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This paper presents a method to compute the degree of similarity between two aggregated fuzzy numbers from 

intervals using the Interval Agreement Approach (IAA). The similarity measure proposed within this study con- 

tains several features and attributes, of which are novel to aggregated fuzzy numbers. The attributes completely 

redefined or modified within this study include area, perimeter, centroids, quartiles and the agreement ratio. 

The recommended weighting for each feature has been learned using Principal Component Analysis (PCA). Fur- 

thermore, an illustrative example is provided to detail the application and potential future use of the similarity 

measure. 
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. Introduction 

Similarity measures are a means quantifying the similarity between
wo data types, utilised by many modern algorithms. Areas covering al-
orithms that commonly require measurements of similarity within data
nclude classification, ranking, decision-making and pattern-matching.
 similarity measure can effectively substitute for a distance measure

e.g. Euclidean distance), making data types with defined similarity
easures compatible with methods such as K-Nearest Neighbour [1 , 2]

nd TOPSIS [3–5] . This study proposes a similarity measure for aggre-
ate fuzzy numbers constructed from interval-valued data using the In-
erval Agreement Approach (IAA), that is when given two such fuzzy
umbers the degree of similarity regarding them is computed. 

The experimental interval-valued data in recent literature is often
n alternative representation of expert opinion. Experts are commonly
sked to summarise their opinions into a single numerical score, for ex-
mple, “an 8 out of 10 ”. This practice is seen throughout media review-
ng (films, novels, music, etc.), as well as for academic and job candidate
election. Scores are frequently aggregated and averaged to represent
roup opinion, then are used to rank the alternatives. However, as with
ll attempts to capture human response as data, the procedure of sum-
arising opinions into a score consequently suffers from information

oss. 
The alternative mentioned that has received interest suggests record-

ng interval-valued data as opposed to singular values. By interval-
alued data, we are referring to data recorded as a range between two
alues. For example, a “6 to 8 out of 10 ”. Interval scoring is one such
ethod that allows experts to reflect the uncertainty of their judge-
ent [6] . However, a challenge when using intervals in contrast to real
umbers is that their operations are not as well defined; particularly
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perations on sets of intervals. Standard scores, being real numbers,
an be aggregated, averaged and compared, which are universal data
ype operations required by many models that are not as clearly de-
ned for interval-valued data. If such operations could be applied to

nterval-valued data, then in theory similar operations such as compari-
on and ranking could be calculated with increased effectiveness due to
he preservation of uncertainty and reduced information loss. This had
ed to the development of the IAA method. 

The IAA method, proposed by Wagner et al. [6] , is a technique still in
ctive research that retains all of the information provided by a given set
f intervals and constructs them into a convenient data type known as
 ‘fuzzy number’ [18] . A fuzzy number is specifically designed with the
ntention to capture and store uncertainty. We refer to aggregate fuzzy
umbers from interval-valued data using IAA as IAA fuzzy numbers. IAA
uzzy numbers are reflective of the original sets of intervals of which
hey were constructed, thus the similarity measure proposed within this
tudy is also effectively comparing sets of intervals. As IAA fuzzy num-
ers are relatively recent and were developed with the intent of flexibil-
ty, they are yet to have many of their operations agreed upon and fully
efined, and as consequence applying IAA fuzzy numbers to various
ontemporary algorithms may prove challenging when a means of com-
arison between them is required. Intriguingly however, other strictly
efined fuzzy number types, such as generalised fuzzy numbers, have
ad considerable amounts of research proposing useful applications of
hem, such as similarity and rankings measures [4 , 7 , 8 , 9] . Through the
bstraction and modification of operations previously defined for gen-
ralised fuzzy numbers, this study proposes a method for calculating
he degree of similarity between two IAA fuzzy numbers. Developing a
imilarity measure for IAA fuzzy numbers allows for their further ap-
lication into other areas of research, potentially as a solution to such
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reas that suffer from inaccuracies due to uncertainty within the data
f which they model. When comparing sets of intervals that are derived
rom a group of expert opinions (typically through the use of a survey
6 , 10–12] ), the proposed similarity measure is computing the similar-
ty of reception, and uncertainty thereof, between two sets of interval
cores. 

To propose the similarity measure, we first define new attributes
or IAA fuzzy numbers, secondly we learn the weight of each attribute
sing an unsupervised machine learning method Principal Component
nalysis (PCA) [13] . We then combine the attributes as features of com-
arison with the weights to produce the similarity measure, then finally
e outline a synthetic dataset to illustrate its application and potential

ffectiveness. 

