Array 8 (2020) 100041

ELSEVIER

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/journals/array/2590-0056/open-access-journal

Quality of service-aware service selection algorithms for the internet of

things environment: A review paper

Aghabi N. Abosaif ", Haitham S. Hamza "

@ Department of Computer Science, Sudan University of Science and Technology, Sudan
Y Department of Information Technology, Cairo University, Egypt

ARTICLE INFO ABSTRACT

Keywords:

Service Selection Algorithm (SSA)
Quality of Service (QoS)

Internet of Things (IoT)
Optimization Objective Algorithm]

The Internet of Things (IoT) has evolved over the last decade to connect a massive number of objects. These
connected objects provide a vast amount of services to enhance the daily live of end users. The services provided
comprise other services with similar functionalities but different quality of service (QoS) requirements. Thus, the
problem of selecting and combining services that match the required QoS constraints is challenging. Therefore, in
this review, we classify, and analyze state-of-the-art algorithms for service selection under QoS constraints in the

IoT environment. We propose a classification system to review and analyze the various state-of-the-art algorithms
described between 2012 and 2020. The aims of this review are to provide the research community with guidance
and knowledge, and to identify the trends regarding the different algorithms used to solve the service selection
problem. In addition, we discuss future research directions in terms of the design, implementation, and evaluation
of new service selection algorithms.

1. Introduction

In the last decade, interest has increased in both academia and in-
dustry in the Internet of Things (IoT) concept, with high economic im-
pacts [1]. It is predicted that devices and objects will be increasingly
connected in the coming years [2], thereby leading to more services
being exposed to end users.

Fundamental features of IoT systems include the ability to select and
combine services that match the needs and preferences of end users.
Service selection is regarded as the core of service composition (SC) [3]
and it is defined as selecting the most appropriate service from candidate
independent services that match the end user requirements [4]. These
candidate services provide the same functionality but they may have
different non-functional properties. The non-functional properties are
quality of service (QoS) factors with different values. Thus, it is essential
to consider QoS factors that satisfy the end user requirements.

The service selection process is even more challenging when com-
bined with specific QoS requirements. In this case, the problem does not
simply involve identifying, selecting, and combining a service with spe-
cific functionalities, but instead it is necessary to select the best service
that matches both the functionality and the quality requirements of the
end user. These conditions require using optimization algorithms to

* Corresponding author.
E-mail address: aghape.nabeel@gmail.com (A.N. Abosaif).

https://doi.org/10.1016/j.array.2020.100041

select the set of services that match specific criteria, such as the energy
consumption [5-7], response time [8,9], reliability [5,8-10], availability
[11-13], cost [14,15], throughput [16], and accuracy [10].

In recent years, researchers have focused on developing optimization
algorithms for selecting services with a specific set of quality re-
quirements in the IoT environment. Examples of these algorithms include
cluster head selection [17], shortest path algorithms [16,18], mapping
flow-based algorithms [19-21], co-locating services [14,15], physical
services models [25,26], genetic algorithms (GAs) [6,11,22], and particle
swarm optimization (PSO) algorithms [6,11,22].

To the best of our knowledge, few reviews have surveyed the SC
problem in the IoT under QoS criteria, although one previous review [23]
investigated the selection algorithms employed under QoS constraints in
the IoT. Previous surveys related to this problem are summarized as
follows (See Table 1).

Mqhele et al. [24] reviewed service selection methods for a range of
dynamic environments, and provided a general overview of dynamic
Web services, cloud, and the IoT. Their review considered different ap-
proaches, including the multi-agent approach, ontologies, QoS, func-
tional requirements, and user-centered QoS. They focused on certain
factors related to service selection methods, such as user preferences,
domain specifications, storage, scalability, and evaluations. A case study

Received 25 April 2020; Received in revised form 31 August 2020; Accepted 31 August 2020

Available online 3 September 2020

2590-0056,/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:aghape.nabeel@gmail.com
www.sciencedirect.com/science/journal/25900056
www.elsevier.com/journals/array/2590-0056/open-access-journal
https://doi.org/10.1016/j.array.2020.100041
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.array.2020.100041

A.N. Abosaif, H.S. Hamza

based on a smart campus with IoT services compared a content-based
algorithm with a collaborative filtering algorithm. However, they did
not discuss the methods or algorithms used to solve the service selection
problem, such as optimization algorithms, and ensuring the QoS based on
the IoT architecture was not addressed.

Bouzary et al. [25] presented a comprehensive survey of service se-
lection and composition in cloud manufacturing. They classified six
categories comprising objective functions, selection criteria, algorithm
types, correlation awareness, mapping approaches, and dynamic
composition. They did not consider the service selection problem in the
IoT environment or ensuring QoS based on the IoT architecture. They
only investigated some of the traditional QoS parameters comprising
cost, response time, reliability, and availability. In addition, they did not
discuss any of the evaluation metrics used to evaluate the performance of
the proposed state-of-the-art approaches.

Yu et al. [26] reviewed the non-functional factor-based service se-
lection problem in Web services. They proposed a model for
non-functional properties, hierarchical properties, user preferences,
evaluations of properties, dynamic aggregation, automation, scalability,
and accuracy. Comparative classification was conducted based on three
dimensions: policy vs. reputation, universal description, discovery, and
integration (UDDI) extensions vs. semantic Web services, and graphic
preference modeling vs. ontology-based preference modeling. They
compared different types of service selection optimization algorithms
and frequently used QoS factors, such as the response time, availability,
and reliability, but not how to ensure the QoS in the IoT architecture.
They reviewed various approaches based on the proposed requirements
but details of the criteria employed were not provided, such as the model
implementations, evaluation methods, or Results obtained.

Hamzei et al. [27] conducted a systematic survey of SC-aware
methods based on QoS factors proposed in the IoT environment. They
divided the methods into four main categories comprising
framework-based, model-based, service-oriented architecture (SOA),
representational state transfer (REST)ful-based, and heuristic-based ap-
proaches. They discussed the benefits and drawbacks of the
state-of-the-art approaches and defined six QoS factors to examine for the
SC approaches, i.e., scalability, execution time, cost, reliability, avail-
ability, and response time, but they did not consider the QoS factors
based on the IoT architecture. In addition, they did not define the
methods that can be used to design and evaluate service selection algo-
rithms (SSAs).

Aoudia et al. [28] surveyed the techniques used for SC in the IoT.
They compared the state-of-the-art approaches based on three essential
requirements for the IoT system: management of heterogeneity, moni-
toring and fault tolerance, and reasoning for the environment and re-
sources, as well as constraints comprising resource constraints, the
response time, and real-time constraints. In particular, they compared
traditional Web SC and IoT SC, but they only considered a few factors
related to traditional QoS and did not investigate how to ensure the QoS
based on the IoT architecture.

Asghari et al. [29] conducted a systematic review of SC approaches in
the IoT based on seven main categories: SC approaches, platforms
selected, tools employed, measurement environments used to evaluate
SC, QoS factors, current algorithms supported by the SC, and future
challenges of SC. In particular, they considered the functional behavior of
SC and non-functional aspects of QoS in the IoT in SC approaches. They
investigated most of the QoS factors in the IoT system but without
referring to the IoT architecture. The benefits and drawbacks of the
state-of-the-art approaches were discussed and some weaknesses were
identified. A useful classification was provided for service selection in IoT
but the methods that must be used to design SSAs were not discussed. In
addition, they did not provide a complete review of the QoS factors, such
as QoS in the network layer, and they only discussed one QoS factor in
the sensor layer (energy). However, they discussed the languages and
verification tools employed to measure the performance of the existing
approaches. Detailed descriptions were not provided of the methods used

Array 8 (2020) 100041

to compare the performance of different methods, and the Results ob-
tained from these comparisons were not presented.

Aoudia et al. [30] reviewed the existing SC approaches for IoT based
on three groups of criteria. First, they considered the dynamic compo-
sition and adaptation of the proposed solutions, including the optimi-
zation method used, its description, the deployment areas, the techniques
used, and whether they were applied online or offline. Second, they
assessed the protection and security protocols, distribution and decen-
tralization, automatic identification and resolution of failure and inter-
action problems, and independence and extensibility. Third, they
considered the Results obtained performance of the service representa-
tions, standards and protocols used, models employed, and the optimi-
zation of the composition. They investigated the essential points of the
selection problem but did not explain them in detail, such as declaring
the dynamic composition without defining other composition types.
Moreover, they presented the techniques employed but without discus-
sing the differences between them. In addition, they did not discuss the
different factors that affect traditional QoS or QoS in the IoT
environment.

Dongre et al. [31] investigated the QoS parameters applied for service
composition and selection by considering nine QoS parameters in the
application layer: execution time, response time, availability, reliability,
throughput, cost, price, reputation, and latency. However, they did not
discuss technique or methods used to solve the selection problem.

Li et al. [23] conducted a systematic study of SSAs in the IoT envi-
ronment, which they categorized as centralized, decentralized, and
hybrid classes. They focused on the techniques used to solve the selection
problem and the QoS parameters employed to assess the advantages and
disadvantages of each algorithm. They identified the main issues and
challenges that affect the service selection problem in the IoT. Moreover,
they analyzed the distribution of state-of-the-art studies by year of pub-
lication and the percentage of studies by different publishers (IEEE,
Springer, Hindawi, Elsevier, Sage, IJSRCSEIT, and other). The main
methods used by service selection algorithms (SSAs) were discussed
based on three categories but they did not classify the optimization
methods employed or whether the behavior was based on the process
time (static or dynamic). Moreover, they did not compare the types of
software or data sets used to evaluate the performance of the
state-of-the-art algorithms. Newly published studies were not discussed.

All of the previous reviews mentioned above are useful but our pro-
posed classification differs because of the following three main points.
We define the methods that can be used to design an SSA while consid-
ering the QoS based on the three main layers in the IoT environment
(sensor, network, and application layers). Second, we provide detailed
classifications of the optimization methods used in the state-of-the-art
approaches for solving the service selection problem. Finally, we inves-
tigate the evaluation metrics and comparisons applied to measure the
performance of the state-of-the-art approaches.

In this review, we surveyed, classified, and analyzed the state-of-the-
art algorithms for service selection in the IoT under QoS constraints. We
used a new classification method for reviewing and comparing various
SSAs. Based on our review of state-of-the-art methods, two main prob-
lems must be addressed by the research community in order to propose a
suitable solution for the services selection problem: identifying the
methods used to design an appropriate IoT environment and determining
the methodology used to implement the proposed solution. Moreover, a
third important requirement is an evaluation step for assessing the effi-
ciency and effectiveness of the proposed solution. In particular, we aimed
to address the following questions.

Q1: What are the methods used to design SSAs in terms of the process
time phase, behavioral workflow management, and optimization
objectives?
Q2: What are the implementations proposed for SSAs in the QoS
layers based on the IoT architecture and types of optimization
algorithms?

A.N. Abosaif, H.S. Hamza

Table 1
Comparison of state-of-the-art surveys introduced for service selection.

Authors Year Review type Approach criteria
Mghele 2017 Service selection in Based on multi-agent
et al. dynamic environments approach, ontology, QoS,
[24] (dynamic Web services, functional requirements
cloud, and IoT)
Bouzary 2018 Service selection and SC in Based on the objective
et al. cloud manufacturing function, selection criteria,
[25] algorithms, correlation
awareness, mapping
approaches, and dynamic
composition
Yu et al. 2008 Service selection in Web Based on a model of the non-
[26] services functional properties,
hierarchical properties, user
preferences, evaluation of
properties, dynamic
aggregation, automation,
scalability, and accuracy
Hamzei 2018 SCinIoT Using framework-based,
et al. model-based, SOA, RESTful-
[27] based, and heuristic-based
approaches
Aoudia 2017 SCinIoT Based on the management of
et al. heterogeneity, monitoring
[28] and fault tolerance, and
reasoning for the
environment and resources
Asghari 2018 SCinIoT Based on SC approaches,
et al. platforms selected, tools
[29] used, measurement
environments for evaluating
SC, QoS factors, current
algorithms supported by the
SC, and future challenges of
SC
Aoudia 2019 SCinIoT Based on dynamic
etal composition, adaptation
[30] used, automatic
identification and resolution
of failure, distributed and
decentralized composition,
protection and security
protocol, optimization,
performance, and Results
obtained
Dongre 2020 QoS in service composition Nine QoS parameters
et al. in IoT considered in the application
[31] layer: execution time,
response time, availability,
reliability, throughput, cost,
price, reputation, and latency
Liet al. 2020 Service selection in IoT Centralized, decentralized,
[23] and hybrid classes

Q3: What are the techniques used to assess the performance of SSAs in
terms of the specific evaluation approaches, the software employed,
and data sets applied?

The answers to these questions are presented in the following, as well
as the Results and suggestions for future research.

The main contributions of this review can be summarized as follows.

Classification of SSAs for use in the IoT system: we classified the pro-
posed SSAs for the IoT system according to three main levels: algorithm
design level, algorithm implementation level, and algorithm perfor-
mance evaluation level. This classification covers most of the research
requirements when proposing a new SSA.

