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A B S T R A C T

The special epistemic characteristics of the COVID-19, such as the long incubation period and the infection
through asymptomatic cases, put severe challenge to the containment of its outbreak. By the end of March 2020,
China has successfully controlled the within- spreading of COVID-19 at a high cost of locking down most of its
major cities, including the epicenter, Wuhan. Since the low accuracy of outbreak data before the mid of Feb.
2020 forms a major technical concern on those studies based on statistic inference from the early outbreak. We
apply the supervised learning techniques to identify and train NP-Net-SIR model which turns out robust under
poor data quality condition. By the trained model parameters, we analyze the connection between population
flow and the cross-regional infection connection strength, based on which a set of counterfactual analysis is
carried out to study the necessity of lock-down and substitutability between lock-down and the other contain-
ment measures. Our findings support the existence of non-lock-down-typed measures that can reach the same
containment consequence as the lock-down, and provide useful guideline for the design of a more flexible
containment strategy.

1. Introduction

The novel coronavirus COVID-19 that was first reported in Wuhan,
China at the end of 2019 quickly spread. Early 2020 has witnessed
many efforts to contain the virus, such as the city lock-down, quar-
antining the suspected infectious cases and their close-contacts, setting
health check point at crucial traffic nodes. By the mid of March 2020,
the cumulative infectious cases have stopped growth in most of the
major cities of China, including the epicenter of Wuhan. Although a
growing list of published papers and reports claimed that the successful
containment of COVID-19 in China was due to the national-wide travel
ban and lock-down (Li et al., 2020; Qiu et al., 2020; Tian et al., 2020),
these studies focus exclusively on the aggregated number. The micro-
mechanism how lock-down stops outbreak has rarely been analyzed
based on real data. On the other hand, many countries, such as Italy,
adopted similar lock-down policy, but failed to contain the outbreak of
COVID-19 as China did. The South Korea and Japan didn't close up their
major cities nor impose severe travel restriction to those uninfected
people (Iwasaki & Grubaugh, 2020; Park et al., 2020; Shaw et al.,
2020), but they both reported a low growth rate of infections within a

relatively short time. Hence, it cannot be confirmed that the contain-
ment is achieved by lock-down unless the effect of other confounding
non-lock-down measures, such as the conditional quarantine and social
distancing, can be separated.

To this end, a thorough investigation on the necessity of lock-down
and its functioning mechanisms is needed. At the same time, due to the
severe social-economic cost of lock-down (Atkeson, 2020; Barro et al.,
2020; Bootsma & Ferguson, 2007; Halder et al., 2011; Jorda et al.,
2020; Kelso et al., 2020), it is neither feasible for the other countries
that are still struggling in the outbreak of COVID-19. Nor is an option
for China given the risk of experiencing a second-wave outbreak.
Therefore, alternative measures to the lock-down are recalled. A deep
mechanism analysis of the lock-down can shed light on the searching of
alternative containment measures and understanding their effective-
ness, it is highly demanding at such a special moment when both US
and China have experienced a second-wave outbreak of COVID-19 in
recent weeks but neither of the top 2 economies can afford another
round of lock-down.

In this paper, we attempt to explore the mechanism issue mentioned
above. Our analysis is based on a novel network-based SIR (Susceptible-
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Infection-Recovery) model framework (Li et al., 2020; Qiu et al., 2020)
in which a time-lagged latent random infection mechanism is added to
capture the epidemic characteristics of undocumented infectious and
long incubation period, which cannot be handled in the classical SIR
models (Heymann & Shindo, 2020; Keeling & Rohani, 2011; Li et al.,
2020; Mizumoto et al., 2020; Qiu et al., 2020; Wang, Liu, et al., 2020;
Zou et al., 2020). Unlike the model in Li et al. (2020); Qiu et al. (2020),
to capture hidden infection channels that are not directly linked to
inter-regional population flow, such as the infection through panic-in-
duced gathering (Fang et al., 2020; Garfin et al., 2020; Wang, Hu, et al.,
2020), we won't adopt the prior assumption that the infection propa-
gation cross regions can only be via the inter-regional population flow.
Instead, a non-parametric network-based SIR model is applied, in which
we do not impose any prior knowledge on the link weights across re-
gions and let it be fully inferred from the COVID-19 outbreak data via
deep learning methods. Using the inferred network, the connections
between the infection link weights and the population flows are es-
tablished through standard regression technique and tested for sig-
nificance, by which, a counterfactual evaluation for the real effect of
lock-down is carried out. Different from the counterfactual analysis
done in existing literature (Chinazzi et al., 2020; Li et al., 2020; Qiu
et al., 2020; Tian et al., 2020) that attempt to justify the travel ban and
the city lock-down measures as a sufficient condition for China's
achievements in fighting COVID-19, we evaluate the necessity of these
measures in the sense whether or not there exists much more moderate
prevention measures that are as effective as the travel ban and city lock-
down in terms of containing the outbreak of COVID-19, while have less
negative impact on the social-economic development. We give positive
evidence for the existence of such alternative measures, and also discuss
the substitutability between lock-down and the other containment
measures. We highlight that the substitutability can help quantitatively
design the combination of containment measures that reach the balance
between containing COVID-19 and the social-economic cost.

2. Methodology

2.1. Model construction

The NP-Net-SIR model is set up as the following:
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where n(t) = (n1(t),…,nk(t))T is the vector of the cumulative number of
infectious cases of k regions by time t, both the documented and un-
documented cases are included within n(t), m(t) = (m1(t),…,mk(t))T

denotes the documented number of infectious case by time t, r(t) is the
time dependent recovery rate. To reflect the epidemic characteristics of
COVID-19 that the incubation period (14 days) is very long (Heymann
& Shindo, 2020; Li et al., 2020; Mizumoto et al., 2020; Qiu et al., 2020;
Wang, Liu, et al., 2020; Zou et al., 2020) and the asymptomatic in-
fectious cases can proceed the transmission, we add two time-depen-
dent probability pB(⋅, t) and pI(⋅, t), they capture the time-lagged ran-
domness within the two processes that the hidden infectious cases get
discovered (pB) and that the hidden infectious cases transmit the virus
to healthy people (pI). Without loss of generality, we let r, pB and pI
depend on time continuously so as to capture the impact of time and the
government prevention measures.

