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A B S T R A C T

Almost 50 million people are living with dementia in 2018 worldwide, and the number will
double every 20 years. The effectiveness of existing pharmacologic treatments for the disease
is limited to symptoms control, and none of them are able to prevent, reverse or turn off the
neurodegenerative process that leads to dementia; therefore, a prompt detection of the “dis-
ease signature” is a key problem, in order to develop and test new drugs and to support the
management of clinical and domestic context. Recent studies showed that linguistic altera-
tions may be one of the earliest signs of the pathology, years before other neurocognitive
deficits become evident. Traditional tests fail to identify these slight but noticeable changes;
whereas, the analysis of spoken language productions by Natural Language Processing (NLP)
techniques can ecologically and inexpensively identify minor language modifications in
potential patients.
This interdisciplinary study aims at quantifying and describing alterations of linguistic fea-
tures due to cognitive decline and build an automatic system for early diagnosis and screen-
ing purpose. To this aim, we enrolled 96 participants: 48 healthy controls and 48 impaired
subjects. Of the latter, 32 was diagnosed with Mild Cognitive Impairment and 16 with early
Dementia (eD). Each subject underwent a brief neuropsychological screening, and samples
of semi-spontaneous speech productions was collected by means of three elicitation tasks.
Recorded sessions were orthographically transcribed, PoS tagged and parsed building two
different corpora: in the first we kept the automatic annotations, while in the second the
transcripts were manually corrected in order to remove all mistakes. A multidimensional
parameter computation was performed on the data, taking into consideration a set of 87
acoustical, rhythmical, morpho-syntactic and lexical feature as well as some readability
indexes and demographic information. After these preparatory steps, some automatic classi-
fiers were trained to distinguish healthy controls from MCI subjects employing two different
algorithms, Support Vector (SVC) and Random Forest Classifiers (RFC). Our system was able
to distinguish between controls and MCI subjects exhibiting high F1 scores, around 75%, thus
it seems to be a promising approach for the identification of preclinical stages of dementia.
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1. Introduction

1.1. Cognitive decline as a growing public health concern

The number of people who are diagnosed with dementia is growing rapidly in western countries: almost 50 million people
are living with dementia in 2018 worldwide, and the number will grow to 152 million by 2050. Rising life expectancy is contrib-
uting to rapidly boosts this number: through meta-analysis of the available evidence, Alzheimer’s Disease International Associa-
tion estimates over 9.9 million new cases of dementia each year, one new case every 3 seconds on average (Prince et al., 2015;
Patterson, 2018).

The management of this increased number of individuals at risk of suffering from Cognitive Impairment is a big challenge for
health-care systems: whilst the global societal cost of the pathology is barely feasible (US$ 818 billion, 1.09% of the global Gross
Domestic Product), existing medications for the forms of clinically evident dementia, in particular for the Alzheimer’s disease
(AD), show minimal efficacy both on the cognitive and the functional manifestations of this ravaging condition.

However, the neurodegenerative process leading to dementia is thought to begin much earlier than the clinical symptoms:
this long “preclinical” or “prodromal” phase, a grey area between normal aging and pathological cognitive functioning, would
provide a key opportunity for pharmacological treatment development and therapeutic intervention (Calz�a et al., 2015; Epel-
baum et al., 2017; Ritchie et al., 2017). Customized interventions at early stages of the disease might reduce not only the eco-
nomic impact of health spending, but also the emotional burden for patients and their caregivers. An adequate and timely risk
identification may also allow for the implementation of preventive measures such as dietary, lifestyle and neuroprotection pre-
cautions, playing an important role in delaying the onset of the pathology.

Nevertheless, the problem of diagnosis in cognitive decline and frailty still remains a hot topic: there is an extensive literature
and a considerable body of evidence on the possibility of early diagnosis of Alzheimer’s and other types of dementia, but pre-
symptomatic diagnosis raises both theoretical issues and ethical concerns (Calz�a et al., 2015).

Individuals with dementia manifest alterations in various cognitive domains: memory, attention, executive functioning,
visuo-spatial skills, perceptual speed and, last but not least, language. Many assessment tools have been proposed over recent
years, but the commonest screening instruments (e.g. the “Mini Mental State Examination” (Folstein et al., 1975)) are largely
inadequate for detecting early changes in cognition. It would be crucial to have high sensitive and specific psychometric tests,
suitable for a low-cost and large-scale use. Several initiatives and studies are in progress (Mortamais et al., 2017), but, at the
moment, the role of these traditional instruments is puzzling: although idoneous to detect evident dementia cases, they are
much less effective in order to track down the prodromal phase of cognitive frailty, such as the condition of Mild Cognitive
Impairment (MCI) (Petersen, 2011).

1.2. Quantitative linguistic methods and NLP techniques for cognitive frailty screening

Among the cognitive areas that may reveal early signs of decline, language has been subject of growing interest, becoming an
established topic of research. Considerable evidence is available for suggesting that linguistic deficits are present in several neu-
rodegenerative diseases (e.g. see Boschi et al., 2017 for a review); that is especially the case with dementia, where language dis-
ruption is a common finding both at the earliest stages and in full-blown pathology.

Although episodic memory impairment is the main symptom of AD, a progressive language disorder is usually found as well;
but unlike aphasias, that are due to focal brain damage, verbal deficits usually occur in the context of multiple cognitive impair-
ments (Forbes-McKay et al., 2013). Patients show, among other signs, a decline of lexical semantic knowledge, with word-finding
problems (i.e. anomia and semantic paraphasias), sentence comprehension deficits, verbal fluency decrease and low content den-
sity (Catrical�a et al., 2015; de Lira et al., 2011; Drummond et al., 2015; Fraser et al., 2016; Jarrold et al., 2014). At the phonetic
level, low speech rate and an high number of hesitations have also been reported (Hoffmann et al., 2010; Sajjadi et al., 2012).
Morpho-syntactic processing tends to be relatively preserved in the early course of the disease (Altmann et al., 2001; Cuetos et
al., 2007; Sajjadi et al., 2012): nevertheless, a number of studies have showed that sentence structure is correct but reduced (Fer-
ris and Farlow, 2013; Fraser et al., 2016; Kemper et al., 1993; Yancheva et al., 2015), and a greater number of inflectional errors in
AD patients than in healthy persons has also been observed (Altmann et al., 2001; Cuetos et al., 2007). Deficits affect the prag-
matic level too, namely referential/temporal cohesion, coherence and discourse planning (Carlomagno et al., 2005; Chapman et
al., 2002; Drummond et al., 2015; March et al., 2006; Ripich et al., 2000). With the progression of AD pathology, linguistic symp-
toms become pervasive, showing a full breakdown of speech comprehension and verbal production restricted to echolalia and
stereotypy (Ferris and Farlow, 2013).

To summarise, the progress of the pathology parallels with a progressive simplification of the language productions; this can
be considered the first guiding line we followed searching for linguistic features able to distinguish among the various degrees of
pathology for Italian speakers.

A progressive loss of specific language functions with relative sparing of other cognitive domains (such as memory of daily
events, visual-spatial skills and behavior) marks out Primary Progressive Aphasia (PPA) (Mesulam, 2001; 2003): as a matter of
fact, PPA is diagnosed when all major limitations in activities of daily living can be attributed to a language impairment for at least
two years after the onset. Three subtypes are currently recognized: non-fluent/agrammatic variant PPA, semantic variant PPA,
and logopenic variant PPA, each of which exhibits peculiar patterns of brain atrophy and linguistic features (Gorno-Tempini
et al., 2011). People with non-fluent PPA show major impairments at the phonetical, phonological and syntactic levels: they
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usually present agrammatism in language production (i.e. omission of grammatical morphemes), effortful and halting speech
with articulatory errors (“apraxia of speech”), disruption of prosody and impaired comprehension of complex sentences (i.e. neg-
ative passive and object relative clause) against spared single-word decoding and object knowledge. Severe anomia and single-
word comprehension deficits, especially for low-frequency items (es. “zebra” vs the more familiar “horse”), are the core features
of semantic variant PPA (also known as “Semantic Dementia”). These symptoms represent the earliest markers of a widespread
conceptual knowledge degradation. People suffering from the logopenic PPA present impaired single-word retrieval and sen-
tence repetition deficits. Word-finding problems bring about slow speech rate, but lack of frank agrammatism and preservation
of speech articulation help in distinguishing it from other subtypes.

