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Deep neural networks (DNNs) are vulnerable to adversarial examples which are generated
by inputs with imperceptible perturbations. Understanding adversarial robustness of DNNs
has become an important issue, which would for certain result in better practical deep
learning applications. To address this issue, we try to explain adversarial robustness for
deep models from a new perspective of critical attacking route, which is computed by a
gradient-based influence propagation strategy. Similar to rumor spreading in social net-
works, we believe that adversarial noises are amplified and propagated through the critical
attacking route. By exploiting neurons’ influences layer by layer, we compose the critical
attacking route with neurons that make the highest contributions towards model decision.
In this paper, we first draw the close connection between adversarial robustness and crit-
ical attacking route, as the route makes the most non-trivial contributions to model predic-
tions in the adversarial setting. By constraining the propagation process and node
behaviors on this route, we could weaken the noise propagation and improve model
robustness. Also, we find that critical attacking neurons are useful to evaluate sample
adversarial hardness that images with higher stimulus are easier to be perturbed into
adversarial examples.
� 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning is progressing at an astounding rate with a wide range of real-world applications, such as computer vision
[13], speech recognition [22] and natural language processing [31]. Despite these successful applications, the emergence of
adversarial examples [32,8], images containing perturbations imperceptible to human but misleading to DNNs, poses poten-
tial security threats to deep learning systems especially practical applications, e.g., face recognition system, automatic check-
out, and auto driving [18,14,7,19]. In the past years, great efforts have been devoted to adversarial attack [8,2,27,17,26,3,34],
adversarial defense [8,15,29,16], and adversarial example detection [11,21,9,6].

Though challenging to deep learning, from another point of view, understanding and interpreting adversarial examples
provide insights into the weaknesses and blind-spots of models, which in turn offers us clues to build robust deep learning
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models. Several studies have been proposed to understand model robustness towards adversarial noises from different per-
spectives [38,12,5].

In social networks, rumors spread hastily between nodes through connections, which may present massive social threats.
Nodes delivering higher information capacities are more critical than others, which are much likely to convey rumors and be
contained in critical routes. To effectively restrain rumor spreading, immunization strategies have been carried out to spot
and block critical routes within the graph [36]. Similar to rumor spreading in social networks, small residual adversarial per-
turbations are progressively amplified and propagated from bottom to top layers, which causes incorrect model behaviors.
With above observations, a question emerges: Is it possible to find a similar neuron-wise attacking route to stop adversarial noise
propagation in DNNs?

In this paper, we propose a gradient-based influence propagation strategy to get critical attacking neurons, which would
further help to compose a neuron-wise critical attacking route for a neural network. In sum, our paper makes the following
contributions:

� We propose a gradient-based influence layer-wise propagation method to extract critical attacking route at multiple
levels, including instance level and model level. The critical attacking route is responsible for conveying both adversarial
noises and important semantic information in a deep learning model. This route can be beneficial to understand model
behaviors in adversarial setting.

� The critical attacking route reveals some adversarial defects of a deep model. Thus, we can directly improve the robust-
ness against adversarial examples and corruption by constraining and correcting the behaviors of neurons within the crit-
ical attacking route.

� Further, based on the critical attacking route, we propose a metric to evaluate the adversarial hardness of samples, which
measures the intensity of adversarial perturbations we need to apply on a sample to fool a model. This metric is promising
since it provides us an opportunity to judge how hard it is for an image to be perturbed into an adversarial example.

2. Related work

Adversarial robustness. Recently, several studies have been proposed to understand model robustness towards adver-
sarial examples from different perspectives. Zhang et al. [38] believed that adversarially trained models gain robustness
by learning more shape-biased representations. Dong et al. [5] re-examined the internal representations of DNNs using
adversarial examples and further improved their interpretability with an adversarial training scheme. Meanwhile, Xu
et al. [35] attempted to explore the weakness of models in adversarial setting by analyzing the effects of different regions
within a specific image. Interestingly, Ilyas et al. [12] held the opinion that adversarial examples are parts of the features
rather than bugs for DNNs. They believed that training models with robust features would increase adversarial robustness.
Recently, Zhang et al. [37] introduced the concept of neuron sensitivity and blamed the adversarial vulnerability of deep
models on the sensitive neurons.

