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A B S T R A C T

This paper describes a new method for speech activity detection (SAD) based on the recently
proposed single frequency filtering (SFF) analysis of speech signals and a neural network
model. The SFF analysis gives instantaneous spectrum of the speech signal at each sampling
instant. The frequency resolution of the spectrum is decided by the number of frequencies
used in the SFF analysis, which in turn depends on the frequency spacing. Using a frequency
spacing of 10 Hz and a sampling frequency of 8 kHz, a 401 dimensional spectrum, covering
0�4 kHz, is obtained at each sampling instant. This is used as a feature vector to train an arti-
ficial neural network (ANN) model to discriminate (noisy) speech and nonspeech (mostly
noise). The output of the trained ANN model for a given test utterance gives speech/non-
speech decision at every sampling instant. Post processing of the decision is used for SAD.
The system generated SAD is evaluated on the Apollo corpus for SAD task in terms of detec-
tion cost function (DCF). The DCF values of the proposed system on the development and
evaluation datasets are 3.1% and 4.6%, respectively, whereas the DCF values of the reported
baseline system are 8.6% and 11.7%, respectively.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Detection of speech regions in audio signals is the first step in developing any speech processing system such as language
identification, speech and speaker recognition. The speech activity detection (SAD) is a challenging task because the collected
speech is generally degraded by environmental conditions such as noise, reverberation and other audio signals including back-
ground speech. The collected speech is also degraded by the communication and recording channels. One such degraded speech
data is the Apollo speech corpus. The SAD task for the Apollo corpus described in (Fearless Steps Challenge, 2019; Kaushik et al.,
2018) is addressed in this paper.

The SAD has been studied extensively, exploiting mostly the characteristics of speech, although in a few cases the characteris-
tics of degradations, i.e., noise and channel, are also considered (Tanyer and Ozer, 2000; Morita, Shota and Unoki, Masashi and
Lu, Xugang and Akagi, Masato, 2016; Sangwan and Zhu and Ahmad, 2005; Choi and Chang, 2014; Park et al., 2016). There are
approaches based mainly on (a) signal processing (Aneeja and Yegnanarayana, 2015; Sadjadi and Hansen, 2013), (b) statistical
characterization of speech and noise features (Sohn et al., 1999; Ghosh et al., 2011), and (c) neural network models (Hughes and
Mierle, 2013; Zhang and Wu, 2013), for discriminating speech and noise. More recently, data driven deep neural networks
(DNNs) are also explored for SAD (Kaushik et al., 2018; Zhang and Wu, 2013). Significant results have been obtained in all these
cases. But the studies in most of the cases are limited either to standard databases provided for evaluation (Ziaei et al., 2015), or
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on specific tasks as in DARPA RATS for different channel distortions (Thomas et al., 2015). The approaches for SAD task for natu-
ralistic data such as Apollo corpus poses a different challenge due to different types of degradation (Kaushik et al., 2018; Ziaei
et al., 2014).

Most SAD methods represent speech using standard features such as filterbank coefficients or mel frequency cepstral coeffi-
cients (MFCCs), computed for every frame of size 10� 30 msec with a frame shift of 5�10 msec (Vlaj et al., 2005). In a few cases
features representing the excitation source, like the fundamental frequency (F0) and formant contours are appended to the stan-
dard features (Sadjadi and Hansen, 2013). In Kinnunen et al. (2007), the MFCC features along with support vector machine classi-
fier were used to discriminate speech and nonspeech regions. Although it was shown to give good performance, its performance
was limited to the trained noise conditions. A new feature, called multi-resolution cochleagram (MRCG), was proposed for SAD
under low signal-to-noise (SNR) conditions (Chen et al., 2014). The feature combines four cochleagrams at different spectral and
temporal resolutions to capture the local and contextual information. The regions with dominant time-frequency (TF) unit in the
multiple cochleagrams are considered as speech regions. The MRCG features with delta and double delta features were exploited
with boosted DNN (bDNN) to perform SAD. The bDNN generates multiple predictions from a single DNN (Zhang and
Wang, 2014). A stack of classifiers are explored in Zhang and Wang (2015), where each classifier explores the context in different
resolutions targeting different predictions, which are integrated with other classifiers. In Wang et al. (2015), one DNN for feature
mapping and one DNN for classification of speech and noise are integrated, to train jointly for speech nonspeech discrimination.
In Kim and Hahn (2018), adaptation of the context information according to the noise type and noise level are studied. Some fea-
tures are also derived using data-driven dimension reduction (Pitsikalis and Maragos, 2009). Fusion of multiple features and
models are also adopted for developing SAD (Thomas et al., 2015; Zhang andWu, 2013).