Language disruption is not a core feature of Dementia with Lewy Bodies (LBD), but quite the opposite (Ash et al., 2011; Del-
beuck et al., 2013; Grossman et al., 2012). However, naming and verbal fluency impairment, due to disturbed executive function-
ing, have been extensively reported. In addition, alterations have been described both at the phonetic (e.g. speech rate,
articulation errors) and pragmatic level (e.g. narrative organization, coherence and topic maintenance).

Although there is a lot of empirical evidence about language disruption in AD, PPA and LBD, less knowledge has been accumu-
lated about language disorder in preclinical stages. Reviewing the literature on the topic, verbal impairments in MCI seem to par-
allel those found in early/moderate stage Dementia (Taler and Phillips, 2008): deficits are reported for verbal fluency, naming
and semantic knowledge, even if pragmatic skills seem to be the most affected; it is also well documented that these discourse
alterations (i.e. semantically impoverished discourse that lacks in coherence) may be one of the earliest signs of the pathology,
often measurable years before other cognitive deficits become apparent. Some longitudinal retrospective studies have already
demonstrated that linguistic features could act as a prodromic marker of cognitive dysfunctions: for example, the Nun study
(Snowdon, 2003), the Iris Murdoch study (Garrard et al., 2005) or the Harold Wilson project (Garrard, 2009). The investigation of
this domain seems to be promising, both for early diagnosis and dementia large-scale screenings. The traditional evaluation of
the linguistic functions is performed by means of pencil-and-paper or computer-assisted tests: it is usually made up of verbal flu-
ency (semantic and phonemic), visual confrontation naming, comprehension, repetition (of words and/or sentences), writing and
communicative skill assessment. However, not only conventional language tests show low sensitivity, but they do not allow to
explore many other aspects of language, both at the segmental and suprasegmental level (e.g. prosody and rhythm): albeit spo-
radic significant differences between the MCI and normal elderly participants have been identified with standardized instrument,
their clinical use is still unreliable (Filiou et al., 2019; Szatloczki et al., 2015; Taler and Phillips, 2008).

During the last few years, new sophisticated techniques from Natural Language Processing (NLP) have been used to analyse
written texts, clinically elicited utterances and spontaneous speech, in order to identify signs of psychiatric or neurological disor-
ders and to extract automatically derived linguistic features for pathologies recognition, classification and description. Computa-
tional methods have been already successfully applied to the study of linguistic cues of cerebral functional disorders, both in the
case of language modifications and disruption associated with depression (Jiang et al., 2017; Stasak et al., 2019), focal brain
lesions (Fergadiotis and Wright, 2011), Parkinson’s disease (Arias-Vergara et al., 2018; Benba et al., 2016; Sztah�o and Vicsi, 2016;
Upadhya et al., 2019) and for detecting dementia prodroms (MCI) (dos Santos et al., 2017; Matsuda Toledo et al., 2018; Meil�an et
al., 2018; Roark et al., 2007, 2011; Satt et al., 2013; T�oth et al., 2018; Vincze et al., 2016; Wang et al., 2019) or the different associ-
ated pathologies, like Alzheimer’s Disease (Chinaei et al., 2017; Fraser et al., 2016; Jarrold et al., 2014; L�opez-de-Ipi~na et al., 2015;
Yancheva and Rudzicz, 2016; Sirts, Piguet, Johnson), PPA (Fraser et al., 2014) and Fronto-Temporal Dementia (Jarrold et al.,
2014).

While neuropsychological tests and structured evaluations have a relevant impact on the naturalness of the subject’s
responses, the analysis of natural spoken language productions could allow to ecologically and almost inexpensively pinpoint
language modifications in potential patients even by primary care physicians.

Considering the cited literature globally, there are two main aspects that these works analyse trying to face the managed
problem:
�
 the introduction of a proper set of linguistic features able to differentiate subjects that could present a pathological situation
from controls. In this wide panorama, some studies extract the features manually from speech or written productions, while
others try to devise NLP systems able to extract such features automatically. Almost all the cited works apply proper statistical
significance test in order to identify the most promising linguistic indicators in correlation with the pathology studies.
�
 having defined a set of relevant features, some of the cited studies try to build automatic systems able to identify the pathol-
ogy. They typically use common Machine Learning techniques, such as Support Vector Machines, Neural Networks, K-Nearest
Neighbor, etc., to build such automatic tools obtaining different classification performances, in terms of accuracy or precision/
recall/F-score.

1.3. Aim of the study

The paper presents a novel system for the identification of cognitive frailty at a very early stage by processing spontaneous
Italian language productions. The final goal of this project regards the development of an instrument to be used at General Practi-
tioner level, for frequent, low-cost and non-intrusive cognitive decline screening and cognitive status monitoring. In order to
devise such a computational system it is necessary to study and compute a large set of linguistic features potentially able to dis-
tinguish between healthy controls and MCI subjects in a reliable way for the Italian language and Italian speakers. For this reason,
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a large set of indexes identified as relevant in studies devote to other languages, as well as some linguistic parameters never used
for this task or specifically computed for Italian, have been identified and considered into this work, and proper procedures for
measuring them starting from spoken productions have been developed.

Over recent years, there has been a huge increase in the number of scientific papers on the topic but, at the time of writing, we
are not aware of any study specifically devoted to Italian performing a similar kind of automatic analysis. This is not a marginal
issue, since typological peculiarities (e.g. morphological structure) may strongly affect the reliability of the features on different
languages, limiting the comparability and transferability of results. This pilot study represents the first step in the direction of
creating automatic tools able to support practitioners taking the very burdensome, but fundamental, decision if a subject presents
real symptoms of cognitive decline, deserving further diagnostic investigation. With respect to previous works (e.g. Beltrami
et al., 2018), this paper represent our very first attempt to move from the theorical linguistic profiling of MCI population to its
actual automatic identification.

2. Material and methods

2.1. Corpus design and interview recording

We enrolled 96 participants, 48 healthy controls (“control group”, CG) and 48 subjects with cognitive decline (“pathological
group”, PG). All of them provided informed and written consensus. The sample will be balanced by sex, age (range 50�75) and
education (primary school with great intellectual stimulation throughout the life span or junior high school; high school; aca-
demic degree). The PG included 48 participants from two outpatient clinical services involved in-care and diagnostic evaluation
of cognitive disorders and dementia.

It refers to two categories:
1.
 Mild Cognitive Impairment (MCI): it causes cognitive changes that are serious enough to be assessed with neuropsychologi-
cal assessment, but not so severe to interfere with everyday activities. In order to provide a good balance among clinical phe-
notypes of the disease, the sample is further divided into:

� amnestic MCI single domain (a-MCI; 16 subjects): patients who show an isolated memory deficit;
� multiple domain MCI (md-MCI; 16 subjects): in these individuals two or more cognitive abilities are affected (memory can
be engaged or not).
2.
 Early Dementia (e-D; 16 subjects): these patients are affected by cognitive deficits which partially influence everyday life.
Table 1 summarises the main characteristics of our cohort. Complete information about the subjects sampling and the corpus
building can be found in Beltrami et al. (2018).

