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a b s t r a c t

The conditional fault model imposes a constraint on the fault distribution. For example,
the most commonly imposed constraint for edge faults is that each vertex is incident with
two or more non-faulty edges. In this paper, subject to this constraint, we show that an n-
dimensional pancake graph can tolerate up to 2n−7 edge faults, while retaining a fault-free
Hamiltonian cycle, where n ≥ 4. Previously, at most n− 3 edge faults can be tolerated for
the same problem, if the edge faultsmay occur anywherewithout imposing any constraint.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The performance of an interconnection network (network for short) highly relies on its interconnection topology. In
recent decades, a lot of network topologies have been proposed in the literature [1,8,16]. Among them, the pancake graph
[1,14] is suitable to serve as the topology of a large-scare parallel and distributed system, because of its scalability and
other favorable properties, e.g., regularity, recursiveness, symmetry, sublogarithmic degree and diameter, andmaximal fault
tolerance. The pancake graph, which belongs to the class of Cayley graphs [1], was introduced (and named) from the famous
‘‘pancake problem’’ whose answer is exactly the diameter of the corresponding pancake graph (see [14]).
It was shown in [15] that the diameter of the pancake graph is bounded above by 3(n+ 1)/2, where n is the dimension

of the pancake graph. It is still an open problem to compute the exact diameter of the pancake graph. In [28], an O(n log n)
time broadcasting algorithm for the pancake graph was proposed. Besides, an algorithm that can exchange the contents
of any two sub-pancake graphs with constant time was also proposed. In [27], the pancake graph was shown to be super
connected, i.e., for all 1 ≤ k ≤ n − 1, there are k node-disjoint paths between every pair of nodes so that they contain all
the nodes of the pancake graph. In [5], the problem of job allocation and job migration on the pancake graph was studied.
An embedding of one (guest) graph G into another (host) graph H is a mapping f from the node set of G to the node set of

H [26]. Each edge of G corresponds to a path of H under f . The dilation of f is the maximal length of the paths in H that are
the images of edges in G under f . The congestion of f is the maximum number of edges in Gwhose corresponding paths in H
contain the same edge in G. The load of f is the maximum number of vertices in G that are mapped to the same vertex in H .
In [11], a complete binary tree of height

∑n
m=2 blogmcwas embedded into the pancake graph with load 1, congestion 1,

and dilation 2. When the complete binary tree has up to about 2/3 faulty nodes, they can be replaced with non-faulty ones
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of distance four at most apart. In [13], a particular embedding of the hypercube into the pancake graph was investigated,
where each node of the hypercube was mapped to a set of nodes of the pancake graph.
The ring network is one of the most fundamental networks for parallel and distributed computing. Many simple and

efficient algorithms were developed before on ring networks for solving various algebraic problems and graph problems
(see [2,26]). If a network can embed ring networks, then it can execute these ring algorithms as well. In [22,24], the pancake
graph was shown to contain cycles of all possible lengths.
Since faults may occur to networks, it is significant to consider faulty networks. Many fundamental problems such as

diameter [9,25], routing [4], broadcasting [31], gossiping [10], and embedding [3,6,7,17–19] were solved on various faulty
networks. Two fault models were adopted before. One is the random fault model [4,7,9,10,17–19,31], which assumes that
the faults may occur anywhere without any restriction. The other is the conditional fault model [3,6,25], which assumes that
the fault distribution is subject to some constraints, e.g., two or more non-faulty links incident to each node.
In this paper, adopting the conditional fault model and assuming that two or more non-faulty links are incident to each

node, we show that a pancake graph with up to 2n − 7 link faults contains a fault-free Hamiltonian cycle, where n ≥ 4
is the dimension of the pancake graph. That is, we show an embedding of a ring network into a faulty pancake graph with
load 1, congestion 1, and dilation 1, where the ring network has the same number of nodes as the faulty pancake graph. If
the random fault model is adopted, the pancake graph can tolerate at most n − 3 link faults, while containing a fault-free
Hamiltonian cycle (see [22]). No previous work on the pancake graph considered the conditional fault model.
The following results are all relating to cycle embedding or path embedding under the same fault model and assumption

as ours, where n is the dimension of thementioned network. The hypercube (star graph)with up to 2n−5(2n−7) link faults
contains a fault-free longest path between every pair of nodes [29] ([30]). Them-ary hypercube (star graph, alternating group
graph, locally twisted cube, and crossed cube, respectively)with up to 4n−5 (2n−7, 4n−13, 2n−5, and 2n−5, respectively)
link faults contains a fault-free Hamiltonian cycle [3] ([12,30,20,23], respectively), wherem ≥ 3. Further, in [21], sufficient
conditions for establishing fault-freeHamiltonian cycles inmatching composition networkswere proposed,where instances
of matching composition networks include crossed cubes, twisted cubes, locally twisted cubes, and generalized twisted
cubes. All these embedding results above have load 1, congestion 1, and dilation 1.
In the next section, the topology of the pancake graph is reviewed. Some necessary definitions, notations and properties

are also introduced. Themain result, i.e., a fault-free Hamiltonian cycle in a pancake graphwith up to 2n−7 link faults under
the conditional fault model and our assumption, is shown in Section 3. Finally, this paper concludes with some remarks in
Section 4.

2. Preliminaries

It is convenient to represent a network with a graph G, where each vertex (edge) of G uniquely represents a node (link) of
the network. We use V (G) and E(G) to denote the vertex set and edge set of G, respectively. Throughout this paper, we use
network and graph, node and vertex, and link and edge, interchangeably. The following is a formal definition of the pancake
graph.

Definition 1. An n-dimensional pancake graph, denote by ℘n, has the vertex set V (℘n) = {a1a2 . . . an|a1a2 . . . an is a
permutation of 1, 2, . . . , n} and edge set E(℘n) = {(a1a2 . . . an, b1b2 . . . bn)|a1a2 . . . ak = bkbk−1 . . . b1 and ak+1ak+2 . . . an =
bk+1bk+2 . . . bn for some 2 ≤ k ≤ n}.

