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A B S T R A C T

With the rapid development of deep learning techniques, speech-based communication is
getting more practically to be embedded into smart devices such as Alexa echo, TV, Fridge,
etc. In this work, we have developed an efficient yet accurate Speech Command Recognition
(SCR), that is particularly appropriate for low-resource devices. To this aim, a novel neural
network, called Light Interior Search Network (LIS-Net), is presented that works with raw
speech signal. LIS-Net is structurally composed of a sequence of parameterized LIS-Blocks,
each of which is a stack of LIS-Cores, exploring the feature-map inheritance to learn highly
distinctive and lightweight footprint of speech patterns. The proposed network is validated
on Google Speech Commands benchmark speech datasets, demonstrating a significant
improvement of accuracy and processing time in comparison with other state-of-the-art
techniques.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, applying Deep Learning to smart devices has become an integral part of smart systems. Internet of things (IoT) is
one of the leading systems in integrating intelligent control technologies to better serve human needs. Recently, the application
of artificial intelligence in industrial and IoT devices has become a popular trend (Bhayani et al., 2016). The goal is to interact
with people, increase responsiveness and reduce energy consumption. Puri et al. (2019) has introduced the methods of using AI
in electronic equipment systems. For wide application, a system running on smart devices, in which speech is the most important
signal, need to minimize energy, expand the ability to interact with people through audio and video. In the study
Liua et al. (2019), the power dissipation of electronics is minimized by optimizing algorithms with specialized hardware.
Zhou et al. (2019) has tried to solve the problem of dividing computational tasks of equipment systems in the network to improve
the responsiveness of the system. If problems that require large amounts of data processing or tasks that require powerful artifi-
cial intelligence to process cannot be performed at the terminal, those systems will be processed in the cloud (Samie et al., 2019).
From those strong trend, there are many applications of AI in practice with the goal of human-machine communication, such as
Internet of Things for Enabling Human-Thing Cognitive Interactivity (Zhang et al., 2019), human-machine interaction using
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Fig. 1. Architecture of LIS-Net. Stacked parametric LIS-Blocks, in which each LIS-Block contains many LIS-Cores to find suitable parameterized information.
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speech signal (Audhkhasi et al., 2017), and keyword spotting (Li et al., 2019; Liu et al., 2018; Yusuf et al., 2019; Liua et al., 2019)
which have gained growing attention of researchers and manufacturers. Smart speech-enabled devices allow us to experience
Hands-Free Speech Recognition by detecting key phrases to command or interact. The industrial devices are also controlled by
voice commands with the basic keywords such as stop, up, down to lift the machine arms. The industry of SmartHome and Smart
devices is growing aggressively with the ability to turn on/off the devices by keywords and/or voice commands. Only two key-
words (yes/no) or 12 keywords (“yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, “go”, “unknown”, and “silence”) are
currently not enough to use. Therefore, the voice command devices controlled with more keywords have become the trend. In
2017, Google expanded this field, so the Google Speech Commands dataset is proposed (Warden, 2018), including 35 commands
such as left, right, up, and so on, which currently creates opportunities and challenges for Deep Learning models. The goal of a
SCR model is to get high accuracy and small foot-print. Current models with high accuracy often have a large foot-print or vice
versa. So it is necessary for developing a model with smaller foot-print and higher accuracy in order to solve a variety of problems
in practice

To meet the expectation of a simple, powerful model which can solve the limitations of existing ones, a new model is studied
and designed with the goal of a small number of parameters, fast running and high accuracy, inspired by such the architectures
with high accuracy results in many areas today as Residual neural network ResNet (He et al., 2016), DenseNets (Huang et al.,
2016), Inception (Zeng et al., 2016; Szegedy et al., 2014) and Xception (Chollet, 2017). These models are designed for image data.
In this study, because the characteristics of command data are short. The 1D speech signal is transformed into 3D spectrum image
to inherit the efficiency of CNN and ResNet while remaining the information on a wide range to have an overview on both the fre-
quency and time axis, as well as the characteristics of the frequency spectrum in speech signals. In order to compare the results of
the models easily, the literature and ours on the same Google Speech Commands dataset on sets of 12, 20 and 35 keywords are
trained and compare the results in terms of accuracy, number of parameters, and inference time. The name so called “Light Inte-
rior Search Network (LIS-Net)” comes from the idea of searching the necessary features inner 3D space of a sample and concate-
nate internal stacked layers features to get better results. The word “light” means “light” in terms of the number of parameters
and/or number of flops of the LIS-Net model, compared to the baselines structure of the network that LIS-Net inspired to create
(ResNet, ResNext, DenseNet, Xception). From Fig. 9, it can be seen that to achieve the same or higher effect, LIS-Net has a smaller
number of parameters. On the other hand, LIS-Net has a much smaller number of FLOPS than most baseline models with higher
accuracy test results, shown in Fig. 10, so the authors called “light”. The “interior search” part of the proposed name really comes
from how a convolutional filter looks “within” its filter map. In each layer of Lis-Core, it has 3 different core layers that look and
inherit useful feature in the internal layer. This idea will be clearly designed and explained in Section 3.

