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ABSTRACT 
 

Plasma Lactate Accumulation During Running with Body Weight Unloading by LBPP 
 

Nicole Nevitt Rasmussen 
Department of Exercise Sciences, BYU 

Master of Science 
 

 At any given running speed, weight support with a lower body positive pressure (LBPP) 
device (i.e. Alter-G treadmill) reduces V̇O2.  However, it is unknown how application of LBPP 
during running impacts lactate metabolism, specifically lactate threshold.  Purpose: To determine 
if body weight unloading with the Alter-G treadmill alters lactate threshold.  Methods.  Maximal 
aerobic capacity (V̇O2max) and lactate threshold (LT) was determined in 8 male subjects on an 
Alter-G treadmill at 100% and 80% body weight loading at 0% grade in a randomized crossover 
design.  V̇O2max tests started at 7 mile h-1 and increase speed by 1 mile h-1 every 2 min till 
voluntary exhaustion and were separated by a minimum of 7 days.  LT tests started at 5 mile h-1 
and increased speed to 6, 7, 7.5, 8.0, 8.5, 9.0 (additional stages increase speed by 0.5 mile h-1) 
every 3 min until the subject reached ≈85% of V̇O2max.  LT tests were separated by a minimum 
3 days.  V̇O2, heart rate (HR), mean arterial blood pressure (MAP) and changes in Hct, [Hb], and 
total protein ([TP]) were determined on separate days in a randomized crossover design.  Plasma 
lactate concentrations were determined from venous blood samples (4 ml) obtained at rest and 
during the last minute of each exercise stage.  Lactate threshold was determined from a log-log 
plot of lactate concentration (mM) and relative V̇O2 (ml O2 min-1 kg-1 BM).  Results.  V̇O2max 
determined during running at 100% and 80% loading were similar (52.3 ± 0.9 and 52.7 ± 0.7 ml 
O2 min-1 kg-1 BM, respectively).  The energy cost of running at 9 mile h-1 (all subjects completed 
stages between 5 and 9 mile h-1) was reduced by 12% at 80% body weight (37.2 ± 2.9 ml O2 min-

1 kg-1 BM) compared to running at 100% body weight (42.3 ± 1.7 ml O2 min-1 kg-1 BM, p<0.05).  
However, plasma lactate at 9 mile h-1 was similar during 80% and 100% body weight running 
(3.4 ± 0.4 and 3.1 ± 0.7 mM, respectively).  Plasma lactate at a given V̇O2 was higher (p < 0.05) 
while running at 80% body weight compared to 100% body weight running.  Calculated LT at 
100% BW loading (36.3 ± 1.3 ml O2 min-1 kg-1 BM) was higher than 80% BW loading (32.2 ± 
1.8 ml O2 min-1 kg-1 BM, p<0.05).  During running at 80% BW HR was reduced compared to 
100% BW running (p<0.05) however the MAP response was similar.  During exercise the 
reduction in PV, at any given V̇O2 was larger at 80% BW compared to 100% BW running 
(p<0.001).  Conclusion.  During running, BW unloading with LBPP decreased the energy cost of 
exercise but not lactate levels.  Body weight unloading caused a lowering of the LT.  The 
reduction in whole body energy cost was not associated with a reduction in the lactate production 
since plasma lactate accumulation at a given speed was similar with and without LBPP.  

 
 
 
 
Keywords: alter gravity treadmill, lower body positive pressure, metabolism, plasma lactate, 
lactate threshold, V̇O2max, heart rate, plasma volume  
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Introduction   

Exercising on a lower body positive pressure (LBPP) treadmill is a relatively new 

exercise mode for rehabilitation of injured runners.  This device allows unloading of the lower 

extremities during exercise in a pressurized treadmill chamber.  This treadmill is capable of 

unweighing across a variety of body types, and is able to reduce ground reaction force for 

walking and running in proportion to the amount of unweighing (20).  The presumed properties 

associated with LBPP treadmills, such as decreased ground reaction forces while maintaining 

metabolic demand, make it an appealing exercise medium for rehabilitation of individuals with 

lower extremity injuries associated with running (11, 20).   

Methods other than LBPP have been used previously to support body weight (BW) 

during running, including harness suspension systems and water immersion.  Harness suspension 

systems are beneficial because a purely vertical force can be applied to the person, and the 

independent effects of supporting BW can be addressed (19, 21).  However, harness suspension 

systems may not be applicable for extended rehabilitation and training use because they can 

cause discomfort and may impede circulation.  Water immersion is also commonly used as a 

rehabilitation tool (11).  However, the viscous drag forces associated with water exercise act in 

opposition to movement and cause significant changes in movement velocity, gait timing, joint 

kinematics, joint kinetics, and muscle activity compared with over ground movement.  (9, 30)  

 LBPP devices do not apply meaningful drag forces to the legs and may be advantageous 

because they allow kinematic gait patterns similar to normal weight over-ground running, a 

normative range of running velocities, and a decrease in the forces transmitted by the legs (11).  

Surface EMG activity while running on a LBPP treadmill shows that muscle firing patterns and 

gait mechanics are maintained for all levels of weight support and speeds (25).  For any given 
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running speed, weight support with the LBPP device reduces V̇O2 (20).  Running at faster 

velocities with weight support requires the same metabolic power as running at slower velocities 

with normal weight.  Additionally, LBPP devices are comfortable and can be used over extended 

periods.  Therefore, LBPP devices could be very effective for maintaining cardiovascular fitness 

during rehabilitation involving running.  However, it is unknown if positive pressure alters 

muscle blood flow or muscle metabolism, specifically related to lactate accumulation or lactate 

threshold.  Specifically, the impact of LBPP treadmill running on the lactate threshold is 

unknown.  As such, we tested the hypothesis that lactate threshold would occur at a higher 

treadmill speed during body weight unloading treadmill running compared to full body weight 

treadmill running but that the lactate threshold expressed as a percentage of V̇O2max would be 

similar determined during treadmill running with body weight unloading and full body weight 

running. 

Methods 

Eight active college aged (18-33 years old) active males participated in this study.  

Subjects provided written informed consent for the study that was approved by the Brigham 

Young University Institutional Review Board.  Maximal aerobic capacity (V̇O2max) and lactate 

threshold was determined for each subject while running at 100% body weight and 80% body 

weight on an Alter-G Pro Version 1.20 (Alter-G Inc., Fremont, CA) treadmill in a randomized 

cross-over design. 

