
Science of Computer Programming 201 (2021) 102523
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Which monads Haskell developers use: An exploratory study

Ismael Figueroa a,1, Paul Leger b, Hiroaki Fukuda c

a Ingeniería en Información y Control de Gestión, Universidad de Valparaíso, Chile
b Escuela de Ingeniería, Universidad Católica del Norte Coquimbo, Chile
c Shibaura Institute of Technology, Tokyo, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2020
Received in revised form 30 May 2020
Accepted 22 July 2020
Available online 6 August 2020

Keywords:
Monads
Empirical study
Use of monads
Haskell
Hackage
Mining software repositories

Monads are a mechanism for embedding and reasoning about notions of computation such 
as mutable state, I/O, exceptions, and many others. Even though monads are technically 
language-agnostic, they are mostly associated with the Haskell language. Indeed, one could 
argue that the use of monads is one of the defining characteristic of the Haskell language. 
In practical terms, monadic programming in Haskell relies on the standard mtl package 
library, which provides eight core notions of computation: identity, error, list, state, reader, 
writer, RWS, and continuations. Despite their widespread use, we are not aware of any 
empirical investigations regarding which monads are the most used by developers. In 
this paper we present an empirical study that covers a snapshot of available packages 
in the Hackage repository—covering 85135 packages and more than five million Haskell 
files. To the best of our knowledge this is the first large-scale analysis of Hackage with 
regards to monads and their usage as dependencies. Our results show that around 30.8% 
of the packages depend on the mtl package, whereas only 1.2% depend on alternative, yet 
compatible implementations. Nevertheless, usage patterns for each specific monad remain 
similar both for mtl and alternatives. Finally, the state monad is by far the most popular 
one, although all of them are used. We also report on the distribution of packages that use
mtl, regarding their category and stability level.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Haskell language [1] is an example of pure functional programming languages. What makes a functional language 
pure is its emphasis in the absence of side-effects, such as mutable state, I/O or exceptions, which has several benefits 
regarding equational reasoning, and easy parallelization of programs, amongst others. In contrast to functional languages 
such as Scheme or the ML family, which provide standard side-effecting operations on top of a functional approach, Haskell 
uses monads [2,3] as a kind of “design pattern”—with strong theoretical foundations—for the specification and execution of 
notions of computation that can represent the aforementioned side-effects. Moreover, this style of programming is strongly 
supported by Haskell compiler developers by means of special-purpose syntax and libraries, which results in a language that 
supports general-purpose, practical monadic programming. Indeed, Haskell provides a standardized interface for monadic 
programming in the form of the monad transformers library—simply known as the mtl.

However, despite the existence of mtl and the prevalence of monads in Haskell, to the best of our knowledge we are 
not aware of any empirical investigation on how Haskell developers actually use monads. As this is a broad question, in this 

E-mail addresses: ismael.figueroa@uv.cl (I. Figueroa), pleger@ucn.cl (P. Leger), hiroaki@shibaura-it.ac.jp (H. Fukuda).
1 Funded by FONDECYT Postdoctoral Project 3150672.
https://doi.org/10.1016/j.scico.2020.102523
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102523
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102523&domain=pdf
mailto:ismael.figueroa@uv.cl
mailto:pleger@ucn.cl
mailto:hiroaki@shibaura-it.ac.jp
https://doi.org/10.1016/j.scico.2020.102523


2 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
paper we focus on presenting several quantitative results obtained from an empirical investigation of Hackage [4], a platform 
that defines itself as “[the Haskell’s] community’s central package archive of open source software”.2 Hackage packages are 
build using the Cabal system [6], which serves as a tool to download, build and install packages from Hackage, as well as 
from local sources. Crucially, a requirement for Hackage packages is to provide a well-formed .cabal file that specifies the 
build options, dependencies, and other required metadata.

In this paper we perform an exploratory and quantitative study that consists of the massive analysis of package 
dependencies—based on Cabal files’ metadata—to address the following research questions:

RQ1. How many packages directly depend on the mtl library? What is their distribution with respect to package metadata, such as 
names, versions, stability or categories?

RQ2. What monads, or notions of computation, defined in the mtl library are the most popular?

RQ3. How popular are alternative implementations to the mtl library?

Although we could compute indirect dependencies on mtl, we work under the assumption that only packages that di-
rectly depend on this library make a relevant, non-trivial, use of monads—meaning that a core part of their implementation 
is based on monads, rather than merely using a library that is implemented using monads. This design decision helps us
trim the otherwise huge number of packages that indirectly would depend on the mtl.

By understanding which monads are used, we hope to provide language researchers with empirical information for the 
design and development of novel monadic libraries, or the refinement of existing alternative approaches to using monads 
in Haskell. Indeed, as we show later in the paper, we found several actionable insights that could be applied even beyond 
Haskell itself. Even though in this paper we focus on mtl, because it is by far the most widespread standardized imple-
mentation of monads in Haskell, we still quantify packages that use alternative implementations. In this work we process a 
complete snapshot of the Hackage repository, from January 2018, comprised of 85135 packages/version combinations, with 
a total size of around 30 GB. By parsing and analyzing their package metadata and the source code of all involved modules, we 
get a dataset that enables us to answer these research questions. Our datasets and processing scripts are available online [7].

Paper roadmap. We first present necessary background on monadic programming and empirical research on Hackage 
(Section 2). Then we explain our methodology and processing pipeline, as well as the structure of the datasets used in 
this work (Section 3). After that, we present and discuss the empirical results for all the research questions (Section 4) 
with a special focus on understanding which computations are the most frequently used. Next, we discuss in more detail 
an unexpected outcome of this research, the important usage of the modules for monad transformers (Section 5). Before 
finishing we discuss relevant threats to the validity of this study (Section 6), and then we discuss related work to finally 
conclude (Sections 7 and 8).

Please notice that readers should only need a passing familiarity with functional programming and with the general 
concept of a monad as a design pattern for purely functional computations.

2. Background

Monadic programming. In practical terms, monads are used in Haskell as a mechanism for embedding and reasoning about 
computational effects, such as mutable state or I/O. The approach was first suggested by Moggi [2] and Wadler [3], and 
then it was extended by Liang et al. [8] through the introduction of monad transformers. Monadic programming in Haskell 
is standardized through the standard monad transformers library—known just as mtl—which defines a set of monads and 
monads transformers that can be flexibly composed together. Although alternatives such as transformers, monads-tf, 
or monads-fd (described later in Section 4.3) do exist, and custom implementations are also possible, we focus on the
mtl mainly due to its widespread usage. The mtl defines monads and monad transformers for the following notions of 
computation:

• Identity: represents pure computations in a monadic setting, it has no computational effect.
• Error: represents computations that may fail, propagating error messages if necessary.
• List: represents computations that may yield multiple, non-deterministic results.
• State: represents computations that have access to mutable state.
• Reader: represents computations that offer a read-only operation, e.g. for passing around configuration values.
• Writer: represents computations that offer a write-only operation, e.g. for logging.
• RWS: combines the Reader, Writer and State monad into a combined notion of computation.
• Continuations: represents computations that can be suspended, passed around and resumed, based on application of 

continuations.

2 This paper extends and subsumes the preliminary work presented at [5].



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 3
Fig. 1. A redacted version of xmonad.cabal file, to illustrate the structure and metadata used in the study.

• We also consider the use of monad transformers—denoted as Trans—as a building block provided by the mtl for the 
modular construction and integration of new monads.

