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A B S T R A C T

Natural Language Generation (NLG) plays a critical role in Spoken Dialogue Systems (SDSs),
aims at converting a meaning representation into natural language utterances. Recent deep
learning-based generators have shown improving results irrespective of providing sufficient
annotated data. Nevertheless, how to build a generator that can effectively utilize as much of
knowledge from a low-resource setting data is a crucial issue for NLG in SDSs. This paper
presents a variational-based NLG framework to tackle the NLG problem of having limited
annotated data in two scenarios, domain adaptation and low-resource in-domain training
data. Based on this framework, we propose a novel adversarial domain adaptation NLG taclk-
ing the former issue, while the latter issue is also handled by a second proposed dual varia-
tional model. We extensively conducted the experiments on four different domains in a
variety of training scenarios, in which the experimental results show that the proposed
methods not only outperform previous methods when having sufficient training dataset but
also show its ability to work acceptably well when there is a small amount of in-domain data
or adapt quickly to a new domain with only a low-resource target domain data.

© 2020 Published by Elsevier Ltd.
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nce papers (Tran and Nguyen, 2018a; 2018b) in COLING 2018 and CoNLL 2018. This version extends pre-
brings in a unified generation framework, in-depth analysis, justification of the approach, and extensive

ios of having low-resource setting data.

.edu.vn (V.-K. Tran), nguyenml@jaist.ac.jp (L.-M. Nguyen).
1. Introduction

Traditionally, Spoken Dialogue Systems are typically developed for various specific domains, including finding a hotel, searching a
restaurant (Wen et al., 2015a), or buying a tv, laptop (Wen et al., 2015b), flight reservations (Levin et al., 2000). Such these system are
often requiring a well-defined ontology, which is essentially a data structured representation that the dialogue system can converse
about. The processes for collecting such well-defined ontology datasets are extremely expensive and time-consuming. Furthermore,
the models have obtained very good performance irrespective of providing adequate labeled datasets in the supervised learn-
ing manner, while low-resource setting data easily results in worse performance models. There are two potential solutions for
this problem, which are domain adaptation training and model designing for low-resource training manner.

First, domain adaptation training which aims at learning from sufficient source domain a model that can perform acceptably
well on a different target domain with a limited labeled target data. Domain adaptation generally involves two different types of
datasets, one from a source domain and the other from a target domain. The source domain typically contains a sufficient amount
of annotated data such that a model can be efficiently built, while the target domain is assumed to have different characteristics
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from the source. Hence, simply applying the model trained on the source domain may hurt the performance in the target domain.
Furthermore, there is often little or no labeled data in the target domain, which are insufficient to construct a reliable model.
Therefore, we mainly aim at achieving good performance on the target domain by leveraging the source data or adapting model
trained on the source domain.

Second, model designing for low-resource setting has not been well studied in the NLG literature. The generation models have
achieved very good performances irrespective of providing adequate labeled datasets (Wen et al., 2015b; 2015a; Tran et al.,
2017; Tran and Nguyen, 2017a). For low-resource scenario, one can think about transfer learning which transfers learned repre-
sentations across domains to improve training on new unseen domains (Dethlefs, 2017), multi-task learning which can be used
to transfer dialogue knowledge across different users by sharing training dialogues (Mo et al., 2017), transfer knowledge on
multi-lingual data (Mathur et al., 2018) or conversational skills learning via separating out domain-independent dimensions
(Keizer and Rieser, 2018), and unsupervised learning (Huang et al., 2018).

Statistical approaches to multi-domain in SDS system have shown promising results in how to efficiently reuse of data in a
domain-scalable framework (Young et al., 2013). Mrk�si�c et al. (2015) addressed the question of multi-domain in the SDS belief
tracking by training a general model and adapting it to each individual domains. Similarly, a approach based on a Bayesian com-
mittee machine that used a hierarchical structure to train generic dialogue policies, which can then be refined when the in-
domain data is available (Ga�si�c et al., 2017). Recurrent Neural Networks (RNNs) based methods recently have shown improving
results in tackling the domain adaptation issue (Chen et al., 2015; Shi et al., 2015; Wen et al., 2016a; 2016b). Wen et al. (2016a)
introduced a domain adaptation procedure in which a model is first trained on counterfeited data synthesized from an out-of-
domain dataset, and then fine tuned on a small set of in-domain responses with a discriminative objective function. More
recently, the development of the variational autoencoder (VAE) framework (Kingma and Welling, 2013; Rezende and Mohamed,
2015) has paved the way for learning large-scale, directed latent variable models. This has brought considerable benefits to sig-
nificant progress in natural language processing (Bowman et al., 2015a; Miao et al., 2016; Purushotham et al., 2017; Mnih and
Gregor, 2014), dialogue system (Wen et al., 2017; Serban et al., 2017).

This paper present two approaches dealing with the problem of low-resource setting data, in which we first propose an adver-
sarial training procedure to train multi-domain, variational generator via multiple adaptation step which enables the generator to
learn more efficiently when in-domain data is in short supply, and second propose a combination of two VAEs, which enables the
variational-based generator to learn more efficiently in low-resource setting data.

In summary, we make the following contributions:
�
 We propose a variational-based NLG framework which benefits the generator to quickly adapt to new, unseen domain irre-
spective of scarce target resources;
�
 For domain adaptation, we propose two critics in an adversarial training procedure, which can guide the generator to gener-
ate outputs that resemble the sentences drawn from the target domain, which are integrated into a unifying variational
domain adaptation architecture that performs acceptably well in a new, unseen domain by using a limited amount of target
data;
�
 For low-resource model designing, we propose a dual latent variable model which benefits the generator to not only outper-
form the previous methods when there is a sufficient training data, but also perform acceptably well irrespective of scarce in-
domain resources;
�
 We investigate the effectiveness of the proposed architecture in various scenarios, including domain adaptation, scratch,
unsupervised, and semi-supervised training with different amount of training dataset.

The paper is organized as follows. Following a review of related work in Section 2, Section 5 describes in detail a Variational
Neural Language Generator framework. While Section 6 presents an Adversarial Variational NLG (VDANLG) for domain adapta-
tion, Section 7 presents a dual variational model for low resource setting in-domain data. The experiments are descried in Sec-
tion 8, and Section 9 demonstrates the results and analyses. We present our conclusion and future work in Section 10.

2. Related work

Generally, Domain Adaptation involves two different types of datasets, one from a source domain and the other from a target
domain. The source domain typically contains a sufficient amount of annotated data such that a model can be efficiently built,
while there is often little or no labeled data in the target domain. We thus are interested in improving generating performance
on a target domain by using knowledge obtained when generating another related task in source domain. Domain adaptation for
NLG have been less studied despite its important role in developing multi-domain SDS. Walker et al. (2001) proposed a SPoT-
based generator to address domain adaptation problems. Subsequently, a system focused on tailoring user preferences (Walker
et al., 2007), and controlling user perceptions of linguistic style (Mairesse and Walker, 2011). Moreover, while Mairesse et al.
(2010a) have also proposed a phrase-based statistical generator using graphical models and active learning, Cuay�ahuitl et al.
(2014) proposed an approach to statistical surface realization from unlabeled data through automatic semantic slot labeling.

Domain adaptation for Neural Network based Language Modeling (RNNLMs) has also been studying. While (Shi et al., 2015)
proposed three different types of curriculum learning for RNNLMs adaptation, Chen et al. (2015) introduced genre and topic
based RNNLM adaptation techniques which were investigated for a multi-genre broadcast transcription task. Consequently,
Gangireddy et al. (2016) investigated supervised and unsupervised discriminative adaptation of RNNLMs in a broadcast
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transcription task to target domains expounded by either genre or show, whereas Wen et al. (2016a) proposed a procedure to
train multi-domain, RNN language generators via data counterfeiting and discriminative training.

For specific domain SDSs, NLG plays an important role in the systems since its task is mainly to convert a meaning represen-
tation, i.e. dialogue act, into natural language utterances. RNN-based generators have shown improving results in tackling the
NLG problem in task oriented-dialogue systems with a varied proposed methods, such as HLSTM (Wen et al., 2015a), SCLSTM
(Wen et al., 2015b), and (Tran and Nguyen, 2017b), or especially RNN-based Encoder-Decoder models integrating with atten-
tion mechanism, such as Enc-Dec (Wen et al., 2016b), ARoA (Tran et al., 2017), and RALSTM (Tran and Nguyen, 2017a). Such
these methods have proved to work well only when providing a sufficient in-domain data since the small training data may
harm the model performance. As a result, a question still remains as how to build a generator that can work acceptably well on
a small training dataset.

Neural variational framework for generative models of text have been studied extensively. Chung et al. (2015) proposed a
recurrent latent variable model VRNN for sequential data by integrating latent random variables into hidden state of a RNN
model. A hierarchical multi scale recurrent neural networks was proposed to learn both hierarchical and temporal representa-
tion (Chung et al., 2016), while Zhang et al. (2016) introduced a variational neural machine translation that incorporated a con-
tinuous latent variable to model underlying semantics of sentence pairs. Whereas Bowman et al. (2015a) presented a
variational autoencoder for unsupervised generative language model, Zhang et al. (2017) proposed a seq2seq purely convolu-
tional and deconvolutional autoencoder solving the exposure-bias problem (Bengio et al., 2015). More recently, Tseng et al.
(2018) proposed an SCVAE which integrates the variational auto-encoder into a semantically conditioned for natural language
generation.

Adversarial adaptation methods have shown promising improvement in many machine learning applications despite the
presence of domain shift or dataset bias. These methods reduce the difference between the training and testing domain distribu-
tions, and thus improve generalization performance. (Tzeng et al., 2017) proposed an improved unsupervised domain adaptation
method to learn a discriminative mapping of target images to the source feature space by fooling a domain discriminator that
tries to differentiate the encoded target images from source examples. Zhao et al. (2017) proposed a new generalization bound
for domain adaptation using adversarial neural networks when there are multiple source domains with annotated samples and
one target domain with unannotated samples. We borrowed the idea of (Ganin et al., 2016), where a domain-adversarial neural
network are proposed to learn features that are discriminative for the main learning task on the source domain, and indiscriminate
with respect to the shift between domains.

3. NLG Problem decomposition

This section provides a background for most of experiments in this paper, including some task definitions, pre- and post-
processing, datasets, evaluation metrics.

3.1. Input meaning representation and training examples

As mentioned, NLG task in SDSs is to convert a meaning representation, yielded by the dialogue manager, into natural lan-
guage sentences. The meaning representation conveys information of “What to say?” which is represented as a dialogue act
(Young et al., 2010). Dialogue act is a combination of an act type and a list of slot-value pairs. Table 1 shows training example
pairs of DA-utterance in various NLG domains.

3.2. Datasets

We assessed the proposed models on four different original NLG domains: finding a restaurant, finding a hotel, buying a lap-
top, and buying a television. All these datasets were released by Wen et al. (2016a). The Restaurant and Hotel were collected in
Wen et al. (2015b), while the Laptop and TV datasets released by Wen et al. (2016a). The both latter datasets have a much larger
input space but only one training example for each DA, which means the system must learn partial realization of concepts and be
able to recombine and apply them to unseen DAs. This also implies that the NLG tasks for the Laptop and TV domains become
much harder.
Table 1
Examples of the dialogue act and its corresponding utterance in Hotel, Restaurant, TV, and Laptop domains.

Hotel DA inform_count(type=‘hotel’; count=‘16’; dogs_allowed=‘no’; near=‘dont_care’)
Utterance There are 16 hotels that dogs are not allowed if you do not care where it is near to

Restaurant DA inform(name=‘Ananda Fuara’; pricerange=‘expensive’; goodformeal=‘lunch’)
Utterance Ananda Fuara is a nice place, it is in the expensive price range and it is good for lunch.
Tv DA inform_no_match(type=‘television’; hasusbport=‘false’; pricerange=‘cheap’)
Utterance There are no televisions which do not have any usb ports and in the cheap price range.
Laptop DA recommend(name=‘Tecra 89’; type=‘laptop’; platform=‘windows 7’; dimension=‘25.4 inch’)
Utterance Tecra 89 is a nice laptop. It operates on windows 7 and its dimensions are 25.4 inch.
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The Counterfeit datasets (Wen et al., 2016a) were released by synthesizing Target domain data from Source domain data in
order to share realizations between similar slot-value pairs. The datasets are described in detail in Section 3.5 where we assume
that we do not have training and validation data from the Target domain yet, except for the test data.