Each subjects V̇O2max was determined at 100% body weight and 80% body weight using 

graded exercise tests on the Alter-G treadmill with oxygen consumption monitored every 15 

seconds using a Parvo Medics True One (Parvo Medics, Inc., Sandy, UT) metabolic cart.  The 
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graded exercise test consisted of a 5 min warm-up at 0% grade during which time the subject ran 

at a self-selected speed that approximated a typical running velocity.  The speed was then set to 7 

mile h-1 and speed was increased by increments of 1 mile h-1 every 2 minutes until the point of 

volitional fatigue.  The two tests were separated by a minimum of seven days. 

Lactate thresholds were also determined on the Alter-G treadmill at 100% body weight 

and 80% body weight.  For each lactate threshold test, an 18 gauge needle was placed in a large 

vein of the subjects forearm.  The subject was fitted with a 3 lead EKG, blood pressure cuff, and 

a headpiece holding a one way breathing valve to allow measurement of heart rate, blood 

pressure, and oxygen uptake, respectively.  The subject stood for 30 min before a resting blood 

sample (5 ml) was collected.  The lactate threshold protocol was performed entirely at 0% grade 

on the treadmill.  An seconds resting blood sample was collected 1 minute following application 

of LBPP to produce an 80% body weight condition.  The first stage of the test protocol began at 

a treadmill speed of 5 mile h-1.  This speed was maintained for 3 min and a blood was drawn 

between min 2 and 3 of this (and every) stage.  After each blood sample a new stage was 

initiated by an increase in speed of 0.5 mile h-1.  The test was terminated once the subject’s 

oxygen consumption met or exceeded 90% of their measured V̇O2max.  The two tests were 

separated by a minimum of 48 hours. 

Blood samples were immediately placed in pre-cooled EDTA-vacutainers, mixed by 

gentle inversion, and stored on ice until the end of the LT trial.  After the LT test the blood 

samples were mixed and a small amount of whole blood was used to determine hematocrit and 

hemoglobin concentration in triplicate.  The remainder of the blood was centrifuged at 1500 x g 

for 15 min at 4°C.  The plasma was immediately separated from the red cells and a small amount 

of plasma (40 µl) was used to determine plasma protein concentration using a handheld 
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refractometer in duplicate.  If the plasma was not analyzed immediately for lactate it was stored 

frozen at -20°C until analysis.  Plasma lactate was determined in duplicate using an YSI 2300 

lactate analyzer. 

Hematocrit and hemoglobin measurements were used to calculate fluid shifts out of the 

vascular space (the change in plasma volume) using the Dill-Costill equation (13). To account 

for the fluid shift out of the vascular system, plasma lactate concentration was normalized for 

changes in plasma water  and expressed as mM kg H2O-1 plasma water.  Plasma water was 

determined from a regression equation relating total plasma proteins to total solids (33). 

Lactate threshold was determined as the abrupt transition in the rate of increase of blood 

lactate with increasing V̇O2.  The transition point in plasma lactate accumulation was determined 

using a log-log transform plot (2). Error effects were minimized by using least squares curve-

fitting procedures. 

The experimental design to assess changes in lactate threshold was a simple two-way 

balanced ANOVA.  The independent variable was full weight bearing (100% BW) or BW 

unloading (80% BW) and the dependent variable was oxygen uptake (absolute or relative to 

maximal aerobic capacity) at which time the lactate threshold occurred.  A simple balanced 

ANOVA for repeated measures was also used to examine differences in the time course of 

responses of the following variables: oxygen uptake, cardiovascular function (heart rate, 

systolic, diastolic, and mean arterial blood pressure), and lactate concentration (mM and mM kg 

H2O-1 plasma water).  We collected a complete set of data for these variables at rest, 5, 6, 7, 7.5, 

8, 8.5, and 9 mile h-1.  All eight subjects were able to complete the 100% and 80% body weight 

LT tests.  The statistical analysis was performed using SAS general linear models with the level 

of significance set at of p < 0.05.  
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Results 

During V̇O2max testing subjects were able to perform longer and reached faster speeds 

when running at 80% body weight compared to 100% BW.  However, V̇O2max was similar 

regardless of body weight loading (Table 1).   

During the lactate threshold testing, the energy cost of running at any given speed 

between 5 and 9 mile h-1 at 80% body weight was significantly lower (p<0.05) than full body 

weight running (Figure 1).  The cardiovascular response to 100 and 80% BW treadmill exercise 

are listed in Table 2.  Heart rate at rest and during running was significantly higher at any given 

speed at full body weight than during 80% BW running (Table 2).  At any given oxygen uptake, 

HR while running at 80% BW was elevated compared to 100% BW running (p<0.05, Figure 2).  

In addition, the slope of the linear relationship between HR and oxygen uptake was steeper for 

80% BW running compared to 100% BW running (Figure 2).  Body weight unloading did not 

alter the blood pressure response to treadmill running (Table 2).  

Table 3 shows the changes in hematocrit, hemoglobin, plasma protein, and plasma 

volume during 100 and 80% BW treadmill running.  The reduction in plasma volume at any 

given speed was similar for 100 and 80% BW loading.  However, during 80% BW treadmill 

running the reduction in plasma volume at any given oxygen uptake was greater than 100% BW 

running (p<0.05, Figure 3).  

Table 1 lists individual lactate thresholds for all eight subjects.  The lactate threshold 

determined while running at 80% body weight (61.5 ± 1.5% V̇O2max) was lower than that 

determined while running at full body weight.  (69.7 ± 1.5 % V̇O2max).  Figure 4 illustrates the 

leftward shift in lactate threshold while running at 80% body weight in a plot of the mean plasma 

lactate concentration as a function of oxygen uptake.  
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In an effort to account for fluid shifts during treadmill running at 100 and 80% body 

weight, plasma lactate concentrations were also expressed in mM per kg water.  This 

normalization, however, had no impact on the leftward shift in lactate threshold during 80% BW 

running.  

Discussion 

 In this study we measured cardiovascular and metabolic responses to treadmill running 

with and without mild LBPP.  Our data support recent observations that the energy cost of 

exercise at any given speed is significantly reduced compared to 100% BW running.  In addition, 

we demonstrated that it is possible to reach maximal aerobic capacity while running at 80% BW 

on the LBPP treadmill and that this maximal value is not different than that obtained during 

100% BW running.  In addition, there are several significant new findings from this study.  First, 

plasma lactate concentrations were similar while running at 80% BW compared to 100% BW at 

all running speeds examined, despite of the reduction in energy requirement.  As such, we 

observed a significant leftward shift, or decrease in the lactate threshold during 80% BW 

running.  Another novel observation was that the fluid shift out of the vascular space during 

treadmill running was larger during 80% BW running than 100% BW running.  

Our data supports previous studies that also showed that for any given running speed, 

weight support with the LBPP device reduced the metabolic demand by the individual (20).  