In this paper we propose a new representation of speech information using the single frequency filtering (SFF) analysis of
speech signals (Aneeja and Yegnanarayana, 2015). This representation gives instantaneous spectral information, aggregated over
the past data, as in filtering. The instantaneous spectral information captures both the excitation information in the form of har-
monics and the system characteristics in the form of shape of the spectral envelope. Hence it is expected to preserve the speech
characteristics well. The instantaneous spectra of noisy speech and of only noise (additive degradations) are discriminated by
training an artificial neural network (ANN) model. Post-processing of the ANN output is done for the SAD task as per the guide-
lines for performance evaluation given in Fearless Steps Challenge Evaluation Plan v1.2 (2019). The proposed SAD method also
illustrates a way of dealing with the inconsistencies in human annotations while generating the ground truth.

In general, the data driven DNNs are expected to extract the relevant features and then classifying in one trained model
(Zhang andWu, 2013; Hwang et al., 2015; Ferroni et al., 2015; Zazo et al., 2016). Hence standard features are used for representa-
tion of speech in these models. On the other hand, in the present study, the role of ANN is mainly for classification, and the objec-
tive is to study the effectiveness of the proposed instantaneous SFF spectrum for the SAD task on Apollo corpus data.

The paper is organized as follows. Section 2 describes the database, the proposed SAD challenge and the baseline system used
for comparison. Section 3 gives details of the proposed method, which includes a brief description of the SFF analysis, and train-
ing the ANN model with small amount of data (10 minutes) from the development set (of 20 hours). Section 4 gives details of
processing the output of the trained ANN model using the given ground truth on the development data, to arrive at suitable post
processing for decision making for SAD. Section 5 discusses the performance of the proposed method of SAD on the complete
development (dev) and evaluation (eval) data sets. The results are compared with those for the baseline method (Fearless Steps
Challenge, 2019), and with a few other methods. Section 6 gives a summary of the studies reported in this paper, highlighting
the specific advantage of using the SFF analysis and neural network classifier for such studies.

2. Description of SAD task in Apollo corpus

2.1. Database description Fearless Steps Challenge (2019)

Apollo data is a naturalistic audio recordings lasting for 8 days 3 hours 18 minutes and 35 seconds, in challenging environ-
ments (Kaushik et al., 2018; Fearless Steps Challenge, 2019; Fearless Steps Challenge Evaluation Plan v1.2, 2019; Sangwan et al.,
2013; Hansen et al., 2018b; 2018a). This data is a subset of the NASA’s Apollo-11 space mission, reflecting Air-to-Ground (CAP-
COM - Capsule Communicator) communications from the Astronauts. The data represents 30 individual analog communication
channels with multiple speakers in different locations working in real-time, with each channel reflecting a communication loop,
with multiple instances involving rapid switching of speakers containing 3 to 33 speakers over extended time periods. In some
instances, the average duration of speech of a speaker is close to 0.5 sec, with 15 speakers speaking in turns in a span of 10 sec. In
some instances more than 20 speakers were active at a time, with conversations lasting for 15 minutes at a stretch, and at some
other instances the silence lasts for hours.

Although audio data of 19,000 hours is available, only 100 hours of data, sampled at 8 kHz, is proposed for the SAD task. Out of
this 100 hours, 20 hours of data is provided with human verified ground truth labels for speech regions. This is called develop-
ment data. About 20 hours of data is used for evaluation. The SNR levels in the data, range from 0- to 20 dB. The 100 hours of
data contains data from 5 channels, namely, Flight Detector (FD), Mission Operations Control Room (MOCR), Guidance Navigation
and Control (GNC), Network Controller (NTWK) and Electrical, Environmental and Consumables Manager (EECOM), reflecting the
channel variability during the lift off, lunar landing and lunar walking. The degradations are mostly due to channel noises, system
noise, signal attenuation, transmission noise, analog tape static noise, noise due to analog tape aging, babble noise, and environ-
mental noises. The data was collected using headmounted as well as fixed far-field microphones. The data contains rapid
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switching of speakers. Also, all the speech is spontaneous. The distribution of speech and nonspeech is quite uneven. The devel-
opment data was divided into 39 signals and evaluation data into 40 signals, with each signal of 30 minutes duration.

2.2. Development of ground truth and scoring Fearless Steps Challenge Evaluation Plan v1.2 (2019)

The development of ground truth involves markings using the baseline system discussed in Section 2.3, followed by manual
verification. The manual annotations have ambiguities, due to noisy speech. The ground truth is marked with a bias more
towards the speech regions, as missing the speech regions is considered more serious.

In the scoring procedure (Fearless Steps Challenge Evaluation Plan v1.2, 2019), a collar of 0.5 sec on either side of the speech
region is included, and the results in the collar region are not scored. This is to take into account the inconsistencies in human
annotations. If a segment of nonspeech between collars is less than or equal to 0.1 sec, then the collars involved are expanded to
include the segment with less than 0.1 sec of nonspeech into the collar. If the segment of nonspeech between the collars is
greater than 0.1 sec, then it is left as it is as nonspeech. An illustration of scoring procedure as given in Fearless Steps Challenge
Evaluation Plan v1.2 (2019) is shown in Fig. 1 (reproduced from Fearless Steps Challenge Evaluation Plan v1.2 (2019)).

