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A B S T R A C T

This paper focuses on estimating the quality of a clustering process. The task is to cluster
short speech segments that belong to different speakers. A variety of statistical parameters
are estimated from the output of the clustering process. These parameters are used to train a
logistic regression to serve as a clustering quality estimation system. In this paper, mean-
shift clustering with either a cosine distance or probabilistic linear discriminant analysis
(PLDA) score as the similarity measure, as well as stochastic vector quantization (VQ) with
cosine distance, are applied in order to cluster the short speaker segments, which are repre-
sented by i-vectors. The quality of the clustering is measured using the average cluster purity
(ACP), average speaker purity (ASP) and K, which is the geometric mean of ASP and ACP. We
show that these measures can be estimated fairly well by applying logistic regression. More-
over, clustering quality may be well estimated even if the logistic regression was trained
using parameters derived from a different clustering algorithm. This is very important, as it
allows the use of a single quality estimation system, without the need for retraining when
the clustering method is changed.
Additionally, we showed how the clustering quality estimator could be served as an estima-
tor of the number of clusters. For VQ-based clustering the number of clusters has to be pre-
defined. We perform the clustering with different number of clusters. The best number of
clusters is estimated as the clustering that achieved the higher estimation of the K value. We
will show that this approach estimate the best number of clusters accurately.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Short-segments speaker clustering has considerable importance both for diarization (Ben-Harush et al., 2012; Lapidot et al., 2017;
Senoussaoui et al., 2014; Anguera Miro et al., 2012) and applications such as short push-to-talk (PTT) segments clustering (Shapiro et al.,
2015; Salmun et al., 2017). The output of clustering is frequently passed as an input to the next task, for instance, speaker verification.
The success of the subsequent task is highly dependent on the quality of the clustering. For this reason, measuring the clustering quality
is of high importance. In the case of poor clustering, it might be better not to take action at all. Unlike supervised tasks, where the output
can be presented in terms of a likelihood ratio (which effectively reflects the level of confidence in the decision), quality estimation for
clustering is less straightforward. The current study presents a simple approach in which a supervised logistic regression is trained to
carry out clustering quality estimation. In previous work (Cohen and Lapidot, 2017), we showed that logistic regression can be trained
to estimate average cluster purity (ACP), average speaker purity (ASP) and K¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ASP ¢ACPp

; Ajmera et al. (2002). The results of the quality
estimation are highly dependent on the clustering algorithm (Cohen and Lapidot, 2018a). In this study, we extend this research and
show that it can be trained to be clustering-algorithm independent. This means that while the same features (or speaker models) are
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used for clustering, e.g., normalized i-vectors, the clustering quality can bewell estimated evenwhen different clustering algorithms are
applied. For example, clustering might be achieved using the mean-shift with cosine distance as the similarity measure or the mean-
shift with probabilistic linear discriminant analysis (PLDA). To emphasize the difference to our previous works, the mean-shift algorithms
which are presented in Section 2, are based on Shapiro et al. (2015); Salmun et al. (2017) without modifications. The novelty is in the
clustering quality estimation and in its analysis. Like in previous works, in the current research, all the experiments are performed in a
simulated way using NIST SRE 2008 databases (LDC Catalog https://catalog.ldc.upenn.edu), as there are no public databases which fit
the real world push-to-talk data.

In this paper, we investigated the clustering quality estimation on both mean-shift clustering algorithms and a stochastic VQ
(vector quantization) with cosine metric-based technique (Cohen and Lapidot, 2018b). The mean-shift was chosen as it showed
promising results in previous works (Senoussaoui et al., 2014; Shapiro et al., 2015; Salmun et al., 2017). We present different ver-
sions of the mean-shift in the past (Shapiro et al., 2015; Salmun et al., 2017) and nowwe apply these algorithms as a test cases for
clustering quality estimation. For VQ-based clustering, the number of clusters either has to be known in advance or it has to be
estimated (Jain, 2010; Bezdek et al., 1984; Kohonen, 1990; Pal et al., 2005). Many objective criteria exist for estimating the num-
ber of clusters (Chen and Gopalakrishnan, 1998; Tibshirani et al., 2001; Hansen and Yu, 2001; Figueiredo and Jain, 2002; Bolsha-
kova and Azuaje, 2003). We applied the clustering quality estimator as a subjective, supervised, task dependent criterion to
estimate the number of clusters. The VQ was performed on codebooks of different sizes, and the best clustering result was esti-
mated using the logistic regression. The algorithm was tested on a large range of speakers, from 2 to 60. The results were com-
pared to those of the mean-shift clustering method, which has already been tested for this task several times on a number of
occasions. The VQ results were somewhat inferior to those of the cosine similarity measure-based mean-shift clustering.