The Union datasets were also created by pulling individual datasets together. For example, a [L+T] union dataset were built by
merging Laptop and Tv domain data together.

The dataset statistics is shown in Table 2. We also demonstrate the differences of word-level distribution using word clouds
in Fig. 1.
3.3. Delexicalization

The number of possible values for a DA slot is theoretically unlimited. This leads the generators to a sparsity problem since
there are some slot values which occur only once or even never occur in the training dataset. Delexicalization, which is a pre-pro-
cess of replacing some slot values with special tokens, brings benefits on reducing data sparsity and improving generalization to
unseen slot values since the models only work with delexicalized tokens. Note that the binary slots, such as true/false or yes/no
slots, and slots that take dont_care cannot be delexicalized since their values cannot exactly match in the training corpus. Table 3
shows some examples of the delexicalization step.
3.4. Lexicalization

Lexicalization procedure in the sentence planning stage is to decide what particular words should be used to express the con-
tent. For example, the actual adjectives, adverbs, nouns and verbs to occur in the text are selected from a lexicon. In this study,
Table 2
Dataset statistics.

Hotel Restaurant TV Laptop

# train 3223 3114 4221 7944
# 10% train 322 311 422 794
# 30% train 966 933 1266 2382
# validation 1075 1039 1407 2649
# 10% validation 107 103 140 264
# 30% validation 321 309 420 792
# test 1075 1039 1407 2649
# distinct DAs 164 248 7035 13,242
# DA types 8 8 14 14
# slots 12 12 15 19

Fig. 1. Word clouds for testing set of the four original domains, in which font size indicates the frequency of words.



Table 3
Delexicalization examples.

Hotel DA inform_only_match(name = ‘Nob Hill Motor In’; dogs_allowed = ‘no’; area = ‘Nob hill’; has_internet = ‘yes’)

Reference The Nob Hill Motor Inn is the only hotel in the Nob hill area that has internet and does not allow dogs.
Delexicalized Utterance The SLOT_NAME is the only hotel in the SLOT_AREA area that has internet and does not allow dogs.
Laptop DA recommend(name=‘Satellite Dinlas 18’; type=‘laptop’; processor=‘Intel Celeron’; is_for_business_computing=‘true’;

batteryrating=‘standard’)
Reference The Satellite Dinlas 18 is a great laptop for businesswith a standard battery and an Intel Celeron processor
Delexicalized Utterance The SLOT_NAME is a great SLOT_TYPE for business with a SLOT_BATTERYRATING battery and an SLOT_PROCESSOR processor
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lexicalization is a post-process of replacing delexicalized tokens with their values to form the final utterances, in which
with different slot values we obtain different outputs. Table 4 shows examples of the lexicalization process.

3.5. Counterfeit data

In order to construct an unsupervised domain adaptation scenario in which we do not need any labeled instances from
target domain, we synthesized new pseudo training and validating target data from the source data. The procedure is
described as follows (see Table 6 for an example):
�
 Categorize both source and target slots, according to their functional type, into three classes: requestable, informable, and
binary (see Table 5).
�
 Delexicalize all available slots and their corresponding values.

�
 Replace each slot s in a source instance ðdi;uiÞ2S with a randomly new slot s0 that is in both the target ontology and the func-
tional type of s, yielding a new pseudo instance ðd̂i ; ûi Þ2 T in the target domain.
�
 Train a generator on the counterfeit data ðd̂i ; ûi Þ2 T . Then refine model parameters on real in-domain data. This method
allows the model to share realizations among slot-value pairs which have similar functional types.

3.6. Unaligned training data

All four original NLG datasets and their variants used in this study contain unaligned training pairs of a dialogue act and corre-
sponding utterance. Our proposed generators in Sections 5, 6, and 7 can jointly train both sentence planning and surface realiza-
tion to convert a MR into natural language utterances. Thus, there is no longer need to explicitly separate training data alignment
(Mairesse et al., 2010b; Konstas and Lapata, 2013) which requires domain specific constraints and explicit feature engineering.
Examples in Tables 1, 3 and 4 show that correspondences between a DA and words or phrases in its output utterance are not
always matched.
Table 4
Lexicalization examples.

Restaurant DA inform(name=‘Connections SF’; price_range=‘pricey’)
Delexicalized Utterance SLOT_NAME is a nice restaurant and it is in the SLOT_PRICERANGE price range.

Lexicalized Utterance Connections SF is a nice restaurant and it is in the pricey price range.
Hotel DA inform(name=‘Laurel Inn’; price_range=‘moderate’)
Delexicalized Utterance SLOT_NAME is a nice hotel in the SLOT_PRICERANGE price range.
Lexicalized Utterance Laurel Inn is a nice hotel in themoderate price range.

Table 5
Datasets Ontology.

Laptop Television
Act Type inform

$

, inform_only_match
$

, goodbye
$

, select
$

,
inform_no_match$ , inform_count$ , request$ ,
request_more$ , recommend$ , confirm$ , inform_all,
inform_no_info, compare, suggest

Requestable Slots name$ , type$ , price$ , warranty, dimension, battery,
design, utility, weight, platform, memory, drive, processor

name$ , type$ , price$ , power_consumption, resolution,
accessories, color, audio, screen_size, family

Informable Slots price_range
$

, drive_range, weight_range, family,
battery_rating, is_for_business

price_range
$

, screen_size_range, eco_rating,
hdmi_port, has_usb_port

$ = overlap with Restaurant and Hotel domains, italic = slots can take don’t care value, bold = binary slots.



Table 6
Counterfeiting procedure. Slots and values are delexicalized. Slots and values that are not in the target domain are then replaced during counteifeiting process
(shown in red colour). I and R prefixes are slot functional types: I for Informable and R for Requestable.

Source Instance :
TV (Source) DA: inform(name = ‘Dinlas 26’; type = ‘television’; hasusbport = ‘true’; powerconsumption = ‘32 W”’; pricerange = ‘cheap’)

TV (Source) Utterance: Dinlas 26 is a televisionwhich has usb ports, has 32 W power consumption, and is in the cheap price range.
V Delexicalized TV Utterance
< R-NAME-Value > is a < R-TYPE-Value > which has usb ports, has < R-POWERCONSUMPTION-Value > < R-POWERCONSUMPTION-Slot > , and is in the < I-
PRICERANGE-Value > < I-PRICERANGE-Slot > .

V Counterfeiting
< R-NAME-Value > is a < R-TYPE-Value > which is for business computing, has < R-BATTERY-Value > < R-BATTERY-Slot > , and is in the < I-PRICERANGE-
Value > < I-PRICERANGE-Slot > .

V A Possible Utterance in Laptop (Target) Domain
Portege Zelus 80 is a nice laptopwhich is for business computing, has a 7.5 h battery, and is in the expensive price range.
Data Counterfeiting Instance: From TV domain to Laptop domain (T2L)
T2L DA: inform(name = “Dinlas 26’; type = “television’; isforbusinesscomputing = “true’; battery = “32 W”’; pricerange = “cheap’)
T2L Utterance: Dinlas 26 is a televisionwhich has usb ports, has 32 W power consumption, and is in the cheap price range.

Table 7
Slot error rate (ERR) examples. Errors are marked in colors, such as [missing] and redundant information. [OK] denotes
successful generation.

Hotel DA inform_only_match(name = “Red Victorian” ; accepts_credit_cards = “yes” ;
near = “Haight” ; has_internet = “yes’)

Reference The Red Victorian in the Haight area are the only hotel that accepts credit cards and has internet.

Output A Red Victorian is the only hotel that allows credit cards near Haight and allows internet. [OK]
Output B Red Victorian is the only hotel that allows credit cards and allows credit cards near Haight and allows internet.
Output C Red Victorian is the only hotel that nears Haight and allows internet. [allows credit cards]
Output D Red Victorian is the only hotel that allows credit cards and allows credit cards and has internet. [near Haight]

Number of total slots in the Hotel domain N = 12 (see Table 2)
Output A ERR¼ð0þ0Þ=12¼0:0
Output B ERR¼ð0þ1Þ=12¼0:083
Output C ERR¼ð1þ0Þ=12¼0:083
Output D ERR¼ð1þ1Þ=12¼0:167
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4. Evaluation metrics

4.1. BLEU

The Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) is often used for comparing a candidate generation of text
to one or more reference generations, which is the most frequently used metric for evaluating a generated sentence to a reference
sentence. Specifically, the task is to compare n-grams of the candidate responses with the n-grams of the human-labeled refer-
ence and count the number of matches which are position-independent. The more the matches, the better the candidate
response is. This study used the cumulative 4-gram BLEU score (also called BLEU-4) for the objective evaluation.
4.2. Slot error rate

The slot error rate ERR (Wen et al., 2015b), which is the number of generated slots that is either redundant or missing, and is
computed by:

ERR¼ðsmþsrÞ=N ð1Þ
where sm and sr are the number of missing and redundant slots in a generated utterance, respectively. N is the total number of
slots in given dialogue acts, such as N¼12 for Hotel domain (see Table 7). In some cases when we train adaptation models
across domains, we simply set N¼42 is the total number of distinct slots in all four domains. In the decoding phase, for each
DA we over-generated 20 candidate sentences and selected the top k¼5 realizations after re-ranking. The slot error rates
were computed by averaging slot errors over each of the top k¼5 realizations in the entire corpus. Note that, the slot error
rate cannot deal with dont_care and none values in a given dialogue act. Table 7 demonstrates how to compute the ERR score
with some examples. In this study, we adopted code from an NLG toolkit1 to compute the two metrics BLEU and slot error
rate ERR.
1 https://github.com/shawnwun/RNNLG

https://github.com/shawnwun/RNNLG
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5. VNLG - Variational Neural language generator

In this section, we first present a brief introduction about the variational autoencoder in Section 5.1. Section 5.2 provides in
detail how to integrate variational autoencoders into an encoder-decoder based generator (Tran and Nguyen, 2017a).

5.1. VAE-Variational Autoencoder

The VAE Kingma and Welling (2013) is a generative model which is mainly based on a standard autoencoder. It introduces a
latent variable z, designed to capture the variations in the observed variables x; then the joint distribution is formulated as fol-
lows:

pðx; zÞ¼puðxjzÞpðzÞ ð2Þ
where: u is the generative model parameters, p(z) is the prior distribution of the latent variable z, i.e., Gaussian distribution, pðxjzÞ
is the conditional distribution and typically parameterizes via a non-linear deep neural network. However, the posterior infer-
ence pðzjxÞ is intractable and VAE adopts two techniques in order to address this problem: variational neural inference and repar-
ameterization.