Review and analysis of the current SSAs in IoT: we reviewed the state-of-
the-art methods for SSAs for the IoT system. Furthermore, we analyzed
the proposed solutions based on three main classification levels (algo-
rithm design, algorithm implementation, and algorithm evaluation) to
assess the details of the current selection solutions for IoT.

Results and future research directions: we identified future trends to

Array 8 (2020) 100041

help the research community identify areas that need further investiga-
tion in order to address the service selection problem, as well as
providing knowledge and understanding to clarify the requirements for
SSAs. These details should facilitate the construction of an efficient SSA
that addresses the challenges of designing, implementing, and evaluating
SSA in an appropriate manner for the [oT system.

The remainder of this paper is organized as follows. In Section 2, we
discuss the background and present necessary definitions. The proposed
state-of-the-art classification method is presented in Section 3. In Section
4, we discuss solutions for designing SSA and analyze the design solu-
tions. In Section 5, we explain the solutions for implementing SSA and
analyze the proposed solutions. In Section 6, we consider the perfor-
mance evaluations proposed for SSA solutions. The Results and future
research directions are presented in Section 7. We give our conclusions in
Section 8. In Section 9, we outline research limitations and provide
recommendations.

2. Background

In the following, we explain the context and concepts required to
understand the proposed classification system. First, we explain the
services, composition, and selection process concepts. We then describe
the main components of our proposed classification method.

2.1. SC and selection processes

2.1.1. Web services

Web services are as an essential concept of the IoT environment
because they allow sensors and devices to exchange data and information
through the IoT network. The definitions of Web services vary from
highly public to highly defined. Most consumers view a Web service as an
application or end service that can communicate with other applications
or end services through the Web. The World Wide Web Consortium
(W3C) [32] introduced the concept of a web service as: “A software
system designed to support interoperable machine-to-machine interac-
tion over a network. It has an interface described specific format like Web
Services Description Language (WSDL)." In general, Web services are
based on three critical standard concepts comprising WSDL, the Simple
Object Access Protocol (SOAP), and UDDI. We can view Web services as
comprising connected components and integrated into a more complex
distributed environment. The three main components of the Web services
architecture are as follows.

e Service Provider: Different services are provided via interfaces to
create, implement, and publish a Web service using the UDDI
specification.

Service Consumer: A service consumer is regarded as the end user of a
Web service. A service consumer uses the service registry to obtain
information about services and to access them.

Service Registry: The service registry contains information about
different services provided based on the UDDI specification, where
services are listed and advertised to search.

Web services can divide into two main types, as follows.

Atomic Service: An atomic service is also known as an elementary
service [33] and it is a sold service that cannot be divided into other Web
services or that relies on other Web services to satisfy consumer requests.
The interface of an atomic service is based on SOAP and WSDL.

Composite Service: [33] this services integrates or collects atomic
services, where each has a functionality to implement a specific appli-
cation or service. Atomic or composite Web services defined by an
identifier comprise a set of service factors that deliver useful information
for the services and a set of operations to identify a service’s
functionality.

Thus, the SC process integrates and collects more than one service
into a single service to perform more complex functions. In our reviewed,

A.N. Abosaif, H.S. Hamza

Service
Definition

Composition Reguests |

A
|————3 Vi
Service Abstract Services

Selection

Service
Construction

Constructed Services

Registry

« _»

Executable Services

Service
Execution

Fig. 1. Services composition lifecycle [34].

we focused on selecting the appropriate service for each composing
service.

2.1.2. SC lifecycle

The Services Composition lifecycle [33-35] has four primary levels,
as shown in Fig. 1

Service Definition: this level is also called the services description and
it may be considered from the following two different perspectives:

Provider’s perspectives: providers are responsible for describing the
service’s performance in terms of the functional and non-functional re-
quirements using specific languages. Providing an excellent description
of the performance of the service increases the likelihood of its selection
and the validity of the resulting composition services.

End user’s perspectives: the end user who requests a service defines
their preferences and service performance requirements. These data are
collected either semi-automatically or automatically in order to abstract a
model to determine a set of activities that control the requirements and
data flow among them, and to determine the QoS constraints and unusual
behaviors.

Service Selection: Service selection is the core of the process SC [3],
where appropriate services are selected from different services providers
in the services registry that match the performance requirements speci-
fied by the end user. The selected services comprise more than one
candidate service that satisfies the end user’s preferences. Therefore, the
optimal matched services must be selected and grouped into a composite
service.

Service Construction: The constructed composite service is published to
allow its utilization by end users. Thus, the executable composite service
is produced at this level.

Service Execution: At this level, the composite service instance is
created and executed by the execution engine using the orchestration or
choreography engine in order to run the individual service components,
and thus the end user service or application. In addition, the monitoring

Composite | Reply
Services

Reply Reply Web
Service D

Web
Service C

Fig. 2. A) Service orchestration.
B) Service choreography [33].

Array 8 (2020) 100041

tasks should be performed [33] at this level, including logging, perfor-
mance measurement, exception handling, and execution tracking. In
some automated composition methods, the first two levels are merged
and the constructed composite service is generated directly according to
the composition requirements [33].

2.2. Analysis of SSA design

2.2.1. SSAs based on process time phase

In the following, we explain the deployment of SSAs based on time
phases, which has two main stages.

Static Service Selection: The services are selected at the design time.
The different service components that are essential for composition are
selected, collected, and then deployed. Early service binding is important
because if better alternative services are offered or one of the provided
services becomes unavailable, the static composition process will not be
able to offer a better choice in SC [33,36]. Static Web services compo-
sition is not flexible and adaptable when frequent runtime changes occur,
but it is suitable when the service components do not change or they
change rarely.

Dynamic Service Selection: The services are selected during the run-
time. Thus, the service components can be determined and replaced
during the runtime, thereby allowing the consideration of changes that
can occur in the in-service components and better alternative services
may be offered for the composite services [33,36]. Dynamic service se-
lection is considered a more challenging task than static service selection
because critical issues must be addressed, such as time limits, service
correctness, and transactional support.

2.2.2. Behavioral workflow management

The behavior of services refers to how the services workflow can be
organized and controlled. The services workflow can be managed in the
following two ways.

Service Orchestration (Centralized): When several services interact, one
centralized service is responsible for managing and controlling the
communication and workflows among all of the other services. This
central point is called the orchestrator and it organizes the connections
between different services. The orchestrator has a global and complete
view of the logics of the interactions, and it obtains the Results from
various connected services, as shown in Fig. 2(A).

Services Choreography (Decentralized): The services choreography
represents distributed services with no central control point. The services
interact and connect with other services according to their logic [33], as
shown in Fig. 2(B), thereby allowing sensors to interact directly with
actuators.

2.2.3. Types of optimization objectives

Optimization algorithms are not novel solutions and they have been
developed for decades in order to find the optimal maximum or mini-
mum solution. Optimization algorithms are used widely to solve complex
service selection problems, especially QoS selection problems, which
have various names such as QoS-driven or QoS-aware selection problems.

Receive Receive

Web
Service C

Send Send
@ Web L(ceive

Service D

A.N. Abosaif, H.S. Hamza

The three main types based on the number of objective functions solved
by the optimization algorithms are as follows.

Single Optimization Problems: These are considered the standard opti-
mization problems where one objective function is optimized at one time.

Multi-Objective Optimization Problems (MOPs): MOPs require that the
optimal solution is found in the presence of trade-offs between more than
one conflicting objective under a set of specific constraints. No single
solution [37] can optimize all of the objectives at the same time. A set of
infinite optimal solutions or set of points satisfy all of the predefined
conditions for the optimum, which are called non-dominated or Pareto
optimal solutions, as defined in 1906 [38], and they are the most widely
used solutions in MOPs. The solution is regarded as a Pareto optimal
solution if none of the objective functions optimize the fitness value
without affecting one or more of the other objective values, or if they
make none of them worse. If no further Pareto objective can be changed,
the solution is called Pareto optimal.

The main challenge of MOPs is that no best unique solution exists
[37]. Thus, only a set of non-dominated solutions can be found to obtain
a good approximation of the real Pareto dominance.

Many-Objective Optimization Problems (MaOPs): These problems are
extended versions of MOPs, where the MOPs often require the optimi-
zation of two or three objectives [37]. MaOPs require the optimization of
more than three objectives as the non-dominated number of solutions
and solution search space increase. These increases make the service
selection problem more complex and it is difficult to achieve diversity
and convergence for SSAs in the IoT [39].

2.3. Analysis of solution implementations

2.3.1. QoS based on IoT architecture

The classification proposed for the QoS architecture by Li et al. [40]
meets the needs of the IoT environment and allows the QoS to be opti-
mized in different IoT layers. The architecture considers three IoT layers
comprising the sensor layer, network layer, and application layer. The
traditional QoS attributes are integrated with other essential character-
istics of the IoT architecture (e.g., cost of network deployment, infor-
mation accuracy, energy consumption, and coverage). The traditional
QoS classification is not applicable to the heterogeneity and complexity
of the IoT architecture.

The sensor layer represents the physical IoT infrastructure including
different edge-node links, such as data centers, RFID tags, sensor net-
works, mobile devices, and other heterogeneous devices. This layer is
based on the concept of sensing as an independent service and it allows
the IoT environment to provide sensing and actuating capabilities that
can be modeled as services using edge-node devices through the cloud
computing system.

The QoS in this layer involves selecting the sensor’s necessary infra-
structure based on the user/application requirements and sensing capa-
bilities. Thus, this layer aims to deal with scheduling the acquisition of
information and resource allocation. For example, the QoS in the sensor
layer involves the energy consumption, system lifetime, and resource
optimization [41].

The optimization of SSA is required to optimize the QoS for sensor
services. An optimal SSA is vital for the sensor layer because multiple
devices are available with differences in quality that can meet the user/
application requirements. The availability of services in this layer de-
termines the success or failure of a service request.

The network layer represents the IoT network infrastructure respon-
sible for transferring data and information between sensor nodes. This
layer includes different protocols, technologies, and edge networks, such
as RFID tags, wireless sensor network (WSN), wireless local area
network, or cellular network. The importance of the network layer is
related to the network services in the IoT, which require the presence of
various network technologies. Similar to WSN, it is necessary to provide
universal coverage points and access to network nodes. In the network
layer, the heterogeneous network environment is scheduled according to

Array 8 (2020) 100041

the traditional QoS in order to allocate various network resources. The
different protocols used in heterogeneous networks depend greatly on
the QoS requirements, e.g., the bandwidth, capacity, and throughput QoS
in the network layer [40,41]. An optimal SSA is essential in the network
layer because it allows service providers to provide optimal network
technologies and protocols to meet the user/application requirements.
Efficient QoS support for different network infrastructures in this layer is
challenging when developing applications for use in the IoT.

The application layer represents the highest layer in the IoT architec-
ture and it comprises many distributed services, which are combined to
provide one service to the end user or an application. Many applications
are deployed in different domains in the IoT environment, such as smart
home, industrial automation, health care, and traffic management ap-
plications. The application layer aims to schedule services according to the
QoS constraints. Under the QoS constraints, some network resources
must be allocated to services selected in the application layer, thereby
affecting the end services and user requirements, e.g., the accuracy,
reliability, availability, and execution time QoS in the application layer
[41]. Thus, it is crucial to select an optimal SSA and resource allocation
scheme based on the information for each component service.

2.3.2. Search optimization algorithms

Search optimization algorithms are used to select the optimal solution
in a specific search space and they may be classified into four main types
comprising heuristics, meta-heuristics, hyper-heuristic algorithms, and
non-heuristic algorithms.

The term heuristic comes from the Greek eUpiokw, which means “I find,
discover.” A heuristic is a type of artificial intelligence and a dependent
optimization algorithm designed to find an approximate solution for
complex problems when traditional algorithms cannot obtain an exact
solution [42]. The main objective of heuristics is to obtain a satisfactory
and valuable solution in an acceptable time, but not necessarily the exact
solution. The main idea of heuristic algorithms involves ordering an
alternative solution for each step based on the available information for
the problem in order to decide the next step, which involves iterating the
algorithm’s rules and utilizing the output from the previous step as an
input for the next step until the optimal solution is reached.

The term meta-heuristic was introduced by Glover in 1986 as a com-
bination of the Greek prefix meta- (meta), which means high level, and
heuristic (from the Greek heuristic or euriskein, which means to search or
find) [43]. A meta-heuristic is a high-level optimization algorithm that
identifies a set of concepts grouped in an algorithmic framework in order
to provide a set of strategies or rules for improving heuristic optimization
algorithms to find a suitable solution to a specific problem [43].
Meta-heuristics can be defined as general-purpose heuristic methods that
can obtain high-quality solutions in the significant search space.

A Hyper-heuristic is a heuristic search method introduced in 1997,
which involves the combination of more than one artificial intelligence
algorithm in the context of automated theorem proving [44]. This term
was subsequently applied in a combinatorial optimization context to
denote heuristics for choosing heuristics. The main idea of hyper-heuristic
algorithms is automating the use of high-level heuristic methodologies
to select, combine, generate, and apply algorithms to a specific problem,
which involves combining more than one appropriate heuristic method
at each decision point to efficiently solve computational search problems
[45].