The rest of the paper is organized as follows: Section 2 presents the different variants of the mean-shift clustering algorithm
investigated in this study. Section 3 describes the stochastic VQ with cosine distance algorithm. The description of the clustering
quality estimator is given in Section 4. The experimental methods and results are presented in Section 5. Finally, Section 6 con-
cludes the paper.
2. Mean-shift algorithm

This section describes all the variants of the mean-shift algorithm applied in this study. They are all variants of the mean-shift
algorithm that is based on Euclidean distance (Comaniciu and Meer, 2002). This algorithm has been used for speaker diarization
in Senoussaoui et al. (2014), where the authors used a cosine distance instead of the Euclidean distance. Variants of cosine-based
mean-shift clustering for short push-to-talk segments were presented in Shapiro et al. (2015). In Salmun et al. (2017) a mean-shift
algorithm with PLDA score as the similarity measure was trained on short segments. Since one of the goals of the present study
was to examine the robustness of the clustering quality estimator to different clustering algorithms, three variants of the mean-
shift algorithm were investigated.

2.1. Standard mean-shift algorithm

Mean shift algorithm is a non-parametric iterative algorithm. It estimates the probability density function (pdf) of a random
variable (Fukunaga and Hostetler, 1975). The algorithm is inspired by the Parzen window approach to non-parametric density
estimation. The algorithm does not require any prior knowledge regarding the number of clusters, and has no assumptions
regarding the shape of the clusters. Dense regions in the feature space correspond to local maxima or to the pdf modes. As such,
for each data point, in order to reach the local maximum of the pdf, a gradient ascent on the estimated local density is performed
until convergence is reached. Each stationary point represents a mode of the density function. Data points that are associated
with the same stationary point are assigned to the same cluster.

The gradient of the density function is required in order to find the above mentioned modes. Following the mathematical for-
mulation in Senoussaoui et al. (2014), Comaniciu and Meer (2002), Fukunaga and Hostetler (1975), the mean shift vector mh(x)
expression is derived according to (1).

mhðxÞ¼
P

xi 2 Sh xð Þ xi
Sh xð Þ �x ð1Þ

where x is the current position of the d dimensional i-vectors; h is the neighborhood (or the bandwidth) from which the gradient
is estimated, and Sh(x) is the set of i-vectors that are the neighbors of i-vector x, ShðxÞ � xi : k x�xi k�hf g.

Let X¼ xj
� �J

j¼1 be d dimensional i-vectors to be clustered, then the mean-shift algorithm is as described in Algorithm 1. For each xj
out of X an iterative procedure is applied: find the neighbors of xj; calculate the shift according to Eq. (1); shift xj; repeat the procedure
with the shifted i-vector until convergence. Convergence in this case is defined as a shift’s norm which is smaller than a threshold Th1.
The last step is merging the shifted i-vectors which have an Euclidean distance smaller than Th2 to the same cluster.
2.2. Modifications of the mean-shift algorithm

The modifications to the mean-shift algorithm were based on the following findings in the literature: (a) the PLDA score is
preferable to both the Euclidean and the cosine distances, and (b) i-vector length normalization, f¼x= k x k ; prior to
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Algorithm 1. Mean-shift clustering algorithm.

Y. Cohen and I. Lapidot / Computer Speech & Language 65 (2021) 101139 3
dimensionality reduction makes the algorithm more stable than without normalization Salmun et al. (2017). A further modifica-
tion is to replace the bandwidth h with maximal number of neighbors k, such that only i-vectors with positive scores are used as
neighbors, even if the final number of neighbors is less than the pre-defined value k (replacing Sh(x) by Sk(x)). This meant that
Sk(x) consisted of at most k i-vectors that are closest to x (or f in the normalized version), all of which had a non-negative PLDA
score with respect to x.

Before calculating the PLDA, a dimensionality reduction is performed by applying principal component analysis (PCA) to the i-
vectors. Whitening (matrix C) and length normalization are applied to the low dimensional i-vectors (q< d dimensional) is
according to (2).

’¼ CTf
kCTf k ð2Þ

In previous study we examined the use of PLDA for convergence stopping criterion (Th1) and for the merging process (Th2),
however, it did not lead to any conclusive improvement and is much more computationally demanded, (Salmun et al., 2017). As
such, the Euclidean distance is used as in the original mean-shift algorithm.