All the participants of the CG and PG were requested to complete the anamnestic interview (including anagraphic data, infor-
mation about occupation/retirement, children, familiarity with ne``urodegenerative pathologies, clinical history and pharmaco-
therapy). While CG only went through the conventional cognitive battery, all the PG participants underwent a complete
neuropsychological evaluation (comprehensive of a clinical interview, an assessment of cognitive, emotional and behavioral fea-
tures, a self care abilities analysis and an interview with a family member, whenever possible), a neurological assessment and
other medical examinations planned in the diagnostic work-up. The cognitive battery was composed of those tests which are
most used in the clinical practice to assess cognitive decline (Velayudhan et al., 2014; Tsoi et al., 2015), with an Italian standardi-
zation and short administration time.
Table 1
Description of the cohort: inclusion criteria (i.e. MMSE Raw score (Folstein et al., 1975; Measso et al., 1993) and MoCA
(Conti et al., 2015; Nasreddine et al., 2005)), age and education. No age differences were observed between the subgroups
(non-parametric Kruskal-Wallis tests with Dunn’s multiple comparison, p > 0.05); on the contrary, the level of educa-
tion of the eD group is significantly lower than Healty Controls (p-value = 0.0171).

Healty Controls MCI subjects eD subjects

inclusion criteria MMSE � 24; MoCA � 18 MMSE � 18 MMSE � 18
No neurological pathologies,
sensory impairment or intellectual
disability

No problem in activities
of daily living

Need of support for one or
more activities of daily living

No familiarity with dementia
age 61.60 § 6.93 64.34 § 7.33 66.38 § 6.70
education 13.00 § 3.92 11.28 § 4.35 9.38 § 4.01 *



Fig. 1. Orthographic transcription of a short speech sample with the Transcriber software. From the top: text editor for speech turn annotation and segmentation;
button bar for signal playback; waveform; segmentation lines (synchronized with the signal).
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After the traditional neuropsychological assessment, we recorded the semi-spontaneous speech of the subjects during the
execution of three mnemonic/linguistic tasks, elicited by these input sentences:
�
 ”Could you please describe this picture?” (the picture illustrated a living room with some characters carrying out certain
actions, from Ciurli et al., 1996); Task “FIGURE”;
�
 ”Could you please describe your typical working day?”; Task “WORK”;

�
 ”Could you please describe the last dream you remember?”; Task “DREAM”.

Speech samples have been recorded in a quiet room with an Olympus-Linear PCM Recorder LS-5 (in WAV files; 44.1KHz, 16
bit) placed on a table in front of the subject.

2.2. Corpus transcription and annotation

From the digital recordings of the subjects’ interviews we realized two distinct corpora. The first is a Manually Checked Corpus
(MCC) built by either fully manual or semi-automatic techniques: in both cases the data in the corpus, from the speech transcrip-
tions to the whole set of linguistic annotations, are completely reliable and manually checked at any level. The second corpus is
an Automatically Annotated Corpus (AAC), meaning that all the steps, speech transcriptions and linguistic annotations, have
been obtained by an automatic procedure applying different speech and NLP tools and not corrected in any way. The reasons for
building such different resources are twofold: first we used MCC in order to investigate the relationships between linguistic fea-
tures and the different subjects groups, in order to clarify if it is possible to define a set of features enabling a sufficiently reliable
distinction between them by using automatic classifiers; for this preliminary stage we preferred to base our conclusions on reli-
able data, manually checked. Then we used the findings of the first stage and applied the same procedures on data annotated by
using automatic tools, in order to get an idea about the decrease in performance exhibited by a fully automatic system.

Unfortunately, only 92 sessions over 96 have been processed due to recording quality problems, mainly excessive noises.
These speech samples, collected from 4 control subjects, have been excluded from the analysis.

In current literature we can find a high number of studies demonstrating that it is easy to reliably identify subjects presenting
a recognised stage of dementia from healthy controls (e.g. (Fraser et al., 2016; Jarrold et al., 2014; L�opez-de-Ipi~na et al., 2013,
2015; Sirts, Piguet, Johnson), but this is not useful, because once the clinical symptoms have been identified with certainty it is
often too late to intervene in a proper way to contain the illness.

In this study we are mainly interested in developing proper procedures for the automatic identification of the early stages of
the pathology, thus we will concentrate our analyses on the discrimination between control and MCI groups; therefore, our ulti-
mate sample will be composed of 44 controls and 32 MCI subjects. Even if the results presented in this paper are mainly devoted
to control/MCI distinction, all the interviews from the 92 subjects have been completely processed and annotated.



Fig. 2. Measuring the length of linguistic and extra-linguistic events with Praat.
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2.2.1. Manually checked corpus - MCC
The speech samples have been manually transcribed by using Transcriber1, a free tool for helping scholars to transcribe speech

dialogues keeping track of different turns or the various linguistic phenomena in the audio samples (see Fig. 1 for an example of
transcriptions with the cited tool). Output files are exported in an XML format with temporal alignment of the text to the signal
and Unicode UTF-8 character encoding. The operating procedure is compliant with the annotation guidelines of the project, avail-
able to the transcribers.

The reference unit for the analysis of the speech flow is the utterance, defined by using pragmatic and prosodic (mainly into-
national) criteria as “the linguistic counterpart to the speech act”, the minimal linguistic entity that is pragmatically interpretable
(Austin, 1962). The identification is performed through the perception and the detection of prosodic breaks (Cresti and Moneglia,
2018) acoustically correlating with F0 reset, final lengthening, drop in intensity, pause and initial rush in the subsequent prosodic
unit (Cruttenden, 1986; Hirst and Di Cristo, 1998; Sorianello, 2006). One or more utterances performed without interruptions by
a single speaker make up a “dialogic turn”.

Orthographic transcription follows the conventions of written Standard Italian; in order to dispel any spelling doubts, the
annotators referred to the “GRADIT” dictionary (De Mauro, 1999). During the transcription process a set of paralinguistic and
extralinguistic phenomena (such as empty or filled pauses, disfluences, lapsus, hesitations/statterings, laughs, coughs, throat
clearing sounds or noises) has been annotated as well. All labels were clearly marked in order to allow an easy removal of the
annotations from the corpus and the reversion to the raw data (Leech, 2005). The duration of the verbal and non-linguistic events
(in ms.) has been annotated too, gauging their temporal extension on the spectrogram by using the Praat speech processing tool2

(Boersma, 2001) (see Fig. 2).
Table 2 shows means and standard deviations for the lengths of the texts uttered by controls and MCI subjects.
After the automatic tokenization of the transcription, the corpus has been enriched by adding linguistic information at the lex-

ical and morphosyntactic levels: all the utterances have been automatically PoS-tagged, lemmatized and syntactically parsed
with the dependency model used by the Turin University Linguistic Environment-TULE3 (Lesmo, 2007), based on the TUT - Turin
University TreeBank tagset (Bosco et al., 2000). Given that parser performance gets worse with transcripts, even more with path-
ological language, we decided to rely on carefully checked linguistic information, at least for MCC. To this end, all the annotations
have been manually checked by one linguist, in order to remove the errors introduced by the automatic tagging. The revision has
been made by using the Dependency Grammar Annotator - DGA opensource software4 for an easy visualisation and correction of
TULE mistakes at any level (see Fig. 3).
1 http://trans.sourceforge.net
2 http://www.fon.hum.uva.nl/praat/
3 https://github.com/alexmazzei/TULE
4 http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/

http://trans.sourceforge.net
http://www.fon.hum.uva.nl/praat/
https://github.com/alexmazzei/TULE
http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/


Table 2
Text length, in tokens, produced on the three tasks by
healthy and MCI subjects, shown as mean (m) and stan-
dard deviation (s).

