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ABSTRACT 
 

Effects of Ice Massage Prior to an Iontophoresis Treatment Using Dexamethasone 
 

Brady Michael Smith 
Department of Exercise Sciences, BYU 

Master of Science 
 

Context: Low current intensity iontophoresis treatments have shown an increase in skin 
perfusion over 700% from baseline potentially increasing drug clearance from the targeted area.  

 
Objective: To determine the effects of a 10-minute ice massage on subcutaneous 

dexamethasone sodium phosphate (Dex-P) concentration and skin perfusion during and after a 4 
mA iontophoresis treatment.  

 
Design: Controlled laboratory study.  
 
Setting: Research Laboratory.  
 
Patients or Other Participants: 26 individual participants (Males = 15, Females = 11, age 

= 25.6 ± 4.5 y, height = 173.9 ± 8.51 cm, mass = 76.11 ± 16.84 kg).  
 
Interventions: Participants were randomly assigned into two groups: 1) Pretreatment 10-

minute ice massage; and 2) no pretreatment ice massage. Treatment consisted of an 80 mAmin 
(4 mA∙20 minutes) Dex-P iontophoresis treatment. Microdialysis probes (3 mm deep in the 
forearm) were used to assess Dex-P, dexamethasone (Dex), and its metabolite (Dex-met) 
concentrations. Skin perfusion was measured using laser Doppler flowmetry probes.  

 
Main Outcome Measures: Microdialysis samples were collected at baseline, at 

conclusion of treatment, and every 20 minutes posttreatment for 60 minutes. Samples were 
analyzed to determine Dex-total concentration ([Dex-total] = Dex-P + Dex + Dex-met). Skin 
perfusion was calculated as a percent change from baseline. A repeated measures ANOVA was 
used for Dex-total and Skin Perfusion.  

 
Results: No significant difference was found in [Dex-total] between ice and no ice 

treatments, (P = 0.265). A significant increase in [Dex-total] occurred over the course of the 
iontophoresis and posttreatment time (P < 0.0004). Dex-P was recovered in 15 of 21 participants 
with a mean concentration of 0.604 ± 0.843 g/mL. Peak skin perfusion reached 27.74 ± 47.49% 
and 117.39 ± 103.45% from baseline for the ice and nonice groups, respectively.  

 
Conclusions: The 10-minute ice massage prior to iontophoresis does not significantly 

alter the delivery of [Dex-total] through the skin. A greater [Dex-P] was recovered than 
previously seen with lower intensities.  

 
Keywords: iontophoresis, transdermal drug delivery, skin perfusion, dexamethasone, 
microdialysis



iii 
 

 
 

TABLE OF CONTENTS 
 
Title Page ......................................................................................................................................... i 

Abstract  .......................................................................................................................................... ii 

Table of Contents ........................................................................................................................... iii 

List of Figures ................................................................................................................................ iv 

List of Tables ...................................................................................................................................v 

Introduction ......................................................................................................................................1 

Methods............................................................................................................................................2 

 Participants .................................................................................................................................2 

 Instrumentation and Dialysate Analysis  ...................................................................................3 

 Procedures ..................................................................................................................................4 

Data Analysis ...................................................................................................................................6 

 RP-HPLC Analysis ....................................................................................................................6 

 Statistical Analysis .....................................................................................................................6 

  Dexamethasone Tissue Concentration .................................................................................6 

  Skin Perfusion ......................................................................................................................7 

Results ..............................................................................................................................................7 

Discussion ........................................................................................................................................9 

Conclusion .....................................................................................................................................14 

References ......................................................................................................................................15 



iv 
 

 
 

LIST OF FIGURES 
 

1. Cryocup was filled (with tap water) and frozen at approximately 0°C (32°F).  
The cryocup included a cold-retardant handle and contoured base for easier 
application………………………………………………………………………….….…18 