Running at faster velocities with weight support requires the same metabolic power as running at 

slower velocities with normal weight.  Liebenberg et al (25) investigated how lower extremity 

muscles are influenced by body weight support through LBPP.  They showed that reducing body 

weight through LBPP leads to a reduction in the amplitude of all muscle EMG activity, even 

though the timing of the muscle firing patterns and gait mechanics are maintained for all levels 
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of weight support and speeds.  This reduction in muscle activation probably explains the 

decrease in metabolic cost of a given exercise intensity.   

The heart rate response to 80% body weight running at all speeds was significantly lower 

than 100% body weight running.  This is to be expected given the reduced effort required to 

move in the LBPP environment.  However this observation may also be linked to a positive 

effect of lower body positive pressure on venous return with a consequent increase in stroke 

volume.  Both Cutuk et al (11) and Hoffman and Donaghe (22) observed a reduction in heart rate 

with increasing amounts of pressure on a LBPP treadmill. However both of their studies were 

done using much higher levels of pressure (25 to 50 mmHg) than we observed in our study.  

Pressure changes to unload subjects in our study did not exceed 15mmHg.  In addition, the larger 

reduction in PV during exercise at 80% BW running should have caused a small reduction in 

stroke volume and an increase in HR.  Overall, the small amount of LBPP required to decreased 

heart rate was more likely a reflection of the decreased metabolic load than any mechanism 

involved in altering stoke volume and venous return.  

Plasma lactate levels were similar at all speeds regardless of whether or not body weight 

was supported.  This similar plasma lactate level at any given speed occurred despite the 

reduction in energy cost and heart rate.  One interpretation of these data is that running with 

LBPP either promotes greater lactate production or limits lactate clearance.  Our data do not 

directly assess how LBPP might increase anaerobic stress.  It is well established that the 

application of LBPP during cycling in the supine and semi-recumbent positions reduces blood 

flow to working muscles (32, 37, 39).  This change in blood flow to the lower extremities 

produced by the application of LBPP reduces the O2 saturation in the femoral venous blood and 

increases accumulation of metabolic by-products such as lactate (37).  It has also been observed 
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that underwater running elicits higher lactate levels than on ground running (17), presumably due 

to the impact of hydrostatic pressure. If tissue pressure during LBPP  running is enough to 

decrease muscle blood, we suspect that LBPP running may decrease muscle perfusion and lead 

to a state of increased anaerobic stress.  

Lactate threshold while running at 80% body weight was lower (occurred at a lower 

energy cost) than running at 100% body weight.  We are not aware of any data describing similar 

findings in LBPP treadmill running.  Williamson et al (40) designed a study to determine if 

LBPP could alter the ventilatory threshold during cycling.  They found that the ventilatory 

threshold was progressively decreased with increased levels of LBPP (0, 15, 30, 45mmHg).  

However, measured blood lactate was only slightly elevated above control, while pH and plasma 

[K+] were unchanged.  Because is it thought that LBPP can enhance “trapping” of metabolites in 

working muscle (37), the increase in metabolite buildup in contracting muscles could stimulate 

increased ventilation as a result of impeded blood flow.  If application of LBPP reduces blood 

flow in the leg muscles during treadmill running we might expect an increase in lactate release 

from active skeletal muscle.  

An intriguing observation was the larger reduction in PV at any given energy cost during 

80% BW running.  At the onset of exercise, blood plasma leaves the vascular system and enters 

the interstitial space.  This reduction in plasma volume results in increased hemoconcentration in 

the blood and potentially a decrease in stroke volume.  The cardiovascular system responds with 

concomitant increase in heart rate in order to maintain cardiac output (35).  The larger reduction 

in PV at 80% body weight running should have contributed to the higher HR at 80% body 

weight running via a reduction in stroke volume.  However, we noted a reduced HR response and 

a reduced slope of the V̇O2-HR relationship.  
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Another finding of our study that has application for rehabilitation in athletic populations 

was that maximal aerobic capacity at 80% body weight was similar to running at 100% body 

weight.  This supports reports by Gojanovic et al (18) that maximal aerobic capacity was similar 

across all body weight loading conditions (100 to 80% BW) Subjects in our study were able to 

obtain faster speeds when running at 80% during the graded exercise test than when running at 

100% body weight. Thus, the LBPP treadmill has the potential to be used for high speed training 

in athletes as proposed by Gojanovic et al (18). 

In summary, the LBPP treadmill promises to be a useful tool in rehabilitation for injured 

runners or for improving performance through training. The results of our study show that the 

energy cost and heart rate response to running during LBPP is reduced compared to full body 

weight running but with a concomitant increase in plasma lactate.  This could potentially be seen 

as a training advantage if high intensity lactate tolerance work could be accomplished at lower 

metabolic costs.  However there may be some disadvantages to training using this mode.  The 

duration of training runs and possibly overall training stimulus during LBPP treadmill running 

may be limited by an early accumulation of blood lactate.  Specifically, sustained high intensity 

training at or above lactate threshold may be limited.  
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Table 1.  Maximal aerobic capacity and lactate thresholds 
  100% BW  80% BW 

SUBJECT 

V̇O2max 
ml/min/kg 

BM 
Speed  

mile h-1 
LT                   

% V̇O2max 

 V̇O2max 
ml/min/kg 

BM 
Speed  

mile h-1 
LT                   

% V̇O2max 
1 61.5 10 69.5  54.1 12 68.5 
2 50.3 11 68.8  50.5 11 65.5 
3 49.5 13 68.3  50.5 14 57.4 
4 52.1 12 72.6  54.0 13 64.0 
5 53.7 12 76.8  52.7 13 60.7 
6 54.7 14 68.3  52.4 15 62.5 
7 54.7 14 61.7  55.3 14 56.2 
8 56.7 11 71.6  55.9 12 57.5 

               
MEAN ± SEM 54.2 ± 1.3 12.1 ± 0.5 69.7 ± 1.5  53.2 ± 0.7 13.0 ± 0.5 61.5 ± 1.5* 
 
Values represent mean ± 1 SEM for 8 subjects.  BM, body mass; mile h-1, miles per hour; LT, lactate 
threshold.   
* p <0.05 different from 100% Body Weight 
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Table 2.  Cardiovascular parameters during lactate threshold assessment 
 

 100% Body Weight  80% Body Weight 
Speed 

(mile h-1) HR, bpm 
SBP, 

mmHg 
DBP, 

mmHg 
MAP, 
mmHg 

LBPP, 
mmHg 

 
HR, bpm 

SBP, 
mmHg 

DBP, 
mmHg 

MAP, 
mmHg 

LBPP, 
mmHg 

0 66 ± 4 127 ± 3 71 ± 4 89 ± 3 0  66 ± 4 130 ± 5 72 ± 4 88 ± 4 0 
0            66 ± 4 130 ± 5 72 ± 4 91 ± 4 13.4 ± 0.3 

