1=[3]4=[4]3=[ 5 ] 5 } ;

Finally, aMax, aSum, and eCount examples use arrays only for inputting purposes and their initial and final states remain 
the same. On the other hand, aDouble, aBubSort, and aSelSort use arrays for inputting and outputting purposes, which 
means their initial and final state will change, and that fact matters regarding the state explosion of the Alloy∗ synthesiser.

Soft Sketch: There are several possible solutions (source code) for the aMax program. One of them is shown at the
Synthesised program column in Table 6. In this case, the synthesised program skeleton comprises 10 possible holes 
to be filled and they are denoted by ?1, ..., ?10 symbols, as shown at the Possible holes column in the same 
table. Notice that the Possible holes column is not required by the synthesiser. It has been shown just to explain 
which holes the synthesiser filled in. Have a look at the sketch column7 to notice the sketch line //s1 may fit at hole
?2 or ?4, as so sketch line //s2. Also, sketch line //s3 may fit at hole ?5=?6, ?8, or ?9=?10, as so sketch line //s4. 
Moreover, hole ?8 may be any arithmetic expression, including an empty one. As our synthesiser deals with soft sketches, 
the order of execution (//s2→//s1→//s4→//s3) at the synthesised Program was different than the one listed 
at the Sketch column //s1→//s2→//s3→//s4. Finally, the sketch we have provided to run the experiments has 
fitted 40% (notice that the APS-GA have to decide which hole each sketch went to fit in). The 60%-remain (6 of 10) of the 
possible holes were filled by the APS-GA, in other words, the APS-GA has decided to fill ?1 with while, ?3 with if, ?5
with OutLoc, leaving ?8 empty, and so on. As the program gets more complex, we may infer that it becomes more difficult 
to synthesise its source code keeping the same amount of sketch. Thus, APS-GA has filled up to: 57%-remain (4 of 7) of 
the possible holes, including the array’s index for aDouble and aSum problems; and 60%-remain (6 of 10) of the possible 
holes for eCount. From the aBubSort (43%-remain, 7 of 16) and aSelSort (25%-remain, 5 of 20) problems, the amount of the 
sketches are quite similar to the final source code, similarly to what has happened to Solar-Lezama’s study [35].

Syntactic Ingredients: Without arrays we have up to 15 syntactic constructors, described in Section 5. Using arrays, 
we have included more three: Skip (a command that does nothing), Swap (swaps a value between two variables) and
IntArrVar (number of arrays of integer variable). All eighteen syntactic constructors are working the same way described 
at Section 5. For aMax, the synthesis performance results shown in Table 5. APS-GA has setup the following syntactic 
constructors to: Sketch (Assign, Add, IntArrVar, GTH); Manual (Swap 0:0); and Automatic (IntVar, IntVal, 
SComp, CondS, Skip, While, Sub, Mult, EQ, NEQ, LEQ, GEQ, LTH). Table 6 shows I/O examples, possible 
holes, soft sketches and the synthesised source code for the subjects aMax, aSum, aDouble, eCount, aBubSort, and aSelSort.

6.4. Genetic algorithm effectiveness

This section describes how a change in the APS-GA inputs affects the searching time. In particular, we are interested in 
evaluating the genetic algorithm effectiveness when the range of the syntactic ingredients is enlarged.

We have used the same arguments described in Section 6, except for those below.

7 j=IONum[InLocJ], i=IONum[InLocI], and m=IONum[InLocMin]. The holes ?2, ?6, ?8 into aBubSort’s sketch can be filled with any of 
these three sketch expressions: (i) InLocJ<InLimJ; (ii) j<i; or (iii) InLocI<InLimI.
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Table 6
Inputs and synthesised programs using APS-GA with arrays.