Model data route. From the view of data route, several works have been devoted to interpreting deep neural models.
Wang et al. [33] developed a Distillation Guided Routing (DGR) method to extract a neuron-wise data route by learning asso-
ciated control gates for each layer’s output channel. They further used the route to detect adversarial examples. Besides, Qiu
et al. [24] tried to extract paths through network profiling. Synapse-wise critical route for each class was extracted and used
to defend adversarial examples.

Previous studies mainly focused on semantic information data route for deep models. In contrast to them, we mainly con-
centrate on the perturbations propagation process and model behaviors in adversarial setting. We propose a very simple but
effective method to calculate the critical attacking route, which could be used to understand adversarial robustness of deep
neural networks (see Fig. 1).
3. Critical attacking route

In social networks, nodes delivering more information are more likely to make huge impacts to the whole graph when
encountering small changes. Motivated by the fact, this paper proposes the concept of Critical Attacking Route, which is a
neuron-wise attacking route by which most of the adversarial perturbations are propagated and amplified.

To obtain the critical attacking route, we propose a gradient-based influence propagation strategy. Neurons with higher
gradients to the next layer are more likely to make higher contributions to the hidden representations at the next layer. We
name these neurons as critical attacking neurons. The critical attacking route is composed of these critical attacking neurons
and all connections between them. Thus, we can fairly believe, the route composed by these critical attacking neurons is
more critical and more likely to make huge changes to the final prediction when encountering small perturbations. In other
words, neurons with higher contributions to the model predictions are more skeptical to be involved in the critical attacking
route, which is responsible for the model vulnerabilities against adversarial perturbations. Thus, it’s intuitive for us to cal-
culate the influence between neurons to figure out the critical attacking neurons and the critical attacking route. Obviously,
gradients can help us to evaluate the influence of neurons between layers.



Fig. 1. Our framework of computing instance-level critical attacking routes and model-level critical attacking route. Model robustness can be improved by
weakening the propagation process.
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We first extract critical attacking routes per image via gradients computed backward. After extracting instance-level crit-
ical attacking routes for each image, we then aggregate instance-level critical attacking routes into the model-level route.

3.1. Preliminaries

Given a dataset Dwith data sample x 2 X and label y 2 Y, the deep supervised learning model tries to learn a mapping or
classification function F : X ! Y. The model F consists of L serial layers. For the l-th layer Fl, where l ¼ 1; . . . ; L, it contains a
neuron set. We use the superscript m to denote the m-th neuron satisfying Fm

l 2 Fl. The output Zm
l of one neuron Fm

l is equiv-
alent to the m-th channel of the feature map in layer l. This paper chooses the popular deep convolutional neural networks
(CNNs) for image classification task.

With imperceptible perturbations, an adversarial example [32] x0 looks similar to its clean counterpart x, but are able to
mislead model F:
Fðx0Þ – y s:t: kx� x0k < �:
3.2. Compute the influence between neurons

To build the critical attacking routes, we pick up critical attacking neurons in each layer and connect them together. Obvi-
ously, the key challenge is calculating the influence between neurons of two close layers. The problem can be efficiently
addressed by computing the gradients between neurons during backward-propagation. In fact, the gradients largely depend
on kernel weight. Reversely, in the last layer, neurons owning greater gradients with respect to loss are selected. Then, crit-
ical attacking neurons at each layer are chosen in the form of backward-propagation, based on their influences to the latter

layers. We calculate the influence of i-th neuron Fi
l�1 at the l� 1-th layer to the j-th neuron Fj

l at the l-th layer through
backward-propagation.

Specifically, for a single element z in a neuron output Zj
l , we want to calculate the influence of i-th neuron output Zi

l�1 at
the layer l� 1 to this single element. We use the following formula:
Ci;z
l�1 ¼

X

s2Si
l�1

@z

@Aðs; Zi
l�1Þ

�����

�����; ð1Þ
where Si
l�1 is the set of elements in the i-th neuron at layer l� 1, and Að�Þ extracts the elements at specific positions. Note

that, the influence of a neuron is computed as the sum of the absolute value of gradients with respect to the element at each
position within a neuron. To best depict the influence, we believe, the j � j operation should be added after taking all the ele-

ment changing directions of Zi
l�1 into consideration. This gradient calculating process between two intermediate layers is

based on the convolutional kernel parameters, and we do not need to calculate their gradients towards loss L by chain rules.