5.0 114 ± 4 146 ± 8 57 ± 4 87 ± 4 5.9 ± 0.2  108 ± 4* 141 ± 8.4 64 ± 2 90 ± 4 13.2 ± 0.5 
6.0 129 ± 3 160 ± 5 62 ± 7 95 ± 6 6.1 ± 0.2  119 ± 5* 140 ± 5 59 ± 5 86 ± 5 13.7 ± 0.5 
7.0 141 ± 5 160 ± 4 65 ± 7 97 ± 5 6.3 ± 0.2  130 ± 6* 141 ± 7 61 ± 4 88 ± 2 14.1 ± 0.3 
7.5 148 ± 6 152 ± 6 62 ± 4 92 ± 4 6.8 ± 0.2  138 ± 6* 155 ± 6 57 ± 5 90 ± 4 13.8 ± 0.4 
8.0 156 ± 6 151 ± 8 60 ± 4 90 ± 5 6.0 ± 0.2  141 ± 7* 153 ± 8 58 ± 4 90 ± 3 13.8 ± 0.3 
8.5 162 ± 5 144 ± 5 61 ± 5 89 ± 4 6.2 ± 0.2  149 ± 7* 148 ± 8 55 ± 3 86 ± 3 13.5 ± 0.5 
9.0 168 ± 6 163 ± 4 63 ± 5 96 ± 4 6.3 ± 0.2  156 ± 7* 151 ± 7 65 ± 7 94 ± 6 13.9 ± 0.5 

 
Values represent mean ± 1 SEM for 8 subjects.  HR, heart rate; bpm, beats per min; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MAP, Mean arterial blood pressure; LBPP, lower body positive pressure.  *  p <0.05 different from 100% Body Weight 
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Table 3.  Blood parameters during lactate threshold assessment 
 
  100% Body Weight   80% Body Weight 

Speed,  
mile h-1 Hct,% [Hb, g •dl-1 [PP], g•dl-1 ∆ PV, % 

 
Hct,% [Hb, g •dl-1 [PP], g•dl-1 ∆ PV, % 

0 45.0 ± 0.7 16.8 ± 0.6 6.6 ± 0.2 0  42.5 ± 1.7 15.7 ± 0.5 6.0 ± 0.2 0 
0          44.3 ± 1.7 16.5 ± 0.7 6.5 ± 0.2  -7.5 ± 1.9 
5 47.2 ± 0.7 17.6 ± 0.4 6.6 ± 0.1  -8.4 ± 1.3  45.2 ± 1.6 16.7 ± 0.7 6.6 ± 0.1  -8.8 ± 1.7 
6 46.4 ± 1.0 17.2 ± 0.5 6.7 ± 0.2  -5.0 ± 2.3  45.2 ± 1.5 16.6 ± 0.6 6.7 ± 0.2  -7.6 ± 2.7 
7 46.3 ± 0.7 17.8 ± 0.5 6.8 ± 0.2  -8.1 ± 1.9  45.7 ± 1.5 17.4 ± 0.6 6.8 ± 0.2  -13.4 ± 1.1 

7.5 46.8 ± 1.0 18.0 ± 0.5 6.8 ± 0.2  -9.9 ± 2.2  46.2 ± 1.3 17.6 ± 0.8 6.8 ± 0.2  -13.1 ± 1.7 
8 47.2 ± 1.0 18.3 ± 0.5 6.9 ± 0.2 12.1 ± 2.6  45.7 ± 1.3 18.1 ± 0.7 6.9 ± 0.2  -15.0 ± 1.8 

8.5 46.9 ± 1.0 18.5 ± 0.5 6.9 ± 0.2  -12.4 ± 1.9  45.9 ± 1.4 18.2 ± 0.7 6.9 ± 0.2  -16.4 ± 1.6 
9 47.1 ± 0.9 18.3 ± 0.5 7.2 ± 0.2  -11.8 ± 2.0  46.4 ± 1.4 18.3 ± 0.9 7.2 ± 0.2  -15.7 ± 2.1 

 
Values represent mean ± 1 SEM for 8 subjects.  mile h-1, miles per hour; Hct, hematocrit; Hb, hemoglobin; TP, total plasma protein; PV, plasma 
volume.  *  p <0.05 different from 100% Body Weight
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Figure Legends 

 

Figure 1: Energy cost of running on a treadmill at 100% body weight and 80% body weight as a 

function of speed (5.0 to 9.5 mile h-1).  Values represent mean ±SEM. N = 8.  * p<0.05 100% 

body weight different from 80% body weight. 

 

Figure 2: Relationship between Heart Rate and V̇O2 (ml O2 min-1 kg-1 BM) during treadmill 

running at 100% body weight and 80% body weight.  Values represent mean ±SEM. N = 8. 

 

Figure 3: Mean change in plasma volume as a function of average energy cost of running on a 

treadmill at 100% body weight and 80% body weight.  Values represent mean ±SEM. N = 8. 

 

Figure 4: Mean plasma lactate concentration as a function of average energy cost of running on a 

treadmill at 100% body weight and 80% body weight.  Values represent mean ±SEM. N = 8. 
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Figure 1.  Energy cost of running 
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Figure 2.  Relationship between heart rate and V̇O2 
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Figure 3.  Mean change in plasma volume 
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Figure 4.  Mean plasma lactate concentration 
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Chapter 1 

Introduction 

The running motion is utilized in most sports and it is well established that injuries 

frequently occur due to the constant impact on the lower extremities.  For example, it has been 

estimated that up to 70% of recreational and competitive runners experience an overuse injury in 

any one year period (25).  The treatment for such injuries commonly involves a period of rest for 

4 to 6 weeks (15).  However, this period of inactivity typically leads to significant loss of 

muscular and cardiovascular fitness (10). Many therapists, coaches, and athletes integrate 

cardiovascular fitness into their therapeutic programs to minimize detraining effects.  To 

maintain fitness during rehabilitation, therapists and coaches use cross training modes of exercise 

such as cycling, swimming, elliptical running, and underwater running to maintain fitness during 

rehabilitation.  While these exercise modalities are designed to maintain cardiopulmonary 

fitness, each has practical limitations.  Many of their adaptations are not specific to running. 