Subject Possible holes I/O examples Soft sketches Synthesised program

aMax ?1(?2) {
?3(?4) {

?5=?6;
} ?7 { ?8 }
?9=?10;

}

[0]2; [1]3;
[2]1→3

InArray1[InLoc1] >
OutLoc //s1

InLoc2 >
InLoc1 //s2

??=InLoc1+1 //s3
??=InArray1[InLoc1] //s4

OutLoc=0; //Read InLoc1,
//Read InLoc2, inArray1
while(InLoc2 >InLoc1) {

if(InArray1[InLoc1] 
>OutLoc) {

OutLoc=InArray1[In-
Loc1];

} else { }
InLoc1=InLoc1+1;

}

aDouble ?1(?2) {
?3= ?4;
?5= ?6;

}

[0]2; [1]3;
[2]1→
[0]4; [1]6;
[2]2

InLoc1<InLoc2 //s1
??= InLoc1+1 //s2
??= 2*IOArray1[??] //s3

OutLoc=0; InLoc1=0;
//read InLoc2; IOArray1;
while(InLoc1 < InLoc2) {

IOArray1[InLoc1]=
2*IOArray1[InLoc1];

InLoc1= InLoc1+1;
}

aSum ?1(?2) {
?3= ?4;
?5= ?6;

}

[0]2; [1]3;
[2]1→6

InLoc2 >InLoc1 //s1
??=InLoc1+1 //s2
??=OutLoc+

InArray1[??] //s3

OutLoc=0; //Read InLoc1,
//Read InLoc2, inArray1
while(InLoc2 > InLoc1) {

OutLoc= OutLoc+
InArray1[InLoc1];

InLoc1= InLoc1+1;
}

eCount ?1(?2) {
?3(?4) {

?5=?6;
} ?7 { ?8 }
?9= ?10;

}

[0]2; [1]3;
[2]2; [3]1;
[4]2→3

InArray1[InLoc1]==
InLoc3 //s1

InLoc2 >InLoc1 //s2
InLoc1=InLoc1+1 //s3
OutLoc=OutLoc+1 //s4

OutLoc=0; //Read InLoc1, 
InLoc2
//Read InLoc3, inArray1
while(InLoc2>InLoc1) {

if(InArray1[InLoc1]==In-
Loc3) {

OutLoc=OutLoc+1;
} else { }
InLoc1= InLoc1+1;

}

aBubSort ?1(?2) {
?3=?4;
?5 (?6) {

?7 (?8) {
swap(?9, 

?10)
} ?11 { ?12 

}
?13=?14;

}
?15=?16;

}

[0]2; [1]3;
[2]1→[0]1;
[1]2; [2]3

while (?2) {
?3=InLocI+1;
while (?6) {

if (?8) {
swap(j, i);

} else { ?12 }
?13=InLocJ+1;

}
?15=InLocI+1;

}

InLocI=0; 
InLimI=IONum.length-1;
InLocJ=0; 
InLimJ=IONum.length;
while (InLocI<InLimI) {

InLocJ=InLocI+1;
while (InLocJ<InLimJ) {

if (j<i) {
swap(j, i);

} else { } //skip
InLocJ= InLocJ+1;

}
InLocI=InLocI+1;

}

aSelSort ?1(?2) {
?3=?4;
?5=?6;
?7(?8) {

?9(?10) {
?11=?12;

} ?13 { ?14 
}

?15=?16;
}
swap(?17, 

?18)
?19=?20;

}

[0]2; [1]3;
[2]1→[0]1;
[1]2 [2]3

while (InLocI<
InLocN-1) {

?3 = InLocI;
?5 = InLocI+1;
while (InLocJ<

InLocN) {
if (j<m) {

?11= InLocJ;
} else { }
?15=InLocJ+1;

}
swap(i, m)
?19=?20;

}

InLocN = IONum.length;
InLocI=InLocMin=InLocJ=0;
while (InLocI<

InLocN-1) {
InLocMin = InLocI;
InLocJ = InLocI+1;
while (InLocJ<InLocN) {

if (j<m) {
InLocMin= InLocJ;

} else { }
InLocJ=InLocJ+1;

}
swap(i, m)
InLocI=InLocI+1;

}
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Table 7
Genetic Algorithm effectiveness.

Problem Time w/tight syntactic 
ingredients

Enlarge 
search space

Time w/relaxed 
syntactic ingredients

Chromosome 
(generation)

Discard rate %

Fib 00h16m00s 16x 12h45m00s 96th (4th) 05%
Maj5 00h00m56s 64x 03h55m00s 729st (3rd) 87%

1. The candidate program population size has been increased from 3 to 30 individuals;
2. The Maximum Evolutionary Population Process has been increased from 5 to 20 generations;
3. The Manual guesses from some syntactic ingredients were relaxed from values lbfrom:ubfrom to values lbto:ubto, 

in other words, lbfrom:ubfrom → lbto:ubto, which means a larger search space was set;
4. We have enlarged by 16 times the search space for Fib and by 64 times for Maj5 by changing the range of following 

syntactic ingredients:
• Fib={SComp 2:2→0:3, While 1:1→0:1, GTH 1:1→0:1};
• Maj5={SComp 1:1→0:3, CondS 1:1→0:3, GTH 1:1→0:3}