To formulate the spatial interactions of COVID-19 outbreak, we set a
family of weighted network adjacency matrices {W(t)} with Wij

(t) ∈ [0,1] for all ij entries and all t. The adjacency matrix W(t) captures
the cross-regional link weight of COVID-19 outbreak and can be in-
terpreted as the proportion of the past cumulative infectious cases in
region j that contribute to the newly infected cases in region i. In pre-
vious studies (Li et al., 2020; Qiu et al., 2020), the adjacency matrices

are directly identified as a constant multiple of the population flow
matrix cross regions. This assumption is not sufficient to capture out-
break channels other than the point-to-point travel, such as the infec-
tion by panic-driven gathering, multi-destination travelling and the like
(Cohen & Kupferschmidt, 2020; Ferguson et al., 2020; Harris, 2020;
Pueyo, n.d.; Wang, Hu, et al., 2020). To account for these hidden
channels, we take the non-parametric specification of W rather than
impose prior knowledge. We also let W continuously depends on time t,
accounting for the effect of time and various prevention measures.
Model (1) is trained by deep learning technique, and the details are
presented in Appendix A.

2.2. Counterfactual evaluation on the effects of travel ban and lock-down

The effects of travel ban and city lock-down on containing the
outbreak of COVID-19 can be evaluated based on the population flow
data from Baidu Migration Index (available through the url “https://
qianxi.baidu.com/”) and the trained NP-Net-SIR. The temporal network
adjacency matrix W(t)s sketches the cross-regional outbreak link
strength of COVID-19 and its variation trend over time. The variation of
W(t) is by and large the consequence of the travel restriction policies,
but as we comment in the introduction, it cannot exclude the impact of
panic and the other type of unaware driving force. To single out the
impact of travel ban and city lock-down, we apply the following re-
gression analysis:

= + +t α β t εW T( ) ( )kj i kj i kji (2)

where the temporal matrix tT( )i is the weighted average of the singe-
day population flow matrices T(ti)s (extracted from Baidu migration
index) by the infection probability pI(⋅, ti)
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Since Wuhan City was locked down, a bucket of containment
measures had been applied by both Wuhan and the other major cities in
China, such as the social distancing, conditional quarantine and setting
health checkpoint in major transportation facilities etc., all of which
could affect the link weights and contribute to contain the outbreak of
COVID-19. To differentiate the effect of lock-down from the other
measures, we fit Eq. (2) only using the data with Jan. 23, 2020 when
Wuhan start to lock down. Given the estimates coefficient α, β, the
estimate to the residuals ̂εkji for the tis after Jan. 23, 2020 are calculated
and interpreted as the part of infection link weights unexplainable by
population flows, accounting for the effect of the non-lock-down mea-
sures. Fix α, β and ̂εkjis, Eq. (2) will be used to evaluate the impact of
counter-factually increasing the population flow intensity between re-
gion pairs.

Unlike the existing studies (Anderson et al., 2019; Chinazzi et al.,
2020; Fang et al., 2020; Li et al., 2020; Qiu et al., 2020; Tian et al.,
2020; Zhang et al., 2020) that focus almost exclusively on the suffi-
ciency question, i.e. whether lock-down really help mitigate the out-
break of COVID-19, this study attempts to answer the inverse problem.
That is the necessity of lock-down, i.e. whether or not there exists an
alternative prevention strategy that causes less damage to the social-
economic development while performs as effective as the travel ban and
lock-down in containing the outbreak of COVID-2019. Since the ex-
istence of such alternatives might be timing-sensitive, we consider
different initialization time ts for the counterfactual worlds in which the
travel ban and city lock-down are relaxed. The degree of relaxation is
measured by a proportion rjk for each pair of destinations j and k such
that after the relaxation, the traffic flow intensity is increased to Tjk

r

(ti) = (1 + rjk) × Tjk(ti) for ti ≥ ts. Given the relaxed population/traffic
flow matrix Tr(ti)s, we can update the adjacency matrix W(ti) to Wr(ti)
via Eq. (2). Denote r as the matrix consisting of all rjks, then we evaluate
the necessity of travel ban by asking whether there exist a positive r
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matrix (with at least one positive entry and no negative entries at the
mean time) such that under the updated Wr(ti)s by r, the outbreak
status of COVID-19 are no worse than the current for every ti ≥ ts. The
comparison of outbreak status between the real case and the counter-
factual case can be measured in various different ways. In this study, we
focus on three measures that are summarized through the following
three constraints:

≤ ∀ ≥R t r t R t r t t tW W( ( ), ( )) max( ( ( ), ( )), 1),r
i i i i i

s
0 0 (4)

≤ ∀ ≥t t t tm m( ) ( ),r
i i i

s (5)

≤ ∀ ≥t t t tD D( ) ( ),r
i i i

s (6)

where R0 is the basic reproduction number which depends on the
maximal eigenvalue of adjacency matrix and recovery rate. mr(ti) de-
notes the estimated documented infectious case by the updated Wr

matrix through Eq. (1). D(ti) (Dr(ti)) is the total death cases (updated by
r) by time ti which depends on both the total number of infections and
the local healthcare resources, the detailed calculation of D(ti) is pre-
sented in Appendix C.

These three constraints refer to three different goals of prevention,
which require that after relaxation, the total number of infection and
death shouldn't be greater than their current value, R0

r shouldn't induce
infection divergence (greater than 1) or at least shouldn't be greater
than its current value. The “no greater than” relation in Eqs. (4)–(6) is
in the point-wise sense, i.e. it has to hold for all region and all time after
ts, therefore, it is a very stringent restriction on the relaxation. Formally,
any non-trivial relaxation r matrix satisfying the constraints corre-
sponds to a Pareto improvement of the current prevention strategy. In
our counterfactual analysis, we shall search for each constraint type the
Pareto optimal relaxation strategy r⁎ from which no further Pareto
improvement is allowed. This Pareto optimal r⁎ has practical sig-
nificance in guiding the containment measure design for those countries
suffering from COVID-19 now.