Exercising on a lower body positive pressure (LBPP) treadmill is a relatively new 

exercise mode for rehabilitation of injured runners.  This device allows unloading of the lower 

extremities during exercise in a pressurized treadmill chamber.  This treadmill is capable of 

accurate and precise unweighting across a variety of body types, and is able to reduce ground 

reaction force for walking and running in proportion to the amount of unweighting (20).  This 

benefits athletes in their high demand rehabilitation, allowing a running workout without the 

negative effects of increased lower extremity loading (11).  The presumed properties associated 

with LBPP treadmills, such as decreased ground reaction forces while maintaining metabolic 

demand, make it an appealing exercise medium for rehabilitation of individuals with lower 

extremity injuries associated with running (20).   
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Methods other than LBPP have been used previously to support body weight (BW) 

during running, including harness suspension systems and water immersion.  Harness suspension 

systems are beneficial because a purely vertical force can be applied to the person, and the 

independent effects of supporting BW can be addressed (19, 21).  However, harness suspension 

systems may not be applicable for extended rehabilitation and training use because they can 

cause discomfort and impede circulation.  Water immersion is also commonly used as a 

rehabilitation tool (11).  However, the viscous drag forces associated with water exercise act in 

opposition to movement and cause significant changes in movement velocity, gait timing, joint 

kinematics, joint kinetics, and muscle activity compared with over ground movement. (9, 30)  

 LBPP devices do not apply meaningful drag forces to the legs and may be advantageous 

because they allow kinematic gait patterns similar to normal weight over-ground running, a 

normative range of running velocities, and a decrease in the forces transmitted by the legs (11).  

Surface EMG electrode activity while running on a LBPP treadmill shows that the timing of 

muscle firing patterns and gait mechanics are maintained for all levels of weight support and 

speeds (25).  For any given running speed, weight support with the LBPP device reduces V̇O2 

and metabolic demand by the individual (20).  Running at faster velocities with weight support 

requires the same metabolic power as running at slower velocities with normal weight.  

Additionally, LBPP devices are comfortable and can be used over extended periods.  Therefore, 

LBPP devices could be very effective for maintaining cardiovascular fitness during rehabilitation 

involving running. 

To provide the best possible training stimulus during LBPP treadmill running in the 

rehabilitative athlete a better understanding of the physiological response to LBPP running is 

needed.  Specifically, it is unknown if positive pressure alters muscle blood flow or muscle 
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metabolism, specifically lactate accumulation.  These are key factors in optimizing adaptations to 

exercise training.  One essential adaptation to aerobic training is an increase in lactate threshold.  

This increase allows athletes to work at higher workloads without a significant accumulation of 

lactate.  Recently, LBPP treadmills have been introduced to training and rehabilitation facilities.  

There has been a limited amount of research done on the physiologic responses to LBPP 

treadmill running and the impact of LBPP treadmill running on the lactate threshold is unknown. 

 

Hypotheses 

1. The lactate threshold will occur at a higher treadmill speed during body weight unloading 

treadmill running compared to full body weight treadmill running.   

2. There is no significant difference between lactate threshold expressed as a percentage of 

V̇O2max determined during treadmill running with body weight unloading and full body 

weight running.  

Null hypotheses 

1. There is no significant difference between lactate threshold treadmill speed determined 

during treadmill running with body weight unloading and full body weight running.   

2. The lactate threshold, expressed as a percentage of V̇O2max, will occur at a higher 

V̇O2 % during body weight unloading treadmill running compared to full body weight 

treadmill running. 

Limitations 

 The results are only applicable to the subject population: active male college students. 
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Significance of this study 

Results from this study will explain the lactate response to LBPP treadmill running 

compared to running on a land treadmill.  Weighted impact on the legs generated from running 

on the ground can produce injuries in the lower extremities in many athletes.  Therefore, the 

purpose of this study is to show that LBPP treadmill running provides a therapeutic and 

rehabilitative alternative.  A better understanding of the lactate threshold response to LBPP 

treadmill running will help athletes and trainers know the intensity needed to exercise at to elicit 

the same physiologic response they would if using a land treadmill.  Not only will this help with 

therapeutic rehabilitation for injured athletes, this study will also further the understanding of the 

body’s response to LBPP treadmill running. 

  

24 



 

Chapter 2 

Review of the Literature 

Lactate and H+ Production 

Lactate is the final product of anaerobic glycolysis, and is an active metabolite playing 

many important roles in muscle glycogen production and fatigue.  During muscle contraction, 

the energy molecule adenosine triphosphate (ATP) is used by myosin adenosine triphosphatase 

(ATPase) to allow cross-bridge cycling between actin and myosin filaments, resulting in force 

production.  However, stored ATP concentrations are normally so low that with repeated 

contractions the phosphocreatine (PCr) stores in muscle are used to resynthesize and maintain 

ATP concentrations.  With an increasing number of contractions, the PCr concentration declines, 

resulting in a need to utilize other fuels.  Consequently muscle glycogen is called upon with 

glycogenolysis being activated, leading to the formation of pyruvate and ATP.  During intense 

dynamic exercise this pathway must be used to produce the necessary ATP to meet the demand 

of the exercise.  (8) 

With lower intensity exercise, pyruvate is destined for oxidation by aerobic metabolism 

in the mitochondria.  Unfortunately, the mitochondria are unable to oxidize all of the pyruvate 

produced during intense exercise, leading to its conversion to lactate in the myoplasm (5).  

Lactate is produced through the reduction of pyruvate with the concomitant oxidation of NADH 

to NAD+, a reaction catalyzed by lactate dehydrogenase (LDH).  While skeletal muscle is 

contracting and glycolysis is active, lactate is always being produced.  When lactate production 

exceeds lactate removal, lactate accumulates in the muscle and blood (23).   

 Once produced lactate is moved from lactate-producing to lactate-consuming sites.  

Lactate is transported across membranes via monocarboxylate transporters (MCTs).  Transport 

25 



 

through these shuttles occurs by facilitated exchange down the lactate concentration and H+ ion 

gradients (6).  Many cells and tissues, such as liver, cardiac tissue, active type I muscle fibers, 

inactive skeletal muscle, and neurons can utilize lactate.  In the liver it is either converted into 

glucose via gluconeogenesis or it is converted to glycogen through glyconeogenesis (7).  Cardiac 

tissue, type I muscle fibers, and inactive skeletal muscle metabolize lactate by converting it to 

pyruvate through LDH and then using pyruvate for energy production.  

Blood lactate concentration is a useful marker of exercise intensity and adaptation to 

training.  The presence of lactate is also an indicator of the balance between glycolytic and 

mitochondrial activity.  Increased lactate production is usually a result of high intensity short 

duration activities that require the recruitment of glycolytic fast-twitch muscle fibers.  Lactate is 

also produced during lower intensity activities utilizing aerobic slow twitch fibers, however 

lactate can move into the mitochondria via MCT’s and be oxidized.  Roughly 75% of lactate 

produced during anaerobic glycolysis is removed by mitochondrial oxidation in active slow 

twitch fibers via the intracellular lactate shuttle (6).  