The PLDA-based mean-shift algorithm is described in Algorithm 2, and the short-segments clustering process is presented in
Algorithm 3. The short-segments clustering apply the mean-shift clustering as the main block after a pre-processing.

Since the goal of this study is to test the robustness of the clustering quality estimator to different clustering algorithms, a
modification to the baseline mean-shift algorithm were also examined:



Algorithm 2. PLDA-based mean-shift algorithm.
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�
 A cosine metric is applied to find the best k neighbors, instead of the PLDA score. Such a metric has the advantage that it can
be applied when there are insufficient labeled and reliable data to train the PLDA. This way, the clustering process is fully
unsupervised, as the cosine metric is calculated directly from the normalized i-vectors fj.
Thus, in the modification we used exactly the same features (f), normalized i-vectors, but with a different optimization crite-
rion (cosine distance instead of PLDA).

3. Stochastic VQ algorithm

In VQ based-clustering methods, the goal is to cluster a set of i-vectors into Q clusters, (Cohen and Lapidot, 2018b). This num-
ber should be defined a-priori. In this algorithm, we used a cosine metric as the optimization criterion instead of the commonly



Algorithm 3. Short speaker-segments clustering algorithm.
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used Euclidean distance, as the latter has been found to be a poor similarity measure for speaker recognition technologies. We
applied a stochastic VQ algorithm. Given a training dataset of i-vectors, X¼ xj

� �J
j¼1; the goal of VQ is to cluster those i-vectors into

Q groups that are represented by Q centroids B¼ bq
� �Q

q¼1. The stochastic training of the VQ-based clustering algorithm is described
in Algorithm 4.

It is important to mention that in this clustering approach, the number of clusters, Q, is not estimated and has to be set in advance.
The estimation of the best value of Q was performed by clustering according to several codebook (CB) sizes and choosing the one with
the best estimated clustering quality value, K (described in Section 4). The simplest way to estimate the Q value is shown in Fig. 1.

The clustering algorithm proceeded as follows. Firstly, all the i-vectors were normalized. The new set of normalized i-vectors
denoted byF. Q i-vectors were then chosen randomly fromF; these i-vectors constituted the initial CB B. Next, at each iteration, one
i-vector fj(t) was randomly chosen with replacement. The closest code-word from B was found, according to the cosine distance, and
was adapted. Finally, the adapted code-word was normalized to have norm 1. This process continued until the termination condition
was met. The adaptation factor, a, and the number of iterations, t, were chosen empirically. We set a¼0:005 and t¼106.
4. Clustering quality estimator

In this section we describe the estimator of the clustering quality. Firstly, we present a set of parameters (features) that are
calculated from the clustering results. These parameters were used as an input vector to the logistic regression. In the next sub-
section, 4.1, we define a set of criteria for evaluating clustering quality. Finally, the logistic regression technique is briefly
described. This clustering validation system has already been presented in Cohen and Lapidot (2017). However, in the current
work we perform a deeper analysis of the generalization capabilities of the system.



Algorithm 4. Stochastic VQ.

Fig. 1. Clustering system based on stochastic VQ and a clustering quality estimator.
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4.1. Clustering validity parameters

The input features for the logistic regression are presented below. These features were used to measure the degree of separa-
tion in the data. Firstly we present a set of internal cluster quality measures (features), which do not need the class labels:
fij - jth normalized i-vector of the ith cluster

Ci - Cluster i

Q - Number of clusters

mi - Mean of cluster i

m - Mean of the whole dataset

Ji - Number of vectors in cluster i

J - Total number of vectors in the dataset

d(a, b) - Euclidean distance between two vectors

Rab - Pearson correlation coefficient
Pearson correlation coefficient between two d dimensional vectors is defined as in (3).

Rab¼
a> ¢bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a> ¢a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
> ¢b

q
a¼a�1d ¢ 1d

Xd
l¼1
al b¼b�1d ¢ 1d

Xd
l¼1
bl

ð3Þ

where > is the transpose operator and 1d id a d dimensional all-ones vector.
When calculating the following parameters, we used a normalized Pearson correlation coefficient, calculated according to [0,

1] as 0:5 1�Rab
� �!Rab. In this conversion we convert the correlation coefficient to a “distance”. Additionally, we define:

Rwi - The within-cluster dispersion is given in (4).

