
Theoretical Computer Science 409 (2008) 364–381

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Complexity of question/answer games
Sarmad Abbasi a,∗, Numan Sheikh b
a 117-BB, DHA Phase IV, Lahore, Pakistan
b Department of Computer Science, Lahore University of Management Sciences, Opposite Sector ‘‘U’’, DHA, Lahore, Pakistan

a r t i c l e i n f o

Article history:
Received 25 February 2007
Received in revised form 28 January 2008
Accepted 10 August 2008
Communicated by A. Fraenkel

Keywords:
Computational complexity
Combinatorial games
Polynomial-time hierarchy
Perfect information games

a b s t r a c t

Question/Answer games (Q/A games for short) are a generalization of the Rényi–Ulam
game and they are a model for information extraction in parallel. A Q/A game, G =
(D, s, (q1, . . . , qk)), is played on a directed acyclic graph, D = (V , E),with a distinguished
start vertex s. In the ith round, Paul selects a set,Qi ⊆ V , of atmost qi non-terminal vertices.
Carole responds by choosing an outgoing edge fromeach vertex inQi. At the end of k rounds,
Paul wins if Carole’s answers define a unique path from the root to one of the terminal
vertices in D.
In this paper we analyze the complexity of Q/A games and explore the notion of fixed

strategies. We show that the problem of determining if Paul wins the game played on a
rooted tree via a fixed strategy is in NP. The same problem is 62P-complete for arbitrary
digraphs. For general strategies, the problem is NP-complete if we restrict a two-round
game to a digraph of depth three. An interesting aspect of this game is that it captures the
even levels of the polynomial-time hierarchy when restricted to a fixed number of rounds;
that is, determining if Paulwins a k-round game is62k−2P-complete. The general version of
the game is known to be PSPACE-complete [S. Abbasi, N. Sheikh, Some hardness results for
Q/A games, Integers 7 (2007) G08]. In this paperwe show that it remains PSPACE-complete
even if each round consists of only two questions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and definitions

A Q/A game is a perfect information game that is played between two persons Paul and Carole.1 The game is motivated
by the famous game, Twenty Questions, and is a generalization of the Rényi–Ulam game. Formally, a Q/A game [3] is
G = (D, s, (q1, . . . , qk)), where:

(1) D = (V , E) is a directed acyclic graph.
(2) The vertex s ∈ V is a distinguished vertex called the root. s is the starting vertex of the path that Paul is trying to find.
(3) There are k rounds in the game and in the ith round Paul is allowed to ask at most qi questions.

We will refer to q = (q1, . . . , qk) as the question vector. If the maximum number of questions in each round is the same;
that is, q = q1 = q2 = · · · = qk, we denote the game by G = (D, s, q, k). Furthermore, when the root of D is clear from the
context we may ignore specifying it. For a vertex v ∈ V let

N+(v) = {w : (v,w) ∈ E} and d+(v) = |N+(v)|.

∗ Corresponding author.
E-mail addresses: sarmad_abbasi@yahoo.com (S. Abbasi), numan@lums.edu.pk (N. Sheikh).
1 Joel Spencer [17] has suggested that the players in these types of search games be called Paul and Carole: Paul represents the great questioner Paul

Erdös; whereas, Carole, being an anagram of ‘‘oracle’’, represents the notoriously obtuse oracle of Apollo at Delphi.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.034

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:sarmad_abbasi@yahoo.com
mailto:numan@lums.edu.pk
http://dx.doi.org/10.1016/j.tcs.2008.08.034

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 365

Fig. 1. A Q/A game: The grey vertex is the pseudo-root. The little black vertices are the terminal vertices. ‘‘?’’ represent Paul’s questions. Bold arrows
represent the choices made by Carole (Note that Carole wastes a question of Paul in round one.). The unreachable part of the graph is dotted out.

I = {v : d+(v) > 0} denotes the set of internal vertices of D and T = V \ I denotes the set of terminal vertices of D.
Throughout this sectionwe assume thatG = (D, s, (q1, . . . , qk)) is the game under consideration and I and T are the internal
and terminal vertices of D, respectively. In the ith round, Paul chooses a set Qi ⊆ I , such that |Qi| ≤ qi. If v ∈ Qi, we say that
Paul inquires or asks about the vertex v. Carole declares the value fi(v) ∈ N+(v) for all v ∈ Qi. When Carole declares fi(v),
we say that she responds by fi(v) or Carole points or leads v to fi(v).When the context is clear, we simply say that Carole
leads Paul to fi(v).
For simplicity, assume that Paul never repeats a question (or equivalently we can require that Carole, once having chosen

an outgoing edge from a vertex v, consistently chooses the same edge when re-inquired about v). Let Ui denote the set of
questions posed by Paul till the end of the ith round; that is, Ui =

⋃i
j=0 Qi. Let us define f≤i : Ui → V as

f≤i(v) = fj(v) for j ∈ Qj.

After the end of the ith round, the pair (Ui, f≤i) completely determines the state or position of the game. For a path,
P = v0, . . . , vt , in D, we say that P is consistent with the position (Ui, f≤i) if vj ∈ Ui ⇒ vj+1 = f≤i(vj) for all 0 ≤ j < t .
When the position is clear from the context we say that P is consistent with Carole’s answers. At the end of k rounds, Paul
wins G if there is a unique path that is consistent with (Uk, f≤k), the final state the game.
An equivalent formulation of Q/A games is given by algorithms that probe information in parallel. An input for G is a

function f : I → V where f (v) ∈ N+(v). Note that each input naturally defines a path Pf from the root to one of the
terminal vertices of D. The following theorem is easy to prove.

Theorem 1 ([3]). Paul wins G = (D, s, q) if and only if there exists a decision tree algorithm that probes qi values of f in the ith
step and at the end of k steps outputs Pf . �

Wewill always assume that all the vertices ofD are reachable at the beginning of the game. Furthermore, wewill assume
that all internal vertices of D have out-degree at least two.
Consider G in position (Ui, f≤i) after i rounds. We call a vertex v reachable, if there exists a path from the root to v that is

consistent with Carole’s answers. An internal vertex v is called open, if it is reachable and Paul has not inquired about v. A
vertex v is called the pseudo-root, if v is open and all predecessors of v are not open. We say that D is a leveled graph of depth
d if the vertex set, V , can be partitioned into d+ 1 sets V0, . . . , Vd, such that all the edges go from level Vi to Vj, where i < j.
Whenever we speak about a digraph of depth d we tacitly assume that the graph is leveled. Note that V0 = {s}, and all the
vertices in Vd are terminal vertices.
It is interesting to contrast Q/A games with the k-round version of the Rényi–Ulam game [13,19,12]. In the Rényi–Ulam

game, U(n; (q1, . . . , qk)), Carole thinks of an x from the set S = {1, . . . , n}. Paul tries to find this ‘‘x’’ by asking questions of
the form: ‘‘Is x ∈ A?’’ where A can be any subset of {1, . . . , n}. The game proceeds in k rounds and in the ith round Paul is
allowed to ask qi questions. After k rounds Paul wins if he can determine x. The outcome of this game depends only on the
total number of questions asked, that is, T =

∑k
i=1 qi. One can easily show that Paul wins U(n; (q1, . . . , qk)) if and only if

2T ≥ n. The Rényi–Ulam game becomes much more interesting if Carole is allowed to lie at times. Very interesting results
are known for the Rényi–Ulam game with fixed number of lies [10,17]. Pelc [11] gives an excellent survey of the Rényi–
Ulam gamewith lies. The Rényi–Ulam game is often compared [17] with the classical Twenty Questions. However, in Twenty
Questions an interesting aspect is that it is important to know the answers of the first (say) five rounds in order to pose the
sixth question and in the Rényi–Ulam original game without lies this is not the case. Q/A games are an attempt to model
these more interesting games.
Many well-known combinatorial games are PSPACE-complete [6,8] and it would be interesting to characterize the

complexity of restricted versions of these games in PH [18]. However, the compendium on complete problems in
polynomial-time hierarchy [14,15] lists only one game [5,20], in the games and puzzles category, which is 62P-complete.
In fact, the compendium lists three problems, all in the logic category, that capture PH. These problems seem to be close
variants of QBF.