2.3. Counter-factual evaluation on the substitutability between lock-down
and other non-lock-down measures

Except for city lock-down, many other non-lock-down measures
have also been utilized to prevent COVID-19 outbreak, such as the
“social distancing” (Pike & Saini, 2020; Zhang et al., 2020). All these
measures can contain the outbreak of COVID-19, while compared to
travel-ban and city lock-down, they generate less negative impact on
the social-economic development, meanwhile their application is more
accurately targeted rather than applies for all people regardless their
healthiness and vulnerability to COVID-19. It can be reasonably ex-
pected that the execution of these non-lock-down measures can by and
large substitute the lock-downs and reduce the harm to the economy
induced by lock-down.

To quantify the substitutability, we extend Eq. (2) to include the
effect of non-lock-down measures. We roughly divide all the non-lock-
down measures to two classes, which are the measures adopted by the
flow-in regions and the measures by the flow-out regions. The flow-in
measures, its effect is quantified as a parameter ink(ti, ta), include the
quarantine of arriving travellers from out-town, the close up of schools,
the cancelation of gathering public activities and so on; the flow-out
measures, its effect quantified as another parameter outj(ti, tb), include
setting health check point in the entrance of inter-regional high-way,
airport, rail stations and so on. The notation k, j represent the index for
regions, ta and tb represent the starting date of the relevant measures, in
the other words, we let
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for some constant magnitude parameter γks and θjs that measure the
execution strength of relevant measures. Adding ink(ti, ta) and outj(ti, tb)
into Eq. (2) yields the following regression:

= + − ⋅ − + ′W t α β out t t t in t t εT( ) ( ( , )) ( ) ( , )kj i j i b kj i k i a kji (8)

where we suppose the flow-in measures impact the infection adjacency
matrix additively while the flow-out measures impact through a mul-
tiplier of the population flow. For the starting date of two classes of
non-lock-down measures, we follow the timeline provided in Tian et al.
(2020) and set ta as Jan. 26, 2020 when all 31 provinces in mainland
China had already initiated the first-class protocol for emergent public
health event which include the execution of various quarantine mea-
sures and the close-up of major public facilities. tb is set to Jan. 30, 2020
when health check point had been set at all major high-way entrances,
railway stations and airports within Mainland China.

Given the estimate to parameter γks, θjs and the residuals εjki′, the
counterfactual analysis is done by solving the same set of Pareto opti-
mization problem under the same constraints as in the previous section.
The only difference is that in the current setting, not only the relaxation
matrix r, but the set of non-lock-down parameter γks, θjs can also be
simultaneously adjusted.

3. Results

3.1. Goodness of model fitting

The NP-Net-SIR model is trained by using the province-level daily
infection data collecting during Jan. 10 - Mar. 8, 2020 and from the
official website of the National Health Commission (NHC) of China.

Figs. 1 and 2 present respectively the fitting to temporal variation
trend of documented infectious case from Jan. 10, 2020 to Mar. 7, 2020
for the national-wide aggregation case and province-level case for all 31
provinces in mainland China. Table 1 reports the fitting accuracy

≔ ∥ − ∥
∥ ∥

R m m
m

2 2
2

 measuring the relative difference between the estimated

(m) and the real (m) documented infection number since Feb. 12, 2020.
It is quite apparent that the fitting accuracy after the Feb. 12, 2020 for
all situations in the two figures are extremely high (R2 > 0.99 for the
aggregation over the whole China), and the fitted number is system-
atically greater than the reported number before Feb. 12, 2020. This is
due to that we set Feb. 12, 2020 as the change point before which we do
not punish the positive estimation error so as to reflect the potential
under-estimate of the report data. The high accuracy after Feb. 12,
2020 demonstrates the explanation power of our NP-Net-SIR model. As
a comparison, we run the classic SEIR model with the version discussed
in Li et al. (2020) on the same data set, and calculate the R2 measure for
both model after Feb. 12, 2020, the result shows our model performs
much better by lifting R2 by 12%. The difference between the “over-
estimated” infectious cases by our model and the reported cases before
Feb. 12, 2020 can be thought of as a measure to the hidden infectious
case that are not counted in the statistics. We calculate the ratio of the
hidden cases and the total cases, finding that on the national-wide level,
there were 79.27% of hidden cases on average that were not reported
before Feb. 12, 2020, this ratio is close to the one reported in Tian et al.
(2020). If we look at the province-level data, the hidden ratios exceeds
90% for most of the provinces in mainland China, among which Fujian,
Guizhou, Yunan, Jiangsu, Jiangxi and Shanxi provinces are the top 6
with hidden ratios greater than 96%, while Hubei is the province with
lowest hidden ratio (70%). This outstanding hidden ratio of Hubei can
be attributed to the fact that Hubei is the epicenter of the COVID-19
outbreak within China, which was attacked by COVID-19 in the earliest
time, and also reacted earliest in time to the virus. In contrast, all the
other provinces suffered from the transmit-in cases in the early stage
and therefore failed to react in time and cause a significant delay of
updating the number.
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Fig. 1. Aggregated documented infectious cases over all 31 provinces in Mainland China.

Fig. 2. Documented infectious cases for 31 provinces in Mainland China.
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3.2. Overview of the infection dynamics

Due to the close connection between cross-regional population flow
and the inter-regional outbreak of COVID-19 claimed in the literature
(Li et al., 2020; Qiu et al., 2020), we present an overview on the
strength of this connection in the following Figs. 3 and 4, in which the
correlation between the (estimated) temporal infection adjacency ma-
trix W(t) and the traffic flow matrix T(t) are visualized in different

manners. The first line subplots of Fig. 3 consists of the scatter plots of
all tT ( )kj i s versus Wkj(ti)s before (left) and after (right) the time of
Wuhan lock-down (Jan. 23, 2020). The second and third lines of Fig. 3
plot only those tT ( )kj i and Wkj(ti)s that are end up with (the second line)
or sourced from (the third line) Hubei province. To make the variation
trend of the relation between W(t) and T(t) clearly visible, we only plot
the entries ofW(t) and T(t) for five dates before and after Jan. 23, 2020.
Fig. 4 gives the temporal view of the variation trend of the total flow-in
(first line) and flow-out (second line) infection link weight and traffic
flow intensity since Jan. 19, 2020 and for the top 7 provinces (we rank
all 31 provinces by their aggregated flow-in and flow-out infection link
weight averaged up to Jan. 23, 2020 in the descending order, and plot
the data for first 7 provinces in each of the flow-in and flow-out cate-
gory). In all the plots, we make the log transform for entries in W(t) and
T(t), the horizontal axis corresponds to the entries of T(t) vertical axis
corresponds to W(t). For the entries of W(t), we rescale it first by the
potential infection number, i.e. ⋅tW ( )kj

t
t

n
n

( )
( )

k
j

before taking log transform.
By rescaling, we hope to take the effect of the stock number of potential
infections into account.