The model was designed to have a simple architecture by stacking blocks (called LIS-Blocks). It makes the implementation of
the algorithm simpler and easier to understand. Besides, the number of parameters is also smaller.

The design of sketching the idea of LIS-Net is shown in Fig. 1. One-dimensional audio time series signals are converted to fre-
quency domain, which holds the spectral value over time, from which the two-dimensional array is formed called input feature
map which is extracted by one parameterize layer, then it is processed by layers in the stacked LIS-Block for searching the proper
information to give out the most appropriate result shown in Fig. 1, in which, the system is designed as blocks (LIS-Block), which
emphasizes the technique of extracting multi-layer, multi-region information or the combination of them. This technique exhib-
its the difference between LIS-Net and other model structures.

To maximize computational speed, 2D Separate convolution has been used in the core of LIS-Core to replace traditional 2D
convolution. For an input image of size (HxWxD), to do 2D convolution (stride=1, padding=0) with Nc kernels of size (hxhxD). This
transform the input layer (HxWxD) into the output layer ðH�hþ1ÞxðW�hþ1ÞxNc. The overall multiplications needed is

NcxðhxhxDÞxðH�hþ1ÞxðW�hþ1Þ ð1Þ
Nowwith depthwise separable convolutions, with the input layer (HxWxD), it is divided into two phases:
�
 In the first phase, the filter (hxhxD) is split into D filter (hxhx1), after the transformation, the output will be
ðH�hþ1ÞxðW�hþ1ÞxD.
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�
 In the second phase, to extend the depth, convolving the ðH�hþ1ÞxðW�hþ1ÞxD input image with Nc times (1x1xD) convolu-
tions, the output size will be ðH�hþ1ÞxðW�hþ1ÞxNc.

The multiplication needed for an image (HxWxD) is

Dxðhxhx1ÞxðH�hþ1ÞxðW�hþ1Þ
þNcxð1x1xDÞxðH�hþ1ÞxðW�hþ1Þ
¼ðhxhþNcÞxDxðH�hþ1ÞxðW�hþ1Þ

ð2Þ

The ratio of multiplications between depth-wise separable convolution and 2D convolution is now:

1=Ncþ1=h2 ð3Þ
When (Nc > > h), then the expression (3) reduces to 1/h2. That is why depth-cut convolution is chosen for LIS-Core for the

purpose of high speed and small power.
Some main contributions of this study as follows:
�
 A new Deep Neural Network called LIS-Net was proposed, which achieved new state-of-the-art results, about 24% higher than
the current state-of-the-art.
�
 The LIS-Net network was proposed with a simple architecture, which is suitable with speech command data with a smaller
footprint and faster predictions than those of very powerful current models.
�
 LIS-Core architecture was proposed with feature-map inheritance to minimize the number of calculations, which help to
reduce footprints and prediction time as well as install in applied embedded systems easily.
�
 LIS-Net network with parameterized LIS-Block and LIS-Core to support Auto Machine Learning for future application
problems.

The rest of this paper has been structured as follows. Section 2 reviews the main approaches for speech keyword spotting and
recognition. Section 3 presents in detail the proposed method. Section 4 describes the datasets, evaluation metrics and protocols,
and experimental results. Finally, Section 5 concludes the paper and gives several possible lines of future studies.