2.3. Description of baseline system Ziaei et al. (2014)

The baseline system uses unsupervised Combo-SAD technique which was shown to be robust for noisy conditions Sadjadi and
Hansen (2013). Here, a 1-dimensional feature vector per frame is obtained using a combination of perceptual spectral flux, har-
monicity, clarity, prediction gain and periodicity measures. Using the normalized values of the feature vectors, a two-mixture
GMM is trained where the mixture with larger mean corresponds to speech and the other corresponds to noise. Using speech
data from various sources, an ideal speech mixture is evolved. The combination of the means of the two mixtures is used to deter-
mine a threshold, to discriminate speech and nonspeech of a test utterance.

The limitations of the baseline system are, (1) frame-based features, (2) usage of 1 minute segments to normalize the features,
(3) inability to handle disproportion of speech and noise in a given segment, and (4) requirement of additional speech data to
determine appropriate threshold for speech classification.

3. Proposed method for SAD

The proposed method for SAD consists of three stages: (a) Feature extraction using SFF analysis, (b) training ANN model for
discrimination of (noisy) speech and nonspeech, and (c) post processing the output of the ANN model for decision making. The
first two stages are described in this section.

3.1. Feature extraction using SFF analysis

The single frequency filtering (SFF) analysis provides the envelope of the signal as a function of time at each selected fre-
quency (Aneeja and Yegnanarayana, 2015). The SFF is performed by first multiplying the signal x[n] with a complex sinusoid
Fig. 1. Illustration of development of ground truth and scoring (reproduced from Fearless Steps Challenge Evaluation Plan v1.2 (2019)).
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ejvkn. The resulting frequency-shifted signal is given by

xk½n�¼x½n�ejvkn; ð1Þ
where vk¼p�vk¼p�2pfk

fs
; fk is the selected frequency, and fs is the sampling frequency. The frequency-shifted signal xk[n] is

passed through a single pole filter, whose pole is located on the negative real axis, close to the unit circle in the z-plane. This cor-
responds to a near ideal resonator at half the sampling frequency (fs/2) of the given signal. The transfer function of the filter is
given by

H½z�¼ 1
1þrz�1

; ð2Þ

where r � 1 for the root close to the unit circle. The output of the filter is given by

yk½n�¼�ryk½n�1�þxk½n�: ð3Þ
The envelope vk[n] of the signal at the desired frequency fk is given by

vk½n�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ykr ½n�2þyki½n�2

q
; ð4Þ

where ykr[n] and yki[n] are the real and imaginary parts of yk[n].
For ensuring stability of the filter, r is chosen to be slightly less than 1. In this study r¼0:998 is chosen. The envelope is com-

puted for every 10 Hz in the frequency range of 0 to fs/2, i.e., 0 to 4000 Hz, resulting in 401 envelopes. At every instant there will
be values at 401 frequencies, giving an instantaneous spectrum of 401 dimensions. Note that the frequency interval, and hence
the number of frequencies in 0�fs=2; is a parameter that can be chosen depending on the desired dimension of the feature vec-
tor. In this study, the feature vector is the 401-dimension instantaneous SFF spectrum, i.e., ek[n], for k¼0;1; . . . ;400; for each n.
The instantaneous spectral vector is normalized by dividing each value by the sum of the values across all the frequencies. This
will reduce the dependency on the amplitude and energy of the signal.

An illustration of the SFF spectrogram, in comparison with the standard short-time Fourier transform STFT spectrogram is
shown in Fig. 2. The STFT spectrogram, shown in Fig. 2(b), is obtained for each frame of 50 msec, using a frame shift of one sam-
ple. It can be seen clearly that the voiced speech regions exhibit harmonic structure, which is absent in the noise regions. It can
also be seen that the speech information in terms of the harmonics and the formant information over the harmonics, is preserved
in the SFF spectrogram (in Fig. 2(c)) as in the STFT spectrogram. The instantaneous SFF spectrum contains information about both
the excitation (in the harmonic structure) and the vocal tract system (in the envelope) in the speech regions.

Note that due to infinite impulse response (IIR) characteristic of the filter, for low damping of the filter resonance, i.e., when r
¼0:998; the silence regions are covered with pitch harmonics from the previous voiced segments, as can be seen in Fig. 2(c). The
silence regions can be seen when a lower value, say r¼0:992; is used, as shown in the SFF spectrogram in Fig. 2(d). All spectro-
gram plots are suitably scaled for better display of spectral features in color.