From the first line of Fig. 3, a counter-intuitive finding is that the
correlation between population flow intensity across regions and the
infection link weight is quite weak, no matter before or after Jan. 23,
2020. Especially in Fig. 3, a great portion of scatter points are clustered
around a straight line close and parallel to the horizontal axis, such an
observation does not support a linear correlation exists between W(t)
and T(t) as imposed in Li et al. (2020); Qiu et al. (2020). Fig. 3c and e
does show a significant linear correlation between population flow
strength and the infection link weight at least before the lock-down,
while the flow-out population before Jan. 23, 2020 turns out more
powerful in spreading the virus as in Fig. 3e, the scale of the vertical
axis is much greater than that in Fig. 3c. But on the other hand, after
Jan. 23, 2020, the linear relationship between W(t) and T(t) gets
sharply decayed, after Feb. 10, 2020, the correlation coefficient be-
tween entries of them cannot be differentiated from 0 no matter for
either the flow-in or the flow-out population. This observation contra-
dicts to the classic assumption in Li et al. (2020); Qiu et al. (2020). In
fact, by the linear correlation assumption, the city lock-down can only
control the number of people moving across regions, it has nothing to
do with the proportion of infectious cases within these migrants, which
should be a constant if only the lock-down and/or travel ban measures
are applied. In the other words, if lock-down really works to contain the
outbreak, the scatters in the right panel of Fig. 3 should converge

Table 1
Estimation Accuracy by R2 7 cm.

Province R2

Full country 0.996
Shanghai 0.979
Yunnan 0.967
Neimenggu 0.979
Beijing 0.972
Taiwan 0.978
Jilin 0.977
Sichuan 0.975
Tianjin 0.991
Ningxia 0.979
Anhui 0.968
Shandong 0.979
Shanxi 0.979
Guangdong 0.971
Guangxi 0.974
Xinjiang 0.993
Jiangsu 0.976
Jiangxi 0.977
Hebei 0.976
Henan 0.976
Zhejiang 0.965
Hainan 0.981
Hubei 0.997
Hunan 0.974
Maco 0.897
Gansu 0.976
Fujian 0.964
Tibet 0.907
Guizhou 0.967
Liaoning 0.973
Chongqing 0.978
Shanxi 0.968
Qinghai 0.963
Hong Kong 0.984
Heilongjiang 0.984

Fig. 3. Relationship between infection link weight W and population flow intensity T with Hubei as origin/destination province.
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gradually to the origin along with a straight line with positive slope,
rather than all scatters rotated toward the horizontal axis as shown in
Fig. 3. The finding implies that the measures that really help contain the
outbreak of COVID-19 may not be the lock-down, instead, they should
be the other measures initiated almost simultaneously with the lock-
down and their effect confounded with that of lock-downs. To correctly
evaluate the real effect of each type of containment measures, we have
to differentiate the confounding measures and their impact, which we
shall leave to the discussion in Section 3.4.

By Fig. 4, there exists an significant gap period around one week
between the vanishing of the flow-in and -out infection link weight and
the decay of the corresponding population flow intensity. For the time
series of flow-in and -out population intensity, all top 7 provinces
reached their minimum before Jan. 31, 2020, while at the mean time
none of them have made the flow-in and -out infection link weight
decayed to somewhere close to zero until Feb. 6, 2020. Such a one week
gap period reflects the effect of the long incubation period of the
COVID-19 and the fact that its infection can happen via infectious cases
without symptoms. The classical SIR/SEIR models ignore this gap
period and tend to over-estimate the basic reproductive number R0 in
the early stage which would trigger the most severe containment
measures, such as the lock-down, if the decision is made upon that base.

In sum, from the brief overlook on the numerical relationship be-
tween infection link weight W and the population flow intensity T, we
can summarize: 1) the positive linear correlation assumption made in
many versions of the SIR/SEIR model (Efimov & Ushirobira, 2020; Fang
et al., 2020; Li et al., 2020; Qiu et al., 2020; Tian et al., 2020) does not
hold uniformly during the outbreak of COVID-19, but it does hold for
the population flow into and out of Hubei province before the great
lock-down; 2) after the lock-down initiated since Jan. 23, 2020, the
positive linear correlation betweenW and T is reduced significantly and
fastly to zero and this reduction shouldn't be simply attributed to the
contribution of lock-down, the effect of other confounding measures
should be examined more carefully; 3) a one-week gap-period exists
between the decay of population flow intensity and infection link
weight, which should be a consequence led by the epidemic char-
acteristics of COVID-19, the classical SIR/SEIR model neglects this gap-
period and can lead to too severe containment measures.

3.3. Relaxation of population flows

As discussed in the previous section, the correlation between po-
pulation flow intensity and infection link weight is weak in most cases.
This observation implies that the most severe travel ban and lock-down
may not be that necessary for those regions among which the infection
connection is weak. Therefore, there should be potential to relax the
lock-down even if the containment level of COVID-19 had to be
maintained. To verify this argument, we solve the relaxation optimi-
zation problem stated in Section 2.2, the result is plotted within Fig. 5,
where we plot the averaged ratio of the relaxation of population flow-in
and flow-out intensity for all provinces in China. The ratio for every
province k (or j) is calculated through dividing the sum of all flow-in/-
out index ∑ tT ( )j kj i (∑ tT ( )k kj i ) by their optimally relaxed version
∑ tT ( )j kj

r
i (∑ tT ( )k kj

r
i ), the average is taken over all tis after the relaxa-

tion starting date. Fig. 5 displays the relaxation degree for all the three
alternative starting date, Jan. 23, Feb. 02 and Feb. 10, 2020, and all the
three containment targets (4)–(6).