2. Related work

Recently, the end-to-end model based on Convolutional neural network (CNN) is increasingly popular for SCR problems
(Fourniols et al., 2018), such as “Convolutional Neural Networks” (Sainath and Parada, 2015; Andra and Usagawa, 2017), “Deep
Neural Network” (Chen et al., 2014) and ResNet (Tang and Lin, 2017a). Computer Vision is one of the strong points of CNN
because of the fast computing ability and is widely used in many fields including speech recognition. Many networks have
achieved very high results such as CNN-BiLSTM, DeepSpeech (Speech and Group, 2016), Transformers (Jaderberg et al., 2015;
Zhou et al., 2018), CNN-Attention (Chorowski et al., 2014; Tachibana et al., 2018). Another structure is Recurrent Neural Network
(RNN) designed specifically for time series data like speech audio (Sun et al., 2017; Hwang et al., 2015), but due to sequential
architectures of data, the calculation speed of RNN is much slower than that of CNN. Recently, there has been much progress in
conquering accuracy results, and more state-of-the-art results have been continuously improved. In 2017, R. Tang et al. imple-
mented a type of DNN, achieved 91.97% on 35 keywords (Tang et al., 2017). This model has focused on reducing the electrical
energy consumption, but its results are not so high. The study (Tang and Lin, 2017b) has achieved the results with accuracy of
95% on 12 keywords; however, this model is quite small and is not strong enough to train a large keyword set, which requires
the large memory capacity of the network. In the study (Zhang et al., 2017), the authors focused on optimizing the model to be
small and fast with the accuracy of 95.4% on 10 keywords. Their model is a combination of CNN and RNN called Convolutional
Recurrent Neural Network (CRNN). However, the accuracy of 95.4% is still the number needed to improve and increase the num-
ber of keywords. The study “Deep residual learning” (Tang and Lin, 2017a) gained state-of-the-art, outperforms Google’s previ-
ously-best CNN (Sainath and Parada, 2015) (95.8% vs 91.7% in accuracy) on a set of 12 classes; In the study of “Effective
Combination of DenseNets and BiLSTM for Keyword Spotting” (Zeng and Xiao, 2019), the obtained results achieved state-of-the-
art with accuracy of 96.6% on 20 command sets, but the authors said that “One disadvantage of CNN and ResNet is that they can-
not get the dependency term on speech audios well”, and they use Google Speech Commands with 1 s in length. It is clearly seen
that for the SCR problem, the signal is usually short, so the image dimension is not too long when converting the speech signal to
the audio spectrum image. Hence, long term dependency is not really necessary and will be proven by experiments. Through
these studies, it can be seen that in order to be practical, it is necessary to improve the accuracy and takes advantage of the fast
computing power of embedded devices.

3. The proposed model

The architecture of LIS-Net network is illustrated in Fig. 2. The input layer for 16 kHz raw wave data using to create spectro-
gram image (Kim et al., 2018), the next numbers of blocks, called the Light Interior Search block (LIS-Block), and a classification
block for creating the number of output classes (Nc) are stacked together. Each LIS-Block is stacked by number of LIS-Cores (core



Fig. 3. Feature searching region of LIS-Core. The next layer extracts useful information based on the results of the previous layer, the search region is expanded on
the input feature.

Fig. 2. Overview of System diagram. End-to-end architecture is used from the wave-form input layer to the classified labels layer. In which, LIS-Net contains a
layer for convert wave form to spectrogram and stacked LIS-Blocks that contain LIS-Cores to extract features. Nc refer to number of the output classes.
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block of LIS network) and enclosed by two convolution followed by batch normalization and activation layers. It aims to increase
the ability to learn parameters through intermediate layers. Each output of LIS-Block is transited by a max pooling block. Unlike
ResNet, LIS-Net’s architecture has the reduced width, height and the increased depth of feature tensor after each LIS-Block. In a
block, the dimension of the LIS-Core’s feature remains unchanged, but it is easy to change the number of cores. It leads to change
of network depth easily and can use for different problems. The purpose of this design is aimed at optimizing the network for
each further specific problem. Adjusting the width of the network between adjacent LIS-Blocks is done by two layers of convolu-
tion and max polling.

LIS-Core is optimally designed for calculation speed, the minimized number of parameters. The feature search regions, the
areas that the three layers’ filters mapped on input feature at one time, cover both frequency and time domains for speech data.
Through the experiments with the LIS-Net network architecture, the search domain in LIS-Core has divided into three branches
(1 £ 1, 3 £ 3, and 5 £ 5) and four branches (1 £ 1, 3 £ 3, 5 £ 5 and 7 £ 7) according to the design method of Inception
(Zeng et al., 2016) and InceptionResNet (Szegedy et al., 2014). It is found that the number of calculations is very large, and the
number of parameters is significantly increased, but the efficiency is not different from the current LIS-Core method.

In LIS-Core, 1 £ 1 convolutions are used to compute reductions before the expensive 3 £ 3 and 5 £ 5 convolutions, shown in
Fig. 3 (a ! b). Then, all features correlations are mapped to other spatial ones on the previous feature itself, shown in Fig. 3
(b ! c). It makes the search area wider by frame via 3 £ 3 convolution based on 1 £ 1 channel-wise at the first step, In order to
find the information of the 5 £ 5 area on the original feature (Fig. 3a), the convolution based on the previous 3 £ 3 area was per-
formed (Fig. 3c ! d). Finally, the features of 3 times convolution are concatenated together. The structure of LIS-Core block is
shown in Fig. 5. For speech, it means that simultaneous interior search is taken by following frequency and time domain with
three regions having different dimensions, giving more opportunities to find useful information. That is the characteristic of this
model, so it is named Light Interior Search network (LIS-Net).