We first compute Ci;z
l�1 for every element z in Zj

l . Then, we calculate the neuron influence between Zj
l and Zi

l�1 by summing

up Ci;z
l�1 for all elements z in Zj

l . Note that, the results are summed without j � j, because all changes of element values in Zj
l are

caused by the change of the union Zi
l�1, which can be viewed as changing in just one direction. That is,
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Ci;j
l�1 ¼

X

z2Zj

l

Ci;z
l�1: ð2Þ
3.3. Instance-level critical attacking route

Since the critical attacking route is formed using neurons with the highest contributions to next layer (or loss), we can
make a key assumption that this route contains the most critical information. Small amount of changes in the route would
make huge impact to the model prediction. In other words, when a model makes correct predictions, this route conveys most
non-trivial semantics. On the contrary, this route also contains most of the adversarial mistakes when the model is being
attacked.

Given a sample x, we first derive the gradient of the m-th neuron at the last convolutional layer L with respect to the loss
L yielding their contributions to model decision:
gm
L ¼ @L

@Zm
L
; ð3Þ
where Zm
L represents the output of m-th neuron at the L-th layer.

Then, we can recursively calculate the influence of i-th neuron Fi
l�1 at the layer l� 1 to the j-th neuron Fj

l at the layer l
through Eqs. (1) and (2).

Thus, we can further pick up the critical attacking neurons by considering the top k percent of neurons according to their
contributions. For neurons at the last convolutional layer, we have critical attacking neurons:
xx
L ¼ top-kðFL; gLj jÞ; ð4Þ
where top-kð�Þ represents top k percent instances of the input set based on certain metric. We call k the width of the critical
attacking route. In this case, we choose g as metric and select xL from the set FL. Similarly, we choose top k percent of neu-
rons at the l-th layer based on their influences C to the critical attacking neurons at the lþ 1-th layer, recursively:
xx
l ¼ top-kðFl; ~Ci

lÞ; ~Ci
l ¼

X

Fj
lþ1

2xx
lþ1

Ci;j
l : ð5Þ
Then, the critical attacking route RðxÞ of sample x can be depicted by the connections of the critical attacking nodes from
different layers:
RðxÞ ¼ fxx
1;x

x
2; . . . ;x

x
Lg: ð6Þ
3.4. Model-level critical attacking route

To fully explore model behaviors towards adversarial noises, we further propose the model-level critical attacking route
derived from the aggregation of instance-level routes.

Given a dataset D with N samples, we can obtain instance-level critical attacking route for each image as
{Rðx1Þ;Rðx2Þ; . . . ;RðxNÞ}. Then, for the specific model, we can calculate the occurrence frequency of each critical attacking
neuron at each layer for all instances as f. It is intuitive that these neurons make the most non-trivial contributions since
they have been witnessed in multiple instance-level routes for the specific model. We choose the top k percent of most fre-
quent neurons as model-level critical attacking neurons for each layer l as below:
Xl ¼ top-kðFl; f lÞ: ð7Þ

Thus, the model-level critical attacking route is obtained:
RðDÞ ¼ fX1;X2; . . . ;XLg: ð8Þ

It’s important to note that the model-level critical attacking route is not just a simple add-up of many different critical

attacking routes. Instance-level critical attacking routes share great similarities among instances, which can be certificated
by neurons occurring frequency in Section 4.1.

Our calculating process is a layer-wise process, and we pick up neurons according to their influence on next layer’s critical
neurons. Hence our method is more suitable for more-linear models. In the future, we will investigate ways to apply our
methods to non-linear structures (e.g., using the sum of gradients in a branch structure).

3.5. Time complexity

Since the influence of each neuron needs to be calculated layer by layer, we analyze time complexity of this process here.
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In the calculating process, the time is mainly spent on figuring out gradients between neurons. We use tl to denote the
time consumption for the calculation of the influence of one neuron to another. The time consumption for a specific layer l
depends on nl

a and nlþ1
p , which denote the number of all neurons in the former layer and the number of neurons picked in the

latter layer, respectively. Then, it takes a total Tl ¼ nl
a � nlþ1

p � tl time for a layer. For one image, the whole model’s route cal-

culating time is T ¼ Pl2F
l Tl. On CIFAR-10 dataset, it took us 7.4 h to calculate the model-level critical attacking route for a

VGG-16 model for 10000 images with a GTX1080 GPU. However, in our implementation, we will improve the efficiency
of route calculation process and keep the same performance by using small amount of samples as illustrated in Section 5.1.3.