From Fig. 5, it is quite impressive that if control target is the total
infectious cases, it seems impossible to relax the population flows be-
tween any pair of provinces without any more strict travel ban executed
for Hubei and a couple of provinces that geographically connect to
Hubei. And the impossibility of relaxation hold for all the three starting
points. Such a result verifies the necessity of lock-down and strict travel
ban executed by most of major cities in China since Jan. 23, 2020. This
conclusion also agrees with the discussion in Li et al. (2020); Qiu et al.
(2020); Tian et al. (2020).

But on the other hand, if the target is to control the temporal R0 that
reflects the long-run infection severity and/or the total death number,
the global relaxation becomes feasible even if starting from Jan. 23,
2020. In particular to the total death number, the travel restriction of
all provinces in China can be relaxed substantially. For most of pro-
vinces in the south-eastern coast regions, the ratio of relaxation for
flow-out population can exceed 10%, while the flow-in relaxation ratio
exceeds 5%. In Zhejiang, Guangdong, Beijing, Shanghai and Tianjin, the
flow-out ratio is even greater than 15% and flow-in ratio is close to
10%. As known, these five provinces consist of the most developed area
of China in economy. A substantial relaxation of the traffic connection
both within them and between them and the other provinces can sig-
nificantly stimulate the overall economy growth for China.

On the other hand, despite the existence of global relaxation

Fig. 4. The temporal variation trend of the aggregated flow-in/-out infection link weight and population flow intensity.
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strategy for the control target R0, the potential for relaxation is not
large. In the south-eastern coast area, most provinces have to maintain
a strict travel ban at least in one direction (flow-in or out) in order to
keep the R0 reasonably low (in the sense of constraint condition (4)).

This observation is partially because the index R0 is much more sensi-
tive, compared with the total death number, to the change of entries of
W, which restrict the space to relax the population flow. But compared
with the total infection number, R0 is less sensitive to the change of W

Fig. 5. One set of optimal relaxation solutions to city-level travel ban since Jan. 23, Feb. 2 and Feb. 10, 2020.
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because R0 depends merely on the greatest positive eigenvalue of W,
while the infection number relies on every single entry. This explains
why the global relaxation is still feasible for controlling R0 but in-
feasible for controlling the total infections.

Finally, if we come back to the target of controlling total infection, a
partial relaxation strategy does exist after all (the partial relaxation
arrangement is determined by maximizing the overall traffic flow in-
tensity across all provinces, i.e. maximizing ∑ tT ( )j k i jk

r
i, , , under the

same set of constraints (4)–(6), the overall traffic flow intensity can be
viewed as an measure to the active degree of the economy). It is re-
markable that since Feb. 02, 2020, if the travel ban was further
strengthened for Hubei and its nearby provinces, the relaxation ratio for
flow-out population becomes high for major south-eastern provinces,
including Fujian, Zhejiang, Shanghai, Jiangsu, Beijing, Tianjin and
Hebei, while the positive flow-in relaxation ratio is allowed to be po-
sitive for Guangdong. The existence of such an partial relaxation ar-
rangement shows the existence of cross-regional substitutability of the
strictness of lock-down, it also implies that a centralized decision me-
chanism for the choice of lock-down and travel ban could be more ef-
ficient in balancing the containment of COVID-19 outbreak and the
economy resume.

In sum, by the counterfactual analysis on the relaxation of travel
ban and city lock-down, we find that global relaxation strategies do
exist for both the control target of R0 and total death number, while it
does not exist for control the total infection number, this observation
results from the relative sensitivity between the control target variables
and infection link weight W. According to the degree of easiness in
relaxing lock-down, controlling death is easier than controlling R0, both
of which are easier than controlling infection. To control the death
number, a substantial relaxation has already been feasible since early
Feb. 2020 for the major provinces in the south-east coast areas, re-
laxation for these provinces is critical to maintain the national-wide
economy development. To control total infection, although a global
relaxation is never feasible during the period studied in this paper, a
partial relaxation is still possible by which the traffic intensity for
south-eastern provinces can be relaxed substantially at the cost of a
more strict lock-down for Hubei and the provinces that have close
connection with Hubei. Such a partial relaxation arrangement is better
for economy recovery, but its feasibility relies on the centralized deci-
sion on the lock-down as it does harm the local benefits via a more
harsh travel ban.

3.4. Relaxation of population flows under other non-lock-down measures

In this section, we study the substitutability between lock-down and
alternative non-lock-down measures. A further counter-factual analysis
is carried out to reveal how the extent of population flow relaxation
response to the strengthen of the non-lock-down measures.

Figs. 6–8 sketch the substitutability between the two classes of non-
lock-down measures (their effect and executive strength are quantified
by γks and θjs respectively) and the relaxation ratios of lock-down under
three targets since three starting dates. As in the previous section, the
relaxation ratios are aggregated according to the flow-in and -out di-
rection on the province level and averaged over all time after the cor-
responding starting date. The first line subplots of Figs. 6–8 give the
substitutability of the province-level γs (horizontal axis) versus the
flow-out(left)/flow-in(right) relaxation ratios (vertical axis); the second
line presents the substitutability between the province-level θs (hor-
izontal axis) and the flow-out(left)/flow-in(right) relaxation ratios
(vertical axis). The colored straight lines in each subplot correspond to
the OLS-fitted line to the scatters with the same colors where the color
is used to distinguish the three starting dates. From Figs. 6–8, it is
straightforward that there exists a gradually substitutable relationship
between the non-lock-down measures by the flow-out region (re-
presented by θs) and the relaxation ratios. In addition, the