. Literature review 

.1. Interval-valued data represented by fuzzy numbers 

The primary type of fuzzy number of which this research focuses on
re those constructed from intervals, as an alternative to real numbers.
ntervals, just being defined as a range between two real numbers, can be
ollected from many sources given various context. A frequent method
f acquiring intervals throughout the recent literature is via survey, usu-
lly from a group of experts or critics in which intervals are explicitly
equested. Alternatively, intervals are derived from words the experts
r critics used to describe their opinion [14 , 15 , 11] . 

Liu and Mendel [15] first proposed a widely used method of convert-
ng a set of intervals to fuzzy numbers, known as the Interval Approach
IA). While the IA method was considered limiting regarding input data,
t remained the only systematic method of constructing fuzzy numbers
rom a set of intervals for two years. Substantial modifications were then
roposed by Wu et al. [14] , known as the Enhanced IA method (EIA),
hich was demonstrated to be an improvement over IA. 

Miller et al. [16] built upon and discuss the findings of [14] and pro-
osed a new method. Contrary to IA, the method [16] processes both
ntra-and inter-person viability, with intra-person referring to an ex-
ert’s opinion changing over time and inter-person referring to a group
f different expert opinions respectively. Miller et al. [16] also empha-
ise that their proposed method does not require prepossessing (strip-
ing outliers, using thresholds etc.), and thus no change or information
s lost during its execution. After conducting tests on both synthetic and
eal-world data however, Miller et al. [16] concludes that both the pro-
osed method, as well as IA have their separate advantages, and note
hat further comparative tests will have to be made. 

Wagner et al. [6] merge their findings in [16] with IA, and as a result
ntroduce a new major method of converting interval sets to Fuzzy Num-
ers, known as the Interval Agreement Approach (IAA). The IAA method
ffers a refined approach that includes the benefits of the method pro-
osed in [16] , and beyond this is shown to intentionally not make any
ssumptions (restrictions) about the input interval dataset. Thus, IAA
roduces a wide and unrestricted variety of fuzzy numbers relative to
revious methods; which in theory fully represents and maintains the
ncertainty that the intervals were initially intended to provide. Wag-
er et al. [6] conclude that IAA is a “highly useful method ” for capturing
nterval-based (survey) data, stating that they now aim to drive further
ractical and theoretical developments of this method. 

Recently, the IAA has seen increasing research interest. Potential im-
rovements to IAA have been proposed, such as by Havens et al. [10] , in
hich they outline another new method known as the efficient Interval
greement Approach (eIAA). eIAA is shown to be more computation-
lly efficient in contrast to the original IAA method, and beyond that
rovides a way to capture linguistical prototypes. Havens et al. [10] ap-
ly a case study involving film ratings as an example, but do emphasise
hat scenarios beyond expert opinions are quite feasible. Apart from pro-
osed computational improvements, research involving IAA fuzzy num-
ers has resulted in the proposal of unique attributes. One such new
ttribute utilised throughout this study is known as the Agreement Ra-
io, proposed by Navarro et al. [11] . The Agreement Ratio is a propor-
ional value between 0 and 1 that reflects the overall agreement amongst
he experts given their survey responses. Along with other standard at-
ributes, the Agreement Ratio has been shown to extract useful informa-
ion and separate data adequately. 

.2. Similarity measures for generalised fuzzy numbers 

Many different types of fuzzy sets and numbers are actively being
esearched and applied. One such type known as generalised fuzzy num-
ers have received much attention by researchers as they have shown to
e useful in the area of decision-making, while maintaining a convenient
nd well-defined configuration. Boundaries such as the number of ele-
ents and their possible magnitudes have been defined for generalised

uzzy numbers, allowing researchers to produce elegant utilisations of
hem. Measures produced for generalised fuzzy numbers include rank-
ng and similarity, making the area of study surrounding generalised
uzzy numbers an ideal reference for this research. 

Chen [17] first proposed a similarity measure that given two gener-
lised fuzzy numbers returns a value within the range of 0 and 1 that
eflects their similarity. Ideally, a similarity measure would equate to 0
hen the two input fuzzy numbers are entirely different, and 1 when

hey are precisely the same. However, due to the similarity measure
17] only utilising the geometric distance, it does not perform well on
ll occasions. Patra and Mondal [8] proposed a similarity measure that
tilised geometric distance, area and height (highest degree of member-
hip) of the input generalised fuzzy numbers. Khorshidi and Nikfalazar
7] proposed the similarity measure for generalised fuzzy numbers being
ne of the key inspirations for this research, which addresses these short-
omings of [8] , primarily with the addition of the centroid (arithmetic
ean) and perimeter attributes of generalised fuzzy numbers within the

quation. It is through the abstraction and re-application of the similar-
ty measure [7] for generalised fuzzy numbers that we have developed
his study’s proposed similarity measure for IAA fuzzy numbers. 