4. Understanding model behaviors via critical attacking routes

In this section, we try to understand model behaviors through the critical attacking route. We first demonstrate that per-
turbations mainly propagate via this route in adversarial setting. In other words, neurons on the route bear most of noise
information and are vulnerable to adversarial attacks. Besides, critical attacking routes also convey important semantic
information.

4.1. Empirical settings

Datasets and Models. In our experiments, we use CIFAR-10, SVHN and ImageNet datasets. For models, we adopt three
typical DNNs for image classification tasks, i.e., AlexNet [13], VGG-16 [28], and ResNet-18 [10].

Adversarial Attack and Defense. We apply several state-of-the-art adversarial attack methods including FGSM [8], Step-
LL [15], MI-FGSM [4], and PGD [20]. We set the parameters following the guidance [1] as below. For FGSM and Step-LL, we
set the parameter � ¼ 8=255. For MI-FGSM and PGD attack, we set � ¼ 8=255, step size a ¼ �=10, and iteration k ¼ 10. As for
adversarial defense, we choose the state-of-the-art defense method PGD-based adversarial training (PAT [20]).

Critical Attacking Route Extraction. Empirically, we choose top-20% neurons as critical attacking neurons every layer for
instance-level critical attacking routes. When aggregation, we choose top-30% neurons for the model-level critical attacking
route. We further calculate the mean occurrence frequency Ol of critical attacking neurons at each layer for all instance-level
critical attacking routes. As shown in Table 1, the similarities of neurons at different layers are very high in all instance-level
critical attacking routes. More importantly, such a high mean occurrence frequency makes it possible for us to utilize a small
amount of instance-level critical attacking routes to aggregate an overall attacking route, which is close to the model-level
critical attacking route.

4.2. Adversarial perturbations are propagated and amplified through attacking route

In this section, we introduce a very important characteristic of the critical attacking route that perturbations are mainly
propagated via this route in adversarial setting.

4.2.1. Critical attacking neurons are sensitive and influential
We first try to investigate the behaviors of neurons within the critical attacking route when facing adversarial noises.
Neuron sensitivity is measured by neuron behavior variation intensity against benign and adversarial examples, and has

been used to depict adversarial robustness for deep models [37]. Thus, we try to explore the sensitivity of both critical
attacking neurons and neurons outside the route. In Fig. 2(a), our experiments show that neurons on critical attacking route
are significantly more sensitive than regular neurons outside the route especially at bottom layers. Intuitively, critical attack-
ing neurons are more vulnerable and unstable to adversarial noises, which should be responsible for adversarial weakness of
deep neural networks.

Further, we study the neuron contributions to model decisions by exploring their influences to the model loss. Given the
dataset D, we calculate the average gradient of every neuron towards the loss based on all test samples. As shown in Fig. 2(b),
it is obvious that critical attacking neurons have greater gradients with respect to the loss compared to other regular neu-
rons. In contrast to regular neurons, similar degrees of changes on the activation value for critical attacking neurons will
cause more stimulus to the final classification. Thus, it’s fair to say that the critical attacking route is more likely to convey
and propagate perturbations.

4.2.2. Adversarial feature transplant
With the above analysis, we further investigate the contribution of critical attacking route to model robustness by feature

transplanting. Given a dual pair data set �D ¼ fðxi; x0iÞg with benign example xi and the corresponding adversarial example x0i,

where i ¼ 1; . . . ;N, we replace the adversarial features Zj
lðx0iÞ with the benign features Zj

lðxiÞ at specific position to see the
model behavior difference. As shown in Fig. 3(a), with the increasing of proportions of the transplanted critical attacking
neurons (the width of the critical attacking route) on the first conv layer, adversarial robustness rises significantly. When
we transplant nearly 30% of critical neurons at the first conv layer, the accuracy of adversarial examples is promoted from
0% to 53.68%. We further transplant attacking neurons at multiple layers. As shown in Fig. 3(b), after transplanting 30% of the



Table 1
Mean occurrence frequency Ol for each layer. Specifically, the neurons in the bottom layers are more similar while those for top layers are slightly lower.
Intuitively, the phenomenon demonstrates that the bottom layers mainly focus on low-level features (i.e., textures, lines, etc.), while top layers are required to
classify images and make predictions.