Non-heuristic Algorithms are optimization algorithms for optimizing
the search of a space and obtaining an optimal solution. In this class, the
solution is found without employing evolutionary algorithms and an
iteration process is not followed to find an optimal solution.

2.4. Performance evaluations
Researchers must evaluate the behavior or performance of SSAs after

they have been developed. Our survey showed that two main methods
are used to measure the performance of the proposed solution. Computer

A.N. Abosaif, H.S. Hamza

SSA Aware a QoS Classification

Array 8 (2020) 100041

Multi

Objective

Many
Objective

Analysis of Solutions Analysis of Solutions Analysis of Performance
Design Implementation Evaluations
Based on Based on Based on QoS Based on - Evaluation | || goenare Performance
Process Behavioral Optimization loT Architecture Algorithm Type Approach Measurement
TimePhase | | Management Objective I
| icati Java Comparison
— Sensor Network Applicati Heuristic Me}a. Hy:'»er. Others pa
tatic . Layer Layer on Layer Heuristic | i Heuristic MATLAB Real Test
Dynamic DL Single Simulation Python
Choreography Objective Prototype

Fig. 3. Classification of QoS-aware SSAs in the IoT environment.

simulation is the most widely used method. Computer simulation in-
volves mathematical modeling on a computer using simulation software
in order to predict the behavior of a physical system or the real world.
Computer simulation is a useful tool for mathematically modeling many
natural systems, e.g., in computational physics, chemistry,
manufacturing, biology, and human systems such as psychology, eco-
nomics, health care, and engineering.

The other method employed involves using a prototype. A prototype
is an early stage model or a sample of a specific product built to test
processes and concepts. In general, a prototype is designed to evaluate a
new design of a product and to enhance precision for system users. A
prototype is used in various contexts, including semantics, electronics,
design, and software programming [46]. The difference between a
simulation and prototype [47] is that a simulation is an analytical process
representing a real working system, whereas a prototype is a real physical
object that provides specifications for the actual system.

3. Proposed classification approach for QoS-AWARE SSAS

In the following, we explain the proposed classification approach for
QoS-aware SSAs used in the IoT environment. The state-of-the-art
research approaches can be classified into three main types, as shown
inFig. 3. Our classification criteria were obtained by analyzing the state-
of-the-art methods. In order to develop a new method to solve the se-
lection problem in the IoT environment, three main points should be
considered. First, it is necessary to design an appropriate environment
that allows the implementation of the proposed solution. Second, the
proposed solution type is applied for selection in the QoS layer. Third, it
is necessary to determine the methods used to evaluate the proposed
solutions.

Thus, based on these three requirements for developing a new SSA,
our proposed classification approach is described as follows. First, the
design of SSAs for IoT must adhere to three basic concepts. SSAs are
based on the process time phase where the time when the SSA is per-
formed is specified. The workflow management behavior represents how
the services are controlled and connected. The objective of the optimi-
zation algorithm is to establish the number of goals to satisfy when the
algorithm is implemented.

Second, we consider two basic concepts related to the implementa-
tion of SSAs. Based on the QoS layer, it is necessary to define the layer
where the SSA will be applied in the QoS architecture [40]. Moreover,
the algorithm type can be divided into heuristics, meta-heuristics,
hyper-heuristics, and other algorithms (non-heuristic algorithms).

Third, the evaluation approaches, software, and performance man-
agement can be used to evaluate the performance of proposed algo-
rithms. Each of these sub-classifications is defined in Section 2.

Based on the definitions and concepts described in Section 2, we
classified the state-of-the-art methods as shown in Fig. 3.

4. Analysis of solution DESIGNS

To design a new solution for the selection problem, researchers must
first define an appropriate environment. Thus, we reviewed the state-of-
the-art methods and identified three common categories comprising SSAs
based on the process time phase, behavioral workflow management, and
optimization objective type. Detailed definitions of these features are
provided in Section 2. The methods analyzed according to these three
categorizes are shown in Table 2.

5. Analysis of solution implementations

Many methods have been proposed to solve the QoS-aware selection
problem in the IoT environment. We identified these solutions based on
the three QoS layers introduced for the IoT architecture by Li. et al. [40],
i.e., the sensor layer, network layer, and application layer. For each layer,
we classified the implementations of the methods according to four
optimization algorithms comprising heuristics, meta-heuristics, hyper--
heuristics, and non-heuristic algorithms. Moreover, we considered the
traditional QoS factors optimized in each proposed solution.

5.1. Sensor layer

A. Heuristic algorithms in the sensor layer

Yin et al. [49] addressed the single-source many-target k shortest
paths problem in Map-Reduce, where they used a graph of Web services
to find k shortest paths (selected services) from a candidate set of services
for one source node while providing acceptable QoS. They focused on
reducing the execution time and consuming less power. They proposed
an efficient pruning algorithm for breadth-first search (BFSKNN) called
PruningBFSKNN algorithm. The proposed algorithm built based on find
the shortest paths between nodes in a graph using DijkstraKNN and
BFSKNN for the single-source many-target shortest path problem.

Shukla et al. [55] introduced a collocation-based strategy for hosting
IoT services and applications in devices where they considered a smart
home scenario. They aimed to find the correct sensor for the required
services from a set of sensors while satisfying the QoS objectives by

A.N. Abosaif, H.S. Hamza

Table 2
Categorization of state-of-the-art methods according to the solution design.

Array 8 (2020) 100041

Reference Process Time Phase Behavioral Workflow Management Optimization Objective Type
Dynamic Static Choreography Orchestration MOPs MaOPs

Huang et al., 2014 [5] v v v

Liu et al., 2013 [11] v v v

Na et al., 2015 [48] v v v

Zhou et al., 2016 [12] v v v

Sun et al., 2017 [6] v v v

Reddy et al., 2017 [17] v v v

Mejri et al., 2017 [8] v v v

Yin et al., 2014 [49] v v v

Huang et al., 2015 [14] v v v

Dhondge et al., 2016 [7] v v v

Anas et al., 2016 [50] v v v

Gao et al., 2014 [51] v v v

Abinaya et al., 2017 [16] v v v

Nwe et al., 2014 [52] v v v

Jin et al., 2014,2016 [53,54] v v v

Perera et al., 2014 [10] v v v

Yu et al., 2014 [19] v v v

Huang et al., 2014 [20,21] v v v

Shukla et al., 2018 [55] v v v

Elhoseny et al., 2018 [22] v v v

Alsaryrah et al., 2018 [18] v v v

Huang et al., 2014 [15] v v v

Lin et al., 2017 [39] v v v

Khanouche et al., 2016 [13] v v v v

Yuan et al., 2019 [56] v v v

Hosseinzadeh et al., 2020 [57] v v v v

Gao et al., 2020 [58] v v - v

Quan et al., 2019 [59] v v v

Jatoth et al., 2019 [60] v v - -

Khan et al., 2019 [61] v v v

Abu-safe et al., 2019 [62] v v v

Singh et al., 2020 [63] v - v

mapping flow-based process components on the system sensors. They
identified three key factors comprising minimizing the latency time when
collecting and transferring data from IoT devices and communicating it
to the gateways, reducing the energy used by the system, and balancing
the system energy requirements to increase the system lifetime. They
proposed a collocation-based sensor-service mapping strategy (CBSSMS)
to link the IoT services to appropriate sensors. The approach used two
algorithms where one found the path that reduced the latency time and a
collection algorithm assembled the components that formed a link on the
same Sensor.

Alsaryrah et al. [18] aimed to select an appropriate set of smart ob-
jects by considering the traditional QoS and the energy consumed to form
a service. They divided their objectives into minimizing the traditional
QoS (execution time, network latency, and cost) and reducing the energy
consumption by the combined service, i.e., by maximizing the battery
lifetime for the sensors. They proposed a bi-objective shortest path
optimization (Bi-SPO) algorithm with four pruning techniques
comprising pruning by the cycle, nadir point, efficient set, and label.

Perera et al. [10] investigated the properties of sensors and the in-
formation associated with data streams to search, select, and rank
large-scale sensors with the same functionalities and capabilities in order
to satisfy the user’s requirements. They considered the user preferences
and sensor characteristics, such as the accuracy, reliability, battery life,
location, and other features, to identify appropriate sensors for data
collection approaches. They designed and implemented an
ontology-based context-aware sensor search, selection, and ranking
model (CASSARAM). To improve the performance, efficiency, and
capability of CASSARAM, they proposed a comparative-priority based
weighted index to remove sensors with a lower weighted context prop-
erty based on the user preferences technique called Top-K selection,
comparative priority-based heuristic filtering to reduce the number of
sensors ranked by removing sensors placed away from the user, relational
expression-based filtering to speed up the search process and sensor

selection by specifying an acceptable range of context property values
using relational operators in semantics, before ranking the sensors by
considering the account user’s priorities, and distributed sensor search-
ing to identify and select appropriate sensors that satisfy the user’s re-
quirements on multiple IoT distributed servers. Three different methods
were identified to search distributed sensors based on query/data
transformation over the network, i.e., chain processing, parallel pro-
cessing, and hybrid processing.

B. Meta-heuristic algorithms in the sensor layer

Lin et al. [39] introduced a sensor selection algorithm for specifying
multiple sensor devices in a large-scale environment. They defined their
optimization parameters for energy and distance minimizing the energy
consumed by communication between two sensor devices, balancing the
energy among different sensors to reduce overloading on some sensor
devices, maximizing the total energy harvested by supplementing the
sensor’s battery energy with natural energy (e.g., wind and solar), and
green index optimization to reduce the total pollution level. Satisfying
the QoS involved optimizing the cost, reliability, and availability of IoT
services. Their proposed algorithm based on many-objective evolu-
tionary algorithm decomposition (MOEA/D) solved larger-scale prob-
lems by decomposing them into multiple sub-problems and then finding
the optimized solution for each sub-problem.

Na et al. [48] conducted service selection for IoT based on physical
resources by using platform-independent middleware. They focused on
increasing the IoT system lifetime by using the power on all devices
equally to reduce the energy consumption and costs. To balance the
energy consumption, they developed an evolutionary game approach by
defining a fixed point of the replicator dynamics where the payoffs are
equal for all players in the same group. They also presented some options
for improving the service selection behavior. The initialization step was
improved by estimating the remaining lifetime for all devices at the
beginning instead of selecting them randomly. This approach may

A.N. Abosaif, H.S. Hamza

require a long time to find the optimal initialization solution, but it will
save time in the following steps by maintaining communication with the
other selection process. The decision-making step was improved by
allowing the algorithm to select a longer estimated remaining lifetime,
which could accelerate the algorithm and reject the optimal solution
when selecting a service with a shorter lifetime.

C. Non-heuristic algorithms in the sensor layer

Khanouche et al. [13] aimed to solve MOPs during service selection
by managing the energy consumption and maintaining the availability of
services, while slightly reducing the QoS level but without affecting the
user satisfaction. They designed a QoS model by describing the QoS of an
atomic service divided into quantitative attributes comprising the
traditional QoS, such as the cost, response time, reputation, reliability,
and availability, and qualitative attributes, such as security, privacy, and
comfort. The QoS of a composite service is dependent on the structure of
its atomic services connected through a sequential structure. The relative
dominance of services conforms to the Pareto optimality set, which
comprises the collection of possible solutions where at least one objective
is optimized without affecting other goals. They proposed an
energy-centered and QoS-aware service selection algorithm (EQSA) by
effectively selecting a user-centered service from the most appropriate
services that match the user’s preferences while satisfying the specified
QoS level. The proposed solution is executed in two main phases
comprising pre-selection of services that provide the required QoS level
for the user’s and static selection before the runtime. The most appro-
priate services for SC are selected according to the relative dominance of
the services.

5.2. Network layer

A. Heuristic algorithms in the network layer

Huang et al. [15,19-21], and [14] presented a service merging
approach that maps and co-locates neighboring virtual service on the
same physical devices to reduce the communication energy costs and to
balance the energy consumption by sensors to prolong the system life-
time. They applied WuKong middleware to automatically discover and
manage smart sensors and actuator devices, which could support flexible
and interoperable IoT systems by selecting from predefined flow-based
programs (FBP) to find the appropriate mapping to the abstraction of
an application onto physical smart devices and actuators according to the
QoS requirements. They proposed an energy sentient algorithm called
the maximum weighted link (MWL) algorithm that treats selection as a
two-co-locating problem and ignored the distance between devices [21].
They also updated their model [20] to consider the distance between
devices because two remote devices require more energy for communi-
cation than closer devices. They treated the problem as a quadratic
programming problem and proposed a reduction method to transform
the problem into an integer linear programming (ILP) problem.