Task Healty Subjects MCI subjects

FIGURE m=184.75, s=113.60 m=121.91, s=52.63
WORK m=286.32, s=220.58 m=238.66, s=216.06
DREAM m=135.07, s=100.72 m=94.97, s=66.96

Fig. 3. Dependency graph as shown by DGA and full utterance annotation in CoNLL-U format (lemmas, Part-of-Speech and dependency relations).
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2.2.2. Automatically annotated corpus - AAC
This second version of our dataset has been processed by using completely automatic procedures, both for obtaining the initial

transcriptions of the interviews and for inserting the same linguistic annotation we described before for MCC.
We produced the speech transcriptions of the interviews by leveraging the Google Cloud Automatic Speech Recognition (ASR)

system, well trained for Italian and able to produce reliable transcriptions for non pathological language.
In order to have an idea about the actual performance of this tool when applied to pathological language, we ran an evaluation

experiment comparing the automatically-derived transcriptions with the manual counterparts: we obtained a Word Error rate
(WER) of 27.78%. Considering the nature of our speech samples this WER can be seen as rather acceptable.

With regard to the insertion of linguistic annotations, mainly part-of-speech tagging, lemmatisation and dependency parsing,
we relied on the same tool used for MCC, namely the TULE parser, we described in the previous section. Unfortunately, it is not
possible running a simple evaluation to get a broad idea about the amount of errors also for these linguistic annotations, due to
the inevitable misalignments between the transcriptions that do not allow PoS-tagging and parsing evaluations with standar-
dised procedures.

2.3. Linguistic features

A multidimensional parameter analysis has been performed on the two corpora: the algorithms conduct a quantitative analy-
sis of spoken texts, computing rhythmic, acoustic, lexical, morpho-syntactic and syntactic features. Both linguistic/stylometric
indexes proposed in the literature and some new parameters have been tested, for a total of 87 variables. Age and Cognitive
Reserve (CR), namely the ability to optimize and maximize performance through the recruitment of brain networks and/or com-
pensation by alternative cognitive strategies (Nucci et al., 2012), are among the most important risk factors for Mild Cognitive
Impairment (Mazzeo et al., 2019). So far, CR has been estimated by extremely heterogeneous methods and proxy measures: years
of education, occupation, intelligence (IQ), leisure activity. In particular, the scientific community agrees on the role played by
education in the cognitive decline both in normal aging and degenerative disease: even if its effect is rather difficult to isolate
from other protective factors (e.g. socioeconomic status, quality of the social environment, awareness of health risks), scholarity
have a huge influence on adult lifestyles. Nevertheless, scientific evidence for CR correction is lacking. Since information on age



Table 3
Acoustic Features.

Feature Description References

Silence segments duration Silence segments of the signal identified using a voice activity detector
(VAD). Mean (SPE_SILMEAN), median (SPE_SILMEDIAN) and Std. Devia-
tion (SPE_SILSD) were taken into account.

Satt et al. (2013)

Speech segments duration Speech segments of a signal identified using a voice activity detector
(VAD). Mean (SPE_SPEMEAN), median (SPE_SPEMEDIAN) and Std. Devi-
ation (SPE_SPESD) were taken into account.

Satt et al. (2013)

Temporal regularity of voiced segments The measure captures the temporal structure of the voiced segments, pro-
viding information on the rate of change in the different spectrum
bands. To calculate the temporal regularity of voiced segment durations,
we used the sequence of the duration values, and calculated the real
cepstrum of the sequence (SPE_TRVSD).

Satt et al. (2013)

Verbal Rate The number of words in the sample divided by the Total Locution Time
(i.e. speech time including pauses) (SPE_VR).

words=TLT

Singh et al. (2001); Roark et al., 2011

Transformed Phonation Rate The arcsine of the square root of the Phonation Rate. arcsin
ffiffiffiffiffiffi
PR

p
Where PR

is the phonation rate PR¼TPT=TLT TPT: total phonation time (i.e. speech
time without pauses) TLT: total locution time (i.e. speech time including
pauses). The arcsin transformation (or ”angular transformation”) pro-
vides a normally distributed measure within each participant group
(SPE_TPR).

Singh et al. (2001); Roark et al., 2011

Standardized Phonation Time The number of words in the sample divided by the total phonation time
(i.e. speech time excluding pauses) (SPE_SPT).

words=TPT

Singh et al. (2001); Roark et al., 2011

Standardized Pause Rate The number of words in the sample divided by pauses (SPE_SPR).

words=pauses

Singh et al. (2001); Roark et al., 2011

Root Mean Square energy Physically, energy is a measure of ”how much signal” exists at any one
time, and it is used in continuous speech to detect voiced sounds, which
have higher intrinsic energy than unvoiced segments. The energy of a
signal is typically calculated by windowing the signal at a particular
time, squaring the samples and taking the average. The square root of
this result is the engineering quantity known as the root-mean square
(RMS) value. Mean (SPE_RMSEM) and Std. Deviation (SPE_RMSESD) of
the measures were taken into account.

L�opez-de-Ipi~na et al., 2013

Pitch Pitch is the main acoustic correlate of tone and intonation, and the percep-
tual correlate of frequency; as a matter of fact, it depends on the number
of vibrations per second produced by the vocal cords. Mean (SPE_-
PITCHM) and Std. Deviation (SPE_PITCHSD) were taken into account.

L�opez-de-Ipi~na et al., 2013

Spectral Centroid The measure captures the perceptual brightness of a sound. It is obtained
by evaluating the ”centre of gravity” of the spectrum using the Fourier
transform’s frequency and magnitude information. Mean (SPE_SP-
CENTRM) and Std. Deviation (SPE_SPCENTRSD) were taken into account.

L�opez-de-Ipi~na et al., 2013

Higuchi Fractal Dimension The feature describes the “complexity” of the signal. The algorithm meas-
ures fractal dimension (i.e. self-similarity, namely identical/similar
structures repeating over a pattern) of discrete time sequences directly
from time series. Mean (SPE_HFractDM) and Std. Deviation (SPE_H-
FractDSD) were taken into account.

L�opez-de-Ipi~na et al., 2013
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and education is available in our clinical dataset, they have been added to the input variables of the classifiers, as “demographic
features”.

Tables 3�8 outline the complete list and the description of the features considered in this study.
2.4. Feature extraction and data processing

With regard to the parameters derived from the speech acoustics, we used the ”SSVAD v1.0” Voice Activity Detector proposed
by (Yu and Mak, 2011)5, especially developed for interview speech, to segment the recordings and identify speech vs non-speech
regions. Those segmentations were fundamental for computing some acoustic features like silence and speech segments dura-
tion. We relied also on a forced alignment system we developed by using the Kaldi-DNN-ASR package6 trained on the APASCI
5 http://bioinfo.eie.polyu.edu.hk/ssvad/ssvad.htm
6 https://kaldi-asr.org/

http://bioinfo.eie.polyu.edu.hk/ssvad/ssvad.htm
https://kaldi-asr.org/


Table 4
Demographic features.

Feature Description References

Age Subject’s age (NPT_AGE). -
Scholarity Subject’s number of school years (NPT_SCHOOL). -

Table 5
Readability Features.

Feature Description References

Text readability It is a set of four readability features as computed by the READ-IT readability assessment tool: it computes a
lexical-based index of readability (REA_BASE), a morpho-syntactic readability index (REA_MOSYN), a
syntactic readability index (REA_SYNTAX) and a combination of the previous ones (REA_ALL).

Dell’Orletta et al. (2011)

Table 6
Rhytmic Features.

Feature Description References

Percentage of vocalic intervals The proportion of vocalic intervals within the utterance, that is, the sum of vocalic intervals
divided by the total duration of the utterance (RHY_%V).