The main difference between STFT and SFF is that STFT is a block processing approach, and SFF is a filtering approach. In the
STFT-based analysis, the spectral values are obtained by projecting the signal values onto sinusoidal components. In the SFF-
based analysis, the spectral value at each frequency is obtained by filtering. The response of the filter is a decaying IIR type, where
the current sample value is given maximum weightage. The frequency resolution is controlled by a single parameter r, i.e., the
location of the pole on the -ve real axis in the z-plane. This does not have the windowing effects of the block-based approach.
3.2. Description of the ANN model

An artificial neural network (ANN) model is proposed to capture the discrimination between the instantaneous SFF spectra of
speech and noise. The number of hidden layers and the number of units at each layer are dependent on the problem being
addressed and the dimensions of the input features Haykin (1994). Here the problem is a classification problem, and hence two
output units are used. The input features are the 401 dimensional sum normalized instantaneous SFF spectra representing the
signal. The network is to be trained to obtain a 2-class decision from the large 401 dimension feature vectors. At any hidden layer,
if the number of units is less than the dimension of input vector, it results in compression of the input vectors. Conversely, if the
number units is more than the input dimensions, an expansion of the feature vector happens. A gradual change of the number of
units from one layer to another is used for the proposed ANNmodel. With 401 units in the input layer, the 1st hidden layer is cho-
sen as an expansion layer with 601 dimensions, which is approximately equal to 1.5 times the dimension of the input layer. The
number of units in the 2nd hidden layer is reduced to 1/6th of the dimension of the 1st hidden layer, i.e., 101 units, and to 1/3rd of
101, i.e., 31 units in the 3rd hidden layer. The output layer has two units corresponding to the two classes. The activation function
of the units in the output layer is linear, and it is tanhx for the units in the 3 hidden layers. For each input feature vector, the
desired output on each of the two units is eitherþ1 and�1 or�1 andþ1; depending on whether the input contains (noisy) speech
or only nonspeech (noise), respectively. Although a single output unit is adequate for this 2-class problem, we use two units, just
to verify whether they give complementary outputs for each class. We use linear units, to observe the ANN outputs at each
instant, although we train the input using binary decision ofþ1 or�1. While the choice of the structure of the ANNmodel is some-
what flexible, the proposed structure is chosen with the number of units in the first hidden layer for expansion of the input
dimension, and all other subsequent hidden layers to have progressively decreasing number of units (Haykin, 1994).



Fig. 2. Illustration of SFF spectrogram. (a) Noisy speech signal along with ground truth markings. (b) Narrowband STFT spectrogram. (c) SFF spectrogram for
r¼0:998. (d) SFF spectrogram for r¼0:992. Note: All spectrogram plots are suitably scaled for better display of spectral features in color.
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An artificial neural network (ANN) model is proposed to capture the discrimination between the instantaneous SFF spectra of
speech and noise. The number of hidden layers and the number of units at each layer are dependent on the problem being
addressed and the dimensions of the input features Haykin (1994). Here the problem is a classification problem, and hence two
output units are used. The input features are the 401 dimensional sum normalized instantaneous SFF spectra representing the
signal. The network is to be trained to obtain a 2-class decision from the large 401 dimension feature vectors. At any hidden layer,
if the number of units is less than the dimension of input vector, it results in compression of the input vectors. Conversely, if the
number units is more than the input dimensions, an expansion of the feature vector happens. A gradual change of the number of
units from one layer to another is used for the proposed ANNmodel. With 401 units in the input layer, the hidden layer is chosen
as an expansion layer with 601 dimensions, which is approximately equal to 1.5 times the dimension of the input layer. The num-
ber of units in the hidden layer is reduced to 1/6th of the dimension of the hidden layer, i.e., 101 units, and to 1/3rd of 101, i.e., 31
units in the hidden layer. The output layer has two units corresponding to the two classes. The activation function of the units in
the output layer is linear, and it is tanhx for the units in the 3 hidden layers. For each input feature vector, the desired output on
each of the two units is eitherþ1 and�1 or�1 andþ1; depending on whether the input contains (noisy) speech or only nonspeech
(noise), respectively. Although a single output unit is adequate for this 2-class problem, we use two units, just to verify whether
they give complementary outputs for each class. We use linear units, to observe the ANN outputs at each instant, although we
train the input using binary decision ofþ1 or�1. While the choice of the structure of the ANNmodel is somewhat flexible, the pro-
posed structure is chosen with the number of units in the first hidden layer for expansion of the input dimension, and all other
subsequent hidden layers to have progressively decreasing number of units (Haykin, 1994).