Huang et al. [19] presented a mapping model that considers the
distance and runtime QoS requirements, such as the accuracy response
time. Moreover, they attempted to reduce the total communication en-
ergy in IoT systems during each new update. They modeled the service
matchmaking problem as a maximum weighted bipartite problem and
solved it using the ILP model. Huang et al. [14,15] also used strategies for
solving the maximum weighted independent set (MWIS) in their selec-
tion framework, which considered all possible co-location combinations
for services. They implemented this method only in single-hop networks
and treated the problem as a data clustering problem [15]. Heuristic
algorithms were employed to find the maximum weight for the inde-
pendent set, which comprised the basic decisions regarding service
co-location. However, the method was subsequently implemented in a
single-hop network and multi-hop network by modeling the problem as a
quadratic programming problem and solving it with the ILP model [14].

Dhondge [7] presented a study of industrial IoT (IIoT) systems where
they focused on collecting and controlling communication data and

Array 8 (2020) 100041

parameters obtained from sensors on factory floors. They aimed to
reduce and balance the energy consumption in the IoT by proposing a
heuristic and opportunistic link selection algorithm (HOLA) to maintain
the energy efficiency in the IoT sensors by opportunistically transporting
the IoT sensor data to smart devices. These intelligent devices had mul-
tiple radio links (3G/4G LTE, Wi-Fi, and Bluetooth) to transmit the
received data to the cloud by using HOLA to select the best radio link
based on the quality preserved by the Services Level Agreements and the
energy cost of the relationship.

B. Meta-heuristic algorithms in the network layer

Sun et al. [6] proposed a solution for integrating and co-operating
with smart IoT functionalities to satisfy the user requirements, which
could be applied to more than one smart thing. They considered the
conflicts between the device’s features and balancing its energy con-
sumption. Spatial constraints were defined by the physical location and
communication radius of a smart thing on the IoT. The temporal
constraint was defined as the specific time duration required to meet a
user’s requirement because smart things should only be available for
predefined time duration. The energy efficiency was considered by
balancing the energy load of intelligent devices or things and avoiding
excessive consumption. Configurability of the IoT services occurred
when two IoT services instantiated on the same smart device and their
functionalities conflicted. Thus, the composition and selection of the
services demanded consideration of the delay between two sequential
services by building a set of aggregated alternative smart things. The two
main QoS factors involved reducing and balancing the energy con-
sumption, and prolonging the network lifetime. A two-tier framework
was proposed and three different meta-heuristic algorithms (ant colony
optimization (ACO), GA, and PSO) were implemented to search for the
optimal IoT SCs. The two-tier framework was configured as shown in
Fig. 4. The [oT smart thing tier encapsulated the functionalities of devices
in IoT services. The services class tier categorized IoT services into ser-
vice class chains using traditional Web service composition techniques.
The service network was created between the two tiers by considering
the possibility of calling between service classes.

Reddy et al. [17] proposed a clustering method for dividing a
WSN-based IoT network into a small network, where each was called a
cluster head. By using a meta-heuristic algorithm to optimize the network
communication, the clustering method could divide the WSN into a
small, reliable, and manageable network with efficient data transmission.
The proposed algorithm used five parameters comprising the distance,
energy, delay, network load, and temperature of the IoT devices. To
efficiently select the cluster heads, a novel method was proposed by
combining the gravitational search algorithm (GSA) with the artificial
bee colony (ABC) algorithm.

Abinaya et al. [16] also aimed to minimize the energy, time, and loss
of packets during the transfer of data among nodes when selecting and
combining services. They aimed to increase the energy efficiency, time
utilization, and throughput without any loss of data or reduction in the
packet delivery ratio. They proposed a meta-heuristic algorithm (ACO) to
find the shortest path between the nodes using the network routing
protocol approach. The algorithm clustered the data nodes before then
transferring data between the nodes with low power consumption.

C. Non-heuristic algorithms in the network layer

Khan et al. [61] proposed a QoS-aware secured communication
approach for IoT-based networks called QoS-IoT. The Sybil attack
detection mechanism was used for identifying Sybil nodes during
multi-hop communication. To ensure the fair and efficient utilization of
the available bandwidth, an optimal contention window (CW) was
selected for QoS provisioning. The optimal CW size was selected by using
the binary exponential back-off mechanism. The performance of QoS-IoT
was evaluated based on measurements of Sybil attack detection, fairness,
throughput, and buffer utilization.

A.N. Abosaif, H.S. Hamza

&
S(—.W7 $eenestiihh wmm

y-o -

\ ____,_d/ _____'__—_‘_'_-Eé_%_ll@. ' —:/——m_\ / ’

Array 8 (2020) 100041

SmT1 | sis

loT Smart Things

Fig. 4. Two-tier framework [6].

5.3. Application layer

A. Heuristic algorithms in the application layer

Nwe et al. [52] introduced a matching, ranking, and selection model
to satisfy the distributed needs of dynamic networks in IoT environments.
They selected services based on two factors to optimize the QoS, i.e.,
objective information supplied by the service providers and subjective
information provided by the service consumers. To select a service, they
proposed a flexible QoS-based service selection algorithm (FQSA). They
calculated the subjective factors for user with a similarity aggregation
method (SAM)) to evaluate the creditability of different users. Moreover,
the user’s input was extracted using the QoS ontology, WordNet, and
ontological reasoning. To help understand the QoS characteristics, they
analyzed a separate language glossary and evaluated the consistency
among the QoS criteria chosen by the end users. The FQSA algorithm
employed an artificial neural network back-propagation algorithm
(ANN-BP) to find the objective factors and improve the selection per-
formance rate for acceptable real-time service selection. They also pro-
vided a flexible, user-friendly assessment form to allow users to request
any number of QoS criteria.

Mejri et al. [8] investigated the scalability of service selection in the
IoT by using a self-adaptive approach based on a combination of a QoS
prediction model, which considered the user context, service context,
and network context by using the ANN, and the technique for order of
preference by similarity to ideal solution (TOPSIS) model to introduce
the best service to the consumer of the service. They optimized two QoS
parameters comprising the response time and reliability.

Quan et al. [59] introduced a reinforcement learning approach called
the linear reward inaction (LRI) algorithm in real time. They considered
the dynamic IoT environment by calculating the user’s mobility, which
could affect the accessibility and connection location of services, thereby

reducing the search space for service discovery. The latest subjective
assessment obtained from user feedback concerning the user context
similarity was used to estimate the QoS in a similar environment. A
subjective evaluation was conducted by calculating four factors: privacy,
reliability, availability, and response time. Three objective attributes
comprising the availability, response time, and calculation speed were
determined by obtaining a score for each service. The service with the
highest score was selected.

B. Meta-heuristic algorithms in the application layer

Liu et al. [11] designed a cooperative evolution algorithm (CEA) for
service composition and selection to solve MOPs when selecting an
optimal service from a group of services with similar functionalities and
diverse QoS requirements. They aimed to develop an efficient and robust
approach by considering non-functional attributes comprising the cost,
time, availability, and reliability. A heuristic optimization approach was
developed by integrating GA and PSO in CEA. Their approach was
characterized by improving the best local first strategy to select a service
candidate, enhancing the global best policy, and fitting the self-adaptive
mechanism for the learning rate.

Gao et al. [51] conducted global optimization for event SCs by using a
meta-heuristic method based on GA but without the need to consider all
possible combinations. The non-functional attributes were represented
by QoS properties for the latency, price, energy consumption, bandwidth
consumption, availability, completeness, accuracy, and security.

In particular, they provided a QoS aggregation schema for complex
event service (QoS-AS for CES) composition in CES networks by treating
complex event processing as reusable services where reusability was
determined by examining intricate event patterns and primitive event
types. The abstract architecture of these complex networks is shown in
Fig. 5.

_________ . - N
I gansor Network | Brimitive Complex Event Senace 1 Complex
| Event Evert Stream 1 o Event
| . Service 1 —— [[T[] TEvert | Service 2
| Pattarn | R
[. - . Event : :
| o =z Engine | | i
[P Primitive Evert Stream 2 i ! Complex
| 9l Event —— [TTTTIIT] | . Event
| Service 2 Service 3

Fig. 5. Architecture of CES networks [51].

A.N. Abosaif, H.S. Hamza

A GA was also developed to efficiently create optimal event SCs with
the same standard GA steps (select, crossover, and mutate until the
termination conditions are satisfied) but some differences from the
standard implementation. A tree encoding schema was maintained by an
event reusability forest.

Anas et al. [50] aimed to simulate human thinking when making a
decision about multiple choices and using data collected from IoT sen-
sors. They considered an example of a human making a decision while
driving when faced with two paths that lead to the same place but with
different trade-offs in terms of the time, distance, or cost. Their frame-
work collected data to help systems to select their future path. The main
problem was how to capture and use human heuristic information. The
final solution reduced the total time and obtained more accurate Results.
They used the heuristic-IoT framework for enhancing heuristic search
algorithms and collecting data from IoT sensors. They implemented their
framework with a GA using data regarding the habits and behavior of
drivers collected from sensors deployed in taxis to solve the travelling
salesman problem (TSP) with hidden edge costs. The proposed frame-
work used heuristic information to generate smarter initial solutions for
the GA to solve the TSP instead of generating it randomly.

On the cloud manufacturing side, Huang et al. [5] focused on solving
the MOPs for cloud SC optimal selection (CSCOS) while considering
non-functional QoS factors. They determined four parameters comprising
the cost, execution time, energy consumption, and reliability.
Non-functional attributes were considered for three types of cloud ser-
vices: manufacturing software, hardware, and human resource services.
They introduced a new chaos control optimal algorithm (CCOA) to solve
the CSCOS problem in large-scale solution spaces.

Li et al. [9] focused on a cloud logistics platform based on IoT and
cloud computing environments in order to study a logistics center by
considering service encapsulation and resource virtualization. They
defined the primary requirement of the logistics center in terms of service
selection as how to find the best actual Web services rather than the best
combination of abstract Web services. Non-functional constraints were
used to compute the QoS for composite services by applying rules of
Canfora [9] for an aggregation function and four QoS parameters
comprising the time, cost, availability, and reliability. In addition, a dy-
namic service selection model was proposed based on PSO.

Abu-Safe et al. [62] proposed a service selection model that ranked
services based on end user feedback and the reputation value. The Likert
scale was employed as a user-friendly method for acquiring feedback
from end users. An improved-PSO was used to select the optimal service
from ranked services. Two quality groups used to calculate the QoS
factors comprised the business quality group (BQG), i.e., reputation and
execution price, and the system quality group (SQG), i.e., reliability,
availability, and response time.

Jatoth et al. [60] introduced a meta-heuristic model using an adaptive
genotype evolution-based GA (AGEGA). They balanced the QoS param-
eters and connectivity constraints to perform SC in a cloud environment.
The discrete uniform rank distribution (DURD) and discrete uniform
service rank distribution (DUSRD) were proposed to determine the ser-
vice fitness and SC fitness, respectively, thereby allowing services to be
pruned from the non-optimal solutions and reduce the search space. The
specific QoS parameters employed were not defined. However, they used
a synthetic data set with QoS parameters such as accessibility, cost,
availability, throughput, response time, security, integrity, and
reliability.

C. Hyper-heuristic algorithms in the application layer

Elhosenya et al. [22] considered health services applications where
they proposed a new cloud-IoT based model for efficiently managing
large amounts of data in an integrated industry (4.0) environment. They
aimed to satisfy five factors, reducing the medical requests time
(execution time, waiting time, and turnaround time), optimizing the
storage space for patient data, improving task scheduling, providing a
real-time data retrieval mechanism for health care applications, and

10

Array 8 (2020) 100041

maximizing the utilization of resources. They proposed a new model for
optimizing virtual machine selection by using three optimization algo-
rithms (GA, PSO, and Parallel PSO (PPSO)) to build the proposed model.

Zhou and Yao [12] focused on cloud manufacturing by introducing a
solution for composited cloud manufacturing service optimal selection
(CCSOS) under multi-objectives using four QoS parameters comprising
time, cost, availability, and reliability. They introduced the hybrid ABC
(HABC) algorithm for CCSOS problems with three main steps. First, the
HABC was initialized before outputting feasible solutions at each itera-
tion and these solutions were ordered from large to small settlements.
The onlooker strategy was improved by updating all the solutions with
the chaos algorithm, which had irregular properties in all states and it
could help the worst bees. The bee colony’s search space was searched
more efficiently based on knowledge of the problem structure and social
colony information by updating small solutions with Archimedean
copula estimation of distribution.

Yuan et al. [56] proposed a dynamic approach by used a fuzzy logic
technique and cultural GA to adapt the global QoS constraints. The global
QoS constraints were decomposed into near-optimal local QoS con-
straints, before independently selecting a service component for each
abstract service. They aimed to satisfy five QoS factors comprising the
price, response time, availability, throughput, and successful execution
rate.

Hosseinzadeh et al. [57] combined a machine learning method with a
meta-heuristic algorithm in a hybrid ANN-PSO algorithm. They aimed to
improve the execution time and reachability rate for a service selection
model in cloud-edge computing. A labeled transition system was pro-
posed based on a verification approach to check the correctness of the
proposed model. Three QoS factors were considered comprising the
response time, availability, and prices.

5.4. Aggregate layers

In some methods, the models were aggregated together in more than
one layer, such as in the sensor layer and application layer [53,54].