substitutability between the θs and the flow-out relaxation ratios is
stronger than between that and the flow-in relaxation ratios, this can be
explained by that the θs is designed to capture the effect of such
measures as setting health check-point in the high-way entrance, rail
stations and airports. The main function of these measures is to reduce
the potential infectious risk of flow-out population, therefore, they are
more straightforwardly replacing the function of locking down all
people within the city no matter whether they are healthy or not. In
contrast, their effect on the flow-in relaxation ratios is via an indirect
way. Compared to the substitutability of θs, there seems not to exist the
gradual substitutability between the γs and relaxation ratios. This is
partially caused by the fact that the γs represent the effect of the con-
ditional quarantine measures executed by flow-in destinations and ap-
plied to suspected infectious cases and those travellers coming from
out-town. These quarantine measures are not directly linked with the
cross-regional population-flows and therefore affect the infection con-
nection matrix W in an additive way. Compared to the multiplicative
connection between θs and W, the additive connection makes sub-
stitutability of γs less direct. It is still impressive that most of the
scatters in the second line subplots are clustered on the left of a vertical
boundary line (x ≡ c for some c < 0) and a dense subset of these
scatters are gathered around this boundary. In fact, this boundary
phenomenon implies a much more stringent substitutability. That is, an
universally bottom line exists such that the strength of flow-in non-lock-
down measures cannot go below this line, otherwise it would squeeze
the potential to relax the population flow intensity.

Through comparison across the target types and starting dates, it is
found that for different targets, the degree of θs substitutability is in-
creasing in the order of controlling infection, R0 and death. In parti-
cular, for the target of controlling infection number, there almost does
not exist substitutability between θs and relaxation for the starting date
Jan. 23, 2020 (reflected as the flat red line in the second line plots of
Fig. 7), which once again verifies the necessity of lock-down in the early
stage. The order of substitutability is consistent with the order of ea-
siness in relaxing population flow analyzed in the previous section,
implying the relative easiness in the realization of different targets. For
different starting date, the degree of substitutability of the θs and γs is
increasing for the later starting time, such as Feb. 2 and 10, 2020,
which is reflected as (for θs) a greater absolute slopes of the green and
blue lines than that of the red line in the second line plots of all three
figures, and (for γs) that the blue lines lie above green lines that lie
above the red lines in the first line plots of Figs. 7 and 8. The increasing
substitutability along with time support the story that the lock-down
measure is effective in controlling the fast growth of infection number
and the induced burden to the local healthcare system, which makes
lock-down beneficial in the early stage of the explosion of community
infection when there is no enough time left for figuring out all unknown
infectious sources and no sufficient medical resources to conduct
treatment. The lock-down in this stage can help save time for the ef-
fective reaction to the virus in the next stage and the adoption of more
subtly designed prevention measures in the future. On the other hand,
once if the explosion of community infection had been well contained
and the total number of infectious cases were stabilized, substitutability
between lock-down and the other measures comes up, and it is proper
to gradually turn lock-down to the other mild measures. Such a tran-
sition of containment measures agrees with the idea discussed in Harris
(2020) and Pueyo (n.d.).

Fig. 9 presents the geographic distribution of relaxation ratios of
flow-in and -out populations for different targets and different starting
dates. The coloring scheme is exactly the same as that in Fig. 5. Com-
paring Fig. 9 with Fig. 5, it is quite surprising that for the starting date
Feb. 2 and Feb. 10, 2020, almost all provinces (including Hubei pro-
vince) in China can significantly relax their travel ban and lock-down
policies, the relaxation ratios are almost uniformly greater than 20% for
both the flow-in and flow-out direction, and for both the targets of
controlling total infection number and death number. For the target of
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R0, the optimal relaxation ratios are a bit smaller than the other two
targets, and the flow-out population flow of Hubei province cannot be
relaxed even for the latest starting date Feb. 10, 2020.

For the starting date Jan. 23, 2020, the optimal relaxation ratio does
not change much compared to the later starting date for the target of
controlling the death number of R0, but a huge difference exist for the
containment target of infection number. If we counter-factually started
the relaxation since Jan. 23, 2020, there is no global relaxation ar-
rangement without increasing the infection number for some provinces
and some time after Jan. 23, 2020. This conclusion is similar to that
drawn from Fig. 5, it once again proves the robust necessity of lock-
down in the early spreading stage of COVID-19.

It is remarkable to highlight the difference in the absolute size of

relaxation ratios between the existence and non-existence of adjustment
to the stringency of non-lock-down measures since Feb. 2, 2020. In the
later situation, the value of relaxation ratios is almost uniformly twice
greater than that in the former situation. This fact implies the existence
of a better combination of various control measures during the China's
anti-COVID-19 movement. That is the execution of lock-down for a very
short period since Jan. 23, 2020 (e.g. one week) in order to save time
for stabilizing the infection number and meanwhile preparing for the
transition to the other milder measures, such as the conditional quar-
antine and health check-points. Then gradually relax the degree of lock-
down since Feb. 02, 2020 through substituting with an increasingly
stringent execution of the other non-lock-down measures. Such a quick
lock-down strategy, compared to the 1-month+ lock-down that was

Fig. 6. Substitutability between lock-down and non-lock-down measures given R0 target.

Fig. 7. Substitutability between lock-down and non-lock-down measures under controlling the total infectious cases. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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actually carried out in the real time line, have the least harm to the
economy while can reach the same effect on mitigating the outbreak of
COVID-19.

4. Discussion & conclusion

In this study, we propose a non-parametric network-based SIR
model (NP-Net-SIR) to study the cross-regional outbreak of COVID-19,
within which the special epidemic characteristics of COVID-19, such as
the long incubation period and asymptomatic infection channel, are
easily encoded. The non-parametric nature of NP-Net-SIR saves it from
suffering the presumed liner dependence between COVID-19 outbreak
and the inter-regional population flow, which might lead to over-esti-
mate of the real effect of city lock-down. The low accuracy of outbreak
data before the mid of Feb. 2020 imposes a major technical challenge to
those studies based on statistic inference from the early outbreak. To
resolve the data issue, we apply the graph-Laplacian regularization
from semi-supervised learning to identify and train NP-Net-SIR model
which turns out robust under poor data quality condition.