3.3. Training the ANN model

For training the ANN model, a subset of (noisy) speech and nonspeech (noise) are taken from the development data, using the
given ground truth to identify those regions. Approximately, the first 30 sec segment is chosen from each of the 39 signals of the
development data. Although the proportion of speech and nonspeech in this subset data is about 28:72, equal amount of speech
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and nonspeech data is taken for training the network. A total of approximately 5.46 min of speech regions and 4.58 min of noise
regions are used for training the network. The network is trained for 150 epochs, where the training error is reduced by a factor
of over 10. The error for validation data also reduced substantially after testing with the trained network, although it is slightly
higher than the error for the training data. It is to be noted that the amount of data used for training the ANN model is approxi-
mately 10 min out of 20 h of the available development data.
3.4. Testing the ANN model

The output of the trained ANN model on a segment of the signal containing both speech and nonspeech regions is shown in
Fig. 3. The output of the two units are shown in blue and red lines. The blue line dominates in the speech regions and the red line
dominates in the noise regions. Using zero as the threshold on the output of unit 1 (blue line), the regions above the threshold
are marked asþ1; representing speech, and the other regions as�1; representing nonspeech regions. This output is further proc-
essed (as discussed in Section 4) for scoring.

It is interesting to note that the ANN output identifies even short segments of (noisy) speech regions, due to the instantaneous
spectral representation of the speech utterance using the SFF analysis.

In Fig. 3(b), the beginning point of speech can be clearly seen in the blue line. Due to infinite impulse response (IIR) nature of
the single pole filter, the end point of speech can not be identified precisely. This ambiguity is reduced by using the instantaneous
SFF spectra derived using r¼0:992 for the SFF analysis. The output of the network tested with the instantaneous SFF spectra for r
¼0:992; is as shown in Fig. 3(c). The effect of change in r parameter can be seen at the locations marked with arrows in the figure.
It can be observed that the end points are better reflected in Fig. 3(c), compared to those in Fig. 3(b).
4. Processing of ANN output for scoring

The output of the ANN is post processed by smoothing, and the collar is applied for scoring as described in the scoring proce-
dure for the challenge (see Section 2.2).

4.1. Smoothing the decision

The speech regions identified in the output of the ANN for a test input are marked asþ1; and the nonspeech regions as�1. This
output data is post processed by smoothing the decisions using a window size of Nw samples. This is implemented using an Nw-
point mean smoothing at each sample. If the mean value at the current sample is above a threshold, then the decision at that
sample is þ1; otherwise the decision is �1. The threshold (a) is varied between 0 and þ1. Smoothing with long windows
( > 0.5 sec) is used to take into account the collar effect used in marking the ground truth.
Fig. 3. Illustration of ANN output. (a) Test signal with ground truth. (b) Output of the ANN model tested using r¼0:998. The output of unit 1 is shown by blue line
and of unit 2 by red line. (c) Output of the ANNmodel tested using r¼0:992. The output of unit 1 is shown by blue line and of unit 2 by red line. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Applying collar for scoring

The SAD challenge gives a scoring procedure (Fearless Steps Challenge, 2019), which includes a collar of max 0.5 sec on either
side of the speech region. The collar regions are expanded as discussed in Section 2.2. The identified collar regions are not scored.
For implementing this scoring procedure as given in (Fearless Steps Challenge, 2019), modified ground truth is generated, by
making the nonspeech regions as�1; the collar regions as 0, and the speech regions asþ1. In the modified ground truth sequence
ofþ1; 0 and�1; the number ofþ1s give the total number (N1) of samples labeled as speech, and the number of�1s give the total
number (N2) of samples labeled as nonspeech. The number of 0s correspond to the collar regions and are to be ignored.
4.3. Scoring

The smoothed ANN output decision consisting ofþ1 and�1 values is compared with the modified ground truth to arrive at the
false negative (FN) and false positive (FP) regions. By subtracting the smoothed decision of the ANN output from the ground truth
decision, we get samples withþ2; 0 and�2 values. Note that the collar regions marked as 0 in the modified ground truth are
ignored. All samples with þ2 values correspond to false negatives (FN), as the system detected these samples as nonspeech,
whereas the ground truth says it is speech. Likewise, all samples with�2 values correspond to false positives (FP), as the system
detected these samples as speech, whereas the ground truth says it is nonspeech. Thus the count of the number ofþ2 values gives
M1, the number of samples of FNs, and the count of the number of�2 values givesM2, the number of samples of FPs.

The performance is expressed in terms of detection cost function (DCF). The DCF in percentage is given by Fearless Steps Chal-
lenge (2019), Kaushik et al. (2018)

DCF%¼ 0:75
M1

N1
þ0:25

M2

N2

� �
� 100: ð5Þ

It is to be noted that the false negatives are given higher weightage than the false positives. That is, treating the speech regions
as nonspeech is considered more serious than missing the detection of nonspeech regions.
5. Results and discussion

Performance of the proposed network is evaluated for both development (dev) and evaluation (eval) data provided for the
SAD task in Apollo challenge Fearless Steps Challenge Evaluation Plan v1.2 (2019). Ideally, the DCF value should be zero, indicat-
ing perfect match of the obtained decision with the ground truth. It means that the false positives and false negatives should not
exist. The baseline system for the challenge reported a DCF value of 8.6% for the development data and 11.7% for the evaluation
data (Ziaei et al., 2014; Fearless Steps Challenge, 2019).