Rwi ¼
XJi
j¼1

Rfijmi
ð4Þ

Rbij ¼Rmimj
- The dispersion between clusters i and j.

WSL - within single linkage (Bolshakova and Azuaje, 2003):

The minimal Euclidean distance between two data points from the same cluster, defined in (5):

WSL¼ mini minn 6¼m d fin;fimð Þf gg� ð5Þ
WCL - within complete linkage (Bolshakova and Azuaje, 2003):

The maximal Euclidean distance between two data points from the same cluster, defined in (6):

WCL¼ max1�i�c maxn6¼m d fin;fimð Þf gg� ð6Þ
WAL - within average linkage (Bolshakova and Azuaje, 2003):

The average Euclidean distance between all pairs of data points from the same cluster, defined in (7):

WAL¼mean
i

mean
n6¼m

d fin;fimð Þf g
� �

ð7Þ

BSL - between single linkage (Bolshakova and Azuaje, 2003):

The minimal Euclidean distance between two data points from different clusters, defined in (8):

BSL¼min
i 6¼j

minfin 2Ci ;fjm 2Cj
d fin;fjm

	 
n o��
ð8Þ

BCL - between complete linkage (Bolshakova and Azuaje, 2003):

The maximal Euclidean distance between two data points from different clusters, defined in (9):

BCL¼max
i6¼j

maxfin 2Ci ;fjm 2Cj d fin;fjm

	 
n o��
ð9Þ
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BAL - between average linkage (Bolshakova and Azuaje, 2003):

The average Euclidean distance between all pairs of data points from different clusters, defined in (10):

BAL¼mean
i6¼j

mean
fin 2Ci ;fjm 2Cj

d fin;fjm

	 
n o( )
ð10Þ

BcenL - between centres linkage (Bolshakova and Azuaje, 2003):
The maximal Euclidean distance between the means of all pairs of clusters, defined in (11):

BcenL¼max
i 6¼j

d mi;mj

	 
n o
ð11Þ

DB - Davies-Bouldin index (Bolshakova and Azuaje, 2003):

This index aims at identifying sets of clusters that are compact and well separate, with smaller values indicating a “better”
clustering solution. The Davies-Bouldin index is defined in (12):

DB¼ 1
Q

XQ
i¼1

max
j 6¼i

RwiþRwj

Rbij

( )
ð12Þ

.
DUNN index (Bolshakova and Azuaje, 2003):

The Dunn index is defined in (13):

DUNN¼min
1�i;j�Q

Rbij

max1�k�Q Rwk

( )
ð13Þ

Large values of the Dunn index correspond to a good clustering solution.

Han - Hartigan index (Tibshirani et al., 2001):

The Hartigan index is defined in (14):

HanðQÞ¼ WQ

WQþ1
�1

� �
=ðJ�Q�1Þ ð14Þ

where

WQ ¼1
2

XQ
i¼1

Rwi

The Hartigan index was originally defined to estimate the number of clusters, but in this study, we did not have different cluster-
ing results corresponding to an increasing number of clusters. Since we could not compare different clusterings, we calculated
onlyWQ as an input feature to the logistic regression.

KL - Krzanowski-Lai (Tibshirani et al., 2001):

The Krzanowski and Lai index is defined in (15):

KLðQÞ¼
���� DIFFðQÞ
DIFFðQþ1Þ

���� ð15Þ

where

DIFFðQÞ¼ðQ�1Þ2=LWQ�1�Q2=LWQ

As in the case of the Hartigan index, a comparison between different clustering results was not possible. Therefore, we just used
the coefficient Q2/LWQ as an input feature.

Sep - Separation index (Chen et al., 2002):

The separation index is calculated as the weighted average between-cluster dispersion, defined in (16):

Sep¼ 1P
i 6¼j JiJj

X
i6¼j

JiJjRbij ð16Þ
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This index reflects the overall dispersion between clusters, with higher values indicating superior clustering results.