 
2. Placement of laser Doppler flowmeter probes to measure skin perfusion during 

iontophoresis treatment…………………………………………………………….…….19 
 

3. RP-HPLC standard curves of dexamethasone sodium phosphate (DexP)……………….20 
 

4. Dex-total Concentrations (Dex-total = Dexamethasone sodium Phosphate + 
Dexamethasone + Dexamethasone-21-oic acid) of 4 mA current intensity  
over an 80 mAmin iontophoresis dose.…………………………………………………21 
 

5. Superficial skin perfusion response of 4 mA current intensity during an 80 
mA min iontophoresis dose………………………………………………………….….22 
 



v 
 

 
 

LIST OF TABLES 
 

1. Concentration Frequencies of Dex-P, Dex, and Dex-met for both treatment  
groups at 20-minute intervals……………………………………………………………23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

 
 

INTRODUCTION 

Iontophoresis is a noninvasive technique that enhances ionized drug penetration through 

the skin using a small electrical current. The current provides an ion-electric flow, creating a 

force that drives the ionized drug through the skin, increases the skin’s permeability, and 

promotes electro-osmosis.3,29 Currently, few studies have directly measured iontophoresis 

delivery in vivo in human studies. Further research is needed to determine the most efficient 

treatment techniques to maximize iontophoresis drug delivery. 

Dexamethasone sodium phosphate concentration delivered via iontophoresis has been 

examined through different measurement and distribution techniques. Direct tissue 

concentrations have been assessed using tissue biopsies13 and microdialysis.30 Skin blanching has 

been used to indirectly assess Dex-P delivery due to the drugs vasoconstriction properties.2 

Following a 40 mA min iontophoresis treatment at a 4 mA intensity for 20 minutes, Gurney et 

al14 recovered Dex-P in 43% of all biopsy samples, but Rigby et al30 recovered no Dex-P using a 

120 mA min treatment at intensities of 1 or 2 mA. Anderson et al,2 observed cutaneous 

vasoconstriction skin blanching on all participants when using a 0.1 and 4 mA current intensity.  

The electro-current produced by an iontophoresis treatment increases skin 

microcirculation.4,8,30,32 Cathodal iontophoresis causes up to a 700% (from baseline) increase of 

skin perfusion produced by current-induced vasodilation.4,30 It is hypothesized that during this 

large increase in microcirculation drug washout occurs (clearing the drug from the target tissue), 

decreasing the drug’s effectiveness.30 The possibility exists that introducing an intervention that 

decreases vasodilation, may lower drug washout from the target tissues.     

Cryotherapy produces many different physiological effects including the ability to 

decrease blood perfusion.1,10,16,17,19,21,22,24,33 Ice application and cold water immersion have 
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reduced both arterial blood flow and metabolism.16,17,22-24 Applying an ice wrap (0C to 1C) for 

20 minutes to the skin of the knee decreased soft tissue blood flow by an average of 25.8% and 

arterial blood flow by an average of 38%.17 Skin perfusion was decreased 76% at a depth of 2 

mm after a 7-minute cryo/cuff treatment.24  

The purpose of this study was to determine if cryotherapy, when used prior to an 

iontophoresis treatment, would influence tissue concentration of Dex-P, its biologically active 

form dexamethasone (Dex), and its metabolites (Dex-met). We hypothesized that a 10-minute ice 

massage prior to an iontophoretic treatment would lead to a greater concentration of Dex-total at 

the target tissue. 

METHODS 

We used a randomized controlled laboratory design for this study. The independent 

variables included two treatment groups (10-min pretreatment ice massage; controlled treatment 

without 10-min ice massage) and time intervals (20-min baseline, 20-min treatment, 60-min post 

treatment in 20-min intervals). The dependent variables measured in this study were skin 

perfusion and total dexamethasone concentration ([Dex-total]). 

Participants 

Twenty-six healthy individuals (Males = 15, Females = 11, age = 25.6 ± 4.5 y, height = 

173.9 ± 8.51 cm, mass = 76.11 ± 16.84 kg) were recruited and enrolled into this study. We 

excluded those who were pregnant from this study due to potential side effects of Dex-P on fetal 

development. Female subjects were required to take a pregnancy test in order to participate. 