The DCF values for the development data are obtained for different values of Nw and a for the network decisions. These values
with and without applying the collar are given in Table 1(a) and (b), respectively. It can be seen that for any smoothing window
size (Nw) and for any threshold (a), the DCF value is improved by applying the collar. This helps in tuning the system to reduce
the errors due to inconsistencies in manual markings of the ground truth, and also to align with the suggested scoring procedure.

As the smoothing window size (Nw) is increased from 801 to 4801, the DCF value decreases. This is due to gradual decrease in
the false negatives, i.e., the number of speech regions misclassified as nonspeech are reduced. As the window size is further
increased, beyond 4801, (i.e., duration greater than 0.5 sec), the DCF value increases. This is due to significant increase in the false
positives, i.e., the nonspeech regions are also taken into the speech regions.

As the threshold (a) value is increased, from 0 to 0.9, the DCF decreases, indicating reduction in the false negatives. But if the
threshold (a) value is increased beyond 0.9, then the false positives start contributing, thereby increasing the DCF value.

It can also be seen that the change in the DCF value is large due to changes in the window size (Nw) for a fixed threshold value
(a < 0.9). This is due to higher weightage of 0.75 given to the false negatives and more speech regions may be disappearing. But
as the threshold (a) value is changed in some range (0:9�0:95), the change in the DCF value is relatively small, due to less
weightage of 0.25 given to the false positives. A threshold (a) value ofþ1 for any smoothing windowmeans that the whole signal
is considered as speech region. It can be seen in the last column of the Table 1, the DCF is 25%. A threshold (a) value of�1 gives a
DCF score of 75%, indicating that the whole signal is considered as nonspeech region.

The best DCF value of 3.28% (Table 1(b)) is obtained for a threshold of a¼0:92 and for a smoothing window size of Nw¼8001
samples (i.e., 1 sec duration), when evaluated for the complete development data. The optimum window size of 1 sec duration
may have something to do with 0.5 sec collar on either sides of a speech region in the scoring procedure. Interestingly, nearly
similar values for the parameters are obtained by testing even with a small amount (about 30 min) of development data.

It is to be noted that there is hangover in the blue line after every large amplitude voiced segment. This is shown by arrows for
a few cases in Fig. 3(b). This is due to the infinite impulse response (IIR) nature of the filter in the SFF analysis. To reduce this
effect, a slightly lower value of r¼0:992 is used for the SFF analysis on the test data. The DCF values of the ANN output using r¼
0:992 for different Nw and a values, with and without collar, are given in Table 1(c) and (d), respectively. The results show a slight
reduction in the best DCF value to 3.1% for r¼0:992 (Table 1(d)) from 3.28% for r¼0:998 (Table 1(b)). But in the case of r¼
0:992; the optimum window size Nw¼8001 and the threshold a¼0:9. Fig. 4 shows the DCF values for different thresholds for
each window size and for the case of SFF analysis using r¼0:992. This corresponds to the values given in Table 1(d). The figure



Fig. 4. Illustration of plots of DCF values for r¼0:992 for different smoothing window (Nw) sizes and thresholds (a). (See Table 1(d)).
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shows the variations of DCF as the threshold is changed. It appears that use of any window size Nw in the range of 4001 to 12001
seem to give low DCF values for the threshold range of 0.9 to 0.94.

After fixing the optimum parameter values, the decisions for both the development data and evaluation data were submitted
to the Fearless Steps Challenge. The results are given in Table 2 along with the results for the baseline system given in
Fearless Steps Challenge (2019). As can be seen from Table 2, the proposed system gives significantly better performance than
the baseline system for both the development data and evaluation data.

The results of submissions for the challenge are summarized in Hansen et al. (2019). The proposed system, as discussed in this
paper, ranked 3 out of 27 submissions made for the challenge. The DCF results of the best system are 2.89% for Dev data and 3.32%
for the Eval data. These are given in Table 2 as 2D CRNN (Vafeiadis et al., 2019). The best system used STFT spectrograms as 2-
dimensional input features, and speech and nonspeech discrimination is made using convolutional recurrent neural networks. In
another method reported for this challenge (Sharma et al., 2019), the speech activity detection was performed using a multi-level
combination of modulation spectrum and Hilbert envelope of linear prediction (LP) residual. The DCF results for this method
(mlasad) are 5.75% for Dev data and 7.35% for Eval data, as given in Table 2.
6. Summary and conclusions

This paper presents a novel approach for the SAD task for Apollo corpus. The method uses the instantaneous spectra derived
using the SFF analysis. An ANN model is used to capture the discriminating features of speech and nonspeech present in the SFF
spectra. The output of the ANN model is used to make the SAD decision. The decisions were submitted to the Fearless Steps Chal-
lenge to obtain the scores for both the development data and the evaluation data. The results show better performance for the
proposed method compared to the results for the baseline system.