Variational neural inference utilizes a neural network to approximate the posterior distribution of latent variable z and formu-
lated as follows:

qfðzjxÞ¼N
�
mðxÞ;s2ðxÞ

�
ð3Þ

where: meanmðxÞ and variance s2ðxÞ are both function of x parameterized by neural networks.
Reparameterization instead of using the standard sampling method, which reparameterizes z as a function of m and s with a

standard Gaussian noise variable � and computed as follows:

z¼mþs � � ð4Þ
VAE employs an objective function which encourages the model to keep the posterior distribution of z close to its prior distri-

bution, which enables the use of the lower bound. The objective function is formed as follows:

LVAEðu;f; xÞ¼�KL
�
qfðzjxÞ k puðzÞ

�
þEqfðzjxÞ½ logpuðxjzÞ�� logpðxÞ ð5Þ

where KL(Q||P) is the Kullback-Leibler divergence between Q and P. Maximizing the objective function is equivalent to maximize
the reconstruction likelihood of observable variable x and minimizing the KL divergence between the approximated posterior
and the prior distribution of latent variable z.
5.2. VNLG-Variational Natural language generator

Drawing inspiration from VAE model (Kingma and Welling, 2013) with assumption that there exists a continuous latent vari-
able z from a underlying semantic space of Dialogue Act (DA) and utterance pairs ðd; uÞ; we explicitly model the space together
with variable d to guide the generation process, i.e. pðujz;dÞ. Thus, the original conditional probability is reformulated as follows:

pðujdÞ¼
Z
z
pðu; zjdÞdz¼

Z
z
pðujz;dÞpðzjdÞdz ð6Þ

This latent variable enables us to model the underlying semantic space as a global signal for generation. However, the incor-
porating of latent variable into the probabilistic model arises two difficulties in (i)modeling the intractable posterior inference pð
zjd; uÞ and (ii)whether or not the latent variables z can be modeled effectively in case of low-resource setting data.

To address the difficulties, we propose an encoder-decoder based variational model to natural language generation (VNLG) by
integrating a variational autoencoder (Kingma and Welling, 2013) into an encoder-decoder generator (Tran and Nguyen, 2017a).
Fig. 4-(a) shows a graphical model of VNLG. We then employ deep neural networks to approximate the prior pðzjdÞ; true posterior
pðzjd;uÞ; and decoder pðujz; dÞ. To tackle the first issue, the intractable posterior is approximated from both the DA and utterance
information qfðzjd; uÞ under the above assumption. In contrast, the prior is modeled to condition on the DA only puðzjdÞ due to
the fact that the DA and utterance of a training pair usually share the same semantic information, i.e., a given DA inform(name=‘-
ABC’; area=‘XYZ’) contains key information of the corresponding utterance “The hotel ABC is in XYZ area”. The underlying semantic
space with having more information encoded from both the prior and the posterior provides the generator a potential solution to
tackle the second issue in the domain adaptation and scratch training scenarios. Lastly, in generative process, given an observation
DA d the output u is generated by the decoder network puðujz; dÞ under the guidance of the global signal z which is drawn from
the prior distribution puðzjdÞ. According to (Kingma and Welling, 2013; Sohn et al., 2015), the variational lower bound can be
recomputed as:

LVAEðu;f; d; uÞ¼�KL
�
qfðzjd; uÞ k puðzjdÞ

�
þEqfðzjd;uÞ½ logpuðujz;dÞ� ð7Þ
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where: puðzjdÞ is the prior model, qfðzjd;uÞ is the posterior approximator, and puðujz; dÞ is the decoder with the guidance from
global signal z, KL(Q||P) is the Kullback-Leibler divergence between Q and P.

The variational architecture for natural language generation is demonstrated in Fig. 2, in which a variational inference is inte-
grated into an encoder-decoder based natural language generator (Tran and Nguyen, 2017a). The variational generation architec-
ture comprises three components: Variational Encoder Network (Section 5.2.1), Variational Inference Network (Section 5.2.2),
and Variational Decoder Network (Section 5.2.3).
5.2.1. Variational encoder network
The variational encoder network consists of two networks: (i) a 1-layer, Bidirectional LSTM (BiLSTM) encoding the sequence

of slot-value pairs fsvigTDAi¼1 in a given Dialogue Act; and (ii) a shared RNN/CNN Encoder encoding the given input utterance u. The
input sequence u of length TU (padded where necessary) represented as U2Rd�TU by concatenating its word embedding Ut 2E½ut
�; where E2Rd�jVj; d, jVj are embedding and vocabulary sizes, respectively. All columns of E are normalized to have unit l2-norm.
The encoder, thus, produces both the DA representation and the utterance representation vectors which flow into the inference
and decoder networks, and the posterior approximator, respectively.
BiLSTM dialogue act encoder
The BiLSTM consists of forward and backward LSTMs which process the sequence from left-to-right and right-to-left, yielding

both forward and backward sequence of hidden states (
!
h1 ; :;

!
hTDA ), and (

 
h1 ; :;

 
hTDA ), respectively. We finally take the mean-pool-

ing over the BiLSTM hidden vectors to obtain the Dialogue Act representation: hD¼ 1
TDA

PTDA
i hi;where hi¼

!
hiþ
 
hi .
CNN utterance encoder
We use CNN utterance encoder for constructing a low-resource setting generator which is described in Section 7. The CNN

consists of L-1 convolutional layers and a L-th fully-connected layer, which aims at encoding an input utterance u into a fixed
length representation vector hU. Layer l2 f1; :; Lg comprises learnable kl filters. For j-th filter in layer l¼½1; :; L�1�; a convolutional
operation with stride length s(l) applies filter Wðj;lÞ

v 2Rd�h; where h is convolutional filter size. This produces latent feature map,
vðj;lÞ ¼ReLUðU �Wðj;lÞ

c þbðj;lÞÞ2RðTðlÞ�hÞ=sðlÞþ1; where bðj;lÞ 2RðT ðlÞ�hÞ=sðlÞþ1 is bias, and * is the convolutional operator. We finally concate-
nate the results from kl filters, results in feature map VðlÞ ¼½vð1;lÞ; . . . ; vðkl ;lÞ�2Rkl�½ðT ðlÞ�hÞ=sðlÞþ1�. For each layers l¼½1; :; L�1�; the length
along the spatial dimension is reduced to Tðlþ1Þ ¼ ðTðlÞ�hÞ=sðlÞþ1

� �
; where T(l), s(l) are the spatial length and the stride length,

respectively, and b.c is the floor function. The feature map VðL�1Þ; at the final layer L, is fed into a fully-connected layer to yield the
latent representation hU which encapsulates the sentence sub-structure via the whole sentence portrayed by filters fWðj;lÞ

v g. We
utilize the implementation trick as in Radford et al. (2015), in which we use a convolutional layer with the filter size equals to
T ðL�1Þ.

In this work, for example, the CNN encoder consists of L¼3 layers, which for a sentence of length TU ¼73; embedding size d¼
100; stride length s¼f2;2;2g; number of filters k¼f300;600;100gwith filter sizes h¼f5;5;16g; results in feature maps V of sizes
{35 £ 300, 16 £ 600, 1 £ 100}, in which the last feature map corresponds to latent representation vector hU.
Fig. 2. The Variational NLG architecture. The model consists of three main components: (i) Variational Encoder Network, (ii) Variational Inference Network, and
(iii) Variational Decoder Network.
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RNN utterance encoder
For constructing a domain-adaptation generator, we utilize RNN Utterance Encoder whose architecture is same as BiLSTM DA

encoder in Section 5.2.1. The final representation the corresponding utterance fuigTUi¼1 is obtained by taking the mean-pooling
over the BiLSTM hidden vectors hU¼ 1

TU

PTU
i h0i where h0i¼

!
h0iþ
 
h0i .
5.2.2. Variational inference network
In this section, we describe how to model both the prior puðzjdÞ and the posterior qfðzjd;uÞ by utilizing neural networks.
Neural posterior approximator
Modeling the true posterior pðzjd;uÞ is usually intractable. Traditional approach fails to capture the true posterior distribution

of z due to its oversimplified assumption when using the mean-field approaches. Following the work of Kingma and Welling
(2013), in this paper we employ neural network to approximate the posterior distribution of z to simplify the posterior inference.
We assume the approximation has the following form:

qfðzjd; uÞ¼N
�
z;m1

�
f ðhD; hUÞ

�
;s2

1

�
f ðhD;hUÞ

�
I
�

ð8Þ

where mean m1 and standard variance s1 are outputs of the neural network based on the representations of hD and hU . The func-
tion f is a non-linear transformation that project both DA and utterance representations into the latent space:

h0z¼ f ðhD; hUÞ¼gðWz½hD;hU �þbzÞ ð9Þ
where Wz 2Rdz�ðdhDþdhU Þ and bz 2Rdz are matrix and bias parameters respectively, dz is the dimensionality of the latent space, g(.)
is an elements-wise activation function which we set to be Relu in our experiments. In this latent space, we obtain the diagonal
Gaussian distribution parameter m1 and logs2

1 through linear regression:

m1¼Wm1
h0zþbm1

; logs2
1¼Ws1h

0
zþbs1 ð10Þ

wherem1, logs2
1 are both dz dimension vectors.
Neural prior model
Wemodel the prior as follows:

puðzjdÞ¼N
�
z;m01ðdÞ;s01ðdÞ2I

�
ð11Þ

wherem01 and s
0
1 of the prior are neural models based on DA representation only, which are the same as those of the posterior qfð

zjd; uÞ in Eq. 8 and Eq. 10, except for the absence of hU . To acquire a representation of the latent variable z, we utilize the same
technique as proposed in VAE Kingma andWelling (2013) and re-parameterize it as follows:

hz¼m1þs1 � �; �eN ð0; IÞ ð12Þ
In addition, we set hz to be the mean of the prior puðzjdÞ; i.e., m01; during decoding due to the absence of the utterance u. Intui-

tively, by parameterizing the hidden distribution this way, we can back-propagate the gradient to the parameters of the encoder
and train the whole network with stochastic gradient descent. Note that the parameters for the prior and the posterior are inde-
pendent of each other.

In order to integrate the latent variable hz into the decoder, we use a non-linear transformation to project it onto the output
space for generation:

he¼gðWehzþbeÞ ð13Þ
where he 2Rde . It is important to notice that due to the sample noise �, the representation of he is not fixed for the same input DA
and model parameters. This benefits the model to learn to quickly adapt to a new domain (see Table 9 and Fig. 6).
5.2.3. Variational neural decoder
Given a DA d and the latent variable z, the decoder calculates the probability over the generation u as a joint probability of

ordered conditionals:

pðujz;dÞ¼
YTU
j¼1

pðut ju< t ; z; dÞ ð14Þ

where: pðut ju< t ; z;dÞ¼g0ðRNNðut ;ht�1;dtÞ In this paper, we borrow the dt calculation and the computational RNN cell from work
(Tran and Nguyen, 2017a) where RNN(.)=RALSTM(.) with a slightly modification in order to integrate the representation of
latent variable, i.e, he; into the RALSTM cell, which is denoted by the bold dashed orange arrow in Fig. 2-(iii). We modify the
cell calculation as follows:
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it

f t

ot

ĉt

0BBBB@
1CCCCA ¼

s

s

s

tanh

0BBBB@
1CCCCAW4dh ;4dh

he

dt

ht�1
ut

0BBBB@
1CCCCA ð15Þ

where: ii; f t ; ot are input, forget and output gates respectively, dh is hidden layer size,W4dh ;4dh is model parameter.
The resulting Variational Inference RALSTM (VI-RALSTM) model with CNN utterance encoder (VIC-RALSTM) or with RNN

utterance encoder (VIR-RALSTM) are demonstrated in Fig. 2-(i), (ii), (iii), in which the latent variable affects the hidden represen-
tation through the gates. This allows the model can indirectly take advantage of the underlying semantic information from the
latent variable z. Furthermore, when the model learns to adapt to a new domain with unseen dialogue act, the semantic repre-
sentation he can help to guide the generation process (see Section 9.2.3 for details).
6. VDANLG - An adversarial VNLG for domain adaptation

In this Section we propose two novel critics which guide the VNLG-based model to adapt quickly to a new domain, we then
propose a novel adversarial training procedure for domain adaptation. Note that we use VIR-RALSTM (see Section 5.2.1) in this
setting, resulting in a Variational Domain Adaptation NLG (VDANLG) model is illustrated in Fig. 3.