LIS-Core uses Residual Shortcut (He et al., 2016), so LIS-Block is no longer needed while still ensuring LIS-Net to avoid vanish-
ing gradient. On the one hand, LIS-Core synthesizes useful features from 3 times of channel-wise 1 £ 1, 3 £ 3, 5 £ 5 3D space
mapping based on the previous layer. The features output has the same length and width and only increases depth following
residual shortcuts, so it is possible to customize the number of blocks for any specific problem.

To understand the architecture of the network easily, LIS-Core is calculated as LC( ¢ ) function that getting output from Z[6],
shown as Fig. 4, defined in (4) in which a infer to input feature:



Fig. 4. LIS-Core structure.

Fig. 5. Comparing core of the models. Sconv denotes for Separate Convolution, the numbers in parentheses are fixed feature size, mxn denotes for filter size.
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Z½1� ¼sðW ½1�aþb½1�Þ
Z½2� ¼sðW ½2�Z½1�þb½2�Þ
Z½3� ¼sðW ½3�Z½2�þb½3�Þ
Z½4� ¼sð½Z½1� : Z½2� : Z½3��Þ
Z½5� ¼sðW ½5�Z½4�þb½5�Þ
Z½6� ¼sð½a : Z½5��Þ

ð4Þ

where “: ” denoted as concatenate features, s is Relu activation. LIS-Block denote as LB function defined as (5) with input feature
a:

g½1� ¼sðW ½1�
Lb aþb½1�Lb Þ

g½k� ¼LCðg½k�1�Þ; k¼2::n

g ¼pooling
�
sðW ½trans�

Lb g½k�þb½trans�Lb Þ
� ð5Þ

where LC( ¢ ) is defined in (4), g[1] refer to feature map of the first layer in LIS-Block to enrich learning feature and layers, g[k] refer
to feature map of stacked LIS-Core functions, n refer to maximum number of LIS-Core in the LIS-Block, g refer to feature map of
transition layer, it also is the result of LIS-Block function.W ½::�

Lb and b½::�Lb refer to weight and bias in a LIS-Block, respectively.



Table 1
The structure of LIS-Net model.

LIS-Net Layers LC GR BP Output size LIS-Block

Wav data Input 16000
Spectrogram Layer 125, 80, 1
LIS-Block 1 1 48 63,40,48 conv2d_bn

1 £ LIS-Core
Transition
MaxPooling2D

LIS-Block 2 2 48 32,20,96 conv2d_bn
2 £ LIS-Core
Transition
MaxPooling2D

LIS-Block 3 4 48 16,10,192 conv2d_bn
3 £ LIS-Core
Transition
MaxPooling2D

LIS-Block 4 8 48 8,5,384 conv2d_bn
4 £ LIS-Core
Transition
MaxPooling2D

Classification block Nc MaxPooling2D
conv2d_bn
GAPooling2D
Dense

Conv2d_bn: including 2D convolution, batch normalization and activation layers
LC: LIS-Core quantity

GR: Growth rate of block’s feature size
BP: Base Parameters

Transition: Adjust filter to fit NF

MaxPooling2D: 2D max polling to reduce feature size
GAPooling2D: 2D Global Average Pooling layer

Nc: numbers of output classes
Dense: fully connection to get output size of Nc
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LIS-Net is stacked by LIS-Blocks together, and each LIS-Block has a specific dimension and the different number of LIS-Core.
Parameters affecting the network include:
�
 Ncore: the number of LIS-Cores in LIS-Blocks. If Ncore is designated [1,2,4,8], it means that the network has 4 LIS-Blocks. Each
LIS-Block in the order has the stacked LIS-Core numbers by 1, 2, 4 and 8, respectively.
�
 NF: Number of filters, representing the feature size of a LIS-Block.

�
 BP: The base parameter, the factor of feature size (NF) with a constant value throughout the network.

�
 GR: The Growth rate parameter to change the number of filters of LIS-Blocks. Similar to Ncore, each element of GR will be used
to calculate NF at the corresponding LIS-Block, seen in formula (7).
NF
ðkÞ ¼GR

ðkÞ � BP ð6Þ

Gð0Þ
R ¼1

GR
ðkÞ ¼2 � GR

ðk�1Þ

(
ð7Þ

Where: k refers to the kth LIS-Block with k¼0; ::;n�1; n: the total number of LIS-Blocks available in the network. The deeper the
network is, the more changes the features will be, so increasing GR is selected to ensure that the most useful features are stored.