. Preliminaries 

In this section, a brief description is introduced on the IAA method of
onstructing Type-1 Fuzzy Numbers from interval-valued datasets, and
ater a brief description of generalised fuzzy numbers and the similarity
easure proposed in [7] that was the primary inspiration for this study.

.1. IAA fuzzy numbers 

A crisp interval is defined as 𝐴̄ = [ 𝑙 𝐴̄ , 𝑟 𝐴̄ ] , where l is the ‘left’ start
alue and r is ‘right’ end value, and thus a set of these intervals is de-
ned as 𝐴 = { 𝐴̄ 1 , … , 𝐴̄ 𝑛 } . Given a set of intervals A as input, the original

AA method [6 , 10] is formulated as Eq. (1) . Where 𝑦 𝑖 = 𝑖 ∕ 𝑛 , the degree
f membership. Note that the use of the solidus " / " in Eq. (1) is not
eferring to a division, but instead to the assignment of a given degree
f membership to a set of values. The variable y i only equals 1 at values
hen all of the intervals of set A overlap 

𝐴 = 

𝑛 ∑
𝑖 =1 

𝑦 𝑖 

/ (⋃𝑛 − 𝑖 +1 
𝑗 1 =1 

⋃𝑛 − 𝑖 +2 
𝑗 2 = 𝑗 1 +1 

…
⋃𝑛 

𝑗 𝑖 = 𝑗 𝑖 −1 +1 

(
𝐴̄ 𝑗 1 

⋂
…

⋂
𝐴̄ 𝑗 𝑖 

) )
(1) 

The original method, Eq. (1) , may not be intuitive and as such (in
he context of Type-1 Fuzzy Numbers) it can be simplified into Eqs. (2 )
nd ( 3 ). 

𝐴 ( 𝑥 ) = 

∑𝑛 

𝑖 =1 μ𝐴̄ 𝑖 ( 𝑥 ) 
𝑛 

(2)

𝐴̄ 𝑖 
( 𝑥 ) = 

{ 

1 𝑙 𝐴̄ 𝑖 ≤ 𝑥 ≤ 𝑟 𝐴̄ 𝑖 , 

0 𝑒𝑙𝑠𝑒. 
(3)

In written terms, the IAA method defines the degree of membership
f a variable real number x for a given set of crisp intervals A , as the
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Fig. 1. Output of IAA given the set of intervals A1, along with its MC A list. 
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Fig. 2. Abstract representation of a generalised trapezoidal fuzzy number as 

seen in [7] . 
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requency (or count) of which x appears within each interval divided by
 (i.e. the cardinality of set A / | A | / the amount of intervals). Refer to
ig. 1 for example output of IAA given an elementary set of intervals. 

.2. Generalised fuzzy numbers 

A fuzzy number in the traditional sense is any set of real numbers
hat also includes a degree of membership for each element (i.e. the mag-
itude of which each element belongs to said set), whilst a generalised
uzzy number is a more specified subclass. A generalised fuzzy number
s one such type of fuzzy number represented by the following notation:
̃
 = ( 𝑎 1 , 𝑎 2 , 𝑎 3 , 𝑎 4 ; 𝑤 𝐴̃ ) . Where 𝑎 1−4 are the elements of the fuzzy number

̃
 , and 𝑤 Ã is considered the height (maximum degree of membership)
f the elements of said fuzzy number 𝐴̃ Depending on the relationship
f the elements 𝑎 1−4 (the shape of the membership function curve pro-
uced) further subclasses of generalised fuzzy numbers are defined; for
xample, triangular, trapezoidal, crisp etc. Generalised fuzzy numbers
aving such requirements beyond that of traditional fuzzy numbers al-
ows for their elegant application, particularly in areas such as risk anal-
sis and decision making [4 , 7 , 8] . 