Hackage repository. Hackage [4] is the de-facto repository for open source software written in Haskell. It features more than 
85135 packages, when considering each version independently, or equivalently, 12462 “whole” packages, taking all versions 
as a single software product. In Hackage, developers can upload several versions of a package, alongside its metadata, 
following the conventions of the Cabal build system [6]. A package is described by a .cabal file, which declares several 
build options, such as dependencies, stability, categories, language extensions, etc. The cabal-install tool leverages this 
metadata in order to automatically install a package. Taken as a whole, Hackage and Cabal provide a rich environment for 
the development and distribution of Haskell software.

Cabal files. To illustrate the kind of package metadata processed in our study Fig. 1 shows a redacted version of the .cabal
file from the XMonad package.3 This figure shows the different sub-sections regarding, e.g., package name, version, and 

3 http://hackage .haskell .org /package /xmonad.

http://hackage.haskell.org/package/xmonad


4 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Fig. 2. Processing pipeline for gathering empirical data on monad usage. First, using the package index, downloaded from Hackage, we compute initial package 
data, which includes package dependencies, thus allowing us to answer RQ1. The next step is the per-package processing of source code, downloaded from 
the package archives, to find which modules are imported in order to answer RQ2 and RQ3.

category. Most crucial to our research is the build-depends sub-section that describes the package dependencies. Finally, 
it is interesting to remark that a given .cabal can specify the metadata for both libraries and executables, each with its 
own set of dependencies that must be considered in the analysis.

Empirical research on Hackage. There is some background on empirical studies using the Hackage repository. Morris [9]
analyzed Hackage to assess the usage frequency of a GHC extension named OverlappingInstances, in order to guide the 
design of the Habit4 language. Another study was performed by Bezirgiannis et al. [10] to evaluate the adoption of generic 
programming features in Haskell, one year after their introduction. The authors report that between 2012 and 2013, there 
was a 585% increase in the use of the Generic type class. Another contribution of their work is the gpah tool, that 
automates the analysis performed in their work.

3. Methodology

We follow a simplified version of the standard pattern used in the mining software repositories (MSR) research [11], which 
is depicted in Fig. 2. Our pipeline features two broad stages: generation of initial package data followed by a more costly 
step, the generation of monad usage data. We use a combination of standard Python tools for data analysis, such as numpy
and pandas, and specific Haskell programs, mainly for parsing and querying Haskell and .cabal files, using Cabal’s own 
API and the standalone haskell-src-exts (HSE) parser.5

In this work we consider all the packages in Hackage that were available in January 2018. Although our pipeline is quite 
simple and unoptimized, we managed to process around 30 GB of package data in a single standard workstation—albeit 
the process took several days to complete. We had to restart the process several times, because it turns out that properly 
parsing Haskell files is surprisingly difficult. As far as we know the only viable options are using HSE as we did, or using 
GHC as a library, making us rely on its internal parser. Later in Section 6 we discuss about the issues regarding file parsing. 
All programs and datasets used in this work are available in the companion website [7].

Generating initial package data. The first input artifact is the package index, available online in Hackage, which organizes all 
packages, their versions, and their .cabal files in a hierarchical folder structure. To parse a .cabal file we use Cabal’s 
own API in a simple Haskell program. For each package we obtain the following metadata: version, stability, dependencies, 
categories, the provided modules, and the main modules. Both stability and categories are free-form strings, whereas the 
other entries are well-structured, and can be traced to other entities inside Hackage. Using this data we can inspect the 
dependencies of each package to quantify how the mtl is directly stated as a requirement.

Generating monad usage data. The goal of the next process is to find out what specific modules are imported in the code 
of a package. This way, we can quantify the usage for each specific monad in the mtl. We address this issue in two steps: 
computing imported modules, and then analyzing monad usage. Computing imported modules amounts to parsing and 
analyzing the main and provided modules of a package. To do this we download the package source and feed it to another 
Haskell program, which uses HSE. With this, it is simple to tag and count each usage of a monad module.

Package information. To clarify the data generated in the processing pipeline we briefly describe the fields that are com-
puted for each package:

4 http://hasp .cs .pdx .edu.
5 https://hackage .haskell .org /package /haskell -src -exts.

http://hasp.cs.pdx.edu
https://hackage.haskell.org/package/haskell-src-exts


I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 5
• Package name: a string that is unique in the Hackage catalog. No two packages can share the same name.
• Package version: a string that follows a numeric convention, for major, minor and patch increments. For instance, 

“0.0.0.1” and “1.12.20.3” are valid version strings. In the Cabal API versions are comparable and sortable, corresponding 
to lexicographical order of the version strings.

• Stability level: a free-form string, added by the package developer, informing about the package stability.
• Categories: a list of free-form strings that describe all categories the package belongs to. Categories are also defined 

and added by package developers.
• Dependencies: a list of package names and version ranges, e.g. “base >= 2 && < 5”, or “mtl == 2.1.∗”.
• Provided modules: all modules that are publicly available for use in projects that depend on this package.
• Main modules: a package can specify several executables, each of them with a driving Main module. This field is a list 

of all main modules for the package executables.
• Imported modules: the set of all module names imported in the source files of the package. Each module name appears 

only once, even if imported in several source files.
• mtl-direct flag: signals whether or not the package depends on the mtl package, that is, mtl appears in its depen-

dencies field.
• Cont flag: signals if the package modules import at least one of the following modules, related to the continuation 

monad in the mtl:
– Control.Monad.Cont
– Control.Monad.Cont.Class

• Error flag: signals if the package modules import at least one of the following modules, related to the error monad in 
the mtl:
– Control.Monad.Error
– Control.Monad.Error.Class

• Except flag: signals if the package modules import the module Control.Monad.Except, which is related to the 
except monad in the mtl—available only since version 2.2.1.

• Identity flag: signals if the package modules import the Control.Monad.Identity module, related to the iden-
tity monad in the mtl.

• List flag: signals if the package modules import the module Control.Monad.List, related to the list monad in 
the mtl.

• RWS flag: signals if the package modules import at least one of the following modules, related to the RWS monad in 
the mtl:
– Control.Monad.RWS
– Control.Monad.RWS.Class
– Control.Monad.RWS.Lazy
– Control.Monad.RWS.Strict

• Reader flag: signals if the package modules import at least one of the following modules, related to the reader monad 
in the mtl:
– Control.Monad.Reader
– Control.Monad.Reader.Class

• Writer flag: signals if the package modules import at least one of the following modules, related to the writer monad 
in the mtl:
– Control.Monad.Writer
– Control.Monad.Writer.Class
– Control.Monad.Writer.Lazy
– Control.Monad.Writer.Strict

• State flag: signals if the package modules import at least one of the following modules, related to the state monad in 
the mtl:
– Control.Monad.State
– Control.Monad.State.Class
– Control.Monad.State.Lazy
– Control.Monad.State.Strict

• Trans flag: signals if the package modules import at least one of the following modules, related to the standard monad 
transformer library in the mtl:
– Control.Monad.Trans
– Control.Monad.Trans.Class

4. Empirical results and discussion

Before answering the specific research questions posed at the beginning, we first show an overview of the Hackage 
repository. More specifically, we describe global statistics related to the quantity of packages, versions, amount of provided 
modules, and other global quantitative information. The aim of this is to characterize packages and serve as a baseline of 



6 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Fig. 3. Quantity of Imported/provided modules and package dependencies. Triangles mark the mean, lines inside boxes mark the median. Circles represent 
outliers.

what the “average” package looks like. The total size of uncompressed packages that were downloaded is around 30 GB. This 
is a non-trivial amount of data, although still manageable on a single computer. To clarify the terminology used throughout 
the rest of this section, we consider the following distinction between packages and whole-packages:

• A package is a specific version of a software product released in Hackage. For instance, versions 0.1 and 0.2 of XMonad 
are two different packages, although they refer to the same product.