As exercise increases the turnover of lactate oxidation increases proportionately up to an 

exercise intensity of approximately 75% of V̇O2max (28). There is a direct linear relationship 

between the rate of blood lactate disposal and the metabolic rate (V̇O2).  Linnarsson, Karlsson, 

Fagraeus and Saltin (26) demonstrated that tissue hypoxia exaggerates, but does not dictate the 

formation of lactic acid. 

 

Lactate Threshold 

During modest increases in exercise intensity, lactate will continue to increase, but will 

stabilize, indicating a balance between rate of production and utilization (5).  This demonstrates 
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that the body is able to provide enough ATP for energy, primarily through aerobic metabolism.  

Eventually, an exercise intensity will be reached at which lactate increases abruptly, or in a 

nonlinear fashion.  This represents the intensity level at which lactate production exceeds the 

body’s maximum capability to utilize, or clear lactate.  Lactate will continue to accumulate at a 

rapid rate above this level.  This is partially due to the recruitment of fast twitch muscle fibers 

that are specified for anaerobic metabolism, and have a higher dependency on glycolysis for 

ATP production and thereby for lactate production. 

The level at which lactate continues to progressively accumulate designates a transition 

from primarily aerobic metabolism to greater involvement of anaerobic bioenergetic pathways 

(1).  This critical intensity at which a nonlinear and progressive increase in lactate occurs has 

been identified as the lactate threshold (1). Lactate accumulation at this point is attributed, in 

part, to the failure of the cardiovascular system to supply the oxygen to the working muscle.  

This lactate threshold has also been termed the anaerobic threshold by Wasserman, Whipp, Koyl 

and Beaver (38) and is identified by an exercise intensity of workload (V̇O2) above which lactate 

levels rise and minute ventilation increases disproportionately in relation to oxygen consumption.  

The rise in minute ventilation is due in part to an increase in carbon dioxide production resulting 

from the buffering of the lactic acid.   

After periods of endurance training, adaptations occur that result in markers of lactate 

accumulation shifting to a higher relative workload.  Donovan and Brooks (14) used C13 and H3 

tracers to show lower lactate levels during both easy and hard exercises in trained animals 

compared to untrained.  Demarle, Heugas, Slawinski, Tricot, Koralsztein and Billat (12) suggests 

that improvements in lactate levels may be related to elevated capacity for aerobic synthesis of 

ATP molecules due to 1) an increase in mitochondria size and number and 2) an increase in the 
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activity of oxidative enzymes.  Additionally, an increase in the enzymes for lipid oxidation will 

decrease the dependence on glycolysis for energy and may improve lactate threshold as well.  

Enhancement of intra- and extracellular buffering mechanisms of pH regulation and 

lactate/proton transport may have an effect on human work capacity.  Attenuating the onset of 

pH decline and lactate accumulation is thought to provide improvements in exercise performance 

(29).  Endurance training doesn’t alter the production; it increases the body’s capacity for lactate 

clearance (27).  Increased capacity for oxidation (4) and gluconeogenesis (3) in trained 

endurance athletes explains this increased clearance rate. 

Greater oxygen delivery also results in decreased lactate concentrations in the blood and 

working muscle.  Katz and Sahlin (24) demonstrated that lactate accumulation occurs during 

submaximal exercise, even while oxygen is present; however, when oxygen is limited the rate of 

lactate production is amplified.  The reduced availability of oxygen leads to an acceleration in 

glycolysis and increased lactate production.  Therefore, the adaptations associated with 

endurance training that increase oxygen delivery contribute to a delay in lactate accumulation.  

 

Lower Body Positive Pressure Physiology 

While research on the physiologic and metabolic responses to lower body positive 

pressure (LBPP) treadmill running is limited, the effects of LBPP application during supine and 

recumbent cycling exercise have been explored.  LBPP application typically elicits physiologic 

changes in mean arterial pressure (16, 31, 32, 34, 36, 39), a redistribution of blood from 

peripheral tissues to central regions of the body (19, 28), and metabolite accumulation in the 

active skeletal muscles (32). These changes are thought to be brought on by activation of both 

mechanical (mechanoreceptors) and chemical (metaboreceptors) sensitive nerve endings located 
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within the muscle.  LBPP promotes accumulation of metabolic by-products that stimulate muscle 

type III & IV afferents (metaboreceptors) that increase sympathetic nervous system activity and 

drive the increase in mean arterial pressure (MAP).  The increased tissue pressure associated 

with LBPP stimulates mechanoreceptors, thereby increasing SNS and drive the increase in MAP.  

LBPP also increases tissue pressure that reduces blood vessel diameter and mechanically 

increases total vascular resistance and therefore increases MAP (MAP = Q x TPR). 

A typical response to application of LBPP to the lower extremities during exercise is an 

increase in tissue pressure which reduces the transmural pressure gradient across the vasculature 

leading to increases in both central venous pressure and mean arterial pressure (MAP) (16, 31, 

32, 34, 36, 39).  Elevation of tissue pressures in lower extremities generated by LBPP also 

slightly increases venous return (34). The extent of the blood pressure changes are dependent on 

factors including the amount of pressure applied and the exercise posture.  

During supine and recumbent cycling, the greater the LBPP applied, the greater the blood 

pressure response (34, 36, 39).  Shi, Potts, Foresman and Raven (36) documented that MAP 

increases 3-6 mmHg at 20-30 mmHg LBPP and by 4-15mmHg at 40-50mmHg LBPP in supine 

subjects.  This supports previously documented evidence that changes in pressure around the 

limb are fully transmitted from the skin to the muscle (34).   

Nishiyasu, Nagashima, Nadel and Mack (31) conducted a study to determine the effect 

that LBPP would have on cardiovascular responses during cycling exercise in the supine and 

upright positions.  They found that LBPP resulted in an increased MAP in both positions; with a 

greater effect seen in the supine group.  They also saw an increase in stroke volume (SV) in the 

upright posture that was not seen in the supine.  The response in subjects is dependent on the 

intravascular fluid shift from lower extremities to torso and the body position.  Cutuk, Groppo, 
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Quigley, White, Pedowitz and Hargens (11) performed the first study with subjects standing and 

ambulating fully upright on an exercise treadmill under the influence of LBPP.  Their study 

confirmed that MAP, diastolic blood pressure (DBP), and systolic blood pressure (SBP), 

although trending upward, did not significantly increase in standing and treadmill ambulating 

subjects exposed to 0-50mmHg of LBPP.  Hoffman and Donaghe (22) later supported this 

evidence by showing an increase in SBP by 10 mmHg at rest while standing in LBPP, but once 

exercise began, there was no change in MAP.  The findings from Nishiasu, Cutuk, and Hoffman 

demonstrate that although LBPP is highly correlated with an increase in MAP, the effects 

decrease when subjects are in the upright position and minimized when upright and running on a 

treadmill. 