As discussed in the previous section, Khorshidi and Nikfalazar
7] proposed a group of useful attribute definitions that are then utilised
o produce a similarity measure for two generalised fuzzy numbers. Ex-
luding the variables to define the generalised fuzzy numbers them-
elves, the attributes described within [7] that produce the proposed
imilarity measure are area, perimeter, centroid-x and centroid-y, which
ollow their standard mathematical definitions given the curve produced
y the membership function is defined as a geometric shape. Fig. 2 illus-
rates how the membership function over the x-y axis produces geomet-
ic shapes; in this case it produces a trapezoid. Given two generalised
uzzy numbers 𝐴̃ and 𝐵̃ , the proposed similarity measure by [7] is de-
ned by Eq (4) . Where 𝐴 ( ̃𝐴 ) is the area of 𝐴̃ , 𝑃 ( ̃𝐴 ) is the perimeter of
̃
 , and 𝑑 ′( ̃𝐴 , 𝐵̃ ) is the centroid distance between 𝐴̃ and 𝐵̃ as defined by
q. (5) . 

 

(
𝐴̃ , 𝐵̃ 

)
= 

( 

1 − 

∑4 
𝑖 =1 

||𝑎 𝑖 − 𝑏 𝑖 
||

4 
× 𝑑 ′

(
𝐴̃ , 𝐵̃ 

)) 

×
⎛ ⎜ ⎜ ⎜ ⎝ 1 − 

(|||𝐴 

(
𝐴̃ 

)
− 𝐴 

(
𝐵̃ 

)||| + 

||𝑤 𝐴̃ − 𝑤 𝐵̃ 
|| + 

|𝑃 ( ̃𝐴 ) − 𝑃 ( ̃𝐵 ) |
max ( 𝑃 ( ̃𝐴 ) , 𝑃 ( ̃𝐵 ) ) 

)
3 

⎞ ⎟ ⎟ ⎟ ⎠ (4) 
 

′(𝐴̃ , 𝐵̃ 

)
= 

√ 

( 𝐶 𝑥 𝐴̃ − 𝐶 𝑥 𝐵̃ ) 
2 + ( 𝐶 𝑦 𝐴̃ − 𝐶 𝑦 𝐵̃ ) 

2 √
1 . 25 

(5) 

In-depth theory, exploration and proofs as to the final construction
f this similarity measure are depicted by Khorshidi and Nikfalazar [7] ,
hey conclude that the similarity measure effectively handles the draw-
acks of those proposed in previous works. 

. Proposed attributes 

In this section, a description of all the attributes of IAA fuzzy num-
ers necessary for the proposed similarity measure are provided. Each
lgorithm throughout this section relies on the concept that IAA fuzzy
umbers are representable as a list of tuples describing the regions ( R ) of
hange over the membership function 𝜇A ( x ), this list is referred through-
ut this study as Membership Curve ( MC A ). Refer to Eq. (6) and Fig. 1 for
n abstract and practical illustration of the MC A list respectively. Where
 refers to a region of the curve, with left point, right point and height
ata. MC A is a list comprised of regions R that reflect the membership
unction over the domain. 

 𝑖 = 

([
𝑅 𝑖 𝑙 , 𝑅 𝑖 𝑟 

]
, 𝑅 𝑖 ℎ 

)
 𝐶 𝐴 = 

[
𝑅 1 , 𝑅 2 , … , 𝑅 𝑛 −1 , 𝑅 𝑛 

]
(6) 
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Where l = left (start) point, r = right (end) point, and h = height
degree of membership) 

.1. Area 

The area of an IAA fuzzy number, Eq. (7) , is the geometric area of
ts membership function curve. Currently, the definition of area has not
hanged from the geometric standard. Therefore, it is simply defined as
he sum of the area of regions within the membership function curve.
iven that all regions can be described as either rectangles or lines (i.e.

ectangles of with an area of zero), the area of each region is defined as
ts width multiplied by its height 

 

(
𝑀 𝐶 𝐴 

)
= 

𝑛 ∑
𝑖 =1 

𝑅 𝑖 ℎ 
× ( 𝑅 𝑖 𝑟 

− 𝑅 𝑖 𝑙 
) (7)

.2. Perimeter 

The perimeter of an IAA fuzzy number, Alg (1) , the geometric
erimeter of its membership function curve. That is, the perimeter is
he sum of the edges (also referred to as margin, or boundary) produced
y the shape of the curve. Perimeter both quantifies certainty and un-
ertainty as well as be responsive to small changes in the membership
unction curve. 

Algorithm 1. Perimeter. 

.3. Centroid 

The centroid, Eqs. (8) and (9) , also known as the ‘centre of mass’ or
weighted mean’, is the arithmetic mean position of all points within a
hape. To define the exact centre point of an entire shape, the location
f the centroid on all axes must be given, so in the case of Type-1 Fuzzy
umbers there exists a centroid-x and centroid-y. The generic geometric
entroid is calculated as the centre of each region of a shape, multiplied
y the area of that region, the sum of which is then divided by the total
rea of the shape. In doing this it then ‘weighs’ each centre point, thus
kewing the final overall centre point in the direction with the most area
mass). 