• A whole-package refers to the software product as a whole, comprising all of its versions. Hence, all versions of XMonad 
count as only one unique package. The notion of whole-packages is only used in Section 4.1, regarding the answer of 
RQ1.

In total we processed 85135 packages or, equivalently, 16491 whole-packages from Hackage. In terms of modules, this 
amounts to 5842979 provided modules.

Distribution of dependencies, imported and provided modules. Fig. 3 shows the distribution of packages regarding the quan-
tity of imported and provided modules, as well as the number of dependencies. The boxplots show that:

1. Most packages (75%) provide between 1 and 10 modules, while outliers range between 10 and 1000 provided modules. 
The average of provided modules is a bit more than 10.

2. Half of the packages import between 10 and 100 modules, when considering all unique imports in all files in a package. 
Other 25% of packages import between 1 and 10 modules, whereas outliers go above 1000 imported modules. The 
average is almost 100 imported modules per package.

3. Half of the packages declare between 1 and 10 dependencies on other packages from Hackage. Outliers can go up to 
hundreds of dependencies, whereas only three packages declare more than 4000 dependencies. The average is almost 
10 dependencies per package.

Considering all the above we can argue that, in general, packages rely on a few dependencies that provide several modules. 
Given that on average each package provides 10 modules, and each package also depends on 10 other packages, it is likely 
that packages import almost all of the modules of their dependencies, thus reaching the average of 100 imported modules. 
This situation suggests that packages are loosely coupled—each focused on a single specific task—and relying on external 
dependencies for auxiliary operations.

Outliers. As mentioned above, there are three packages that declare more than 4000 dependencies. They correspond to 
three different versions of the acme-everything package,6 which is sort of a “joke” package that “requires the entirety 
of Hackage to be built”. Another set of outliers declaring more than 100 dependencies corresponds exclusively to several 
versions of the yesod-platform7 package. Yesod is a framework for developing web and REST-based applications, and the
yesod-platform package has many dependencies because its purpose is to provide specific versions of its dependencies 
in order to avoid configuration problems upon installation. Between 10 and 100 dependencies, there are many unrelated 
packages that simply happen to have many dependencies.

Distribution of versions per whole-package. Fig. 4 shows that 75% of the packages has around 2 and 9 versions. Indeed the 
average number of versions per package is 8. Outliers range from 24 versions, up to the maximum of 167 versions. The
purescript package, a strongly- and statically-typed language that compiles to Javascript, has the most number of ver-
sions. Other packages with more than 100 versions are: egison and hakyll, two domain-specific languages implemented 
in Haskell; the lens library, composed of classes and combinators for traversal and update of functional datastructures;
shelly, a package for POSIX access to execution of shell commands; pandoc, a general-purpose tool for document gen-
eration and conversion; http-conduit, an HTTP and HTTPS client used in the Yesod platform; and llvm-general, a 

6 https://hackage .haskell .org /package /acme -everything.
7 https://hackage .haskell .org /package /yesod -platform.

https://hackage.haskell.org/package/acme-everything
https://hackage.haskell.org/package/yesod-platform


I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 7
Fig. 4. Distribution of quantity of versions per whole-package. Outliers are omitted but range between 24 and 167.

Fig. 5. Baselines considered for the analyses in this section.

package that provides Haskell bindings to the LLVM platform. In general, after a manual inspection, we see that packages 
with a large number of versions are mostly those related to languages and compilers, as well projects originated around 
2010 that are still under active development.

mtl-packages. We denote a package that directly depends on the mtl as an mtl-package. This definition is used throughout 
the rest of the paper, to contrast these packages with those that do not directly state mtl as a dependency.

4.1. Regarding RQ1

RQ1 is the most basic questions in this exploratory study: how many packages depend on the mtl? However, answering 
this question is not simple. To provide an in-depth answer to RQ1 we need to consider the two interpretations given above 
for packages and whole-packages in Hackage. In addition, RQ1 also inquiries about the distribution of mtl packages regarding 
package metadata, namely, category and stability fields. Due to the multiplicity of categories and stability, i.e., the situation 
in which a package can belong to one or more categories or stability levels at the same time, the quantitative analysis 
must consider several baseline values, which ultimately determine the calculation of percentual ratios between packages, 
categories, and stability levels. Note that multiplicity of stability levels happens only when merging the packages as whole-
packages, because although each package has a unique stability version, different versions can contain different stability 
levels, which should be expected from the evolution of the software. On the other hand, multiplicity of categories happens 
directly in the .cabal fields.

In order to clarify the different baselines, Fig. 5 depicts the overall situation. Starting from the 85135 total packages found 
in Hackage, grouping them by category as packages, and due to the multiplicity of categories, we get 121428 packages by 
category. Similarly, by grouping the starting packages by category as whole-packages—that is, merging the categories of all 
versions of a given software product—we get 16491 whole-packages by category. On the other hand, when taking packages 



8 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Fig. 6. Empirical distribution of the number of packages with respect to category and stability level. There are 649 categories and 77 stability levels.

Table 1
Top 10 categories by package quantity, comprising 49.2% of all packages. The baseline considers 
the multiplicity of packages that belong to more than one category.

Category Package quantity Percent of total (baseline of 121428)

web 12564 10.3%
data 10243 8.4%
network 7947 6.5%
text 5259 4.3%
development 4847 4.0%
control 4222 3.5%
graphics 4068 3.4%
system 3742 3.1%
language 3496 2.9%
database 3354 2.8%

grouped by stability, we get the same 85135. However, merging the starting packages by stability level, we get 12462 
whole-packages.

The main finding after studying the distribution of mtl-packages with respect to metadata is that category and stability
fields are open to spurious conclusions, due to the biased data found in them. Indeed, as both fields correspond to free-form 
strings that are arbitrarily filled by package maintainers, the empirical data in Fig. 6 shows that most packages are clumped 
together in a small set of categories or stability levels, which hampers further analysis. The detailed view of this situation 
is shown in Tables 1 to 4. We highlight that:

• In Table 1, when considering the categories of packages, 25.2% of the packages correspond to the three first categories: 
web, data, and network.

• In Table 2, when considering the categories of whole-packages, 24.9% of the packages belong to the same three cate-
gories, but in a different order.

• In Table 3, when considering the stability level of packages, 64.4% of the packages correspond to the first stability level,
n/a, which actually reflects the absence of information in the metadata field.

• In Table 4, when considering the stability level of whole-packages, 69.7% of packages correspond to the n/a level, just 
as in the previous case.

Consequences. Our findings show that the metadata fields are not quite helpful to establish correlations between cat-
egory/stability and the presence of mtl-packages—given that any package is highly likely to correspond to the top-10 
categories and stability levels aforementioned. Nevertheless, we believe this still is a valuable finding because:



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 9
Table 2
Top 10 categories by whole-package quantity, comprising 50.5% of all whole-packages. The 
baseline considers the total number of whole-packages, as well as the multiplicity of their 
categories.

Category Package quantity Percent of total (baseline of 16491)

data 1662 10.1%
web 1507 9.1%
network 935 5.7%
text 790 4.8%
control 648 3.9%
system 647 3.9%
development 590 3.6%
language 536 3.3%
graphics 517 3.1%
math 490 3.0%

Table 3
Top 10 stability levels by package quantity, comprising 99.5% of all packages.

Stability level Package quantity Percent of total (baseline of 85135)

n/a 54809 64.4%
“experimental” 16670 19.6%
“stable” 5597 6.6%
“provisional” 3624 4.3%
“alpha” 1791 2.1%
“beta” 1343 1.6%
“unstable” 526 0.6%
“unstable interface” 45 0.1%
“seems to work” 92 0.1%
“highly unstable” 72 0.1%

Table 4
Top 10 stability levels by whole-package quantity, comprising 99% of all packages.