366 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Table 1
Comparison of results presented in [3] and this paper

Restriction on Other Previous Improved
(q1, . . . , qk) restriction(s) characterization [3] characterization
qi = 1 ∀i < k None coNP-hard –
qk arbitrary
k = 2 None coNP-hard 62P-complete
k = 2 Depth 3 graphs – NP-complete
Fixed k None – 62k−2P-complete
None Fixed strategy – 62P-complete

games
None Fixed strategy – in NP

games on trees
None None PSPACE-complete –
qi = 2 ∀i None – PSPACE-complete

An interesting aspect of Q/A games is that they allow us to capture the even levels of PH: k-round Q/A games are62k−2P-
complete. Moreover, determining if Paul wins a two-round game on a depth three graph is NP-complete. Other odd levels
of PH can be captured with Q/A games with somewhat unnatural restrictions (see Section 7).
We use standard complexity theoretic notions [9]. Let us define the following languages:

P = {〈G〉 : G is a Paul-win game}
Pk = {〈G〉 : G is a k-round Paul-win game}
P dk = {〈G〉 : G is a k-round Paul-win game on a digraph of depth d}.

C,Ck and Cdk are analogously defined to be encodings of Carole-win games.
The complexity of Q/A games was initially studied in [3]. It was shown that P2 is coNP-hard. However this result is not

tight, as we show in this paper that P2 is in fact 62P-complete.
Note that if every round in a Q/A game consists of exactly one question then Paul wins an r-round game if and only if the

length of the longest path in D is at most r . It was shown in [3] that determining if Paul wins a Q/A game in which all rounds,
except the last round, consists of one question each is coNP-hard. The exact complexity of this mildly interesting problem
is still open.
It may be noted that all the proofs in [3] reduce ‘‘hard’’ problems to Carole-win games. We continued our study of Q/A

games in a hope to capture the polynomial-time hierarchy. The languagesPk and Ck are easily seen to belong to62k−2P and
52k−2P respectively. The main result of this paper is the proof of62k−2P-completeness ofPk. This result shows a reduction
fromQSAT2k−2 toPk and therefore uses entirely different gadgetry from the one used in [3]. The ideas used in the reductions
also allow us to show that P 32 is NP-hard. We show that P

3
2 is actually NP-complete thereby capturing an odd level of the

polynomial-time hierarchy.
A much more complicated proof showing that C is PSPACE-complete was given in [3]. In this paper, we give a simpler

proof showing thatP is PSPACE-complete. In fact the new proof shows that determining the winner of Q/A games in which
each round consists of at most two questions remains PSPACE-complete. This new proof uses ideas that are similar to the
ones used in the proof of 62k−2P-completeness of Pk.
Table 1 summarizes the comparison of results obtained in [3] and this paper.
All graphs considered in this paper are directed. In the figures, all edges are directed downwards and sometimes the

arrowheads are not shown for simplicity. For certain classes of undirected graphs, such as rooted trees, there is a natural
way to orient the edges to obtain a digraph. When referring to such an undirected graph, we will tacitly assume a natural
orientation that will be clear from the context.
To prove our completeness results we will work with SAT, QSAT and QSATk. These problems are known to be NP-

complete,PSPACE-complete and6kP-complete respectively.Wewill assume that all instances,ψ , of SAT are given in 3-CNF,
and all instances of QSAT are of the form

φ = ∃x1∀x2 . . . ∃xn−1∀xnψ

where ψ is in 3-CNF.
For QSATk we will assume that the formula is given by

φ = ∃x1∀x2 · · ·Qkxkψ

where the last quantifier, Qk, is existential if k is odd and universal if k is even. Furthermore, ψ is in 3-CNF if k is odd and
3-DNF if k is even.
For precise definitions and proofs of completeness see [7,9].

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 367

Fig. 2. A tree for which the question vector (1, 2, 2) does not have a fixed strategy.

1.1. Perfect play by Paul and Carole

We will be analyzing Q/A games when Paul and Carole play perfectly; therefore, we will assume that if Paul inquires
about a vertex v and there is an edge from v to a terminal vertex, u, and to some internal vertex,w, then Carole never points
v to u. In addition to this, we will allow Carole to make the following additional moves:

(1) Carole, at any point in the game, can delete a set of vertices S from the game, as long as the pseudo-root is not in S. In
this case, we say that Carole restricts the game to V \ S.

(2) Carole may answer any number of questions without Paul inquiring about them. In this case, we will say that Carole
answers generously.

It is readily seen that Paulwins a game,G, if and only if hewinsGwith these additionalmoves allowed to Carole. Indeed, these
moves are only book keeping tools and do not give any additional power to Carole. However, they do simplify exposition of
many proofs. We will also use the following fact throughout the paper:

Fact 2. Paul wins G = (D, s, (q1, . . . , qk)) if in the state (Uk−1, f≤k−1), after k − 1 rounds the number of open nodes is at most
qk.

The rest of this paper is organized as follows: In Section 2 we discuss the notion of fixed strategies. Section 3 discuss
Q/A games on trees. Section 4 proves the NP-completeness of two-round Q/A games on graphs of depth three. Section 5
proves the 62k−2P-completeness of k-round Q/A games. Section 6 proves the PSPACE-completeness of general Q/A games.
Section 7 gives some concluding remarks along with a few interesting open problems.

2. Fixed strategies

We start with the simplest strategies that Paul can have for a Q/A game. Given a rooted digraph, D, and an integer, k, a
fixed strategy for Paul is a labeling, l : I → {1, . . . , k}. Paul plays l if he inquires about all the open vertices labeled i in the
ith round. Let L<i denote the vertices with labels {1, . . . , i− 1}, and q = (q1, . . . , qk) be a question vector. We say that Paul
wins G = (D, s, q) via the fixed strategy, l, if for all possible answers to L<i, the number of open vertices labeled i in the ith
round is at most qi. Given a game G (along with a question vector), it is not easy to determine if Paul wins G via the fixed
strategy l. However, if we are given an input f : I 7→ V , it is easy to determine in polynomial time howmany questions will
be asked in the ith round if Paul plays the fixed strategy l. We can simply simulate the strategy for i − 1 rounds and count
the number of open vertices labeled i. This observation leads to the following theorem.

Theorem 3. Determining if Paul wins a game using a fixed strategy is 62P-complete.

Proof. A 62P-machine can existentially guess the labeling l and then universally check all the inputs to see if l requires at
most qi questions for rounds in round i, for each i. We observe that if G is a two-round game then all the strategies of Paul are
fixed. In Section 5 (Theorem 12), we show that two-round Q/A games are 62P-hard thereby establishing the theorem. �

Consider the tree, T1, shown in Fig. 2. There is a non-fixed strategy such that Paul wins (T1, (1, 2, 2)). Paul inquires about
v1 in the first round. If Carole points Paul to v2 then in the second round Paul inquires about v2 and v4. After getting these
answers there is at most one open node in the subtree rooted at v2. In the last round he can win by inquiring about the root,
v0, and this open node and win the game.
On the other hand if Carole points v1 to v3 then Paul asks about the root in the second round along with the vertex v3. He

wins the game as the number of open nodes after round two is at most two. This strategy is non-fixed as root is being asked
in the second round in one case and the third round in the other.
To verify that Paul cannot win this game using a fixed strategy, we show that any labeling l,

l : {v0, . . . , v11} → {1, 2, 3},

is not a winning strategy for Paul.
For the sake of contradiction suppose l is a winning strategy for Paul. It is easy to see that if l is a winning strategy for

Paul then it must satisfy the following facts.

368 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Fact 4. l(v) = 1 for at most one vertex v ∈ {v0, . . . , v11}.

Fact 5. Any path of length five in T1 must have one vertex labeled 1, two vertices labeled 2 and two vertices labeled 3.