The centroid has been modified to be susceptible to changes in both
egions with and without area equally. To achieve this, the ‘mass’ has
een redefined from geometric area to the degree of membership/height
f each region (in contrast to the width multiplied by height) and each
egion as the start and end lines to each rectangle (for a single line that is
lso its location on the x-axis doubled). This variant method effectively
onsiders the mass of both uncertain and certain areas equally. 
ent roi 𝑑 𝑥 
(
𝑀𝐶 𝐴 

)
= 

∑𝑛 

𝑖 = 0 
(
𝑅 𝑖 ℎ × 𝑅 𝑖 𝑙 

)
+ 

(
𝑅 𝑖 ℎ × 𝑅 𝑖 𝑟 

)∑𝑛 

𝑖 = 0 2 
(
𝑅 𝑖 ℎ 

) (8) 

𝑒𝑛𝑡𝑟𝑜𝑖 𝑑 𝑦 
(
𝑀 𝐶 𝐴 

)
= 

∑𝑛 

𝑖 = 0 𝑅 𝑖 ℎ ∕2 
𝑛 

(9)

.4. Quartiles 

The quartiles are those defined in classical statistics. Three values
hat define various median data points of a given set of values. The first
uartile being the median between the minimum value and the median
f the set, the second quartile being simply the median of the set, and
he third quartile being the median between the median of the set and
he maximum value. 

Regarding IAA fuzzy numbers, the quartiles attribute is a tuple of five
alues (also known as a five-number summary), the minimum, quartile
, quartile 2, quartile 3 and maximum of the ordered set of left and right
oints, 𝑙 𝐴̄ and 𝑟 𝐴̄ . The left and right points can either be obtained via the
riginal interval set A , or extracted from the membership function 𝜇A ( x )
urve by normalizing the points of change on the x-axis. Either method
ields the same results, the set of left and right points along with their
espective frequencies can be separated into percentiles, providing the
uartile data. 

.5. Agreement ratio 

The agreement ratio, Alg (2) , proposed by Navarro et al. [11] is a
easure within the range of 0 and 1 of the agreement amongst the data

ources (e.g. experts) that have provided their opinion as intervals. It has
hown to be a useful unique statistic of IAA fuzzy numbers that quantify
he overall group certainty of data sources. The agreement ratio is the
nly attribute utilised within this study that requires knowledge of the
riginal set of intervals A together with the respective IAA fuzzy number.
he original definition of the agreement ratio [11] remains undefined
or an IAA fuzzy number produced from a single interval (i.e. when
 A | = 1), nor does it account for intervals that have equal left and right
alues (i.e. when 𝑙 𝐴̄ = 𝑟 𝐴̄ ). As this study does account for these previously
ndefined sets of intervals, a proposal of some minor additions to the
riginal definition of the agreement ratio is required. 

Regarding the first issue of single interval sets, the agreement ratio
f such a set is now defined to be consistently 1. The reason being is
hat from a purely logical perspective, it would be reasonable to assume
hat a single entry would be in complete agreement with itself. From a
athematical perspective, a definition of 1 is also fitting. The original

lgorithm utilises the degree of membership as a means of weighting the
ata, and an IAA fuzzy number constructed from a single interval only
as one degree of membership that is 1. With no opposing intervals, it
easonably follows that the agreement ratio is 1. 

Concerning the second issue of equal left and right values, they are
sually included without error. However, they do produce single line
egions and as a consequence have a distance of zero. If a division hap-
ens to include a total distance of zero in the denominator, a division
y zero error occurs. The agreement ratio algorithm now excludes iter-
tions that would induce a division by zero error. 

Note that intervals are not considered in agreement when a right
oint of one is equal to the left point of another, for example, the agree-
ent ratio of set {[1,2], [2 , 3] } would evaluate to 0. Only when a right
oint of one interval is greater than the left point of another are they con-
idered to share agreement, for example, agreement ratio of set {[1,2],
1.9,3]} would evaluate to 0.05. 

For the agreement ratio to be computed, it requires ‘alpha length’
efined in Alg (3) . Alpha length when given a real number a and MC A ,
omputes the total length of all regions with a degree of membership
qual to or above a . 
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Fig. 3. Examples of the proposed similarity measure output on various IAA fuzzy numbers. 
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Algorithm 2. Agreement Ratio. 

Algorithm 3. Alpha Length. 