Stability level Package quantity Percent of total (baseline of 12462)

n/a 8684 69.7%
“experimental” 2259 18.1%
“provisional” 398 3.2%
“stable” 394 3.2%
“alpha” 347 2.8%
“beta” 149 1.2%
“unstable” 86 0.7%
“seems to work” 12 0.1%

• Organizations in charge of repositories such as Hackage can act upon this fact, which highlights the need for a more 
standardized protocol to assign such metadata, either by (semi-)automatic or manual means.

• It might suggest that package developers or maintainers tend to either not report the stability of their software, or to 
underestimate it, given that the second most populated stability level is “experimental”.

Current analysis. Despite the biases found in data, in the remainder of this section we show the results of our analysis 
regarding the distribution of packages with respect to metadata because: (i) it represents the actual state of the repository, 
and (ii) it shows our analysis pipeline is able to correctly interpret the distribution, regardless of data quality. It is crucial to 
remark that in the following, the categories and stability levels are not hardcoded directly into the analyses. It just happens 
that most mtl-packages happen to be attached to such metadata, which coincides with the contents of Tables 1 to 4. In 
other words, the analysis was not directed specifically to the aforementioned categories or stability levels.

4.1.1. As packages
From the total of 85135 packages, we found that 26199 directly depend on the mtl package. In other words, 30.8% of 

analyzed packages directly import the mtl, while 69.2% do not import it. However, due to the multiplicity of categories, 
we consider a total number of 36266 mtl-packages. Regarding their distribution, Fig. 7 summarizes the distribution by 
category and stability level. In the pie charts, the percentages are related to the 36266 mtl-packages. The stacked barcharts 
show the proportion of mtl and no-mtl packages inside each category and stability level. We established a 5% threshold to 
determine relevant categories, and a 3% for relevant stability levels; those labels are shown in the plots. Other items below 
the threshold are merged into the “Others” label.



10 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Fig. 7. Distribution of mtl packages regarding category and stability level. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

By categories. In the analyzed data there are 649 categories, of which 361 feature mtl-packages and 288 do not. To under-
stand how mtl-packages are distributed with respect to categories, we must consider the following:

• What percentage of the total quantity of mtl-packages can be attributed to each category?
• What percentage of each category is comprised of mtl-packages? Here we aim to find whether there are categories 

with disproportionately many monadic packages, in contrast to other categories.

Answering the first question, Fig. 7a shows the web category is by far the one with the largest amount of mtl-packages, 
with 11.8%, followed by development, data, and language. Other than the web category, all relevant categories have 
between 5-6% of packages. When taken together, all categories below the 5% threshold—which comprise a wide range of 
concepts such as games, gpu programming, number theory, or accessibility—contain 71.9% of mtl-packages.

For the second answer, Fig. 7c depicts the distribution of mtl-packages for each of the most relevant categories. This 
shows that no category has more than 50% of mtl-packages. This might appear counter-intuitive, because a category such 
as web, which has to deal with user input and where one could assume that monads are more used in such packages, has 
only around 25% of mtl-packages.

By stability levels. Similar to the categories’ analysis, we study stability levels with respect to the total number of mtl-
packages, as well as the percentage of mtl-packages within each stability level. There are 77 declared stability levels, of 
which 41 feature mtl-packages and 36 do not. In their distribution, 62.7% of mtl-packages do not have any assigned level. 
In Fig. 7b this appears as the n/a label, but in practice the stability field is absent in the .cabal files of those packages. 
In addition to this, it appears that the mtl is mostly used as a dependency in categories of software that is not so stable, 
such as: experimental or provisional; combined, these categories represent 26.5% of mtl-packages. Only a 4.7% of
mtl-packages are declared into the stable category. Regarding the proportion of mtl-packages inside each stability level, 
all of them have less than 50%, as shown in Fig. 7d.

Note that in the raw data from Hackage there are repeated stability levels, such as “experimental” and
“experimental.” (with a dot), showing the lack of a systematic mechanism to assign the stability level of a package. For 
this work we chose not to process this data by means of clustering or other grouping algorithms. We cannot conclude much 
from this, as the free form of the stability field is difficult to interpret.

4.1.2. As Whole-packages
We now describe the same information regarding distribution by categories and stability levels, but now considering all 

whole-packages. As we must perform a grouping operation, to consider all versions of the software products, we consider 
the union of all categories and stability levels in the package, regardless of the particular version. In cases where the versions 
differ in their dependency to mtl, we still consider it as mtl-package. Fig. 8 depicts the distribution of whole-packages with 
respect to category (Fig. 8a) and stability level (Fig. 8b). It also includes the proportion of mtl-packages inside each category 
(Fig. 8c) and stability level (Fig. 8d). We can see that both cases are quite similar to those of Section 4.1.1 (Fig. 7); indeed, 



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 11
Fig. 8. Distribution of mtl whole-packages regarding category and stability level.

Fig. 9. Distribution of monad usage for mtl-packages, considering monads per-package, and per-monad usage.

we only see the network category displacing the development category, and the alpha stability level appearing as it 
is now above the 3% threshold.

Despite the similar results, it is relevant to make the comparison between these two forms of interpreting what a 
“package” is. We can now safely discard situations such as, e.g., a small amount of whole-packages with many versions, 
which would skew the results when considering each version by itself.

4.2. Regarding RQ2

As described before in Section 2, the mtl library provides 8 notions of computation: Identity, Error, List, State, Reader, 
Writer, RWS, and Continuations. In addition we consider also the Except module, a more modern mechanism for handling 
errors, and the Trans module for the construction of monad transformers. Despite being enumerated as a single entity, 
in the mtl each of these elements is defined into one or more modules, which are ultimately imported in at least one 
module of mtl packages. In order to keep the current classification of computations, we have grouped together all usages 
of corresponding modules into a single label per monad, following the mappings described in the package data description, 
in Section 3.



12 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Table 5
Comparison between top-level and class modules for the Continuation, Error, Reader, Writer, State, RWS, and 
Trans notions of computation.

Computation Top-Level Module Class Module

Continuation Re-exports MonadCont and defines all 
the functions for running computations, 
e.g. runCont

Only exports the MonadCont type class

Error Re-exports MonadError and Error, 
and defines helper functions. Also exports 
monad transformers for this computation. 
Notably, it does not re-export
liftEither

Exports the MonadError and Error
type classes, and the helper
liftEither function that transforms 
values of type Either into a
MonadError computation

Reader Re-export contents from the class module. 
Also exports helper functions and 
definitions for the reader monad 
transformer

Exports the MonadReader type class 
and the asks helper function

Writer Re-exports the lazy variant of the Writer 
computation. Both lazy and strict variants 
export the MonadWriter type class and 
the same set of helper functions

Exports the MonadWriter type class 
and the listens and censors helper 
functions

State Re-exports the lazy variant of the State 
computation. Both lazy and strict variants 
export the MonadState type class and 
the same set of helper functions

Exports the MonadState type class and 
the modify, modify’, and gets
helpers

RWS Re-exports the lazy variant of the RWS 
computation. Both lazy and strict variants 
re-exports the class module and define 
the same set of helper functions

Exports the MonadRWS type class and 
re-exports the Reader, State, and Writer 
class modules

Trans Re-exports the two class modules defined 
in the package.