Applying these two facts to the paths v0, v1, v2, v4, v8 and v0, v1, v3, v7, v11 implies that either l(v1) = 1, or l(v0) = 1.
Case 1a: l(v1) = 1, l(v0) = 2.
If Carole points v1 to v2 then we note that in the subtree rooted at v2 at most one vertex is labeled 2 and thus all other

vertices must be labeled 3. If l(v2) = 2 then if Carole points v2 to v4 then Paul has to ask three questions in the last round
which is a contradiction. On the other hand, if l(v4) = 2 then Paul has to ask v2, v5 and one of the vertices from v8 and v9 in
the last round. Again we note that he has to ask three questions in the last round which is a contradiction. If l(v8) = 2 then
Paul has to ask about v2, v4, v5, v9 in the last round. This exhausts all the cases, as we have observed that at least one of the
vertices in v2, v4, v8 has to be labeled 2.
Case 1b: l(v1) = 1, l(v0) = 3.
Consider the case when Carole points v1 to v3. Note that if l(v3) = 3 then by Fact 5 v6, v10, v7 and v11 all are labeled

2 which is a contradiction. On the other hand, if l(v3) = 2 then at most one of the vertices in the {v6, v7, v10, v11} can be
labeled 2. With loss of generality assume that v6 is labeled 2 (other cases are similar). In this case both v7 and v11 are labeled
3. If Carole points v3 to v7 then Paul has to ask three questions in the last round, which is a contradiction.
Case 2: l(v0) = 1.
In this case consider the paths v1, v2, v4, v8 and v1, v3, v7, v11. By Fact 5, exactly two vertices on both these paths must

be labeled 2. This implies that at least three vertices in the tree must be labeled 2, which again leads to a contradiction.

3. Q/A games on the trees

Perhaps, the simplest class of graphs on which a Q/A game has been analyzed is complete binary trees [1,2]. We briefly
discuss the results here. Let (Tn, (q1, . . . , qk)) be the Q/A game played on complete binary trees with n levels. In [1,2] it was
shown that:

Theorem 6 ([1,2]). Paul wins (Tn, (q1, . . . , qk)) if and only if

k∑
i=1

blog2(qi + 1)c ≥ n. �

The upper bound follows from a simple strategy inwhich Paulmoves ti = blog2(qi+1)c levels by asking all the questions
in the top ti levels.
Note that the floor sign plays an important role here. Since blog2(q+ 1)c = t for all k satisfying 2t − 1 ≤ k ≤ 2(2t − 1),

the result states that Paul does not gain ‘‘anything’’ by asking 2(2t − 1) questions, twice as many, as opposed to 2t − 1
questions. In both cases, he simply moves t levels down in that round. The proof in [1,2] can be modified to obtain a result
for all T dn ; that is n-level d-ary trees.

Theorem 7. Paul wins (T dn , (q1, . . . , qk)) if and only if

k∑
i=1

blogd ((d− 1)qi + 1)c ≥ n. �

It would be an interesting problem to study Q/A games on arbitrary trees. Our understanding of fixed strategies on trees
is also far from complete. However, it is easy to see that the problem is in NP.

Theorem 8. The problem of determining if Paul wins with a fixed strategy on a tree is in NP.

Proof. Given a tree T and a question vector (q1, . . . , qk), consider a fixed strategy l; that is, a labeling from the internal
vertices of T to {1, . . . , k}. For each, i = 1, . . . , k, and each vertex, v, we compute µ(i, v) as follows:

µ(i, v) =



0, if v is a terminal vertex;∑
w∈N+(v)

µ(i, w)+ 1, if l(v) = i;∑
w∈N+(v)

µ(i, w), if l(v) > i;

max
w∈N+(v)

µ(i, w), if l(v) < i.

It is easy to see thatµ(i, v) is the maximum number of questions asked by Paul in the ith round on the subtree rooted at
v. Let s be the root of T . We can non-deterministically guess a strategy (labeling) and check if µ(i, s) ≤ qi for all i. �

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 369

Fig. 3. The matching argument.

4. P 3
2 is NP-complete

Determining if Paul wins a one-round game is trivial. If the depth of the graph is two and Paul has more than one round
then the game is trivially a Paul-win game. On depth three graphs if Paul is given at least three rounds then he wins. Thus
the first non-trivial question about Q/A games is to characterize the complexity of two-round games on depth three graphs.
We have the following theorem:

Theorem 9. P 32 is NP-complete.

Proof. The proof is established by Lemmas 10 and 11. �

Lemma 10. P 32 ∈ NP.

Proof. Let G = (D, s, (q1, q2)) be a two-round Q/A game, where D is a digraph of depth three. Let I be the internal vertices
of D. We argue that given a set, Q1, of q1 questions, it is possible to determine if Paul can win the game in the second round
if he inquires about all the vertices in Q1 in the first round. This is sufficient since a non-deterministic Turing machine can
‘‘guess’’ Q1.
Let Vi be the vertices in the ith level of the graph. Note that V0 = {s}. Suppose s ∈ Q1. If Carole points s to a vertex in V2,

she loses as q2 > 0. If she points s to a vertex in V1 ∩ Q1, she also loses as Paul moves down two levels in one round. Hence,
she must point s to a vertex v ∈ V1 \ Q1. If she leads him to a vertex v ∈ V1 \ Q1 the number of open vertices will be

g(v) = 1+ |(N+(v) \ Q1) ∩ I|.

We can easily check in polynomial time for all vertices, v ∈ V1 \ Q1, if g(v) ≤ q2.
On the other hand, if s 6∈ Q1, the problem can be solved by computing a maximum matching as follows: Carole is trying

to find answers such that the number of open vertices in round two is maximized. All the vertices in

S1 = (V1 \ Q1) ∩ I

are open in round two, regardless of Carole’s answers. All the vertices in

S2 = {x ∈ (V2 \ Q1) ∩ I : (u, x) ∈ D for some u ∈ S1 ∪ {s}}

are also open regardless of Carole’s answers (see Fig. 3).
Thus the only vertices whose ‘‘openness’’ depends on the answers in round one, are the ones in B = (V2 ∩ I) \ (Q1 ∪ S2).

A vertex in Bwill be open if some vertex in A = Q1 ∩V1 is answered in its direction. Since we want to maximize the number
of open vertices, we can compute a maximum matching between A and B in polynomial time (see [4]). Let m be the size of
this matching. Paul wins in the second round if and only if |S1| + |S2| +m+ 1 ≤ q2. �

Lemma 11. P 32 is NP-hard.

Proof. We show that SAT is LOGSPACE reducible toP 32 . Towards this end, we show that given an instance,ψ , of SAT, we can
compute a Q/A game Gψ in LOGSPACE such thatψ is satisfiable if and only if Paul wins Gψ . Furthermore, Gψ is a two-round
Q/A game played on a digraph of depth three.
Let ψ be a formula on n variables {x1, . . . , xn}withm clauses; that is, ψ = C0 ∧ C1 ∧ · · · ∧ Cm−1. The game Gψ is played

on a directed graph, Dψ , and consists of only two rounds. In the first round Paul is allowed to ask n+ 1 questions and in the
second round he can ask 3 questions. Hence Gψ = (Dψ , (n+ 1, 3)).
We assume that m ≥ 4. The graph, Dψ , corresponding to the game, Gψ , consists of 1 + 4n + m internal vertices, with s

as the root. On level one there are n + m vertices; the first n are labeled by the variable x1, . . . , xn and the last m vertices
correspond to clauses and are labeled c0, . . . , cm−1. Level two consists of three vertices for each variable xi, labeled di, Ti and
Fi. The root is connected to all the vertices on level one. Each clause vertex cj is connected to Ti (resp. Fi) if xi ∈ Cj (resp.
xi ∈ Cj). Finally, each variable vertex xi is connected to di, Ti and Fi. The last level consists of two terminal vertices for each
vertex on level two. Fig. 4 shows the entire graph for

ψ0 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

370 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Fig. 4. The graph Dψ0 .