Jin et al. [53] considered the services provided by IoT devices and
designed a physical service model (PSM) to describe various physical IoT
services as well as a method for selecting a candidate physical service that
satisfies a user’s requirements. The PSM model included three main
components (devices, resources, and services) and the relationships be-
tween them were defined. The following four QoS properties were
determined based on the features of physical services: the available time
when environmental services may be accessible, the service area
comprising descriptions of physical services for on-device resources that
contain information about an entity, the processing time representing the
computational time capacity of IoT devices, and the reputation calculated
for a service to help users decide whether to use a service based
depending on the service ratings given by different users (equipment or
service) after requesting services. A physical service selection (PSS) al-
gorithm was proposed in terms of spatio-temporal features to rate
candidate physical services according to user preferences based on in-
dividual QoS rating functions. The PSS algorithm comprised pre-sorting,
filtering, and final sorting phases.

In 2016, Jin et al. [54] improved their PSM to dynamically rate QoS
values and select a physical service based on the user’s preference. They
added the following three types of QoS attributes to reflect the features of
physical services: spatial-temporal attributes related to the problems that
affect the mobility and availability of physical services due to network,
energy-saving, or privacy issues, i.e., available time and service area;
positive features that preferably have higher values, i.e., reputation and
reliability; and negative features that preferably have lower values, i.e.,
processing time and execution cost.

Gao et al. [58] aggregated the application layer and network layer to
provide recommendations for services and allow the selection of services,
where they proposed a holistic framework for predicting the QoS values
in the IoT. The proposed framework employs fuzzy C-means to cluster
contextual information related to users and services, such as the network

A.N. Abosaif, H.S. Hamza

location and geographic location, and neural collaborative filtering
(NCF) is applied as a neural network model to learn the in-depth latent
features. NCF utilizes local features such as similar users or similar ser-
vices with historical QoS values and global elements comprising user
latent vectors and latent service vectors. NCF then combines the
contextual information with the historical QoS values to perform both the
prediction and selection processes.

Jatoth et al. [60] also aggregated the application layer and network
layer with a meta-heuristic model using AGEGA, where they balanced the
QoS parameters and connectivity constraints to perform SC in a cloud
environment. DURD and DUSRD were applied to determine the service
fitness and the SC fitness, respectively, thereby allowing services to be
pruned from the non-optimal solutions to reduce the search space.
However, they did not define the specific QoS parameters used in their
study, although they described the use of a synthetic data set containing
QoS parameters, such as accessibility, cost, availability, throughput,
response time, security, integrity, and reliability.

Singh et al. [63] introduced a framework based on multi-criteria
decision making for directing the selection process. The framework
aggregated the sensor, network, and application layers, and they com-
bined two multi-criteria decision making methods comprising the ana-
lytic hierarchy process (AHP) and TOPSIS. AHP was used to calculate the
weights for the QoS criteria and TOPSIS ranked the service providers.
They describe a QoS parameter based on three IoT components, i.e.,
things, communication entity, and computing entity. Nine QoS parame-
ters were considered: operating temperature range, resolution, accuracy,
delay, jitter, pricing, availability, throughput, and response time.

5.5. Analysis of solutions for implementing SSAs

The analyses of selected state-of-the-art solutions implementations
are categorized, as shown in Table 3. It is categorized based on the
proposed solution, QoS layer, algorithm type, and QoS parameters.

6. Analysis of performance evaluations

Most previous studies used simulations to evaluate the performance
of their proposed algorithms and they conducted comparisons with other
SSAs in the same environment. In addition, prototypes were constructed
in other studies to evaluate the performance of their proposed algo-
rithms. In some cases, simulations and prototype were combined in the
evaluations. In the following, we discuss the three methods used to
evaluate the state-of-the-art algorithms.

6.1. Using simulation software to evaluate SSAs

Huang et al. [5] demonstrated the high performance of their proposed
CCOA algorithm in CSCOS based on simulations. They found that their
algorithm was better at searching large-scale solution spaces than GA and
typical chaotic GA, where it reduced the time required and energy con-
sumption. They recommended improving the effectiveness of CCOA to
solve other combinatorial optimization problems by balancing the search
capacity and time consumption, and tested the effects of other QoS
factors.

Liu et al. [11] developed CEA by integrating GA and PSO. They
conducted simulations and generated a data set at different scales based
on real scenarios. They showed that CEA was a highly efficient search
approach with greater stability and more rapid convergence compared
with canonical PSO (CPSO) and the improved discrete immune algorithm
based on CPSO (IDIPSO). They recommended extending the experiments
to greater scales.

Na et al. [48] showed that their method decreased the time required
for implementation and increased the rate of service utilization. When
the service utilization reached 100%, the algorithm could not make any
changes after initialization. They recommended focusing on group-based
service selection to reduce the communication energy requirements.

11

Array 8 (2020) 100041

Zhou et al. [12] evaluated the performance of HABC based on com-
parisons with GA, PSO, and the basic ABC algorithm using 15 different
user QoS preferences. They randomly generated the data set and the
Results showed that HABC exhibited a high search capacity and stability
with acceptable time complexity. They recommended studying the per-
formance of HABC in detail according to the characteristics of the cloud
manufacturing environment, and integrating HABC with other heuristic
algorithms.

Reddy et al. [17] assessed the performance of the GSA and ABC al-
gorithm based on the trends in the network sustainability of live IOT
nodes in the network and by evaluating its convergence compared with
PSO, GA, ABC, and GSO. The Results demonstrated that their approach
performed better than the other methods at cluster head selection for IoT
devices.

Yin et al. [49] showed that the pruning algorithm was more efficient
than the breadth-first search shortest path algorithm. Furthermore, the
DijkstraKNN algorithm was suitable for small shortest paths, but the
PruningBFS algorithm was better when the candidate set was small and
the shortest paths were significant. In addition, the execution times were
more stable for the BFSKNN and PruningBFSKNN algorithms according
to tests using two real-world data sets comprising the Epinions Social
network, and LiveJournal social network. They recommended identi-
fying approximation algorithms that can handle more significant graphs
where time is required to compute several nearest neighbors.

Anas et al. [50] used the T-drive data set based on 10,357 taxi drivers
and compared the proposed Heuristic-IoT framework with GA. They
found the quality of the TSP Results improved by up to 49% compared
with the traditional TSP.

Abinaya et al. [16] compared the ACO algorithm with load balancing
clustering for data clustering. They also compared the number of nodes
versus the data throughput for time-efficiency prediction, where ACO
reduced the time and energy required. ACO could find an almost optimal
solution and it could be scaled to large-scale IoT environments.

Nwe et al. compared FQSA and other SSAs including (genetic algo-
rithm and fuzzy logic based service selection algorithm (GAFLSS), agent
proxy on user preference approach (APUP), and fuzzy linear program-
ming approach (FLP)) [52], from the reliability of the trust
mechanism-based service selection algorithm. They calculated the sym-
metric mean of the recall and precision for each system using the fre-
quency for various evaluation metrics (QoS aggregation, QoS reasoning,
QoS scalability, personalized confidentiality, and user friendliness). The
Results showed that FQSA improved the service selection performance,
user satisfaction level, and user friendliness rates. However, many com-
putations were required to select the services, which was time
consuming.

Jin et al. [53,54] evaluated the PSS method against the skyline-based
algorithm called the one-pass algorithm (OPA) in terms of the execution
time and user preferences for physical services. They used a random data
set based on the Climatography of the United States Number 81 series
(CLIM8144) data set. The Results showed that PSS was efficient with a
large number of candidate physical services [53] and it performed better
than OPA in the filtering step by reducing the number of CPUs to improve
the selection performance [54]. For future research, they suggested
creating and implementing an IoT service platform that allows users to
register their devices, and to discover and select required physical ser-
vices, as well as addressing privacy and security issues, and reducing the
search space. They suggested the use of pruning methods and heuristic
techniques.

Huang et al. [14,15,19-21] conducted simulations to assess the per-
formance of their algorithm. Their algorithm reduced the total commu-
nication energy by about 20% in IoT systems [20,21]. They compared the
performance of greedy matching and the ILP solution at service matching
and found that the ILP solution was optimal but it required more time,
and it might not be scalable to large-scale IoT systems [19]. In addition,
they compared ILP [14,15] and the MWIS framework with MWL
[19-21], as well as with other selection strategies (GWMAX, GWMIN,

A.N. Abosaif, H.S. Hamza Array 8 (2020) 100041

Table 3
Categorization of selected state-of-the-art methods based on the proposed solution, QoS layer, algorithm type, and QoS parameters.
Proposed Solution QoS Layer Algorithm Type QoS Parameters
App Sen N-W Heu Meta- Hyper- Non-
Heu Heu Heu
New CCOA to solve CSCOS [5] v v e Cost
o Execution time
e Energy consumption
o Reliability
Integrating GA and PSO algorithms [11] v v e Cost
e Time
o Availability
o Reliability
Evolutionary game approach with platform-independent v v e Save energy
middleware [48] o Cost
HABC algorithm for CCSOS [12] v v e Time
e Cost
e Availability
o Reliability
Two-tier framework based on ACO, GA, and PSO [6] v v e Reduce energy consumption
e Prolong the network lifetime
Novel method that combines GSA and ABC [17] v v e Reliable and manageable network
o Efficient data transmission
Self-adaptive approach including ANN and TOPSIS models v v e Response Time
[8] e Reliability
DijkstraKNN, BFSKNN, and PruningBFSKNN Algorithms v v e Reduce execution time
[49] e Consume less power
HOLA in IIoT systems [7] v v e Reduce energy consumption
e Balance energy consumption across the IoT
network
Heuristic IoT framework based on GA [50] v v e Reduce the total time

Obtain more accurate Results
ACO [16] v v Increase:

e Energy efficiency

e Time utilization

e Throughput

e Packet delivery ratio
FQSA comprising ANN-BP and SAM [52] v v Specific QoS not defined
PSM model and PSS algorithm [53,54] v v v In [53]:

e Available time

e Service area

e Processing time

e Reputation

In [54]:
Spatial-temporal attributes
Positive attributes
Negative attributes
Reduce communication costs
Balance energy consumption
Reduce communication costs
Balance energy consumption
Minimize latency time
Reduce energy costs
Balance the system energy to increase the
system’s lifetime
Reduce time
Optimize the required storage
Improve scheduling tasks
Provide real-time data retrieval mechanism
Maximize resource utilization
Minimize traditional QoS
Reduce energy consumption
Energy consumption
Energy balancing
Energy harvesting
Optimize the green index
QoS objectives
Reduce energy consumption
Maintain high service availability
Accuracy
Reliability
Battery life
Location
Response time
Cost
Availability
Reliability

MWL [19-21] v v
MWIS [14,15] v v

CBSSMS [55] v v

New model based on GA, PSO, and PPSO [22] v v

Bi-SPO [18] v v

MOEA/D Approach [39] v v

EQSA [13] v v

CASSARAM [10] v v

Dynamic PSO model [9] v v

(continued on next page)

12

A.N. Abosaif, H.S. Hamza

Table 3 (continued)

Array 8 (2020) 100041

Proposed Solution QoS Layer

Algorithm Type

QoS Parameters

App Sen NW

Heu

Meta-
Heu

Fuzzy logic and cultural GA [56] v

Hybrid ANN-PSO [57] v

Fuzzy C-means and NCF [58] v v

LRI [59] v v

AGEGA [60] v v

QoS-IoT [61] v

Likert-Improved-PSO [62] v

AHP- TOPSIS [63] v v v v

Price

Response time
Availability
Throughput
Execution rate
Response time
Availability
Prices

Response time
Throughput
Subjective:

e Privacy

e Reliability

o Availability

e Response Time
Objective:

e Availability

e Response time
e Speed
Balancing

e QoS parameters
o Connectivity constraints
Sybil attack detection
Fairness
Throughput
Buffer utilization
BQG:

e Reputation

e Execution price
e SQG

o Reliability

o Availability

e Response time
Temperature range
Resolution
Accuracy

Delay

Jitter

Pricing
Availability
Throughput
Response time

AN
e e e 0 0 0 0 0 0 0 o

AN
.

Abbreviations.

APP: application layer; Sen: sensor layer; N-W: network layer; Heu: heuristic; Meta-Heu: meta-heuristic; Hyper-Heu: Hyper-Heuristic; Non-Heu: non-heuristic.

and GWMIN2) [15]. The Results were improved [15] and the total
communication energy was reduced by 10% compared with other
methods [21]. They also implemented MWIS in a multi-hop network [14]
and the total communication energy was reduced by more than 10%
[15]. They planned to develop heuristic algorithms and test them with
Adriano-based devices, as well as studying more complex applications by
checking the automatic configuration module to support more users
interacting with IoT systems.

Shukla et al. [55] presented CBSSMS to link IoT services with
appropriate sensors. They conducted comparisons with existing collo-
cation distance algorithms based on the random mapping of services on
any IoT device, where they tested linear, random, and star FBP networks.
The Results showed that the CBSSMS algorithm reduced the latency and
energy consumption between devices compared with the collocation
distance algorithms [20].