. Proposed similarity measure 

In this section, a description of the proposed similarity measure is
rovided. The similarity measure proposed for IAA fuzzy numbers builds
pon the theory of Eq. (4) , that is the similarity measure for gener-
lised fuzzy numbers proposed by Khorshidi and Nikfalazar [7] . The
roposed similarity measure of this study is a linear model that returns
 value between 0 and 1 reflecting the similarity of two IAA fuzzy num-
ers. The features of this model are themselves similarity measures of
he attributes described in the previous section, all in turn also return-
ng a value between 0 and 1, with their weighted mean being the final
utput. 

The weights were calculated using the Principal Component Analy-
is (PCA) method, an unsupervised Machine Learning technique useful
or dimension reduction. PCA compresses the information of the fea-
ures into lower numbers of components. The first principal component
eeps the largest information of the dataset. The first principal compo-
ent works as a weighted average where weights are factor loadings.
o, we can come up with our linear model. The first principal com-
onent has been used for developing composite indices [13] . To learn
he weights, we randomly generated a large dataset of IAA fuzzy num-
ers which were produced by interval sets. The absolute values of the
eights outlined are an indication of the effectiveness each attribute had
hen separating the data under PCA, with their sum of squared values
qualling 1. As is the consequence with random datasets the compu-
ations will fluctuate with every execution of the evaluation software,
owever, the weights proposed within this study were those that reflect
he point of convergence, that is, a re-execution will result in weights
f little difference. Perimeter, quartile, height and agreement attributes
ere all evaluated to have similar weights with little fluctuation in rank,
ith only area and centroid-x being substantially lower; implying that
rea and centroid-x are relatively not diverse amongst the data. The
eights are by no means absolute and are expected to be modified given

he context of varying scenarios. For example, quartiles are potentially
ore relevant when ranking IAA fuzzy numbers as they reflect direction

nd magnitude to ideal values, whilst perimeter and area are potentially
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Fig. 4. IAA fuzzy number representation of the film dataset. 
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ore relevant when pattern-matching as they fluctuate due to changes
n shape and not position. 

The proposed similarity measure is outlined in Eq. (10) and Table. 1 .
ote that 𝑤 𝐴̃ refers to the height of 𝐴̃ , that is the maximum degree of
embership recorded across the domain, and the variable a i refers to

he ith quartile (five-number summary) of 𝐴̃ . 

 

(
𝐴̃ , 𝐵̃ 

)
= 

( 

1 − 

6 ∑
𝑖 =1 

𝑤 𝑖 
2 𝑓 𝑖 

) 

(10)
When a global range is known: 𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 −
𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 , when a global range is unknown: 𝑟𝑎𝑛𝑔𝑒 =
𝑎𝑥 ( 𝑎, 𝑏 ) − 𝑚𝑖𝑛 ( 𝑎, 𝑏 ) 

A collection of diverse example uses of the proposed similarity
easure are illustrated within Fig. 3 . The global range was con-

idered unknown and therefore used a local range for each ex-
mple. Set 1 through to Set 6 are all demonstrations of ways in
hich differing uncertainty within the data, overlap of membership
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Fig. 5. Similarity amongst the critic IAA fuzzy numbers. 
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unction 𝜇A ( x ) curves and height variations affect the evaluated
imilarity. 

. Illustrative example 

In this section, an illustrative example study is provided to demon-
trate and analyse the proposed measure described throughout this
tudy. The dataset is synthetic, it has been provided to illustrate essen-
ial use, and emphasise specific benefits and issues of the implementa-
ion. Furthermore, the synthetic dataset is not confidential, and there-
ore open to those seeking to re-evaluate this experiment, or as a contrast
hen applying implementation in future research. 

The following dataset, Table 2 , regards ten films that have been re-
iewed by five critics. Hypothetically, the critics were asked to give their
pinion as an interval, of which crisp (i.e. when 𝑙 𝐴̄ = 𝑟 𝐴̄ ) and decimals
alues were permitted, with scores being from 1 to 10. 

The interval-valued dataset has been intentionally constructed to
emonstrate a wide range of possible IAA fuzzy numbers, illustrating
se of the similarity measure. Each entry regards varying plausible re-
ctions that groups may have towards a film. Film A is the worst possible
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Table 1 

Similarity measure feature, Eq (11 - 16), and weight vectors. 