Weclaim that Paulwins this game if and only ifψ is satisfiable. Suppose thatψ is satisfiable. Let (t1, . . . , tn) be a satisfying
assignment for ψ . In the first round, Paul inquires about the root s. For each variable xi Paul inquires about Ti if ti = 1, and
Fi if ti = 0 (which Carole answers arbitrarily). The only choice Carole has is to respond to the root. If she leads the root to
a clause vertex cj then out of the three reachable vertices on level three, at least one is already answered. Hence, Paul can
win the game by asking the remaining two vertices and cj. On the other hand, if she leads him to a variable vertex xi then
out of the three reachable vertices from xi, either Ti or Fi is answered. Once again Paul wins by inquiring about xi, di and the
un-inquired vertex from Fi and Ti.
Lastly, we show that if ψ is not satisfiable then Carole wins. Consider the set Si = {xi, Fi, Ti, di}. First, we claim that Paul

must ask at least one question in each Si in the first round, otherwise Carole wins. Indeed, if he does not inquire about any
vertex in Si then all the vertices in Si are reachable (even if the root is inquired, Carole can lead the root to xi), so he loses
in round two. Next, we claim that he must inquire about the root in the first round. Since there are n + m vertices on the
second level, if he does not inquire about the root in the first round, at least m− 1 ≥ 3 vertices are open on level one, and
Paul loses the game as the root is also open. Hence, Paul must ask about the root and at least one vertex on each of the Si’s.
This implies that Paul inquires about exactly one vertex on each Si. The idea is that if Paul does not inquire about Ti or Fi, he
is essentially forfeiting his right to set the variable xi and this cannot help him. Consider the assignment (t1, . . . , tn), where
ti = 1 if Paul inquires about Ti and 0 otherwise.
Since ψ is not satisfiable, there is at least one clause Cj that is not satisfied by the assignment. Carole leads the root to cj.

Suppose xi ∈ Cj. Since the assignment does not satisfy Cj, Paul did not inquire about Ti and Ti is open. Similarly, if x̄i ∈ Cj and
as Cj is not satisfied this means Paul inquired about Ti. Since he only inquires about one vertex in Si = {Ti, Fi, xi, di}, he did
not inquire about Fi and Fi is open. Thus, all the reachable vertices from cj are open. This means that there are at least four
open vertices and Paul loses. �

5. Q/A games and the polynomial-time hierarchy

In this section we prove our main theorem.
Theorem 12. P k+3k is 62k−2P-complete.

Proof. It is to see easy that Pk, hence P k+3k is in 62k−2P.
The rest of this section gives the proof that P k+3k is 62k−2P-hard. Towards this end, we show that given an instance of

QSAT2k−2; that is, φ with 2k− 2 alternating quantifiers starting with an existential quantifier we can compute in LOGSPACE
a k-round game, Gφ , such that Paul wins Gφ if and only if φ is true. Furthermore, the graph, Dφ on which Gφ is played, is a
k+ 3-level graph.
Let
φ = ∃x1∀y1 · · · ∃xk−1∀yk−1ψ.

Here we assume that ψ is a Boolean formula in 3-DNF; that is,
ψ = D1 ∨ D2 ∨ · · · ∨ Dm

and each clause, Di, is a conjunction of exactly three variables. We also assume that after each quantifier the number of
variables appearing in φ is exactly the same; that is, xi = {xi,1, . . . , xi,n} and yi = {yi,1, . . . , yi,n} for i = 1, . . . , k − 1. This
can be accomplished by adding dummy variables if needed.
The main ingredient of the proof is a gadget that allows both Carole and Paul, in the ith round, to select the assignment

of their respective variable sets; namely, xi and yi.
For each existentially quantified variable x ∈ xi there is a set V (x) including two special vertices T and F , representing

the two possible assignments of the variable. Paul sets the value of x by asking about T or F . For each universally quantified
variable y ∈ yi there is a setW (y) which includes a special vertex C that leads to two vertices labeled T and F . When Paul
inquires about C he invites Carole to set the value of y.
In the ith round Paul has 2n+ 1 questions. He can use these questions as follows.

(1) Paul asks one question on the pseudo-root.

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 371

Fig. 5. Selectors V (x) andW (y).

(2) Paul asks n questions for assigning a value to each of the n existentially quantified variables.
(3) Paul asks n questions such that he allows Carole to assign the value to each of the n universally quantified variables.

The construction of Dφ has to be so robust that both Paul and Carole essentially have no other option to play the game.
The game is set up so that the number of open vertices in the last round is very large if the assignment of the variables made
by Paul and Carole makes ψ false. The elaborate gadgetry assures that Paul and Carole play in this predictable fashion.
The game Gφ has k rounds. The first k− 1 rounds consist of 2n+ 1 questions and the last round consists of L questions,

where the number Lwill be described later. The game can formally be described as follows:

Gφ = (Dφ , (2n+ 1, . . . , 2n+ 1︸ ︷︷ ︸
k−1 times

, L)).

Let us define:

X =
k−1⋃
i=1

xi and Y =
k−1⋃
i=1

yi;

that is X and Y are the set of existentially and universally quantified variables in φ, respectively. Throughout this section
we will be referring to the formula φ. We assume that n ≥ 4 for the rest of this section. Let us choose two parameters t
and z where t ≥ 4 and z = mt + 2kn. In fact, any large enough values for these parameters yield a correct result. We take
L = 7z + 2n(k− 1)+ (m− 1)t + 4.
We now describe the graph Dφ on which the game is played.

5.1. The gadgets

In order to describe the construction of Dφ , we will introduce some basic gadgets.

5.2. The clause nodes

For each clause, Di, wemake t internal nodes labeled d1i , . . . , d
t
i in the graph. Each one of these nodes is connected to two

terminal vertices. For simplicity we denote the set {d1i , . . . , d
t
i } by Di. Let D denote all the clause nodes; that is,

D =
m⋃
i=1

Di.

We have sets ZT , ZF , E,U and R consisting of 2z, 2z, 4z, 8z and 3z internal nodes, respectively. Each one of these nodes
is also connected to two terminal vertices. Note that our graph will contain exactly one copy of each of these sets.

5.2.1. Value selectors
For each variable x ∈ X we create a value selector (or just selector), V (x), consisting of three vertices as shown in Fig. 5.

If Paul asks about a vertex labeled T (resp. F), he sets x = 1 (resp. x = 0). The vertices T and F are connected to the clause
vertices as follows:
If x appears in a clause Di then T is connected to all the clause nodes in Di. Similarly, if x appears in Di then F is connected

to all the vertices of Di. T (resp. F) is also connected to all the vertices in ZT (resp. ZF). The vertex x is connected to all internal
the vertices in E.
Suppose a variable, x, occurs in Di and Paul wants to set this variable to 1. He inquires about T in V (x) and nomatter how

Carole responds, she can only make at most one node in Di reachable from x. In the game, Paul will try to satisfy a clause Di
and if he succeeds then he will be able to make all but at most three nodes in Di unreachable, thereby reducing the number
of questions he needs in the last round.

Fact 13. If at most 2n+ 1 vertices in V (x) are answered and T , F and x are not answered then Paul cannot win V (x) by asking L
questions in one round.

372 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Fig. 6. Construction of the tree τi .

Proof. The total number of nodes in ZT , ZF and E is 8z. As all the vertices in ZT ∪ ZF ∪ E are reachable from x, the number of
open nodes is at least 8z − 2n− 1 > L, he loses. �

Fact 14. If T or F is answered in V (x) then Paul wins V (x) in one round by asking L questions.

Proof. If T (resp. F) is answered then the number of reachable nodes to ZT (resp. ZF) is at most one. Hence the total number
of reachable nodes from x is 2z + 4z +mt + 3 < 7z < L, and Paul wins. �

The value selector,W (y), for each y ∈ Y is shown in Fig. 5. When Paul inquires about y, he is allowing Carole to set the
value of y in a natural way; that is, if she points y to T (resp. F) then she sets y = 1 (resp. y = 0).
If y (resp. y) appears in a clause Di then F (resp. T) is connected to all the vertices in Di. T (resp. F) is connected to all the

nodes in ZT (resp. ZF). Lastly, y is connected to all the internal nodes in U .
Note that here the connections from T and F to the clause nodes are opposite to that of the existentially quantified

variables. Suppose that y appears in a clause Di and Carole choose y = 1 by pointing y inW (y) to T . In this case, all the nodes
in Di become unreachable from y.

Fact 15. If at most 2n+ 1 questions are answered in W (y) and y is not answered in W (y) then Paul cannot win W (y) by asking
L questions in one round.

Proof. The total number of nodes in U is 8z. As y is not answered, all the nodes in U are reachable. Hence the number of
open nodes is at least 8z − 2n− 1 > L and Paul loses. �

Fact 16. If y is answered in W (y) then Paul wins W (y) in one round by asking L questions.