By the trained model, we analyze the connection between popula-
tion flow and the cross-regional infection network, based on which a set
of counter-factual analysis is carried out to study the necessity of lock-
down and substitutability between lock-down and the other contain-
ment measures. The main findings of this study include: 1) except for
the very early stage of outbreak and the population flow out of the
epicenter Wuhan and Hubei province, there does not exist strong linear
connection between population flow and cross-regional infection con-
nection, indicating that the lock-down may not be the key measure to
contain the COVID-19; 2) strong substitutability exists between the
lock-down and non-lock-down-typed containment measures, between
different containment targets, and between the lock-down of different
regions; 3) in the earliest stage (starting from Jan. 23, 2020) the lock-
down of the epicenter, Hubei, is indispensable, while the indis-
pensability is by and large attributed to the geographically unbalanced
impact of the COVID-19 outbreak and the cross-regional inequality in
terms of the public awareness of the COVID-19, healthcare resources
and the implementation of containment measures; 4) after the impact of
COVID-19 got equalized inter-regionally (e.g. after Feb. 2, 2020), the
lock-down had already been able to be relaxed substantially while the

same containment effect can be achieved; 5) when the other contain-
ment measures are implemented stringently, the relaxation degree of
population flow can be even enlarged.

Our findings support that the lock-down may not be the optimal
strategy in containing the outbreak of COVID-19 except for the early
stage, there exist alternatives that have less negative impact on the
social-economic development. But the effectiveness of the alternative
measures requires a subtly designed prevention system which should
admit the regional difference and the temporal adjustment in the con-
tainment measures according to the particular situations for different
regions and different time periods. The discussion in this paper has
certain guiding and practical significance for the normalization of the
epidemic prevention, the resumption of production and economic ac-
tivities from lock-down, and the containment strategy design of other
countries in the same epidemic situation.

Although the analysis of this paper is retrospective and based on
that all the data of COVID-19 have been available, which is not possible
for the decision time at Jan. 23 and the early Feb., 2020, it is still
meaningful to retrospect the potential optimal controlling strategy. This
is because even by now, China is still facing a high risk of the “second-
wave” outbreak. The choice of both feasible and effective containment
measures is still a critical but open question, while many countries in
the world currently still struggle with how to prevent the outbreak of
COVID-19. Our study can provide some hints on this choice. First, the
China's experience and the strict lock-down measure turns out not only
sufficient (Fang et al., 2020; Li et al., 2020; Prem et al., 2020; Qiu et al.,
2020; Tian et al., 2020; Tuite et al., 2020) for mitigating the virus
spread, but may also be the only effective way to cool down the ex-
plosion of community infection at least in the early spreading stage. But
afterward, it shouldn't be stuck in the lock-down status for long which is
neither meaningful for control the virus nor good for the economic
recovery. In contrast, a set of non-lock-down-typed alternative mea-
sures should be quickly prepared and actively executed so as to sub-
stitute the lock-down which, as long as being strictly executed, can lead
to as effective control of the virus as the lock-down can do. Meanwhile,
without the collaboration of the non-lock-down-typed measures, such
as the conditional quarantine, the purely lock-down may also fail to
mitigate the COVID-19, as what happened in Italy, Spain, and New
York, USA.

Fig. 8. Substitutability between lock-down and non-lock-down measures under controlling the total dead cases. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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Appendix A. Training of NP-Net-SIR model

The non-parametric network set-up makes our NP-Net-SIR model essentially a special class of recurrent neural network (RNN), namely the
temporal RNN (Liu et al., 2016) with the temporality coming from the time dependent neural network W(t). The total amount of infections n(t), due
to its unobservable nature, corresponds to the hidden layer of the RNN, while the documented infectionsm(t) corresponds to the output layer. Due to
the lack of extra input to the NP-Net-SIR, the input layer is degenerated to 0. Given the observation of the sequence of documented infections
ℳo = {Mti : i = 1, …, n; t1 < ⋯ < tn} and a proper regularized loss function, the standard back-propagation method applies to estimate the set of
unknown temporal parameters {W(ti), n(ti), r(ti), pI(j, ti), pB(j, ti) : i = 1, …, n; j = 1, …, incub}. Due to the discreteness of the observation time, the
continuity condition for these temporal parameters can be converted to a graph-Laplacian regularization with the grid graph on real line (Zhou &
Belkin, 2011), which is asymptotically equivalent to require, under the high-frequent observation, these temporal parameters are continuous,
differentiable and have square-integrable derivatives. In our special case, the graph-Laplacian regularization can be written in the following form:
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(A.1)

where we artificially set the boundaryW(tn+1)≡ 0 so that the summation of hidden networksW up to the subscript n implies the sparse requirement
on the W(ti)s which is standard to avoid over-fitting.

For loss function, in addition to the standard square-sum error between the observed Mtis and the estimated m(ti)s, we add an extra penalty to the
error function in order to fix the data pollution issue in the early stage of COVID-19 outbreak. In particular, we define the following indicator
function:
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(A.2)

the meaning of Eq. (A.2) is that there is a cut-off time point t⁎ before which the documented infection number tends to under-estimate the real
spreading trend. Therefore, if the estimated number m exceeds the reported M we think the estimates reflect the true case and don't treat it as an
error, while if the estimated is less than the reported, which indicates a severe under-estimate to the true case, the error is calculated as usual. After
t⁎, it is thought that all hidden infectious cases that should be documented and published have already been reported, then the reported cases agree
with the real trend. In this paper, we set t⁎ as the date, Feb. 12, 2020, when Wuhan local government reported 13,000+ inventory infectious cases
that were not in record before. Then the loss function can be written as the following form:
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where the loss depends on the hidden infection number n through the observed infection number m via model (1).
Note that the RNN nature of the model (1) makes the infection number n(t), m(t) generated from n(s), m(s) for s < t, then by the back-

propagation algorithm, the model (1) is fitted in a reversed order, i.e. the parameter values of n(s),W(s), pI( ⋅ , s), pB( ⋅ , s) and r(s) for previous period
s are essentially fitted from the later observations m(t) with t > s. The back-ward fitting direction together with the function (A.2) presents a way to
utilize the label datam(t) at time t > t∗ to generate label of infection number for those un-labeled time swith s≤ t∗, such a trick of utilizing partially
labeled data is standard in semi-supervised learning (Zhou & Belkin, 2011), we borrow it here to address the inaccurate data issue for the early stage.