By looking at the Fib problem, the SComp syntactic ingredient has increased from 1 to 4 possible values {2} → {0, 1, 2, 
3}, denoted by 1 → 4. The same idea is applied to While and GTH, which holds 4(SComp) · 2(While) · 2(GTH) = 
16. The same concept is applied to Maj5, which now holds 4(SComp) · 4(CondS) · 4(GTH) = 64.

The candidate program population size and the Maximum Evolutionary Population Process arguments were increased to 
allow the APS-GA to try a larger diversity of possible candidate programs, due to a larger search space (and, consequently, 
less manual guesses).

With those changes described before, the running time of the APS-GA to find out a solution has increased:

• From 16 minutes (at the 6th chromosome in the 1st generation) to 12 hours and 45 minutes (at the 96th chromosome 
in the 4th generation) for the Fib problem; and

• From 56 seconds (at the 6th chromosome in the 1st generation) to 3 hours and 55 minutes (at the 729th chromosome 
in the 3rd generation) for the Maj5 problem.

The effectiveness of the Genetic Algorithm is shown in Table 7. As the population size comprises 30 individuals and, 
roughly speaking, there were approximately 90 chromosomes that have turned into candidate programs, the 729 attempts 
represent a discard rate ≈ 87% of the invalid chromosomes. By using the same idea to Fib problem, the discard rate was 
smaller, only ≈ 5% (5 from 96) chromosomes were discarded.

With these results (summarised in Table 7), we observe that, by integrating genetic algorithm with APS, it might take 
hours or even several days to find out a desired solution, as long as more syntactic ingredients are left on the automatic 
mode or the user guesses are relaxed. Nevertheless, combining a genetic algorithm with APS is still a better choice than 
using just APS because APS-GA avoids a lot of manual interactions in several trial-error attempts.

6.5. Choice of solver

Because the Alloy Analyser uses the Sat4Java solver as default, another important aspect to improve performance of the 
synthesis is to use the most appropriate solver. As already reported in literature, our synthesis were faster when using 
the MiniSAT solver available in the Alloy∗ Analyser. To give an idea of the importance of choosing an appropriate solver, 
Fig. 8 shows that, in the synthesis of the Bubble Sorting algorithm, if one chooses the Sat4J solver instead of MiniSAT, the 
synthesis time increases around 6 times. For conciseness, just Bubble sort was presented. However previous empirical runs 
have shown that, for all other array problems, the MiniSAT solver outperformed Sat4J.

By using a similar solver to MiniSAT, the MiniSAT UnSat Core solver, the time difference reduces significantly. Thus all 
examples in this paper were synthesised using the MiniSAT solver.

6.6. Threats to validity

The main threat to us is the external validity, which regards to the generalisation of the synthesiser efficiency and 
efficacy to other programs or when we relax the search parameters (considering two perspectives: successfully convergence 
to a solution, and synthesis times). Indeed, the set of programs used as sample examples allows us to have a good idea 
of the efficiency of the APS and APS-GA, although it is challenging to say that it will work well if we get the parameters 
of the genetic algorithm strategy more relaxed or if we apply the APS to other programs that deals with a higher level of 
complexity (such as nested loops, nonlinear expressions, etc). Another threat to generalisation is the number of subjects 
used. Although we chose them to possess varied different features, we still need to experiment with a larger set of subjects.
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Fig. 8. Choice of solver.

7. Related work

This section presents synthesis strategies currently found in literature that are related (but different) to this study.
A classic study applied the deductive approach to generate synthesis from a complete specification through mathematical 

induction proof [37]. One purpose of our study is to employ genetic algorithms to drive the synthesis, requiring the user to 
provide as naturally as possible examples and soft sketches. We assume that such task is less challenging than constructing 
predicates, theorems, and formal proofs.

A synthesis approach by SAT/SMT solvers was proposed where, from the construction of constraints and sketches, the 
synthesiser is able to generate as a result the source code and the respective proof [3]. This approach requires the user 
to define a scaffold (which resembles sketches) so that the user needs to inform the syntactic structures, such as loops, 
assignment, and operators (which and in what order). Our approach allows the user to set constraints as soft sketches, 
where there is no need to define in what order its commands must occur.