Ramus et al. (1999)

Std. deviation of vocalic and con-
sonantal interval durations

The standard deviation of the duration of vocalic and consonantal intervals within each utter-
ance, noted as DV (RHY_DeltaV) and DC (RHY_DeltaC).

Ramus et al. (1999)

Pairwise Variability Index, raw
and normalized

This rhythmmetric takes into account the temporal succession of the vocalic and consonantal
intervals instead of joining all the values and calculating the standard deviation. It is based on
a pairwise comparison of the durations of either two vocalic (RHY_VnPVI) or consonantal
(RHY_CrPVI) intervals, therefore expressing the level of variability in consecutive measure-

ments. Raw Pairwise Variability Index (rPVI): rPVI¼ Pm�1
k¼1 jdk�dkþ1j= m�1ð Þ

h i
wherem is

number of intervals, vocalic or intervocalic, in the text and d is the duration of the interval.

Normalised Pairwise Variability Index (nPVI): nPVI¼100 ¢ Pm�1
k¼1 j dk�dkþ1

dk�dkþ1ð Þ=2 j= m�1ð Þ
h i

Grabe and Low (2002)

Variation coefficient forDV and
DC.

A variation coefficient (varco) is a value describing relative variation. VarcoDC (RHY_VarcoC) is
calculated as the percentage of theDC of the average duration of intervals (meanC); analo-
gously, VarcoDV (RHY_VarcoV) is calculated as the percentage of the DV of the average dura-
tion of intervals (meanV). VarcoDC¼DC ¢100=meanCVarcoDV¼DV ¢100=meanV

Delwo (2006)
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Italian Corpus7: the forced aligner enabled us to obtain the temporally aligned phonetic transcriptions needed to compute the
rhythmic features listed in Table 6.

All input features have been z-score normalised: for any feature X we computed its mean (mX) and standard deviation (sX)
across the dataset and applied the formula ZX¼X�mX=sX . This is a standard procedure for compacting the data features around
zero helping the ML classifiers to achieve better performance. In a previous work (Beltrami et al., 2018) we carefully analysed the
correlations between all the linguistic features previously described, computed on the MCC, and the neuropsychological test
taken to define the gold standard and to produce the final subjects classifications.

We performed also a statistical analysis by computing the significance for each feature by using the Kolmogorov-Smirnov
non-parametric test. We chose such kind of hypothesis testing technique, compared with the t-test or the Wilcoxon-Mann-Whit-
ney test, because of the small size of our corpus. Table 9 outlines the different levels of significance for the considered linguistic
features. Acoustic features (SPE_*), directly derived from the recordings, play a central role in distinguishing the two classes of
subjects (CG vs PG), being almost all highly significant. With regard to lexical (LEX_*) and syntactic (SYN_*) features, some of
them are very significant and thus interesting, while the other families of indexes (rhythmic - RHY_*, readability - REA_* and
demographic - NPT_*) seem not so relevant, or only slightly relevant, for supporting the classification process.

Before describing the classification experiments and the obtained results we have to briefly discuss an important point. Most
of the works in the relevant literature tend to study a group of linguistic features from a statistical point of view, and then build
the automatic classifier by only using the significant feature or reducing the number of considered features by applying feature
selection/dimension reduction techniques (such as Minimum Redundancy Maximum Relevance). This is usually done on the
same dataset used for training the classifier introducing, in our opinion, a bias on classifiers’ evaluation.

In this work we did not apply any feature selection method and did not select the feature looking at their statistical signifi-
cance (we made only some experiments reported in Section 3 for comparison purpose). We built our classifiers by using the
whole set of listed features and let the automatic classifiers the task of identifying which complex combination of features
achieve the best results. In this way we were certain not to introduce any kind of bias into the evaluation procedure, and thus to
7 http://catalogue.elra.info/en-us/repository/browse/ELRA-S0039/

http://catalogue.elra.info/en-us/repository/browse/ELRA-S0039/


Table 7
Lexical Features.

Feature Description References

Content Density The ratio of open-class words to closed-class words. The measure is calculated over
Part of Speech tags, where open-class words are nouns, verbs, adjectives,
adverbs; the rest are considered closed-class words (LEX_ContDens).
ContentDensity¼OCW=CCW

Roark et al., 2011

Part-of-Speech rate This class of features investigates the average rate of occurrence for each part-of-
speech (PoS) category: Adjectives, Adverbs, Articles, Conjunctions, Interjections,
Nouns, Numerals, Prepositions, Pronouns, Verbs (LEX_PoS_*).
e:g: : Adjectives=words

Holmes and Singh (1996); Bucks
et al. (2000)

Reference Rate to Reality The ratio of the total number of nouns to the total number of verbs (LEX_RefRReal).
RefRReal¼Nouns=Verbs

(Vigorelli, 2004)

Personal, Spatial and Temporal
Deixis rate

The feature probes the rate of deictic expressions in the spoken text (i.e. linguistic
elements that point to the time, place, or situation in which a speaker is speak-
ing; in other words, their denotational meaning varies depending on extralin-
guistic context). The main types of deixis are: (a) Person deixis (e.g. I, you, we,
me, mine, yours...) (LEX_PDEIXIS); (b) Place deixis (e.g. here, there, this, that...)
(LEX_SDEIXIS); (c) Time deixis (e.g. now, today, tomorrow, soon...) (LEX_-
TDEIXIS). e:g: : PersonDeixis=words

March et al., 2006; Cantos-G�omez
(2009)

Relative pronouns and negative
adverbs rate

The rate of Relative Pronouns (e.g. who, whose...) (LEX_RPRO) and Negative
Adverbs (e.g. not, neither...) (LEX_NEGADV) in the spoken text.

Lexical Richness: Type-Token
Ratio, W - Brunet’s Index and
R - Honor’s Statistic

This class of measures quantifies the richness of vocabulary/lexical diversity. TTR,
Type-Tokes Ratio: the ratio of the number of different words (vocabulary - V) to
the total text length. TTR is dependent on the text size: it is bigger when texts
are small and decreases as the texts get larger (LEX_TTR).W, Brunet’s Index: it
quantifies lexical richness without being sensitive to text length. It is calculated
according to the following equation:W¼NV ð�:165Þ where N is the total text length
and V is the total vocabulary used by the participant. This measure generally
varies between 10 and 20. The lower the value, the richer the speech (LEX_Bru-
netW). R, Honor�e’s Statistic: calculates lexical richness by highlighting the pro-
portion of words that are used only once with reference to the total number of
words in the text: the larger the number of words used by a speaker that occur
only once (hapax legomena), the richer the lexicon. R¼100logNð1�V1=VÞ where V1 is the
words spoken only once, V is the total vocabulary used and N is the total text
length. High value of R suggests a rich vocabulary used by the speaker
(LEX_HonoreR).

Holmes and Singh (1996); Brunet
(1978); Honor�e (1979)

Action Verbs rate The metric probes the rate of action verbs (i.e. verbs referring to physical action,
like to put, to run, to eat) in the spoken text (LEX_ACTVRB).

Gagliardi (2014)

Frequency-of-use tagging Mean frequency-of-use weight among words extracted from the De Mauro’s fre-
quency list (LEX_DM_F).

De Mauro (2000)

Propositional Idea Density Idea density is the number of expressed propositions (i.e. distinct facts or notions
contained in a text) divided by the number of words. It is a measure of the extent
to which the speaker is making assertions (or asking questions) rather than just
referring to entities. In this feature, propositions correspond to verbs, adjectives,
adverbs, prepositions, and conjunctions. Nouns are not considered to be propo-
sitions, as the main verb and all its arguments count as one proposition
(LEX_IDEAD).