To estimate the parameters, we minimize the loss function with respect to parameters and also subject to the default range restrictions that are
the following:
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The quadratic nature of the square-sum loss function guarantees that even if the penalty (Eq. (A.2)) is added, the resulting loss function (A.3) is
still continuously differentiable, standard gradient descending solvers are applicable.

Appendix B. Training algorithm

Training model (1) is equivalent to solving the optimization problem in Eq. (A.3) under the constraints (A.4). The classical gradient-descending-
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based solution for RNN usually assumes no constraint. Therefore, some modifications are needed. In the following, we propose a sequential mod-
ification to the classical backward propagation training algorithm for neural network model. To facilitate the introduction of the sequential algo-
rithm, we temporally assume the temporal RNN is no longer temporal, but a static RNN, i.e. all the temporal parameters W, pB, pI and r are no longer
dependent on t. Also suppose that the infection number mt is observed within the discrete time interval {1,…,T}. Then, the discrete version of model
(1) under above assumptions becomes the following:
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where for x = B, I, px, i is a short-hand notation for px(i) when the static probability px mass function is evaluated at the discrete time i. Given Eq.
(B.1), notice that when the unknown model probability parameter pB, pI, the recovery rate r and network matrix W are fixed, the model depends
completely on the hidden layer n = {nt : t = − incub,−incub + 1,…,0,…,T} via vector multiplication. While pB, pI, r and n are fixed, the model
depends completely on W via matrix multiplication. When W and n are fixed, the model depends completely on the pB, pI and r via constant multiple
and vector inner product. Note that all above operations are linear operations, meanwhile, the loss function (A.3) has quadratic form, these facts
imply that fixing any two classes of quantities among (a) pB, pI, r; (b)W; and (c) n, the optimization problem (A.3) under constraint (A.4) is a classical
convex programming problem (Golstein, 2008; Shen et al., 2014), with respect to the remaining class of quantities. As our loss function (A.3) is
strictly convex, the resulting convex programming problem has the unique minimum and can be solved quickly via the classical gradient algorithm.
Therefore, under static setting of model parameters, the following iterative fitting algorithm can be applied to train the parameters:

Step 1: Given s ≥ 0, for fixed vector pBs, pIs, constant rs and matrix Ws, solve problem (A.3) under Eq. (A.4) with respect to n, resulting in ns+1;
Step 2: Given s ≥ 0, for fixed vector pBs, pIs, constant rs and time series ns, solve problem (A.3) under Eq. (A.4) with respect to W, resulting in Ws

+1;
Step 3: Given s ≥ 0, for fixed matrix Ws and time series ns, solve problem (A.3) under Eq. (A.4) with respect to vector pB, pI and constant r,
resulting in pBs+1, pIs+1 and rs+1;
Step 4: Repeat Step 1–3 until the ratio of L2 norms
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is less than a prescribed threshold δ (=10−3).

Then, to release the static assumption, given the data ℳo = {M0,M1,…,MS} of the series of observed infection vector during the period end up
with day S. consider the following sequential backward propagation

Step 1: (Initialization) Set τ = S ℳτ = {Mτ−T,…,Mτ}, apply the 4-step static training algorithm as above, denote the output as Wτ, pBτ, pIτ, rτ and
nτ = {nτ−T−incub

τ,…,nτ
τ};

Step 2: For T≤ τ < S andℳτ, redefine the hidden vector as n= {nτ−T−incub, nτ−T−incub+1
τ+1,…, nτ

τ+1} where only the first entry nτ−T−incub is
undetermined and needs to be optimized, the remaining entries are fixed via the estimated value from the previous iteration. Given the estimation
Wτ+1, pBτ+1, pIτ+1, rτ+1 from the previous iteration, apply the static version of training algorithm as above with the redefined loss function as in
the following Eq. (B.3), we get the output Wτ, pBτ, pIτ, rτ and nτ = {nτ−T−incub

τ,nτ−T−incub+1
τ+1,…,nτ

τ}.
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where the timely integrated Laplacian regularization (A.1) in loss function (A.3) is replaced with the one-period regularization.

Combining the sequence of outputs from the two-step sequential backward propagation algorithm, we obtain the estimated sequence of ad-
jacency matrices {WT, …, WS}, probability parameters {pBT,…,pBS}, {pIT,…,pIS}, recovery rate {rT,…, rS} and the sequence of hidden infection
vector {n−incub, n−incub+1, …, n0, …, nS}. For the hidden infection vector, note that the estimate to nτ for every τ is unique according to the design of
nτ in the Step 2 of the sequential backward propagation.

The sequential backward propagation is essentially a sequence of the standard backward propagation which is applied to solve the static version
of our model (B.1), where the connection between two consecutive steps is established through the consecutive one-period decomposition of the
Laplacian regularization condition in Eq. (B.3) and the construction that let nτ and nτ+1 share the common hidden infection numbers in the
overlapped period. It is not hard to verify that the sequential implementation of backward propagation generates asymptotically equivalent result to
the classical backward propagation.

Also notice that the sequential training depends on an unspecified horizon parameter T, in this paper, we set T= 7 as it minimizes the aggregated
loss (A.3) compared to the alternatives in the range {1,…,20}. The implementation of the algorithm is by python where the key-step minimization
(Step 1–3) for the static model (B.1) is implemented via the convex programming package, CVXPY.

Appendix C. Calculation death number

D(ti) (similarly Dr(ti)) is calculated from the sequence {m(t) : t ≤ ti} through following auto-regressive equation
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= + ⋅ + ⋅ + ⋅ +∼
− −t a b m t c t d h t ε tDr Dr( ) Δ ( ) ( ) ( ) ( )j i j j i k j i k j i j i1 2 (C.1)

where Drj(ti) is the death rate such that Dj(ti) = Drj(ti)mj(ti). In Eq. (C.1) hj(ti) is the ratio between mj(ti) and the local healthcare resources that are
measured by the total number of hospital beds. According to preliminary analysis, the time lag k1, k2 take 8 day and 1 day, respectively. The
coefficient and residuals in Eq. (C.1) are inferred from the real data, they will be fixed in the counterfactual analysis and help generate the updated
death number for counterfactually adjusted input.
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