6.1. Critics

This Section introduces a text-similarity critic and a domain critic to guarantee, as much as possible, that the generated senten-
ces resemble the sentences drawn from the target domain.
6.1.1. Text similarity critic
In order to examine the relevance between sentence pair in two domains and to encourage the model generating senten-

ces in the style which is highly similar to those in the target domain, we propose a Text Similarity Critic (SC) to classify ðuð1Þ;
uð2ÞÞ as 1-similar or 0-unsimilar text style. The SC model consists of two parts: a shared BiLSTM hY with the Variational Neu-
ral Encoder to represent the uð1Þ sentence, and a second BiLSTM to encode the uð2Þ sentence. The SC model takes input as a
pair ðuð1Þ;uð2ÞÞ of ([target], source), ([target], generated), and ([generated], source). Note that we give priority to encoding the
uð1Þ sentence in [.] using the shared BiLSTM, which guides the model to learn the sentence style from the target domain, and
also contributes the target domain information into the global latent variables. We further utilize Siamese recurrent archi-
tectures (Neculoiu et al., 2016) for learning sentence similarity, in which the architecture allows the model to learn useful
representations with limited supervision.
Fig. 3. The Variational Domain Adaptation NLG (VDANLG) architecture. The model consists of two main components: the VIR-RALSTM to generate the sentence,
which comprises : (i) Variational Encoder Network, (ii) Variational Infererence Network, and (iii) Variational Decoder Network; and two Critics with an adversar-
ial training procedure to guide the model in domain adaptation, which is composed of a Domain critic and a Text Similarity critic.
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6.1.2. Domain critic
In order to learn a model that can generalize well from a source domain to a new target domain, and more specifically, in con-

sideration of the shifts between domains we introduce a Domain Critic (DC) to classify sentence as source, target or generated
domain, respectively. Drawing inspiration from work of (Ganin et al., 2016), we model DC with a gradient reversal layer and two
standard feed-forward layers. It is important to notice that our DC model shares parameters with the Variational Neural Encoder
and the Variational Neural Inferer. The DC model takes input as a pair of given DA and corresponding utterance to produce a con-
catenation of both its representation and its latent variable in the output space, which is then passed through a feed-forward
layer and a 3-labels classifier. In addition, the gradient reversal layer, which multiplies the gradient by a certain negative value
during back-propagation training, ensures that the feature distributions over the two domains are made similar, as indistinguish-
able as possible for the domain critic, hence resulting in the domain-invariant features.

6.2. Training domain adaptation model

Given a training instance represented by a pair of DA and sentence ðdðiÞ;uðiÞÞ from the rich source domain S and the limited
target domain T ; the task aims at finding a set of parametersQT that can perform acceptably well on the target domain.

6.2.1. Training critics
We provide as following the training objective of SC and DC. For SC, the goal is to classify a sentence pair into 1-similar or 0-

unsimilar textual style. This procedure can be formulated as a supervised classification training objective function:

LsðcÞ¼�
XN
n¼1

logCsðlns junð1Þ; unð2Þ;cÞ;

lns ¼
1�similar if ðunð1Þ; unð2ÞÞ2Psim;

0�unsimilar if ðunð1Þ; unð2ÞÞ2Punsim;
UG¼fujueGð:jdT ; :Þg;Psim¼funT ;unUG

g;Punsim¼ðfunT ; unSg; funUG
; unSgÞ

( ð16Þ

where N is number of sentences, c is the model parameters of SC, UG denotes sentences generated from the current generator G
given target domain dialogue act dT . The scalar probability Csð1junT ; unUG

Þ indicates how a generated sentence unUG
is relevant to a

target sentence unT .
The DC critic aims at classifying a pair of DA-utterance into source, target, or generated domain. This can also be formulated as a

supervised classification training objective as follows:

Ldð’Þ¼�
XN
n¼1

logCdðlndjdn;un;’Þ; lnd¼
source if ðdn; unÞ2 ðDS ;USÞ;
target if ðdn; unÞ2 ðDT ;UT Þ;
generated if ðdn; unÞ2 ðDT ;UGÞ;

8<: ð17Þ

where ’ is the model parameters of DC, and (DS;US) and (DT ;UT ) are the DA-utterance pairs from source and target domain,
respectively; UG denotes sentences generated from the current generator G given target domain dialogue act dT . Note also that
the scalar probability Cdðtargetjdn; unÞ indicates how likely the DA-utterance pair (dn;un) is from the target domain.

6.2.2. Training variational neural language generator
We utilize the Monte Carlo method to approximate the expectation over the posterior in Eq. 7, i.e. Eqfðzjd;uÞ½:�’ 1

M

PM
m¼1 logpuðuj

d;h
ðmÞ
z Þ where: M is the number of samples. In this study, the joint training objective for a training instance ðd;uÞ is formulated as

follows:

Lðu;f; d; uÞ’�KL
�
qfðzjd;uÞ k puðzjdÞ

�
þ 1
M

XM
m¼1

XTu
t¼1

logpuðut ju< t ;d;h
ðmÞ
z Þ ð18Þ

where: hðmÞ
z ¼mþs � �ðmÞ; and �ðmÞeN ð0; IÞ. The first term is the KL divergence between two Gaussian distribution, and the sec-

ond term is the approximation expectation. We simply set M¼1 which degenerates the second term to the objective of conven-
tional generator. Since the objective function in Eq. 18 is differentiable, we can jointly optimize the parameter u and variational
parameter f using standard gradient ascent techniques.

6.2.3. Adversarial training
Our domain adaptation architecture is demonstrated in Fig. 2, in which both generator G and critics Cs, and Cd jointly train by

pursuing competing goals as follows. Given a dialogue act dT in the target domain, the generator generates K sentences u’s. It
would prefer a “good” generated sentence u if the values of CdðtargetjdT ; uÞ and Csð1juT ;uÞ are large. In contrast, the critics would
prefer large values of CdðgeneratedjdT ;uÞ and Csð1ju; uSÞ; which imply the small values of CdðtargetjdT ;uÞ and Csð1juT ;uÞ. We pro-
pose a domain-adversarial training procedure in order to iteratively updating the generator and critics as described in Algo-
rithm 1. While the parameters of generator is optimized to minimize its loss in the training set, the parameters of the critics are
optimized to minimize the error of text similarity, and to maximize the loss of domain classifier.

Generally, the current generator G for each training iteration i takes a target dialogue act dðiÞT as input to over-generate a set UG
of K candidate sentences (step 11). We then choose top k best sentences in the UG set (step 12) after re-ranking to measure how
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“good” the generated sentences are by using the critics (steps 14�15). These “good” signals from the critics can guide the genera-
tor step by step to generate the outputs which resemble the sentences drawn from the target domain. Note that the re-ranking
step is important for separating the “correct” sentences from the current generated outputs UG by penalizing the generated sen-
tences which have redundant or missing slots. This helps the model to produce the utterances with lower ERR score (see Table 9).
7. DualVAE - A dual variational model for low-Resource setting data

Starting from a Varitional neural language generator with a CNN utterance encoder (VIC-RALSTM) in Section 5.2.1, we present
an effective way to construct a dual Variational model which consists of two VAEs and enables the variational-based generator to
learn more efficiently when the training data is in short supply. In more details, we integrate a variational inference into an
encoder-decoder generator and introduce a novel auxiliary auto-encoding with an effective training procedure. Fig. 4 shows a
graphical model of the proposed dual variational model. The following Section 7.1 presents a second auxiliary VAE model which
is a Variational CNN-DCNNmodel as shown in the left side of Fig. 5. Section 7.2 then proposes a novel training procedure to effec-
tively leverage knowledge from a small amount of training data.

7.1. Variational CNN-DCNN model

This standard VAE model (left side in Fig. 5) acts as an auxiliary auto-encoding for utterance (used at training time) to the
VNLG generator. This VAE model consists of two components: a shared CNN Utterance Encoder model with the Variational Lan-
guage Generator, and a DCNN Utterance Decoder model. After having the vector representation hU; we apply another linear
regression to obtain the distribution parameterm2 and logs2

2 as follows:

m2¼Wm2
hUþbm2

; logs2
2¼Ws2hUþbs2 ð19Þ

where: m2, logs2
2 are also both dz dimension vectors. We also obtain a representation of the latent variable z by re-parameteriz-

ing it as follows:

hzu¼m2þs2 � �; �eN ð0; IÞ ð20Þ



Fig. 4. Illustration of proposed variational models as a directed graph. (a) VNLG: joint learning both variational parameters f and generative model parameters u.
(b) DualVAE: red and blue arrows form a standard VAE (parameterized by f0 and u0) as an auxiliary auto-encoding to the VNLG model denoted by red and black
arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In order to integrate the latent variable hzu into the DCNN Decoder, we use a shared non-linear transformation as in Eq. 13
(dashed black line in Fig. 5):

he¼gðWehzuþbeÞ ð21Þ
7.1.1. DCNN utterance decoder
To decode the latent representation, he; back to the source text, we use the deconvolutional network with stride, also known

as transposed convolutional layers. As a minoring the convolutional steps, the spatial dimension first is expanded to match those
of the (L�1)-th convolutional layer, then progressively widened as Tðlþ1Þ ¼ðTðlÞ�1Þ � sðlÞþh for l¼1:L; which corresponds to the
input layer of the CNN utterance encoder. The output of the L-th deconvolutional layer aims to recontruct the word embedding
matrix denoted as Û whose columns are normalized to have unit l2-norm as well as word embedding matrix E. The probability of
ût to be word s is computed as follows:

pðût¼sÞ¼expft�1cosðût ;E½s�ÞgP
s0 2Vexpft�1cosðût ;E½s0�Þg ð22Þ

where: cos(x, y) is the cosine similarity between two vectors x and y, V is the word vocabulary, E½s� denotes the column of word
embedding E corresponding to word s. Temperature parameter t is set to be 0.01 to control the sparsity of the resulting probabil-
ities.
Fig. 5. The Dual Variational Model consists of two VAE models: (I) the Variational Natural Language Generator (VIC-RALSTM) in the dashed red box to generate
utterances, which comprises: (i) Variational Encoder Network, (ii) Variational Inference Network, and (iii) Variational Decoder Network; and (II) the Variational
CNN-DCNN Model (left side) which is an auxiliary auto-encoding model (left side) and composed of a CNN Encoder and a Deconvolutional Decoder. The CNN
Encoder for utterance encoding is shared between the two VAEs. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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The resulting model named DualVAE by incorporating the Variational NLG (VIC-RALSTM) with the Variational CNN-DCNN
model and depicted in Fig. 5.

7.2. Training dual latent variable model

7.2.1. Training variational language generator
Similar to Section 6.2.2 on training a variational NLG, the joint training objective for a training instance pair ðd;uÞ is formu-

lated as follows:

LVIC�RALSTM¼Lðu;f;d;uÞ ð23Þ
where Lðu;f;d;uÞ is computed as in Eq. 18.

7.2.2. Training variational CNN-DCNN model
The objective function of the Varialtional CNN-DCNN model is the standard VAE lower bound (Kingma and Welling, 2013) to

be maximized as follows:

LCNN�DCNN¼Lðu0;f0;uÞ¼�KL
�
qf0 ðzjuÞ kpu0 ðzÞ

�
þEqf0 ðzjuÞ½ logpu0 ðujzÞ�� logpðuÞ ð24Þ

where u0 and f0 denote decoder and encoder parameters, respectively. Intuitively, maximizing the objective function is equiva-
lent to maximize the reconstruction likelihood of observable variable u and minimizing the KL divergence between the approxi-
mated posterior and the prior distribution of latent variable z. During training, we also consider a denoising autoencoder where
we slightly modify the input by swapping some arbitrary word pairs.

7.2.3. Joint training dual VAE model
To allow the model explore and balance maximizing the variational lower bound between the CNN-DCNN model and VIC-

RALSTMmodel, an objective is joint dual training as follows:

LDualVAE¼LVIC�RALSTMþaLCNN�DCNN ð25Þ
where a controls the relative weight between two variational losses. During training, we anneal the value of a from 1 to 0, so that
the dual latent variable learned can gradually focus less on reconstruction objective of the CNN-DCNN model, only retain those
features that are useful for the generation objective.