The novel features in the proposed system are the representation of speech in terms of instantaneous SFF spectrum,
ANN model for capturing the discrimination between (noisy) speech and nonspeech (noise), and the decision at each sam-
pling instant instead of at the frame level. Note that only the sum normalized spectra are used. The system development
and evaluation is for the SAD task specified for the Apollo corpus. For the proposed system, only a small amount (10 min)
of the development data was used out of 20 h of data. But the performance is evaluated for the complete 20 h of the
development data.

While the difference in interpretation between the proposed ANN classifier and DNN is subtle, the focus here is mainly to
study the effectiveness of the proposed instantaneous SFF spectra for the SAD task in the Apollo corpus.

Performance improvement may occur by tuning the ANN model. For example, training the model with 250 epochs reduced
the DCF value on the development data to 3.06 from 3.10. It is also possible to build multiple ANNmodels for the 2-class problem,
and combine the evidence to improve the performance. Other SFF spectral features like using low r value and SFF phase also can
be explored for further improvement.

One of the main issues with the SAD task of the Apollo corpus is that the ground truth is not reliable. One can easily see this by
observing the waveform and the marked ground truth on it. The output of the ANNmodel seems to match better with the speech
regions observed in the waveform. Thus there is scope for preparing a better ground truth for the Apollo data than what is given.



Table 1
DCF values for different window sizes (Nw) and threshold values (a).

r=0.998 (a) without
collar

Nw/a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
801 15.60 14.80 14.03 13.32 12.63 11.96 11.34 10.76 10.18 9.61 9.56 9.50 9.43 9.38 9.33 9.27 9.20 9.15 9.00 25.00
1601 14.61 13.39 12.31 11.30 10.40 9.58 8.84 8.17 7.58 7.05 7.00 6.94 6.89 6.87 6.83 6.80 6.78 6.82 6.89 25.00
3201 13.71 11.95 10.41 9.08 8.00 7.12 6.44 5.88 5.46 5.16 5.15 5.13 5.12 5.11 5.10 5.11 5.17 5.28 5.59 25.00
4801 13.38 11.20 9.45 8.09 7.03 6.17 5.58 5.20 4.93 4.80 4.80 4.82 4.83 4.86 4.89 4.92 4.97 5.13 5.49 25.00
6401 13.69 11.27 9.25 7.73 6.69 5.94 5.41 5.10 4.94 4.90 4.91 4.92 4.94 4.98 5.02 5.08 5.15 5.26 5.68 25.00
8001 14.25 11.54 9.49 7.95 6.74 5.98 5.52 5.20 5.08 5.13 5.13 5.13 5.15 5.18 5.23 5.30 5.39 5.48 5.89 25.00
12001 16.13 12.98 10.60 8.82 7.49 6.61 5.96 5.64 5.53 5.58 5.61 5.64 5.69 5.72 5.76 5.82 5.93 6.06 6.27 25.00
16001 18.31 14.93 12.06 9.83 8.22 7.15 6.46 6.04 5.92 5.99 6.04 6.06 6.10 6.17 6.25 6.31 6.39 6.54 6.69 25.00
32001 23.51 19.34 15.93 13.17 10.92 9.03 7.87 7.23 7.02 7.21 7.27 7.31 7.34 7.44 7.59 7.74 7.90 8.03 8.20 25.00

(b) with
collar

Nw/a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
801 15.36 14.54 13.76 13.02 12.31 11.63 10.99 10.38 9.77 9.17 9.11 9.05 8.98 8.92 8.87 8.81 8.73 8.68 8.52 25.00
1601 14.38 13.13 12.02 10.97 10.04 9.18 8.39 7.67 7.03 6.43 6.38 6.32 6.26 6.23 6.19 6.15 6.13 6.16 6.23 25.00
3201 13.46 11.65 10.07 8.67 7.52 6.54 5.77 5.12 4.59 4.19 4.16 4.13 4.11 4.09 4.07 4.07 4.13 4.23 4.55 25.00
4801 13.10 10.86 9.01 7.54 6.37 5.39 4.67 4.15 3.74 3.49 3.48 3.48 3.49 3.50 3.52 3.55 3.59 3.75 4.13 25.00
6401 13.36 10.85 8.71 7.05 5.85 4.94 4.25 3.77 3.46 3.30 3.29 3.30 3.31 3.34 3.38 3.43 3.50 3.61 4.06 25.00
8001 13.86 11.04 8.83 7.13 5.74 4.78 4.13 3.63 3.36 3.29 3.29 3.28 3.29 3.32 3.37 3.44 3.53 3.64 4.09 25.00
12001 15.57 12.27 9.70 7.71 6.15 5.03 4.16 3.67 3.46 3.52 3.55 3.59 3.65 3.69 3.74 3.82 3.95 4.11 4.36 25.00
16001 17.61 14.06 10.99 8.53 6.68 5.37 4.51 3.99 3.84 3.98 4.03 4.06 4.12 4.21 4.31 4.39 4.50 4.68 4.87 25.00
32001 22.59 18.26 14.66 11.70 9.29 7.27 6.02 5.34 5.15 5.40 5.48 5.53 5.59 5.71 5.89 6.07 6.26 6.43 6.63 25.00