Other exclusion criteria included: Subjects who had a known allergy to Dex, were diabetic, had 

decreased circulation in forearm and hand, had an infection or open wound on the forearm, any 

skin, liver, kidney, or pancreatic disorders or an injury to either arm within the past two months.2  
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The study was reviewed by the Brigham Young University Institutional Review Board 

before participants were recruited and enrolled in the study. All participants were provided 

written informed consent, which they signed, before taking part in the study. 

Instrumentation and Dialysate Analysis  

Dexamethasone sodium phosphate was delivered to the treatment site using the Trivarion 

iontophoresis delivery kit (North Coast Medical, Inc., Gilroy, CA). The cathodal electrode was 

prepared with 2 ml of 0.4% Dex-P and placed 15 cm (6 in)23,30 distal to the center of the 

dispersive electrode. An ActivaDose II dose controller (North Coast Medical, Inc., Gilroy, CA) 

was used to deliver the iontophoresis treatment. 

Microdialysis probes were manufactured in our laboratory using 13 Kilo-Dalton linear 

(3.0 cm) hollow fiber and were gas sterilized using ethylene oxide. The microdialysis probes 

were perfused with sterile saline using an infusion pump (model: Pump 11 VPF; Harvard 

Apparatus, Holliston, MA). The depth of each microdialysis probe inserted into the treatment site 

was measured using musculoskeletal ultrasound imaging (model: LogiQ 5e, General Electric 

Company, Fairfield, CT). On average, microdialysis probes were placed under the skin at a depth 

of 3.1 ± 0.94 mm. 

 We used reverse-phase, high performance liquid chromatography (RP-HPLC) to measure 

the concentrations of Dex-P, Dex and its metabolite (Dex-21-oic acid) using a previously 

established method.30 A diode array detector (model: 1260 Infinity, Agilent Technologies, Inc., 

Santa Clara, CA), using a wavelength of 239 nm, was used to measure the peaks of Dex-P at 4.2 

minutes, Dex at 12.4 minutes, and Dex-21-oic acid at 5.8 minutes. We quantified the lower limits 

of Dex-P and Dex being 100 ng/mL and 50 ng/mL, respectively. 
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 Skin blood flow was measured using laser Doppler flowmetry (LDF). Two laser Doppler 

probes (model: VP7a, Moore Instruments, Wilmington, DE) were interfaced with a PowerLab 

data acquisition system (ADInstruments Inc., Colorado Springs, CO) to measure relative changes 

in the skin blood flow. Our LDF parameters were a time const-0.5 s and 5.0 V = 1000PU.  

 Reusable cryocups were used to cool the treatment area prior to drug delivery. Each 

cryocup was previously filled (with tap water) and frozen at approximately −18°C (0°F). The 

cryocup included a cold-retardant handle and contoured base for easier application (Figure 1).   

Procedures 

Participants reported for a single treatment to the Therapeutic Modalities Lab at our 

university. Each individual was screened for the inclusion and exclusion criteria. Participants 

were randomly assigned into one of the two treatment groups: 1) 20-minute iontophoresis 

treatment with a 4 mA current intensity without a 10-minute ice massage or 2) 20-minute 

iontophoresis treatment with a 4 mA current intensity with a 10-minute ice massage prior to 

treatment. Group assignments were selected through a random draw. 

 Similar procedures were performed and described by Rigby et al.30 Two microdialysis 

probes were inserted below the surface of the skin at a target depth of 3 mm, due to the 

approximate superficial depth of commonly treated tendons that use Dex-P iontophoresis when 

diagnosed as a tendinopathy.5 Though probe placement into the tendon would have the potential 

to yield more clinically relevant results, extensive damage could be caused in the tendon. 

Therefore, the forearm was used in this study.  

Each subject was seated in a recumbent chair. The area of the posterior forearm with the 

largest visual girth was chosen as the treatment site. A 25.5 x 13.25 cm area was trimmed with 

hair scissors and wiped with an alcohol prep pad. With a felt marker, we marked the forearm 
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indicating where the cannula needles were to be inserted and exited from the skin (5 cm distance 

between insertion and exit sites). The treatment area was cleansed with an iodine swab. 