The network is configured by default as shown in Table 1.
To create output classes (Nc), the use of global average pooling thus allows networks to function with less computational

power and have better generalization performance (Lin et al., 2013). This network architecture has two types of parameters
which are the number of cores in each LIS-Block (LIS-Core) and the dimension of features map in LIS-Net (GR) based on base
parameter (BP). These parameters can be easily modified even during training process to select the optimal network, and since
then LIS-Net can support effectively for auto-searching parameters by AutoML method. In this study, sparse categorical crossen-
tropy loss, Adam optimizer, and sparse categorical accuracymetric are used for all models.

3.1. Comparing structure of LIS-core with the core of other models

The goal of enhancements is to find ways to optimize model. Here, Inception, ResNet, DenseNets, Xception, ResNeXt baseline
are chosen. There are many improvements that have been proposed. In each improvement, the scope of extracting information
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of branches is changed to reduce the number of calculations and increase the scanning area. There are some major differences in
module improvements in Inception from v1 to v4, the authors still keep the multi-branch architecture. The difference between
versions is not much, here, version 4 is chosen for comparison, shown in Fig. 5a. This multi-branch designs make the module
learn more features, but it is cumbersome. In the Fig. 5b, Xception core is a stacked design, in which each block is made up of Sep-
arate Convolution and activation classes. The advantage of this architecture is the improvement in speed compared to traditional
convolution. However, due to the large size of the feature map, the footprint model is still large.

LIS-Net is designed to be completely different to minimize capacity and number of calculations. The number of branches has
inheritance, and the latter branch inherits the result of the previous one in order to reduce the number of calculations that are
needed to be performed, shown in Fig. 5c.

4. Experimental results

In this section, the method used in the experiments will be discussed. The dataset was used and compared with the results in
published models. To compare LIS-Net with baseline models and other existing ones, the experiment was performed on the Goo-
gle Speech Commands v1/v2 data set (Warden, 2018) including 12, 20 and 35 keywords. Each keyword in a wave file has 1 s in
length. Input speech data is raw wave, and the program reads and saves to hard disk using NumPy format to increase data loading
performance into Deep Learning Framework generator (de Andrade et al., 2018). During the experiments, raw wave input was
processed by using a layer in the model to create spectrogram features. All models are similarly trained with setting random
seed parameters to constant. Only the model is different to compare results easily in the same condition. The results are repre-
sented by testing accuracy for all the models.

4.1. Google speech command dataset

In order to use a model with an audio signal of any length, it should go through two stages, first, voice activity detection, split
audio into short pieces, and second, speech command recognition. For convenience of comparing results, this study uses Google
Speech Command dataset (Warden, 2018), it was introduced by Pete Warden consisted of 105,829 utterances of 12, 20 and 35
keywords in the training set. Each keyword is about one-second (or less) WAVE format file, made up of thousands of contributors.
The Speech Commands Dataset was split into training, validation, and test sets, with 80% training, 10% validation, and 10% test by
Google. When using the spectral feature, the raw wave is converted to a spectrogram with feature size of 125 £ 80 £ 1.

4.2. Mel spectrogram parameters

To create a 125 £ 80 £ 1 Mel-spectrogram image, the parameters of the Spectrogram layer were selected as follows:
�
 The number of DFT points:1024

�
 Hop length between frames in sample:128

�
 input shape (audio-channel, audio-length): (1, 16000)

�
 Padding strategies at the ends of signal: same

�
 The number of Mel bands: 80

�
 Minimum and maximum frequency to include in Mel-spectrogram: 40.0 and sr/2, respectively, where sr refers to audio sam-
ple rate

4.3. Hyper-parameter configuration

The coefficients of the experimental problem are optimized with the hardware used for model training with the same config-
uration for all models:
�
 Optimizer: Adam

�
 Momentum: 0.9

�
 Initial learning rate: 0.001

�
 Learning rate decay: Learning rate will be reduced to 10% compared to the current learning rate if val_loss does not decrease
after 3 epochs.
�
 Dropout: It was not used. The reason is that Test Acc was significantly reduced after trial training for some models.

�
 Batch size: 64

4.4. Training infrastructure

All the trained models on systems have the following configuration: 4 NVIDIA GPU 1080ti, 2 CPU 8 thread each, 128 GB RAM,
2T Seagate HDD. Each model is assigned to use only 1 GPU and 4 CPU threads. During training process, parameters, such as model



Fig. 6. Validation and Test Accuracy. Comparing the accuracy of models on the GSC v2 dataset on 35 keywords, sorting by model with similar architecture. Higher
is better.
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size (footprint), time of 1 batch training, all the number of epochs reaching to early stop, validation and test accuracy was care-
fully recorded for comparison.