Clearly, ℘n has n! vertices and is regular of degree n − 1. ℘1 is a vertex, ℘2 is an edge, and ℘3 is a cycle of length
six. Fig. 1 illustrates the topologies of ℘3 and ℘4. Intuitively, if (a1a2 . . . an, b1b2 . . . bn) ∈ E(℘n), then there exists
2 ≤ k ≤ n so that a1a2 . . . an and b1b2 . . . bn can be obtained from each other by reversing the leftmost k bits. When
b1b2 . . . bn = akak−1 . . . a1ak+1ak+2 . . . an, (a1a2 . . . an, b1b2 · · · bn) is referred to as a k-dimensional edge. We use N (k)(u)
to denote the neighbor of a vertex u ∈ V (℘n) that is connected to u by a k-dimensional edge, and E(k)(℘n) to denote
the set of all k-dimensional edges in ℘n. For example, refer to Fig. 1 again, where N (4)(2143) = 3412 and E(2)(℘3) =
{(123, 213), (321, 231), (132, 312)}.
For convenience,we use 〈u〉i to denote the ith leftmost digit of a vertex u, i.e., 〈u〉i = ui if u = u1u2 . . . un, where 1 ≤ i ≤ n.

It is not difficult to see that the subgraph of℘n induced by the set of vertices uwith 〈u〉n = r forms a℘n−1, denoted by℘
(r)
n ,

where 1 ≤ r ≤ n. Thus, ℘n contains n℘n−1’s, i.e., ℘
(1)
n , ℘

(2)
n , . . . , ℘

(n)
n . Fig. 1 illustrates ℘

(1)
4 , ℘

(2)
4 , ℘

(3)
4 , and ℘

(4)
4 that are

embedded in ℘4. We use Ẽp,q(℘n) to denote the set of those n-dimensional edges in ℘n that connect ℘
(p)
n and ℘

(q)
n , where

p 6= q. For I ⊆ {1, 2, . . . , n}, we use ℘ In to denote the subgraph of ℘n induced by
⋃
r∈I V (℘

(r)
n ). Pancake graphs are vertex

symmetric, but not edge symmetric (see [24]).
A path (cycle) in G is called a Hamiltonian path (cycle) if it contains every vertex of G exactly once. G is Hamiltonian if it

has a Hamiltonian cycle, and Hamiltonian-connected if it has a Hamiltonian path between every two distinct vertices. ℘n is
known to be Hamiltonian for n ≥ 3 (see [24]) and Hamiltonian-connected for n ≥ 4 (see [22]). In the rest of this paper,
we let F(⊆ E(℘n)) denote a set of edge faults in ℘n, deg(u) denote the degree of a vertex u, which is the number of edges
incident to u, and δ(G) = min{deg(u)|u ∈ V (G)} be theminimal vertex degree of G. Moreover, we use Pv0,vt to denote a path
from vertex v0 to vertex vt , and P (H)v0,vt

to denote a Hamiltonian path from vertex v0 to vertex vt in the mentioned network.
The following are some properties of ℘n that are necessary in order to prove our main result in the next section.
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Fig. 1. Topologies of (a) ℘3 and (b) ℘4 .

Lemma 1 ([22]). |Ẽp,q(℘n)| = (n− 2)! for all p, q ∈ {1, 2, . . . , n} and p 6= q, where n ≥ 3.

Lemma 2 ([22]). ℘n − F is Hamiltonian if |F | ≤ n− 3, and Hamiltonian-connected if |F | ≤ n− 4, where n ≥ 4.

Lemma 3 ([22]). Suppose that u, v ∈ V (℘n) and 〈u〉n 6= 〈v〉n, where n ≥ 5. For any I ⊆ {1, 2, . . . , n} and |I| ≥ 2, there exists
a P (H)u,v in ℘ In − F provided the following two conditions hold:
(C1) |Ẽi,j(℘n)− F | ≥ 3 for all i, j ∈ I and i 6= j;
(C2) ℘(r)n − F is Hamiltonian-connected for all r ∈ I .

Lemma 4 ([22]). Suppose that u, v ∈ V (℘(r)n ) and u 6= v, where r ∈ {1, 2, . . . , n} and n ≥ 4. If du,v ≤ 2, then
〈N (n)(u)〉n 6= 〈N (n)(v)〉n, where du,v is the distance between u and v.

Lemma 5. Suppose that e1, e2 ∈ E(℘4) and e1 6= e2. There exists a Hamiltonian cycle in ℘4 − {e2} that contains e1.

Proof. Now that ℘4 is vertex symmetric, we assume that e2 is incident to vertex 1234, without loss of generality. When
e2 = (1234, 2134), there are three Hamiltonian cycles in ℘4 that contain all other edges of ℘4. When e2 = (1234, 3214)
or (1234, 4321), there are four Hamiltonian cycles in ℘4 that contain all other edges of ℘4. These eleven Hamiltonian cycles
are listed in Appendix. �

Lemma 6. Suppose that s, t ∈ V (℘n), s 6= t, and 〈s〉1 = 〈t〉1, where n ≥ 4. For every (x, y) ∈ E(℘n) with {x, y} ∩ {s, t} = ∅,
there exists a P (H)s,t in ℘n that contains (x, y).

Proof. We prove this lemma by induction on n. This lemma holds for ℘4, which can be verified by the aid of a computer
program (see [32]). Then, supposing that this lemma holds for℘k, we construct a P

(H)
s,t in℘k+1 that contains (x, y) in the rest

of the proof, where k ≥ 4. Notice that the two conditions (C1) and (C2) of Lemma 3 are satisfied for ℘k+1 (let n = k + 1
and F = ∅), as a consequence of Lemmas 1 and 2. We first consider the situation of (x, y) 6∈ E(k+1)(℘k+1). So, we have x,
y ∈ V (℘(α)k+1) for some 1 ≤ α ≤ k+ 1. Two cases are discussed below.