Exports two class modules:
Control.Monad.Trans.Class and
Control.Monad.IO.Class

4.2.1. Overview
As a first coarse-grained analysis we count how many different monads are imported in mtl-packages, as well as the 

usage distribution for each specific monad. This is done by counting the number of indicator flags (Section 3) for each 
notion of computation. That is, we count whether the monad is imported in at least one module of the corresponding
mtl package. For mtl-packages this result is shown in Fig. 9a. As a first remark, we see a decreasing trend, i.e., there 
are not many packages that import many monads at once. Indeed, this is consistent with the descriptive statistics shown 
in Section 4: 75% of mtl packages import between 0 and 2 different monads. Strangely, there are 5534 mtl-packages that 
do not import any monad at all. This is due to parsing errors and other situations discussed in Section 6. Regarding the 
usage of each specific monad, Fig. 9b shows that without any doubts the state monad is the most used one. On the bottom, 
the List monad is the least used, and the Continuation monad is the second least used.

4.2.2. Distribution per notion of computation
Although we have shown the distribution for each notion of computation, the count is too coarse-grained because half 

of these are composed of several modules—only List, Trans, Identity and Except are directly mapped to a single module. 
Hence, it is relevant to understand the distribution inside each notion of computation. There are two situations of interest:

1. The usage of top-level and Class modules. For instance, the Continuation computation is split into the top-level Con-
trol.Monad.Cont module and the class module Control.Monad.Cont.Class. This a common programming 
pattern found in the mtl and other Haskell libraries, whose purpose is to promote information hiding by separating 
the internal implementation of a typeclass in the class module, from the abstract programming interface in the top-level 
module. Nevertheless, it is not uncommon that the top-level just includes and re-exports the class module.

2. Different implementation strategies for the same notion of computation. More precisely, for the State, RWS and Writer 
monads, there are lazy and strict variants. In this case the top-level module defaults to one of those strategies, but each 
of them can be explicitly imported if needed.

Top-level vs class modules. Table 5 summarizes the differences between the top-level and class modules for all notions of 
computations where it is pertinent. In general, class modules define and export the type class for the given computation, 
along with some helper functions. On the other hand, top-level modules define functions meant for end-users, namely 
functions to run the computations and perform computation-specific operations.



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 13
Fig. 10. Distribution of specific modules for each notion of computation.

Given this information, Fig. 10 depicts the detailed usage of each computation, in terms of its corresponding modules. 
The distributions are shown using stacked barcharts, keeping the same layout as in Fig. 9b.

In contrast to Fig. 9b where we used the indicator flags to count the usages, in Fig. 10 we count each import separately—
even when the same package has two imports for the same computation. As a consequence, the total numbers in the latter 
figure may be larger than in the former.

We can see in Fig. 10 that for all computations the top-level module is indeed the most imported one. This supports 
the idea that most packages that import an mtl-package do so in order to use it as a library—that is, relying on its most 
general public-facing interface. On the other hand, we conjecture that packages directly importing the class modules are 
more likely to implement lower-level monadic operations. Indeed, this is reflected in the top-level modules themselves that 
must import the class-level ones.

In the case of the State, Reader and Writer computations we see that the strict variant is larger than the lazy one. 
However this is misleading, because the top-level modules also provide by default the lazy strategy. Thus, the lazy imple-
mentation strategies for these computations are indeed the most used ones in practice. This suggests that strict variants are 
only necessary, or even useful, in more specific scenarios, perhaps due to performance issues arising from using the lazy 
variants.

4.2.3. Most common monad combinations
So far we have only considered individual notions of computation, either as a group of related modules, or as the specific 

modules that form part of a group. Now we are interested in the specific combinations of monads that are imported by 
the packages. To do this we compute a usage vector—a binary vector that combines all the indicator flags—and then we 
compute the frequency of all usage vectors in the dataset. To ease readability, we assign a one-letter code to the monadic 
computations, as described in Table 6. Therefore, we can refer to specific combinations as a string that concatenates the 
letters for each computation present in the combination. For instance, the “CESTX” combination contains the Continuation,
Error, State, Trans, and EXcept computations. We found a total of 244 monad combinations. As it is shown in Fig. 11a, 
the frequency of combinations is mostly uniform, except for a few outliers at the top that amount to the most frequent 
combinations. In Fig. 11b we show the top 11 combinations in the ranking, which amount to the 65% of the total usage 
vectors considered. At the top of the ranking there are around 6000 packages that have no computation at all. This is 
consistent with Fig. 9a and is discussed later in Section 6. The rest of combinations in the figure show the top-10 most used 
combinations, which we discuss next:

1. S: the State on its own is the most used combination of monads in mtl-packages. Of course this must be the case for 
consistency with the previous section, but we are a bit surprised to found that this computation is most of the time 
the only monad used in a package.

2. T: surprisingly for us, the Trans computation, that is the usage of the Control.Monad.Trans type class for defining 
monad transformers [8], is the second combination in the ranking—and it is also a single-element combination. We 
devote Section 5 for a deeper discussion regarding this situation.

3. R: the Reader computation, also on its own, is the third member of this ranking. Its usage is around half that of the S
combination, and it indicates a more specialized use of state, as a read-only value.

4. E: the Error computation is also at the top on its own, meaning that its usefulness is not tightly coupled to any 
other computation. This shows the existence of many packages that can be functionally pure, but that directly address 
potential errors using a monadic approach.

5–9 RS, ST, RST, RT, ES: the last members of the ranking are just combinations of the previous ones. In particular the State 
computation is only missing in the 9th place, the RT combination, which still includes the specialized state-like Reader 
monad.



14 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
Table 6
One-letter codes to describe combinations of 
monads imported at the same time by pack-
ages. For the RWS computation we use letter Z, 
as all other letters are already used.

Computation One-Letter Code

Continuation C
Error E
Identity I
List L
Reader R
State S
Trans T
Writer W
Except X
RWS Z

Fig. 11. Top 11 most used combinations of monads, comprising 65% of all monad combinations. Following the available data, the most common combination 
is to have no monads at all. Then the standalone State, Trans, Reader and Error computations area the next most frequent ones.

10. I: the last one is the Identity computation on its own. There are around 350 packages that only import this monad. 
Upon manual inspection we observe this happens due to one or more of the following situations:
• using another library that requires a monadic setting, thus using the Identity constructor to lift pure values,
• using the runIdentity function provided by this module to unwrap computations obtained from other libraries, 

or
• using the Identity class as the base for the declaration of custom typeclasses.

Going in more detail, the popularity of the State effect is such that there are only 80 combinations without this 
component—that is, almost two thirds of combinations include State. On the other hand, for the Trans and Reader mon-
ads, there are respectively 125 and 108 combinations that do not feature them. Finally, we explored whether there were 
significant association rules between monads in a combination. However our results show only significant relations between 
the Writer, State, Trans, Reader and Error monads, forming rules with a single antecedent and a single consequent. In other 
words, besides a strong bias towards state-related effects, we found no other significant correlations.

4.3. Regarding RQ3

Now we deal with the situation of packages that do not depend on mtl but that appear as using one or more monads 
provided by the library. This happens because the packages are using other libraries that provide a similar programming 
interface—i.e. the module names, such as Control.Monad.State are the same. Consequently, this section replicates all 
the analyses done for mtl-packages in Section 4.2. For brevity the results are shown in a summarized form, to then present 
the proper discussion at the end of the section.

Usage distribution. We found a total of 58936 non-mtl packages, whose information regarding packages and usage is shown 
in Fig. 12a and Fig. 12b. We found that there are 1028 packages that are using at least one monad. Fig. 12a shows that 
the per-monad usage distribution is very similar to that of mtl-packages (Fig. 9b). Note that for scaling reasons the bars 
in Fig. 12a do not show the 57908 packages that do not import any mtl monad at all.

Packages using alternatives to mtl. The mtl package has two major versions: 1.x and 2.x. In the 1.x series, the package 
defines all necessary types, type-classes and related elements, based on two non-standard—i.e. non-Haskell98—extensions: 
multiparameter typeclasses, and functional dependencies. Later on, around 2010 when mtl 2.x was in development, the orig-
inal package was split, leaving the transformers package as a core dependency which shares the minimum common 



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 15
Fig. 12. Distribution of monad usage for non-mtl packages, considering monads per package, per-monad usage, and the composition of monads regarding 
top-level and class modules.