Snowdon et al., 1996; Roark et al.,
2011

Mean Number of words in
utterances

Mean number of words in the speech utterances (LEX_NW).
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be able to trust the system’s performance as a good approximation of its generalisation abilities on new unseen data. In our opin-
ion, given the relatively small size of the dataset, this is the safest way to design experiments not affected by any bias.

2.5. Automatic classifiers

As stated in previous sections, the long-term goal of this project is the construction of an automatic system able to help the
practitioner in screening the linguistic status of all her/his patients in order to identify early signs of cognitive frailty and, in par-
ticular, MCI states. Designing proper subjects classifiers based on their speech productions in solving very simple and specific
tasks could be a viable solution.

As a pilot study we followed this idea experimenting around the construction of such a classifier by using all the considered
linguistic features as the input for some Machine Learning (ML) technique and training the system accordingly.

In the deep learning era the use of Deep Neural Networks (DNN) seems an obvious choice when building any kind of auto-
matic classifier, but this is not the case: DNNs classifier training requires a large amount of annotated data that is not available, in
general, when working with this kind of studies and certainly not available in our study. When data is scarce, other techniques
proved to be equally useful allowing for the construction of reliable classifiers even if trained with small amounts of data. We



Table 8
Syntactic Features.

Feature Description References

Number of dependent elements
linked to the noun

The feature explores Noun Phrase complexity, counting the number of dependent ele-
ments linked to the head (e.g. Adjectives, Relative clauses...). Mean (SYN_NPLENM)
and Std. Deviation (SYN_NPLENSD) were taken into account.

Global Dependency Distance Given the memory overhead of long distance dependencies, the feature quantifies the
difficulty in syntactic processing. Mean (SYN_GRAPHDISTM) and Std. Deviation
(SYN_GRAPHDISTSD) were taken into account.

Roark et al., 2007, 2011

Syntactic complexity Syntactic complexity is established by counting the linguistic tokens that can be con-
sidered to telltale signs of increased grammatical subordinateness and embedded-
ness, such as: subordinating conjunctions (e.g. because, since, as, when, that, etc.),
WH-pronouns (e.g. who, whose, whom, which), verb forms, both finite and non-
finite, noun phrases.
Because subordinators andWH-pronouns are the most straightforward indicators of
increased embeddedness (and thus of high complexity), these features are weighted
more heavily than verbal forms and noun phrases (SYN_ISynCompl).
ð2 ¢ conjþ2 ¢pronþnounsþverbsÞ

word

Szmrecs�anyi (2004)

Syntactic embeddedness: maximum
depth of the structure

Syntactic complexity is also assessed by evaluating the “embeddedness”, i.e. the maxi-
mum ”dep” of the structure. Mean (SYN_MAXDEPTHM) and Std. Deviation (SYN_-
MAXDEPTHSD) were taken into account.

Utterance length Mean Length of utterance corresponds to the average number of words for utterance. It
is calculated by counting the number of words in each utterance divided by the total
number of utterances. Mean (SYN_SLENM) and Std. Deviation (SYN_SLENSD) were
taken into account.
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experimented with two different supervised models implemented in the scikit-learn8 python package: C-Support Vector Classi-
fiers (SVC) (Cortes and Vapnik, 1995) and Random Forest Classifiers (RFC) (Tin Kam Ho, 1998). For a detailed description of these
common ML techniques see also (Flach, 2012).

SVCs are machine learning techniques that, given a set of training examples each marked as belonging to one or the other of
two categories, builds a model that assigns examples to one category or the other dividing the categories by a gap that is as wide
as possible. New examples are then mapped into that same space and predicted to belong to a category based on the side of the
gap on which they fall. In addition to performing linear classification, SVCs can efficiently perform a non-linear classification
using what is called the “kernel trick”, implicitly mapping their inputs into high-dimensional feature spaces.

RFCs is an ensemble learning method for classification that operates by constructing a set of decision trees at training time and
outputting the class that is the mode of the classes of the individual trees, correcting the decision trees’ habit of overfitting to
their training set.

For our experiments we employed a Nested Leave One-Speaker-Out Cross Validation (NLOSOCV) (Krstajic et al., 2014) both for
model selection, by optimising the hyperparameters over the validation set, and for model assessment evaluating the system on
the test set. Given the limited size of the dataset we chose the “leave one-speaker out” solution to maximise the amount of data
in the training set averaging the results obtained from the different folds.

The performance achieved by the system will be evaluated in terms of macro-averaged F1-score. Given the complexity of the
whole evaluation procedure and the influence of the starting random point for each training/validation/test procedure on the
evaluation results, we ran 10 different NLOSOCV procedures for any result computing mean and standard deviation of the F1-
scores over the 10 runs.

With regard to the systems developed using C-Support Vector Classifiers we used RBF Kernels optimising the model parame-
ters with a grid search, directly embedded into the NLOSOCV procedure, in the intervals g 2 [0.0005, 1.0] and C 2 [0.0001, 100]
where g is the parameter of the RBF kernel and C is the SVC penalty parameter of the regularisation term. Random Forest Classi-
fiers need only to determine a single parameter ntrees representing the number of trees in the forest; we optimised this parameter
in the interval ntrees 2 [5, 100] during the NLOSOCV procedure.
3. Results and discussion

Table 10 outlines the results obtained by the different classifiers on the two corpora, MCC and AAC, expressed as macro-aver-
aged F1-score, for all tasks together (first column) and for any single task.

The first observation we can make by looking at the results regards the good performance of the classifiers when trained on
manually checked data (MCC) and all tasks. F1-scores well above 74% seems very encouraging and certainly far from a random
classification (50%). The performance on single tasks drops considerably. In our opinion, there are two possible explanations for
this fact:
8 https://scikit-learn.org

https://scikit-learn.org


Table 9
Linguistic features considered in this study (see Tables 3�8 for descriptions and abbreviations):
means and standard deviations of their normalised values, distinguishing between controls
and MCI subjects, and statistical significance at the Komolgorov-Smirnov (KS) test (*: 0.01<p-
value<0.05, **: 0.001<p-value<0.01, ***: p-value<0.001).

Feature Type Feature Controls (CG) MCI (PG) KS

m s m s p-value Signif.

Acoustic SPE_SILMEAN 0.34 1.20 -0.25 0.73 <0.001 ***
SPE_SILMEDIAN 0.26 1.02 -0.19 0.95 <0.001 ***
SPE_SILSD 0.26 1.00 -0.19 0.96 <0.001 ***
SPE_SPEMEAN -0.49 0.68 0.36 1.05 <0.001 ***
SPE_SPEMEDIAN -0.41 0.70 0.30 1.08 <0.001 ***
SPE_SPESD -0.44 0.55 0.32 1.12 <0.001 ***
SPE_TRVSD 0.01 0.96 -0.00 1.03 0.666
SPE_VR -0.20 1.16 0.14 0.84 0.005 **
SPE_TPR -0.50 1.07 0.36 0.77 <0.001 ***
SPE_SPT 0.35 1.38 -0.25 0.45 <0.001 ***
SPE_SPR -0.41 0.72 0.30 1.07 <0.001 ***
SPE_RMSEM -0.24 0.96 0.18 1.00 0.015 *
SPE_RMSESD 0.05 1.06 -0.04 0.96 0.428
SPE_PITCHM 0.16 1.00 -0.11 0.99 0.137
SPE_PITCHSD 0.13 1.06 -0.10 0.94 0.407
SPE_SPCENTRM 0.36 1.21 -0.26 0.71 <0.001 ***
SPE_SPCENTRSD 0.11 1.19 -0.08 0.83 0.232
SPE_HFractDM 0.40 0.95 -0.29 0.93 <0.001 ***
SPE_HFractDSD -0.23 1.05 0.17 0.93 <0.001 ***