Case 1. 〈s〉k+1 6= 〈t〉k+1. When 〈s〉k+1 = α or 〈t〉k+1 = α, a desired P (H)s,t in ℘k+1 is shown in Fig. 2(a), where 〈s〉k+1 = α

and I = {1, 2, . . . , k + 1} − {α} are assumed. Two vertices v1 ∈ V (℘
(α)
k+1) − {s, x, y} and u2 ∈ V (℘

I
k+1) with 〈v1〉1 = 〈s〉1,

〈u2〉k+1 6= 〈t〉k+1, and (v1, u2) ∈ E(k+1)(℘k+1) can be found. The induction hypothesis assures a P
(H)
s,v1 in ℘

(α)
k+1 that contains

(x, y). Lemma 3 assures a P (H)u2,t in ℘
I
k+1. The two Hamiltonian paths together with (v1, u2) form a desired P

(H)
s,t in ℘k+1.

When 〈s〉k+1 6= α and 〈t〉k+1 6= α, a desired P (H)s,t in ℘k+1 is shown in Fig. 2(b), where 〈s〉k+1 = β and I =
{1, 2, . . . , k + 1} − {α, β, γ } are assumed. An edge (z, w) ∈ E(℘(γ )k+1) is first determined such that two edges (v1, z), (w,
u4) ∈ E(k+1)(℘k+1) exist with v1 ∈ V (℘

(β)

k+1)−{s}, u4 ∈ V (℘
I
k+1), and 〈u4〉k+1 6= 〈t〉k+1. Then, as a consequence of Lemma 1,

there exist (v2, u3), (u2, v3) ∈ E(k+1)(℘k+1)with u2, v2 ∈ V (℘
(γ )

k+1)−{z, w} and u3, v3 ∈ V (℘
(α)
k+1)−{x, y}. There exists a P

(H)
s,v1

in℘(β)k+1. Since 〈u2〉1 = 〈v3〉k+1 = 〈u3〉k+1 = 〈v2〉1 and 〈u3〉1 = 〈v2〉k+1 = 〈u2〉k+1 = 〈v3〉1, the induction hypothesis assures
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Fig. 2. A P (H)s,t in ℘k+1 that contains (x, y)when (x, y) 6∈ E(k+1)(℘k+1) and 〈s〉k+1 6= 〈t〉k+1 . (a) 〈s〉k+1 = α. (b) 〈s〉k+1 6= α and 〈t〉k+1 6= α.

Fig. 3. A P (H)s,t in ℘k+1 that contains (x, y)when (x, y) 6∈ E(k+1)(℘k+1). (a) 〈s〉k+1 = 〈t〉k+1 = α. (b) 〈s〉k+1 = 〈t〉k+1 6= α.

a P (H)u2,v2 in℘
(γ )

k+1 that contains (z,w) and a P
(H)
u3,v3 in℘

(α)
k+1 that contains (x, y). By Lemma 3, there exists a P

(H)
u4,t in℘

I
k+1. The four

Hamiltonian paths, breaking (z,w), together with (v1, z), (w, u4), (v2, u3) and (u2, v3) form a desired P
(H)
s,t in ℘k+1.

Case 2. 〈s〉k+1 = 〈t〉k+1. When 〈s〉k+1 = 〈t〉k+1 = α, a desired P
(H)
s,t is shown in Fig. 3(a), where I = {1, 2, . . . , k+ 1} − {α}.

The induction hypothesis assures a P (H)s,t in ℘
(α)
k+1 that contains (x, y). An edge (v1, u1) 6= (x, y) can be determined from the

P (H)s,t such that there exist (v1, u2), (u1, vk+1) ∈ E(k+1)(℘k+1) with 〈u2〉k+1 6= 〈vk+1〉k+1 (assured by Lemma 4). By Lemma 3,
there exists a P (H)u2,vk+1 in ℘

I
k+1. Thus, a desired P

(H)
s,t in ℘k+1 can result.

When 〈s〉k+1 = 〈t〉k+1 6= α, a desired P
(H)
s,t is shown in Fig. 3(b), where 〈s〉k+1 = 〈t〉k+1 = β and I = {1, 2, . . . , k+ 1} −

{α, β, γ , τ }(|I| = 1 as k = 4) are assumed. An edge (v1, u1) ∈ E(℘
(β)

k+1) with {v1, u1} ∩ {s, t} = ∅ is first determined such
that there exist (v1, u2), (u1, vk+1) ∈ E(k+1)(℘k+1)with u2 ∈ V (℘

(τ )
k+1) and vk+1 ∈ V (℘

I
k+1). Then, since |E(℘

(γ )

k+1)| = (k− 1)
k!/2, an edge (z, w) ∈ E(℘(γ )k+1) can be found such that there exist (z, v2), (w, u5) ∈ E

(k+1)(℘k+1) with v2 ∈ V (℘
(τ )
k+1),

u5 ∈ V (℘ Ik+1), and 〈u5〉k+1 6= 〈vk+1〉k+1 if k ≥ 5(〈u5〉k+1 = 〈vk+1〉k+1 if k = 4). Further, as a consequence of Lemma 1,
there exist (v3, u4), (u3, v4) ∈ E(k+1)(℘k+1) with u3, v3 ∈ V (℘

(γ )

k+1) and u4, v4 ∈ V (℘
(α)
k+1) − {x, y}. Moreover, we have
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Fig. 4. A P (H)s,t in ℘k+1 that contains (x, y)when (x, y) ∈ E(k+1)(℘k+1). (a) 〈s〉k+1 = 〈t〉k+1 . (b) 〈s〉k+1 6= 〈t〉k+1 and {〈x〉k+1 , 〈y〉k+1} ∩ {〈s〉k+1 , 〈t〉k+1} = ∅. (c)
〈s〉k+1 6= 〈t〉k+1 and {〈x〉k+1 , 〈y〉k+1} = {〈s〉k+1 , 〈t〉k+1}.

v2 6= u2, because N (k+1)(v2)(= z) ∈ E(℘
(γ )

k+1) and N
(k+1)(u2)(= v1) ∈ V (℘

(β)

k+1), and {u3, v3} ∩ {z, w} = ∅, because
N (k+1)(z)(= v2) ∈ V (℘

(τ )
k+1) and N

(k+1)(w)(= u5) ∈ V (℘ Ik+1).
A P (H)s,t in ℘

(β)

k+1, a P
(H)
u3,v3 in ℘

(γ )

k+1, and a P
(H)
u4,v4 in ℘

(α)
k+1 that contain (u1, v1), (z, w), and (x, y), respectively, can be obtained,

similarly, by the induction hypothesis. There exists a P (H)u2,v2 in ℘
(τ )
k+1. There exists a P

(H)
u5,vk+1 in ℘

I
k+1, either when k = 4 or

when k ≥ 5 (assured by Lemma 3). Thus, a desired P (H)s,t in ℘k+1 can result.
Next we consider the situation of (x, y) ∈ E(k+1)(℘k+1). So we have 〈x〉k+1 6= 〈y〉k+1. Two cases are discussed below.