Application of LBPP involves a shift in blood volume from peripheral to more central 

regions of the body.  This shift in blood volume is typically associated with a greater stroke 

volume due to increased preload from venous return.  However, LBPP is capable of inducing a 

pressor response during rest and exercise without producing increases in stroke volume (SV), 

heart rate (HR), V̇O2 or cardiac output (Q) even with an increased MAP (39).  Because there was 

no increase in Q, blood pressure was elevated through increases in total peripheral resistance.  

This suggests input from exercising muscles dictated blood pressure responses, while Q is 

determined by the actual activity performed as expressed by the oxygen uptake.   

The metabolic responses to large muscle mass dynamic exercise differ on land compared 

to being surrounded by a LBPP device.  The application of LBPP in the supine and semi-

recumbent positions reduces blood flow to working muscles (32, 37, 39).  This change in blood 

flow to the lower extremities produced by the application of LBPP reduces the O2 saturation in 
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the femoral venous blood and increases accumulation of metabolic by-products such as lactate 

(37).  

While effects of LBPP on lactate threshold have not been explored, Williamson, Raven, 

Foresman and Whipp (40) designed a study to determine if LBPP could alter the occurrence of 

the ventilatory threshold.  They found that the ventilatory threshold was progressively decreased 

with increased levels of LBPP (0, 15, 30, 45mmHg).  However, measured blood lactate was only 

slightly elevated above control, while pH and [K+] were unchanged.  Because is it known that 

LBPP can enhance “trapping” or accumulation of metabolites in working muscle (37), they 

concluded that the increase in metabolite buildup in contracting muscles can stimulate ventilation 

as a result of impeded blood flow from applied pressure.  

LBPP can “trap” or further enhance accumulation of lactate at working muscles in the 

supine and recumbent positions, however, the build-up in the muscles is much greater than levels 

seen in blood samples (40, 41).  The increase in ventilation (VE) and respiratory exchange ratio 

(RER) during exercise in the recumbent position supports this notion (32).  It is assumed that 

application of similar LBPP could reduce blood flow in the leg muscles with a consequent 

release of lactate in the muscle during exercise in the upright position.  However, VE and RER 

did not change when LBPP was applied to subjects exercising in the upright position (32).  It is 

unknown how LBPP applied to the upright position while running on a treadmill effects muscle 

or blood lactate levels.  

Another metabolic difference between LBPP running and over-ground running is a 

decrease in metabolic demand.  For any given running speed, weight support with the LBPP 

device reduced V̇O2 and metabolic demand by the individual (20).  Running at faster velocities 

with weight support requires the same metabolic power as running at slower velocities with 
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normal weight.  Liebenberg, Scharf, Forrest, Dufek, Masumoto and Mercer (25) investigated 

how lower extremity muscles are influenced by body weight support through LBPP.  They 

showed that reducing body weight through LBPP leads to a reduction in the amplitude of all 

muscle activity, even though the timing of the muscle firing patterns and gait mechanics are 

maintained for all levels of weight support and speeds.  This reduction in muscle activation 

explains the decrease in metabolic power needed to maintain a given intensity.   

Lower Body Positive Pressure and Lactate Threshold 

Although the effects of LBPP on blood lactate levels during treadmill running are 

unknown, there are several factors that may contribute to an increase in lactate threshold.  It has 

been established that weight support during LBPP running decreases metabolic demand (V̇O2), 

decreases muscle activation, and increases the fluid shift from the legs to the abdomen and 

thorax.  The decreased metabolic demand may allow aerobic systems to support energy 

production at lower intensities, thus increasing oxidation and reduce the production and /or 

accumulation of lactate.  All these in turn might lead to an increased lactate threshold while 

performing LBPP running exercise.  
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Chapter 3 

Methods 

Subjects 

Ten college-age (18-33 years old) male athlete subjects will be recruited for this project.  

Subjects will qualify if they meet all of the following requirements: 

1. A V̇O2max of ≥ 55  ml O2 min-1 kg-1 BM 

2. Active, engaging in 30 min of moderate aerobic activity at least 3 days/week 

3. No lower extremity injuries in the last 4 months 

4. Not taking medication 

Subjects will be asked not to change their current exercise program during the course of the 

study. 

 

Experimental Design 

The proposed project consists of four days of testing. 

1. Day 1 and Day 2 (30 min each) consists of the determination of: 

a. V̇O2max on an Alter-G treadmill with 0% unloading 

b. V̇O2max on a Alter-G treadmill with 20% body weight unloading 

2. Days 3 and 4 (90 minutes each day) consist of determination of: 

a. Lactate threshold (LT) on a Alter-G treadmill with 0% unloading 

b. Lactate Threshold (LT) on a Alter-G treadmill with 20% body weight unloading 
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Day 1 and 2: Maximal Aerobic Capacity. 

Two tests to determine the aerobic capacity of the subjects will be given.  One test will be 

performed on a land treadmill and the other performed with 20% body weight unloading on the 

Alter-G Pro Version 1.20 (Alter-G Inc., Fremont, CA) treadmill.  The two exercise tests will be 

completed in a randomized cross over design.  The two tests will be separated by a minimum of 

7 days to allow adequate recovery and accuracy of measurement.  Subjects will be taken to the 

Alter-G treadmill to be familiarized with running on an LBPP treadmill.  As part of this 

familiarization process subjects will be fitted with a heart rate monitor, fitted to their appropriate 

size neoprene shorts, and treadmill size settings will be determined.  

 Each exercise test will consist of a 5-min warm-up at 0% grade during which time the 

subjects self-select a treadmill speed that approximates a running velocity they would select if 

they were going to choose a comfortable speed for 30 min.  The speed will then be set to 7 mile 

h-1 for 2 minutes.  Then the speed will increase by increments of 1 mile h-1 every 2 minutes.  The 

subjects will continue to exercise until the point of volitional fatigue.  The test will be considered 

a true max if two of the following variables are met: 1) an increase in speed resulting in a failure 

of V̇O2 to also rise, 2) a respiratory exchange ratio of  >1.05, and 3) a heart within 80% of the 

age predicted max heart rate.  

During the exercise test, oxygen consumption will be monitored every 15 sec using a 

Parvo Medics True One (Parvo Medics, Inc., Sandy, UT) metabolic cart.  Immediately prior to 

the initiation of the exercise test the subjects will be instrumented with a headpiece holding a 

one-way breathing valve to allow collection of expired gases.  Calibration of the portable 

metabolic cart will be performed before each exercise and verified immediately following each 

test.  Flow meter calibration involves a 5-stroke sequence of a 3-liter syringe at three difference 
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flow rates (<80 L/min, ≈ 200 L/min, and ≈ 400 L/min).  The oxygen and carbon dioxide 

analyzers will be calibrated prior to each exercise test using samples of room air and a medical 

grade calibration gas. 