Proof. If y is pointing to a node in U then Paul needs only a single question to win. If y leads to T (resp. F), the total number
of open nodes reachable from T (resp. F) is at most 2z +mt + 1 < L and he wins. �

5.2.2. Trees
Let τ1 denote a tree containing one internal vertex connected to L − 1 internal vertices. Each of these internal vertices

is connected to two terminal vertices. We let τi be a tree constructed inductively by adding a root and pointing it to 2n+ 2
copies of τi−1, (see Fig. 6). It is easy to check that the number of vertices in τi is

(2n+ 2)i−1(3L− 2)+
(2n+ 2)i−1 − 1

2n+ 1
= O(nim).

Let us collect some simple facts about the games played on a τt .

Fact 17. Paul wins on τt by asking one question in each of the t − 1 rounds and L questions in the last round. �

This game is robust in the sense that Paul cannot win this game in t − 1 rounds, even if he has a reasonable number of
questions in each round. More precisely:

Fact 18. For t ≥ 2, Paul cannot win on τt by asking 2n+ 1 questions in the first t − 2 rounds and L questions in the last round.

Proof. For t = 2, there are more than L open vertices in τ2, hence Carole wins. If t ≥ 3 and Paul asks 2n + 1 questions in
the first round, Carole can always point the root (regardless of his asking about the root) to a copy of τt−1 such that he has
not asked any questions in that copy. She can apply this strategy inductively to win the game on this τt−1. �

5.2.3. Protectors
Let x ∈ X and V (x) be a value selector for x. We define a protector of order one, P1(x), for x to be V (x) itself. A protector

of order i, Pi(x), consists of a root that is connected to Pi−1(x). It is also connected to 2n copies of τi and 4n + 3 copies of
τi−1. Similarly, we defineW (y) to be a protector, Q1(y), of order one. A protector of order i, Qi(y), consists of a root that is
connected to Qi−1(y). It is again connected to 2n copies of τi and 4n+ 3 copies of τi−1 (see Fig. 7).
Note that unlike the sets ZT , ZF , E,U and R which have one global copy in the graph, each protector has its own copy of

the trees τi.

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 373

Fig. 7. Pi(x) and Qi(y) have the same recursive construction.

We say that P1(x) (resp. Q1(y)) is almost clean if there are at most 2n + 1 answered nodes in P1(x) (resp. Q1(y)).
Furthermore, these nodes do not include x, T or F (resp. y). We say Pi(x) is almost clean if there are at most 2n + 1 nodes
answered in Pi(x) (resp. Qi(y)). All these nodes are in Pi−1(x) (resp. Qi−1(y)) and Pi−1(x) (resp. Qi−1(y)) is also almost clean.
Equivalently, we can say that Pi(x) is almost clean if there are at most 2n + 1 nodes reachable from x that are already

answered. Furthermore, the nodes belong to ZT , ZF , E or the clauses that are reachable from x.

Fact 19. If Pt(x) is almost clean, Paul cannot win on Pt(x) by asking 2n+ 1 questions in the first t − 1 rounds and L questions in
the last round.

Proof. We have already proved this claim for the base case in Fact 13. For t > 1, if he does not inquire about any vertex in
one of the τt ’s, Carole leads him to that copy of τt which she wins by Fact 18. If he does not inquire about Pt−1(x), she points
the root to Pt−1(x) andwins by induction. Lastly, if he does not inquire about the root then by the pigeonhole principle there
are at least 2n+ 1 copies of τt−1’s in which he has not inquired about any vertex. These copies along with the root make a
τt . Carole can restrict the game to this τt and win by Fact 18. �

Pt(x) contains V (x), which is a sensitive part of Pt(x). If Paul has an advantage on V (x), of a single question, he can win
the game on Pt(x). More precisely:

Fact 20. If at least one of T or F is answered in V (x) then Paul wins on Pt(x) by asking 2n+ 1 questions in the first t − 1 rounds,
and L questions in the last round.

Proof. For t = 1 we have already proved this claim in Fact 14. Now, we prove the claim for general Pt(x) by induction. Paul
asks the root and one question each on the roots of τt ’s. If Carole leads him to a τt , he moves two levels down and the game
is played on a subtree of τt which is a τt−1 and he wins by Fact 17. For the same reason she cannot send him to any τt−1’s.
Lastly, if she sends him to Pt−1(x), he wins by induction. �

Fact 21. If Qt(x) is almost clean, Paul cannot win on Qt(x) by asking 2n + 1 questions in the first t − 1 rounds and L questions
in the last round.

Proof. Similar to Fact 19. �

Fact 22. If y is answered on W (y) then Paul wins on Qt(y) by asking 2n + 1 questions in the first t − 1 rounds and L questions
in the last round.

Proof. Similar to Fact 20. �

Lastly, we note that Pi(x) and Qi(y) have O(ni) vertices and depth i+ 2.

5.3. The graph Dφ

Dφ contains k special vertices, r1, . . . , rk, where r1 is the root of Dφ and each ri, for i = 1, . . . , k − 1, is connected to the
following vertices:

• The roots of 4n+ 3 copies of τk−i.
• The root of the protector Pk−i(xi,j) for each variable xi,j ∈ xi and the root of the protector Qk−i(yi,j) for each variable
yi,j ∈ yi.
• The special vertex labeled ri+1.

The special vertex rk is connected to all vertices labeled y in W (y) for all y ∈ Y , and all the vertices labeled T and F in
V (x). Note that rk is not connected to any vertices labeled x in V (x) for any x ∈ X . The vertex rk is also connected to all the
vertices in R (see Fig. 8).
We note that the size of the graph Dφ is mnO(k) and its depth is k+ 3. The description of this graph can be computed in

LOGSPACE.

374 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Fig. 8. Part of the graph Dφ .

5.4. Paul’s strategy

Let us assume that φ is true. We now describe Paul’s strategy for the game Gφ . For i = 1, . . . , k, Paul will maintain the
following invariants at the start of the ith round.

(1) The vertex ri is the pseudo-root.
(2) For all t < i, there are assignments αt : xt → {0, 1} and βt : yt → {0, 1} such that:
(a) if αt(xt,j) = 1 (resp. 0) then T (resp. F) is answered in V (xt,j).
(b) Each yt,j inW (yt,j) is answered.
(c) If βt(yt,j) = 1 then y is answered to T inW (yt,j).

These invariants clearly hold for i = 1. Tomake sure that the invariants hold for i+1, in the ith round Paul inquires about
ri. He takes an assignment αi : xi → {0, 1} and for each xi,j if αi(xi,j) = 1 (resp. 0), he inquires about T (resp. F) in V (xi,j). He
inquires about y in each ofW (yi,j), thus inviting Carole to pick her assignment βi for each yi,j. After getting her answers, he
defines:

βi(yi,j) =
{
1, if she answers y to T inW (yi,j);
0, otherwise.

Note that he is asking a total of 2n + 1 questions. The only way that the invariants can fail to hold is if Carole does not
point ri to ri+1. We show that in this case Paul wins. Indeed, if she points ri to a copy of τk−i, he wins in the next k− i rounds
by Fact 17. If she points ri to the root of some protector, Pk−i(xi,j), as he has already asked a question in V (xi,j), he wins by
Fact 20. If she leads him to someQk−i(yi,j), then, as he has already asked y inW (yi,j), he wins by Fact 22. Thus, the only choice
she has is to lead him to ri+1.
At the end of k − 1 rounds rk is the pseudo-root. Furthermore, the play has determined an assignment

(α1, β1, . . . , αk−1, βk−1) of all the variables. We make the following critical observation:

Lemma 23. If a clause Di is satisfied by (α1, β1, . . . , αk−1, βk−1) then at most three nodes are reachable in Di.

Proof. Suppose Di is satisfied and it contains a universally quantified variable y. Then Carole chose y = 1, hence pointed
y inW (y) to T , thus making all the nodes in Di unreachable from y. The same is the case, if a universal variable y appears
negated in Di.
IfDi contains an existentially quantified variable x then Paul asked about T fromwhich all the nodes inDi were reachable.

Since Carole responds to T , she can only point it to one of the nodes in Di.
SinceDi can contain at most three existentially quantified variables, at most three of the nodes inDi can remain open. �

Lemma 24. Let us assume that Paul plays as described above and Carole leads to rk in round k − 1. Suppose the assignment
(α1, β1, . . . , αk−1, βk−1) satisfies ψ , then the number of open nodes in the last round is at most

7z + 2n(k− 1)+ (m− 1)t + 4 = L.