Case 1. 〈s〉k+1 = 〈t〉k+1. Assume 〈s〉k+1 = 〈t〉k+1 = α. When 〈x〉k+1 = α or 〈y〉k+1 = α, a desired P (H)s,t in ℘k+1 can be
obtained, by a construction method similar to Fig. 3(a). When 〈x〉k+1 6= α and 〈y〉k+1 6= α, a desired P

(H)
s,t in℘k+1 is shown in

Fig. 4(a), where 〈x〉k+1 = β and 〈y〉k+1 ∈ I = {1, 2, . . . , k+ 1} − {α, β} are assumed. The two edges (v1, u2), (u1, vk+1)with
〈vk+1〉k+1 6= 〈y〉k+1 can be determined as before (see Fig. 3). The induction hypothesis assures a P

(H)
s,t in ℘

(α)
k+1 that contains

(v1, u1). There exists a P
(H)
u2,x in ℘

(β)

k+1. Lemma 3 assures a P
(H)
y,vk+1 in ℘

I
k+1. Thus, a desired P

(H)
s,t in ℘k+1 can result.

Case 2. 〈s〉k+1 6= 〈t〉k+1. When {〈x〉k+1, 〈y〉k+1} ∩ {〈s〉k+1, 〈t〉k+1} = ∅, a desired P
(H)
s,t in ℘k+1 is shown in Fig. 4(b), where

〈s〉k+1 = α, 〈x〉k+1 = β , and 〈t〉k+1, 〈y〉k+1 ∈ I = {1, 2, . . . , k+ 1} − {α, β} are assumed. The edge (v1, u2)with v1 6= s and
u2 6= x can be determined as before (see Fig. 2(a)). There exist a P

(H)
s,v1 in ℘

(α)
k+1 and a P

(H)
u2,x in ℘

(β)

k+1. Lemma 3 assures a P
(H)
y,t in

℘ Ik+1. Thus, a desired P
(H)
s,t in ℘k+1 can result.

When {〈x〉k+1, 〈y〉k+1} = {〈s〉k+1, 〈t〉k+1}, a desired P
(H)
s,t in ℘k+1 is shown in Fig. 4(c), where 〈x〉k+1 = 〈s〉k+1 = α,

〈y〉k+1 = 〈t〉k+1 = β , and I = {1, 2, . . . , k+ 1} − {α, β} are assumed. There exist a P
(H)
s,x in ℘

(α)
k+1 and a P

(H)
y,t in ℘

(β)

k+1. The two
edges (v1, u2), (u1, vk)with 〈u2〉k+1 6= 〈vk〉k+1 can be determined as before (see Fig. 3(a)). Lemma 3 assures a P

(H)
u2,vk in ℘

I
k+1.

Thus, a desired P (H)s,t in ℘k+1 can result.
When 〈x〉k+1 = 〈s〉k+1 or 〈y〉k+1 = 〈s〉k+1, a desired P

(H)
s,t in ℘k+1 can be obtained, by a construction method similar to

Fig. 2(a). When 〈x〉k+1 = 〈t〉k+1 or 〈y〉k+1 = 〈t〉k+1, a desired P
(H)
s,t in ℘k+1 can be obtained similarly. �

The main result of this paper is stated as the following theorem whose proof is shown in the next section.
Theorem 1. ℘n − F is Hamiltonian provided |F | ≤ 2n− 7 and δ(℘n − F) ≥ 2, where n ≥ 4. That is, a ring network of size n!
can be embedded into ℘n − F with load 1, congestion 1, and dilation 1.

3. Proof of Theorem 1

We prove Theorem 1 by induction on n. The theorem holds for ℘4, which is assured by Lemma 2 (2n − 7 = n − 3 as
n = 4). Then, supposing that the theorem holds for ℘k, we construct a Hamiltonian cycle in ℘k+1 − F , where k ≥ 4 and
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Fig. 5. A Hamiltonian cycle in ℘k+1 − F when |E(℘
(k+1)
k+1 ) ∩ F | ≤ k− 4.

|F | ≤ 2(k+ 1)− 7 = 2k− 5. Without loss of generality, we assume |E(℘(k+1)k+1 )∩ F | ≥ |E(℘
(k)
k+1)∩ F | ≥ · · · ≥ |E(℘

(1)
k+1)∩ F |.

By Lemma 1, we have |Ẽp,q(℘k+1)| = (k− 1)! ≥ 2k− 2 ≥ |F | + 3, i.e., |Ẽp,q(℘k+1)− F | ≥ 3 for all p, q ∈ {1, 2, . . . , k+ 1}
and p 6= q. Four cases are discussed below, according to the value of |E(℘(k+1)k+1 ) ∩ F |.