 

Days 2 and 3: Lactate threshold testing. 

The evening before each trial the subject will be asked to ingest 8ml/kg of water.  All 

tests will be performed during the same time period between 8:00 and 11:00 am.  Upon arrival, 

subjects will sign an informed consent that was previously approved by the IRB before testing is 

started.  Subjects will void their bladder and a small urine sample will be taken to monitor urine 

specific gravity (USG) to insure adequate hydration.  A USG of less than 1.015 will be 

considered adequately hydrated.  Those subjects not meeting this requirement will be asked to 

ingest an additional 5 ml/kg of water and USG reexamined 60 min post-ingestion.  Following 

verification of proper hydration the subjects’ height and weight will be measured and the 

subjects will be instrumented with a three lead EKG and a venous catheter will be placed in a 

large forearm vein.  Each subject’s lactate threshold will be determined during treadmill running 

at full body weight and at an unloading of 20%.  The two exercise tests will also be performed in 

a randomized cross over design.  The two tests will be separated by at least 48 hours.   

The subject will then stand in the upright posture for 30 min to allow equilibration of 

body water compartments before a resting blood sample is collected.  During this equilibration 

period, just prior to the initiation of the exercise test, subject will be instrumented with a blood 

pressure cuff (left arm) to allow measurement of blood pressure.  The subject will also be 

instrumented with a headpiece holding a one-way breathing valve to allow collection of expired 
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gases and the measurement of oxygen consumption by the Parvo Medics True One (Parvo 

Medics, Inc., Sandy, UT) metabolic system.   

The lactate threshold protocol will be performed entirely at 0% grade on the treadmill.  

The subject will start by walking at 3.5 mile h-1 for 5 min as a warm-up (see Table 2).  After a 3-

ml blood sample is collected during the final min of stage 1 the speed will be increased to 5.0 

mile h-1.  This speed will be maintained for 3 min and a blood sample will be drawn between min 

2 and 3 of this (and every) stage.  After each blood sample a new stage will be initiated by an 

increase of speed (0.5 mile h-1 /stage).  When the subject’s oxygen consumption meets or 

exceeds 90% of their measured V̇O2 max the test will be terminated and treadmill speed will be 

reduced to 3.0 mile h-1 to allow the subject to recover and the pressure will be released from the 

chamber.  One final blood sample will be taken five minutes post exercise.  

During the lactate threshold trial blood samples (4 ml) will be immediately placed in pre-

cooled EDTA-vacutainers, mixed by gentle inversion, and stored on ice until the end of the LT 

trail.  After the LT test the blood samples will be well mixed and a small amount of whole blood 

will used for determine hematocrit and hemoglobin concentration.  The remainder of the blood 

will be centrifuged at 1500 xg for 15 min at 4°C.  The plasma will be immediately separated 

from the red cells.  A small amount of plasma (40 µl) will be used to determine plasma protein 

concentration using a handheld refractometer.  The plasma will be analyzed for lactate 

concentrations using an YSI 2300 lactate analyzer.  If the plasma is not analyzed immediately 

after separation it will be stored frozen at -20°C until analysis.   Analysis of lactate threshold 

will be assessed from the samples drawn during the study.  During incremental exercise an 

abrupt transition occurs in the rate of increase of blood lactate with increasing V̇O2.  A 

mathematical model that fits the data to a line of best fit can be used to detect lactate threshold 
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with more precision than using visual detection techniques.  The log-log transform model easily 

defines the transition point in plasma lactate accumulation.  Error effects are minimized using 

this method by using the least squares curve-fitting procedure (2).  

We will use hematocrit and hemoglobin samples at each stage to measure the reduction in 

plasma volume that occurs during exercise.  To account for the fluid shift out of the vascular 

system, we will express lactate concentrations in mM kg H2O-1 with plasma water determined 

from the shift in plasma volume and changes in protein concentration.  Analysis of plasma 

lactate levels at specific treadmill speeds and at specific percentages of V̇O2max will be 

examined.  

 

Data Analysis 

The experimental design is two simple balanced ANOVA tests to analyze the point at 

which lactate threshold occurs.  The independent variable being the running condition (20% BW 

unloading or 0% unloading), and the dependent variables being the speed at which threshold 

occurs and the V̇O2max percentage at which threshold occurs.  A simple balanced ANOVA for 

repeated measures will be also used to examine the following variables: V̇O2, heart rate, blood 

pressure, and lactate concentration.  The analysis will be performed using SAS general linear 

model analysis with the level of significance set at a p-value of p<0.05. 
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Table 1.  V̇O2max test protocol 
  

     Stage Time Mile h-1 Grade 
 1 0-5 min 3.5 to 7* 0 
 2 5-7 min 7 0 
 3 7-9 min 8 0 
 4 9-11 min 9 0 
 5 11-13 min 10 0 
 6 13-15 min 11 0 
 7 15-17 min 12 0 
 8 17-19 min 13 0 
 9 19-21 min 14 0 
  

* self-selected speed during warm up 
 **Additional stages will follow same protocol if necessary 
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Table 2.  Lactate threshold test 0% BW unloading protocol 

    Stage Time Mile h-1 Sample # 
1 Resting Standing 1 
2 1-5 min 3.5 2 
3 5-8 min 5.0 3 
4 8-11 min 5.5 4 
5 11-14 min 6.0 5 
6 14-17min 6.5 6 
7 17-20 min 7.0 7 
8 20-23 min 7.5 8 
9 23-26 min 8.0 9 

10 26-29 min 8.5 10 
11 29-32 min 9.0 11 
12 32-35 min 9.5 12 
13 35-38 min 10.0 13 
14 38-41 min 10.5 14 
15 5 min Post  3.0 15 

 
*Additional stages will follow same protocol if necessary 
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Table 3.  Lactate threshold test 20% BW unloading protocol 

     Stage Time Mile h-1 % Unloading Sample # 
1 Resting Standing 20% 1 
2 1-5 min 3.5 20% 2 
3 5-8 min 5.0 20% 3 
4 8-11 min 5.5 20% 4 
5 11-14 min 6.0 20% 5 
6 14-17min 6.5 20% 6 
7 17-20 min 7.0 20% 7 
8 20-23 min 7.5 20% 8 
9 23-26 min 8.0 20% 9 

10 26-29 min 8.5 20% 10 
11 29-32 min 9.0 20% 11 
12 32-35 min 9.5 20% 12 
13 35-38 min 10.0 20% 13 
14 38-41 min 10.5 20% 14 
15 5 min Post  3.0 0% 15 

 
*Additional stages will follow same protocol if necessary 
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