4.2. Clustering evaluation criteria

The set of features presented in Section 4.1 can be used as an input vector to the logistic regression, trained with an objective
function related to an external clustering quality measure. In this work, clustering quality was evaluated using the same criteria
as defined in Ajmera et al. (2002). The concept involved calculating both the average cluster purity (ACP) and the average speaker
purity (ASP). ACP measures the degree to which a cluster is limited to only one speaker, while ASP measures the degree to which
a speaker is limited to only one cluster. In the ideal case, both ACP and ASP are equal to 1.0. The geometrical mean of ACP and ASP,
K, is applied as an evaluation criterion to compare clustering systems. The formulation of the evaluation criteria is given in (17),
where the notation is as follows:
�
 R - Number of speakers,

�
 Q - Number of clusters,

�
 nqr - Total number of i-vectors in cluster q that are associated with speaker r,

�
 nq. - Total number of i-vectors in cluster q,

�
 n.r - Total number of i-vectors that are associated with speaker r.
ACP¼ 1
Q

XQ
q¼1

pq: ; pq:¼
XR
r¼1

n2
qr

n2
q:

ASP¼1
R

XR
r¼1

p:r ; p:r¼
XQ
q¼1

n2
qr

n2
:r

K¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACP ¢ASPp

ð17Þ

It is important to note that ACP is based on the cluster purities pq:
� �Q

q¼1; while ASP is based on the speaker purities p:rf gRr¼1.
These values are not probabilities, as they do not sum to one.

4.3. Logistic regression

Logistic regression is a well known algorithm which producing a rating of ordinal data in the range [0,1], (Bishop, 2006). By
applying the inverse logit function, a K value estimator was trained on the training set. The logistic expression (the inverse logit
function) is given in (18):

f ¼ 1
1þe�z

ð18Þ

where z¼wTcþb; andc and w are the following column vectors:
c - input feature vector (in our case, the different statistical features extracted from the clustering process, described in Sec-

tion 4.1), after mean substitution and variance normalization of each feature dimension.
w - the weights vector of the linear combination that is estimated on the training set.
f - the output of the logistic expression and is in the range [0,1]; it estimates the K value.
b - the bias.
The weights vector w was trained using N clustering trials, and computing for each trial n the corresponding pair cn;Kn

� �N
n¼1

including the internal cluster statistics vector cn and external quality measure Kn. The applied optimization criterion was the
minimum mean squared error (MMSE) between the clustering quality value Kn and the regression output fn. The prediction quality
of the estimator was tested on a separate evaluation dataset of sizeM. For each set of i-vectors, clustering was performed andcm

was calculated. The output fm of the logistic regression was obtained and compared to the true clustering performance Km. The
error of the system was calculated over allM test trials using (19).

E¼100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

Km�fmð Þ2
vuut ð19Þ

5. Experiment and results

In Cohen and Lapidot (2017) it was shown that ASP, ACP and K can be reasonably estimated when the same clustering algo-
rithm is used for training and evaluation. However, this is not always possible. The clustering algorithm may be changed for a
variety of reasons, e.g., a better algorithm is developed or an algorithm that has poorer performance but is much faster, and per-
forms adequately for some cases.



Fig. 2. The distribution of segment lengths (left) and the distribution of the number of segments per speaker (right) (Salmun et al., 2017).
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In this work only the K parameter is under examination. It will be shown that with a proper training strategy, logistic regres-
sion can accurately estimate the K value using different clustering algorithms. It will be also shown that clustering quality estima-
tor can be used as an estimator for the number of clusters in clustering algorithms that need this parameter to be predefined
(such as VQ based-clustering).

5.1. Design of the datasets

All the experiments were carried out using the NIST 2008 Speaker Recognition Database (LDC Catalog https://catalog.ldc.
upenn.edu). The test corpus short2-short3-Test7 was employed. Only male speakers were used for speaker clustering and clus-
tering quality estimation. 98 speakers were assigned to the dataset used to train the logistic regression, while the remaining 90
speakers were used as the test dataset. Thus, the two datasets were statistically independent.

For each speech segment, the Mel frequency cepstral coefficients (MFCC) were extracted using a 25ms Hamming window. 19
MFCC features together with log energy were calculated every 10ms, following by cepstral mean subtraction and variance nor-
malization. The features were augmented by delta and delta delta features, resulting in 60-dimensional feature vectors in total.

A male-only UBM of 2048 Gaussian mixture components was derived by training on the following protocols: Fisher Part ;
Switchboard II, Phase 2 ; Switchboard Cellular, Parts 1 and 2 ; and NIST 2004�2006 SREs (LDC Catalog https://catalog.ldc.upenn.
edu). A total variability matrix with a low rank (of 400) was also trained, using labeled data from the same databases as for the
UBM.

The speech files consisted of 5 min of English telephone speech that we segmented into small segments. The minimum seg-
ment length Lwas Lmin¼0:7 s; and the average length was Lav¼2:5 s. The distribution of the segment length can be approximated
using an exponential distribution:

L» Lminþ exp λð Þ; λ¼ 1
Lav�Lmin

The average number of segments per speaker was h¼34 and the standard deviation was s¼6:0. The distribution of the number
of segments per speaker Swas approximately Gaussian, S»N h;s2

� �
. The distributions are presented in Fig. 2.