Elhosenya et al. [22] conducted a comparative study based on the
execution time, system efficiency, and data processing speed. They
evaluated the effectiveness of their model against GA, PSO, and PPSO.
The Results showed that the proposed model improved the total imple-
mentation time by 50%. Moreover, the efficiency of the system at
real-time data recovery improved significantly by 5.2%.

Alsaryrah et al. [18], evaluated the Bi-SPO algorithm against QoSC,
which only considers the QoS, and EPC, which only considers the energy

13

profile. The Results showed that Bi-SPO achieved the ideal balance be-
tween the traditional QoS level and energy consumed, and it performed
better than the other algorithms.

Lin et al. evaluated their MOEA/D approach based on a sensor se-
lection problem [39]. They showed that increasing the problem size led
to an increase in the energy consumption, energy balancing, energy
harvesting services, and pollution level, but it did not affect the QoS.
They generated their data set.

Khanouche et al. [13] assessed the performance of EQSA by simu-
lating the A2NEts European project scenario, which involves monitoring
and smart metering for buildings. They synthetically generated data sets
based on QoS factors and realistic energy models to specify the energy
profiles of IoT services. The simulation Results demonstrated the efficient
performance of EQSA in terms of the energy efficiency, selection time,
composition lifetime, and optimality of the solution.

Li et al. [9] simulated their PSO method and showed that it was more
efficient than using GAs. PSO optimized different fitness parameters and
maximized the availability or reliability while maintaining a low cost and
response time. They considered a real-world scenario involving the
transport of furniture among countries by combining five Web services
related to shipping cargo services. They applied their method to a pre-
viously reported data set (Mao data set) of QoS values. The feasibility of
applying PSO was confirmed by implementing the simulation program in

A.N. Abosaif, H.S. Hamza

Java. They recommended further research into logistics and Web service
selection, improving the efficiency of SSA based on PSO, comparing PSO
with other algorithms, and developing methods to confirm the consis-
tency of QoS between service consumers and service providers.

Yuan et al. [56] evaluated the performance of a fuzzy logic technique
and cultural GA by comparing it with a QoS constraints decomposition
(QCD)approach based on cultural GA and an integer programming
(IP)-based approach. The experimental Results showed that using the
fuzzy logic technique and cultural GA was appropriate in terms of the
adaptability and scalability to the environment, as well as satisfying the
user preferences and increasing the number of candidate services. They
used the Quality Web Service (QWS) data set containing 2508 real Web
services with 10 QoS attributes factors [64]. Also they randomly gener-
ated other data set according to QWS (RQWS) using the Eclipse pro-
gramming tool. They recommended increasing the number of fuzzy sets
and formulating more appropriate fuzzy rules, before applying their
approach in a distributed environment where a group of distributed QoS
registries maintain the QoS values.

The hybrid ANN-PSO algorithm obtained better fitness values
compared with PSO, GA, and PSOGA [57]. They evaluated their method
based on simulations using the C# language as an integrated develop-
ment environment (IDE) and the PAT model checker was employed to
prove the correctness of the proposed algorithm. They employed QWS
data set containing 2500 Web services. They recommended using deep
learning methods to avoid the space explosion problem in the SC model.

Satisfactory experiments were conducted based on real-world WS-
Dream data sets by Gao et al. [58]. The prediction performance was
evaluated using the root mean squared error and mean absolute error.
The experimental Results verified the effectiveness of the proposed NCF
and context-aware NCF (CNCF) frameworks compared with well-known
QoS prediction methods comprising user-based PCC (UPCC), item-based
PCC (IPCC), web service recommender (WSRec), and location-based
factorization machine (LBFM). They recommended implementing
work-based models in the QoS prediction task, such as a recurrent neural
network and convolutional neural network, and studying the time factor
during QoS prediction.

The dynamic LRI model was compared with another based on user
feedback [59], and the Results showed that the LRI model improved the
effectiveness in a real-time scenario because it considers the similarity
between users, although the time consumption was higher. The data set
and scenario were generated in the study. For future research, they rec-
ommended applying a user-centric service management system based on
the user’s preferences in the IoT environment.

Jatoth et al. [60] compared the performance of AGEGA with other
methods based on GA, i.e., GA, orthogonal GA (OGA), adaptive genetic
programming (AGP), and transactional GA (TGA). The experimental
Results showed that AGEGA obtained better fitness values within a lower
execution time. They used QWS as the data set of QoS parameters and
randomly generated some of the QoS parameters and their corresponding
values. They recommended considering multiple service connectivity
constraints and multiple QoS parameters in future research, as well as
developing an efficient approach for various parallel data processing
platforms.

Khan et al. [61] simulated QoS-IoT and compared FIFO, round-robin
(RR), and cross-layer scheduling based on the utilization of the CW via
adaptation using the network simulator NS-2. They simulated IoT-based
networks that covered a city of 100 x 100 km? using a system model
produced with the proposed approach. The total area was divided into
smaller IoT-based networks, where each network comprised Sybil, mo-
bile, static, and high power nodes. The simulation Results showed that
QoS-IoT was resilient against the Sybil attack, as well as improving
network performance with a large amount of data. They recommended
studying the effect of Sybil node detection-aware QoS on the Internet of
Vehicles and flying ad hoc networks.

Abu-Safe et al. [62] simulated their Likert-Improved-PSO model and
evaluated its performance based on comparison with the original PSO

14

Array 8 (2020) 100041

and Improved-PSO. The proposed model had a lower execution time and
it obtained better fitness value. For future research, they recommended
testing more QoS parameters and combining with more than one
meta-heuristic algorithm with respect to the end user feedback.

Singh et al. [63] applied their AHP-TOPSIS framework and existing
AHP-AHP framework to a health care case study and compared the Re-
sults based on the execution time for the selection value. AHP-TOPSIS
required a lower execution time than AHP-AHP to obtain the same se-
lection value. They assembled real data sets from three different pro-
viders but did not describe them. The robustness of the proposed
framework was measured but the sensitivity toward changes in the user
or decision maker was not analyzed. They recommended extending their
method to deal with fuzziness in human decision making.

6.2. Using prototypes to evaluate SSAs

Sun et al. [6] evaluated three heuristic algorithms (ACO, GA, and
PSO) by building prototypes to calculate the fitness, minimum, and dif-
ference in the residual energy for smart devices. The Results showed that
PSO performed better than GA and ACO at the optimization problem.

Mejri et al. [8] developed a parallel implementation of the ANN
model and TOPSIS model to evaluate the scalability of SSA in the IoT.
They used the mean absolute error to measure the quality of the pre-
diction model. As the number of services increased, the mean absolute
error decreased and the accuracy increased, but there was no significant
increase in the execution time. They recommended using an evolutionary
technique and pruning methods. A limitation was that the proposed
approach was applied to a training set built during search steps that did
not meet all Internet requirements. In addition, they only considered the
response time and reliability as QoS factors in their study.

Gao et al. [51] proposed QoS-AS for CES and GA, which they
compared with a brute-force enumeration algorithm in terms of the
execution time and optimization degree, where the proposed algorithm
improved the optimized Results from 79% to 97%. The performance of
CASSARAM was also evaluated based on the change in the storage

Table 4
Categorization of state-of-the-art algorithms according to evaluation methods
and performance measurement based on prototypes.

Reference Software used Performance Data set Results
measurement

[6] Java Compared with ~ Generated PSO performed
program, ACO, GA, and their own better than GA
with Intel i7- PSO data set and ACO
6700 CPU, 8-
GB of
memory, and
64-bit
Windows 7

[8] Java and Evaluated ANN Different data Increased the
mean model and sets accuracy, but
absolute error ~ TOPSIS model generated with no
as the randomly significant
assessment [0,1] increase in
metric execution time

[10] Java on a Comparison Linked Reduced
computer based on Sensor processing time
with an execution time, Middleware and minimized
Intel(R) Core memory project storage
i5-2557 M, required, and requirements
1.70 GHz accuracy
CPU, and 4
GB RAM

[51] Java using Compared with Built their Improved
MacBook Pro a brute-force own data set execution time
with 2.53 enumeration and degree of
GHz duo core algorithm optimization,
CPU and 4 GB and optimized
1067 MHz Results from
memory 79% to 97%

A.N. Abosaif, H.S. Hamza

Array 8 (2020) 100041

Table 5
Categorization of state-of-the-art algorithms according to evaluation methods and performance measurement based on simulations.
Reference Software used Performance measurement Data set Results
[49] Java on Hadoop platform using Intel Compared DijkstraKNN, BFSKNN, o Epinions Social network BFSKNN and PruningBFSKNN algorithms
Core 2 Duo CPU and 1 GB of RAM, and PruningBFSKNN algorithms e LiveJournal social network obtained more stable execution times
running CentOS v6.0
[16] Java using Intel Core, Window 32-bit ~ Compared ACO with load Not stated Reducing the time and energy required, and
system balancing clustering more efficient for large scale IoT
[53,54] Java on a desktop computer with Intel ~ Compared PSS and PSM with Generated random data based on Efficient with a large number of candidate
Core i5-3570 dual CPU, 3.40 GHz, skyline-based algorithm OPA Climatography of the United States physical services and improved the selection
running on Windows 8 (64-bit) Number 81 series (CLIM8144) data performance;
set More scalable and reduced the execution time
[54]
[18] Java under 64-bit Windows 7 OS, on Compared QoS-C and EPC Synthetically generated data set based ~ Performed better than algorithms that only
Intel Core i5- 8 GB RAM on QoS considered QoS-C or EPC
[13] Used JVM, JRE 1.6, for Windows 64- _ Synthetically generated data set based ~ Improved energy efficiency, selection time,
bit running on Intel Core i7-4712HQ on QoS and EP composition lifetime, and optimality of the
CPU random memory solution
[9] Simulation program in Java Compared with GA Mao Data set Increased the availability and reliability, and
maintained low cost and response time
[11] MATLAB 7.0 + Intel Core2 Duo 2.10 Compared CEA with CPSO and Data generated from real scenarios High performance in terms of search
GHz CPU IDIPSO convergence and stability
[12] MATLAB R2013b for Windows 7 on Compared HABC with GA, PSO, Randomly generated data set among High performance in terms of search stability
2.50-GHz PC with 4-GB RAM and basic ABC [0.7, 0.95] within acceptable time
[17] MATLAB R2015a Compared GSA and ABC with PSO, Real-time data acquisition read Improved cluster head performance
GA, ABC, and GSO through Xively IoT API
[55] MATLAB R2017b on Core(TM) i3- Compared CBSSMS with distance Generated their own data set Reduced latency and energy balance between
5005U CPU @ 2.00 GHz (4 CPUs) and algorithms at randomly mapping devices
4 GB RAM services on devices
[22] MATLAB + CloudSim package Compared hyper-model with GA, Generated their own data set Enhanced implementation time and system’s
PSO, PPSO efficiency in real time
[52] Not stated Compared FQSA with GAFLSS, Random QoS data sets generated from Improved selection performance and user
APUP, and FLP [0,1] satisfaction level
[19-21] Not stated Compare the performance of three Generated their own data set by Reduced communication energy consumption
models randomly generating services data set and increased system lifetime
[14,15] Not stated Compared MWIS with MWL, Generated their own data set Reduced communication energy and
GWMAX, GWMIN, and GWMIN2 increased system lifetime
[39] C-++ programming languagerunona Compared with sensor selection Generated their won data set Ran more efficiently
PC with Intel Core i7-6700 CPUand 8 algorithms
GB memory
[7] Python with NetworkX, SciPy, and Compared HOLA system with Not stated Reduced energy consumption by IoT sensors
NumPy libraries Vanilla System by reducing the internal communication in
IoT devices, as well as reducing time required
[56] Microsoft Visual C. Net on PC withan ~ Compared fuzzy logic technique QWS and RQWS generated randomly Reduced runtime and approximation ratio
Intel Core i5 (1.6 GHz) CPU and 4 GB and cultural GA with QCD and WS- using Eclipse programming tool
RAM 1P
[57] C# language used as an integrated Compared ANN-PSO with PSO, GA, QWS Improve execution time and reachability rate
development environment and PAT and PSOGA algorithms
model checker
[58] - Compared NCF and CNCF against WS-Dream Superior prediction performance
QoS prediction methods (UPCC, demonstrated
IPCC, WSRec, and LBFM)
[59] Mac-0OS 10.14.3 within an Intel i5- Compared LRI with another Generated their own data set Verified the similarity between users in real
7500U 2.30 GHz CPU, 8 GB RAM method that considered user time
feedback
[60] Java and R language on Intel (R) Core Compared AGEGA with GA, OGA, QWS plus some random data Obtained better fitness values in lower
(TM) i5 2.60-GHz processor and 8 GB AGP, and TGA execution time
of memory, running Windows 8.1
[61] Network simulator NS-2 Compared QoS-IoT against FIFO, Designed their scenario Improved network performance with a large
RR, and cross-layer based amount of data
utilization of CW for scheduling
[62] MATLAB on Windows 10, 2.90 GHz Compared Likert-Improved-PSO Generated a random data set Better fitness values and lower execution time
processor, and 8 GB RAM with original PSO and Improved-
PSO
[63] - Compared with AHP-AHP Health care case study using real data ~ Lower execution time and robust to changes

collected from various sources
available online

in user or decision maker

requirements according to the sensor data descriptions, the requirements
for sensor selection and indexing, the memory required to select sensors,
and the change in the accuracy rate. They evaluated the processing time
and memory requirements based on sensor selection and relational ex-
pressions during the semantic querying phase. The data sets employed
were from the Linked Sensor Middleware project. They showed that
CASSARAM could reduce the processing time and minimize the storage

15

requirements. In the future, they plan to merge their algorithm with
leading IoT middleware solutions such as SenseMA and Open-IoT to
improve the automated sensor selection functionality in the IoT envi-
ronment. They also recommended enhancing the efficiency of CAS-
SARAM to integrate automated machine learning techniques using
cluster-based sensor search and heuristic algorithms.