AlexNet

layer conv1 conv2 conv3 conv4 conv5

Ol 97% 97% 97% 94% 45%

VGG16

layer conv1 conv4 conv7 conv10 conv13

Ol 70% 48% 60% 67% 38%

Fig. 2. Special characteristics of critical attacking neurons. (a) Attacking neurons own greater sensitivities than regular neurons. (b) Attacking neurons own
greater gradients towards loss.

Fig. 3. Adversarial feature transplant experiment. (a) denotes the model performance with different transplant proportions at different layers. (b) depicts
the transplant results on different single layers or multiple layers with fixed transplant proportion as 30%.
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critical attacking neurons at the first three conv layers, the model basically corrects all the adversarial examples. However,
the amount of neurons we transplant only accounts for 1.8% of the whole model’s neurons.

To further confirm our observations, we also transplant neurons outside the critical attacking route randomly. Surpris-
ingly, with the same amount of neurons transplanted, the adversarial robustness is still extremely low. The classification
accuracy is no more than 4.63% as shown in Fig. 3(a).
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Since corruption noises such as snow and blur pose strong challenges to robust deep learning models, we also demon-
strate the effectiveness of our critical attacking route for corruption. As shown in Fig. 3(b), the critical attacking route is
not only important for gradient-based adversarial attack methods, e.g., FGSM and PGD, but also critical for corruption like
Gaussian noise, etc.
4.3. Attacking route conveys strong semantic information

In this section, we give more insights into the roles of critical attacking neurons. Firstly, we deactivate the output of neu-
rons. As shown in Fig. 4(a), the model classification accuracy degenerates significantly when critical attacking neurons are
increasingly deactivated. On the contrary, the model performance is just slightly influenced when we deactivate regular neu-
rons. Then, we try to weaken the connection between neurons with an coefficient b. We directly multiply b to connections
(corresponding weights) between neurons to weaken the conveying process on this route. According to the results in Fig. 4
(b), with the decreasing of b, severer weakened connections between critical attacking neurons witness a significant drop of
model accuracy. However, model is nearly not influenced when the connections between regular neurons are weakened.

To better visualize the roles of critical attacking neurons, we adapt Grad-CAM [25] to investigate the attention field of
different neurons (i.e., critical attacking neurons and regular neurons) in different settings (i.e., adversarial and clean). In
the adaption, we separate critical attacking neurons and regular neurons for visualization. We adopt unified normalization
for these two cams to compare their contributions to final predictions. As shown in Fig. 5, after adversarial attack, critical
attacking neurons tend to pay more attention to the noisy backgrounds compared with their subtle detection regions on
clean examples. However, the changes for normal neurons are not so obvious. Interestingly, for clean examples, attention
regions of attacking neurons are focused on the key part of the class (i.e., the body of the bird), while those for normal neu-
rons are meaningless.

Thus, it’s reasonable to assume that the critical attacking route contains rich semantic features and is responsible for
model predictions.
Fig. 4. Model performance degradation when we deactivate critical attacking neurons and weaken weight on this attacking route. Ablation on critical
attacking neurons leads severer degradation compared with ablation on random neurons.

Fig. 5. Grad-CAM of neurons on critical attacking route(middle column) and Grad-CAM of neurons not on critical attacking route(right column) of the last
conv layer using pretrained VGG16 on ImageNet. Traditional Grad-CAM aggregates all neurons’ features. We separately merge two kinds of neurons to view
their contributions to classification. Upper row is the grad-cam saliency map on benign samples, showing that neurons on attacking route contain more
semantic information. Below row is the grad-cam saliency map on adversarial samples, demonstrating that attacking neurons bear more misleading
information.
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5. Leveraging critical attacking routes

Since adversarial perturbations are mainly propagated through the critical attacking route, it can be viewed as a defect of
a model. It is natural for us to consider to improve model robustness by repairing this defect. We try to respectively constrain
the behaviors of neurons or weaken the adversarial noises propagation within the critical attacking route to weaken the
noise propagation. Besides, inspired by the phenomenon that samples with bigger gradients on critical attacking neurons
are easier to be adversarially attacked, we also propose a metric to evaluate the adversarial hardness of samples.