For both the training and the test database, each clustering trial was designed by randomly choosing the number of speakers
in the range 2 to 60, while the number of segments per speaker was chosen according to the distribution in Fig. 2. For each data-
set 8000 trials were designed.

https://catalog.ldc.upenn.edu
https://catalog.ldc.upenn.edu
https://catalog.ldc.upenn.edu
https://catalog.ldc.upenn.edu


Fig. 3. The PMF of K for each clustering of the PLDA mean-shift training (upper sub-plot) and test (lower sub-plot) datasets.

Fig. 4. The PMF of K for each clustering of the Cosine mean-shift training (upper sub-plot) and test (lower sub-plot) datasets.
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Fig. 5. The PMF of K for each clustering of the stochastic VQ training (upper sub-plot) and test (lower sub-plot) datasets.

Table 1
Speaker clustering quality estima-
tion (MSE [%]) when the logistic
regression is trained (rows) and
tested (columns) on parameters
obtained from the three clustering
methods.

Test

Train PLDA Cosine VQ

PLDA 5.71 38.94 43.83
Cosine 7.22 5.00 6.80
VQ 34.29 13.56 5.36
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5.2. Baseline results

As was described in Sections 2 and 3, four clustering algorithms were used. We notate them as follows:
�PL
DA - PLDA-based mean-shift with normalized i-vectors,

�Co
sine - Cosine-based mean-shift with normalized i-vectors,

�VQ
 - Stochastic VQ with normalized i-vectors.

Although the training and test databases contained different speakers, it was important to verify that the two datasets had
similar distributions of K values. The comparisons between the probability mass functions (PMFs) for the three clustering algo-
rithms are presented in Figs. 3�5. It can be seen that in all cases, there is close similarity between the training and the test K val-
ues. As VQ training required knowing the size of the codebook in advance, both for the train and the test phases, and as it was
done on the same trials as the mean-shift, it was assumed that the codebook size is the same as has been estimated by the
cosine-based mean-shift. In Section 5.4 we will show how to estimate the codebook size using the trained clustering quality esti-
mator.

First we tested the clustering quality estimation for all combinations of training and test clustering methods; see Table 1. The
results are calculated according to Eq. (19). As expected, when the logistic regression was trained and tested using the same clus-
tering algorithm, the lowest MSE was obtained (the diagonal of the table). When estimating the clustering quality of VQ, with
training carried out using the Cosine algorithm, the degradation in quality estimation was acceptable. Training on the cosine-
based mean-shift data also resulted in acceptable estimation of the quality of PLDA. The results presented in Table 1 are the



Fig. 6. True K value versus estimated K is presented as a function of the number of speakers in the PLDA case.

Fig. 7. K value as a number of features in the PLDA case.
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average over the speaker numbers from 2 to 60. In Fig. 6, an example of true K value versus estimated K is presented as a function
of the number of speakers in the PLDA case. The tendencies of the true and the estimated K values are similar; however, logistic
regression under-estimate the true value between 4%�11%.

Another issue is the relevance of the features that are used for estimation. The results are presented in Fig. 7. We apply a
greedy search, starting with the best feature and adding one feature each time. According to the results, it seems that the optimal
number of features is between 10 and 12. In the rest of the experiments we will use 12 features.

The obtained results raise several questions: Does the quality depend on whether training is carried out using PLDA or cosine?
Does the quality depend on whether training is carried out using mean-shift or VQ? To have a better understanding of the results
we compare the distribution of K for each of the clustering methods. The PMFs are presented in Fig. 8. It can be seen that the K
values for the Cosine system lie in between the values of the PLDA and the VQ systems, and hence the Cosine system generalizes
these systems well. The results indicate that the optimization criterion and the precise clustering method are not the key factors



Fig. 8. The PMF of K values for each clustering method: Upper plot - PLDA; Middle plot - Cosine; Lower plot - VQ .

Fig. 9. PMFs of K from combined training sets: Upper plot - PLDA and VQ; Lower plot - PLDA, Cosine and VQ.

Table 2
Prediction error (MSE [%]) using multi-
class training of the logistic regression.