A.N. Abosaif, H.S. Hamza
6.3. Using simulations and prototypes to evaluate SSAs

Dhondge et al. [7] validated HOLA based on simulation studies and
designed a HOLA IoT sensor prototype with Adriano. In practical ex-
periments, they measured the energy consumption of the HOLA IoT
sensors in different operational scenarios and communication settings. In
particular, they compared the energy consumption of HOLA and the
Vanilla System, and showed that HOLA could reduce the energy
consumed in IoT sensors by reducing the internal communication in the
IoT device. The time consumption with HOLA was better compared with
the Vanilla System. They recommended detecting the maximal energy
efficiency that satisfies the SLA agreement and evaluating HOLA using
different smartphone densities in the future.

6.4. Analysis of evaluations and performance measurements for SSAs

The analyses of selected state-of-the-art solutions evaluations used
prototypes, and Simulationd are categorized, as shown in Tables 4 and 5
respectively. They categorized based on the software used, performance
measurement, applied data set, and obtained results.

7. Results and future research directions

SSAs are essential for the IoT environment in order to satisfy the
preferences of end users by selecting the required services based on QoS
factors. In the following, we discuss the Results, possible future research
directions, and limitations of the state-of-the-art solutions, thereby
highlighting the basic requirements for a robust SSA structure.

Based on our proposed classification, the structure of a SSA can be
divided into the design process to determine the appropriate environ-
ment for building the SSA, the implementation stage involving the
definition of the structure required to implement the SSA, and the eval-
uation step to measure the performance of the SSA.

In order to design an appropriate SSA structure for the IoT sys-
tem, the following specific features should be considered. The time
allocated to the selection process is called the process time phase. The
design time is rarely static before a user requires a service [13]. Thus,
most of the state-of-the-art methods are dynamic during the runtime [5,7,
11]. In terms of workflow management, IoT is a large-scale environment
that requires complex management or orchestration [7,14,17], where the
IoT devices and network communication structure have specific prop-
erties. Thus, most studies preferred to select a choreography workflow [6,
50,51]. Moreover, to the best of our knowledge, no algorithms involved
single-objective optimization because the QoS factors are related to
others, and thus MOPs [6,48] and MaOPs [5,11] required optimization.

In order to implement and build an appropriate SSA for the IoT
system, most of the state-of-the-art methods focused on selecting the QoS
factors that need to be optimized or satisfied. We classified the QoS
factors based on the IoT architecture proposed by Li et al. [40] in the
application layer, sensor layer, and network layer. In future research, it
would be useful to focus more on search in the network layer because its
properties affect the selection of the required services. Moreover, the
traditional QoS factors considered in most studies comprised the opti-
mization time, cost, availability, reliability, and energy consumption, as
shown in Fig. 7.

In addition, most of the solutions proposed for SSA used search
optimization algorithms, particularly meta-heuristic algorithms [16,39,
50] based on evolutionary algorithms (e.g., GA, PSO, and ACO), as well
as heuristic algorithms [7,19-21,49]. To the best of our knowledge, very
few studies have implemented hyper-heuristic algorithms for making
selections in the IoT system, as shown in Ref. [22]. The remaining
state-of-the-art methods employed other types of algorithms such as
Pareto optimality [13] and the PSS method [53,54].

Thus, researchers have tended to produced improved algorithm by
combining more than one to obtain more efficient solutions. Thus, new
solutions can be obtained for selection problems by considering other

16

Array 8 (2020) 100041

methods such as fuzzy logic.

A new trend is the use of prediction in the selection process to
enhance the end user preferences [58]. We consider that using a
recommendation system that predicts the behavior and preferences of
end users could result in a more effective selection process.

In order to evaluate and measure the performance of SSAs,
studies have generally compared the proposed algorithms and models
with others, as shown in Tables 4 and 5. Most studies conducted simu-
lations but some involved building prototypes. The most commonly used
language is Java, followed by MATLAB and other programming lan-
guages, as shown in Fig. 8. In most studies, data sets were generated for
the experimental evaluations [12,19-21,52,55], although some used
existing data sets that were not constructed specifically for IoT envi-
ronments [9,49,53,54]. Thus, there is need to provide an appropriate
data set that satisfies the QoS requirements for services in IoT
environments.

The Results shown in Figs. 6-8 were extracted by analyzing reports of
state-of-the-art methods. Fig. 6 was derived by analyzing the imple-
mentations of solutions for SSAs, as shown in Table 3. Fig. 8 was
extracted by analyzing the evaluations and performance measurements
for SSAs, as shown in Tables 4 and 5. Figs. 6-8 should help researchers to
extract useful information to guide their research into SSAs in IoT
environments.

7
M Sensor Layer
& M Network Layer
5 1 N Application Layer
a
3 -
2 -
1 -
0 _ T T T 1
ol s e)
& & & <
o & & &
.2@" Q_& Q@. O
vl Qe’"

Fig. 6. Implementations algorithms in different IoT layers.

Communication
Energy

—\ !_Complexity

ThroughPut

Latency
Accuracy

Energy
Consmpution

Fig. 7. Common QoS factors considered.

A.N. Abosaif, H.S. Hamza

C++
Python 6%

Fig. 8. Programming languages used for performance evaluations.

8. Conclusion

The development of the IoT environment has led to increases in the
number of sensors that provide different services to end users. These
services have similar functional properties but different non-functional
properties (QoS factors). This problem requires the selection of algo-
rithms that can identify the optimal service to meet the requirements of
the end user. Many studies have investigated SSAs based on Web services
but we focused on SSA solutions proposed for the [oT environment in this
review. We presented the fundamental design structures, behaviors, and
optimization objectives of SSA in IoT under QoS constraints. The state-of-
the-art algorithms were analyzed based on the implementation and QoS
layer in the IoT architecture (sensor layer, network layer, and application
layer). Moreover, performance evaluations were analyzed to determine
the most commonly used methods and data sets for assessing the per-
formance of algorithms. Finally, we identified possible future research
directions and deficiencies to help the research community develop
appropriate SSAs for the IoT system and to optimize the critical QoS
factors required by end users.

9. Research limitations and future recommendations

In the future, we recommend reviewing more SSA solutions by
increasing the research scope. In this review, we focused mainly on
heuristic, meta-heuristic, and hyper-heuristic algorithms, and thus we
recommend studying other types of optimization algorithms. In addition,
we recommend the construction of an appropriate QoS data set for the
IoT environment.

Declaration of competing interests
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Abbreviation, Definition

ABC Artificial Bee Colony

Array 8 (2020) 100041

ACO Ant Colony Optimization

AGP Adaptive Genetic Programming

AHP Analytic Hierarchy Process

ANN Artificial Neural Network

ANN-PSO Artificial Neural Network-Based- Particle Swarm
Optimization

Bi-SPO Bi-Objective Shortest Path Optimization

CASSARAM Context-Aware Sensor Search, Selection, And Ranking
Model

CBSSMS Collocation Based Sensor-Service Mapping Strategy

CCOA Chaos Control Optimal Algorithm

CCSOS Composited Cloud Manufacturing Service Optimal Selection

CEA Cooperative Evolution Algorithm

CNCF Context-Aware Neural Collaborative Filtering
DURD Discrete Uniform Rank Distribution

DUSRD Discrete Uniform Service Rank Distribution
EB Energy Balancing

FBP Flow-Based Program

FIFO First In First Out

FQSA Flexible QoS-Based Service Selection Algorithm
GA Genetic Algorithm

GSA Gravitational Search Algorithm

HABC Hybrid Artificial Bee Colony

HOLA Heuristic And Opportunistic Link Selection Algorithm
IloT Industrial IoT

ILP Integer Linear Programming

IoT Internet of Things

IPCC Item-Based PCC

LBFM Location-Based Factorization Machine

LRI Linear Reward Inaction

MaOP Many-Objective Optimization Problem

MOEA/D Many-objective Evolutionary Algorithm Decomposition

MOPs Multi-objective optimization problem
MWIS Maximum Weighted Independent Set
MWL Maximum Weighted Link

NCF Neural Collaborative Filtering

OGA Orthogonal Genetic Algorithm

OPA One-Pass Algorithm

PSO Particle Swarm Optimization

PSS Physical Service Selection

QCD QOS Constraints Decomposition

QoS Quality of Service

QoS-AS for CES QoS Aggregation Schema for Complex Event Service

RQWS Randomly Generated QWS
RR Round-Robin Scheduling

SC Service Composition

SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SSA Service Selection Algorithm

TGA Transactional Genetic Algorithm

TOPSIS Technique for Order of Preference by Similarity to Ideal
Solution

UDDI Universal Description, Discovery, and Integration

UPCC User-Based PCC

W3C World Wide Web Consortium

WS Web Services

WSDL Web Services Description Language

WSREC Web Service Recommender

References

[1] Nicolescu R, Huth M, Radanliev P, De Roure D. State of the art in IoT - beyond
economic value. 2018.

[2] Evans D. The Internet of things - how the next evolution of the Internet is changing
everything. 2011.

[3] Maaradji A. End-user service composition from a social networks analysis
perspective. 2011. theses.fr.

http://refhub.elsevier.com/S2590-0056(20)30026-6/sref1
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref1
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref2
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref2
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref3
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref3

A.N. Abosaif, H.S. Hamza

[4]
[5]

(6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]

Xia Y, Chen P, Bao L, Wang M. 2011 IEEE international conference on web services.
In: A QoS-aware web service selection algorithm based on clustering; 2011. p. 8.
Huang B, Li C, Tao F. A chaos control optimal algorithm for QoS-based service
composition selection in cloud manufacturing system. Enterprise Inf Syst 2014;8(4):
445-63.

Sun M, Shi Z, Chen S, Zhou Z, Duan Y. Energy-efficient composition of configurable
Internet of things services. IEEE Access; 2017. p. 1-14.

Dhondge K, Shorey R, Tew J. HOLA: heuristic and opportunistic link selection
algorithm for energy efficiency in Industrial Internet of Things (IIoT) systems. In:
2016 8th international conference on communication systems and networks.
COMSNETS 2016; 2016. p. 1-6.

Mejri M, Ben Azzouna N. Scalable and self-adaptive service selection method for the
internet of things. Int. J. ofComputer Appl. 2017;167(10):43-9.

Li W, Zhong Y, Wang X, Cao Y. Resource virtualization and service selectionin cloud
logistics. J Netw Comput Appl 2013;(1-9).

Perera C, Zaslavsky A, Liu CH, Compton M, Christen P, Georgakopoulos D. Sensor
search techniques for sensing as a service architecture for the internet of things.
IEEE Sensor J 2014;14(2):406-20.

Liu J, et al. A cooperative evolution for QoS-driven IoT service composition. Autom.
— J. Control. Meas. Electron. Comput. Commun. 2013;54(4):438-47.

Zhou J, Yao X. A hybrid artificial bee colony algorithm for optimal selection of QoS-
based cloud manufacturing service composition. The International Journal of
Advanced Manufacturing Technology 2017;88(9-12):3371-87.

Khanouche ME, Amirat Y, Chibani A, Kerkar M, Yachir A. Energy-centered and QoS-
aware services selection for internet of things. IEEE Transactions on Automation
Science and Engineering 2016;13(3):1256-69.

Huang Z, Lin K, Yu S, Hsu JY. Co-locating services in IoT systems to minimize the
communication energy cost. Journal of Innovation in Digital Ecosystems 2014;1(1-
2):47-57.

Huang Z, Lin KJ, Yu SY, Hsu JYJ. Building energy efficient internet of things by Co-
locating services to minimize communication. In: Medes 2014 - 6th international
conference on management of emergent digital EcoSystems; 2014. p. 101-8.
Proceedings.

Abinaya S, Akshaya G, Dhivya J. Minimizing energy consumption using internet of
things. Int. J. Recent Innov. Trends Comput. Commun., no. March 2017:67-70.
Reddy MPK, Babu MR. Energy efficient cluster head selection for internet of things
energy efficient cluster head selection for internet of things. New Rev Inf Netw
2017;22(1):54-70.

Alsaryrah O, Mashal I, Chung T. Bi-objective optimization for energy aware internet
of things service composition. IEEE Access 2018;6:26809-19.