Demographic NPT_AGE 0.19 1.02 -0.14 0.96 0.015 *
NPT_SCHOOL -0.24 1.03 0.17 0.94 0.036 *

Readability REA_BASE -0.29 1.25 0.21 0.71 0.017 *
REA_MOSYN -0.17 1.03 0.12 0.96 0.013 *
REA_SYNTAX -0.20 1.10 0.15 0.90 0.074
REA_ALL -0.23 1.14 0.17 0.85 0.066

Rhytmic RHY_%V -0.03 1.11 0.02 0.91 0.470
RHY_DeltaV -0.15 1.06 0.11 0.94 0.133
RHY_DeltaC -0.14 1.06 0.10 0.95 0.137
RHY_VnPVI -0.14 1.22 0.10 0.79 0.091
RHY_CrPVI -0.12 1.08 0.09 0.94 0.105
RHY_VarcoV -0.14 1.08 0.10 0.93 0.407
RHY_VarcoC -0.15 1.11 0.11 0.90 0.120

Lexical LEX_ContDens -0.17 1.09 0.12 0.91 0.003 *
LEX_PoS_ADJ -0.30 1.01 0.22 0.93 0.002 *
LEX_PoS_ADV -0.03 1.07 0.02 0.95 0.825
LEX_PoS_ART 0.04 1.04 -0.03 0.97 0.835
LEX_PoS_CONJ -0.20 1.01 0.14 0.97 0.116
LEX_PoS_NOUN -0.05 1.09 0.03 0.93 0.407
LEX_PoS_NUM -0.00 1.01 0.00 1.00 0.989
LEX_PoS_PHRAS 0.19 1.42 -0.14 0.48 0.428
LEX_PoS_PREDET 0.04 1.25 -0.03 0.77 0.907
LEX_PoS_PREP -0.14 1.03 0.10 0.97 0.124
LEX_PoS_PRON 0.11 1.08 -0.08 0.93 0.378
LEX_PoS_VERB 0.07 1.15 -0.05 0.88 0.082
LEX_RefRReal -0.01 1.07 0.01 0.95 0.232
LEX_PDEIXIS 0.07 1.14 -0.05 0.88 0.407
LEX_SDEIXIS -0.07 0.94 0.05 1.04 0.771
LEX_TDEIXIS 0.09 1.15 -0.06 0.88 0.525
LEX_RPRO 0.04 1.17 -0.03 0.86 0.736
LEX_NEGADV 0.15 1.19 -0.11 0.82 0.267
LEX_TTR 0.21 1.05 -0.15 0.93 0.040 *
LEX_BrunetW -0.27 1.09 0.20 0.88 0.028 *
LEX_HonoreR -0.00 1.13 0.00 0.90 0.536
LEX_ACTVRB 0.08 1.07 -0.06 0.94 0.307
LEX_DM_F -0.08 1.08 0.06 0.94 0.491
LEX_IDEAD -0.16 1.07 0.12 0.93 0.137
LEX_NW -0.18 0.92 0.13 1.04 0.003 **

Syntactic SYN_NPLENM -0.15 1.00 0.11 0.99 0.417
SYN_NPLENSD -0.14 1.10 0.10 0.91 0.267
SYN_GRAPHDISTM -0.34 0.99 0.25 0.94 <0.001 ***
SYN_GRAPHDISTSD 0.04 1.07 -0.03 0.95 0.882
SYN_ISynCompl -0.01 1.21 0.01 0.82 0.315
SYN_MAXDEPTHM -0.26 0.79 0.19 1.09 0.002 **

(continued)
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Table 9 (Continued)

Feature Type Feature Controls (CG) MCI (PG) KS

m s m s p-value Signif.

SYN_MAXDEPTHSD -0.06 1.06 0.05 0.96 0.049 *
SYN_SLENM -0.31 0.83 0.23 1.06 <0.001 ***
SYN_SLENSD -0.15 1.09 0.11 0.91 <0.001 ***

Table 10
Means (m) and standard deviations (s) of the automatic classifiers results (macro-averaged F1-score)
over 10 runs. In boldface the best result for each method/corpus/task combination.

Method (Corpus) All Tasks Task FIGURE TaskWORK Task DREAM

m s m s m s m s

RFC (AAC) 0.6887 0.0194 0.6487 0.0144 0.6842 0.0213 0.6831 0.0249
SVC (AAC) 0.7045 0.0185 0.5952 0.0380 0.6417 0.0302 0.6269 0.0197
RFC (MCC) 0.7030 0.0191 0.6628 0.0489 0.6828 0.0310 0.7146 0.0365
SVC (MCC) 0.7445 0.0164 0.6187 0.0322 0.6856 0.0196 0.6706 0.0326

Table 11
Previous works for MCI detection directly comparable to this study. F1 values marked
with a * have been computed by us on the basis of the other values provided by the
authors in their paper.

Reference Language ML Method Best results

Vincze et al. (2016) Hungarian SVC F1 = 68.9%
Asgari et al., 2017 English SVC Acc = 0.76; Sens = 0.53

Spec = 0.88; F1=71.7%*
T�oth et al., 2018 Hungarian RFC (Automatic) F1 = 76.0%

SVC (Manual) F1 = 75.0%
Themistocleous et al., 2018 Swedish DNN F1 = 65.8%*
Gosztolya et al. (2019) Hungarian SVC F1 = 78.3%
Fraser et al. (2019a) Swedish SVC Acc = 0.69; Sens = 0.54

Spec = 0.84; F1=68.3%*
Fraser et al., 2019 English SVC Acc = 0.63; Sens = 0.53

Spec = 0.74; F1=62.8%*
Swedish Acc = 0.72; Sens = 0.77

Spec = 0.67; F1=71.9%*
This study Italian SVC (Automatic) F1 = 70.5%

SVC (Manual) F1 = 74.5%
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�
 this is a clear indication of data scarcity when trying to devise automatic classifiers trained and evaluated using a limited
amount of linguistic examples. Each subject produced a single recording for each linguistic task, thus the classifier for any sin-
gle task is trained by using one-third of the data available for training the classifier working on all tasks. This is a typical
behaviour for ML techniques when trained with scarce data;
�
 the three tasks have been properly designed to involve different cognitive skills: in addition to stimulating the semi-sponta-
neous verbal production of the subjects, allowing the subsequent linguistic analysis, they allow to evaluate the possible break-
down of the memory functions. As a matter of fact, in all three tasks it is essential to remember what you are saying (working
memory), what you have already referred to (episodic memory) or what you are going to tell (prospective memory); more-
over, the completion of the task requires the knowledge of the lexemes used, including semantic and lexical information
(semantic memory), and the ability to recall, upon request, personal memories referring to a more or less remote past (auto-
biographical, recent and remote episodic memory). Obviously all the tasks involve all the memory systems, however the
involvement has different ”percentages”. For example, FIGURE impacts a great deal on semantic memory, but does not involve
autobiographical episodic memory. If the different tasks provide different contributions to describe the subject’s state, then it
does not sound so strange that the classifier using the complete “picture” working on all data is able to identify the different
subjects with better performance.

For single tasks, RFCs exhibit the best performance in all combinations except one, suggesting that this ML technique is less
influenced by data scarcity with respect to SVCs. On the contrary, SVCs are consistently better when applied to the whole datasets
including all tasks.



Table 12
Means (m) and standard deviations (s) of the
automatic classifiers results (macro-averaged
F1-score) over 10 runs for the different feature
families considering the SVC technique.