7.2.4. Joint cross training dual VAE model
To allow the dual VAE model explore and encode useful information of the dialogue act into the latent variable, we further

take a cross training between two VAEs by simply replacing the RALSTM Decoder of the VIC-RALSTM with the DCNN Utterance
Decoder, and its objective training as:

LVIC�DCNN¼Lðu0;f; d; uÞ’�KL
�
qfðzjd; uÞ k pu0 ðzjdÞ

�
þEqfðzjd;uÞ½ logpu0 ðujz; dÞ�; ð26Þ

and a joint cross training objective is employed:

LCrossVAE¼LVIC�RALSTMþaðLCNN�DCNNþLVIC�DCNNÞ ð27Þ

8. Experiments

8.1. Experimental setups

We followed the configurations for the RALSTM model from work of (Tran and Nguyen, 2017a), in which: the hidden layer
size and beam width were set to be 80 and 10, respectively, and the generators were trained with a 70% of keep dropout rate. We
performed 5 runs with different random initialization of the network, and the training process is terminated by using early stop-
ping. We then selected a model that yields the highest BLEU score (Papineni et al., 2002) on the validation set. We used Adam
optimizer with the learning rate initially set to be 0.001, and after 3 epochs for the Union dataset and 5 epochs for the single data-
set the learning rate is decayed every epoch using an exponential rate of 0.95. For the variational inference, we set the latent vari-
able size to be 16 for VDANLG model and 300 for dual VAEs.

8.2. Decoding

The decoding we implemented here is similar to those in work of Wen et al. (2015b), which consists of two phases: (i) over-
generation, and (ii) re-ranking. In the first phase, the generator RALSTM decoder, conditioned on both representations of the
given DA and the latent variable, uses a beam search (with beam size is set to be 10) to generate a set of 20 candidate responses.
The objective cost of the generator, in the re-ranking phase, is calculated to form the re-ranking score R as follows:
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R¼Lð:ÞþλERR ð28Þ
where: Lð:Þ is cost of variational generator training, λ is a trade-off constant and is set to be 1000 to severely penalize nonsensical
outputs. The slot error rate ERR Wen et al. (2015b), which is the number of slots generated that is either redundant or missing,
and is computed as:

ERR¼ðsmþsrÞ=N ð29Þ
where: N is the total number of slots in given dialogue act, and sm; sr is the number of missing and redundant slots, respec-
tively. In the decoding phase, for each DA we over-generated 20 candidate sentences and selected the top k¼5 realizations
after re-ranking. The slot error rates were computed by averaging slot errors over each of the top 5 realizations in the entire
corpus.

8.3. KL Cost annealing

VAE is hard to train because of the model in most cases converges to a solution with a vanishing small KL term, thus effectively
falling back to a conventional language model. Following (Bowman et al., 2015b), we use KL cost annealing strategy to encourage
the model to encode meaningful representations into the z latent vector, in which we gradually annealing the KL term from 0 to
1. This helps our model to achieve solutions with non-zero KL term.

8.4. Gradient reversal layer

The gradient reversal layer (Ganin et al., 2016) leaves the input unchanged during forward propagation and reverses the gra-
dient by multiplying it with a negative scalar during the backpropagation-based training. For configuring the Domain critic (see
6.1) in VDANLG model, we set the domain adaptation parameter λp which gradually increases, starting from 0 to 1, by using the
following schedule for each training step i as follows:

p ¼ floatðiÞ=num_steps;

λp ¼ 2
1þ expð�10 � pÞ

�1 ð30Þ

where: num_steps is a constant which is set to be 8600, p is the training progress. This strategy allows the Domain critic to be less
sensitive to noisy signal at the early stages of the training procedure.

8.5. Evaluation metrics and baselines

The generator performances were evaluated using the two metrics: the BLEU and the slot error rate ERR by adopting code
from an NLG toolkit.2 We compared the proposed models against strong baselines which have been recently published as NLG
benchmarks of the above datasets.
�

2

Gating-based generators, including SCLSTM model (Wen et al., 2015b) which jointly learns the gating signal and language
model by using a semantic reading gate, and HLSTM model (Wen et al., 2015a) which uses a heuristic gate to ensure that all
of the attribute-value information was accurately captured during generation.
�
 Attention-based generators, including Enc-Dec model (Wen et al., 2016b) which applies the attention mechanism to an RNN
encoder-decoder, and a hybrid RALSTM model (Tran and Nguyen, 2017a) which is a combination of an attention over the
slot-value pairs with gating a control dialogue act vector.

9. Results and analysis

We performed the models in different scenarios as follows:
�
 Scratch training: Models trained from scratch using 10% (scr10), 30% (scr30), and 100% (scr100) amount of in-domain data;

�
 Domain adaptation training: Models pre-trained from scratch using all source domain data, then fine-tuned on the target
domain using only 10% amount of the target data.

Overall, both proposed models demonstrate an ability to work well in various scenarios of low-resource setting data.
The proposed models further obtained better performance regarding both the evaluation metrics across all domains in all
training scenarios. We start investigating the effectiveness of variational integrating in Section 9.1. Sections 9.2 and 9.3
present the results and analyses of domain adaptation models and dual variational models, respectively.
https://github.com/shawnwun/RNNLG .

https://github.com/shawnwun/RNNLG
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9.1. Integrating variational inference

We compare the original model RALSTM with its modification by integrating with Variational Inference (VIR-RALSTM and
VIC-RALSTM) as demonstrated in Fig. 6 and Table 8. It clearly shows that the model integration not only preserves the power of
the original RALSTM on generation task since its performances are very competitive to those of RALSTM (Table 8, sec.1), but also
provides a compelling evidence on adapting to a new, unseen domain when the target domain data is scarce, i.e., from 1% to 7%
(Fig. 6). Table 8, sec.2 further shows the necessity of the integrating in which the Variational RALSTM achieved a significant
improvement over the RALSTM in scr10 scenario where the models trained from scratch with only a limited amount of training
data (10%). These indicate that the proposed variational method can learn the underlying semantic of the existing DA-utterance
pairs, which are especially useful information for low-resource setting.

Furthermore, the VIR-RALSTM model has slightly better results than the VIC-RALSTM when providing sufficient training data,
i.e., 100%. In contrast, with a limited training data, i.e, 10%, the latter model demonstrates a significant improvement compared to
previous models in terms of both BLEU and ERR scores by a large margin across all four dataset. In Hotel domain, for example,
the VIC-RALSTM model (79.98 BLEU, 8.67% ERR) has better results in comparison to the VIR-RALSTM (73.78 BLEU, 15.43% ERR)
and RALSTM (68.55 BLEU, 22.53% ERR). The VIC-RALSTM, the model with CNN utterance encoder, shows obvious sign for con-
structing a dual latent variable models dealing with the limitation of in-domain data, which are discussed in Section 9.3. The fol-
lowing Section 9.2 provides in detail results and analyses of the VDANLG model in tackling domain adaptation problems.

9.2. Adversarial VNLG for domain adaptation

We compared the Variational Domain Adaptation NLG (see Section 6) against the baselines in various scenarios: adaptation,
scr10, scr100. Overall, the proposed models trained on adaptation scenario not only achieve competitive performances compared
with previous models trained on all in-domain dataset, but also significantly outperform models trained on scr10 by a large mar-
gin. The proposed models further show ability to adapt to a new domain using a limited amount of target domain data.

9.2.1. Ablation studies
The ablation studies (Table 9, sec.1, 2, 4, 5) demonstrate the contribution of two Critics, in which the models were assessed

with either no Critics (sec.1) or both (sec.2) or only one (+ DC only in sec.4 and + SC only in sec.5). It is clearly shown that, in com-
parison to models trained without Critics in Table 9 sec.1, combining both Critics (sec.2) makes a substantial contribution to
increasing the BLEU score and decreasing the slot error rate ERR by a large margin in every dataset pair. A comparison of model
adapting from source Laptop domain between VIR-RALSTM without Critics (Laptop in sec.1) and VDANLG (Laptop in sec.2)
Table 8
Results evaluated on Target domains by training models from scratch scenarios, scr100 (in sec.1) and scr10 (in sec.2).

Model\ Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
HLSTMWen et al. (2015a) 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTMWen et al. (2015b) 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
Enc-Dec Wen et al. (2016b) 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%
RALSTM Tran and Nguyen (2017a) 0.8911 0.48% 0.7739 0.19% 0.5376 0.65% 0.5222 0.49%
VIR-RALSTM (Ours) 0.8851 0.57% 0.7709 0.36% 0.5356 0.73% 0.5210 0.59%
VIC-RALSTM (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%
RALSTM Tran and Nguyen (2017a) 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIR-RALSTM (Ours) 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%
VIC-RALSTM (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%

Fig. 6. Performance on Laptop domain with varied limited amount, from 1% to 7%, of the adaptation training data when adapting models pre-trained on [Restau-
rant+Hotel] union dataset.



Table 9
Ablation studies.” results evaluated on Target domains by adaptation training proposed models from Source
domains using only 10% amount of the Target domain data (sec.1, 2, 4, 5). The models were assessed with either no
Critics (sec.1) or both (+ DC + SC in sec.2) or only one (+ DC only in sec.4 and + SC only in sec.5). DC and SC are stand
for Domain Critic and Text Similarity Critic, respectively. scr10 in sec.3: Training RALSTM and VIR-RALSTM models
from scratch using only 10% of Target domain data. The results were averaged over 5 randomly initialized networks.

Source\Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

no Critics Hotel � � 0.6814 11.62% 0.4968 12.19% 0.4915 3.26%
Restaurant 0.7983 8.59% � � 0.4805 13.70% 0.4829 9.58%
Tv 0.7925 12.76% 0.6840 8.16% � � 0.4997 4.79%
Laptop 0.7870 15.17% 0.6859 7.55% 0.4953 18.60% � �
[R+H] � � � � 0.5019 7.43% 0.4977 5.96%
[L+T] 0.7935 11.71% 0.6927 6.49% � � � �

+ DC + SC Hotel � � 0.7131 2.53% 0.5164 3.25% 0.5007 1.68%
Restaurant 0.8217 3.95% � � 0.5043 2.99% 0.4931 2.77%
Tv 0.8251 4.89% 0.6971 4.62% � � 0.5009 2.10%
Laptop 0.8218 2.89% 0.6926 2.87% 0.5243 1.52% � �
[R+H] � � � � 0.5197 2.58% 0.5009 1.61%
[L+T] 0.8252 2.87% 0.7066 3.73% � � � �

scr10 RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIR-RALSTM 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%

+ DC only Hotel � � 0.6823 4.97% 0.4322 27.65% 0.4389 26.31%
Restaurant 0.8031 6.71% � � 0.4169 34.74% 0.4245 26.71%
Tv 0.7494 14.62% 0.6430 14.89% � � 0.5001 15.40%
Laptop 0.7418 19.38% 0.6763 9.15% 0.5114 10.07% � �
[R+H] � � � � 0.4257 31.02% 0.4331 31.26%
[L+T] 0.7658 8.96% 0.6831 11.45% � � � �

+ SC only Hotel � � 0.6976 5.00% 0.4896 9.50% 0.4919 9.20%
Restaurant 0.7960 4.24% � � 0.4874 12.26% 0.4958 5.61%
Tv 0.7779 10.75% 0.7134 5.59% � � 0.4913 13.07%
Laptop 0.7882 8.08% 0.6903 11.56% 0.4963 7.71% � �
[R+H] � � � � 0.4950 8.96% 0.5002 5.56%
[L+T] 0.7588 9.53% 0.6940 10.52% � � � �
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evaluated on the target domain Hotel shows that the VDANLG not only has better performance with much higher the BLEU score,
82.18 in comparison to 78.70, but also significantly reduce the slot error rate ERR, from 15.17% down to 2.89%. The trend is consis-
tent across all the other domain pairs. These stipulate the necessity of the Critics and the adversarial domain adaptation algo-
rithm in effective learning to adapt to a new domain, in which although both the RALSTM and VIR-RALSTM models perform well
when providing sufficient in-domain training data (Table 8), the performances are extremely impaired when training from
scratchwith only limited amount of in-domain training data.