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 375

Proof. We count the total number reachable nodes from rk that are open. There are 2z + 2z + 3z = 7z nodes in ZT , ZF and
R. Hence the number of open nodes in ZT ∪ ZF ∪ R cannot exceed 7z.
For each x ∈ X we count the number of open nodes in V (x) \ (ZT ∪ ZF ∪ D). Since Paul has inquired about either T or F

in V (x), at most one node out of T and F is open. Note that there are no edges from rk to x in V (x), therefore, x and all the
nodes in E are unreachable from rk. Thus there are (k− 1)n open nodes, reachable from rk in(⋃

x∈X

V (x)

)
\ (ZT ∪ ZF ∪ D).

For each y ∈ Y , we count the number of open nodes in eachW (y) \ (ZT ∪ ZF ∪D). As y is answered inW (y), we have two
cases: If y is answered to a node in U then exactly one node is open in U . If y is answered to T (resp. F) then T (resp. F) is the
only open node inW (y) \ (ZT ∪ ZF ∪ D). Hence, the total number of open nodes, reachable from rk in(⋃

y∈Y

W (y)

)
\ (ZT ∪ ZF ∪ D)

is again at most (k− 1)n.
Lastly, we count the number of open nodes in D. As (α1, β1, . . . , αk−1, βk−1) satisfies ψ , at least one of the clauses, Di, is

satisfied. By Lemma 23, the total number of open clause nodes in Di is at most three. Hence, the number of open nodes in D
is at most (m − 1)t + 3. The node rk is also open, therefore, 7z + 2n(k − 1) + (m − 1)t + 4 upper bounds the number of
open nodes reachable from rk. �

We can now conclude the following:

Lemma 25. If φ is true, Paul wins Gφ . �

5.5. Carole’s strategy

Let us now assume that φ is false. In this case, Paul has no incentive to play as described in Section 5.4. Here we show
that he can only deviate from the strategy very slightly and these deviations do not help him in winning the game.
We call a subgraph of Dφ , clean, if no vertices in that subgraph have been answered. A subgraph is dirty, if it is not clean.

We will show that before the ith round, Carole can maintain the following invariants:

(1) For all i ≤ k, ri is the pseudo-root.
(2) Pk−t(xt,j) and Qk−t(xt,j) are clean for all t ≥ i.
(3) All the trees connected to rt , with t ≥ i, are clean.
(4) For all t < i, there are assignments αt : xt → {0, 1} and βt : yt → {0, 1} such that:
(a) if αt(xt,j) = 0 (resp. 1) then T (resp. F) is not answered in V (xt,j).
(b) For t < i, the vertex y, inW (yt,j), points to T if βt(yt,j) = 1, and to F otherwise. Furthermore, both T and F are not
answered inW (yt,j).

(c) All of ZT , ZF , E,U, R and D are clean.

We show that if Paul tries to destroy these invariants, Carole wins the game. Note that, the invariants are trivially true before
the first round. Given that the invariants are true before the ith round, we have the following claims:

Fact 26. If Paul does not inquire about ri, he loses.

Proof. Note that ri is connected to 4n + 3 copies of τk−i and he can only make 2n + 1 of them dirty, by asking a question.
This leaves at least 2n + 2 copies of τk−i clean. These trees, along with ri, make a copy of τk−i+1. Carole now restricts the
game to τk−i+1 and wins by Fact 18. �

Fact 27. If Paul does not inquire about one of the nodes in

Pk−i(xi,j) \ (ZT ∪ ZF ∪ E ∪ D)

he loses.

Proof. Note that in this case at the end of the ith round Pk−i(xi,j) is almost clean and he loses by Fact 19. �

Fact 28. If Paul does not inquire about at least one node

Qk−i(yi,j) \ (ZT ∪ ZF ∪ U ∪ D)

he loses.

Proof. Note that in this case at the end of the ith round Qk−i(yi,j) is almost clean and he loses by Fact 21. �

376 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

These facts account for all the 2n+ 1 questions that Paul has in round i. Therefore, he cannot make any other part of the
graph dirty. Furthermore, Paul must ask exactly one question on each of the Pk−i(xi,j) and Qk−i(yi,j) for all j.
Carole can maintain the invariants by defining:

αi(xi,j) =
{
1, If Paul inquires about T inW (xi,j);
0, otherwise.

It is possible that Paul has not inquired about any vertex in V (xi,j) and has inquired about some other vertex in Pk−i(xi,j). In
this case, he has forfeited his right to assign a value to xi,j. The way Carole has defined αi(xi,j) she has acted as if Paul has
assigned xi,j = 0.
Fact 15 shows if Paul has asked about T or F in Qk−i(yi,j) then he loses.
She now chooses an assignment βi, and points y, in W (yi,j), to T if β(yi,j) = 1, and F otherwise. Note, that Carole can

answer yi,j generously even if Paul has not inquired about it. Lastly, she points ri to ri+1 and maintains the invariants.
We need the following fact at the end of k− 1 rounds.

Fact 29. If (α1, β1, . . . , αk−1, βk−1) does not satisfy a clause Di then all the nodes in Di are open. �

The following lemma finishes our proof of Theorem 12.

Lemma 30. If all the clauses are not satisfied then the number of open nodes in the last round is

7z + (2n(k− 1))+mt > L.

Proof. Similar to the analysis of Lemma 24. The only difference is that Paul may not have inquired about any vertices in
some V (xi,j). However, in this case the number of reachable vertices cannot decrease. �

6. General Q/A games

We cannot use the construction given in the previous section for Dφ to show that Q/A games are PSPACE-complete. The
reason is that the number of vertices in Dφ is at least mnO(k), where k is the number of alternations, and for arbitrary QSAT
this is too large. A much more complicated proof of PSPACE-completeness, based on completely different gadgetry was
given in [3]. Interestingly the proof shows that determining if Carole wins a Q/A game is PSPACE-complete. However, that
proof does not show that Q/A games are PSPACE-complete even when the number of questions in each round is restricted
to two. We provide a somewhat different construction of the graph, Dφ , to prove the following theorem:

Theorem 31. P is PSPACE-complete. In fact, determining if Paul wins a Q/A game in which each round has 2 questions is also
PSPACE-complete.

It can easily seen that P ∈ PSPACE [3]. The rest of this section is devoted to proving that P is PSPACE-hard. We show
that given an instance of QSAT, that is, a formula

φ = ∃x1∀x2 . . . ∃xn−1∀xnψ

where ψ is in 3-CNF. More precisely,

ψ = (C1 ∧ C2 ∧ · · · ∧ Cm) ,

where Ci is a disjunction of exactly three variables. Note that n is even; that is, the last quantifier is universal.
We create a Q/A game

Gφ = (Dφ , r1, (2, 2, . . . , 2︸ ︷︷ ︸
n times

, 6)),

such that Paul wins Gφ if and only if φ is satisfiable. Moreover, this reduction would be computable in LOGSPACE. At the end
we will comment on how to modify the game so that instead of having six questions in the last round we have additional
five rounds of two questions each.
Let X (resp. Y) denote the set of existentially (resp. universally) quantified variables in φ.

6.1. The gadgets

In this section we describe the gadgets used in the graph Dφ .

6.1.1. Value selectors, strands and double strands
For each variable x ∈ X , we create a value selector (or just selectors), V (x), on four vertices as shown in Fig. 9. The vertices

of this selector have the following interpretation. If Paul asks about a vertex labeled Ti (resp. Fi), he sets x = 0 (resp. x = 1).
We use a different kind of value selector,W (y), for each y ∈ Y as shown in Fig. 9. When Paul inquires about C , he allows

Carole to set the value of y in a natural way; that is, if she points C to T then she sets y = 1, and if she points it to F then she
sets y = 0.

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 377

Fig. 9. Selectors V (x) andW (y) and how to set the values of the variables.

Fig. 10. Protection strands: Pi(x) and Qi(x).