 Two sterile 9 cm 27-gauge pediatric spinal tap needles (reference #40581, BD Company, 

Franklin Lakes, NJ) were inserted into the subcutaneous tissue of the subject’s forearm. Using 

musculoskeletal ultrasound imaging, we verified the depth of the needles. With the needles in 

place, we inserted the microdialysis probes through the needle and then the needles were 

removed. 

 Pretreatment dialysate was collected by perfusing sterile saline solution through the probe 

at 1.3 L/min for 60 minutes. This pretreatment period allowed for the tissue to recover from the 

trauma of having the needles and probes inserted at the target depth. The last 20 minutes of the 

pretreatment period was used to measure baseline drug concentration.  

After the 60-minute recovery period, the participants in the cryotherapy treatment group 

were treated with a 10-minute ice massage using a cryocup. A 10-minute treatment was chosen 

based on findings of multiple studies.17,34 We applied the ice massage with back and forth stroke 

movements and medium pressure over the treatment area. We applied medium pressure by 

pressing the cryocup just enough for the skin to begin to be indented. After the ice massage 

treatment, the treatment area was patted dry with a towel and then cleansed with an alcohol prep 

pad prior to applying the iontophoresis electrodes and LDF probes.   

The cathode electrode was prepared with 2 mL of 0.4% Dex-P and placed directly over 

the microdialysis probes. The dispersive electrode was placed distally 15 cm on the forearm. The 

LDF probes were placed within the cathodal electrode. One LDF probe was placed within the 

center of the drug reservoir and the other on the periphery outside of the drug reservoir 

(approximately 2 cm apart). The electrode (with LDF probes) was placed over the microdialysis 
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probes in a way that allowed the microdialysis probes to run between the LDF probes (Figure 2). 

Immediately after placing the LDF probes on the skin, a 1-minute blood flow baseline 

measurement was recorded. 

With the leads attached to their respective electrodes, the dose controller was turned on to 

4 mA for 20 minutes (80 mA min). At the end of the 80 mA min treatment, the iontophoresis 

device was shut off and the electrodes were left on the skin for the remainder of the 

posttreatment collection period. With the perfusion rate at 1.3 L/min, dialysate was collected 

from the microdialysis probes in 20-minute intervals for the 20-minute treatment and 60 minutes 

following the treatment (collection took place at minute 20, 40, and 60 posttreatment). The 

samples were stored immediately after collection in a −20C freezer until analyzed using RP-

HPLC. We recorded skin perfusion continuously throughout the 20-minute iontophoresis 

treatment and 60-minute posttreatment. 

DATA ANALYSIS 

RP-HPLC Analysis 

 Standard curves for Dex-P and Dex were examined at the beginning of the data 

collection process. We did not have a standard for Dex-Met (Dex-21-oic acid), therefore, the 

mean curve between Dex-P and Dex was used for the analysis of Dex-met). 

Statistical Analysis 

Dexamethasone Tissue Concentration. Using the RP-HPLC standard curve and 

retrodialysis recovery values derived from Rigby et al,30 we calculated the in vivo Dex-total 

(Dex-total = Dex-P + Dex + Dex-met) concentrations for each subject at each time point. We 

used a repeated ANOVA to analyze differences in Dex-total between the two treatment 

conditions during the 20-minute iontophoresis treatment and 60-minute posttreatment.  
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Skin Perfusion. Skin perfusion data was averaged every 20 minutes. Changes in skin 

perfusion were expressed as a percent change in skin perfusion relative to baseline. We used a 

repeated measures ANOVA to analyze differences in normalized skin perfusion between the two 

treatment conditions during the iontophoresis treatment and posttreatment periods. 

Tukey-Kramer post hoc testing procedures were used for both analyses of variance. We 

used JMP Statistical Software (JMP Pro 10 ISAS Inc., Cary, NC), for all statistical analyses, and 

the alpha level was set at P  0.05. 