Yu SY, Shih CS, Hsu JYJ, Huang Z, Lin KJ. QoS oriented sensor selection in IoT
system. In: Proceedings - 2014 IEEE international Conference on Internet of things,
iThings 2014, 2014 IEEE international Conference on green Computing and
communications, GreenCom 2014 and 2014 IEEE international Conference on
cyber-physical-social computing, CPS 20. iThings; 2014. p. 201-6.

Huang Z, Lin KJ, Li C, Zhou S. Communication energy aware sensor selection in IoT
systems. In: Proceedings - 2014 IEEE international Conference on Internet of things,
iThings 2014, 2014 IEEE international Conference on green Computing and
communications, GreenCom 2014 and 2014 IEEE international Conference on
cyber-physical-social computing, CPS 20. iThings; 2014. p. 235-42.

Huang Z, Lin KJ, Han L. An energy sentient methodology for sensor mapping and
selection in IoT systems. IEEE International Symposium on Industrial Electronics
2014:1436-41.

Elhoseny M, Abdelaziz A, Salama AS, Riad AM, Muhammad K, Sangaiah AK. “A
hybrid model of internet of things and cloud computing to manage big data in
health services applications. Future generation computer systems. 2018;86:
1383-94.

Li Y, Huang Y, Zhang M, Rajabion L. Service selection mechanisms in the Internet of
Things (IoT): a systematic and comprehensive study. Cluster Comput 2020;23(2):
1163-83.

Mangele L, Dlodlo M, Coetzee L, Sibiya G. A survey for service selection approaches
in dynamic environments. In: 2017 IEEE AFRICON: Science, Technology and
Innovation for Africa. AFRICON 2017; 2017. p. 1049-54.

Bouzary H, Frank Chen F. Service optimal selection and composition in cloud
manufacturing: a comprehensive survey. Int J Adv Manuf Technol 2018;97(1-4):
795-808.

Yu HQ, Reiff-Marganiec S. Non-functional property based service selection: a survey
and classification of approaches. CEUR Workshop Proc. January, 2008;411.
Hamzei M, Navimipour NJ. Towards efficient service composition techniques in the
internet of things. IEEE Internet Things J. Towar. 2018;4662. c.

Aoudia I, Benharzallah S, Kahloul L, Kazar O. A comparative analysis of IoT service
composition approaches. In: The international arab conference on information
Technology yassmine hammamet; 2017. p. 1-7. Tunisia.

Asghari P, Rahmani AM, Haj H, Javadi S. Service composition approaches in IoT: a
systematic review. J. Netw. Comput. Appl. 2018;120:61-77.

Kahloul L, Benharzallah S, Aoudia 1. Service composition approaches for Internet of
Things: a review. Int J Commun Network Distr Syst 2019;23(1):1.

Dongre Y, Ingle R. An Investigation of QoS Criteria for Optimal Services Selection in
Composition. In: 2nd Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2020 - Conf. Proc.,
no. Icimia; 2020. p. 705-10.

Hugo Haas W, (until J M. Allen Brown, “web services glossary,” W3C working
group [Online]. Available: https://www.w3.org/TR/ws-gloss/; 2002. 20-Jan-2018.

18

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Array 8 (2020) 100041

Sheng QZ, Qiao X, Vasilakos AV, Szabo C, Bourne S, Xu X. “Web services
composition: a decade’s overview. Inf Sci (Ny) 2014;280:218-38.

Elfirdoussi S, Jarir Z. An integrated approach towards service composition life
cycle: a transportation process case study. May 2018 J. Ind. Inf. Integr. 2019;15.
138-146.

Elqortobi M, Bentahar J, Dssouli R. “Framework for dynamic web services
composition guided by live testing. In: Lecture notes of the institute for computer
sciences, social-informatics and telecommunications engineering, vol. 206. LNICST;
2018. p. 129-39. 5.

Lemos AL, Daniel F, Benatallah B. Web service composition: a survey of techniques
and tools. ACM Comput Surv 2015;48(3):1-41.

Caramia P, Massimiliano Dell’Olmo. Multi-objective optimization. In: Multi-
objective management in freight logistics; 2008. p. 11-37.

Marler RT, Arora JS. Survey of multi-objective optimization methods for
engineering. Struct Multidiscip Optim 2004;26(6):369-95.

Lin CC, Deng DJ, Lu ALY. Many-objective sensor selection in IoT systems. IEEE
Wirel. Commun. 2017;24(3):40-7.

Li L, Li S, Zhao S. QoS-Aware scheduling of services-oriented internet of things.
IEEE Trans. Ind. Informatics 2014;10(2):1497-507.

Marjanovi¢ M, Skorin-kapov L. Quality of service (QoS) for IoT services. 2014.
Jiménez-Sdez NMH. Multi-criteria decision-making, evolution and characteristics.
In: International series in operations research & management science. Cham:
Springer; 2019. p. 3-13.

Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A survey on metaheuristics for
stochastic combinatorial optimization. Nat Comput 2009;8(2):239-87.

R P, Edmund Burke SS, Hart Emma, Kendall Graham, Jim Newall. Hyper-heuristics:
an emerging direction in modern search Technology. ResearchGate; 2003. no.
January, pp. 0-23.

Gendreau M, Potvin J-Y. A classification of hyper-heuristic approaches edmund,
vol. 272. Springer-Verlag; 2010. July 2014.

F. Wikipedia, “Basic prototype categories.”

06-Jun-2020 Prototypes vs. simulations. Applied Abstractions; 2005 [Online].
Available: https://appliedabstractions.com/2005/04/12/prototypes-vs-simulatio
ns/.

Na J, Lin K, Huang Z, Zhou S. An evolutionary game approach on IoT service
selection for balancing device energy consumption. In: IEEE 12th international
conference on e-business engineering; 2015. p. 331-8.

Yin X, Yang J. Shortest paths based web service selection in internet of things.

J. Sensors 2014;2014.

Anas M, Khatab S, Badr A. Poster: HeuristicloT: a framework for augmenting
heuristic search algorithms by internet-of-things data. In: MobiSys 2016 companion
- companion publication of the 14th annual international conference on mobile
systems, applications, and services, vol. 12; 2016. p. 4. 1.

Gao F, Curry E, Ali MI, Bhiri S, Mileo A. QoS-aware complex event service
composition and optimization using genetic algorithms 2014;8831:386-93.

Nwe NWE, Win H, Jian-min BAO, Gang CUI. Flexible user-centric service selection
algorithm for Internet of Things services. J China Univ Posts Telecommun 2014;21:
64-70. July.

Jin X, Chun S, Jung J, Lee K. IoT service selection based on physical service model
and absolute dominance relationship. In: IEEE international conference on service-
oriented computing and application; 2014. p. 65-72.

Jin X, Chun S, Jung J, Lee K. A fast and scalable approach for IoT service selection
based on a physical service model. Information Systems Frontiers 2016;19(6):
1357-72.

Shukla J, Maiti P, Sahoo B. Low latency and energy efficient sensor selection for IoT
services. In: International Conference on Technologies for Smart City Energy
Security and Power: Smart Solutions for Smart Cities, ICSESP 2018 - Proceedings;
2018. p. 1-5. 2018-Janua.

Yuan Y, Zhang W, Zhang X, Zhai H. Dynamic service selection based on adaptive
global QoS constraints decomposition. Symmetry (Basel). 2019;11(3).
Hosseinzadeh M, et al. A hybrid service selection and composition model for cloud-
edge computing in the internet of things. IEEE Access 2020;8:85939-49.

Gao H, Xu Y, Yin Y, Zhang W, Li R, Wang X. Context-aware QoS prediction with
neural collaborative filtering for internet-of-things services. IEEE Internet Things J.
2020;7(5):4532-42.

Quan H, Takahashi R, Yoshiaki F. Dynamic service selection based on user feedback
in the IoT environment. In: CITS 2019 - proceeding of the 2019 international
conference on computer. Information and Telecommunication Systems; 2019.

p. 1-5.

Jatoth C, Gangadharan GR, Buyya R. Optimal fitness aware cloud service
composition using an adaptive genotypes evolution based genetic algorithm. Future
Generat Comput Syst 2019;94:185-98.

Khan F, et al. A quality of service-aware secured communication scheme for
internet of things-based networks. Sensors 2019;19(19):1-18.

Abu-safe AN, Elrofai SE. QOS - aware meta-heuristic services selection algorithm
and Likert scale measurement for IOT environment. Int. J. Comput. Sci. Trends
Technol. 2020;8(1):1-8.

Singh M, Baranwal G, Tripathi AK. QoS-aware selection of IoT-based service.
Arabian J Sci Eng 2020;20(2).

Al-Masri’s E. QWS-Datasets. University of Guelph & University of Washington Tacoma;
2007 [Online]. Available: https://qwsdata.github.io/.

http://refhub.elsevier.com/S2590-0056(20)30026-6/sref4
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref4
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref5
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref5
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref5
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref5
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref6
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref6
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref6
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref7
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref7
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref7
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref7
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref7
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref8
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref8
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref8
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref9
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref9
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref9
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref10
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref10
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref10
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref10
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref11
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref11
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref11
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref12
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref12
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref12
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref12
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref13
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref13
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref13
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref13
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref14
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref14
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref14
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref14
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref15
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref15
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref15
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref15
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref15
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref16
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref16
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref16
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref17
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref17
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref17
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref17
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref18
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref18
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref18
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref19
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref20
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref21
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref21
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref21
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref21
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref22
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref22
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref22
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref22
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref22
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref23
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref23
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref23
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref23
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref24
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref24
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref24
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref24
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref25
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref25
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref25
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref25
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref25
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref26
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref26
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref27
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref27
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref28
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref28
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref28
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref28
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref29
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref29
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref29
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref30
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref30
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref31
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref31
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref31
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref31
https://www.w3.org/TR/ws-gloss/
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref33
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref33
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref33
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref34
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref34
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref34
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref34
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref35
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref35
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref35
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref35
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref35
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref36
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref36
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref36
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref37
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref37
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref37
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref38
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref38
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref38
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref39
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref39
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref39
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref40
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref40
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref40
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref41
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref41
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref42
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref43
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref43
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref43
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref44
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref44
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref44
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref44
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref45
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref45
https://appliedabstractions.com/2005/04/12/prototypes-vs-simulations/
https://appliedabstractions.com/2005/04/12/prototypes-vs-simulations/
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref48
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref48
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref48
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref48
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref49
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref49
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref50
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref50
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref50
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref50
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref51
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref51
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref51
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref52
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref52
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref52
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref52
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref53
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref53
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref53
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref53
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref54
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref54
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref54
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref54
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref55
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref55
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref55
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref55
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref55
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref56
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref56
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref57
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref57
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref57
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref58
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref58
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref58
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref58
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref59
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref59
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref59
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref59
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref59
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref60
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref60
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref60
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref60
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref61
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref61
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref61
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref62
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref62
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref62
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref62
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref62
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref63
http://refhub.elsevier.com/S2590-0056(20)30026-6/sref63
https://qwsdata.github.io/

	Quality of service-aware service selection algorithms for the internet of things environment: A review paper
	1. Introduction
	2. Background
	2.1. SC and selection processes
	2.1.1. Web services
	2.1.2. SC lifecycle

	2.2. Analysis of SSA design
	2.2.1. SSAs based on process time phase
	2.2.2. Behavioral workflow management
	2.2.3. Types of optimization objectives

	2.3. Analysis of solution implementations
	2.3.1. QoS based on IoT architecture
	2.3.2. Search optimization algorithms

	2.4. Performance evaluations

	3. Proposed classification approach for QoS-AWARE SSAS
	4. Analysis of solution DESIGNS
	5. Analysis of solution implementations
	5.1. Sensor layer
	A. Heuristic algorithms in the sensor layer
	B. Meta-heuristic algorithms in the sensor layer
	C. Non-heuristic algorithms in the sensor layer

	5.2. Network layer
	A. Heuristic algorithms in the network layer
	B. Meta-heuristic algorithms in the network layer
	C. Non-heuristic algorithms in the network layer

	5.3. Application layer
	A. Heuristic algorithms in the application layer
	B. Meta-heuristic algorithms in the application layer
	C. Hyper-heuristic algorithms in the application layer
	5.4. Aggregate layers

	5.5. Analysis of solutions for implementing SSAs

	6. Analysis of performance evaluations
	6.1. Using simulation software to evaluate SSAs
	6.2. Using prototypes to evaluate SSAs
	6.3. Using simulations and prototypes to evaluate SSAs
	6.4. Analysis of evaluations and performance measurements for SSAs

	7. Results and future research directions
	8. Conclusion
	9. Research limitations and future recommendations
	Declaration of competing interests
	Abbreviation, Definition
	References