3.1. When |E(℘(k+1)k+1 ) ∩ F | ≤ k− 4

We have |E(℘(i)k+1) ∩ F | ≤ k− 4 and δ(℘
(i)
k+1 − F) ≥ 3 for all 1 ≤ i ≤ k+ 1. A Hamiltonian cycle in ℘k+1 − F is shown in

Fig. 5, where I = {1, 2, . . . , k}. The induction hypothesis assures a Hamiltonian cycle in ℘(k+1)k+1 − F . An edge (u1, v1) can be
determined from the Hamiltonian cycle such that there exist (v1, u2), (u1, vk+1) ∈ E(k+1)(℘k+1)−F with u2, vk+1 ∈ V (℘ Ik+1).
If (u1, v1) does not exist, then |E(k+1)(℘k+1) ∩ F | ≥ k!/2 > 2k − 5 ≥ |F |, a contradiction. Lemma 2 assures that ℘

(j)
k+1 − F

is Hamiltonian-connected for all 1 ≤ j ≤ k. By Lemma 4, we have 〈u2〉k+1 6= 〈vk+1〉k+1. Then, by Lemma 3, a P
(H)
u2,vk+1 in

℘ Ik+1 − F exists.

3.2. When k− 3 ≤ |E(℘(k+1)k+1 ) ∩ F | ≤ 2k− 7

Since δ(℘k+1−F) ≥ 2,wehave δ(℘
(k+1)
k+1 −F) ≥ 1. Two cases are further discussed, according to the values of |E(℘

(k)
k+1)∩F |.

Case 1. |E(℘(k)k+1) ∩ F | ≤ k − 4. We have |E(℘
(j)
k+1) ∩ F | ≤ k − 4 for all 1 ≤ j ≤ k. When δ(℘

(k+1)
k+1 − F) ≥ 2, a Hamiltonian

cycle in ℘k+1 − F can be obtained by the construction method of Fig. 5, where I = {1, 2, . . . , k}. When δ(℘
(k+1)
k+1 − F) = 1,

a Hamiltonian cycle in ℘k+1 − F can be obtained by slightly modifying the construction method of Fig. 5, as detailed below.
There exists a unique vertex, say v1, with deg(v1) = 1 in℘

(k+1)
k+1 −F , for otherwise |E(℘

(k+1)
k+1 )∩F | ≥ 2k−5, a contradiction.

Since δ(℘k+1 − F) ≥ 2, there exists (v1, u2) ∈ E(k+1)(℘k+1)− F , where u2 ∈ V (℘ Ik+1). An edge (v1, u1) ∈ E(℘
(k+1)
k+1 ) ∩ F can

be found such that there exists (u1, vk+1) ∈ E(k+1)(℘k+1)− F , where vk+1 ∈ V (℘ Ik+1). Since δ(℘
(k+1)
k+1 − (F −{(v1, u1)})) = 2

and |E(℘(k+1)k+1 )∩(F−{(v1, u1)}) | ≤ 2k−8, the induction hypothesis assures a Hamiltonian cycle in℘
(k+1)
k+1 −(F−{(v1, u1)}).

Since the Hamiltonian cycle contains (v1, u1), there exists a P
(H)
u1,v1 in ℘

(k+1)
k+1 − F . With the same arguments as Fig. 5, there

exists a P (H)u2,vk+1 in ℘
I
k+1 − F .

Case 2. |E(℘(k)k+1)∩ F | ≥ k−3.We have |E(℘
(k+1)
k+1 )∩ F | = k−3 or k−2, |E(℘

(k)
k+1)∩ F | = k−3 (hence, δ(℘

(k)
k+1− F) ≥ 2), and

|E(k+1)(℘k+1) ∩ F | ≤1. First we consider the situation of |E(℘
(k−1)
k+1 ) ∩ F | = k− 3, which occurs only when k = 4. We have

|E(℘(5)5 )∩ F | = |E(℘
(4)
5 )∩ F | = |E(℘

(3)
5 )∩ F | = 1, |E(℘

(2)
5 )∩ F | = |E(℘

(1)
5 )∩ F | = 0, and |E

(5)(℘5)∩ F | = 0. A Hamiltonian
cycle in ℘5 − F is shown in Fig. 6. Three edges (u4, v5) ∈ E(5)(℘5), (u4, v4) ∈ E(℘

(4)
5 ) − F , and (u5, v5) ∈ E(℘

(5)
5 ) − F

can be found such that there exist (u5, v1), (v4, u2) ∈ E(5)(℘5), where v1 ∈ V (℘
(1)
5 ) and u2 ∈ V (℘

(2)
5 ). And an edge (u3,

v3) ∈ E(℘
(3)
5 ) − F can be found such that there exist (u3, v2), (v3, u1) ∈ E

(5)(℘5), where v2 ∈ V (℘
(2)
5 ) and u1 ∈ V (℘

(1)
5 ).

There exist a P (H)u1,v1 in ℘
(1)
5 and a P (H)u2,v2 in ℘

(2)
5 . Lemma 5 assures a Hamiltonian cycle in ℘

(3)
5 − F , a Hamiltonian cycle in

℘
(4)
5 − F , and a Hamiltonian cycle in ℘

(5)
5 − F that contains (u3, v3), (u4, v4), and (u5, v5), respectively.

Then we consider the situation of |E(℘(k−1)k+1 ) ∩ F | ≤ k− 4. We have |E(℘
(i)
k+1) ∩ F | ≤ k− 4 for all 1 ≤ i ≤ k− 1. When

δ(℘
(k+1)
k+1 − F) ≥ 2, a Hamiltonian cycle in ℘k+1 − F is shown in Fig. 7, where I = {1, 2, . . . , k − 1}. An edge (u2, v1)

∈ E(k+1)(℘k+1) − F can be found, where u2 ∈ V (℘
(k)
k+1) and v1 ∈ V (℘

(k+1)
k+1 ). The induction hypothesis assures two

Hamiltonian cycles in ℘(k)k+1 − F and ℘
(k+1)
k+1 − F , respectively. By the aid of Lemma 4, two edges (v1, u1), (u2, v2) can be

determined from the two Hamiltonian cycles, respectively, such that there exist (v2, u3), (u1, vk+1) ∈ E(k+1)(℘k+1) − F ,
where u3, vk+1 ∈ V (℘ Ik+1) and 〈u3〉k+1 6= 〈vk+1〉k+1. With the same arguments as Fig. 5, there exists a P

(H)
u3,vk+1 in ℘

I
k+1 − F .
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Fig. 6. A Hamiltonian cycle in ℘5 − F when 2k− 7 ≥ |E(℘
(k+1)
k+1 ) ∩ F | ≥ |E(℘

(k)
k+1) ∩ F | ≥ |E(℘

(k−1)
k+1 ) ∩ F | = k− 3.