Table 9 further demonstrates that using DC only (sec.4) brings a benefit of effectively utilizing similar slot-value pairs seen in
the training data to closer domain pairs such as: Hotel! Restaurant (68.23 BLEU, 4.97 ERR), Restaurant! Hotel (80.31 BLEU,
6.71 ERR), Laptop! Tv (51.14 BLEU, 10.07 ERR), and Tv! Laptop (50.01 BLEU, 15.40 ERR) pairs. Whereas it is inefficient for the
longer domain pairs since their performances (sec.4) are worse than those without Critics, or in some cases even worse than the
VIR-RALSTM, such as Restaurant! Tv (41.69 BLEU, 34.74 ERR) and the cases where Laptop to be a Target domain. On the other
hand, using SC only (sec.5) helps the models achieve better results since it is aware of the sentence style when adapting to the tar-
get domain. These further demonstrate that the proposed variational-based models can learn the underlying semantic of DA-
utterance pairs in the source domain via the representation of the latent variable z, from which when adapting to another
domain, the models can leverage the existing knowledge to guide the generation process.

9.2.2. Adaptation versus scr100 training scenario
It is interesting to compare adaptation (Table 9, sec. 2) with scr100 training scenario (Table 8). The VDANLG model shows its

considerable ability to shift to another domain with a limited amount of in-domain labels whose results are competitive to or in
some cases better than the previous models trained on full labels of the Target domain. A specific comparison evaluated on the
Tv domain where the VDANLG model trained on the source Laptop (sec.2) achieved better performance, at 52.43 BLEU and 1.52
ERR, than HLSTM (52.40, 2.65), SCLSTM (52.35, 2.41), and Enc-Dec (51.42, 3.38). The VDANLG models, in many cases, also have
lower of the slot error rate ERR results than the Enc-Dec model. These indicate the stable strength of the VDANLG models in
adapting to a new domain when the target domain data is scarce.

9.2.3. Distance of dataset pairs
To better understand the effectiveness of the methods, we analyze the learning behavior of the proposed model between dif-

ferent dataset pairs. The datasets” order of difficulty was, from easiest to hardest: Hotel$Restaurant$Tv$Laptop. On the one
hand, it might be said that the longer datasets’ distance is, the more difficult the domain adaptation task becomes. This clearly
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shows in Table 9, sec. 1, at Hotel column where the adaptation ability gets worse in terms of decreasing the BLEU score and
increasing the ERR score alongside the order of Restaurant ! Tv ! Laptop datasets. On the other hand, the closer the dataset
pair is, the faster model can adapt. It can be expected that the model can better adapt to the target Tv/Laptop domain from source
Laptop/Tv than those from source Restaurant, Hotel, and vice versa, the model can easier adapt to the target Restaurant/Hotel
domain from source Hotel/Restaurant than those from Laptop, Tv. However, the above-mentioned is not always true that the pro-
posed method can perform acceptably well from easy source domains (Hotel, Restaurant) to the more difficult target domains (Tv,
Laptop) and vice versa (Table 9, sec. 1, 2). The distance of datasets is also shown via the differences of word-level distribution
using word clouds in Fig. 1.

Table 9, sec. 1, 2 further demonstrate that the proposed method is able to leverage the out of domain knowledge since the
adaptation models trained on union source dataset, such as [R+H] or [L+T], show better performances than those trained on indi-
vidual source domain data. A specific example in Table 9, sec. 2 shows that the adaptation VDANLG model trained on the source
union dataset of Laptop and Tv ([L+T]) has better performance, at 82.52 BLEU and 2.87 ERR, than those models trained on the
individual source dataset, such as Laptop (82.18 BLEU, 2.89 ERR) and Tv (82.51 BLEU, 4.89 ERR). Another example in Table 9, sec.
2 also shows that the adaptation VDANLG model trained on the source union dataset of Restaurant and Hotel ([R+H]) also has
better results, at 51.97 BLEU and 2.58 ERR, than those models trained on the separate source dataset, such as Restaurant(50.43
BLEU, 2.99 ERR), and Hotel(51.64 BLEU, 3.25 ERR). The trend is mostly consistent across all other comparisons in different training
scenarios. All these demonstrate that the proposed model can learn global semantics that can be efficiently transferred into new
domains.
9.2.4. Unsupervised domain adaptation
We further examine the effectiveness of the proposed methods by training the VDANLGmodels on target Counterfeit datasets

(Wen et al., 2016a). The promising results are shown in Table 10, despite the fact that the models were instead of adaptation
trained on the Counterfeit datasets, or in other words, were indirectly trained on the (Test) domains. However, the proposed
models still showed positive signs in remarkably reducing the slot error rate ERR in the cases of Hotel and Tv be the (Test)
domains. Surprisingly, even when the source domains (Hotel/Restaurant) are far from the (Test) domain Tv, and the Target
domain Counterfeit L2T is also very different to the source domains, the model can still acceptably adapt well since its BLEU
scores on (Test) Tv domain reached to (41.83/42.11) and it also produced a very low scores of slot error rate ERR (2.38/2.74).
9.2.5. Comparison on generated outputs
We present top responses generated for different scenarios from Laptop (Table 11, 12) and TV (Table 13) domains.
On the one hand, the VIR-RALSTM models (trained from scratch or trained adapting model from Source domains) produce

outputs with a diverse range of error types, including missing, misplaced, redundant, wrong slots, or even spelling mistake infor-
mation, leading to a very high score of the slot error rate ERR. Specifically, the VIR-RALSTM from scratch tends to make repeated
slots and also many of the missing slots in generated outputs since the training data may be inadequate for the model to generally
handle unseen dialog acts. Whereas the VIR-RALSTMmodels without Critics adapting trained from Source domains (denoted by [

in Table 11, 12, 13) tend to generate the outputs with fewer error types than the model from scratch due to the VIR-RALSTM[

models may capture the overlap slots of both source and target domain during adaptation training.
On the other hand, under the guidance of the Critics (SC and DC) in an adversarial training procedure, the VDANLG model

(denoted by ]) can effectively leverage the existing knowledge of source domains to better adapt to target domains. The VDANLG
models can generate outputs in style of target domain with much fewer the error types compared with two above models. Fur-
thermore, the VDANLG models seem to produce satisfactory utterances with more correct generated slots. For example, a sample
outputted by the [R+H]] in Table 11 contains all the required slots with only a misplaced information of two slots 2 gb and 4 gb,
while the generated output produced by Hotel] is a successful generation. Another samples in Table 12 generated by the Hotel],
Tv], [R+H]] models, and a sample generated by the Laptop] in Table 13 are all fulfilled responses. An analysis of generated
responses in Table 12 illustrates that the VDANLG models seem to generate a concise response since the models show a tendency
to form some potential slots into a concise phrase, i.e. “SLOT_NAME SLOT_TYPE”. For example, the VDANLG models tend to con-
cisely response as “the portege phosphorus 43 laptop... ” instead of “the portege phosphorus 43 is a laptop... ”.

All these above demonstrate that the VDANLG models have ability to work acceptably well in the low-resource setting since
they produce better results with a much lower score of the slot error rate ERR.
Table 10
Results evaluated on (Test) domains by Unsupervised adapting VDANLG from Source domains using only
10% of the Target domain Counterfeit X2Y. {X,Y}=R:Restaurant, H:Hotel, T:Tv, L:Laptop.

Source\ Target (Test) R2H(Hotel) H2R(Restaurant) L2T(Tv) T2L(Laptop)

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
Hotel � � 0.5931 12.50% 0.4183 2.38% 0.3426 13.02%
Restaurant 0.6224 1.99% � � 0.4211 2.74% 0.3540 13.13%
Tv 0.6153 4.30% 0.5835 14.49% � � 0.3630 7.44%
Laptop 0.6042 5.22% 0.5598 15.61% 0.4268 1.05% � �



Table 11
Comparison of top Laptop responses generated for different scenarios by adaptation training VIR-RALSTM (denoted by [) and VDANLG (denoted
by ]) models from Source domains, and by training VIR-RALSTM from scratch. Errors are marked in colors ([missing], misplaced, redundant,
wrong, spelling mistake information). [OK] denotes successful generation. VDANLG] = VIR-RALSTM[+SC+DC.

Model Generated Responses from Laptop Domain
DA 1 compare(name=‘tecra erebus 20’; memory=‘4 gb’; isforbusinesscomputing=‘true’; name=‘satellite heracles 45’; memory=‘2 gb’;

isforbusinesscomputing=‘false’)
Ref 1 compared to tecra erebus 20which has a 4 gbmemory and is for business computing, satellite heracles 45 has a 2 gbmemory and

is not for business computing. which one do you prefer
VIR-RALSTM which would be the tecra erebus 20 is a business computing laptop with 4 gb of memory and is the SLOT_NAME, and is not for

business computing. [satellite heracles 45][2 gb]
Hotel[ the tecra erebus 20 is used for business computing. the satellite heracles 45 has 4 gb of memory and a SLOT_BATTERY battery life

for business computing. which one do you want
Restaurant[ the tecra erebus 20 is for business computing. the satellite heracles 45which has 4 gb of memory and is not for business computing.

which one do you want [2 gb]
Tv[ the tecra erebus 20 has 4 gb of memory and is not for business computing. which one do you prefer [is for business computing]

[satellite heracles 45][2 gb]
[R+H][ the tecra erebus 20 is not for business computing. which one do you want a business computing. which one do you prefer [4 gb]

[is for business computing][satellite heracles 45][2 gb]
Hotel] the tecra erebus 20 has a 4 gbmemory, that is for business computing. the satellite heracles 45with 2 gb of memory and is not for

business computing. which one do you want [OK]
Restaurant] the tecra erebus 20 has a 4 gbmemory, and is for business computing. the satellite heracles 45 is not for business computing. which

one do you want to know more [2 gb]
Tv] the tecra erebus 20 is a business computing. the satellite heracles 45 has a 4 gb memory and is not for business computing. which

one do you prefer [2 gb]
[R+H]] the tecra erebus 20 is for business computing, has a 2 gb of memory. the satellite heracles 45 has 4 gb of memory, is not for business

computing. which one do you want
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9.3. Dual variational model for low-Resource in-Domain data

In this section, we again performed the dual variational model in different scenarios of low-resource setting, i.e, training mod-
els from scratch with 10% (scr10), 30% (scr30), and 100% (scr100) amount of in-domain data, and training domain adaptation
models (adaptation). Overall, the proposed models obtained better performance regarding both the evaluation metrics across all
domains in all training scenarios.
9.3.1. Ablation studies
The ablation studies (Table 14) demonstrate the contribution of each model components, in which we incrementally train the

baseline RALSTM, the VIC-RALSTM (= RALSTM + Variational Inference), the DualVAE (= VIC-RALSTM + Variational CNN-DCNN), and
Table 12
Comparison of top Laptop responses generated for different scenarios by adaptation training VIR-RALSTM (denoted by [) and VDANLG (denoted
by ]) models from Source domains, and by training VIR-RALSTM from scratch. Errors are marked in colors ([missing], misplaced, redundant,
wrong, spelling mistake information). [OK] denotes successful generation. VDANLG] = VIR-RALSTM[+SC+DC.