4.5. Model training

To make it easier to compare results, the baseline models including DenseNets, ResNet, ResNeXt, Inception-ResNet, Xception
and LIS-Net are trained on the same condition using different standard network sizes. The parameters of each model are
recorded. For 12 and 20-command set, the proposed models are trained to get results and compare with the highest ones of pub-
lished articles.

4.6. Results

To compare the results clearly and objectively, two types of comparison are implemented. The first type aims to compare the
results with very powerful models today, which have architectures close to the proposed model. The other one compares with
the models having state-of-the-art accuracy results in SCR.

4.6.1. Comparison with recently powerful models
The Keras framework is used to implement the models which are trained in the same condition without augmentation speech

inputs. LIS-Net’s results achieve new state-of-the-art in the Speech Command Recognition (SCR) problem seen in Fig. 6�8. LIS-
Net model still has plenty of space to customize and refine, and it can be achieved to higher accuracy results. Among the investi-
gated models, it can be clearly seen that LIS-Net achieved the highest results on both validation and test accuracy while still
remaining a footprint small enough and shortest training time for each epoch, which strongly affects the prediction time on
actual problems.

In detail, firstly with 35 commands set, all three standard ResNet sizes including ResNet-50, ResNet-101 and ResNet-152 give
out the test accuracy results lower than 96%. Larger networks normally have bigger footprints but not always get better results.
Compared with ResNet, the accuracy result of LIS-Net is higher (rising from 95.57% to 97%) while the total parameters are signifi-
cantly smaller than those of others, seen in Fig. 9. Moreover, ResNet has the lowest test accuracy seen in Fig. 6. With ResNeXt 50
and ResNeXt 101, the highest test accuracy result is 96.06%, because ResNeXt has an improved architecture from ResNet. Com-
pared to LIS-Net, the number of parameters is larger, but the test accuracy is still lower. For DenseNets having the special archi-
tecture, it inherits the feature map from all previous layers, so the results seem to be better with the highest value of 96.21%, in
which DenseNets-121 with 8.16M parameters in total is slightly higher than those of LIS-Net; however, the test accuracy is still
lower. For the improved Xception model inspired by ResNet and InceptionResNet, the test accuracy is higher than that of Incep-
tionResNet, but still lower than that of LIS-Net. Secondly, with 12 keywords shown in Fig. 7, although all models archive high
accuracy results, the result of LIS-Net is still the highest, reaching state-of-the-art in this dataset. And finally, comparing the accu-
racy results in the set of 20 keywords. Once again, LIS-Net showed remarkable ability when both validation and test accuracy per-
formed better than baseline models. From the results shown in Fig. 6�8, LIS-Net has achieved new state-of-the-art performance
of the convolution-based models on the Google Speech Command dataset with the smallest total parameters.

The comparison between Floating-point Operations Per Second (FLOPS) and test accuracy of models, seen in Figure 10, shows
that the number of FLOPS of LIS-Net is approximately equal to that of DenseNet-121, but the accuracy is much higher. LIS-Net



Fig. 7. Validation and Test Accuracy. Comparing the accuracy of models on the GSC v2 dataset on 12 keywords, sorting by model with similar architecture. Higher
is better.

Fig. 8. Validation and Test Accuracy. Comparing the accuracy of models on the GSC v2 dataset on 20 keywords, sorting by model with similar architecture. Higher
is better.

N.T. Anh et al. / Computer Speech & Language 65 (2021) 101131 9
has a much smaller number of FLOPS compared to other models. Accordingly, it can be more preferable to use in embedded sys-
tem devices than the other alternative models.

4.6.2. Comparison with state-of-the-arts models
Recently, there have been numerous speech data studies based on RNN, Attention, and combinations of those models

(Zeng and Xiao, 2019). In Table 2, the models are compared on the Google Speech Command v1 dataset, which includes the ones
with recent state-of-the-art results. In order to look up the results conveniently, the model’s reference column is added. Similar
architecture models are grouped together.

From Table 2, it can be observed that the highest result of the CNN group is 95.6%, slightly lower than that of ResNet and RNN
(LSTM, GRU) (95.8%). Currently state-of-the-art results are in the combination model, DenseNets-BiLSTM3 (97.5%). LIS-Net model
was born to create new state-of-the-art with superior results (98.1%), and the proposed model is proven to work very well with
12 keywords. With Google Speech Command of 20 keywords, M. Zeng (Zeng and Xiao, 2019) had implemented and gave the best
results as shown in Table 3. DenseNets-BiLSTM is still the current state-of-the-art, but compared with LIS-Net, LIS-Net has
achieved outstanding results, which once again prove that it achieves the new state-of-the-art performance on both Google
Speech Commands dataset v1 and v2.