Fig. 7. A Hamiltonian cycle in ℘k+1 − F when 2k− 7 ≥ |E(℘
(k+1)
k+1 ) ∩ F | ≥ |E(℘

(k)
k+1) ∩ F | ≥ k− 3, |E(℘

(k−1)
k+1 ) ∩ F | ≤ k− 4, and δ(℘

(k+1)
k+1 − F) ≥ 2.

When δ(℘(k+1)k+1 − F) = 1, we have |E(℘(k+1)k+1 ) ∩ F | = k − 2, |E(℘(i)k+1) ∩ F | = 0 for all 1 ≤ i ≤ k − 1, and
|E(k+1)(℘k+1)∩ F | = 0. There exists a unique vertex, say v1, with deg(v1) = 1 in℘

(k+1)
k+1 −F . An edge (v1, u1) ∈ E(℘

(k+1)
k+1 )∩F

can be found. Similar to Case 1, there exists a Hamiltonian cycle in ℘(k+1)k+1 − (F−{(v1, u1)}) that contains (v1, u1). If
N (k+1)(v1) ∈ V (℘

(k)
k+1) or N

(k+1)(u1) ∈ V (℘
(k)
k+1), a Hamiltonian cycle in ℘k+1 − F can be obtained by a construction method

similar to Fig. 7.
If N (k+1)(v1), N (k+1)(u1) 6∈ V (℘

(k)
k+1), a Hamiltonian cycle in ℘k+1 − F , as shown in Fig. 8(a) or (b), can be obtained,

where α, β, γ , τ ∈ {1, 2, . . . , k − 1}. We assume N (k+1)(v1) = u2 ∈ V (℘
(α)
k+1) and N

(k+1)(u1) = vk+1 ∈ V (℘
(β)

k+1), where
α 6= β . Lemma 2 assures a Hamiltonian cycle in ℘(k)k+1 − F . An edge (v4, u4) of the Hamiltonian cycle can be found with
N (k+1)(v4) ∈ V (℘

(γ )

k+1) and N
(k+1)(u4) ∈ V (℘

(τ )
k+1), where γ ∈ {1, 2, . . . , k− 1} − {α, β}, τ ∈ {1, 2, . . . , k− 1}, and γ 6= τ

(assured by Lemma 4).
If τ 6∈ {α, β}, the Hamiltonian cycle of Fig. 8(a) can be obtained, where v3 = N (k+1)(u4) and u5 = N (k+1)(v4). By Lemma 2,

℘
(j)
k+1 − F is Hamiltonian-connected for all 1 ≤ j ≤ k − 1. Lemma 3 assures a P

(H)
u2,v3 in ℘

I1
k+1 − F and a P

(H)
u5,vk+1 in ℘

I2
k+1 − F ,

where I1 = {α, τ } and I2 = {1, 2, . . . , k − 1} − {α, τ }. If τ = α, the Hamiltonian cycle of Fig. 8(b) can be obtained, where
v2 = N (k+1)(u4) and u3 = N (k+1)(v4). There is a P

(H)
u2,v2 in ℘

(α)
k+1 − F , and Lemma 3 assures a P

(H)
u3,vk+1 in ℘

I
k+1 − F , where

I = {1, 2, . . . , k− 1} − {α}. If τ = β , a Hamiltonian cycle in ℘k+1 − F can be obtained similarly.

3.3. When |E(℘(k+1)k+1 ) ∩ F | = 2k− 6

We have |E(k+1)(℘k+1) ∩ F | ≤ 1 and |E(℘
(j)
k+1) ∩ F | ≤ 1 for all 1 ≤ j ≤ k. When k ≥ 5, a Hamiltonian cycle in ℘k+1 − F

can be obtained by slightly modifying the construction method of Fig. 5, as explained below. There is at most one vertex of
degree one in ℘(k+1)k+1 − F . So, an edge (v1, u1) ∈ E(℘

(k+1)
k+1 ) ∩ F can be found so that δ(℘

(k+1)
k+1 − (F − {(v1, u1)})) ≥ 2 and

(v1, u2), (u1, vk+1) ∈ E(k+1)(℘k+1) − F exist with u2, vk+1 ∈ V (℘ Ik+1). Now that |E(℘
(k+1)
k+1 ) ∩ (F − {(v1, u1)}) | = 2k − 7,

the induction hypothesis assures a Hamiltonian cycle in℘(k+1)k+1 − (F − {(v1, u1)}). If the Hamiltonian cycle contains (v1, u1),
then Lemma 3 can assure a P (H)u2,vk+1 in℘

I
k+1− F . Otherwise, a Hamiltonian cycle in℘k+1− F can be obtained, all the same as

Section 3.1 (i.e., by the construction method of Fig. 5).
When k = 4, we have |F | ≤ 3 and |E(℘(5)5 ) ∩ F | = 2. If |E(℘

(j)
5 ) ∩ F | = 0 for all 1 ≤ j ≤ 4, then a Hamiltonian cycle in

℘5− F can be obtained all the same as the situation of k ≥ 5. Otherwise, we have |E(℘
(4)
5 )∩ F | = 1, |E(℘

(j)
5 )∩ F | = 0 for all

1 ≤ j ≤ 3, and |E(5)(℘5)∩ F | = 0. Let (u1, v1) ∈ E(℘
(5)
5 )∩ F . We have δ(℘

(5)
5 − (F − {(u1, v1)})) ≥ 2. If N

(5)(v1) ∈ V (℘
(4)
5 ),

then a Hamiltonian cycle in ℘5 − F can be obtained by slightly modifying the construction method of Fig. 7, as explained
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Fig. 8. A Hamiltonian cycle in ℘k+1 − F when 2k − 7 ≥ |E(℘
(k+1)
k+1 ) ∩ F | ≥ |E(℘

(k)
k+1) ∩ F | ≥ k − 3, |E(℘

(k−1)
k+1 ) ∩ F | ≤ k − 4, and δ(℘

(k+1)
k+1 − F) = 1.