A tool was created to design solver-aided languages with a set of predefined program synthesis resources (language 
constructors) that allow solving symbolically problems of synthesis through sketches [34]. One purpose of our study is to 
mitigate the user needs on defining detailed sketches.

A framework was created by Polozov and Gulwani [7] to facilitate rapid development of efficient, robust, and maintain-
able inductive program synthesis (called Program-By-Example) of industrial quality. That framework proposes an approach 
called data-driven domain-specific deduction (D4), which unifies the strengths of deductive, syntax-guided, and domain-
specific inductive strategies in one meta-algorithm. They present synthesis case studies of string transformations in spread-
sheet software and scripts for extracting data from semi-structured documents (such as custom fields from log files). Our 
study aims at producing general purpose imperative programs where we synthesise conditional branches, sequential com-
positions, arithmetic and relational expressions and loops.

Parisotto et al. [38] proposed the Neuro-Symbolic Program Synthesis technique, which can mechanically construct com-
puter programs in a domain-specific language that are consistent with a set of examples provided at testing time. This 
method is based on two neural modules. First, the cross correlation I/O network produces a continuous representation of a 
given set of examples. Second, the Recursive-Reverse-Recursive Neural Network (R3NN) synthesises a program by incremen-
tally expanding partial programs. They present synthesis case studies based on string transformations. Our approach does 
not use a training set and aims to produce general purpose programs.

Krawiec [39] proposed a synthesis of programs based on the behaviour of candidate programs so that (in addition to 
the examples) the values of the intermediate states of a candidate program are explored. Krawiec extends the traditional 
fitness function to find out a solution through genetic programming and machine learning techniques, presenting examples 
in functional language. Our study addresses the synthesis of general purpose but imperative programs.

Natural synthesis [40] is a technique that extends program synthesis by SAT / SMT solvers in an approach that uses 
natural evidence to automate the synthesis of correct construction programs extracted from rich and complex specifications, 
which in principle establishes an intractable synthesis problem. Then the user needs to identify a set of natural proofs to 
help on finding a program that supports natural proofs. In doing so, the original (intractable) synthesis problem becomes a 
natural synthesis problem (treatable and that can be manipulated by inductive synthesisers such as Sketch or Rosette, with 
strong specification, so that the program that meets the new specification also serves the original. Qiu et al. [40] present a 
synthesiser of data structures (iterative or recursive) that manipulate imperative programs with dynamically allocated stacks. 
The inputs for the synthesiser are: (i) a program sketch that describes the program skeleton at a high level and leaves the 
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Table 8
A comparison between synthesisers.

Proposal Criteria Solver State Loops Sketch Pointer #Probl.

DeduSynt [37] Ded. SMT No No No No Several
Sketch [18] Ded. SMT No No Need No Several
PROSE [7] Ind./Ded. SMT+ No Yes Need No Few
Rosette [34] Ind. SAT No No Need No Few
VS3 [3] Ded. SMT Yes Yes Need No Few
NeuroSymbol [38] Ded. SMT Yes Yes Need No Few
BPSynt [39] Ind. Decision Tree No No No No Few
Alloy∗ [15] Ded. SAT No No Maybe No Several
NaturalSynt [40] Ded. SMT Yes Yes Need Yes Few
SUSLIK [6] Ded. SMT Yes Yes Free Yes Few
APS [14] Ded./Ind. SAT Yes Yes Maybe Yes Few
APS-GA [25] Ind. SAT Yes Yes Maybe Yes Several

implementation details as syntactic gaps (unknowns); (ii) Pre and post condition (uses the reserved words requires and 
ensures, respectively) where formulas can be built using a DSL.

The work by Polikarpova et al. [5,6] (about Synquid and Suslik) goes in a similar direction to that of Srivastava [3,4]. 
Indeed Solar-Lezama et al. [5] are also exploring features in such a direction as well. That is, of using contracts (pre and 
post condition) to aid on synthesis. But in these studies, the authors do a manipulation that we do not. They work in a 
true deductive approach, finding intermediate predicates that are related to Hoare’s logic. And from these, they find the 
programming constructs. We always perform syntactic search using the Alloy∗ ’s SyGUS infrastructure.