Table 2
Accuracy comparison of Models on Google Speech Commands dataset.

Model Accuracy (%), Ref & implementation
(12 words)

ConvNet 90.5 (Sainath and Parada, 2015), *
Tpool2 91.97 (Tang et al., 2017)
TDNN 94.3 (Zhang et al., 2017)
DS-CNN 95.4 (Zhang et al., 2017)
HD-CNN 95.6 (Yan and Zhang, 2015), *
Res26 95.2 (Tang and Lin, 2017a), Google’s implement
Res15 95.8 (Tang and Lin, 2017a), Google’s implement
BiLSTM-2 93.6 *
BiLSTM-5 94.5 *
BiGRU-2 94.7 *
BiGRU-8 95.7 *
BiGRU-5 95.8 *
DenseNets-BiGRU 96.1 *
DenseNets-BiLSTM-2 96.2 *
Attention RNN 95.6 (de Andrade et al., 2018), *
DenseNets-BiLSTM-3 97.5 *
LIS-Net 98.4 Our model

*: best results, implemented by (Zeng and Xiao, 2019).

Table 3
Accuracy comparison of Models on Google Speech Commands
dataset.

Model Accuracy (%), Ref & implementation
(20 keywords)

ConvNet 88.2 (Warden, 2018), *
C-1-G-2-BLSTM 90.9 *
Attention RNN 94.5 (de Andrade et al., 2018),*
DenseNets-BiLSTM-3 95.9 *
DenseNets-BiLSTM-2 96.6 *
LIS-Net 97.1 Our model

*: best results, implemented by (Zeng and Xiao, 2019).
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4.6.3. Learning speed
To compare the training speed, all models are initialized at the same condition and trained on Google Speech Command v1.

The speed of training models is recorded by early stop with minimum val_loss measurement, patience = 5, and batch size = 32.
The training time per epoch of models is illustrated in Fig. 11. With the obtained results shown in Fig. 6, LIS model is chosen with
average training time compared to other methods for best results to trade-off between speed and precision. It also affects the pre-
dictive time when the model is applied to the further applications.
Fig. 9. Model sizes (foot-print size), smaller is better.



Fig. 10. Test Accuracy vs Number of Flops of the models, calculating on GSC-v2 20 keywords, in which #Flops lower is better, Test Accuracy higher is better.

Fig. 11. Training speed vs Number of Parameters (#Paras(M)) of the models in GSC-v1 35 keywords in which lower is better
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LIS-Net, DenseNets, Xception InceptionResnetV1 and ResNet 50 have nearly equal training time (Fig. 11). Due to the trade-off
between test accuracy, training time and total parameters, high test accuracy is chosen to adjust the network.

4.6.4. Impact of different LIS-Net
The network is structured as shown in Fig. 2. The main component of LIS-Net is structured by stacking LIS-Blocks, and each

LIS-Block is stacked by LIS-Cores with transition layer. The core size is determined by the filter parameters Ncore with the number
of filters given by the formula (6). The default GR parameter is defined by the formula (7), but in case of variations or impact
assessments of network parameters, this formula (7) may not be followed to get network structure on demand.

Conventional meanings in the comparative sections as below (Table 4 - 6):
�
 The first line is the selected configuration of default LIS-Net. The following lines are variations of hyper parameters.

�
 The column “#Params (M)” is the total number of parameters of the network with the corresponding configuration on that
line.
�
 The “T” column is the time in seconds to complete an epoch training on Google Speech Command dataset v2, 35 commands
(51094 images) using 04 CPU and 01 GPU 1080ti.
�
 Val_ACC and Test_ACC columns are validation and test accuracy respectively with the percentage values from 0 to 100.
a) Impact of Base parameters



Table 4
Impact of filters via BP.

# BP #Params (M) T(s) Val_ACC (%) Test_ACC (%)

1 48 5.23 157 96.49 97.00
2 32 3.1 128 96.33 96.65
3 64 8.18 185 96.31 96.61

Table 5
Impact of GR.

# Ncore GR #Params (M) T(s) Val_ACC Test_ACC
(%) (%)

1 1,2,3,4 1,2,4,8 5.23 157 96.49 97.00
2 1,2,3 1,2,4 2.22 140 96.01 96.53
3 1,2,3,4,5 1,2,4,8,16 16.83 175 96.11 96.81
4 1,2,3,4,5,6 1,2,4,8,16,32 62.46 250 95.70 96.44

Table 6
Effects of different network structures based on Ncore.