A strand, St , of length t consists of t internal vertices connected as a directed path. Each internal vertex is also connected
to a terminal vertex and the last internal vertex is connected to two terminal vertices. A double strand, Dt , of length t is
constructed by taking a vertex Z and connecting it to two copies of St . The following facts are easy to verify for strands and
double strands.
Fact 32. Paul wins on St if and only if the total number of questions that Paul can ask (regardless of the number of rounds) is at
least t. �

Fact 33. If Paul asks two questions in each of the first t rounds and six questions in the last round he loses on D2t+5.
Proof. We use induction on t with the base case being trivial. If in the first round, Paul does not ask one question on both
strands, Carole will point Z to the strand on which he has not asked any question. He has a total of 2(t − 1) + 6 = 2t + 4
questions, and the game is played on a strand of length 2t + 5; therefore, he loses by Fact 32. If he asks a question on both
strands then Carole can answer these questions so that the game is now played on D2t+4, which he loses by induction. �

Fact 34. Let t ≥ 1. Suppose one of the questions is already answered on D2t+5. If Paul asks two questions each in the first t rounds
and six questions in the last round he wins on D2t+5.
Proof. If the answered question is Z then the game is played on a strand of length S2t+5 which Paul wins by Fact 32. If the
answered question is on one of the strands then Paul can inquire about the root and one question on the other strand. As
both strands have an answered question, the game is now played on a strand of length 2t + 4, regardless of Carole’s answer
to Z . Paul has enough questions now to win this game. �

6.1.2. Protectors
For x ∈ X , a protector of order i, Pi(x), consists of a double strand,D2n−2i+3, whose last two internal vertices are connected

to T1 and F1 in V (x), respectively. We observe that Pi(x) is just D2n−2i+5. For x ∈ Y , a protector of order i, Qi(x), consists of a
strand, S2n−2i+5, whose last internal vertex is connected to the vertex C inW (x) (see Fig. 10).
Fact 35. Suppose that at most one question is answered on Qi(x), and this question is either T or F in W (x). If Paul asks two
questions each in the first n− i rounds, and six questions in the last round he loses on Qi(x).
Proof. If either T or F inW (x) is answered then Qi(x) is a strand of length 2n− 2i+ 7. �

Fact 36. Suppose C is answered on Qi(x). If Paul asks two questions each in the first n − i rounds and six questions in the last
round he wins on Qi(x).
Proof. If C is answered then Qi(x) is the same as a strand of length 2n− 2i+ 6. �

The proofs of the following facts are the same as Fact 33 and Fact 34, respectively.
Fact 37. If Paul asks two questions each in the first n− i rounds and six questions in the last round he loses on Pi(x). �

Fact 38. Suppose one of the questions is already answered on Pi(x). If Paul asks two questions each in n−i rounds and six questions
in the last round he wins on Pi(x). �

378 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Fig. 11. Clause vertex for Ca = (xi ∨ xi′ ∨ xi′′); xi and xi′′ are existentially quantified and xi′ is universally quantified.

Fig. 12. The graph Dφ0 (only partial graph is shown for clarity).

6.2. The graph Dφ

Dφ will have n special vertices labeled r1, . . . , rn with r1 being the root of Dφ . For each variable xi ∈ X , we will have a
protector, Pi(xi); and for each xi ∈ Y , we will have a protector Qi.
We also haven protection strands, S i, of length 2n−2i+4 for i = 1, . . . , n, rooted at vertex si, respectively. For i = 1, . . . , n,

each vertex ri is connected to ri+1 (if i < n) and the root of Pi(xi) (resp. Qi(xi)) if xi ∈ X (resp. xi ∈ Y). The vertex ri is also
connected to si on the protection strand S i, for all i ≤ n. There will be one vertex labeled cj for each of the clauses Cj. The
vertex rn is also connected to them clause vertices. A clause vertex cj is connected to the value selectors as shown in Fig. 11.
If an existentially quantified variable, xi ∈ X , appears in a clause Ct (resp. xi appears in Ct) then there is an edge from ct to
the vertex labeled T1 (resp. F1) in V (xi). If a universally quantified variable, xi ∈ Y , appears in Ct (resp. xi appears in Ct) then
there is an edge from ct to the vertex labeled C and T (resp. F) inW (xi).
Fig. 12 shows the partial graph Dφ0 for
φ0 = ∃x1∀x2∃x3∀x4(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

6.3. Paul’s strategy

Let us assume that φ is true. For i = 1, . . . , n+1, Paul will maintain the following invariants at the start of the ith round.
(1) If i ≤ n then ri is the pseudo-root. If i = n+ 1 then some clause vertex, ca, is the pseudo-root.
(2) There is an assignment αi−1 : {x1, . . . , xi−1} → {0, 1}, such that:
(a) for xj ∈ X , if αi−1(xj) = 1 (resp. 0) then T1 (resp. F1) is answered in V (xj).
(b) For xj ∈ Y , if αi−1(xj) = 1 (resp. 0) then C is answered to T (resp. F) inW (xj).

This invariants clearly hold for i = 1. To make sure that the invariants hold for i+ 1, Paul has to extend αi−1 to the next
variable, xi. He uses one question to inquire about ri. If xi ∈ X , and he wishes to set αi(xi) = 1 (resp. 0), he inquires about T1

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 379

(resp. F1) in V (xi). If xi ∈ Y he inquires about C inW (xi), thus inviting Carole to pick her assignment for xi. He defines:

αi(xi) =
{
0, if she answers C to F inW (xi);
1, if she answers C to T inW (xi).

The only way the invariants can fail to hold is if Carole does not point ri to ri+1. We show that in this case Paul wins.
Indeed, if she points ri to Pi(xi) (resp. Qi(xi)), he wins in the next n− i+ 1 rounds by Fact 38 (resp. 36). If she points ri to si
then he wins by Fact 32. Similarly, in round n she can only point him to a clause vertex ca.
Lemma 39. If Paul plays as described above and Carole leads to a clause vertex, ca, then the number of open vertices in the last
round is

7− λ,
where λ is the number of literals in Ca that are made true by the assignment, (α1, . . . , αn).
Proof. Let xi ∈ X that is, xi be an existentially quantified variable. If xi appears as a literal in Ca then ca has edges to T1 in
V (xi). If αi(xi) = 1 then Paul has inquired about T1 and only one vertex is open in V (xi). If αi(xi) = 0 then both T1 and T2 are
open. The analysis is similar if xi appears in Ca.
On the other hand for xi ∈ Y , if xi appears Ca then ca has edges to C and T inW (xi). If αi(xi) = 1 then only T is open. On

the other hand if αi(xi) = 0 then both T and F are open. Again the analysis is similar if xi ∈ Ca. Therefore, the number of
open vertices reachable from ca is exactly λ+ 2(3−λ) = 6−λ. The total number of open vertices including ca is 7−λ. �

Hence, we conclude that if φ is true Paul wins.

6.4. Carole’s strategy

Assume that φ is false. In this case, we show that before the ith round Carole can maintain the following invariants.
(1) If i ≤ n then ri is the pseudo-root. If i = n+ 1 then some clause vertex, ca, is the pseudo-root.
(2) The protectors for the variables xj are clean for all j ≥ i.
(3) The strands S j for all j ≥ i are clean.
(4) None of the clause vertices is answered.
(5) There is an assignment αi−1 : {x1, . . . , xi−1} → {0, 1}, such that for j < i:
(a) If xj ∈ X then αi−1(xj) = 0 (resp. 1) then both T1 and T2 (resp. F1 and F2) are not answered in V (xj).
(b) If xj ∈ Y and αi−1(xj) = 0 (resp. 1) then C inW (xj) points to T (resp. F). Furthermore, both T and F are not answered
inW (xj).

In the ith round, if Paul does not inquire about ri, or some vertex in S i, then he loses as the vertex ri along with S i makes
a path of length 2n − 2i + 5 (Fact 32). If xi ∈ X and Paul does not inquire about some vertex in Pi(xi), he loses (Fact 37).
Similarly, if xi ∈ Y and he does not inquire about any vertex in Qi(xi), or inquires about T or F in Qi(xi), he loses (Fact 35).
This accounts for the two questions Paul has in round i and shows that he cannot make any other part of the graph dirty.

If xi ∈ X then Carole can maintain the invariants by defining:

αi(xi) =
{
0, If Paul inquires about F1 or F2 inW (xi,j);
1, otherwise.