RESULTS 

The accumulation of Dex-total as a function of iontophoresis dose is shown in Figure 3 

for the different treatment groups. Data from subject 13 (ice group) and 14 (no ice group) were 

excluded, as the data was thought to have been tainted with external Dex-P entering the 

microdialysis probes near the portal sites. Data from subjects 21 to 23 (ice group) was not 

analyzed correctly in the HPLC lab. Thus, there was an unequal N for the treatment groups when 

analyzing Dex concentration data (ice = 9, nonice = 12).  

As seen in TABLE 1, we recovered Dex-P in 15 of 21 subjects during both treatment and 

posttreatment times with a mean concentration of 0.604 ± 0.843 g/mL. Dex was found in 6 of 

21 subjects during both treatment and posttreatment times with a mean concentration of 1.256 ± 

1.590 g/mL. Finally, 14 of 21 subjects were found to have measurable levels of Dex-met during 

both treatment and posttreatment times with a mean concentration of 2.673 ± 1.940 g/mL. The 

total mean concentration of Dex-P (2.559 g/mL), Dex (0.967 g/mL), and Dex-met (10.779 

g/mL) of all subjects collected, represent 17.89%, 6.77%, and 75.34% of [Dex-total] (14.306 

g/mL), respectively.  
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On average, there was no difference in tissue [Dex-total] between ice and no ice 

treatments (treatment main effect) (F1,19 = 1.32, P = 0.265). Across the treatment and 

posttreatment time, there was no difference in tissue [Dex-total] between ice and no ice 

(treatment x time interaction) (F4,76 = 0.51, P = 0.725). There was a significant increase in tissue 

[Dex-total] over the course of the iontophoresis and posttreatment time (time main effect) (F4,76 = 

5.7313, P = 0.0004). Tissue [Dex-total] at the conclusion of the 80 mAmin iontophoresis 

treatment for the ice and nonice groups was 1.02 ± 2.07 and 0.78 ± 0.83 g/mL, respectively. 

[Dex-total] for both treatments increased throughout the treatment and posttreatment times. 

Mean concentrations for the ice and nonice treatment groups were 2.25 ± 2.09 and 3.76 ± 4.88, 

respectively. Significantly greater concentrations of Dex-total occurred at 60 minutes 

posttreatment compared to baseline, the end of the 20-minute treatment, and the first 20-minute 

posttreatment intervals. Significantly greater tissue [Dex-total] occurred at 40 minutes 

posttreatment compared to baseline (P ≤ 0.05) (Figure 4). 

 On average, skin perfusion was different between the two treatment groups (treatment 

main effect) (F1,24 = 7.24, P = 0.0128). Skin perfusion had a greater increase in the nonice 

treatment group during and immediately after the iontophoresis treatment (treatment x time 

interaction) (F4,96 = 22.73, P = 0.0001) (Figure 5). Peak skin perfusion of both the ice (27.74 ± 

47.49% of baseline) and nonice (117.39 ± 103.45% of baseline) treatment groups occurred at the 

end of the 20-minute iontophoresis treatment. Skin perfusion returned to baseline values 20 

minutes after the iontophoresis treatment of the ice group, whereas, the nonice group returned to 

baseline values 60 minutes posttreatment. 
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DISCUSSION 

Iontophoresis enhances the permeability of the skin allowing ionized drugs to pass 

through it more freely. This enhanced permeation is caused by electromigration, electro-osmosis, 

and passive diffusion.18 Electromigration is a result of like ions repelling one another, creating an 

ion-electric flow that drives ionized drugs through the skin, increases the permeability of the 

skin, and promotes electro-osmosis.23,25 Once the stratum corneum, a lipid bilayer of skin, has 

reached a specific threshold (approximately 60 V) this layer of skin becomes less resistant and 

more permeable to smaller ionic molecules (eg, Na+, Cl−, Ca2+). Although the stratum corneum 

acts as a restrictive barrier to exogenous molecules, its many pores can act as conduction 

pathways when an electrical current is applied.21  

We hypothesized that cryotherapy would lower skin perfusion due to its vasoconstriction 

properties preventing drug clearance from the target tissue. However, we found no difference in 

[Dex-total] when comparing a pretreatment ice massage group with a nonice massage group. 