# Ncore #Params(M) T(s) Val_ACC(%) Test_ACC(%)

1 1,2,3,4 5.23 157 96.49 97.00
2 4,4,4,4 5.4 345 96.39 96.97
3 3,3,3,3 5.26 271 96.33 96.61
4 5,5,5,5 5.55 452 96.29 96.80
5 4,3,2,1 5.15 451 96.36 96.81
6 5,4,3,2 5.23 395 96.27 96.80
7 7,6,5,4 5.6 618 96.74 96.99
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With Ncore¼½1;2;4;8�; the size of the model will change when BP varies, leading to the change of the result (Table 4). In the
experiments, BP is selected with values less than and greater than 48. For the case of choosing any value, the experiments are con-
ducted as shown in Table 5. With the parameter BP = 32, it can be seen that the network and the time T are smaller, and the result
is slightly lower. With BP = 48, the network grows, execution time is also slower, and the results are worse.

b) Impact of the network Growth rate (GR)
In order to get different GR and maintain the network architecture, the number of LIS-Blocks (Ncore) must be changed. With BP

= 48, network filters are varied with the change of GR, and the obtained results are shown in Table 5. Through the results, it indi-
cates that the result is a little bit smaller by adding an LIS-Block. Adding more or reducing LIS-Blocks, the results of test accuracy
decreases.

c) Impact of different network structure based on Ncore

For BP = 48 and GR = [1,2,4,8], the comparison of obtained results is shown in Table 6. It can be observed that with the parame-
ters at line 7, the result of validation accuracy is better, and test accuracy at lines 2 and 7 is equivalent to the original LIS-Net.
That means that there still has the space to optimize the network.

4.6.5. Discussion
For the specific problem of SCR using Google Speech Command dataset, LIS-Net has shown the good performance and

achieves new state-of-the-art accuracy on all 12, 20 and 35 commands with fast prediction time and small total parameters.
From the obtained results of this study, it is feasible to use CNN to train speech data by selecting the suitable model and architec-
ture. The CNN architecture is selected to build the network because CNN can take full advantage of GPU parallel computing capa-
bility which is faster than the sequential RNN architecture. Furthermore, by evaluating the results, LIS-Net achieves higher test
accuracy than baseline models in every variation case. Accordingly, it still has the space to improve and change the network by
varying network parameters.

5. Conclusions

In this study, to solve the SCR problem a new network architecture, so called “LIS-Net”, is proposed for increasing accuracy
and the predicting speed as well as minimizing the model parameters. In this design, LIS-Net inherits the simplicity of Standard
Connectivity by stacking LIS-Block blocks together. In each LIS-Block, the stacked LIS-Core has a transition layer to change the
size of the feature to make hyper-parameter customization. In specific problems, the model will be more flexible. In the design of
LIS-Core, there is inheritance of ResNet shortcut in the style of Xception. It reduces the number of layers compared to Inception
by inheriting a part of DenseNets design while remaining equivalent learning ability. The most outstanding of the network is the
simplification of LIS-Core designed by 3 searching areas 1 £ 1, 3 £ 3 and 5 £ 5 inherited for local features. From there, it can be
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seen as cross-channel correlations and spatial correlations features mapping, thus reducing the number of parameters of the net-
work while still improving the accuracy. On the other hand, the number of LIS-Blocks in the model, LIS-Cores in a LIS-Block, and
the filter parameters in a LIS-Core are parameterized for easy customization for each specific application problem. LIS-Net has
been applied to the SCR problem. Results of the study were performed on the Google Speech Command v1 / v2 dataset. To evalu-
ate the model, the comparisons with powerful models of similar architecture such as ResNet, ResNext, DenseNets, InceptionRes-
Net and Xception on GSC v2 on all 12, 20 and 35 keywords have been made, and LIS-Net has achieved state-of-the-art accuracy
results (97% vs 96.2%), and LIS-Net’s footprint is also the smallest of these models. To compare the model with specialized models
designed for SCR, LIS-Net was compared with the CNN group (ConvNet, Tpool2, TDNN, DS-CNN, HD-CNN), RNN group (BiLSTM,
BiGRU), and The group combines architectures (DenseNets - BiGRU, DenseNets - LSTM, Attention RNN) on GSC v1 and v2 (12 key-
words). Through the investigation, LIS-Net has achieved state-of-the-art accuracy results (98.1% vs 97.5%). Besides, the effects of
network parameters on the predicted results, such as Base parameters (BP), the network Growth rate (GR) and different network
structures based on number of LIS-Cores (Ncore), are also studied. The results are still higher than those of the baseline models
with the same architecture. Moreover, the standard model still has the room for improvement. However, in this study, the results
on other data sets for SCR, other areas such as speech recognition or image tasks such as object detection / recognition has not yet
been invested or studied to comprehensively evaluate the newmodel. This suggests promising future works and it can be refined
structures in automated ways on the standard model.
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