(a) τ 6∈ {α, β}. (b) τ = α.

Fig. 9. A Hamiltonian cycle in ℘k+1 − F when |E(℘
(k+1)
k+1 ) ∩ F | = 2k− 5 and |{α, β} ∩ {γ , τ }| = 0.

below. Let u2 = N (5)(v1) and v5 = N (5)(u1) ∈ V (℘ I5), where I = {1, 2, 3}. An edge (u2, v2) ∈ E(℘
(4)
5 ) − F can be found so

that there exists (v2, u3) ∈ E(5)(℘5) with u3 ∈ V (℘ I5) and 〈u3〉5 6= 〈v5〉5. Lemma 5 assures a Hamiltonian cycle in ℘
(4)
5 − F

that contains (u2, v2), and Lemma 3 assures a P
(H)
u3,v5 in ℘

I
5 − F . If N

(5)(u1) ∈ V (℘
(4)
5 ), a Hamiltonian cycle in ℘5 − F can be

obtained similarly.
IfN (5)(v1),N (5)(u1) 6∈ V (℘

(4)
5 ), then a Hamiltonian cycle in℘5−F can be obtained by slightlymodifying the construction

method of Fig. 8(b). Let {α, β, γ } = {1, 2, 3}, u2 = N (5)(v1) ∈ V (℘
(α)
5 ), and v5 = N (5)(u1) ∈ V (℘

(β)

5 ). An edge (u4, v4)
∈ E(℘(4)5 ) − F can be found so that there exist (u4, v2), (v4, u3) ∈ E

(5)(℘5) − F with v2 ∈ V (℘
(α)
5 ) and u3 ∈ V (℘

(γ )

5 ).
Lemma 5 assures a Hamiltonian cycle in ℘(4)5 − F that contains (u4, v4). There exists a P

(H)
u2,v2 in ℘

(α)
5 − F . Lemma 3 assures a

P (H)u3,v5 in ℘
I
5 − F , where I = {β, γ }.

3.4. When |E(℘(k+1)k+1 ) ∩ F | = 2k− 5

We have |E(℘(j)k+1) ∩ F | = 0 for all 1 ≤ j ≤ k and |E
(k+1)(℘k+1) ∩ F | = 0. There are at most two vertices of degree

one in ℘(k+1)k+1 − F . First, two edges (x, x
′), (y, y′) ∈ E(℘(k+1)k+1 ) ∩ F are determined so that {x, x

′
} ∩ {y, y′} = ∅ and

δ(℘
(k+1)
k+1 − (F − {(x, x

′), (y, y′)})) ≥ 2. Since |E(℘(k+1)k+1 ) ∩ (F − {(x, x
′), (y, y′)})| = 2k − 7, the induction hypothesis

assures a Hamiltonian cycle C in ℘(k+1)k+1 − (F − {(x, x
′), (y, y′)}). If (x, x′) or (y, y′) is not contained in C , a Hamiltonian cycle

in ℘k+1 − F can be obtained by the construction method of Fig. 5. In the rest of this section, the situation that both (x, x′)
and (y, y′) are contained in C is discussed, where N (k+1)(x) ∈ V (℘(α)k+1), N

(k+1)(x′) ∈ V (℘(β)k+1), N
(k+1)(y) ∈ V (℘(γ )k+1), and

N (k+1)(y′) ∈ V (℘(τ )k+1) are assumed (α 6= β and γ 6= τ).
When |{α, β} ∩ {γ , τ }| = 0, there exists a Hamiltonian cycle in ℘k+1 − F as shown in Fig. 9, where u2 = N (k+1)(x),

v3 = N (k+1)(x′), u4 = N (k+1)(y), and vk+1 = N (k+1)(y′). Lemma 3 assures a P
(H)
u2,v3 in ℘

I1
k+1 − F and a P

(H)
u4,vk+1 in ℘

I2
k+1 − F ,

where I1 = {α, β} and I2 = {1, 2, . . . , k}− {α, β}. When |{α, β}∩ {γ , τ }| = 1, there exists a Hamiltonian cycle in℘k+1− F
as shown in Fig. 10(a) if α = γ and β 6= τ , or in Fig. 10(b) if α = τ and β 6= γ . If β = τ and α 6= γ or β = γ and α 6= τ , a
Hamiltonian cycle in ℘k+1 − F can be obtained similarly.
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Fig. 10. A Hamiltonian cycle in ℘k+1 − F when |E(℘
(k+1)
k+1 ) ∩ F | = 2k− 5 and |{α, β} ∩ {γ , τ }| = 1. (a) α = γ and β 6= τ . (b) α = τ and β 6= γ .

Fig. 11. A Hamiltonian cycle in ℘k+1 − F when |E(℘
(k+1)
k+1 ) ∩ F | = 2k− 5 and |{α, β} ∩ {γ , τ }| = 2. (a) α = γ and β = τ . (b) α = τ and β = γ .

The Hamiltonian cycle of Fig. 10(a) contains a P (H)u2,v2 in ℘
(α)
k+1 and a P

(H)
u3,vk+1 in ℘

I
k+1 − F (assured by Lemma 3), where

I = {1, 2, . . . , k} − {α}. The Hamiltonian cycle of Fig. 10(b) contains a P (H)u3,v3 in ℘
(β)

k+1 and a P
(H)
u4,v5 in ℘

I
k+1 − F , where

I = {1, 2, . . . , k} − {α, β}. There exists an edge (w, w′) ∈ E(℘(α)k+1) with N
(k+1)(w) ∈ V (℘(β)k+1) and N

(k+1)(w′) ∈ V (℘(σ )k+1),
where σ ∈ {1, 2, . . . , k} − {α, β, γ }. Lemma 6 assures a P (H)u2,v2 in ℘

(α)
k+1 that contains (w,w

′).
When |{α, β} ∩ {γ , τ }| = 2, there exists a Hamiltonian cycle in ℘k+1 − F as shown in Fig. 11(a) if α = γ and β = τ , or

in Fig. 11(b) if α = τ and β = γ . The Hamiltonian cycle of Fig. 11(a) contains a P (H)u2,v2 in℘
(α)
k+1 and a P

(H)
u5,v5 in℘

I
k+1− F , where

I = {1, 2, . . . , k} − {α, β}. There exists an edge (w, w′) ∈ E(℘(β)k+1) with N
(k+1)(w), N (k+1)(w′) ∈ V (℘ Ik+1), and Lemma 6

assures a P (H)u3,v3 in ℘
(β)

k+1 that contains (w,w
′).