5.1. Model adversarial robustness enhancement

Motivated by our observations, in this section, we try to improve model robustness by constraining the behaviors of crit-
ical attacking neurons, e.g., gradients, propagation process.

We design two simple but effective methods to promote model robustness based on the critical attacking route. All the
experiments in this section are conducted on CIFAR-10 and SVHN using VGG-16. We use Vanilla and PAT to denote the orig-
inal model and the PGD-based adversarial training model, respectively.

5.1.1. Constraining gradients towards loss
During the experiment, we observe that critical attacking neurons own greater gradients towards loss. Thus, it is intuitive

to reduce the impact caused by these neurons when facing adversarial inputs and directly punish their gradients towards
loss. Thus, we directly obtain a loss term by constraining the gradients of critical attacking neurons:
gm
l ¼ @L

@Zm
l

; ð9Þ

Lgðx; y; hÞ ¼
Xl2F

l

XFml 2Xl

m

gm
l

�� ��: ð10Þ
For Vanilla, we can simply add the loss term to the cross entropy loss:
L ¼ Lcðx; y; hÞ þ kLgðx; y; hÞ: ð11Þ

For PAT, combining with adversarial training, we design a new loss function as:
L ¼ Ladvðx; x0; y; hÞ þ kðLgðx; y; hÞ þLgðx0; y; hÞÞ; ð12Þ

where Lc denotes the cross entropy loss and Ladv denotes the adversarial training loss. k is a hyper-parameter balancing
these loss terms. We use Vanillag and PATg to denote models trained with gradient punishment based on Vanilla and PAT
models, respectively.

5.1.2. Constraining propagation process
In addition, we try to improve model robustness by weakening the connections in the critical attacking route. Simply, we

punish the weight of every neuron in this route to weaken the adversarial perturbation propagation process:
Lwðx; hÞ ¼
Xl2F

l

XFml 2Xl ;F
n
l�12Xl�1

m;n

wm;n
l

�� ���� ��
1; ð13Þ
where wm;n
l is the weight of channel n of neuron m in the l-th layer.

For Vanilla, we can simply add the loss term to the cross entropy loss:
L ¼ Lcðx; y; hÞ þ kLwðx; hÞ: ð14Þ

Similarly, for PAT, we design a new loss as:
L ¼ Ladvðx; x0; y; hÞ þ kLwðx; hÞ: ð15Þ

We use Vanillaw and PATw to denote models trained with weight punishment based on Vanilla and PAT models.

5.1.3. Experimental results and discussion
According to the results in Tables 2 and 3, either constraining the gradients or the propagation process improves model

robustness towards both adversarial examples and Gaussian noise. Our methods can also be combined with state-of-the-art
adversarial training strategies to further improve model robustness.

To improve the efficiency of the critical attacking route calculation process, we use a small amount of images to generate
instance-level critical attacking routes, and then aggregate the model-level critical attacking route as introduced in Sec-
tion 4.1. In our implementation, we use 10% samples to get the overall attacking route, which shares a 94.6% occurrence fre-



Table 2
Performance of models trained with our methods on Vanilla and PAT trained on CIFAR-10. All the values are the classification accuracy (%). For Vanilla models,
we use MI-FGSM to replace PGD. PGD’s attacking ability is too strong for Vanilla to observe obvious improvement.

Vanilla

Model Clean FGSM MI-FGSM Gaussian

Vanilla 89.19 4.88 3.10 25.49
Vanillag 92.60 9.26 7.48 28.54
Vanillaw 91.94 10.01 5.52 26.08

PAT

Model Clean FGSM PGD Gaussian

PAT 84.95 47.88 46.71 76.63
PATg 84.93 49.16 48.39 77.16
PATw 85.06 49.61 48.20 78.18

Table 3
Performance of models trained with our methods on Vanilla and PAT on SVHN. All the values are the classification accuracy (%). The numbers in bold represent
the best performance in each setting.