Model Generated Responses from Laptop Domain
DA 2 inform(name=‘portege phosphorus 43’; type=‘laptop’; design=‘black magnesium chassis with brushed metallic finish, matt black

keyboard’; isforbusinesscomputing=‘false’; drive=‘320 gb’)
Ref 2 the portege phosphorus 43 laptop has a 320 gb drive, is not for business computing and has a black magnesium chassis with brushed

metallic finish, matt black keyboard
VIR-RALSTM the portege phosphorus 43 is a laptopwith a 320 gb drive and has a black magnesium chassis with brushed metallic finish, matt

black keyboard. [is not for business computing]
Hotel[ the portege phosphorus 43 is a laptop has a 320 gb drive, is not for business computing. it is not for business computing, it has a

design of black magnesium chassis with brushed metallic finish, matt black keyboard
Restaurant[ the portege phosphorus 43 is a laptopwith a 320 gb drive, has a design of black magnesium chassis with brushed metallic finish,

matt black keyboard. [is not for business computing]
Tv[ the portege phosphorus 43 is a laptopwith a black magnesium chassis with brushed metallic finish, matt black keyboard. it is not for

business computing [320 gb]
[R+H][ the portege phosphorus 43 is a laptopwith a black magnesium chassis with brushed metallic finish, matt black keyboard [is not used

for business computing] [320 gb]
Hotel] the portege phosphorus 43 laptop has a 320 gb drive, has a black magnesium chassis with brushed metallic finish, matt black key-

board design and is not for business computing [OK]
Restaurant] the portege phosphorus 43 laptop has a 320 gb drive, it is for business computing, it has a design of black magnesium chassis with

brushed metallic finish, matt black keyboard
Tv] the portege phosphorus 43 laptop has a 320 gb drive and a design of black magnesium chassis with brushed metallic finish, matt

black keyboard. it is not for business computing [OK]
[R+H]] the portege phosphorus 43 laptop has a 320 gb drive, and is not for business computing. it has a black magnesium chassis with

brushed metallic finish, matt black keyboard [OK]



Table 13
Comparison of top Tv responses generated for different scenarios by adaptation training VIR-RALSTM (denoted by [) and VDANLG (denoted by ])
models from Source domains, and by training VIR-RALSTM from scratch. Errors are marked in colors ([missing], misplaced, redundant, wrong, spell-
ing mistake information). [OK] denotes successful generation. VDANLG] = VIR-RALSTM[+SC+DC.

Model Generated Responses from TV Domain
DA compare(name=‘crios 69’; ecorating=‘a+’; powerconsumption=‘44 W’; name=‘dinlas 61’; ecorating=‘a+’; powerconsumption=‘62 W’)
Ref compared to crios 69which is in the a+ eco rating and has 44 W power consumption, dinlas 61 is in the a+ eco rating and has 62 W

power consumption. which one do you prefer ?

VIR-RALSTM the crios 69 is the dinlas 61 is the SLOT_NAME is the SLOT_NAME is the SLOT_NAME is the SLOT_NAME is the SLOT_NAME is the
SLOT_NAME is the SLOT_NAME. it has an a+ eco rating [44 W][a+][62 W]

Hotel[ the crios 69 has a 44 W power consumption, whereas the dinlas 61 has 62 W power consumption, whereas the SLOT_NAME has
SLOT_POWERCONSUMPTION power consumption and has an a+ eco rating [a+]

Restaurant[ the crios 69 has a a+ eco rating, 44 W power consumption, and an a+ eco rating and 62 W power consumption [dinlas 61]
Laptop[ the crios 69 has SLOT_HDMIPORT hdmi port -s, the dinlas 61 has a+ eco rating and 44 W power consumption [62W][a+]
[R+H][ the crios 69 is in the SLOT_FAMILY product family with a+ eco rating ? [44 W][dinlas 61][62 W][a+]
Hotel] the crios 69 has an a+ eco rating and 44 W power consumption and a 62 W power consumption [dinlas 61][a+]
Restaurant] the crios 69 has 44 W power consumption of a+ and has an a+ eco rating and 62 W power consumption [dinlas 61]
Laptop] the crios 69 has an a+ eco rating and 44 W power consumption, whereas the dinlas 61 has 62 W power consumption and a+ eco rat-

ing. [OK]
[R+H]] the crios 69 has 44 W power consumption, and an a+ eco rating and the dinlas 61 has a 62 W power consumption. [a+]
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the CrossVAE (= DualVAE + Cross training) models. Generally, while all models can work well when there are sufficient training data-
sets, the performances of the proposed models also increase as increasing the proposed model components. The trend is consistent
across all training cases no matter how much the training data was provided. Take, for example, the scr100 scenario in which the
CrossVAEmodel mostly outperformed all the previous baselines with regard to the BLEU and the slot error rate ERR scores.

On the other hand, the previousmethods have extremely impaired performances regarding low BLEU score and high slot error rate
ERR when training the models from scratch with insufficient in-domain data (scr10). In contrast, by integrating the variational infer-
ence, the VIC-RALSTMmodel can significantly improve the BLEU score from 68.55 to 79.98, and also reduce the slot error rate ERR by
a large margin, from 22.53 to 8.67, compared to the baseline RALSTM model. Moreover, the proposed models have much better per-
formance over the previous models in the scr10 scenario since the CrossVAE, and the DualVAE models obtain the best and second best
results, respectively. The CrossVAEmodel trained on scr10 scenario, in some cases, achieved results which close to those of the HLSTM,
SCLSTM, and Enc-Dec models trained on all in-domain data (scr100) scenario. Take, for example, the most challenge dataset Laptop
and Tv, in which the DualVAE and CrossVAE obtained competitive results in terms of the BLEU score, at 50.16 and 50.85 respectively,
which close to those of the HLSTM (51.30 BLEU), SCLSTM (51.09 BLEU), and Enc-Dec (51.01 BLEU), while the results regardless the slot
error rate ERR scores are also close to those of the previous or even better in some cases, for example pairs of CrossVAE (2.86 ERR) and
Table 14
Results evaluated on four domains by training models from scratch with 10%, 30% , and 100% in-domain data, respectively. The results
were averaged over 5 randomly initialized networks. The bold and italic faces denote the best and second best models in each train-
ing scenario, respectively.

Model Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

scr100 HLSTMWen et al. (2015a) 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTMWen et al. (2015b) 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
Enc-Dec Wen et al. (2016b) 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%
RALSTM Tran and Nguyen (2017a) 0.8911 0.48% 0.7739 0.19% 0.5376 0.65% 0.5222 0.49%
VIC-RALSTM (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%
DualVAE (Ours) 0.8813 0.33% 0.7695 0.29% 0.5359 0.81% 0.5211 0.91%
CrossVAE (Ours) 0.8896 0.72% 0.7786 0.54% 0.5383 0.48% 0.5240 0.50%

scr10 HLSTMWen et al. (2015a) 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 0.4813 7.37%
SCLSTMWen et al. (2015b) 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
Enc-Dec Wen et al. (2016b) 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%
RALSTM Tran and Nguyen (2017a) 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIC-RALSTM (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%
DualVAE (Ours) 0.8022 6.61% 0.6926 7.69% 0.5110 3.90% 0.5016 2.44%
CrossVAE (Ours) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

scr30 HLSTMWen et al. (2015a) 0.8104 6.39% 0.7044 2.13% 0.5024 5.82% 0.4859 6.70%
SCLSTMWen et al. (2015b) 0.8271 6.23% 0.6825 4.80% 0.4934 7.97% 0.5001 3.52%
Enc-Dec Wen et al. (2016b) 0.7865 9.38% 0.7102 13.47% 0.5014 9.19% 0.4907 10.72%
RALSTM Tran and Nguyen (2017a) 0.8334 4.23% 0.7145 2.67% 0.5124 3.53% 0.5106 2.22%
VIC-RALSTM (Ours) 0.8553 2.64% 0.7256 0.96% 0.5265 0.66% 0.5117 2.15%
DualVAE (Ours) 0.8534 1.54% 0.7301 2.32% 0.5288 1.05% 0.5107 0.93%
CrossVAE (Ours) 0.8585 1.37% 0.7479 0.49% 0.5307 0.82% 0.5154 0.81%
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Enc-Dec (3.38 ERR), or DualVAE (2.44 ERR) and Enc-Dec (4.24 ERR). These indicate that the proposedmodel can efficiently encode use-
ful information into the latent variable to better generalize to the unseen dialogue acts.

The scr30 section further confirms the effectiveness of the proposed methods, in which the CrossVAE and DualVAE still mostly
rank the best and second-best models compared with the baselines. The proposed models also show superior ability in leveraging
the existing small training data to obtain very good performances, which are in many cases even better than those of the previous
methods trained on 100% of in-domain data. Take Tv domain, for example, in which the CrossVAE in scr30 achieves a good result
in terms of BLEU and slot error rate ERR score, at 53.07 BLEU and 0.82 ERR, that are not only competitive to the RALSTM (53.76
BLEU, 0.65 ERR), but also outperform the previous models in scr100 training scenario, such as HLSTM (52.40 BLEU, 2.65 ERR),
SCLSTM (52.35 BLEU, 2.41 ERR), and Enc-Dec (51.42 BLEU, 3.38 ERR). This further indicates the need of the integrating with varia-
tional inference, the additional auxiliary auto-encoding, as well as the joint and cross training.
9.3.2. Model comparison on unseen domain
In this experiment, we trained four models (Enc-Dec, SCLSTM, RALSTM and CrossVAE) from scratch in the most difficult

unseen Laptop domain with an increasingly varied proportion of training data, start from 10% to 100%. The results are shown in
Fig. 7. It clearly sees that the BLEU score increases and the slot error ERR decreases as the models are trained on more data. The
CrossVAE model is clearly better than the previous models (Enc-Dec, SCLSTM, RALSTM) in all cases. While the performance of the
CrossVAE, RALSTM model starts to saturate around 30% and 50%, respectively, the Enc-Dec model seems to continue getting bet-
ter as providing more training data. The figure also confirms that the CrossVAE trained on 30% of data can achieve a better perfor-
mance compared to those of the previous models trained on 100% of in-domain data.
9.3.3. Domain adaptation
We further examine the domain scalability of the proposed methods by training the CrossVAE and SCLSTMmodels on adapta-

tion scenarios, in which we first trained the models on out-of-domain data, and then fine-tuned the model parameters by using a
small amount (10%) of in-domain data. The results are shown in Table 15.

In terms of distance of dataset pairs as described in Section 9.2.3, both SCLSTM (sec. 1) and CrossVAE (sec. 2, 3) models can take
advantage of “close” dataset pairs, i.e., Restaurant$ Hotel, and Tv$ Laptop, to achieve better performances compared to those of
Fig. 7. Performance comparison of the models trained on Laptop domain.

Table 15
Results evaluated on Target domains: by adaptation training SCLSTM model from 100% (denoted as [) of Source
data, and the CrossVAE model from 30% (denoted as ]), 100% (denoted as ξ) of Source data. The scenario used
only 10% amount of the Target domain data. The last two row show results by training the CrossVAE model on
the scr10 and semi-supervised learning, respectively.

Source\ Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

Hotel[ � � 0.6243 11.20% 0.4325 29.12% 0.4603 22.52%
Restaurant[ 0.7329 29.97% � � 0.4520 24.34% 0.4619 21.40%
Tv[ 0.7030 25.63% 0.6117 12.78% � � 0.4794 11.80%
Laptop[ 0.6764 39.21% 0.5940 28.93% 0.4750 14.17% � �
Hotel] � � 0.7138 2.91% 0.5012 5.83% 0.4949 1.97%
Restaurant] 0.7984 4.04% � � 0.5120 3.26% 0.4947 1.87%
Tv] 0.7614 5.82% 0.6900 5.93% � � 0.4937 1.91%
Laptop] 0.7804 5.87% 0.6565 6.97% 0.5037 3.66% � �
Hotelξ � � 0.6926 3.56% 0.4866 11.99% 0.5017 3.56%
Restaurantξ 0.7802 3.20% � � 0.4953 3.10% 0.4902 4.05%
Tvξ 0.7603 8.69% 0.6830 5.73% � � 0.5055 2.86%
Laptopξ 0.7807 8.20% 0.6749 5.84% 0.4988 5.53% � �
CrossVAE (scr10) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%
CrossVAE (semi-U50-L10) 0.8144 6.12% 0.6946 3.94% 0.5158 2.95% 0.5086 1.31%
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the “different” dataset pairs, i.e. Latop $ Restaurant. This can be seen in Table 15, sec. 1, at Restaurant column where the
adaptation ability gets worse in terms of decreasing the BLEU score, at 62.43, 61.17, and 59.40, respectively, and increasing
the ERR score, at 11.20%, 12.78%, and 28.93%, respectively, alongside the order of Hotel! Tv! Laptop datasets. The SCLSTM
(denoted by [) is limited to scale to a new domain in terms of having very low BLEU and high ERR scores. This adaptation sce-
nario along with the scr10 and scr30 demonstrate that the SCLSTM can not work when having a low-resource setting of in-
domain training data.