Although there was no difference in [Dex-total] between the two groups, there was an increase in 

skin perfusion throughout the treatment period for the nonice massage group over the ice 

massage group. Cathodal iontophoresis, using low intensities (≤ 2 mA), has been shown to 

enhance the transdermal delivery of Dex-P,27 while increasing skin perfusion by more than 

700%.4,30 Our study saw a significant increase in skin perfusion, but only reaching a peak value 

of 117.39% in the nonice group. Lower skin perfusion peak values may be explained by the 

shorter treatment time used for the same iontophoresis dose when a higher current is used. We 

hypothesized that increased skin perfusion has the ability to aid drug delivery as long as it does 

not reach a certain threshold, causing drug clearance from the intended tissue. This theory is 
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supported when comparing our study that collected higher [Dex-P] and [Dex] to a similar study 

that reported skin perfusion levels to be more than 700% from baseline.30  

An advantage of iontophoresis is that varying treatment intensity and dosage can control 

drug delivery kinetics.20,28 The ionic flow created by the chosen current and duration had the 

ability to produce more repulsion or less repulsion of a drug. We used an 80 mAmin treatment 

dose with an intensity of 4 mA leading to a 20-minute treatment. With this dosage and intensity, 

the majority of [Dex-total] recovered was Dex-met (75.34%), the metabolite of Dex known as 

Dex-21-oic acid.6 Dex-P concentrations were recovered throughout the treatment and/or 

posttreatment times in 15 out of 21 participants. Using the same microdialysis collection 

technique, Rigby et al30 also found the largest Dex-total component to be Dex-met, but 

discovered no accumulation of Dex-P under the skin when using a 120 mAmin (1 and 2 mA 

intensities) iontophoresis treatment. Other previous studies,2,13,14 using a dosage of 40 mAmin, 

with intensities between 0.05 and 4 mA, have shown varied results in the amount of [Dex] and/or 

[Dex-P] recovered. Gurney et al13 found 7 of 16 subjects with an average [Dex-P] of 2.9 ng/g. 

The higher intensity used in our study may be more effective in creating an electromigration 

pathway for the ionized Dex-P.  

Dex-P remains negatively charged until it enters the skin and is dephosphorylated into its 

active form, Dex.27,30 When Dex-P does not fully hydrolyze into its pure Dex form, it transforms 

into an acid ester form known as Dex-21-oic acid.6 Previous studies13,14,30 using various dosages 

(120 mAmin and 40 mAmin) have found low concentrations of Dex in the targeted tissue area. 

For example, Rigby et al30 recovered [Dex] in 6 of 32 participants with a mean concentration of 

109.9 ± 88.8 ng/mL. Similarly, we found [Dex] in 6 of 21 subjects with a mean concentration of 

967.0 ± 0.448 ng/mL, representing just 6.77% of Dex-total. Heiss et al15 established the median 



11 
 

 
 

effective dose (ED50) of Dex to be 75 ng/g, while lower concentrations of Dex can still manifest 

an anti-inflammatory effect. The anti-inflammatory properties of Dex are efficient at clinically 

relevant delivery concentrations to superficial tendons as the [Dex] exceeds the ED50 by the end 

of the 60-minute posttreatment.  

Although, the primary iontophoretic transportation of a drug occurs through the shunt 

pathway and paracellular routes18 (eg, sweat glands and hair follicles), deeper infiltration occurs 

due to passive diffusion and transportation via the microvascular system.2,7,11,30 This can be 

observed as the [Dex-total] continues to increase posttreatment in both the ice and nonice groups 

(at an average depth of 3.1 ± 0.94 mm). In a similar study30 measuring [Dex-total] at 1 and 4 

mm, [Dex-total] began to decrease shortly after the iontophoresis treatment ended. Two notable 

differences can be distinguished between these two studies. The first, a higher current, shorter 

duration treatment was used in our study compared to the low current, long duration treatment of 