Fig. 13. Top 11 most used combinations of monads. Following the available data, the most common combination is to have no monads at all. Then the 
standalone State, Trans, Reader and Error computations area the next most frequent ones.

definitions that are Haskell98 compatible, leaving the door open to the development of monad libraries based on other ex-
tensions, in addition to functional dependencies.8 In addition, some other alternatives have been developed. In the following 
list we consider alternative implementations that explicitly aim to be as compatible as possible with the mtl programming 
interface:

• transformers: a core dependency of mtl itself, we consider it as it may be used directly in packages in lieu of mtl.
• monads-fd: a deprecated package, that implements monads based on functional dependencies. It is meant to be 

equivalent to mtl itself. Indeed, it currently re-exports the mtl package.
• monads-tf: implementation of monads using type families, rather than functional dependencies.
• mtl-tf: a deprecated package, precursor to monads-tf.
• mmtl: a package providing modular monads transformers, in a generalization of mtl.
• mtlx: a library of indexed monad transformers, that allows the creation of several instances of the same transformer, 

with different labels or indexes, rather than relying on the redefinition of monadic types and all associated boilerplate.

Considering these alternatives, we found that 680 packages, out the 1028 packages mentioned before, depend on at 
least one of the alternative implementations of monads. Hence, the 66.0% of no-mtl packages that actually use monads 
rely on the aforementioned alternative implementations. The remaining 348 packages, amongst which we found both mmtl
and mtl-tf, seem to mostly provide their own implementation of the monads used. For instance, the cabal-install-
bundle package purposely includes all its dependencies.

Usage of monad combinations. Similar to Section 4.2.3, Fig. 13a depicts the distribution of monad combinations present in 
non-mtl packages (Fig. 13a) and the top-10 most used combinations (Fig. 13b). In contrast to our previous analysis, for 
non-mtl packages we consider only the packages with at least one monad, because the empty combination distorts the 
relevant information that we explore at this point. Again, we see a pattern very similar to that of mtl packages. The most 
noticeable difference is the ranking of the top-11 combinations:

• Trans takes the top spot, displacing State to a very close second place

8 https://mail .haskell .org /pipermail /libraries /2010 -September /014281.html.

https://mail.haskell.org/pipermail/libraries/2010-September/014281.html


16 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
• Although the State, Trans, Reader, and Error monads are still in the top 10 as standalone monads, all the other combi-
nations are on average longer than those for mtl packages

• We see the RWS and Writer monads in the top-10, in contrast to the situation for mtl packages

Overall, we see the same general pattern as before: the State monad dominates the ranking, as it appears in 7 out of 
10 combinations, while Trans and Error tie at the second place with 4 instances. Also, most of the non-mtl packages that 
use monads are covered in the top-10, which covers around 50% of the total package frequency, confirming the distribution 
shown in Fig. 13a.

5. Understanding the usage of Control.Monad.Trans

At this point it is clear that the State effect, in all of its varieties and implementations, is the most prevalent one 
in all Hackage packages (Section 4.2). However, surprisingly for us, the second place in our ranking goes to the module 
responsible for monad transformers: the Control.Monad.Trans module. Throughout this paper we have referred to 
this as the “Trans” computation. This module not only provides several essential definitions for the mechanism of monad 
transformers [8], but also provides a bridge between impure side-effecting computations via the IO monad, to the monadic 
setting of the mtl. More specifically, this module provides the following main components:

• The MonadTrans type class [12] which is used to register all instances of monad transformers that can be compatible 
with the design of mtl and other existing monads and transformers. The only method in this typeclass is the lift
operation that must satisfy certain laws when applied on top of an arbitrary monad m. Thus, any type t that is an 
instance of MonadTrans must guarantee that, for any monad m, the combination t m is also a valid monad.

• The MonadIO type class that allows the embedding of the IO monad at the bottom of the monad stack. Any monad m
that is instance of MonadIO can invoke the liftIO method provided by this class in order to access the underlying 
native I/O in the IO monad.

Now we would like to know why this module is so widely imported in mtl-packages. Without any empirical information, a 
reasonable Haskell developer would probably conjecture three usage scenarios that require the importing of this module:

1. Programmers import Control.Monad.Trans mainly to use the MonadIO type class and/or the liftIO oper-
ation, because the operation of the package involves I/O at some point. Note that this is provided by the Con-
trol.Monad.IO.Class module—which can be imported directly—but for some reason is re-exported by the module 
for monad transformers.

2. Programmers implement their own monad transformers, and then declare them as an instance of MonadTrans to 
integrate their work with the rest of the mtl. For instance as in [13,14].

3. Programmers develop higher-order functions that, for some reason, take an arbitrary monad transformer as argument; 
or alternatively, declare new instances of type classes, based on existing monad transformers. Both cases require having
MonadTrans in the type signature. This also happens in [13,14].

Unfortunately, the data obtained in our processing pipeline (Section 3) is not precise enough to give a categorical answer 
or support to these scenarios. Indeed, doing so would require a much more finer-grained approach to the parsing and 
analysis of packages, which goes beyond the scope of this exploratory study. For instance, confirmation for Scenario 1 would 
require detailed information on which methods, and of what type classes, are used in the packages. Similarly, for Scenario 
2 we would need to catalog all type class instances defined in all packages. For Scenario 3 the required information grows 
even more, as we would need the type signature of all functions defined in all packages. Indeed, working towards a richer 
semantic model for mining package information is an interesting venue for future work. Indeed, this is actually an excellent 
technical justification for using GHC-as-a-library, rather than HSE, as this tool has rich support for querying type definitions 
and types of exported functions.

Despite the aforementioned limitations, we can try to give support to the first two scenarios by further exploiting the 
data that we do have available. In the following we argue that the above intuition could be very close to the actual usage 
of the Trans computation. Indeed, let us recall from Section 4.2 that there are 2185 “T-only” packages that feature only the 
Trans computation. From this we can see the following:

Regarding scenario 1. We conjecture that packages importing Trans to access MonadIO or liftIO are likely to also import 
other modules related to I/O; hence we would like to know this quantity. A small complication arises because the Haskell 
Prelude, a default set of available values and functions, provide several elements of the I/O system such as the IO data type, 
and several functions for opening/reading/closing files. We consider as IO-related modules the following list of modules 
provided by the base package, which is available in all Haskell installations:

• System.IO, System.IO.Error, System.IO.Unsafe: these modules declare the core data types and functions 
for the operation of IO computations



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 17
• Control.Monad.IO.Class: this module declares the MonadIO type class
• Data.IORef: this provides the facility for a mutable variable inside the IO monad.

By filtering the dataset of T-only packages with respect to the other imported modules we found that there are 1175 
packages—more than 50%—in this situation. We believe this strongly suggest the validity of our first conjecture.

Scenario 2: Custom Monad Transformers. To obtain an educated guess regarding the second scenario, we conjecture that 
packages that implement their own monads or monad transformers are more likely to provide modules in the *Monad* names-
pace. Hence, again we filtered the set of T-only packages selecting those that export at least one module with the substring 
“Monad” in its name. This yields a total of 153 packages. Notice that there are only 64 packages that also match the filtering 
of Scenario 1. We performed a manual inspection on these packages to determine whether they: (i) declare a new instance 
of MonadIO, (ii) use the liftIO operation, and (iii) declare a new custom monad transformer, that is, a new instance of
MonadTrans. We found that:

• There were only 15 false positives out of the 153 filtered packages. Still, all these packages are closely related to monadic 
programming, for instance providing new functions or plain monads that are not constructed with monad transformers.