Vanilla

Model Clean FGSM MI-FGSM Gaussian

Vanilla 94.42 28.10 1.86 38.76
Vanillag 95.38 56.97 14.95 45.47
Vanillaw 95.48 55.38 14.29 43.12

PAT

Model Clean FGSM PGD Gaussian

PAT 92.23 55.25 46.21 78.34
PATg 93.56 57.07 52.50 83.15
PATw 95.40 57.80 48.74 80.23
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quency with the model-level critical attacking route. For adversarial defense, using 10% samples achieves similar results (dif-
ferences are not more than 0.5%) compared to using all samples. In other words, we can use 10% samples to achieve similar
defense performance. In fact, the PAT training time is more than 12 h. However, it just take us 42 min to calculate critical
attacking route with 10% samples and an extra 2.3 h to fine-tune the model with the route. Thus, in the following parts
of the paper, we use 10% samples to get the model-level critical attacking route.

5.2. Sample adversarial hardness evaluation

Prior studies have revealed the fact that the difficulty for distinguishing instances from different classes are not equal
[23]. With the same magnitude of perturbations, some images are easily perturbed into adversarial examples, while some
are very hard.

According to the experiments, we find that images that are easier to be perturbed into adversarial examples own higher
gradients towards loss on the critical attacking route. As shown in Table 4, the gradients of instances with different adver-
sarial hardness differ significantly. Obviously, small gradients towards loss indicate that intensive perturbations are required
to change model predictions, which explains the reason that these instances are harder to attack. Similarly, samples with
huge gradients mean the opposite. Thus, we propose to use the gradients to evaluate sample adversarial hardness. Note that
our evaluation process requires no perturbation.

Given an input sample, we utilize the average gradients of model’s critical attacking neurons towards loss to calculate the
adversarial hardness metric. Specifically, we adopt a voting strategy for every sample according to their gradients on critical
attacking neurons. For a specific layer, samples with higher gradients are given less votes. Then, every sample gets its vote for
every layer. Thus, we accumulate all layer’s votes of one sample as its adversarial hardness metric. Obviously, samples with
lower gradients denote more votes and higher values of the adversarial hardness metric. For a sample x, according to Eq. (9),
we get gm

l and calculate the overall gradients of a sample on a layer’s critical attacking neurons.
gx
l ¼

X

m2Xl

jgm;x
l j; ð16Þ

vx
l ¼ Rankðgx

l ;DÞ; ð17Þ

where Rankð�Þ returns the rank of sample x’s gradient in the Dataset D, and we use vx

l to denote this rank. Then, we can get
the adversarial hardness metric Vx as follows:



Table 4
Gradients towards loss of attacked samples. Those attacked successfully(weak instances) show greater gradients than those attacked unsuccessfully(hard
instances).

Instances conv1 conv4 conv7 conv10

Hard instances 0.0046 0.0014 0.0005 0.0001
Weak instances 4.5565 1.1183 2.1692 0.4096

Fig. 6. Numbers of instances that are successfully attacked. We sort these samples by our hardness metric inversely (i.e., samples with higher hardness are
ranking in the front). Samples with higher adversarial hardness are harder to attack. For FGSM, we set the parameter � ¼ 1:0=255 to achieve fair attacking
effect for observation.
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Vx ¼
X

l2F
vx
l : ð18Þ
We use both adversarial examples (FGSM) and corruption (Gaussian noise) to verify the effectiveness of the adversarial
hardness metric. In Fig. 6, it’s obvious that instances with lower Vx are generally easier to attack.

Moreover, our metric can be used to select model criticisms [30] without perturbations. Stock et al. call data points sam-
pled from regions of the input space not well captured by the model as model criticisms. They propose that the examples
whose decisions change after 1 or few steps of attacking methods are more likely to be valid criticisms because they do
not quite fit the model. By our metric, we can select those samples harder to be attacked successfully, which represent what
model learns better.
6. Conclusion

To better understand adversarial robustness of deep models, we propose a new concept ‘‘critical attacking route” which is
computed by a gradient-based influence propagation strategy. We then draw the close connection between adversarial
robustness and critical attacking route, as the route makes the most non-trivial contributions to model predictions in the
adversarial setting. Further, critical attacking routes also contain strong semantic information. By constraining the propaga-
tion process and node behaviors on this route, we could weaken the noise propagation process and improve model robust-
ness. Also, critical attacking neurons can be used to evaluate sample adversarial hardness.
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