Rigby et al.30 It has been suggested that local blood flow determines systemic and underlying 

tissue solute absorption but not epidermal penetration fluxes during iontophoretic delivery.7 As 

skin perfusion had begun returning to baseline shortly after the treatment, microcirculation 

seemed to be the likely cause for passive diffusion. Interestingly, low current, long duration 

treatments have been thought to not only drive more Dex into the tissue, but also deeper into the 

tissue when compared to high current, short duration treatments.2 Unfortunately, these results 

were drawn from an in vitro study using agarose gel and cannot be directly compared to human 

skin.2 In the second, the electrodes were left on the skin for the entire posttreatment period 

allowing for the drug to continue to passively diffuse through the skin. Although this was not 

tested in the current study, electro-osmosis initiated by the electrical current along with leaving 

the electrode on the skin could be a possible reason for seeing an increase in [Dex-total] 
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following the iontophoresis treatment. Future studies testing the same parameters without the 

electrode being left on will be required to test this theory.  

Previous studies2,13 have produced conflicting theories concerning vasoconstriction and 

its effect on transdermal drug delivery. Gurney et al13 stated that vasoconstriction hinders 

diffusion of Dex-P, requiring more time for the drug to be found at deeper depths, while 

Anderson et al2 stated that vasoconstriction promotes deeper drug penetration into the skin. 

While the vasoconstriction characteristics of ice may help prevent drug clearance, it is possible 

that its decrease in cell permeability may affect the concentration of the drug by altering one of 

the transportation pathways.  

Dex-P delivered via iontophoresis is regularly used as a treatment for various 

musculoskeletal inflammatory conditions including tendinopathies.2,12,26,31 The tendons most 

frequently treated with Dex-P iontophoresis and their average depths are: Common extensors 

(1.2 mm), Achilles tendon (1.6 mm), and Patellar tendon (3.1 mm).5 Current research has yet to 

determine an ideal concentration of Dex to be delivered to the target tissue. It has yet to be 

determined whether a greater concentration of Dex would yield a more efficient clinical result, or 

if the ED50 (75 ng/g) is sufficient for the preferred anti-inflammatory response.31 Dex has been 

shown to superficially form a depot2,27,30 in the stratum corneum (average depth of 22.6 m in 

the forearm),9 and has been suggested to represent the highest concentration of the drug 

delivered.2 Although we found a clinically relevant concentration of Dex when using an 80 

mAmin dosage, surpassing the minimal standard ED50, it was only recovered in 28% of the 

subjects at a depth of 3mm. It is possible that a clinically relevant [Dex] may be found in a 

higher percentage of subjects at a more superficial depth due to the formation of a drug depot at 

more shallow depths. This suggests that iontophoresis delivering Dex-P could allow for more 
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consistent and effective results when used on tendons and other musculoskeletal inflammatory 

conditions that are more superficial to the skin’s surface.  Future research is needed in order to 

measure [Dex-P] at different depths using similar treatment parameters to identify true drug 

depot formation and if it would yield desired outcomes.     

There were several limitations in this study. We only used healthy males and nonpregnant 

females between the ages of 18 and 40. We assume that similar Dex-total results would occur in 

other populations not represented in this study (eg, injured, younger, older). Different 

populations may have different skin hydration and status, which could alter iontophoresis 

delivery. Due to the depth choice of the microdialysis probes, we only measured [Dex-total] at 

an approximate depth of 3 mm. We did not determine [Dex-total] kinetics at deep tissue depths, 

which may be desired for some clinical pathologies. Our methods did not include a sham 

iontophoresis treatment. Due to this limitation, it is unknown if small amounts of Dex-P may 

have crossed into the skin without the current aiding delivery. We also used the forearm in 

assuming that the iontophoresis delivery and pharmacodynamics of Dex-P through tissue would 

be similar if done at common treatment sites over a tendon. It is possible that the physiological 

effects of the ice massage may have altered the diffusion gradient occurring through the 

semipermeable membrane of the microdialysis probes effecting the Dex-total concentration 

results. Due to potential variations in skin perfusion recordings from removing and reapplying 

the LDF probes while applying the ice treatment, we elected to measure a 1-minute skin 

perfusion baseline prior to beginning the iontophoresis treatment. Unfortunately, this does not 

represent a true baseline of skin perfusion pre-ice massage but allows us to understand the effects 

of the iontophoresis treatment on superficial skin perfusion.  
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CONCLUSION 