• On the contrary, 62 packages satisfy all three criteria, that is, they define instances of MonadIO, use liftIO and 
declare instances of MonadTrans.

• Of the remaining packages:
– 20 only define a new monad transformer
– 28 only use liftIO
– there is only 1 package that defines instances of MonadIO, declares a monad transformer, but does not uses liftIO. 

Although probably the operation is defined implicitly by some extension of GHC such as Generalized Newtype Deriving.
– 27 packages declare instances of MonadIO and use liftIO

The manual inspection was quite instructive because we found strange situations such as packages that explicitly import
Control.Monad.Trans only for the I/O related classes. That is code, similar to:

import Control.Monad.Trans(MonadIO(..), liftIO).

This is strange because it would be more straightforward to import the module Control.Monad.IO.Class, which is 
the one that actually defines the entities related to I/O. Even more strange, some packages had two imports for MonadIO, 
one from Control.Monad.Trans and the other from Control.Monad.IO.Class—this even happened on the same 
module file. We also observed many definitions that would support Scenario 3, however, as we explained above, this is 
quite difficult to quantify with our current methodology.

6. Threats to validity

Our work presents some important limitations and threats to its validity. A first limitation is the use of indicator flags to 
signal whether a package uses a monad or not. The consequence of this is that we are not really weighting the proportional 
impact of each monad in the package. However, doing so would require more complex parsing and analysis of source code. 
Nevertheless, the more problematic limitation is that our processing pipeline is not able yet to fully parse every module in 
every package, because—surprisingly—there is no standardized solution to parsing and analyzing Haskell packages and files. 
Major difficulties arise from the use of the C preprocessor, and from compiler-specific extensions. The consequences of this 
are more severe:

• There are packages with conditional dependencies, which are parsed as having no dependencies at all. This probably 
affects the number of mtl and non-mtl packages.

• There are modules that cannot be parsed because they rely on external files, such as C headers, or that cannot be parsed 
for other reasons. As a consequence we may be missing monads that are used/imported in such packages.

A concrete situation that arises from these limitations is that in Fig. 9 there are 5534 mtl-packages that use 0 monads. 
The situation is explained as follows:

• There are 3585 with parsing errors, which might or might not use monads at all.
• There are 1085 packages that only import the Control.Monad module—which is not counted in any of the computa-

tions. This module provides several typeclasses, definitions and functions to work over monadic values. This module is 
imported to work with existing libraries that pass around monadic values.

• There are 864 packages that import the mtl and actually do not import any monad at all.

Still, we consider that our methodology and results are coherent and properly address our research questions.



18 I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523
7. Related work

Our work lies in the field of Mining Software Repositories—a vast area of research, featuring its own international 
conference and other venues—with a very specific focus on the study of programming language features. As mentioned 
in Section 3, there are very few empirical studies regarding Haskell and its features, amongst which we highlight the work 
of Morris [9], which assesses the use of OverlappingInstances to guide the design of the Habit language, as well as the work 
of Bezirgiannis et al. [10]. Similar empirical studies on language features include the work of Callaú et al. [15], regarding 
how developer uses the dynamic features of Smalltalk, and also Callaú et al. [16], regarding the use of type predicates, that 
is, methods that specifically query the type of an object, such as a Java’s instanceof method. Other studies, such as Na-
gappan et al. [17] consider the use of goto and whether or not it is really harmful, as posed originally by Dijkstra [18]. 
Similar research is that of Casalnuovo et al. [19] regarding the use of assertions in GitHub projects. Finally, there is some 
research by Robbes et al. [20] on whether objects meet their promises regarding modularity and reuse.

8. Conclusions and future work

We have described an empirical study to determine which monads do Haskell developers use. By collecting information 
directly from the Hackage package repository we have established that: (i) 30.8% of packages depend on the mtl library 
(RQ1); (ii) the state monad is the most used one and that the monad transformer module is widely used, being second only 
to state (RQ2); and (iii) that a tiny fraction of packages, 1.2%, uses alternative monad libraries, thus showing the prevalence 
of mtl in real practice (RQ3). We also explore package metadata, finding that they are not strong predictors of monad 
usage, as most packages are clumped in a few categories or stability levels. Apart from research questions, we can infer and 
discuss the following additional findings:

Alternatives to the mtl package library. The empirical evidence shows a small percentage of packages uses alternative 
monad libraries. Due to the exploratory scope of this work it is not clear why this situation happens, although we can 
envision some possibilities. On the one hand, perhaps the code resulting from using the standard library is too complex, or 
maybe the software requires a novel typechecking mechanism not provided by the mtl. On the other hand, it could be the 
case that the alternative packages are developed as a product of research, and the packages that use it are meant as a proof 
of concept that is not continuously developed alongside the rest of the Haskell ecosystem.

Potential benefits for language designers. A core motivation of this work was to provide language designers with empirical 
information for the design and development of novel or refined mechanisms related to the use of monads. In this regard, 
we believe this work provides at least three key insights:

1. There are 3 computations that do not appear in the top-11 most used monad combinations: List, Continuation, and 
RWS. Indeed, the quantity of packages using these notions of computations is significantly lower than for the other 
(Section 4.2.3). This suggests an opportunity for improvement in terms of software engineering: the development of a 
new core-mtl package library focused on the most used monads, while still providing the less used ones in external 
non-core packages. This way, major improvements could be done to the core package, such as certified development, 
testing, etc. This is particularly interesting, given that, at least conceptually, the List and Continuation monads are rather 
complex, which could difficult the improvement of the other parts of the mtl.

2. Clearly, the usage of State monad dominates all other cases. This could provide insights for simpler mechanisms to use 
it, or for additional syntax sugar. Ideally, this should be designed by user-centered studies. Additionally, and considering 
the current trends for using functional programming concepts—such as purity and immutability—in libraries and lan-
guages such as Javascript, Scala, and others, it would be beneficial to provide simple ways to use state-like monads or 
constructs, given that it is also likely that the need for mutable state arises in these situations. Interestingly, this latter 
insight goes beyond Haskell itself, backed by the current evidence shown in this study.

3. There is strong evidence suggesting the implementation of the Trans module is unnecessarily conflated with the type-
classes related to monadic IO (Section 5). This could be alleviated by providing a stricter separation between those two 
interfaces.

4. Going beyond languages on their own, the designers of software repositories, be it in Haskell or any other language, 
should be careful when providing unstructured fields for metadata, such as stability or category. The evidence shown 
in this study suggests that, in the absence of a clear protocol for assigning such metadata, these fields could be biased, 
being clumped in a few items, hampering any clear correlational analysis.

Challenges for future work. Our first goal for future work is to address the limitations and threats to validity faced on this 
preliminary study. The most pressing issue is to obtain a more precise method for parsing source files, even though they 
may depend on external C dependencies such as header files. On the second place we want to develop a scalable analysis 
infrastructure, to manage the huge number of packages in Hackage. For this end, we want to develop distributed analysis 
infrastructure, following the same processing pipeline described here. Such infrastructure may be eventually leveraged for 



I. Figueroa et al. / Science of Computer Programming 201 (2021) 102523 19
other empirical analysis of Haskell code in the Hackage repository. By leveraging this infrastructure, we would like to 
replicate and further extend this study on Stackage, a curated repository for stable Haskell packages, to know how monads 
are used in a setting purposefully geared towards commercial software development in Haskell. Going beyond the technical 
aspects, we aim to focus on the more qualitative aspects of this research: Why are specific monads being imported? How 
are they used? How are monad transformers developed and how is the integration with the mtl? In which cases developers 
prefer to define their own monads instead of using the standard ones? Why are customly-defined monads created? How 
does the usage of monads evolves over different package versions? Are there any inherent limitations of the mtl, if so, 
which ones?-

CRediT authorship contribution statement

Ismael Figueroa: Conceptualization, Methodology, Software, Writing - original draft. Paul Leger: Conceptualization, 
Methodology, Writing - original draft, Writing - review & editing. Hiroaki Fukuda: Conceptualization, Investigation, Vali-
dation, Visualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This work is partially funded by FONDECYT Postdoctoral Project 3150672. We thank all the anonymous reviewers for 
their insightful comments.