On the other hand, the CrossVAE model again show ability in leveraging the out-of-domain data to better adapt to a new
domain. Especially in the case where Laptop, which is a most difficult unseen domain, is the target domain the CrossVAE model
can obtain good results irrespective of low slot error rate ERR, around 1.90%, and high BLEU score, around 50.00 points. Surpris-
ingly, the CrossVAE model trained on scr10 scenario in some cases achieves better performance compared to those in adaptation
scenario first trained with 30% out-of-domain data (denoted by ]) which is also better than the adaptation model trained on
100% out-of-domain data (denoted by ξ).

A preliminary experiments on semi-supervised training is also conducted, in which we trained the CrossVAE model with the
same 10% in-domain labeled data as in the other scenarios and 50% in-domain unlabeled data by keeping only the utterances u in
a given input pair of dialogua act-utterance (d, u) (denoted by semi-U50-L10). The results showed CrossVAE’s ability in leveraging
the unlabeled data to achieve better results compared to those in scratch and adaptation scenarios. All these stipulate that the
proposed models can perform acceptably well in both cases from scratch and domain adaptation where the in-domain training
data is in short supply.
9.3.4. Comparison on generated outputs
We present top responses generated for different scenarios from TV (Table 16, 17) and Laptop (Table 18) domains, which fur-

ther demonstrate the effectiveness of the proposed methods.
On the one hand, previous models trained on scr10, scr30 scenarios produce a diverse range of the outputs’ error types,

including missing, misplaced, redundant, wrong slots, or spelling mistake information, resulting in a very high score of
the slot error rate ERR. The Enc-Dec, HLSTM and SCLSTM models, for example, in Table 16 and 17 tend to generate outputs
with redundant slots (i.e. SLOT_HDMIPORT, SLOT_NAME, SLOT_FAMILY), missing slots (i.e. [l7 family], [4 hdmi port -s]), or
even in some cases produce some irrelevant slots (i.e. SLOT_AUDIO, eco rating), resulting in inadequate utterances.

On the other hand, the proposed models can effectively leverage the knowledge from only few of the existing training
instances to better generalize to the unseen dialogue acts, leading to satisfactory responses. For example in Table 16, the
proposed methods can generate adequate number of the required slots, resulting in fulfilled utterances (DualVAE-10,
CrossVAE-10, DualVAE-30, CrossVAE-30), or acceptable outputs with much fewer error information, i.e. mis-ordered slots
in the generated utterances (VIC-RALSTM-30).

For a much easier dialogue act in Table 17, previous models still produce some error outputs, whereas the proposed methods
seem to form some specific slots into phrase in concise outputs. For example, instead of generating “the proteus 73 is a television”
phrase, the proposed models tend to concisely produce “the proteus 73 television”.

The trend is mostly consistent in Table 18.
Table 16
Comparison of top Tv responses generated for different models in different scenarios. Errors are marked in colors ([missing], misplaced, redundant, wrong,
spelling mistake information). [OK] denotes successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.

Model Generated Responses from TV Domain
DA 1 compare(name=‘typhon 45’; hdmiport=‘2’; family=‘l2’; name=‘hades 48’; hdmiport=‘4’; family=‘l7’)
Reference 1 Compared to typhon 45which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port -s and is in the L7 product

family. Which one do you prefer ?

Enc-Dec-10 the typhon 45 is in the l2 product family and has 2 hdmi port -s and is in the l7 product familywith 4 hdmi port -s, the hades 48 is in the
SLOT_FAMILY product family with a SLOT_AUDIO

HLSTM-10 the typhon 45 is a great eco rating, the hades 48 is in the l2 familywith 2 hdmi port -s [l7 family] [4 hdmi port -s]
SCLSTM-10 the typhon 45 is the hades 48with 2 hdmi port in the l2 family, the SLOT_NAME has 4 hdmi port -s and SLOT_HDMIPORT hdmi port [l7

family]
VIC-RALSTM-10 the typhon 45 has 2 hdmi port -s and the hades 48 is in the l2 family and has 4 hdmi port -s [l7 family]
DualVAE-10 the typhon 45 has 2 hdmi port -s and is in the l2 familywhile the hades 48 has 4 hdmi port -s and is in the l7 family [OK]
CrossVAE-10 the typhon 45 is in the l2 familywith 2 hdmi port -swhile the hades 48 has 4 hdmi port -s and is in the l7 family [OK]
Enc-Dec-30 the typhon 45 has 2 hdmi port -s, the hades 48 has 4 hdmi port -s, the SLOT_NAME has SLOT_HDMIPORT hdmi port [l2 family] [l7 family]
HLSTM-30 the typhon 45 is in the l2 product familywith 2 hdmi port -s, whereas the hades 48 has 4 hdmi port [l7 family]
SCLSTM-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family. [l7 family] [4 hdmi port -s]
VIC-RALSTM-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family and has 4 hdmi port -s in l7 family
DualVAE-30 which do you prefer, the typhon 45 in the l2 product familywith 2 hdmi port -s. the hades 48 is in the l7 familywith 4 hdmi port -s. [OK]
CrossVAE-30 the typhon 45 has 2 hdmi port -s and in the l2 familywhile the hades 48 has 4 hdmi port -s and is in the l7 family. which item do you

prefer [OK]
CrossVAE-100 the typhon 45 has 2 hdmi port -s and is in the l2 product family. the hades 48 has 4 hdmi port -s and is in the l7 family [OK]



Table 17
Comparison of top Tv responses generated for different models in different scenarios. Errors are marked in colors ([missing],
misplaced, redundant, wrong, spelling mistake information). [OK] denotes successful generation. Model-X where X is amount
of training data, i.e. 10%, 30%, or 100%.

Model Generated Responses from TV Domain
DA 2 recommend(name=‘proteus 73’; type=‘television’; price=‘1500 dollars’; audio=‘nicam stereo’; hdmiport=‘2’)
Reference 2 proteus 73 is a nice television. its price is 1500 dollars, its audio is nicam stereo, and it has 2 hdmi port -s.
Enc-Dec-10 the proteus 73 is a great televisionwith a nicam stereo and 2 hdmi port -s [1500 dollars]
HLSTM-10 the proteus 73 is a televisionwith 2 hdmi port -s and comes with a nicam stereo and costs 1500 dollars [OK]
SCLSTM-10 the proteus 73 is a nice televisionwith nicam stereo and 2 hdmi port -s [1500 dollars]
VIC-RALSTM-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
DualVAE-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
CrossVAE-10 the proteus 73 television has 2 hdmi port -s and a nicam stereo and costs 1500 dollars [OK]
Enc-Dec-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio for 1500 dollars [OK]
HLSTM-30 the proteus 73 television has a nicam stereo and 2 hdmi port -s and is priced at 1500 dollars [OK]
SCLSTM-30 the proteus 73 is a nice televisionwith nicam stereo and 2 hdmi port -s. it is priced at 1500 dollars [OK]
VIC-RALSTM-30 the proteus 73 television has 2 hdmi port -s, nicam stereo audio, and costs 1500 dollars [OK]
DualVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-100 the proteus 73 television has 2 hdmi port -s, nicam stereo audio, and costs 1500 dollars [OK]

V.-K. Tran and L.-M. Nguyen / Computer Speech & Language 65 (2021) 101120 23
10. Conclusion and future work

We have presented a Variational-based NLG (VNLG) framework tackling the NLG issues of having a low-resource setting data.
Based on this framework, we first propose a novel adversarial VNLG which consists of two critics which are Domain and Text sim-
ilarity critics in an adversarial training procedure, solving the first issue in domain adaptation. For the second issue of having lim-
ited in-domain data, we propose a dual variational model which is a combination of a variational-based generator and a
variational CNN-DCNN. We extensively conducted the experiments of both proposed models in various training scenarios, such
as domain adaptation and training models from scratch, with varied proportion of training data, across four different domains.
The experimental results show that, while the former generator has the ability to perform acceptably well in a new, unseen
domain using a limited amount of target domain data, the latter model shows its ability to work well when the training in-
domain data is scarce. The proposed models further show a positive sign in unsupervised domain adaptation as well as in
semi-supervised training manners, which would be a worthwhile study in the future.
Table 18
Comparison of top Laptop responses generated for different models in different scenarios. Errors are marked in colors ([missing], misplaced,
redundant, wrong, spelling mistake information). [OK] denotes successful generation. Model-X where X is amount of training data, i.e. 10%,
30%, or 100%.

Model Generated Responses from Laptop Domain
DA compare(name=‘satellite pallas 21’; battery=‘4 h’; drive=‘500 gb’; name=‘satellite dinlas 18’; battery=‘3.5 h’; drive=‘1 tb’)
Reference compared to satellite pallas 21which can last 4 h and has a 500 gb drive, satellite dinlas 18 can last 3.5 h and has a 1 tb

drive. which one do you prefer

Enc-Dec-10 the satellite pallas 21 has a 500 gb drive, the satellite dinlas 18 has a 4 h battery life and a 3.5 h battery life and a SLOT_BAT-
TERY battery life and a 1 tb drive

HLSTM-10 the satellite pallas 21 has a 4 h battery life and a 500 gb drive. which one do you prefer [satellite pallas 18] [3.5 h battery] [1
tb drive]

SCLSTM-10 the satellite pallas 21 has a 4 h battery, and has a 3.5 h battery life and a 500 gb drive and a 1 tb drive [satellite dinlas 18]
VIC-RALSTM-10 the satellite pallas 21 has a 500 gb drive and a 4 h battery life. the satellite dinlas 18 has a 3.5 h battery life and a SLOT_BAT-

TERY battery life [1 tb drive]
DualVAE-10 the satellite pallas 21 has a 4 h battery life and a 500 gb drive and the satellite dinlas 18with a 3.5 h battery life and is good

for business computing. which one do you prefer [1 tb drive]
CrossVAE-10 the satellite pallas 21with 500 gb and a 1 tb drive. the satellite dinlas 18with a 4 h battery and a SLOT_DRIVE drive. which

one do you prefer [3.5 h battery]
Enc-Dec-30 the satellite pallas 21 has a 500 gb drivewith a 1 tb drive and is the satellite dinlas 18with a SLOT_DRIVE drive for 4 h -s.

which one do you prefer [3.5 h battery]
HLSTM-30 the satellite pallas 21 is a 500 gb drivewith a 4 h battery life. the satellite dinlas 18 has a 3.5 h battery life. which one do you

prefer [1 tb drive]
SCLSTM-30 the satellite pallas 21 has a 500 gb drive. the satellite dinlas 18 has a 4 h battery life. the SLOT_NAME has a 3.5 h battery life.

which one do you prefer [1 tb drive]
VIC-RALSTM-30 which one do you prefer the satellite pallas 21with a 4 h battery life, the satellite dinlas 18 has a 500 gb drive and a 3.5 h

battery life and a 1 tb drive. which one do you prefer
DualVAE-30 satellite pallas 21 has a 500 gb drive and a 4 h battery life while the satellite dinlas 18with a 3.5 h battery life and a 1 tb

drive. [OK]
CrossVAE-30 the satellite pallas 21 has a 500 gb drivewith a 4 h battery life. the satellite dinlas 18 has a 1 tb drive and a 3.5 h battery life.

which one do you prefer [OK]
CrossVAE-100 the satellite pallas 21 has a 500 gb drivewith a 4 h battery life, while the satellite dinlas 18 has a 1 tb drive and a 3.5 h

battery life. which one do you prefer [OK]
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