Based upon the results of our study, we suggest that an ice massage not be performed 

prior to an iontophoresis treatment. The amount of [Dex-total] recovered, reaching the ED50, 

indicates that a 4 mA current intensity for 20 minutes is a clinically relevant dose for an effective 

delivery of Dex-P to a tissue depth of 3 mm. We recovered all 3 of the components for Dex-total 

(Dex, Dex-met, and Dex-P), with a greater recovery of Dex-P than was previously seen with 

lower intensities. Future research should continue to investigate high current vs low current 

intensities for better clinical outcomes. Using a higher current intensity resulted in lower peak 

skin perfusion than a lower current intensity suggesting a possible threshold that must be met 

before drug clearance occurs. 
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Figure 1. A cryocup was filled (with tap water) and frozen at approximately −18°C (0°F).  
The cryocup included a cold-retardant handle and contoured base for easier application. 
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Figure 2. Placement of laser Doppler flowmeter probes to measure skin perfusion during iontophoresis 
treatment. Laser Doppler flowmeter probes were placed inside the drug chamber (0 cm) and on the 
peripheral of the drug chamber (2 cm). 
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Figure 3. RP-HPLC standard curves of dexamethasone sodium phosphate (Dex-P) each point represents 
the mean area under the absorbance (239 nm) time curve (AUC). 
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Figure 4. Dex-total concentrations (Dex-total = Dexamethasone sodium phosphate + Dexamethasone + 
Dexamethasone-21-oic acid) between an ice and nonice group using a 4 mA intensity over an 80 mAmin 
iontophoresis dose (values are mean ± 1 SEM). 
*Indicates significant difference of Dex-total from baseline (P < 0.05). 
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Figure 5. Superficial skin perfusion response of 4 mA current intensity during an 80 mAmin 
iontophoresis dose. Values are mean ± 1 SEM for 13 participants in each group. 
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Table 1. Concentration frequencies for Dex-P, Dex, and Dex-met for ice and nonice groups during 20-min intervals. 
 

 Concentration Frequency, Frequencies (Mean  1 SD) 
 Dex-P Dex Dex-met 

Time Ice Nonice Ice Nonice Ice Nonice 

Treatment 4  
(0.235 ± 0.280) 

7 
(0.496 ± 0.496) 

— — 4 
(2.070 ± 2.843) 

4 
(1.473 ± 0.893) 

Posttreatment 0–20 min 4  
(0.105 ± 0.013) 

8 
(0.742 ± 1.423) 

— 2 
(2.266 ± 2.669) 

5 
(1.089 ± 0.831) 

5 
(1.407 ± 1.533) 

Posttreatment 20–40 min 6  
(0.547 ± 0.817) 

7 
(0.585 ± 0.555) 

— 1 
(0.428) 

6 
(2.139 ± 1.541) 

6 
(4.424 ± 2.987) 

Posttreatment 40–60 min 4 
(1.282 ± 2.349) 

5 
(0.837 ± 0.811) 

2 
(1.00 ± 0.394) 

3 
(1.327 ± 1.707) 

5 
(2.622 ± 1.231) 

6 
(6.163 ± 3.660) 

 
 
 
 
 
 
 

                  
    

 
 
 
 

 


	Brigham Young University
	BYU ScholarsArchive
	2018-04-01

	Effects of Ice Massage Prior to an Iontophoresis Treatment Using Dexamethasone
	Brady Michael Smith
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Table of Contents
	List of Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	List of Tables
	Table 1

	Introduction
	Methods
	Participants
	Instrumentation and Dialysate Analysis
	Procedures

	Data Analysis
	RP-HPLC Analysis
	Statistical Analysis
	Dexamethasone Tissue Concentration
	Skin Perfusion


	Results
	Discussion
	Conclusion
	References