Corpus Feature set All Tasks

m s

AAC Acoustic 0.5972 0.0366
Demographic 0.3888 0.0239
Readability 0.3577 0.0273
Rhythmic 0.5228 0.0355
Lexical 0.4960 0.0628
Syntactic 0.6014 0.0319
ALL 0.7045 0.0185

AAC Significant 0.6662 0.0391
MCC Acoustic 0.5847 0.0392

Demographic 0.3888 0.0239
Readability 0.4968 0.0456
Rhythmic 0.5713 0.0555
Lexical 0.4570 0.0437
Syntactic 0.5990 0.0607
ALL 0.7445 0.0164

MCC Significant 0.7126 0.0150
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It seems relevant to note the small difference in performance exhibited by the fully automatic procedure for deriving all the
features in an automatic way (70.5%) with respect to the classifier results when trained on manually checked data (74.5%). Con-
sidering the goal of the project discussed in the previous sections, this seems the most promising result, suggesting that we can
automatically extract all the features needed to classify a new subject in a reliable way from raw interview recordings.

In spite of the growing body of research on the topic, a good practice for reporting research has not yet been established for this spe-
cific task. As already noticed by Gosztolya et al. (2019) the choice of evaluation metric is not a clear-cut issue for this task: thus, a strict
comparison among systems is not easy to draw.Moreover, previous works have already exploited different machine learning techniques
and train-test configurations, and experiments have been conducted on a limited number of languages (i.e. mainly English, Swedish,
Spanish, French, Hungarian), making it difficult to contrast different cohorts. Results have been reported variously in the existing litera-
ture. ROC (Receiver Operating Characteristics) curve is quite common among clinicians as a performance measurement for classification
problem at various thresholds settings; it plots sensitivity versus specificity across a range of values for the power to predict a dichoto-
mous outcome. Some relevant paper in the field reports the ”Area Under the Curve” (AUC) and the ”Equal Error Rate” (EER), which are
twometrics derived from the ROC: they correspond, respectively, to the area subtended by the curve and the point where the false posi-
tive rate and the false negative rate are equal, namely the intersection of the ROC curve with the straight line of 45 degrees.

Some classical Information Retrieval metrics are also widespread in the literature: “accuracy” (i.e. the number of correct pre-
dicted samples over the total number of samples), “precision” (i.e. the fraction of relevant samples among the retrieved samples)
and “recall” (i.e. the fraction of the total amount of relevant samples actually retrieved). These last two scores are usually aggre-
gated in the “F-measure” (or “F1-score”), which corresponds to their harmonic mean. However, accuracy alone is often reported;
this can be misleading, especially in the presence of class-imbalance.

Given this unfolding scenario, in order to discuss our results, we conduct a brief review of related works exploiting linguistic
biomarker for MCI automatic detection in various languages. Published studies that included the following have been considered
for eligibility: i) employment of machine learning classifier ii) confronting healthy subject and MCI patients for screening purpose
iii) published in English iv) no restrictions on the language spoken by the enrolled subjects. Instead, studies have been excluded
if: i) cohorts included early or frankly dementia patients ii) results have been reported as AUC, EER and accuracy alone.

Table 11 summarises the selected papers: we inserted only the best result, when building a classifier for distinguishing con-
trols from MCI subjects, and the associated ML system for brevity. Most of the cited works in Table 11 performed a lot of experi-
ments with different settings: in particular, the very best results claimed by the respective authors were based on systems
trained by using only the significant (or the N-most significant) features. As discussed before, in our opinion this is not the most
suitable way to evaluate system performance, because this procedure introduces a bias, artificially inflating the final results. As a
matter of fact, the selection of the statistically significant features has been done by examining the entire dataset of subjects’ pro-
ductions, considering also the data that has been used in the subsequent system test phase. Even if we did the statistical analysis
of the linguistic features we considered in this study, all the experiments presented here used the whole set of available features,
avoiding the introduction of any bias in the evaluation phase. For this reason in Table 11 we report only the best results obtained
in the other studies without any feature selection, allowing for a fair comparison with our setting.

Making specific reference to the cited studies, from Gosztolya et al. (2019) we extracted the results on 2 classes without fea-
ture selection; in Fraser et al. (2019a) and Fraser et al., 2019 we took into consideration the results on two-class discrimination
exploiting linguistic features alone and not considering non-ecological settings like eye tracking or the reading aloud task; the
study from T�oth et al., 2018 follows similar procedure as the one we are presenting, but, even if it sounds very surprising that the
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fully automatic system is able to achieve better results then the algorithm trained on manually checked data, it is very interesting
seeing such good performance for a completely automatic procedure. With regard to the work of Themistocleous et al., 2018 we
averaged the F1-score reported in the paper for each fold to obtain a single value.

Given these premises and considerations, we can say that our results on Italian are in line, or better, with the state-of-the-art
for other languages presenting, on average, a F1-score around 75%. In order to compare our results with the works from Fraser
et al. (2019a), Fraser et al., 2019 and Asgari et al., 2017 we computed the macro-averaged F1 score from the data on their papers
(accuracy, sensitivity and specificity) thus we can safely compare our F1-score with their results.

As a general observation, it is interesting to note that none of the most recent studies in this field makes use of DNN, confirm-
ing our observation that for small datasets it is better to use traditional ML techniques. The only exception making use of DNN,
the paper from Themistocleous et al., 2018, did not produce results near the state-of-the-art reinforcing our choice not to use
neural networks for this kind of task.

In order to disentangle the real contribution of the different feature families, we tested a set of classifier by using a single group of
features. We made these experiments by using SVCs, the technique exhibiting the best general results in the experiments discussed
before. Table 12 shows the results for any group of features considered in this study as well as the results obtained using only the sig-
nificant features from Table 9. Acoustic and Syntactic features confirm their good ability to distinguish MCI subjects from controls, as
already evidenced by statistical significance, but it is interesting to note that, despite the fact that no rhythmic feature resulted signifi-
cant, all of them, when taken together, are able to bring some contribution to the classification process. Actually, 5 over 7 rhythmic fea-
tures are not so far from significance threshold. By looking at the results provided by the classifiers based only on the significant
features, well below from the best ones obtained using all features, we can observe that, even if the contribution of significant features
is certainly relevant to sustain classifier performance, also non significant features are able to bring useful contributions to the system
improving the performance by various points. In our opinion, this could be another argument in favour of not to build classifiers using
only significant features and, instead, use the full set of available features, avoiding any kind of bias in the experiments and taking
advantage of the contributions, even partial, of less significant, or non significant but in any case relevant, features.

As a final comment, it should be pointed out that a complete language-specific profiling of pathological verbal productions by
means of computational techniques, despite its time-consuming nature, is an essential preliminary step for the implementation
of a valid, reliable dementia screening instrument. From a linguistic point of view, typological differences (e.g. at the acoustical,
morphological, syntactic and lexical level) might strongly limit the extension of the results, hindering the spread of similar tools
in different geographical areas. Most of the studies focused on English, just as it is supposed to be. Therefore, the relevance of a
wide range of variants should be tested from time to time, especially on less-described languages. In this respect, we hope that
the number of studies on this topic will continue to grow.
4. Conclusion

This study presented a novel system for the detection of Mild Cognitive Impairment conditions in Italian, by examining sub-
jects’ productions during three spontaneous speech tasks.

We created a complex set of algorithms for the automatic extraction of several linguistic features, from the acoustic, rhythmic,
lexical, syntactic and readability domains; then we build some ML classifiers, with the aim of discriminating healthy controls
from MCI subjects. This system was able to perform the task exhibiting a macro-averaged F1-score around 75%, the state-of-the-
art performance for more studied languages; this is a very encouraging result for our project. Examining the results obtained in
this pilot study, we can reliably claim that the former dream of building tools helping for a massive screening of cognitive impair-
ments directly by practitioners can be a true reality in the next few years.

As far as we know, this is the first study on Italian language examining a large set of linguistic features for building automatic
classifiers identifying Mild Cognitive Impairment from healthy controls.
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