None of the related studies has combined a model finder with Genetic Algorithm to synthesise general purpose impera-
tive programs.

Table 8 summarises the most representative synthesisers found in literature, comparing them with respect to:

• The synthesis Criteria: If it is deductive (Ded.) or inductive (Ind.) or both (Ded./Ind.);
• The kind of Solver: SAT, SMT, and SMT+;
• If it deals with State change (commands) instead of just expressions;
• If it deals with programs with Loops;
• If it needs (can use) a Sketch;
• If it handles pointers (Pointer) as we follow Winskel’s denotational semantics for IMP, where we have a set of locations 

Loc (or memory addresses), introduced by abstract sig Loc {}. Based on Loc, a state is defined as a binding 
from Loc to Int (sig State { bind: Loc -> one Int }). Finally, an integer variable is defined indirectly (via a 
pointer) by sig IntVar extends AExp { name: one Loc }. That is, an integer variable is not directly associ-
ated with an integer but with a location from which an integer is associated with;

• The amount of synthesised problems (#Probl.).

8. Conclusion

In this article we have shown how to build a program synthesiser inspired by the imperative programming language 
IMP [27] using Alloy∗ [30]. The high level of abstraction of the Alloy∗ language in combination with its higher-order model 
finder allowed us to quickly develop a multi-concept synthesiser on top of the denotational semantics of IMP. Our Alloy∗
Program Synthesiser (APS) produces programs with the notions of state and with elaborate control flow commands like 
while loops and arrays.8 The APS scales reasonably well once the right syntactic ingredients are found. The performance of 
the APS, when considering only the synthesis of expressions, can be comparable to Solar-Lezama’s study [41] as can be seen 
in [42]. For statements synthesis (synthesis of commands like sequential composition and while loops), it is comparable to 
Srivastava study [3] in terms of expressiveness.

Many synthesisers [3,41] require the design of a sketch and of a specification language together with the development 
of a translator to a constraint solver. An additional benefit from using Alloy∗ is the level of confidence of its correctness as 
it inherits several years of use, development and maturity of Alloy [17].

We introduce a new kind of user intent: soft sketches, which are more flexible than sketches as the commands have no 
fixed order of execution.

However, as more complex problems are considered, user input becomes difficult. And this was exactly the main goal of 
considering Genetic Algorithm in this context, which automatically generates such syntactic ingredients.

In what follows we list our future work:

• We intend to use an axiomatic instead of a denotational semantics in the synthesiser. This will allow us to synthesise 
micro-contracts (smaller functionality) from macro-contracts (larger functionality of a real-world system) by refinement. 

8 Our synthesiser can be found at: https://github .com /PSMFg /psmf /wiki.

https://github.com/PSMFg/psmf/wiki
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We already have preliminary results towards this goal. The axiomatic based synthesiser is very fast compared to denota-
tional version, but currently we are facing problems to deal with the logic substitution operator [·/·], which is absent in 
Alloy∗. This initiative goes in the direction of the works [3–6], but still using the syntax-guided search engine provided 
by the Alloy∗ SyGUS algorithm;

• We considered Genetic Algorithm to aid the user on the user’s inputs needed by the APS. But another way of attacking 
this problem is trying to find the minimum scope as reported in the study [43]. Maybe this study cannot help in the 
soft sketches part but it can alleviate the iterations of the Genetic Algorithm counterpart;

• We intend to perform an exhaustive analysis on the potential benefits and drawbacks when using reuse in the general 
case in addition to implementing some form of ranking of the best potential functions to be called for a given problem;

• Another interesting trend is to synthesise refactorings. We will explore how to synthesise the left/right-hand side of a 
refactoring as well as the provisos to assure to correctness of the refactoring;

• We also intend to generate soft sketches automatically by extending our genetic algorithm. This can allow our synthe-
siser to be used in a large variety of problems;

• We will explore the intermediate states of candidate programs (as reported by Krawiec [39]). This may help to improve 
the way APS-GA finds out a solution;

• Although nested loops can be produced by our synthesiser, we have not yet explored deeper this feature. Such an 
exploration also remains as future work;

• Finally, we would like to evolve our synthesiser to deal with multiple arrays, recursion, other types of variables, etc. 
We plan to do it incrementally by extending the syntax and the semantics of our language and, occasionally, combine 
different tools.
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