If xi ∈ Y , she can choose an assignment αi(xi) and points C to T (resp. F), if αi(xi) = 1 (resp. αi(xi) = 0), inW (xi). In the
penultimate round she points rn to a clause vertex ca. The following lemma shows that if φ is false then Carole wins Gφ .
Lemma 40. The number of open vertices in the last round is at least 7− λ, where λ is the number of literals in Ca made true by
the assignment (α1, . . . , αn).
Proof. Similar to the analysis of Lemma 39. The only difference is that Paul may not have inquired about any vertices in
some V (xi,j). However, in this case the number of reachable vertices cannot decrease. �

6.5. Reducing the maximum number of questions

We briefly discuss how to reduce the maximum number of questions in any round of the game to two. We replace the
last round with five rounds of two questions each. Each strand of length t is replaced by a strand of t + 4. Similarly, each
double strand of length t is replaced by a double strand of length t+4. Each clause vertex, cj, is replacedwith a clause-gadget
which is a complete binary tree of depth four. There are 16 vertices, c1j , . . . , c

16
j , on the fourth level of this tree. Each c

l
j is

connected to the value selectors in the same way that cj would have been connected. The analysis of this game for the first
n rounds is exactly the same as the one given above. Only the last five rounds need to be re-analyzed, which is done below.
If φ is satisfiable then the set of open vertices, O, reachable from each c lj has at most five vertices. Paul starts from the

root of the clause-gadget and in each round he uses one of the questions to inquire about the pseudo-root of the tree, and
the other one on a vertex in O, and wins.
In case that φ is not satisfiable, the number of open vertices in O, reachable from each c lj , is at least six. By Theorem 6, if

he does not inquire about a vertex in the tree in any one of these five rounds, he loses. Hence, he has only one question to
spare in each round. As |O| ≥ 6, he loses.
This completes the proof of Theorem 31. �

380 S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381

Table 2
Summary of complexity theoretic results known about fixed
round Q/A games
k (rounds) depth k+ 1 depth k+ 2 depth k+ 3

2 NP 61-hard 62-complete
51-hard

k ≥ 3 62k−5-hard 62k−3-hard 62k−2-complete
52k−5-hard 52k−3-hard

k+ 1
2 – 62k−3-hard 52k−1-complete

52k−3-hard

7. Conclusion

Q/A games show a rich variety from a complexity theoretic point of view. One can define a game on k+ 1
2 rounds. In such

a game, a set of questions,Q1, to be asked in the first round, is included as a part of the game. Carole responds toQ1 in the first
half round and the next k rounds continue between Paul and Carole as usual. We can show that Pk+ 12 is52k−1P-complete
and capture the odd levels of PH also. Some readers may find this way of capturing the odd levels of PH unnatural. This
prompts the following question:

Problem 7.1. Can the odd levels of PH be captured by some natural class of Q/A games?

We have shown thatP k+3k is62k−2P-complete. It is easy to see thatP kk is trivial as Paul canmove down one level in each
round and win any game played on digraphs of depth k. The exact complexity of P k+1k remains elusive, except in the case
of k = 2 (Theorem 9). One can show that P k+2k is 62k−3-hard and52k−3-hard. This leads to the following problem.

Problem 7.2. Characterize the complexity of P k+1k and P k+2k for k > 2.

A summary of known results for fixed roundQ/A games is given in Table 2. To obtain these resultswe use similar gadgetry
as given in the proof of Theorem 12. The detailed proofs are given in [16].
The PSPACE-completeness has the following interesting consequence.

Theorem 41. There exists a LOGSPACE computable function f : {0, 1}∗ → {0, 1}∗ such that f maps encodings of Q/A games to
Q/A games. Furthermore, Paul wins G if and only if Carole wins f (G). �

This theorem says that one can turn ‘‘answers’’ into ‘‘questions’’ and vice versa. We are not aware of any ‘‘simple’’ or
‘‘intuitive’’ transformation that will convert Paul-win games to Carole-win games. It will be interesting to look for such a
transformation.
There are many intriguing questions about Q/A games when the digraph is restricted in some way. For trees, the senior

author finds the following question fascinating:

Problem 7.3. Given an arbitrary tree, T , and a question vector, q = (q1, . . . , qk), is it possible to determine in polynomial
time, if Paul wins (T , q)?

The above question is also open for fixed strategies. We recall from Section 2 that there are trees and question vectors
where Paul can win via a non-fixed strategy and lose if he follows any fixed strategy.
Analysis of Q/A games for many simple classes of graphs is also open. Consider an n-level graph with vertex set

{(i, j) : 0 ≤ i ≤ n, and 0 ≤ j ≤ i}. Each vertex, (i, j), is connected to (i + 1, j) and (i + 1, j + 1). We call this graph,
Mn, amesh of order n. The following question mentioned in [1,2] is still open for all q > 3.

Problem 7.4. Howmany rounds are required by Paul to win onMn if he inquires about q vertices in each round?

We believe that studying Q/A games on other specific graphs can be very interesting.
Lastly, Theorem 12 motivates the following question about the complexity of combinatorial games in general.

Problem 7.5. Capture PH, or infinitely many levels of PH, by restricted versions of other well-known combinatorial games.

For further reading

Fig. 1.

Acknowledgements

Wewould like to thank Ahsan Kamal and Yasser Hashmi for proof reading a draft of this paper.We are also thankful to an
anonymous referee (of CCC) who pointed out that while reducing QSAT2k−2, we were assuming that the formula was in 3-
CNF thereby only proving that k-round games are62k−3-hard. The second author would like to thank his advisor Arif Zaman
for his encouragement and guidance. We would also like to thank anonymous referees of this journal whose comments
helped in improving the exposition.

S. Abbasi, N. Sheikh / Theoretical Computer Science 409 (2008) 364–381 381

References

[1] S. Abbasi, Do answers help in posing questions? Technical Report 98-35, DIMACS, 1998.
[2] S. Abbasi, Impact of parallelism on the efficiency of binary tree search, Ars Combin. (in press).
[3] S. Abbasi, N. Sheikh, Some hardness results for Q/A games, Integers 7 (2007) G08.
[4] T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, McGraw-Hill Higher Education, 2001.
[5] B. Durand, A.C. Fabret, On the complexity of deadlock detection in families of planer nets, Theoret. Comput. Sci. 215 (1–2) (1999) 225–237.
[6] S. Even, R.E. Tarjan, A combinatorial problem which is complete in polynomial space, J. ACM 23 (4) (1976) 710–719.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
[8] C. Löding, P. Rohde, Solving the sabotage game is pspace-hard, in: MFCS, 2003, pp. 531–540.
[9] C.M. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
[10] A. Pelc, Ulam’s problem on searching with a lie, J. Combin. Theory. Ser. A. 44 (1987) 129–140.
[11] A. Pelc, Searching games with errors—Fifty years of coping with liars, Theoret. Comput. Sci. 270 (1–2) (2002) 71–109.
[12] A. Rényi, On a problem of information theory, MTA Mat. Kut. Int. KozI. 6B (1961).
[13] A. Rényi, Napl’o az információelméletről, Gondolat, Budapest, 1976. (English Translation: A Diary on Information Theory, Wiley, New York, 1984.).
[14] M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy: A compendium, SIGACT News 33 (3) (2002) 32–49.
[15] M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy: A compendium (updated version). August 2006. available at

http://ovid.cs.depaul.edu/documents/phcom.ps.
[16] N. Sheikh, Question/Answer Games, Ph.D. Thesis, Lahore University of Management Sciences (in preparation).
[17] J. Spencer, Ulam’s searching game with fixed number of lies, Theoret. Comput. Sci. 95 (1992).
[18] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1) (1976) 1–22.
[19] S. Ulam, Adventures of a Mathematician, Scribner, New York, 1977.
[20] van Emde Boas, The convenience of tilings, in: Complexity, Logic, and Recursion Theory, Marcel Dekker, Inc., 1997.

	Complexity of question/answer games
	Introduction and definitions
	Perfect play by Paul and Carole

	Fixed strategies
	Q/A games on the trees
	P23 is NP-complete
	Q/A games and the polynomial-time hierarchy
	The gadgets
	The clause nodes
	Value selectors
	Trees
	Protectors

	The graph Dφ
	Paul's strategy
	Carole's strategy

	General Q/A games
	The gadgets
	Value selectors, strands and double strands
	Protectors

	The graph Dφ
	Paul's strategy
	Carole's strategy
	Reducing the maximum number of questions

	Conclusion
	For further reading
	Acknowledgements
	References