The Hamiltonian cycle of Fig. 11(b) contains a P (H)u5,v5 in℘
(σ )
k+1 and a P

(H)
u6,v6 in℘

I
k+1−F , where σ ∈ {1, 2, . . . , k}−{α, β} and

I = {1, 2, . . . , k} − {α, β, σ }. There exist two edges (w, w′) ∈ E(℘(α)k+1) and (z, z
′) ∈ E(℘(β)k+1) with N

(k+1)(w), N (k+1)(z ′) ∈
V (℘(σ )k+1), N

(k+1)(w′), N (k+1)(z) ∈ V (℘ Ik+1), and 〈N
(k+1)(w′)〉k+1 6= 〈N (k+1)(z)〉k+1 if k ≥ 5 (〈N (k+1)(w′)〉k+1 = 〈N (k+1)(z)〉k+1

if k = 4). Lemma 6 assures a P (H)u2,v2 in ℘
(α)
k+1 and a P

(H)
u4,v4 in ℘

(β)

k+1 that contains (w,w
′) and (z, z ′), respectively.

4. Concluding remarks

It is both practically significant and theoretically interesting to investigate the fault tolerance of amultiprocessor system.
Most of previous work adopted the random fault model, which assumed that the faults might occur anywhere without
any restriction. It was shown in [22] that an n-dimensional pancake graph could tolerate up to n − 3 edge faults, while
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Fig. 12. A distribution of 3n− 9 edge faults over an n-dimensional pancake graph.

retaining a fault-free Hamiltonian cycle, if the random fault model was considered. There was another fault model, namely
the conditional fault model, which assumed that the fault distribution is subject to some constraints. Apparently, it is amore
challenging problem to investigate the fault tolerance of a multiprocessor system under the conditional fault model.
In this paper, adopting the conditional fault model and assuming that there were two or more non-faulty edges incident

to each node, we showed that an n-dimensional pancake graph contains a fault-free Hamiltonian cycle, even if there are up
to 2n− 7 edge faults, where n ≥ 4. This is the first result on the fault tolerance of the pancake graph under the conditional
faultmodel. There is an upper bound of 3n−10 on the greatest number of tolerable edge faults for the problem, as illustrated
by Fig. 12, where a distribution of 3n− 9 edge faults over an n-dimensional pancake graph is shown. It is easy to see that no
fault-free Hamiltonian cycle can be found for this situation. It is an open problem to narrow down the gap between 2n− 7
and 3n− 10.
The routing techniques used in this paper to detour the edge faults are useful to those people who are working on the

fault tolerance of the pancake graph. They may be applied to investigate the fault tolerance of the pancake graph on other
problems such as pancycles [24] and connectivity under the conditional fault model. Finally, before ending this paper, it
should bementioned that the assumption of each node incidentwith two ormore non-faulty edges is practicallymeaningful.
When there are 2n−7 edge faults, the probability that the assumption holds for an n-dimensional pancake graph is identical
with the same probability for an n-dimensional star graph. The latter is very close to one, which was computed in [12].
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Appendix

When e2 = (1234, 2134),

C1 = 〈1234, 3214, 2314, 4132, 1432, 2341, 3241, 1423, 4123, 2143, 3412, 4312, 2134,
3124, 1324, 4231, 2431, 1342, 3142, 2413, 4213, 1243, 3421, 4321, 1234〉;

C2 = 〈1234, 3214, 4123, 2143, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243,
4213, 3124, 2134, 4312, 1342, 3142, 2413, 1423, 3241, 2341, 4321, 1234〉;

C3 = 〈1234, 3214, 4123, 1423, 2413, 3142, 4132, 2314, 1324, 4231, 3241, 2341, 1432,
3412, 2143, 1243, 4213, 3124, 2134, 4312, 1342, 2431, 3421, 4321, 1234〉.

When e2 = (1234, 3214),

C4 = 〈1234, 2134, 4312, 3412, 2143, 1243, 4213, 3124, 1324, 4231, 3241, 2341,
1432, 4132, 2314, 3214, 4123, 1423, 2413, 3142, 1342, 2431, 3421, 4321, 1234〉;

C5 = 〈1234, 2134, 3124, 4213, 2413, 3142, 4132, 1432, 2341, 3241, 1423, 4123, 3214,
2314, 1324, 4231, 2431, 1342, 4312, 3412, 2143, 1243, 3421, 4321, 1234〉;

C6 = 〈1234, 2134, 4312, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 3124, 1324, 4231,
2431, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 1243, 3421, 4321, 1234〉;

C7 = 〈1234, 2134, 4312, 1342, 3142, 2413, 4213, 3124, 1324, 4231, 2431, 3421, 1243,
2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341, 4321, 1234〉.

When e2 = (1234, 4321),

C8 = 〈1234, 2134, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321,
3421, 2431, 4231, 3241, 1423, 2413, 4213, 1243, 2143, 4123, 3214, 1234〉;



460 P.-Y. Tsai et al. / Theoretical Computer Science 409 (2008) 450–460

C9 = 〈1234, 2134, 3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412,
4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 3214, 1234〉;

C10 = 〈1234, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431, 4231, 3241, 2341, 4321,
3421, 1243, 2143, 4123, 1423, 2413, 4213, 3124, 1324, 2314, 3214, 1234〉;

C11 = 〈1234, 2134, 4312, 3412, 2143, 1243, 3421, 4321, 2341, 1432, 4132, 2314, 1324,
3124, 4213, 2413, 3142, 1342, 2431, 4231, 3241, 1423, 4123, 3214, 1234〉.
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