References

[1] haskell org, The Haskell Language, http://www.haskell .org, 2017.
[2] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (1991) 55–92.
[3] P. Wadler, The essence of functional programming, in: Proceedings of the 19th ACM Symposium on Principles of Programming Languages, POPL 92, 

ACM Press, Albuquerque, New Mexico, USA, 1992, pp. 1–14.
[4] haskell.org, Hackage, http://hackage .haskell .org, 2017.
[5] I. Figueroa, A preliminary assessment of how monads are used in Haskell, in: Proceedings of the 21st Brazilian Symposium on Programming Languages, 

SBLP 2017, ACM Press, New York, NY, USA, 2017.
[6] haskell.org, Haskell Cabal, http://www.haskell .org /cabal, 2017.
[7] I. Figueroa, Online resources: which monads Haskell developers use, http://zeus .inf .ucv.cl /~ifigueroa /doku .php /research /empirical -monads, 2017.
[8] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: Proceedings of the 22nd ACM Symposium on Principles of Programming 

Languages, POPL 95, ACM Press, San Francisco, California, USA, 1995, pp. 333–343.
[9] J.G. Morris, Experience report: using Hackage to inform language design, in: Proceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10, 

ISBN 978-1-4503-0252-4, 2010, pp. 61–66.
[10] N. Bezirgiannis, J. Jeuring, S. Leather, Usage of generic programming on Hackage: experience report, in: Proceedings of the 9th ACM SIGPLAN Workshop 

on Generic Programming, WGP ’13, ISBN 978-1-4503-2389-5, 2013, pp. 47–52.
[11] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, M.W. Godfrey, The MSR cookbook: mining a decade of research, in: Proceedings 

of the 10th Working Conference on Mining Software Repositories, MSR ’13, ISBN 978-1-4673-2936-1, 2013, pp. 343–352.
[12] P. Wadler, S. Blott, How to make ad-hoc polymorphism less ad hoc, in: Proceedings of the 16th ACM Symposium on Principles of Programming 

Languages, POPL 89, ACM Press, Austin, TX, USA, 1989, pp. 60–76.
[13] T. Schrijvers, B.C. Oliveira, Monads, zippers and views: virtualizing the monad stack, in: Proceedings of the 16th ACM SIGPLAN Conference on Functional 

Programming, ICFP 2011, ACM Press, Tokyo, Japan, 2011, pp. 32–44.
[14] I. Figueroa, N. Tabareau, É. Tanter, Effect capabilities for Haskell: taming effect interference in monadic programming, Sci. Comput. Program. 119 (2016) 

3–30.
[15] O. Callaú, R. Robbes, É. Tanter, D. Röthlisberger, How (and why) developers use the dynamic features of programming languages: the case of Smalltalk, 

Empir. Softw. Eng. 18 (6) (2013) 1156–1194.
[16] O. Callaú, R. Robbes, É. Tanter, D. Röthlisberger, A. Bergel, On the use of type predicates in object-oriented software: the case of Smalltalk, in: Proceed-

ings of the 10th ACM Dynamic Languages Symposium, DLS 2014, in: ACM SIGPLAN Notices, vol. 50, ACM Press, Portland, OR, USA, 2014, pp. 135–146, 
2.

[17] M. Nagappan, R. Robbes, Y. Kamei, É. Tanter, S. Mcintosh, A. Mockus, A.E. Hassan, An empirical study of GOTO in C code from GitHub, Repositories 
(2015) 404–414.

[18] E.W. Dijkstra, Go To statement considered harmful, Commun. ACM 11 (3) (1968) 147–148.
[19] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, B. Ray, Assert use in GitHub projects, in: Proceedings of the 37th International Conference on Software 

Engineering – Volume 1, ICSE ’15, ISBN 978-1-4799-1934-5, 2015, pp. 755–766.
[20] R. Robbes, D. Röthlisberger, É. Tanter, Extensions during software evolution: do objects meet their promise?, in: J. Noble (Ed.), Proceedings of the 26th 

European Conference on Object-Oriented Programming, ECOOP 2012, in: Lecture Notes in Computer Science, vol. 7313, Springer-Verlag, Beijing, China, 
2012, pp. 28–52.

http://www.haskell.org
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib0CBE698942636CFF7E760D7ECA1B3BD5s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibCCA03E939FCC7DC56789C8D055E042E5s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibCCA03E939FCC7DC56789C8D055E042E5s1
http://hackage.haskell.org
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib9C27FF6BBF4F03D5FC9D3D1945F12BA3s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib9C27FF6BBF4F03D5FC9D3D1945F12BA3s1
http://www.haskell.org/cabal
http://zeus.inf.ucv.cl/~ifigueroa/doku.php/research/empirical-monads
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib42660D86FAE5E41B0C844D0612633972s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib42660D86FAE5E41B0C844D0612633972s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib48B05A3341160A3C767AC147AF3DBEB8s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib48B05A3341160A3C767AC147AF3DBEB8s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibD03F4AF9EC2B42B8722AD3A2F0AB9874s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibD03F4AF9EC2B42B8722AD3A2F0AB9874s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibD78BC3DD2F0E8CC5A8864A0424018C56s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibD78BC3DD2F0E8CC5A8864A0424018C56s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib3E9B22A9BB2791D86E981EF5DAA2BFADs1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib3E9B22A9BB2791D86E981EF5DAA2BFADs1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib18B98A2E66344C54672C3D0E3687146Cs1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib18B98A2E66344C54672C3D0E3687146Cs1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibCFEB561CD46FE1A4555387C0E45A29A0s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibCFEB561CD46FE1A4555387C0E45A29A0s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib7C918371D5EDDDAFE69869A3A3779DA5s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib7C918371D5EDDDAFE69869A3A3779DA5s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibA5CF8A0E1FB56A07016D5D85AB24DA1Ds1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibA5CF8A0E1FB56A07016D5D85AB24DA1Ds1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibA5CF8A0E1FB56A07016D5D85AB24DA1Ds1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib715AF66BD9F2C0B0ADEB2B11020783A1s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib715AF66BD9F2C0B0ADEB2B11020783A1s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bibDE94E676C0358EEFEA4794F03D6BDA4Fs1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib043FBD4FDAFD53A24540C9F0A166002Ds1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib043FBD4FDAFD53A24540C9F0A166002Ds1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib2F0D3E5B0C4838F2F958E77657C57587s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib2F0D3E5B0C4838F2F958E77657C57587s1
http://refhub.elsevier.com/S0167-6423(20)30131-3/bib2F0D3E5B0C4838F2F958E77657C57587s1

	Which monads Haskell developers use: An exploratory study
	1 Introduction
	2 Background
	3 Methodology
	4 Empirical results and discussion
	4.1 Regarding RQ1
	4.1.1 As packages
	4.1.2 As Whole-packages

	4.2 Regarding RQ2
	4.2.1 Overview
	4.2.2 Distribution per notion of computation
	4.2.3 Most common monad combinations

	4.3 Regarding RQ3

	5 Understanding the usage of Control.Monad.Trans
	6 Threats to validity
	7 Related work
	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