Feature vector - f Weight vector - w 

Quartile Distance: 
∑5 

𝑖 =1 |𝑎 𝑖 − 𝑏 𝑖 |
5( 𝑟𝑎𝑛𝑔𝑒 ) 

(11) 0.320726 

Centroid Distance: 

√
( Cx ( ̃𝐴 )− Cx ( ̃𝐵 ) ) 2 + ( Cy ( ̃𝐴 )− Cy ( ̃𝐵 ) ) 2 √

( range ) 2 + 0 . 5 2 
(12) − 0.509757 

Area Difference: |𝐴 ( ̃𝐴 )− 𝐴 ( ̃𝐵 ) |
max ( 𝐴 ( ̃𝐴 ) ,𝐴 ( ̃𝐵 ) ) 

(13) 0.100985 

Height Difference: |𝑤 𝐴̃ − 𝑤 𝐵̃ | (14) − 0.461649 

Perimeter Difference: |𝑃 ( ̃𝐴 )− 𝑃 ( ̃𝐵 ) |
max ( 𝑃 ( ̃𝐴 ) , 𝑃 ( ̃𝐵 ) ) 

(15) 0.444451 

Agreement Ratio Difference: |AR ( ̃𝐴 ) − AR ( ̃𝐵 ) | (16) − 0.465218 

Table. 2 

Synthetic film review dataset. 

Critic 1 Critic 2 Critic 3 Critic 4 Critic 5 

Film A [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] 

Film B [5, 6] [6, 7] [10, 10] [3, 4] [5, 5] 

Film C [2, 3] [1, 3] [4, 7] [1, 3] [4, 5] 

Film D [6, 6] [6, 10] [8, 10] [5, 9] [2, 3] 

Film E [1, 4] [2, 3] [7, 8] [3, 3] [2, 4.4] 

Film F [7, 7] [8, 9.2] [9, 10] [8, 9] [9, 10] 

Film G [8, 9] [9, 10] [9.5, 9.5] [9, 10] [10, 10] 

Film H [1.5, 6.5] [3, 10] [1, 10] [2, 9.3] [8, 8.8] 

Film I [8, 8] [8, 8] [8, 8] [8, 8] [8, 8] 

Film J [10, 10] [10, 10] [10, 10] [10, 10] [10, 10] 
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esponse a group in this scenario may have, while in contrast, Film J is
he ideal best response. Film B received a favourable, higher than aver-
ge response. Film C received a mediocre, lower than average response.
ilm D received a favourable response, however, was disliked by Critic
. Film E received a mediocre response; however, Critic 3 held it in high
egard. Film F received a very favourable response. Film G received an
xtremely favourable response, which would likely be considered the
ighest ‘realistic’ response a film would receive in the real-world. Film
 received an erratic response with no clear skew. Finally Film I received
 crisp set of 8/10 scores, and while unlikely to occur in the real-world,
evertheless provides a further analysis of IAA fuzzy numbers bound to
 specific crisp point. 

Regarding the Critic selection. Critic 3 reflects an individual that gen-
rally responds well to films, and Critic 2 and Critic 4 were intentionally
roduced to have similar opinions. Each of the film’s scoring set of in-
ervals is then constructed into an IAA fuzzy number, as illustrated in
ig. 4 . In the case of this illustrative example, the process required for
omparing each set of intervals (i.e. aggregated reviews of each Film A
o J) using the proposed similarity measure is outlined by the following
teps: 
Table. 3 

Similarity amongst the film IAA fuzzy numbers outlined in 

Film A Film B Film C Film D Film E 

Film A 1.0000 0.4830 0.5527 0.3993 0.5900

Film B 0.4830 1.0000 0.7422 0.7686 0.7028

Film C 0.5527 0.7422 1.0000 0.8120 0.9461

Film D 0.3993 0.7686 0.8120 1.0000 0.7755

Film E 0.5900 0.7028 0.9461 0.7755 1.0000

Film F 0.3867 0.6342 0.6308 0.7633 0.6781

Film G 0.3747 0.6829 0.5851 0.7211 0.5471

Film H 0.4444 0.6859 0.7351 0.8305 0.7843

Film I 0.7182 0.5882 0.4545 0.5881 0.5020

Film J 0.6377 0.5173 0.3740 0.5222 0.4215
(1) Using either Eq (1) or Eq (2 , 3 ) construct an IAA fuzzy number
for every film using their respective sets of interval scores, with
each interval set being a row in Table. 2 . The output of such is
given in Fig. 4 . 

(2) Compute all attributes outlined in Section 4 for each IAA fuzzy
number constructed in Step 1. Again, the output for such is given
in Fig. 4 . 