Test set PLDA and VQ All Best

PLDA 6.01 6.20 5.71
Cosine 7.51 5.49 5.00
VQ 6.36 6.19 5.36
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for ensuring successful generalization. Rather, the important criterion seems to be the span of the K values: if they span the entire
range, then logistic regression can learn to produce a reasonable estimate of the clustering quality.

5.3. Further generalization abilities

Following the experimental results of the previous subsection and, in particular, the PMFs in Fig. 8, a new experiment was
conducted. We combined several training sets from different speaker clustering algorithms and tested whether the resulting
logistic regression has improved generalization abilities relative to those of single-algorithm training. The PMFs are presented in
Fig. 9. The upper plot shows the PMF corresponding to training sets from PLDA and VQ, the lower PMF corresponding to training



Fig. 10. True K vs estimated K values (in red the line x¼y) for matched conditions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
PCC values of different systems vs training data
type of the logistic regression.

PLDA Cosine VQ

Training PLDA 0.82 0.65 0.53
Cosine 0.72 0.86 0.72
VQ 0.74 0.83 0.88

Fig. 11. Examples of true K values vs estimated K values (in red the line x¼y) for unmatched conditions. The data conditions used for training Logistic Regression
is given in parentheses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Y. Cohen and I. Lapidot / Computer Speech & Language 65 (2021) 101139 15
sets from all the speaker clustering algorithms (PLDA, Cosine, and VQ). The combined training datasets were created by ran-
domly choosing 8000 examples from the group of all datasets. This way, the effect on the generalization performances is only
due to the change in the distribution of the data and not from enlarging the training dataset size. The data were taken from the
original distributions as shown in Fig. 8. The clustering quality estimation results are shown in Table 2. The second column shows
the results when the training process uses PLDA and VQ only. The third column shows the results when the training process uses



Fig. 12. True K values vs estimated K values (in red the line x¼y), trained using the combined train data from all the clustering methods. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
PCC values as a function
of combined training
data for the logistic
regression.

PLDA Cosine VQ

0.78 0.83 0.84

Table 5
Speaker clustering quality estimation (MSE [%]) when the logis-
tic regression is trained versus K̂ .

Test

Train PLDA normPLDA Cosine VQ

Logistic regression 7.29 5.71 5.00 5.36
K̂ 16.95 9.37 9.69 11.44
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all datasets. The last column shows the optimal results, which correspond to matched training and test conditions. Comparing the
second and third shows negligible difference except the Cosine results that improved by almost 27%, relative improvement. Com-
paring the second and the third columns with the last column shows that multi-class training shows promise for generalization.

In order to validate the results, we draw the graphs of true K values versus the estimated K values and calculate the sample
Pearson correlation coefficient (PCC) between the true K values and the estimated K values. When there is a match between the
training conditions, the expectation is that the true K versus estimated K lies on a line with slope equals 1 and PCC close to 1. The
results are presented in Fig. 10. All the representations show the same behavior - there is a good match between the true and
estimated K values. The same can be seen on the main diagonal of Table 3, which shows the PCC for the matched conditions. For
all these cases, the PCC is good, which indicates that the estimated K values are highly correlated with the true K values. Part of
the results for the non-matched conditions are presented in Fig. 11. The results can vary significantly. Moderate estimation is
observed when VQ based clustering K is estimated with logistic regression, trained using data from Cosine-based mean shift clus-
tering (right graph). On the other hand, a very bad estimation can be observed for estimating the K values of the PLDA-based clus-
tering, while the training is performed based on VQ clustering (left graph). This is consistent with our previous observations that



Fig. 13. The average K value as a function of the number of speakers.

Fig. 14. The average number of estimated clusters as a function of the actual number of speakers.

Y. Cohen and I. Lapidot / Computer Speech & Language 65 (2021) 101139 17
when the PMFs highly overlap each other, the K estimation is better. The out of-diagonal values of PCC in Table 3 show a decrease
in the cross-correlation as the PMFs are less overlapping each other.

At the last example the results are presented for the training data from all the clustering algorithms. The results are presented
in Fig. 12. The PCC are summarized in Table 4. All the results are in accordance with Table 2. The training with all the algorithms
well estimates the K values of new clusterings.