r=0.992 (c) without
collar

Nw/a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
801 26.15 24.21 22.36 20.63 19.02 17.47 16.06 14.71 13.36 11.98 11.84 11.69 11.54 11.38 11.22 11.06 10.87 10.67 10.38 25.00
1601 23.44 20.64 18.23 16.18 14.39 12.78 11.39 10.19 9.10 8.07 7.97 7.86 7.76 7.67 7.60 7.52 7.45 7.49 7.56 25.00
3201 22.72 19.19 16.05 13.38 11.13 9.30 7.85 6.74 5.90 5.34 5.31 5.28 5.26 5.23 5.22 5.26 5.35 5.56 6.07 25.00
4801 23.63 19.47 15.71 12.54 9.97 8.02 6.61 5.63 5.00 4.72 4.71 4.70 4.72 4.76 4.83 4.90 5.06 5.36 5.98 25.00
6401 24.72 20.03 16.00 12.54 9.79 7.68 6.30 5.43 4.91 4.73 4.74 4.74 4.76 4.79 4.88 5.02 5.21 5.54 6.23 25.00
8001 25.87 20.91 16.58 12.84 10.09 7.85 6.39 5.51 5.05 4.89 4.91 4.93 4.94 4.98 5.07 5.22 5.44 5.76 6.41 25.00
12001 28.84 23.49 18.56 14.26 11.04 8.70 7.09 6.02 5.50 5.31 5.34 5.37 5.41 5.45 5.53 5.71 5.96 6.35 6.78 25.00
16001 31.24 25.63 20.53 16.13 12.45 9.52 7.73 6.50 5.91 5.78 5.77 5.76 5.78 5.85 5.94 6.12 6.41 6.82 7.19 25.00
32001 37.43 30.90 25.04 20.18 15.91 12.44 9.75 7.93 7.16 7.00 7.03 7.05 7.05 7.11 7.21 7.39 7.71 8.16 8.61 25.00

(d) with
collar

Nw/a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
801 26.04 24.08 22.22 20.47 18.84 17.26 15.82 14.43 13.03 11.59 11.43 11.27 11.11 10.94 10.78 10.61 10.41 10.20 9.90 25.00
1601 23.34 20.52 18.09 16.01 14.18 12.54 11.11 9.84 8.66 7.52 7.40 7.29 7.17 7.07 6.98 6.88 6.81 6.84 6.91 25.00
3201 22.62 19.06 15.87 13.16 10.84 8.93 7.39 6.17 5.19 4.47 4.41 4.37 4.33 4.28 4.25 4.27 4.35 4.56 5.08 25.00
4801 23.52 19.31 15.49 12.24 9.56 7.48 5.92 4.77 3.97 3.50 3.47 3.44 3.44 3.46 3.52 3.58 3.74 4.05 4.71 25.00
6401 24.58 19.83 15.73 12.16 9.26 6.97 5.38 4.30 3.58 3.21 3.20 3.18 3.18 3.20 3.29 3.43 3.63 3.98 4.73 25.00
8001 25.69 20.67 16.22 12.35 9.42 6.96 5.27 4.14 3.45 3.10 3.11 3.11 3.12 3.15 3.24 3.41 3.65 4.01 4.74 25.00
12001 28.57 23.11 18.03 13.54 10.08 7.48 5.58 4.22 3.48 3.20 3.23 3.26 3.31 3.37 3.47 3.69 4.01 4.47 4.99 25.00
16001 30.88 25.13 19.85 15.24 11.32 8.10 6.03 4.57 3.84 3.70 3.71 3.70 3.74 3.82 3.94 4.17 4.53 5.01 5.47 25.00
32001 36.89 30.19 24.15 19.08 14.58 10.91 8.04 6.09 5.27 5.15 5.18 5.21 5.22 5.31 5.43 5.66 6.05 6.60 7.13 25.00
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Table 2
Performance comparison of proposed method with other methods.

DCF Dev data(%) Eval data(%)

Proposed 3.1 4.6
Baseline Fearless Steps Challenge (2019) 8.6 11.7
2D CRNN Vafeiadis et al. (2019) 2.89 3.32
mlasad Sharma et al. (2019) 5.75 7.35
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