(3) Having computed each IAA fuzzy number along with their re-
spective attributes, they are now comparable whilst being input
for the proposed similarity measure described in Section 5 ; Eq
(11). The output of the proposed similarity measure across all
IAA fuzzy numbers constructed from Step 1 along with their at-
tributes from Step 2 is given in Table. 3 . 

The proposed similarity measure is used on the synthetic dataset pre-
iously outlined. As the similarity measure was developed as a means of
omparing IAA membership function curves, it is most useful when at-
empting to extract potentially important patterns within data. Without
odification, the proposed similarity measure’s primary functionality

n this scenario would be to simply evaluate the similarity of reception
o between each film. Note that the global range has now been defined
ithin the constraints of this scenario, being evaluated to 9 (i.e. 10 - 1).
he two separate films that are evaluated to have the highest degree of
imilarity are Film C and Film E, having a clearly similar structure over
heir membership function curves, that is two primary regions with the
eft half side being higher than the right. The two separate films evalu-
ted to have the second highest degree of similarity are Film I and Film
, this is appropriate given their membership function curves are of the
xact same shape with the only difference being their location on the
-axis. The two separate films that are evaluated to have the lowest de-
ree of similarity are Film C and Film J, this is the result of Film C not
nly being very different in shape to Film I, but it is also placed within
he lower half of the x-axis. 

For the purposes of this illustration, other intriguing information
ay be the similarity of opinions amongst the critics. When recommend-

ng films to a critic, in contrast to recommending the highest-rated film,
ffering them films based on the films that others with similar tastes
o them have enjoyed (and conversely, avoiding films that they haven’t
njoyed) may be more relevant to the critic personally. 

A simple method of comparing the similarity between critics would
e first to construct IAA fuzzy numbers out of their survey responses,
hen record the similarity of said fuzzy numbers. The sets of intervals
egarding each critic is the transpose of the original dataset (matrix)
able 2 . Thus, the fuzzy numbers for each critic, along with their respec-
ive similarity measure outputs have been computed and contrasted, as
een in Fig. 5 . As previously mentioned, Critic 2 and Critic 4 were in-
entionally synthetically produced with similar opinions in mind, and
he proposed similarity measure does indeed successfully capture this
s they are two separate critics evaluated to share the highest degree of
imilarity. 
Fig. 4 . 

Film F Film G Film H Film I Film J 

 0.3867 0.3747 0.4444 0.7182 0.6377 

 0.6342 0.6829 0.6859 0.5882 0.5173 

 0.6308 0.5851 0.7351 0.4545 0.3740 

 0.7633 0.7211 0.8305 0.5881 0.5222 

 0.6781 0.5471 0.7843 0.5020 0.4215 

 1.0000 0.8498 0.7072 0.6629 0.6546 

 0.8498 1.0000 0.5836 0.6559 0.6865 

 0.7072 0.5836 1.0000 0.5511 0.4835 

 0.6629 0.6559 0.5511 1.0000 0.9195 

 0.6546 0.6865 0.4835 0.9195 1.0000 
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. Conclusion 

As the IAA method is a relatively recent method for constructing ag-
regated fuzzy numbers, developing new measures for it requires the
bstraction and application of contributions of studies involving other
ypes of fuzzy numbers. In the case of this study, generalised fuzzy num-
ers were used as the primary source of inspiration. In this paper, a new
ethod is proposed to measure the similarity between two IAA fuzzy
umbers. To reach this goal, we define new features for similarity of
AA fuzzy numbers for the first time. In addition, we introduce a novel
pproach to construct the similarity measure based on these features
sing PCA as a machine learning technique. The proposed similarity
easure was demonstrated utilising a diverse range of IAA fuzzy num-

ers, depicting adequate evaluation of little and substantial differences
n structure. Without modification, the use of the proposed similarity is
o provide a means of comparison between two IAA fuzzy numbers, and
herefore is also means of comparison between sets of interval-valued
ata. We provided an illustrative example as a demonstration of the stan-
ard use of the proposed similarity measure, which was a comparison of
lms given interval scores, as well a comparison of film critics based on
aid scores. Similarly, the proposed similarity measure can be applied
n different case studies to compare alternatives and decision-makers. 

Potential future work would include updates to the proposed
ttributes, as base modifications have been made to their original
efinitions to allow for compatibility with IAA fuzzy numbers, though
urther appropriate modification would likely result in the better rep-
esentation and separation of IAA fuzzy numbers. Similarity measures
llow data types to be applicable in various areas of machine learning
s a frequent requirement is the comparison between data points,
herefore the contributions of this study is one such potential opening
or the future practical application of aggregate fuzzy numbers from
nterval-valued data utilising the IAA method. 
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