Until now, the results of the training performance were presented. One can argue that the results are not very good. It is possi-
ble to estimate the clustering quality with similar quality by using a very naive estimator bK ¼1

M

PM
m¼1 Km;which is the MMSE esti-

mator of K using a constant. The comparison between the quality estimation using the logistic regression and the mean value are
presented in Table 5. The worst case is when the K distribution is uniform over the range [0, 1] and then the error is 28.87%, how-
ever, the range is more narrow and the distribution is not uniform. As such, the square root MSE observed for the bK is much
lower. Even though, logistic regression estimator improvement is between 39.06% to 56.74%. After saying that, the improvement
in the prediction of the K is not the only important issue. As we saw in the previous figures, logistic regression estimator is highly
correlated with the true K value. As we will show in the next sub-section, it is helpful to estimate the optimal number of clusters
in clustering algorithms like VQ-based clustering. When using the estimated mean value, the estimator and the true value are
uncorrelated. This means that it is impossible to learn anything about the true K from the estimator. We also observed that on
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average, for every number of speakers, the estimator can be viewed as a pessimistic estimation, Fig. 6. It estimates K value a bit
lower than the true one. It may be a good property as it is a kind of a lower bound on the real K value, while the actual K value
may be a bit higher, but still close to the estimated value.

5.4. Performance evaluation of the stochastic VQ

For the VQ-based method, the number of clusters has to be defined prior to the VQ. However, this information is frequently
unavailable and has to be estimated. Here, the quality estimator was used as a means of estimating the optimal number of clus-
ters.

In this experiment, 8000 trials were performed. The number of speakers, number of segments per speaker and the segments
themselves were all chosen randomly. Four systems were compared: Stochastic VQ with logistic regression, as described in Sec-
tion 3; Stochastic VQ with the best calculated K value (this system was only included to provide a best-case comparison; it is not
a practical system); Mean-shift with the cosine similarity measure; Mean-shift with the PLDA score.

The comparison is presented in Fig. 13, as a function of the number of speakers. As expected, the PLDA-score based mean-shift
gave the best results, as the PLDA was trained in the same conditions as those under which it was tested. The next best perfor-
mance was achieved by the cosine-similarity based mean-shift algorithm, which is known to be inferior to PLDA-based clustering
(Salmun et al., 2017). The VQ-based clustering system, labeled as “VQ Estimated”, could not compete with the mean-shift systems
and showed consistently lower performance. When the performance of this system is compared with the best possible result,
labeled as “VQ Best”, it can be seen that the stochastic VQ closely approximates the upper bound, provided there are at least 20
speakers. As mentioned, the upper bound is a theoretical case, as it uses the number of clusters that yield the highest K value.
However, in practice, this number of clusters is not known and has to be estimated. The finding that, for a low number of speak-
ers, the estimates of the best K value are not reliable was unexpected and has not been observed in previous experiments.

It is also interesting to compare the different algorithms in terms of the number of clusters estimated. It is known that the
mean-shift method usually over-clusters the data and produces many more clusters than the actual number of speakers. This
comparison is presented in Fig. 14. The results are approximately the same for all methods, with the ratio of the number of clus-
ters to the number of speakers averaging about 1.5. The stochastic VQ system, however, tends to estimate fewer clusters than the
other systems at low numbers of speakers. When examining the VQ Bound, we see that its estimate of the number of speakers is
superior to that of other systems when the number of speakers is high.

6. Conclusions

In this study, we presented a simple way of estimating the speaker clustering quality based on a logistic regression. It was
shown that if the logistic regression is trained on the data from a particular clustering algorithm, the estimation results have a
small mean square error. However, when the logistic regression is trained with data from one clustering algorithm, but applied
to the output of another algorithm, the error increases dramatically. Examination of the K value distributions showed that each
clustering algorithm spans a different range of values. When the logistic regression was trained using a combination of datasets
from different clustering algorithms, the generalization significantly improved (Table 2). We assume that different clustering
algorithms produce different types of error that cannot be captured by using a single clustering algorithm, however, training on
several clustering algorithms together, allow logistic regression to make the generalization.

In the second set of experiments, the performance of the stochastic VQ system was investigated. For this system, the quality
estimator was used as a means of estimating the optimal number of clusters. This is because the stochastic VQ requires the num-
ber of clusters to be stated in advance, and, if this number is not known, it should be estimated. The estimation of the number of
clusters using logistic regression resulted in performance measures close to the upper bound of the stochastic VQ-based cluster-
ing. This can be seen in Figs. 13 and 14.

Although all the experiments were performed on a simulated data, the practical results on real data confirm the results we
presented in this paper.

In future work we intend to investigate the possibility of improving both clustering quality estimation and generalizability
using deep neural networks (DNNs); check the influence of regularization; and apply this approach to estimate the number of
speakers for speaker diarization.
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